forked from antononcube/MathematicaForPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FunctionalParsers.m
826 lines (611 loc) · 35.7 KB
/
FunctionalParsers.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
(*
Functional parsers Mathematica package
Copyright (C) 2014 Anton Antonov
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Written by Anton Antonov,
antononcube @ gmail . com,
Windermere, Florida, USA.
*)
(*
Mathematica is (C) Copyright 1988-2019 Wolfram Research, Inc.
Protected by copyright law and international treaties.
Unauthorized reproduction or distribution subject to severe civil
and criminal penalties.
Mathematica is a registered trademark of Wolfram Research, Inc.
*)
(* Version 1.0 *)
(*
This package provides an implementation of a system of functional parsers.
The implementation follows closely the article:
"Functional parsers" by Jeroen Fokker
http://www.staff.science.uu.nl/~fokke101/article/parsers/
The parsers are categorized in the groups: basic, combinators, and transformers.
The basic parsers parse specified strings and strings adhering to predicates.
The combinator parsers allow sequential and alternative combinations of parsers.
The transformer parsers change the input or the output of the parsers that are transformed.
A basic parse or a combinator parser takes a list of strings and returns a list of pairs, {{o1,r1},{o2,r2},...}.
Each pair has as elements a parsed output and the rest of the input list.
Functions for splitting the input text into tokens are provided.
The package also have functions to generate parsers from a string of the Extended Backus-Naur Form (EBNF) definition
of a grammar.
The EBNF grammar string can have the pick-left and pick-right combinators (\[LeftTriangle] or "<&",
and \[RightTriangle] or "&>" respectively) and a ParseApply specification can be given within the form
"<rhs> = parsers <@ transformer" .
The application of transformer functions can be done over the whole definition of an EBNF non-terminal symbol,
not over the individual parts.
There is a function, InterpretWithContext, for interpreting parsed results with a context.
The context is given as a list of rules. There are two forms for the context rules: {(_Symbol->_)..} and
{"data"->{(_Symbol->_)...}, "functions"->{(_Symbol->_)...}} . If during the interpretation the context functions change
the context data the result of InterpretWithContext will return the changed data.
A more extensive introduction is given in the document:
"Functional parsers for an integration requests language grammar"
in MathematicaForPrediction at GitHub. Here is the URL:
https://github.com/antononcube/MathematicaForPrediction/blob/master/Documentation/Functional%20parsers%20for%20an%20integration%20requests%20language%20grammar.pdf
Versions of this package are also implemented in R and Lua. See:
https://github.com/antononcube/MathematicaForPrediction/tree/master/R/FunctionalParsers (R), and
https://github.com/antononcube/MathematicaForPrediction/tree/master/Lua/FunctionalParsers (Lua).
TODO:
1. Add a simple concrete example in this file.
2. Re-implement with the new syntax for operators in Mathematica.
3. Provide unit tests.
*)
BeginPackage["FunctionalParsers`"];
ParseSymbol::usage = "ParseSymbol[s] parses a specified symbol s.";
ParseToken::usage = "ParseToken[t] parses the token t.";
ParsePredicate::usage = "ParsePredicate[p] parses strings that give True for the predicate p.";
ParseEpsilon::usage = "ParseEpsilon parses and empty string.";
ParseSucceed::usage = "ParseSucceed[v] does not consume input and always returns v.";
ParseFail::usage = "ParseFail fails to recognize any input string.";
ParseComposeWithResults::usage = "ParseComposeWithResults[p_][res : {{_, _} ..}] is building block function for ParseSequentialComposition.";
ParseSequentialComposition::usage = "ParseSequentialComposition parses a sequential composition of two or more parsers.";
ParseAlternativeComposition::usage = "ParseAlternativeComposition parses a composition of two or more alternative parsers.";
ParseSpaces::usage = "ParseSpaces[p] is a transformation of the parser p: the leading spaces of the input are dropped then the parser p is applied.";
ParseJust::usage = "ParseJust[p] is a transformation of the parser p: those parts of output of p are selected that have empty rest strings.";
ParseApply::usage = "ParseApply[f,p] applies the function f to each of the outputs of p.\
ParseApply[{fNo, fYes}, p] applies the function fNo not unsuccessful parsing and the function fYes the output of successful parsing using p.";
ParseModify::usage = "ParseModify[f,p] applies the function f to the list of all outputs of p.";
ParseSome::usage = "ParseSome[p] applies ParseJust[p] and takes the first non-empty output if it exists.";
ParseShortest::usage = "ParseShortest[p] takes the output with the shortest rest string.";
ParseSequentialCompositionPickLeft::usage = "ParseSequentialCompositionPickLeft[p1,p2] drops the output of the p2 parser.";
ParseSequentialCompositionPickRight::usage = "ParseSequentialCompositionPickRight[p1,p2] drops the output of the p1 parser.";
ParseChoice::usage = "ParseChoice[p1,p2,p3,...] a version of ParseAlternativeComposition for more than two parsers.";
CircleDot::usage = "CircleDot[f_, p_] applies the function f to the output of p. It can be entered with \"Exc c . Esc\" .";
CircleTimes::usage = "CircleTimes[p1,p2,p3] sequential composition of the parsers p1, p2, p3, ... It can be entered with \"Exc c * Esc\" .";
CirclePlus::usage = "CirclePlus[p1,p2,p3] alternatives composition of the parsers p1, p2, p3, ... It can be entered with \"Exc c + Esc\" .";
LeftTriangle::usage = "LeftTriangle[p1_, p2_] drops the output of the right parser, p2. It can be entered with \"\:22B2\".";
RightTriangle::usage = "RightTriangle[p1_, p2_] drops the output of the left parser, p1. It can be entered with \"\:22B3\".";
ParsePack::usage = "ParsePack[s1,p,s2] parses the sequential composition of s1, p, s2 and drops the output of s1 and s2.";
ParseParenthesized::usage = "ParseParenthesized[p] parses with p input enclosed in parentheses \"(\",\")\".";
ParseBracketed::usage = "ParseBracketed[p] parses with p input enclosed in brackets \"[\",\"]\".";
ParseCurlyBracketed::usage = "ParseCurlyBracketed[p] parses with p input enclosed in curly brackets \"{\",\"}\".";
ParseOption::usage = "ParseOption[p] is optional parsing of p.";
ParseOption1::usage = "ParseOption1[p] is optional parsing of p. (Different implementation of ParseOption.)";
ParseMany1::usage = "ParseMany1[p] attempts to parse one or many times with p.";
ParseMany::usage = "ParseMany[p] attempts to parse zero or many times with p.";
ParseManyByBranching::usage = "ParseManyByBranching[p] parsing many times with p and following branches.";
ParseListOf::usage = "ParseListOf[p_, sep_] parse a list of elements parsed by p and seprated by elements parsed by sep.";
ParseChainLeft::usage = "ParseChainLeft[p_, sep_] parse a nested application of the function with a name parsed by sep.";
ParseChain1Left::usage = "ParseChain1Left[p_, sep_] parse a nested application of the function with a name parsed by sep.";
ParseChainRight::usage = "ParseChainRight[p_, sep_] parse a nested application of the function with a name parsed by sep.";
ParseRecursiveDefinition::usage = "ParseRecursiveDefinition[pname, rhs] makes a parser with name pname defined by rhs that can be used in recursive definitions.";
ToTokens::usage = "ToTokens[text] breaks down text into tokens. ToTokens[text,terminals] breaks down text using specified terminals. \
ToTokens[text,\"EBNF\"] has a special implementation for parsing EBNF code. (This function is becoming obsolete, use ParseToTokens.)";
ParseToTokens::usage = "ParseToTokens[text, terminalDelimiters, whitespaces] breaks down text into tokens using specified terminal symbols and white spaces.";
ParseToEBNFTokens::usage = "ParseToEBNFTokens[text, whitespaces] breaks down text into tokens using EBNF terminal symbols and specified white spaces.";
ParsingTestTable::usage = "ParsingTestTable[p, s, opts] parses a list of strings with the parser p and tabulates the result. \
The options allow to specify the terminal symbols, tokenizer function, and table layout.";
EBNFNonTerminal::usage = "EBNFNonTerminal head for parsers for non-terminal symbols of EBNF grammars.";
EBNFTerminal::usage = "EBNFTerminal head for parsers for terminal symbols of EBNF grammars.";
EBNFOption::usage = "EBNFOption head for parsers for optional symbols of EBNF grammars.";
EBNFRepetition::usage = "EBNFRepetition head for parsers for repeating symbols of EBNF grammars.";
EBNFSequence::usage = "EBNFSequence head for parsers for sequential composition of symbols of EBNF grammars.";
EBNFAlternatives::usage = "EBNFAlternatives head for parsers for alternatives sequential composition of symbols of EBNF grammars.";
EBNFRule::usage = "EBNFRule head for parsers of EBNF grammar rules.";
EBNF::usage = "Head symbol used to for parsed EBNF grammars.";
EBNFNonTerminalInterpreter::usage = "EBNFNonTerminal generates parsers for non-terminal symbols of EBNF grammars.";
EBNFTerminalInterpreter::usage = "EBNFTerminal generates parsers for terminal symbols of EBNF grammars.";
EBNFOptionInterpreter::usage = "EBNFOption generates parsers for optional symbols of EBNF grammars.";
EBNFRepetitionInterpreter::usage = "EBNFRepetition generates parsers for repeating symbols of EBNF grammars.";
EBNFSequenceInterpreter::usage = "EBNFSequence generates parsers for sequential composition of symbols of EBNF grammars.";
EBNFAlternativesInterpreter::usage = "EBNFAlternatives generates parsers for alternatives sequential composition of symbols of EBNF grammars.";
EBNFRuleInterpreter::usage = "EBNFRule generates parsers of EBNF grammar rules.";
SetParserModifier::usage = "SetParserModifier[p_Symbol, f_] sets the function f to modify the output of the parser p. (Replaces the previous modifier.)";
AddParserModifier::usage = "AddParserModifier[p_Symbol, f_] makes the function f to modify the output of the parser p.";
InterpretWithContext::usage = "InterpretWithContext[pout_,cr_] interprets the parser output pout with the context rules cr.";
EBNFContextRules::usage = "Context rules for EBNF parser generation.";
ParseEBNF::usage = "ParseEBNF[gr:{_String..}] parses the EBNF grammar gr.";
GenerateParsersFromEBNF::usage = "GenerateParsersFromEBNF[gr:{_String..}] generate parsers the EBNF grammar gr.";
GrammarNormalize::usage = "Remove special character sequences from an EBNF grammar string.";
GrammarRandomSentences::usage = "GrammarRandomSentences[ gr: _String | _EBNF, n_Integer] generates n random sentences using the grammar gr.";
Begin["`Private`"];
Clear["Parse?*"];
(************************************************************)
(* Basic parsers *)
(************************************************************)
ParseSymbol[a_] :=
Function[If[Length[#] > 0 && a === First[#], {{Rest[#], a}}, {}]];
ParseToken[k_][xs_] :=
With[{n = Length[k]},
If[Length[xs] >= n && k == Take[xs, n], {{Drop[xs, n], k}}, {}]];
ParsePredicate[pred_][xs_] :=
If[TrueQ[Length[xs] > 0 && pred[First[xs]]], {{Rest[xs], First[xs]}}, {}];
(*
Note that
ParseSymbol[a] = ParsePredicate[# == a &]
*)
ParseEpsilon = Function[{xs}, {{xs, {}}} ];
ParseSucceed[v_] := Function[{xs}, {{xs, v}}];
ParseFail[xs_] := {};
(************************************************************)
(* Parse combinators *)
(************************************************************)
ParseComposeWithResults[p_][{}] := {};
ParseComposeWithResults[p_][res : {{_, _} ..}] :=
Block[{t},
Flatten[#, 1] &@
Map[
Function[{r},
If[r === {}, {},
t = p[r[[1]]];
If[t === {}, {},
Map[{#[[1]], {r[[2]], #[[2]]}} &, t]
]]],
res]
];
ParseSequentialComposition[p1_][xs_] := p1[xs];
ParseSequentialComposition[args__][xs_] :=
With[{parsers = {args}},
Fold[ParseComposeWithResults[#2][#1] &, First[parsers][xs],
Rest[parsers]]
] /; Length[{args}] > 1;
ParseAlternativeComposition[args__][xs_] := Join @@ Map[#[xs] &, {args}];
(************************************************************)
(* Next combinators *)
(************************************************************)
(* ParseSpaces[p_][xs_]:=p[NestWhile[Rest,xs,First[#]==""||First[#]==" "&]]; *)
ParseSpaces[pArg_] :=
With[{p = pArg},
Function[p[
NestWhile[Rest, #,
Length[#] >
0 && (First[#] == "" || First[#] == " " ||
First[#] == "\n") &]]]]
ParseJust[p_][xs_] := With[{res = p[xs]}, Select[res, First[#] === {} &]];
ParseApply[f_, p_][xs_] := Map[{#[[1]], f[#[[2]]]} &, p[xs]];
ParseApply[{fNo_, fYes_}, p_] :=
With[{res = p[#]},
Map[{#[[1]], If[#[[2]] === {}, fNo, fYes[#[[2]]]]} &, res]] &;
ParseModify[f_, p_][xs_] := With[{res = p[xs]}, f[res] ];
ParseSome[p_][xs_] :=
With[{parsed = ParseJust[p][xs]},
If[Length[parsed] > 0, Take[parsed, 1], parsed]];
ParseShortest[p_] := With[{parsed = p[#]}, If[parsed === {}, parsed, {First@SortBy[parsed, Length[#[[1]]] &]}]] &;
ParseSequentialCompositionPickLeft[p1_, p2_][xs_] := ParseApply[#[[1]] &, ParseSequentialComposition[p1, p2]][xs];
ParseSequentialCompositionPickRight[p1_, p2_][xs_] := ParseApply[#[[2]] &, ParseSequentialComposition[p1, p2]][xs];
ParseChoice[args__][xs_] :=
With[{parsers = {args}}, Fold[Join[#2[xs], #1] &, ParseFail[xs], Reverse@parsers]];
(************************************************************)
(* Binding for infix notation *)
(************************************************************)
CircleDot[f_, p_] := ParseApply[f, p];(* Exc c . Esc *)
CircleTimes[args___] := ParseSequentialComposition[args];(* Exc c * Esc *)
CirclePlus[args___] := ParseAlternativeComposition[args];(* Exc c + Esc *)
LeftTriangle[p1_, p2_] := ParseSequentialCompositionPickLeft[p1, p2]; (* \:22B2 *)
RightTriangle[p1_, p2_] := ParseSequentialCompositionPickRight[p1, p2]; (* \:22B3 *)
(* Note that the precedence pre-assigned of the operators \[CircleDot], \[CircleTimes] and \[CirclePlus] gives the expected grouping:
Block[{a, b, c, d, f, h},
Print[f\[CircleDot]a\[CircleTimes]b\[CirclePlus]c\[CircleTimes]h\[CircleDot]d]
]
ParseAlternativeComposition[ParseSequentialComposition[ParseApply[f,a],b],ParseSequentialComposition[c,ParseApply[h,d]]]
*)
(*
Note that the precedence pre-assigned of the operators \[LeftTriangle] and \[RightTriangle] gives the expected grouping:
Block[{x, y, z},
Print[x \[RightTriangle] y \[LeftTriangle] z]
]
ParseSequentialCompositionPickLeft[ParseSequentialCompositionPickRight[x,y],z]
*)
(************************************************************)
(* Second next combinators *)
(************************************************************)
ParsePack[s1_, p_, s2_] := ParseSequentialCompositionPickLeft[ ParseSequentialCompositionPickRight[s1, p], s2];
ParseParenthesized[p_] := ParsePack[ParseSymbol["("], p, ParseSymbol[")"]];
ParseBracketed[p_] := ParsePack[ParseSymbol["["], p, ParseSymbol["]"]];
ParseCurlyBracketed[p_] := ParsePack[ParseSymbol["{"], p, ParseSymbol["}"]]
ParseOption[p_] := (ParseAlternativeComposition[ParseApply[{#1} &, p], ParseApply[{} &, ParseSucceed[{}]]]);
ParseOption1[p_] := Block[{res = p[#]}, If[TrueQ[res === {}], {{#, {}}}, res]] &;
ParseMany1[p_][xs_] :=
Module[{t = {}, res},
res = ParseShortest[ParseOption1[p]][xs];
While[! (res === {} || res[[1, 2]] === {}),
AppendTo[t, res[[1, 2]]];
res = ParseShortest[ParseOption1[p]][res[[1, 1]]];
];
{{res[[1, 1]], t}}
];
ParseMany[p_] := ParseMany1[p]\[CirclePlus]ParseSucceed[{}];
Clear[ParseManyByBranching];
ParseManyByBranching[p_][xs_] := ParseManyByBranching[p, {}, 100][xs];
ParseManyByBranching[p_, epsilon_, maxSteps_Integer ][xs_] :=
Block[{res = {}, pres, pres1, k = 0, p1},
p1 = ParseAlternativeComposition[ParseSucceed[epsilon], p];
If[Length[xs] == 0, epsilon,
pres = p1[xs];
While[! (pres === {} || And @@ Map[#[[2]] === {} &, pres]) &&
k < maxSteps,
k++;
(*Print[{k, "before:"}, pres];*)
pres = DeleteCases[pres, {xs, _}];
res = Join[res, Cases[pres, {{}, ___}]];
pres = DeleteCases[pres, {{}, ___}];
pres1 = DeleteCases[pres, {_, {___, {___, epsilon}, epsilon}}];
(*Print[{k, "after delete:"}, pres1];*)
If[Length[pres1] == 0 && Length[res] == 0,
Return[DeleteDuplicates[pres]],
pres = DeleteDuplicates[ParseComposeWithResults[p1][pres1]]
];
(*Print[{k, "after:"}, pres];*)
]
];
DeleteDuplicates[Join[res, pres]]
];
ParseListOf[p_, separatorParser_] := (Prepend[#[[2]], #[[1]]] &)\[CircleDot](p\[CircleTimes]ParseMany[separatorParser \[RightTriangle] p])\[CirclePlus]ParseSucceed[{}];
ParseChainLeft[p_, separatorParser_] :=
Fold[#2[[1]][#1, #2[[2]]] &, #[[1]], #[[2]]] &\[CircleDot](p\[CircleTimes]ParseMany[separatorParser\[CircleTimes]p])\[CirclePlus]ParseSucceed[{}];
ParseChain1Left[p_, separatorParser_] :=
Fold[#2[[1]][#1, #2[[2]]] &, #[[1]], #[[2]]] &\[CircleDot](p\[CircleTimes]ParseMany1[separatorParser\[CircleTimes]p]);
ParseChainLeft[p_, {separatorParser_, func_}] :=
(Fold[func[#1, #2[[2]]] &, #[[1]], #[[2]]] &)\[CircleDot](p\[CircleTimes]ParseMany[separatorParser\[CircleTimes]p])\[CirclePlus]ParseSucceed[{}];
ParseChainRight[p_, separatorParser_] :=
Fold[#2[[2]][#2[[1]], #1] &, #[[2]],
Reverse[#[[1]]]] &\[CircleDot](ParseMany[p\[CircleTimes]separatorParser]\[CircleTimes]p)\[CirclePlus]ParseSucceed[{}];
ParseChainRight[p_, {separatorParser_, func_}] :=
Fold[func[#2[[1]], #1] &, #[[2]],
Reverse[#[[1]]]] &\[CircleDot](ParseMany[p\[CircleTimes]separatorParser]\[CircleTimes]p)\[CirclePlus]ParseSucceed[{}];
(************************************************************)
(* ParseRecursiveDefinition *)
(************************************************************)
SetAttributes[ParseRecursiveDefinition, HoldAll]
ParseRecursiveDefinition[parserName_Symbol, rhs__] :=
Block[{},
parserName[xs_] := rhs[xs]
];
(************************************************************)
(* Tokenizer *)
(************************************************************)
ToTokens[text_String] := StringSplit[text];
ToTokens[text_String, {}] := StringSplit[text];
ToTokens[text_String, terminals : {_String ...}] :=
StringSplit[StringReplace[text, Map[# -> " " <> # <> " " &, terminals]]];
ToTokens[text_, "EBNF"] :=
ToTokens[text, {"|", ",", ";", "=", "[", "]", "(", ")", "{", "}"}];
Clear[ParseToTokens];
ParseToTokens[text_String, terminalDelimiters_: {}, whitespaces_: {" ", "\n"}] :=
Block[{pApplyFunc, pWord, pQWord, pLongTermDelim, pTermDelim, res, procText = Characters[text]},
pWord =
ParseSpaces[
ParseMany1[
ParsePredicate[!MemberQ[Join[terminalDelimiters, whitespaces], #] &]]];
pQWord = ParseSpaces[(ParseSymbol["'"]\[CirclePlus]ParseSymbol["\""])\[CircleTimes]
ParseMany1[ParsePredicate[# != "'" && # != "\"" &]]\[CircleTimes]
(ParseSymbol["'"]\[CirclePlus]ParseSymbol["\""])];
If[Length[Select[terminalDelimiters, StringLength[#] > 1 &]] > 0,
pLongTermDelim =
ParseAlternativeComposition @@
Map[ParseApply[StringJoin,
ParseSequentialComposition @@ (ParseSymbol /@ Characters[#])] &,
Select[terminalDelimiters, StringLength[#] > 1 &]];
pTermDelim =
ParseSpaces[ParsePredicate[MemberQ[terminalDelimiters, #] &]\[CirclePlus]pLongTermDelim],
pTermDelim =
ParseSpaces[ParsePredicate[MemberQ[terminalDelimiters, #] &]]
];
res = ParseMany1[((If[Length[#] > 0, StringJoin @@ #, #]&)\[CircleDot](pQWord\[CirclePlus]pWord))\[CirclePlus]pTermDelim][procText];
res[[1, 2]]
];
ParseToEBNFTokens[text_, whitespaces_: {" ", "\n", "\t"}] :=
ParseToTokens[text, {"|", "&>", "<&", "<@", ",", ";", "=", "[", "]", "(", ")", "{", "}"}, whitespaces ];
(************************************************************)
(* ParsingTestTable *)
(************************************************************)
Clear[ParsingTestTable];
ParsingTestTable::unval = "Unknown value `2` for the option `1`."
Options[ParsingTestTable] = {FontFamily -> "Times", FontSize -> 16, "Terminals" -> {}, "TokenizerFunction"-> ToTokens, "Layout" -> "Horizontal"};
ParsingTestTable[parser_, statements : {_String ..}, optsArg : OptionsPattern[]] :=
Block[{res, ff = OptionValue[ParsingTestTable, FontFamily],
fs = OptionValue[ParsingTestTable, FontSize],
ts = OptionValue[ParsingTestTable, "Terminals"],
tokenizerFunc = OptionValue[ParsingTestTable, "TokenizerFunction"],
layout = OptionValue[ParsingTestTable, "Layout"], opts, ptbl, vptbl},
opts = {FontFamily -> ff, FontSize -> fs};
If[ TrueQ[tokenizerFunc === ToTokens],
res = Map[parser[ToTokens[#, ts]] &, statements],
res = Map[parser[tokenizerFunc[#]] &, statements]
];
ptbl =
Grid[
Prepend[
MapThread[Prepend, {Transpose[{Map[Style[#, opts] &, statements], res}], Style[#, Darker[Red], opts] & /@ Range[Length[statements]] }],
Style[#, Darker[Red], opts] & /@ {"#", "Statement", "Parser output"}
],
Dividers -> {All, {True, True, Sequence @@ Table[False, {Length[statements] - 1}], True}},
Alignment -> {{Right, Left, Left}}
];
Which[
TrueQ[layout == "Horizontal"], ptbl,
TrueQ[layout == "Vertical"],
ptbl = Transpose[{Map[Style[#, opts] &, statements], res}];
ptbl[[All, 2]] = Map[ If[ TrueQ[# === {}], {{{}, {}}}, #]&, ptbl[[All, 2]] ];
vptbl = Flatten[
Transpose[{statements, ptbl[[All, 2, 1, 2]], ptbl[[All, 2, 1, 1]]}], 1];
vptbl =
Transpose[{Flatten[
Table[{Style[i, Darker[Red], opts], "", ""}, {i, 1, Length[statements]}]],
Style[#, Gray] & /@
Flatten[Table[{"command:", "parsed:", "residual:"}, {Length[vptbl] / 3}]], vptbl}];
Grid[vptbl, Alignment -> {{Right, Right, Left}}, Spacings -> {0.5, 0.75},
Dividers -> {{True, True, False, True},
Join[{True}, Flatten@Table[{False, False, True}, {Length[vptbl]}]]}],
True,
Message[ParsingTestTable::unval, "Layout", layout]; ptbl
]
];
(***************************************************************************)
(* EBNF Parsers with parenthesis and \[RightTriangle] and \[LeftTriangle] *)
(***************************************************************************)
(* All parsers start with the prefix "pG" followed by a capital letter. ("p" is for "parser", "G" is for "grammar".) *)
Clear[EBNFNonTerminal, EBNFTerminal, EBNFOption, EBNFRepetition, EBNFSequence, EBNFAlternatives, EBNFRule, EBNF];
Clear["pG*"];
(* Parse typeTerminal. All teminals are assumed to be between single or double quotes. *)
EBNFSymbolTest =
TrueQ[# == "|" || # == "," || # == "=" || # == ";" || # == "\[LeftTriangle]" || # == "\[RightTriangle]" || # == "<&" || # == "&>" ] &;
NonTerminalTest =
TrueQ[StringMatchQ[#, "<" ~~ (WordCharacter | WhitespaceCharacter | "-" | "_") .. ~~ ">"]] &;
InQuotesTest = TrueQ[StringMatchQ[#, ("'" | "\"") ~~ __ ~~ ("'" | "\"")]] &;
pGTerminal =
ParsePredicate[StringQ[#] && InQuotesTest[#] && ! EBNFSymbolTest[#] &];
(* Parser typeNonTerminal. I prefer the <xxx> format for non-terminals instead of allowing any string without quotes. *)
pGNonTerminal =
ParsePredicate[StringQ[#] && NonTerminalTest[#] && ! EBNFSymbolTest[#] &];
pGOption = EBNFOption\[CircleDot]ParseBracketed[pGExpr];
pGRepetition = EBNFRepetition\[CircleDot]ParseCurlyBracketed[pGExpr];
pGNode[xs_] := (EBNFTerminal\[CircleDot]pGTerminal\[CirclePlus]EBNFNonTerminal\[CircleDot]pGNonTerminal\[CirclePlus]ParseParenthesized[pGExpr]\[CirclePlus]pGRepetition\[CirclePlus]pGOption)[xs];
pGTerm = EBNFSequence\[CircleDot]ParseChainRight[pGNode, ParseSymbol[","]\[CirclePlus]ParseSymbol["\[LeftTriangle]"]\[CirclePlus]ParseSymbol["\[RightTriangle]"]\[CirclePlus]ParseSymbol["<&"]\[CirclePlus]ParseSymbol["&>"]];
pGExpr = EBNFAlternatives\[CircleDot]ParseListOf[pGTerm, ParseSymbol["|"]];
pGRule = EBNFRule\[CircleDot](pGNonTerminal\[CircleTimes](ParseSymbol["="] \[RightTriangle] pGExpr)\[CircleTimes](ParseSymbol[";"]\[CirclePlus](ParseSymbol["<@"]\[CircleTimes]ParsePredicate[StringQ[#] &] \[LeftTriangle] ParseSymbol[";"])));
pEBNF = EBNF\[CircleDot]ParseMany1[pGRule];
(********************************************************************************)
(* EBNF grammar parser generators with \[RightTriangle] and \[LeftTriangle] *)
(********************************************************************************)
Clear[EBNFMakeSymbolName, EBNFNonTerminal, EBNFTerminalInterpreter, EBNFOptionInterpreter, EBNFRepetitionInterpreter,
EBNFSequenceInterpreter, EBNFAlternativesInterpreter, EBNFRuleInterpreter];
Clear[pNumber, pInteger, pWord, pLetterWord, pIdentifierWord];
pNumber = ToExpression\[CircleDot]ParsePredicate[StringMatchQ[#, NumberString] &];
pInteger = ToExpression\[CircleDot]ParsePredicate[StringMatchQ[#, (DigitCharacter..) | (( "+" | "-" )~~(DigitCharacter..))] &];
pWord = ParsePredicate[StringMatchQ[#, (WordCharacter | "_") ..] &];
pLetterWord = ParsePredicate[StringMatchQ[#, LetterCharacter ..] &];
pIdentifierWord = ParsePredicate[StringMatchQ[#, LetterCharacter ~~ (WordCharacter ... )] &];
Clear[pNumberRange];
pNumberRange[{s_?NumberQ, e_?NumberQ}] :=
ToExpression\[CircleDot]ParsePredicate[StringMatchQ[#, NumberString] && s <= ToExpression[#] <= e &];
EBNFMakeSymbolName[p_String] :=
"p" <> ToUpperCase[StringReplace[p, {"<" -> "", ">" -> "", "_" -> "", "-" -> ""}]];
EBNFTerminalInterpreter[parsed_] :=
Which[
StringMatchQ[parsed, ("'" | "\"") ~~ "_?NumberQ" ~~ ("'" | "\"")],
pNumber,
StringMatchQ[parsed, ("'" | "\"") ~~ "_?IntegerQ" ~~ ("'" | "\"")],
pInteger,
StringMatchQ[
parsed, ("'" | "\"") ~~ "Range[" ~~ NumberString ~~ "," ~~ NumberString ~~ "]" ~~ ("'" | "\"")],
pNumberRange[
Flatten@StringCases[
parsed, ("'" | "\"") ~~ "Range[" ~~ (s : NumberString) ~~ "," ~~ (e : NumberString) ~~ "]" ~~ ("'" | "\"") :> Map[ToExpression, {s, e}]]],
parsed == "\"_String\"" || parsed == "'_String'",
ParsePredicate[StringQ[#] &],
parsed == "\"_WordString\"" || parsed == "'_WordString'", pWord,
parsed == "\"_LetterString\"" || parsed == "'_LetterString'", pLetterWord,
parsed == "\"_IdentifierString\"" || parsed == "'_IdentifierString'", pIdentifierWord,
True, ParseSymbol[
If[StringMatchQ[parsed, ("'" | "\"") ~~ ___ ~~ ("'" | "\"")],
StringTake[parsed, {2, -2}], parsed]]
];
EBNFNonTerminalInterpreter[parsed_] := ToExpression[EBNFMakeSymbolName[parsed]];
EBNFRepetitionInterpreter[parsed_] := ParseMany1[parsed];
EBNFOptionInterpreter[parsed_] := ParseOption1[parsed];
EBNFSequenceInterpreter[parsedArg_] :=
Block[{parsed = parsedArg, crules},
(*Print["before:",parsed];*)
crules = {ParseSymbol[","] -> "X$$#$#$#1",
ParseSymbol["\[LeftTriangle]"] -> "X$$#$#$#2", ParseSymbol["<&"] -> "X$$#$#$#2",
ParseSymbol["\[RightTriangle]"] -> "X$$#$#$#3", ParseSymbol["&>"] -> "X$$#$#$#3"};
parsed = parsed //. crules;
(*Print["mid:",parsed];*)
parsed = parsed /. {"," -> ParseSequentialComposition,
"\[LeftTriangle]" -> ParseSequentialCompositionPickLeft, "<&" -> ParseSequentialCompositionPickLeft,
"\[RightTriangle]" -> ParseSequentialCompositionPickRight, "&>" -> ParseSequentialCompositionPickRight};
parsed = parsed //. (Reverse /@ crules);
(*Print["after:",parsed];*)
Which[
! ListQ[parsed], parsed,
Length[parsed] == 1, parsed[[1]],
True, ParseSequentialComposition @@ parsed
]
];
EBNFAlternativesInterpreter[parsed_] :=
Which[
! ListQ[parsed], parsed,
Length[parsed] == 1, parsed[[1]],
True, ParseAlternativeComposition @@ parsed
];
EBNFRuleInterpreter[parsed_] :=
Block[{lhsSymbolName, lhsSymbol, res},
lhsSymbolName = EBNFMakeSymbolName[parsed[[1, 1]]];
With[{sn = lhsSymbolName}, Clear[sn]];
lhsSymbol = ToExpression[lhsSymbolName];
(*Print[lhsSymbol];*)
If[ListQ[parsed[[2]]],
With[{lhs = lhsSymbol, rhs = parsed[[1, 2]], func = parsed[[2, 2]]},
lhs[xs_] := ParseApply[ToExpression[func], rhs][xs]];
res = Row[{lhsSymbolName, " = ", parsed[[1, 2]], parsed[[2, 1]], parsed[[2, 2]]}],
(* assumed Length[parsed] == 2*)
With[{lhs = lhsSymbol, rhs = parsed[[1, 2]]}, lhs[xs_] := rhs[xs]];
res = Row[{lhsSymbolName, " = ", parsed[[1, 2]]}]
];
res
];
(************************************************************)
(* Parser definition modification *)
(************************************************************)
(* one downvalue per parser is assumed *)
Clear[AddParserModifier];
AddParserModifier[parser_Symbol, func_] :=
Block[{dvs = Cases[DownValues[parser], _RuleDelayed]},
If[Length[dvs] == 0, {},
With[{parserBody = dvs[[1, 2, 0]], parserVar = dvs[[1, 1, 1, 1, 1]]},
DownValues[
parser] = {dvs[[1, 1]] :> ParseApply[func, parserBody][parserVar]}
]
]
];
Clear[SetParserModifier];
SetParserModifier[parser_Symbol, func_] :=
Block[{dvs = Cases[DownValues[parser], _RuleDelayed]},
Which[
Length[dvs] == 0, {},
Length[dvs] > 0 && Head[dvs[[1, 2, 0]]] === ParseApply,
DownValues[parser] = {ReplacePart[dvs, {1, 2, 0, 1} -> func]},
True,
AddParserModifier[parser, func]
]
];
(************************************************************)
(* Interpretation *)
(************************************************************)
EBNFContextRules =
{EBNFNonTerminal -> EBNFNonTerminalInterpreter,
EBNFTerminal -> EBNFTerminalInterpreter,
EBNFOption -> EBNFOptionInterpreter,
EBNFRepetition -> EBNFRepetitionInterpreter,
EBNFSequence -> EBNFSequenceInterpreter,
EBNFAlternatives -> EBNFAlternativesInterpreter,
EBNFRule -> EBNFRuleInterpreter};
Clear[InterpretWithContext];
InterpretWithContext[parsed_, contextRules : {_Rule ...}] :=
Block[{},
{parsed /. contextRules, {} }
];
InterpretWithContext[parsed_, contextRules : {"data" -> {}, "functions" -> {(_Symbol -> _) ...}}] :=
InterpretWithContext[parsed, "functions" /. contextRules];
InterpretWithContext[parsed_, contextRules : {"data" -> {(_Symbol -> _) ..}, "functions" -> {(_Symbol -> _) ...}}] :=
Block[{dataVars, res, newData},
dataVars = ("data" /. contextRules)[[All, 1]];
{res, newData} =
Block[Evaluate[dataVars],
Do[
Evaluate[r[[1]]] = r[[2]]
, {r, ("data" /. contextRules)}];
{parsed /. ("functions" /. contextRules), dataVars}
];
{res, Thread[dataVars -> newData]}
];
ParseEBNF[code_] := pEBNF[code];
GenerateParsersFromEBNF[code_] := InterpretWithContext[ pEBNF[code], EBNFContextRules ];
(************************************************************)
(* Random sentences *)
(************************************************************)
Clear[GrammarNormalize];
GrammarNormalize[ebnf_String] := StringReplace[ebnf, {"&>" -> ",", "<&" -> ",", ("<@" ~~ (Except[{">", "<"}] ..) ~~ ";") :> ";"}];
GrammarNormalize[___] := $Failure;
(* Random sentences generator from EBNF grammar (rule based) *)
Clear[RGMakeSymbolName, RGNonTerminal, RGTerminal, RGOption, RGRepetition,
RGSequence, RGAlternatives, RGRule, EBNF];
Clear[rgInteger, rgNumber, rgString, rgLetterString];
rgInteger := ToString[RandomInteger[{0, 1000}]];
rgNumber := ToString[RandomReal[{0, 1000}]];
rgNumberRange[{s_?NumberQ, e_?NumberQ}] := ToString[RandomInteger[{s, e}]];
rgString := StringJoin @@ RandomSample[Join[CharacterRange["0", "9"], CharacterRange["a", "z"]], RandomInteger[{3, 10}]];
rgLetterString := StringJoin @@ RandomSample[CharacterRange["a", "z"], RandomInteger[{3, 10}]];
RGTerminal[parsed_] :=
Which[
StringMatchQ[parsed, ("'" | "\"") ~~ "_?IntegerQ" ~~ ("'" | "\"")],
rgInteger,
StringMatchQ[parsed, ("'" | "\"") ~~ "_?NumberQ" ~~ ("'" | "\"")],
rgNumber,
StringMatchQ[parsed, ("'" | "\"") ~~ "Range[" ~~ NumberString ~~ "," ~~ NumberString ~~ "]" ~~ ("'" | "\"")],
rgNumberRange[Flatten@
StringCases[parsed, ("'" | "\"") ~~ "Range[" ~~ (s : NumberString) ~~ "," ~~ (e : NumberString) ~~ "]" ~~ ("'" | "\"") :> Map[ToExpression, {s, e}]]],
parsed == "\"_String\"" || parsed == "'_String'" || parsed == "\"_?StringQ\"" || parsed == "'_?StringQ'",
rgString,
parsed == "\"_WordString\"" || parsed == "'_WordString'",
rgString,
parsed == "\"_LetterString\"" || parsed == "'_LetterString'",
rgLetterString,
parsed == "\"_IdentifierString\"" || parsed == "'_IdentifierString'",
rgLetterString,
True,
If[StringMatchQ[parsed, ("'" | "\"") ~~ ___ ~~ ("'" | "\"")], StringTake[parsed, {2, -2}], parsed]
];
RGNonTerminal[parsed_] := parsed;
RGRepetition[parsed_] := Flatten@Table[parsed, {RandomInteger[{1, 5}]}];
RGOption[parsed_] := If[RandomInteger[{0, 1}] == 0, parsed, ""];
RGSequence[parsed_] :=
Which[
! ListQ[parsed], parsed,
Length[parsed] == 1, parsed[[1]],
True, parsed
];
RGAlternatives[parsed_] :=
Which[
! ListQ[parsed], parsed,
Length[parsed] == 1, parsed[[1]],
True, RandomSample[parsed, 1][[1]]
];
MakeNonTerminalReplacementRules[parsedEBNFRules_] :=
Cases[parsedEBNFRules, {s_String, rhs_} :> (EBNFNonTerminal[s] -> rhs), Infinity];
Clear[RGSentence];
RGSentence[parsedEBNF_EBNF] :=
Block[{parsedEBNFRules = parsedEBNF[[1]], rrules, rrulesRest, EBNFToRGRules, t},
EBNFToRGRules =
Dispatch[Thread[{EBNFTerminal, EBNFOption, EBNFRepetition, EBNFSequence} -> {RGTerminal, RGOption, RGRepetition, RGSequence}]];
rrules = Cases[parsedEBNFRules, {s_String, rhs_} :> (EBNFNonTerminal[s] -> rhs), Infinity];
rrulesRest = Rest[rrules];
rrulesRest[[All, 2]] = rrulesRest[[All, 2]] /. Dispatch[rrulesRest];
PRINT["1.", rrulesRest[[All, 2]]];
rrulesRest[[All, 2]] = rrulesRest[[All, 2]] /. EBNFToRGRules;
PRINT["2.", rrulesRest[[All, 2]]];
rrulesRest[[All, 2]] = rrulesRest[[All, 2]] //. Dispatch[rrulesRest];
PRINT["3.", rrulesRest];
t = Flatten@List[(First[rrules][[2]] /. Dispatch[rrulesRest]) /. EBNFToRGRules //. EBNFAlternatives[s___] :> RGAlternatives[s]];
PRINT["t=", t];
(*StringTrim[StringReplace[StringJoin@@Riffle[Which[Head[t]\[Equal]",",
List@@t,!ListQ[t],{t},True,Flatten[t]]," "]," "\[Rule]" "]]*)
t = Flatten@List[t //. (","[x__] :> {x})];
StringTrim[StringReplace[StringRiffle[t, " "], (WhitespaceCharacter ~~ WhitespaceCharacter ..) -> " "]]
];
Clear[GrammarRandomSentences];
GrammarRandomSentences[ebnfGrammar_String, n_Integer] :=
Block[{EBNFMakeSymbolName, EBNFNonTerminal, EBNFTerminal, EBNFOption,
EBNFRepetition, EBNFSequence, EBNFAlternatives, EBNFRule, tokens, res},
Clear[EBNFMakeSymbolName, EBNFNonTerminal, EBNFTerminal, EBNFOption,
EBNFRepetition, EBNFSequence, EBNFAlternatives, EBNFRule];
tokens = ParseToEBNFTokens[ebnfGrammar];
(*res=ParseJust[pEBNF][tokens];*)
res = ParseEBNF[tokens];
Table[RGSentence[res[[1, 2]]], {n}]
];
GrammarRandomSentences[parsedEBNFRules_EBNF, n_Integer] :=
Block[{},
Table[RGSentence[parsedEBNFRules], {n}]
];
End[];
EndPackage[]