-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompetition.py
500 lines (414 loc) · 15.6 KB
/
competition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# coding: utf-8
# # Distributed Synchronous Value Iteration
import ray
import time
from copy import deepcopy
import matplotlib.pyplot as plt
from random import randint, choice
from heapq import heappush, heappop
import pickle
WORKERS = 8
mapnum = 32
import sys
from contextlib import closing
import numpy as np
from six import StringIO, b
from gym import utils
from gym.envs.toy_text import discrete
from copy import deepcopy
LEFT = 0
DOWN = 1
RIGHT = 2
UP = 3
np.set_printoptions(threshold=sys.maxsize, linewidth=sys.maxsize, precision = 2)
TransitionProb = [0.7, 0.1, 0.1, 0.1]
def generate_row(length, h_prob):
row = np.random.choice(2, length, p=[1.0 - h_prob, h_prob])
row = ''.join(list(map(lambda z: 'F' if z == 0 else 'H', row)))
return row
def generate_map(shape):
"""
:param shape: Width x Height
:return: List of text based map
"""
h_prob = 0.1
grid_map = []
for h in range(shape[1]):
if h == 0:
row = 'SF'
row += generate_row(shape[0] - 2, h_prob)
elif h == 1:
row = 'FF'
row += generate_row(shape[0] - 2, h_prob)
elif h == shape[1] - 1:
row = generate_row(shape[0] - 2, h_prob)
row += 'FG'
elif h == shape[1] - 2:
row = generate_row(shape[0] - 2, h_prob)
row += 'FF'
else:
row = generate_row(shape[0], h_prob)
grid_map.append(row)
del row
return grid_map
MAPS = {
"4x4": [
"SFFF",
"FHFH",
"FFFH",
"HFFG"
],
"8x8": [
"SFFFFFFF",
"FFFFFFFF",
"FFFHFFFF",
"FFFFFHFF",
"FFFHFFFF",
"FHHFFFHF",
"FHFFHFHF",
"FFFHFFFG"
],
"16x16": [
"SFFFFFFFFHFFFFHF",
"FFFFFFFFFFFFFHFF",
"FFFHFFFFHFFFFFFF",
"FFFFFFFFHFFFFFFF",
"FFFFFFFFFFFFFFFF",
"FFHHFFFFFFFHFFFH",
"FFFFFFFFFFFFFFFF",
"FFFFFHFFFFFFHFFF",
"FFFFFHFFFFFFFFFH",
"FFFFFFFHFFFFFFFF",
"FFFFFFFFFFFFHFFF",
"FFFFFFHFFFFFFFFF",
"FFFFFFFFHFFFFFFF",
"FFFFFFFFFHFFFFHF",
"FFFFFFFFFFHFFFFF",
"FFFHFFFFFFFFFFFG",
],
"32x32": [
'SFFHFFFFFFFFFFFFFFFFFFFFFFHFFFFF',
'FFHFHHFFHFFFFFFFFFFFFFFFFFHFFFFF',
'FFFHFFFFFFFFHFFHFFFFFFFFFFFFFFFF',
'FFFFFFFFFFFFFFHFHHFHFHFFFFFHFFFH',
'FFFFHFFFFFFFFFFFFFFFHFHFFFFFFFHF',
'FFFFFHFFFFFFFFFFHFFFFFFFFFFHFFFF',
'FFHHFFFFHFFFFFFFFFFFFFFFFFFFFFFF',
'FFFHFFFFFFFFFFHFFFHFHFFFFFFFFHFF',
'FFFFHFFFFFFHFFFFHFHFFFFFFFFFFFFH',
'FFFFHHFHFFFFHFFFFFFFFFFFFFFFFFFF',
'FHFFFFFFFFFFHFFFFFFFFFFFHHFFFHFH',
'FFFHFFFHFFFFFFFFFFFFFFFFFFFFHFFF',
'FFFHFHFFFFFFFFHFFFFFFFFFFFFHFFHF',
'FFFFFFFFFFFFFFFFHFFFFFFFHFFFFFFF',
'FFFFFFHFFFFFFFFHHFFFFFFFHFFFFFFF',
'FFHFFFFFFFFFHFFFFFFFFFFHFFFFFFFF',
'FFFHFFFFFFFFFHFFFFHFFFFFFHFFFFFF',
'FFFFFFFFFFFFFFFFFFFFFFFFFFHFFFFF',
'FFFFFFFFHFFFFFFFHFFFFFFFFFFFFFFH',
'FFHFFFFFFFFFFFFFFFHFFFFFFFFFFFFF',
'FFFFFFFHFFFFFFFFFFFFFFFFFFFFFFFF',
'FFFFFFFFFFFFFFFHFFFFHFFFFFFFHFFF',
'FFHFFFFHFFFFFFFFFHFFFFFFFFFFFHFH',
'FFFFFFFFFFHFFFFHFFFFFFFFFFFFFFFF',
'FFFFFFFFFFFFFFFFFHHFFHHHFFFHFFFF',
'FFFFFFFFFFFFFFHFFFFHFFFFFFFHFFFF',
'FFFFFFFHFFFFFFFFFFFFFFFFFFFFFFFF',
'FFFFFHFFFFFFFFFFFFFFFFHFFHFFFFFF',
'FFFFFFFHFFFFFFFFFHFFFFFFFFFFFFFF',
'FFFFFFFFFFFFFFFFFFFFFFFFHFFFFFFF',
'FFFFFFFFFFFFFFFFFFFFFFFFHFFFFFFF',
'FFFFFFFFFFFFFFFHFFFFFFFFHFFFFFFG',
]
}
def generate_random_map(size=8, p=0.8):
"""Generates a random valid map (one that has a path from start to goal)
:param size: size of each side of the grid
:param p: probability that a tile is frozen
"""
valid = False
# BFS to check that it's a valid path.
def is_valid(arr, r=0, c=0):
if arr[r][c] == 'G':
return True
tmp = arr[r][c]
arr[r][c] = "#"
# Recursively check in all four directions.
directions = [(1, 0), (0, 1), (-1, 0), (0, -1)]
for x, y in directions:
r_new = r + x
c_new = c + y
if r_new < 0 or r_new >= size or c_new < 0 or c_new >= size:
continue
if arr[r_new][c_new] not in '#H':
if is_valid(arr, r_new, c_new):
arr[r][c] = tmp
return True
arr[r][c] = tmp
return False
while not valid:
p = min(1, p)
res = np.random.choice(['F', 'H'], (size, size), p=[p, 1-p])
res[0][0] = 'S'
res[-1][-1] = 'G'
valid = is_valid(res)
return ["".join(x) for x in res]
class FrozenLakeEnv(discrete.DiscreteEnv):
"""
Winter is here. You and your friends were tossing around a frisbee at the park
when you made a wild throw that left the frisbee out in the middle of the lake.
The water is mostly frozen, but there are a few holes where the ice has melted.
If you step into one of those holes, you'll fall into the freezing water.
At this time, there's an international frisbee shortage, so it's absolutely imperative that
you navigate across the lake and retrieve the disc.
However, the ice is slippery, so you won't always move in the direction you intend.
The surface is described using a grid like the following
SFFF
FHFH
FFFH
HFFG
S : starting point, safe
F : frozen surface, safe
H : hole, fall to your doom
G : goal, where the frisbee is located
The episode ends when you reach the goal or fall in a hole.
You receive a reward of 1 if you reach the goal, and zero otherwise.
"""
metadata = {'render.modes': ['human', 'ansi']}
def __init__(self, desc=None, map_name="4x4",is_slippery=True):
if desc is None and map_name is None:
desc = generate_random_map()
elif desc is None:
desc = MAPS[map_name]
self.desc = desc = np.asarray(desc,dtype='c')
self.nrow, self.ncol = nrow, ncol = desc.shape
self.reward_range = (0, 1)
nA = 4
nS = nrow * ncol
isd = np.array(desc == b'S').astype('float64').ravel()
isd /= isd.sum()
rew_hole = -1000
rew_goal = 1000
rew_step = -1
P = {s : {a : [] for a in range(nA)} for s in range(nS)}
self.TransitProb = np.zeros((nA, nS + 1, nS + 1))
self.TransitReward = np.zeros((nS + 1, nA))
def to_s(row, col):
return row*ncol + col
def inc(row, col, a):
if a == LEFT:
col = max(col-1,0)
elif a == DOWN:
row = min(row+1,nrow-1)
elif a == RIGHT:
col = min(col+1,ncol-1)
elif a == UP:
row = max(row-1,0)
return (row, col)
for row in range(nrow):
for col in range(ncol):
s = to_s(row, col)
for a in range(4):
li = P[s][a]
letter = desc[row, col]
if letter in b'H':
li.append((1.0, s, 0, True))
self.TransitProb[a, s, nS] = 1.0
self.TransitReward[s, a] = rew_hole
elif letter in b'G':
li.append((1.0, s, 0, True))
self.TransitProb[a, s, nS] = 1.0
self.TransitReward[s, a] = rew_goal
else:
if is_slippery:
#for b in [(a-1)%4, a, (a+1)%4]:
for b, p in zip([a, (a+1)%4, (a+2)%4, (a+3)%4], TransitionProb):
newrow, newcol = inc(row, col, b)
newstate = to_s(newrow, newcol)
newletter = desc[newrow, newcol]
done = bytes(newletter) in b'GH'
#rew = float(newletter == b'G')
#li.append((1.0/10.0, newstate, rew, done))
if newletter == b'G':
rew = rew_goal
elif newletter == b'H':
rew = rew_hole
else:
rew = rew_step
li.append((p, newstate, rew, done))
self.TransitProb[a, s, newstate] += p
self.TransitReward[s, a] = rew_step
else:
newrow, newcol = inc(row, col, a)
newstate = to_s(newrow, newcol)
newletter = desc[newrow, newcol]
done = bytes(newletter) in b'GH'
rew = float(newletter == b'G')
li.append((1.0, newstate, rew, done))
super(FrozenLakeEnv, self).__init__(nS, nA, P, isd)
def render(self, mode='human'):
outfile = StringIO() if mode == 'ansi' else sys.stdout
row, col = self.s // self.ncol, self.s % self.ncol
desc = self.desc.tolist()
desc = [[c.decode('utf-8') for c in line] for line in desc]
desc[row][col] = utils.colorize(desc[row][col], "red", highlight=True)
if self.lastaction is not None:
outfile.write(" ({})\n".format(["Left","Down","Right","Up"][self.lastaction]))
else:
outfile.write("\n")
outfile.write("\n".join(''.join(line) for line in desc)+"\n")
if mode != 'human':
with closing(outfile):
return outfile.getvalue()
def GetSuccessors(self, s, a):
next_states = np.nonzero(self.TransitProb[a, s, :])
probs = self.TransitProb[a, s, next_states]
return [(s,p) for s,p in zip(next_states[0], probs[0])]
def GetTransitionProb(self, s, a, ns):
return self.TransitProb[a, s, ns]
def GetReward(self, s, a):
return self.TransitReward[s, a]
def GetStateSpace(self):
return self.TransitProb.shape[1]
def GetActionSpace(self):
return self.TransitProb.shape[0]
print("---------actions--------")
print("a: Left\ns: Down\nd: Right\nw: Up\n(q: quit)")
env = FrozenLakeEnv(map_name="16x16")
env.render()
rew = 0
map_8 = (MAPS["8x8"], 8)
map_16 = (MAPS["16x16"], 16)
map_32 = (MAPS["32x32"], 32)
#map_50 = (generate_map((50,50)), 50)
#map_110 = (generate_map((110,110)), 110)
if mapnum == 8:
MAP = map_8
elif mapnum == 16:
MAP = map_16
elif mapnum == 32:
MAP = map_32
map_size = MAP[1]
run_time = {}
def evaluate_policy(env, policy, trials = 1000):
total_reward = 0
for _ in range(trials):
env.reset()
done = False
observation, reward, done, info = env.step(policy[0])
total_reward += reward
while not done:
observation, reward, done, info = env.step(policy[observation])
total_reward += reward
return total_reward / trials
def evaluate_policy_discounted(env, policy, discount_factor, trials = 1000):
total_reward = 0
#INSERT YOUR CODE HERE
for _ in range(trials):
env.reset()
done = False
observation, reward, done, info = env.step(policy[0])
beta = 1
total_reward += (reward * beta)
while not done:
observation, reward, done, info = env.step(policy[observation])
beta *= discount_factor
total_reward += (beta * reward)
return total_reward / trials
def print_results(v, pi, map_size, env, beta, name):
v_np, pi_np = np.array(v), np.array(pi)
print("\nState Value:\n")
print(np.array(v_np[:-1]).reshape((map_size,map_size)))
print("\nPolicy:\n")
print(np.array(pi_np[:-1]).reshape((map_size,map_size)))
print("\nAverage reward: {}\n".format(evaluate_policy(env, pi)))
print("Avereage discounted reward: {}\n".format(evaluate_policy_discounted(env, pi, discount_factor = beta)))
print("State Value image view:\n")
plt.imshow(np.array(v_np[:-1]).reshape((map_size,map_size)))
ray.shutdown()
ray.init(include_webui=False, ignore_reinit_error=True, redis_max_memory=300000000, object_store_memory=3000000000)
@ray.remote
class VI_server_v2(object):
#INSERT YOUR CODE HERE
def __init__(self,size):
self.v_current = [0] * size
self.pi = [0] * size
self.v_new = [0] * size
def get_value_and_policy(self):
return self.v_current, self.pi
def update_data(self, update_set):
for update_index, update_v, update_pi in update_set:
self.v_new[update_index] = update_v
self.pi[update_index] = update_pi
def get_error(self):
max_error = 0
for i in range(len(self.v_current)):
error = abs(self.v_new[i] - self.v_current[i])
if error > max_error:
max_error = error
self.v_current[i] = self.v_new[i]
return max_error
def get_error_and_update(self, update_sets):
for update_set in update_sets:
for update_index, update_v, update_pi in update_set:
self.v_new[update_index] = update_v
self.pi[update_index] = update_pi
max_error = 0
for i in range(len(self.v_current)):
error = abs(self.v_new[i] - self.v_current[i])
if error > max_error:
max_error = error
self.v_current[i] = self.v_new[i]
return max_error
@ray.remote
def VI_worker_v2( V, data, start_state, end_state):
env, workers_num, beta, epsilon = data
A = env.GetActionSpace()
S = env.GetStateSpace()
update_set = set()
for state in range(start_state, end_state):
h = []
for action in range(A):
tmp = [prob * V[nstate] for nstate, prob in env.GetSuccessors(state, action)]
next_v = env.GetReward(state, action) + beta * sum(tmp)
heappush(h, (-next_v, next_v, action))
_, max_v, max_a = heappop(h)
update_set.add((state, max_v, max_a))
return update_set
def fast_value_iteration(env, beta = 0.999, epsilon = 0.01, workers_num = 4):
S = env.GetStateSpace()
VI_server = VI_server_v2.remote(S)
workers_list = []
data = ray.put((env, workers_num, beta, epsilon))
error, div = float('inf'), S // workers_num
while error > epsilon:
#INSERT YOUR CODE HERE
V, _ = ray.get(VI_server.get_value_and_policy.remote())
update_sets = ray.get([VI_worker_v2.remote( V, data, i, i+div) for i in range(0, S-div, div)])
error = ray.get(VI_server.get_error_and_update.remote(update_sets))
return ray.get(VI_server.get_value_and_policy.remote())
beta = 0.999
env = FrozenLakeEnv(desc = MAP[0], is_slippery = True)
print("Game Map:")
env.render()
start_time = time.time()
v, pi = fast_value_iteration(env, beta = beta, workers_num = WORKERS)
v_np, pi_np = np.array(v), np.array(pi)
end_time = time.time()
run_time['Sync distributed v2'] = end_time - start_time
print("time:", run_time['Sync distributed v2'])
print_results(v, pi, map_size, env, beta, 'dist_vi_v2')
from copy import deepcopy
temp_dict = deepcopy(run_time)
print("All:")
for _ in range(len(temp_dict)):
min_v = float('inf')
for k, v in temp_dict.items():
if v is None:
continue
if v < min_v:
min_v = v
name = k
temp_dict[name] = float('inf')
print(name + ": " + str(min_v))
print()