-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvat.py
173 lines (143 loc) · 6.64 KB
/
vat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import contextlib
import torch
import torch.nn as nn
import torch.nn.functional as F
@contextlib.contextmanager
def _disable_tracking_bn_stats(model):
def switch_attr(m):
if hasattr(m, "track_running_stats"):
m.track_running_stats ^= True
model.apply(switch_attr)
yield
model.apply(switch_attr)
def _l2_normalize(d):
d_reshaped = d.view(d.shape[0], -1, *(1 for _ in range(d.dim() - 2)))
d /= torch.norm(d_reshaped, dim=1, keepdim=True) + 1e-8
return d
class VATLoss(nn.Module):
def __init__(self, framework="dgl", criterion=None, xi=1e-3, eps=2.5, ip=1):
"""VAT loss
:param xi: hyperparameter of VAT (default: 10.0)
:param eps: hyperparameter of VAT (default: 1.0)
:param ip: iteration times of computing adv noise (default: 1)
"""
super(VATLoss, self).__init__()
self.xi = xi
self.eps = eps
self.ip = ip
self.framework = framework
self.criterion = criterion
def forward(self, model, x):
if self.framework == "dgl":
bg = x[0]
nodefea = x[1]
edgefea = x[2]
with torch.no_grad():
nodefea, edgefea = model.forwardProjector(nodefea, edgefea)
pred, _ = model.forwardgnn(bg, nodefea, edgefea)
# prepare random unit tensor
dn = torch.rand(nodefea.shape).sub(0.5).to(nodefea.device)
de = torch.rand(edgefea.shape).sub(0.5).to(edgefea.device)
dn = _l2_normalize(dn)
de = _l2_normalize(de)
with _disable_tracking_bn_stats(model):
# calc adversarial direction
for _ in range(self.ip):
dn.requires_grad_()
de.requires_grad_()
pred_hat, _ = model.forwardgnn(
bg, nodefea + self.xi * dn, edgefea + self.xi * de
)
adv_distance = self.criterion(pred_hat, pred)
adv_distance = adv_distance.mean()
adv_distance.backward()
dn = _l2_normalize(dn.grad)
de = _l2_normalize(de.grad)
model.zero_grad()
# calc LDS
rn_adv = dn * self.eps
re_adv = de * self.eps
pred_hat, _ = model.forwardgnn(bg, nodefea + rn_adv, edgefea + re_adv)
lds = self.criterion(pred_hat, pred)
else:
if self.framework == "geometric":
z = x[0]
pos = x[1]
batch = x[2]
# model(z, pos, batch)#[z, pos, batch]
with torch.no_grad():
pred, _ = model(z, pos, batch)
# prepare random unit tensor
# dn = torch.rand(nodefea.shape).sub(0.5).to(nodefea.device)
dn = torch.rand(pos.shape).sub(0.5).to(pos.device)
# dn = _l2_normalize(dn)
# de = _l2_normalize(de)
with _disable_tracking_bn_stats(model):
# calc adversarial direction
for _ in range(self.ip):
dn.requires_grad_()
# de.requires_grad_()
pred_hat, _ = model(z, pos + self.xi * dn, batch)
adv_distance = self.criterion(pred_hat, pred)
adv_distance = adv_distance.mean()
# logp_hat = F.log_softmax(pred_hat, dim=1)
# adv_distance = F.kl_div(logp_hat, pred, reduction='batchmean')
adv_distance.backward()
dn = _l2_normalize(dn.grad)
# de = _l2_normalize(de.grad)
model.zero_grad()
# calc LDS
rn_adv = dn * self.eps
pred_hat, _ = model(z, pos + rn_adv, batch)
lds = self.criterion(pred_hat, pred)
elif self.framework == "mat":
data = x # `data` is the full input to the DEEP_GATGNN model
# Store original node features and edge attributes
original_x = data.x.clone().detach()
if hasattr(data, "edge_attr") and data.edge_attr is not None:
original_edge_attr = data.edge_attr.clone().detach()
else:
original_edge_attr = None
with torch.no_grad():
pred, _ = model(data)
# Prepare random unit tensor for node features
dn = torch.rand_like(data.x).sub(0.5)
dn = _l2_normalize(dn)
# Prepare random unit tensor for edge features if available
if original_edge_attr is not None:
de = torch.rand_like(data.edge_attr).sub(0.5)
de = _l2_normalize(de)
else:
de = None
with _disable_tracking_bn_stats(model):
# Calc adversarial direction
for _ in range(self.ip):
dn.requires_grad_()
if de is not None:
de.requires_grad_()
# Perturb node features and edge attributes
data.x = original_x + self.xi * dn
if de is not None:
data.edge_attr = original_edge_attr + self.xi * de
pred_hat, _ = model(data)
adv_distance = self.criterion(pred_hat, pred)
adv_distance = adv_distance.mean()
adv_distance.backward()
dn = _l2_normalize(dn.grad)
if de is not None:
de = _l2_normalize(de.grad)
model.zero_grad()
# Calc LDS
rn_adv = dn * self.eps
if de is not None:
re_adv = de * self.eps
data.x = original_x + rn_adv
if de is not None:
data.edge_attr = original_edge_attr + re_adv
pred_hat, _ = model(data)
lds = self.criterion(pred_hat, pred)
# Reset data to original state
data.x = original_x
if de is not None:
data.edge_attr = original_edge_attr
return lds