|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Install dependencies" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "%%capture --no-stderr\n", |
| 17 | + "%pip install -U --quiet 'crewai[tools]' aisuite" |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "markdown", |
| 22 | + "metadata": {}, |
| 23 | + "source": [ |
| 24 | + "# Set environment variables" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 2, |
| 30 | + "metadata": { |
| 31 | + "jupyter": { |
| 32 | + "source_hidden": true |
| 33 | + } |
| 34 | + }, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "import getpass\n", |
| 38 | + "import time\n", |
| 39 | + "initial_time = time.time()\n", |
| 40 | + "\n", |
| 41 | + "import os\n", |
| 42 | + "\n", |
| 43 | + "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter your OpenAI API key: \")\n", |
| 44 | + "\n", |
| 45 | + "# Apply a patch to allow nested asyncio loops in Jupyter\n", |
| 46 | + "import nest_asyncio\n", |
| 47 | + "nest_asyncio.apply()" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "markdown", |
| 52 | + "metadata": {}, |
| 53 | + "source": [ |
| 54 | + "# Create Crew" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 3, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [ |
| 62 | + { |
| 63 | + "name": "stderr", |
| 64 | + "output_type": "stream", |
| 65 | + "text": [ |
| 66 | + "/Users/joaomoura/.pyenv/versions/3.11.7/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", |
| 67 | + " from .autonotebook import tqdm as notebook_tqdm\n", |
| 68 | + "Inserting batches in chromadb: 100%|██████████| 1/1 [00:01<00:00, 1.47s/it]\n", |
| 69 | + "Inserting batches in chromadb: 100%|██████████| 1/1 [00:00<00:00, 1.18it/s]\n", |
| 70 | + "Inserting batches in chromadb: 100%|██████████| 1/1 [00:01<00:00, 1.65s/it]\n" |
| 71 | + ] |
| 72 | + } |
| 73 | + ], |
| 74 | + "source": [ |
| 75 | + "# Importing Crew related components\n", |
| 76 | + "# Importing CrewAI Flow related components\n", |
| 77 | + "# Importing CrewAI Tools\n", |
| 78 | + "from crewai import Agent, Task, Crew\n", |
| 79 | + "from crewai.flow.flow import Flow, listen, start\n", |
| 80 | + "from crewai_tools import WebsiteSearchTool\n", |
| 81 | + "\n", |
| 82 | + "# Importing AI Suite for adhoc LLM calls and Pydantic\n", |
| 83 | + "from pydantic import BaseModel\n", |
| 84 | + "import aisuite as ai\n", |
| 85 | + "\n", |
| 86 | + "urls = [\n", |
| 87 | + " \"https://lilianweng.github.io/posts/2023-06-23-agent/\",\n", |
| 88 | + " \"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/\",\n", |
| 89 | + " \"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/\",\n", |
| 90 | + "]\n", |
| 91 | + "\n", |
| 92 | + "research_agent = Agent(\n", |
| 93 | + " role=\"You are a helpful assistant that can answer questions about the web.\",\n", |
| 94 | + " goal=\"Answer the user's question.\",\n", |
| 95 | + " backstory=\"You have access to a vast knowledge base of information from the web.\",\n", |
| 96 | + " tools=[\n", |
| 97 | + " WebsiteSearchTool(website=urls[0]),\n", |
| 98 | + " WebsiteSearchTool(website=urls[1]),\n", |
| 99 | + " WebsiteSearchTool(website=urls[2]),\n", |
| 100 | + " ],\n", |
| 101 | + " llm=\"gpt-4o-mini\",\n", |
| 102 | + ")\n", |
| 103 | + "\n", |
| 104 | + "task = Task(\n", |
| 105 | + " description=\"Answer the following question: {question}\",\n", |
| 106 | + " expected_output=\"A detailed and accurate answer to the user's question.\",\n", |
| 107 | + " agent=research_agent,\n", |
| 108 | + ")\n", |
| 109 | + "\n", |
| 110 | + "crew = Crew(\n", |
| 111 | + " agents=[research_agent],\n", |
| 112 | + " tasks=[task],\n", |
| 113 | + ")" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "markdown", |
| 118 | + "metadata": {}, |
| 119 | + "source": [ |
| 120 | + "# Creating State" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": 4, |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "class QAState(BaseModel):\n", |
| 130 | + " \"\"\"\n", |
| 131 | + " State for the documentation flow\n", |
| 132 | + " \"\"\"\n", |
| 133 | + " question: str = \"What does Lilian Weng say about the types of agent memory?\"\n", |
| 134 | + " improved_question: str = \"\"\n", |
| 135 | + " answer: str = \"\"" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "markdown", |
| 140 | + "metadata": {}, |
| 141 | + "source": [ |
| 142 | + "# Creating Flow" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": 5, |
| 148 | + "metadata": {}, |
| 149 | + "outputs": [], |
| 150 | + "source": [ |
| 151 | + "class QAFlow(Flow[QAState]):\n", |
| 152 | + " @start()\n", |
| 153 | + " def rewrite_question(self):\n", |
| 154 | + " print(f\"# Rewriting question: {self.state.question}\")\n", |
| 155 | + " client = ai.Client()\n", |
| 156 | + " messages = [\n", |
| 157 | + " {\n", |
| 158 | + " \"role\": \"system\",\n", |
| 159 | + " \"content\": f\"\"\"Look at the input and try to reason about the underlying semantic intent / meaning.\n", |
| 160 | + " Here is the initial question:\n", |
| 161 | + " -------\n", |
| 162 | + " {self.state.question}\n", |
| 163 | + " -------\n", |
| 164 | + " Formulate an improved question:\"\"\"\n", |
| 165 | + " }\n", |
| 166 | + " ]\n", |
| 167 | + "\n", |
| 168 | + " response = client.chat.completions.create(\n", |
| 169 | + " model=\"openai:gpt-4o-mini\",\n", |
| 170 | + " messages=messages,\n", |
| 171 | + " temperature=0.3\n", |
| 172 | + " )\n", |
| 173 | + "\n", |
| 174 | + " print(response)\n", |
| 175 | + "\n", |
| 176 | + " improved_question = response.choices[0].message.content\n", |
| 177 | + " self.state.improved_question = improved_question\n", |
| 178 | + "\n", |
| 179 | + " @listen(rewrite_question)\n", |
| 180 | + " def answer_question(self):\n", |
| 181 | + " print(f\"# Answering question: {self.state.improved_question}\")\n", |
| 182 | + " result = crew.kickoff(inputs={'question': self.state.improved_question})\n", |
| 183 | + " self.state.answer = result.raw\n", |
| 184 | + " return result\n" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "markdown", |
| 189 | + "metadata": {}, |
| 190 | + "source": [ |
| 191 | + "# Plotting Flow" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": 12, |
| 197 | + "metadata": {}, |
| 198 | + "outputs": [ |
| 199 | + { |
| 200 | + "name": "stdout", |
| 201 | + "output_type": "stream", |
| 202 | + "text": [ |
| 203 | + "Plot saved as crewai_flow.html\n" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "data": { |
| 208 | + "text/html": [ |
| 209 | + "\n", |
| 210 | + " <iframe\n", |
| 211 | + " width=\"100%\"\n", |
| 212 | + " height=\"600\"\n", |
| 213 | + " src=\"crewai_flow.html\"\n", |
| 214 | + " frameborder=\"0\"\n", |
| 215 | + " allowfullscreen\n", |
| 216 | + " \n", |
| 217 | + " ></iframe>\n", |
| 218 | + " " |
| 219 | + ], |
| 220 | + "text/plain": [ |
| 221 | + "<IPython.lib.display.IFrame at 0x10350b310>" |
| 222 | + ] |
| 223 | + }, |
| 224 | + "execution_count": 12, |
| 225 | + "metadata": {}, |
| 226 | + "output_type": "execute_result" |
| 227 | + } |
| 228 | + ], |
| 229 | + "source": [ |
| 230 | + "flow = QAFlow()\n", |
| 231 | + "flow.plot()\n", |
| 232 | + "\n", |
| 233 | + "# Display the flow visualization using HTML\n", |
| 234 | + "from IPython.display import IFrame\n", |
| 235 | + "IFrame(src='crewai_flow.html', width='100%', height=600)" |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "markdown", |
| 240 | + "metadata": {}, |
| 241 | + "source": [ |
| 242 | + "# Kicking off Flow" |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "cell_type": "code", |
| 247 | + "execution_count": 7, |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [ |
| 250 | + { |
| 251 | + "name": "stdout", |
| 252 | + "output_type": "stream", |
| 253 | + "text": [ |
| 254 | + "# Rewriting question: What does Lilian Weng say about the types of agent memory?\n", |
| 255 | + "ChatCompletion(id='chatcmpl-Aeo4gBp6YJNqtm6QW3RVqcSoIvcBo', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='What insights does Lilian Weng provide regarding the different types of agent memory in her work?', refusal=None, role='assistant', audio=None, function_call=None, tool_calls=None))], created=1734288970, model='gpt-4o-mini-2024-07-18', object='chat.completion', service_tier=None, system_fingerprint='fp_6fc10e10eb', usage=CompletionUsage(completion_tokens=19, prompt_tokens=56, total_tokens=75, completion_tokens_details=CompletionTokensDetails(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0), prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0)))\n", |
| 256 | + "# Answering question: What insights does Lilian Weng provide regarding the different types of agent memory in her work?\n", |
| 257 | + "==========\n", |
| 258 | + "In her work, Lilian Weng provides insights into the different types of memory used in LLM-powered autonomous agents. She categorizes memory into several types, drawing parallels to the functioning of human memory:\n", |
| 259 | + "\n", |
| 260 | + "1. **Short-term Memory**: This is associated with in-context learning utilized by the model, which allows it to learn and process information temporarily.\n", |
| 261 | + "\n", |
| 262 | + "2. **Long-term Memory**: This type enables the agent to retain and recall information over extended periods. It often utilizes an external vector store for fast retrieval, thus facilitating the storage of infinite information.\n", |
| 263 | + "\n", |
| 264 | + "In relation to human memory, Weng elaborates on the following categories:\n", |
| 265 | + "\n", |
| 266 | + "- **Sensory Memory**: The initial stage of memory retaining sensory impressions after stimuli have ended, lasting only a few seconds. Subcategories include:\n", |
| 267 | + " - **Iconic Memory** (visual)\n", |
| 268 | + " - **Echoic Memory** (auditory)\n", |
| 269 | + " - **Haptic Memory** (touch)\n", |
| 270 | + "\n", |
| 271 | + "- **Short-Term Memory (STM) or Working Memory**: This type holds information currently in awareness, which is essential for cognitive tasks like learning and reasoning. STM is believed to hold about 7 items for approximately 20-30 seconds.\n", |
| 272 | + "\n", |
| 273 | + "- **Long-Term Memory (LTM)**: This can retain information for prolonged periods, ranging from days to decades, with virtually unlimited capacity. It is divided into:\n", |
| 274 | + " - **Explicit/Declarative Memory**: Conscious recollections of facts and experiences, including:\n", |
| 275 | + " - **Episodic Memory**: Events and experiences\n", |
| 276 | + " - **Semantic Memory**: Facts and concepts\n", |
| 277 | + " - **Implicit/Procedural Memory**: Unconscious memory for skills and routines performed automatically, such as riding a bike or typing.\n", |
| 278 | + "\n", |
| 279 | + "Weng suggests that sensory memory can be viewed as the process of learning embedding representations for raw inputs, while short-term and long-term memories serve to organize, retain, and retrieve complex information and experiences that enhance an agent's performance as it interacts with environments.\n" |
| 280 | + ] |
| 281 | + } |
| 282 | + ], |
| 283 | + "source": [ |
| 284 | + "result = flow.kickoff()\n", |
| 285 | + "print(\"=\" * 10)\n", |
| 286 | + "print(result)" |
| 287 | + ] |
| 288 | + }, |
| 289 | + { |
| 290 | + "cell_type": "code", |
| 291 | + "execution_count": 8, |
| 292 | + "metadata": {}, |
| 293 | + "outputs": [ |
| 294 | + { |
| 295 | + "name": "stdout", |
| 296 | + "output_type": "stream", |
| 297 | + "text": [ |
| 298 | + "Total execution time: 158.21 seconds\n" |
| 299 | + ] |
| 300 | + } |
| 301 | + ], |
| 302 | + "source": [ |
| 303 | + "import time\n", |
| 304 | + "final_time = time.time()\n", |
| 305 | + "print(f\"Total execution time: {final_time - initial_time:.2f} seconds\")" |
| 306 | + ] |
| 307 | + }, |
| 308 | + { |
| 309 | + "cell_type": "code", |
| 310 | + "execution_count": null, |
| 311 | + "metadata": {}, |
| 312 | + "outputs": [], |
| 313 | + "source": [] |
| 314 | + } |
| 315 | + ], |
| 316 | + "metadata": { |
| 317 | + "kernelspec": { |
| 318 | + "display_name": "Python 3 (ipykernel)", |
| 319 | + "language": "python", |
| 320 | + "name": "python3" |
| 321 | + }, |
| 322 | + "language_info": { |
| 323 | + "codemirror_mode": { |
| 324 | + "name": "ipython", |
| 325 | + "version": 3 |
| 326 | + }, |
| 327 | + "file_extension": ".py", |
| 328 | + "mimetype": "text/x-python", |
| 329 | + "name": "python", |
| 330 | + "nbconvert_exporter": "python", |
| 331 | + "pygments_lexer": "ipython3", |
| 332 | + "version": "3.11.7" |
| 333 | + } |
| 334 | + }, |
| 335 | + "nbformat": 4, |
| 336 | + "nbformat_minor": 4 |
| 337 | +} |
0 commit comments