forked from alfonsosemeraro/pyplutchik
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SSEC.py
180 lines (124 loc) · 7.51 KB
/
SSEC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 26 18:57:29 2021
@author: alfonso
"""
from glob import glob
import pandas as pd
import matplotlib.pyplot as plt
from pyplutchik import plutchik
"""
Dataset from SSEC.
Details here http://www.romanklinger.de/ssec/
Annotations are in a column with '\t' as separator; 6 annotators x 8 emotions = 48 values.
By error, each 48-dim array is preceded by a label, 'pos', 'neg' or 'other', to be deleted.
I guess 1 = emotion detected, 0 = emotion not detected, -1 = line not assigned to that annotator
"""
def unpack_annotation(annot, start_idx):
annot = [int(x) for x in annot.split('\t')[1:]]
tot = []
# get each 8-th annotation starting from `start_idx`
for i in range(start_idx, len(annot) + start_idx, 8):
if annot[i] >= 0:
tot += [annot[i]]
# more than half of annotators said yes?
if (sum(tot) / len(tot)) > .5:
return 1
return 0
def annotate_emotions(ect):
# Order of emotion in dataset is
# Anger Anticipation Disgust Fear Joy Sadness Surprise Trust
# by docs
ect['anger'] = [unpack_annotation(ect.iloc[x, 4], 0) for x in range(len(ect))]
ect['anticipation'] = [unpack_annotation(ect.iloc[x, 4], 1) for x in range(len(ect))]
ect['disgust'] = [unpack_annotation(ect.iloc[x, 4], 2) for x in range(len(ect))]
ect['fear'] = [unpack_annotation(ect.iloc[x, 4], 3) for x in range(len(ect))]
ect['joy'] = [unpack_annotation(ect.iloc[x, 4], 4) for x in range(len(ect))]
ect['sadness'] = [unpack_annotation(ect.iloc[x, 4], 5) for x in range(len(ect))]
ect['surprise'] = [unpack_annotation(ect.iloc[x, 4], 6) for x in range(len(ect))]
ect['trust'] = [unpack_annotation(ect.iloc[x, 4], 7) for x in range(len(ect))]
ect = ect[['target', 'stance', 'anger', 'anticipation', 'disgust', 'fear', 'joy', 'sadness', 'surprise', 'trust']]
return ect
def annotate_dyads(df):
# PRIMARY
df['love'] = df.apply(lambda row: row.joy and row.trust, axis = 1)
df['submission'] = df.apply(lambda row: row.trust and row.fear, axis = 1)
df['alarm'] = df.apply(lambda row: row.fear and row.surprise, axis = 1)
df['disappointment'] = df.apply(lambda row: row.surprise and row.sadness, axis = 1)
df['remorse'] = df.apply(lambda row: row.sadness and row.disgust, axis = 1)
df['contempt'] = df.apply(lambda row: row.disgust and row.anger, axis = 1)
df['aggressiveness'] = df.apply(lambda row: row.anger and row.anticipation, axis = 1)
df['optimism'] = df.apply(lambda row: row.anticipation and row.joy, axis = 1)
# SECONDARY
df['guilt'] = df.apply(lambda row: row.joy and row.fear, axis = 1)
df['curiosity'] = df.apply(lambda row: row.trust and row.surprise, axis = 1)
df['despair'] = df.apply(lambda row: row.fear and row.sadness, axis = 1)
df['unbelief'] = df.apply(lambda row: row.surprise and row.disgust, axis = 1)
df['envy'] = df.apply(lambda row: row.sadness and row.anger, axis = 1)
df['cynism'] = df.apply(lambda row: row.disgust and row.anticipation, axis = 1)
df['pride'] = df.apply(lambda row: row.anger and row.joy, axis = 1)
df['hope'] = df.apply(lambda row: row.anticipation and row.trust, axis = 1)
# TERTIARY
df['delight'] = df.apply(lambda row: row.joy and row.surprise, axis = 1)
df['sentimentality'] = df.apply(lambda row: row.trust and row.sadness, axis = 1)
df['shame'] = df.apply(lambda row: row.fear and row.disgust, axis = 1)
df['outrage'] = df.apply(lambda row: row.surprise and row.anger, axis = 1)
df['pessimism'] = df.apply(lambda row: row.sadness and row.anticipation, axis = 1)
df['morbidness'] = df.apply(lambda row: row.disgust and row.joy, axis = 1)
df['dominance'] = df.apply(lambda row: row.anger and row.trust, axis = 1)
df['anxiety'] = df.apply(lambda row: row.anticipation and row.fear, axis = 1)
# OPPOSITE
df['bittersweetness'] = df.apply(lambda row: row.joy and row.sadness, axis = 1)
df['ambivalence'] = df.apply(lambda row: row.trust and row.disgust, axis = 1)
df['frozenness'] = df.apply(lambda row: row.fear and row.anger, axis = 1)
df['confusion'] = df.apply(lambda row: row.surprise and row.anticipation, axis = 1)
return df
if __name__ == '__main__':
# Read csv and get emotions
ect = pd.read_csv('emotioncorpus-test.csv', header = None, error_bad_lines = False)
ect.columns = ['text','target', 'stance', 'a', 'annot']
ect = annotate_emotions(ect)
# Possible targets and stances
targets = ['Donald Trump', 'Hillary Clinton']
stances = ['Supporting', 'Against']
for stance in stances:
fig, ax = plt.subplots(2, 5, figsize = (42, 16))
legs = ['(i)', '(ii)', '(iii)', '(iv)', '(v)', '(vi)', '(vii)', '(viii)', '(ix)', '(x)'][::-1]
for i, target in enumerate(targets):
dfst = 'FAVOR' if stance == 'Supporting' else 'AGAINST'
df = ect.copy()
df = df.loc[df['target'] == target, ]
df = df.loc[df['stance'] == dfst, ]
# Get only rows with emotions
df['s'] = df.apply(lambda row: row.joy + row.trust + row.fear + row.surprise + row.sadness + row.disgust + row.anger + row.anticipation, axis = 1)
df = df.loc[df['s'] > 0,]
del df['s']
# Get dyads in the dataset
df = annotate_dyads(df)
# Pandas to dictionaries (mean scores of each emotion/dyad)
emo1 = {col: [0, df[col].mean(), 0] for col in df.columns[2:10]}
dyads = {}
dyads['primary'] = {col: df[col].mean() for col in df.columns[10:18]}
dyads['secondary'] = {col: df[col].mean() for col in df.columns[18:26]}
dyads['tertiary'] = {col: df[col].mean() for col in df.columns[26:34]}
dyads['opposites'] = {col: df[col].mean() for col in df.columns[34:]}
# Scaling value
scale = .4 if target == 'Donald Trump' else .3
# Plots!
title = '{} {} - Emotions'.format(stance, target)
plutchik(emo1, ax = ax[i][0], normalize = .65, title_size = 15, title = title)
ax[i][0].annotate(s = legs.pop(), xy = (1.5, 1.5), fontsize = 15)
title = '{} {} - primary dyads'.format(stance, target)
plutchik(dyads['primary'], ax = ax[i][1], normalize = scale, title_size = 15, title = title)
ax[i][1].annotate(s = legs.pop(), xy = (1.5, 1.5), fontsize = 15)
title = '{} {} - secondary dyads'.format(stance, target)
plutchik(dyads['secondary'], ax = ax[i][2], normalize = scale, title_size = 15, title = title)
ax[i][2].annotate(s = legs.pop(), xy = (1.5, 1.5), fontsize = 15)
title = '{} {} - tertiary dyads'.format(stance, target)
plutchik(dyads['tertiary'], ax = ax[i][3], normalize = scale, title_size = 15, title = title)
ax[i][3].annotate(s = legs.pop(), xy = (1.5, 1.5), fontsize = 15)
title = '{} {} - opposite dyads'.format(stance, target)
plutchik(dyads['opposites'], ax = ax[i][4], normalize = scale, title_size = 15, title = title)
ax[i][4].annotate(s = legs.pop(), xy = (1.5, 1.5), fontsize = 15)
plt.savefig('{}_5x2.png'.format(stance), bbox_inches = 'tight', dpi = 200)