-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae.py
149 lines (125 loc) · 4.66 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import warnings as w
w.simplefilter(action="ignore")
import argparse
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import os
import cv2
from tqdm.auto import tqdm
parser = argparse.ArgumentParser(description="Variational Autoencoder")
parser.add_argument(
"--input", type=str, required=True, help="Directory containing images eg: data/"
)
parser.add_argument("--name", type=str, required=True, help="Name for the model")
parser.add_argument(
"--epoch", type=int, default=500, help="Number of training iterations"
)
parser.add_argument("--batch", type=int, default=100, help="Batch Size")
parser.add_argument(
"--original_dim", type=int, default=128, help="Dimension of Intermediate Layer"
)
parser.add_argument(
"--inter_dim", type=int, default=256, help="Dimension of Intermediate Layer"
)
args = parser.parse_args()
# Parameters
epochs = args.epoch
intermediate_dim = args.inter_dim
batch_size = args.batch
original_dim = args.original_dim * args.original_dim * 3
latent_dim = 2
epsilon_std = 1.0
# Custom Dataset
class ImageDataset(Dataset):
def __init__(self, img_dir):
self.img_paths = [os.path.join(img_dir, f) for f in os.listdir(img_dir)]
def __len__(self):
return len(self.img_paths)
def __getitem__(self, idx):
img = cv2.imread(self.img_paths[idx])
img = img.astype("float32") / 255.0
img = cv2.resize(img, (args.original_dim, args.original_dim))
return torch.tensor(img, dtype=torch.float32).view(-1)
# VAE Model
class VAE(nn.Module):
def __init__(self, original_dim, intermediate_dim, latent_dim):
super(VAE, self).__init__()
self.fc1 = nn.Linear(original_dim, intermediate_dim)
self.fc2_mean = nn.Linear(intermediate_dim, latent_dim)
self.fc2_log_var = nn.Linear(intermediate_dim, latent_dim)
self.fc3 = nn.Linear(latent_dim, intermediate_dim)
self.fc4 = nn.Linear(intermediate_dim, original_dim)
def encode(self, x):
h = F.relu(self.fc1(x))
return self.fc2_mean(h), self.fc2_log_var(h)
def reparameterize(self, mean, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return mean + eps * std
def decode(self, z):
h = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h))
def forward(self, x):
mean, log_var = self.encode(x)
z = self.reparameterize(mean, log_var)
return self.decode(z), mean, log_var
# Loss Function
def loss_function(recon_x, x, mean, log_var):
BCE = F.binary_cross_entropy(recon_x, x, reduction="sum")
KLD = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp())
return BCE + KLD
# Load Data
train_dataset = ImageDataset(args.input)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# Initialize Model
vae = VAE(original_dim, intermediate_dim, latent_dim).to(
torch.device("cuda" if torch.cuda.is_available() else "cpu")
)
optimizer = optim.Adam(vae.parameters(), lr=1e-3)
if os.path.exists(f"{args.name}.h5"):
vae.load_state_dict(torch.load(f"{args.name}.h5", map_location=torch.device("cpu")))
# Training Loop
vae.train()
pbar = tqdm(range(epochs))
for epoch in pbar:
train_loss = 0
for batch in train_loader:
optimizer.zero_grad()
batch = batch.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
recon_batch, mean, log_var = vae(batch)
loss = loss_function(recon_batch, batch, mean, log_var)
loss.backward()
train_loss += loss.item()
optimizer.step()
pbar.set_description_str(
f"Epoch {epoch + 1}/{epochs}, Loss: {train_loss / len(train_loader.dataset):.4f}"
)
torch.save(vae.state_dict(), f"{args.name}.h5")
# Generate Images
vae.eval()
with torch.no_grad():
n = 4
digit_size = args.original_dim
figure = np.zeros((digit_size * n, digit_size * n, 3))
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
z_sample = torch.tensor([[xi, yi]], dtype=torch.float32).to(
torch.device("cuda" if torch.cuda.is_available() else "cpu")
)
x_decoded = vae.decode(z_sample).cpu().numpy()
newimage = x_decoded.reshape(digit_size, digit_size, 3)
figure[
i * digit_size : (i + 1) * digit_size,
j * digit_size : (j + 1) * digit_size,
] = newimage
plt.imshow(figure)
plt.axis("off")
plt.show()