-
Notifications
You must be signed in to change notification settings - Fork 0
/
openscad_py.py
741 lines (576 loc) · 27.6 KB
/
openscad_py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
from typing import Union as TUnion
from typing import List
import math
import numpy as np
EPSILON = 1e-7
NP_TYPE = np.float_
class Point:
"""Represents a point or vector in arbitrary dimensions"""
def __init__(self, coords):
self.c = np.array(coords, dtype=NP_TYPE)
@classmethod
def c(cls, coords: TUnion[list, 'Point']) -> 'Point':
"""Ensure coords is an instance of Point (idempotent)"""
if isinstance(coords, Point):
return coords
return Point(coords)
def render(self) -> str:
"""Render the point into a SCAD script"""
return "[" + (",".join([str(c) for c in self.c])) + "]"
def render_stl(self) -> str:
return " ".join([str(c) for c in self.c])
def scale(self, x: float) -> 'Point':
"""Scale the current vector/point by a scalar"""
return self.__class__(self.c * x)
def add(self, p: 'Point') -> 'Point':
assert isinstance(p, Point)
assert self.dim() == p.dim()
return self.__class__(self.c + p.c)
def sub(self, p: 'Point') -> 'Point':
assert isinstance(p, Point)
assert self.dim() == p.dim()
return self.__class__(self.c - p.c)
def dim(self) -> int:
"""Return the number of dimensions"""
return self.c.shape[0]
def is_zero(self) -> bool:
"""Return whether all coordinates are very close to 0"""
return np.all(np.abs(self.c) < EPSILON)
def length(self) -> float:
"""Return the length of the vector"""
return np.sqrt(np.square(self.c).sum())
def norm(self) -> 'Point':
l = self.length()
if l == 0:
raise Exception("normalising 0 vector")
return self.__class__(self.c / self.length())
def dot(self, p: 'Point') -> float:
"""Return the dot product"""
return np.dot(self.c, p.c)
def cross(self, p: 'Point') -> 'Point':
"""Return the cross product"""
assert self.dim() == 3
assert p.dim() == 3
return Point([
self.c[1]*p.c[2] - self.c[2]*p.c[1],
self.c[2]*p.c[0] - self.c[0]*p.c[2],
self.c[0]*p.c[1] - self.c[1]*p.c[0]
])
def eq(self, p: 'Point') -> bool:
return (self.c == p.c).all()
def lt(self, p: 'Point') -> bool:
return (self.c < p.c).all()
def le(self, p: 'Point') -> bool:
return (self.c <= p.c).all()
def gt(self, p: 'Point') -> bool:
return (self.c > p.c).all()
def ge(self, p: 'Point') -> bool:
return (self.c >= p.c).all()
def allclose(self, p: 'Point') -> bool:
return self.c.shape == p.c.shape and np.allclose(self.c, p.c)
def angle(self, p: 'Point', mode: str = "deg") -> float:
"""Return the angle between two vectors in degrees or radians"""
r = self.dot(p)
r = r / self.length() / p.length()
r = math.acos(r)
if mode == "rad":
return r
if mode == "deg":
return r / math.pi * 180.
raise ValueError("Unknown mode")
def z_slope(self, mode: str = "deg") -> float:
"""Return the slope of a vector in degrees or radians"""
r = self.c[2] / self.length()
r = math.asin(r)
if mode == "rad":
return r
if mode == "deg":
return r / math.pi * 180.
raise ValueError("Unknown mode")
def rotate(self, coords, angle: float) -> 'Point':
"""Rotate. coords is a list of 2 coordinate indices that we rotate"""
assert len(coords) == 2
ca, cb = coords
s = np.sin(angle / 180. * np.pi)
c = np.cos(angle / 180. * np.pi)
r = self.clone().reset_cache()
r.c[ca] = c * self.c[ca] + s * self.c[cb]
r.c[cb] = -s * self.c[ca] + c * self.c[cb]
return r
# Operator overloading
def __add__(self, other):
return self.add(other)
def __radd__(self, other):
assert isinstance(other, Point)
return other.add(self)
def __sub__(self, other):
return self.sub(other)
def __rsub__(self, other):
assert isinstance(other, Point)
return other.sub(self)
def __mul__(self, other):
return self.scale(other)
def __rmul__(self, other):
return self.scale(other)
def __neg__(self):
return self.scale(-1.)
class Object:
"""Abstract class for an SCAD object"""
def _center(self) -> str:
return ('true' if self.center else 'false')
def _add(self, obj):
"""Add an object, forming a collection"""
return Collection([self, obj])
def render(self) -> str:
raise Exception("abstract method")
def translate(self, v: TUnion[list, Point]) -> 'Object':
"""Apply a translation"""
return Translate(v=v, child=self)
def move(self, v: TUnion[list, Point]) -> 'Object':
"""Apply a translation"""
return Translate(v=v, child=self)
def rotate(self, a, v: TUnion[list, Point]) -> 'Object':
"""Apply a rotation"""
return Rotate(a=a, v=v, child=self)
def scale(self, v: TUnion[list, Point, float]) -> 'Object':
"""Apply scaling. Accepts a single float for uniform scaling"""
return Scale(v=v, child=self)
def color(self, r, g, b, a=1.) -> 'Object':
"""Apply a color"""
return Color(r=r, g=g, b=b, a=a, child=self)
def extrude(self, height, convexity = 10, center: bool = False) -> 'Object':
"""Apply a linear extrusion,
If center is false the linear extrusion Z range is from 0 to height; if it is true, the range is from -height/2 to height/2."""
return LinearExtrude(height=height, child=self, convexity=convexity, center=center)
def rotate_extrude(self, angle, convexity = 10) -> 'Object':
"""Apply a rotational extrusion. For all points x >= 0 must be true."""
return RotateExtrude(angle=angle, child=self, convexity=convexity)
def radial_offset(self, r):
"""A new 2d interior or exterior outline from an existing outline"""
return RadialOffset(r=r, child=self)
def delta_offset(self, delta, chamfer=False):
"""A new 2d interior or exterior outline from an existing outline"""
return DeltaOffset(delta=delta, child=self, chamfer=chamfer)
def diff(self, tool: TUnion[list, 'Object']) -> 'Object':
"""Remove from the object using a difference operator"""
return Difference(subject=self, tool=tool)
def union(self, objects: TUnion[list, 'Object']) -> 'Object':
"""Form the union of self and an object or list of objects"""
return Union(child=Collection.c(objects)._add(self))
def intersection(self, objects: TUnion[list, 'Object']) -> 'Object':
"""Get the intersection of self and an object of list of objects"""
return Intersection(child=Collection.c(objects)._add(self))
class Header:
"""Render a header (setting global values) of an OpensCAD file"""
def __init__(self, quality: str = 'draft'):
self.quality = quality
def render(self):
# See https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Other_Language_Features#Circle_resolution:_$fa,_$fs,_and_$fn
if self.quality == 'draft':
return ""
if self.quality == 'mid':
return "$fa=12;$fs=0.2;"
if self.quality == 'best':
return "$fa=6;$fs=0.1;"
raise ValueError("Unknown quality")
class Cube(Object):
"""A 3D primitive, cube.
Creates a cube in the first octant. When center is true, the cube is centered on the origin."""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#cube
def __init__(self, size: TUnion[list, Point], center: bool = False):
self.size = Point.c(size)
self.center = center
def render(self):
return f"cube(size={self.size.render()}, center={self._center()});"
class Sphere(Object):
"""A 3D primitive, sphere.
Creates a sphere at the origin of the coordinate system."""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#sphere
def __init__(self, r):
self.r = r
# $fa, $fs, $fn
def render(self):
return f"sphere(r={self.r});"
class Cylinder(Object):
"""A 3D primitive, cylinder.
Creates a cylinder or cone centered about the z axis. When center is true, it is also centered vertically along the z axis."""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#cylinder
def __init__(self, h, r=None, r1=None, r2=None, center: bool = False):
self.height = h
self.r1 = r if r1 is None else r1
self.r2 = r if r2 is None else r2
self.center = center
# $fa, $fs, $fn
def render(self):
return f"cylinder(h={self.height}, r1={self.r1}, r2={self.r2}, center={self._center()});"
@classmethod
def from_ends(cls, radius: float, p1: TUnion[list, Point], p2: TUnion[list, Point]) -> Object:
"""Construct a cylinder between two points"""
p1 = Point.c(p1)
p2 = Point.c(p2)
v = p2.sub(p1)
length = v.length()
assert length != 0
z = Point([0, 0, 1])
r = z.cross(v)
rangle = v.angle(z)
if r.length() == 0:
# The cylinder is in the Z direction
if abs(abs(rangle) - 180.) < .1:
p1 = p2
rangle = 0
r = z
else:
r = r.norm()
return cls(h=length, r=radius, center=False).rotate(a=rangle, v=r).move(p1)
class Polyhedron(Object):
"""A 3D primitive, a polyhedron defined by a list of points and faces."""
# See https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#polyhedron
# Nonplanar faces should be triangulated by opensCAD
def __init__(self, points: List[TUnion[list, Point]], faces: List[list], convexity: int = 10):
self.points = [Point.c(p) for p in points]
self.faces = faces
self.convexity = convexity
@classmethod
def torus(cls, points: List[List[TUnion[list, Point]]], torus_connect_offset: int = 0, convexity: int = 10):
"""Construct a torus-like polyhedron from a 2D array of points.
Each row of points must be oriented clickwise when looking from the first row (loop) toward the next.
The rows of points form loops.
points: A 2D array of points
torus_connect_offset: int, Whether to shift which points are connected in a torus in the last segment
convexity: int, see OpensCAD
"""
return cls.tube(points=points, convexity=convexity, make_torus=True, torus_connect_offset=torus_connect_offset)
@classmethod
def tube(cls, points: List[List[TUnion[list, Point]]], make_torus: bool = False, torus_connect_offset: int = 0, convexity: int = 10):
"""Construct a tube-like polyhedron from a 2D array of points.
Each row of points must be oriented clockwise when looking at the pipe at the start inwards.
The rows of points form loops.
points: A 2D array of points
make_torus: bool, Whether to create a torus-like shape instead of a pipe with ends
torus_connect_offset: int, Whether to shift which points are connected in a torus in the last segment
convexity: int, see OpensCAD
"""
rows = len(points)
row_len = len(points[0])
point_list = []
point_map = {} # { (row_ix,col_ix) -> list_ix, ...
for row_ix, row in enumerate(points):
for col_ix, point in enumerate(row):
point_map[(row_ix, col_ix)] = len(point_list)
point_list.append(point)
faces = []
# Side faces
for row_ix in range(1, rows):
for col_ix in range(1, row_len):
faces.append([
point_map[(row_ix, col_ix-1)],
point_map[(row_ix, col_ix)],
point_map[(row_ix-1, col_ix)],
point_map[(row_ix-1, col_ix-1)]
])
faces.append([
point_map[(row_ix, row_len-1)],
point_map[(row_ix, 0)],
point_map[(row_ix-1, 0)],
point_map[(row_ix-1, row_len-1)]
])
if not make_torus:
# Starting cap
faces.append([point_map[(0,x)] for x in range(row_len)])
# Ending cap
faces.append([point_map[(rows-1,row_len-1-x)] for x in range(row_len)])
else:
# Connect the end to the start
for col_ix in range(row_len):
faces.append([
point_map[(0, (col_ix-1+torus_connect_offset)%row_len)],
point_map[(0, (col_ix+torus_connect_offset)%row_len)],
point_map[(rows-1, col_ix%row_len)],
point_map[(rows-1, (col_ix-1)%row_len)]
])
return cls(points=point_list, faces=faces, convexity=convexity)
def render(self) -> str:
faces_list = [f"[{','.join([str(x) for x in face])}]" for face in self.faces]
return f"polyhedron(points=[{','.join([p.render() for p in self.points])}], faces=[{','.join(faces_list)}], convexity={self.convexity});"
def render_stl(self) -> str:
"""Export the polyhedron as an STL file"""
stl = []
def write_triangle(p1, p2, p3):
normal = (p2 - p1).cross(p3 - p1)
if normal.is_zero():
# Degenerate triangle
return
normal = normal.norm()
stl.append("facet normal " + normal.render_stl())
stl.append("outer loop")
for p in [p1, p2, p3]:
stl.append("vertex " + p.render_stl())
stl.append("endloop")
stl.append("endfacet")
stl.append("solid oscpy")
for face in self.faces:
face = [self.points[i] for i in face]
# stl.append(f"# FACE {len(face)} {','.join([p.render() for p in face])}")
if len(face) < 3:
raise Exception("Face has less than 3 points")
elif len(face) == 3:
write_triangle(face[0], face[1], face[2])
elif len(face) == 4:
# Decide which diagonal is best to break on
d1 = face[0].sub(face[2]).length()
d2 = face[1].sub(face[3]).length()
if d1 < d2:
write_triangle(face[0], face[1], face[2])
write_triangle(face[0], face[2], face[3])
else:
write_triangle(face[0], face[1], face[3])
write_triangle(face[1], face[2], face[3])
else:
# Add central point and split face in a star-shaped form
# of course this won't always work on concave faces
s = None
for p in face:
if s is None:
s = p
else:
s += p
s = s.scale(1 / len(face))
for i in range(len(face)):
i_next = i + 1
if i_next > len(face) - 1:
i_next = 0
write_triangle(face[i], face[i_next], s)
stl.append("endsolid oscpy")
return "\n".join(stl)
class PathTube(Object):
"""Creates a tube-like or toroid polyhedron from a path (list of points)."""
def __init__(self, points: List[TUnion[list, Point]], radius: TUnion[float, list], fn: int, make_torus: bool = False, convexity: int = 10):
"""
points: The list of points
radius: A float or a list of floats for each point
fn: int, The number of sides
make_torus: bool, Whether to make a torus instead of a pipe with ends. Warning: the last segment may be twisted.
convexity: see openscad
"""
self.points = [Point.c(p) for p in points]
self.radii = radius if isinstance(radius, list) else [radius for p in points]
self.fn = fn
self.make_torus = make_torus
self.convexity = convexity
def process(self, debug: bool = False) -> Polyhedron:
points_rows = []
for ix, point in enumerate(self.points):
if debug: print(f"//LOOP {ix}: {point.render()}")
if (not self.make_torus) and ix == 0:
# Start of the path
v = self.points[1].sub(point) # vector toward the first point
z_point = Point([0,0,1])
seam = v.cross(z_point) # Track a seam along the pipe using this vector pointing from the middle line
if seam.length() == 0: # v is in the z direction
seam = Point([1,0,0])
seam = seam.norm()
seam2 = v.cross(seam).norm()
if debug: print(f"//Start. v={v.render()} seam={seam.render()} seam2={seam2.render()}")
points = []
for i in range(self.fn):
a = math.pi*2*i/self.fn
points.append((seam*math.cos(a) + seam2*math.sin(a))*self.radii[ix] + point)
points_rows.append(points)
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
elif (not self.make_torus) and ix == len(self.points) - 1:
# End of the path
v = point.sub(self.points[-2])
seam2 = v.cross(seam).norm()
if debug: print(f"//End. v={v.render()} seam={seam.render()} seam2={seam2.render()}")
points = []
for i in range(self.fn):
a = math.pi*2*i/self.fn
points.append((seam*math.cos(a) + seam2*math.sin(a))*self.radii[ix] + point)
points_rows.append(points)
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
else:
# Middle of the path
iprev = ix - 1 if ix > 0 else len(self.points) - 1
inext = ix + 1 if ix < len(self.points) - 1 else 0
# (p[-1]) -va-> (p[0]) -vb-> (p[1])
va = point.sub(self.points[iprev]).norm() # vector incoming to this elbow
vb = self.points[inext].sub(point).norm() # vector going out from this elbow
if debug: print(f"//Middle. va={va.render()} vb={vb.render()}")
# Get the vector perpendicular to va that points to the inside of the cylinder around va according
# to the elbow at p[0]. This is the component of vb in a basis defined by va.
vdot = va.dot(vb)
vb_proj = va.scale(vdot) # The projection of vb onto va
vb_perp = vb.sub(vb_proj) # This is perpendicular to va
if debug: print(f"// vb_proj={vb_proj.render()} vb_perp={vb_perp.render()}")
va_inner = vb_perp.norm()
va_proj = vb.scale(vdot)
va_perp = va.sub(va_proj)
if debug: print(f"// va_proj={va_proj.render()} va_perp={va_perp.render()}")
vb_inner = va_perp.scale(-1).norm() # Here we want to project -va onto vb
if debug: print(f"// va_inner={va_inner.render()} vb_inner={vb_inner.render()}")
if ix == 0:
# We just choose a seam when making a torus
seam_angle = 0
else:
# The new seam on vb (seam_b) has the same angle to vb_inner as it had on va to va_inner
seam_angle = seam.angle(va_inner, mode="rad")
# need to figure out the sign of the angle
if seam_angle != 0:
if va_inner.cross(seam).dot(va) < 0:
seam_angle = -seam_angle
vb_inner2 = vb.cross(vb_inner).norm()
seam_b = vb_inner*math.cos(seam_angle) + vb_inner2*math.sin(seam_angle)
if debug:
if ix == 0:
print(f"// seam=N/A seam_b={seam_b.render()}")
else:
print(f"// seam={seam.render()} seam_b={seam_b.render()}")
vangle = va.scale(-1).angle(vb, mode="rad")
long_inner = (vb-va).norm().scale(1/math.sin(vangle/2))
# long_inner is the long axis of the elliptic intersection between the cylinders around va and vb
short = va.cross(long_inner).norm() # the short axis of the ellipse
if debug: print(f"// long_inner={long_inner.render()} short={short.render()} vangle={vangle/math.pi*180}(deg) seam_angle={seam_angle/math.pi*180}(deg)")
points = []
for i in range(self.fn):
# We draw the ellipse according to long_inner and short, but use seam_angle to get the right points
a = math.pi*2*i/self.fn + seam_angle
points.append((long_inner*math.cos(a) + short*math.sin(a))*self.radii[ix] + point)
points_rows.append(points)
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
seam = seam_b
return Polyhedron.tube(points=points_rows, convexity=self.convexity, make_torus=self.make_torus)
def render(self) -> str:
return self.process().render()
class Circle(Object):
"""A 2D primitive, circle.
Creates a circle (or regular polygon) at the origin."""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#circle
def __init__(self, r: float, fn: TUnion[int, None] = None):
self.r = r
self.fn = fn
# $fa, $fs, $fn
@classmethod
def triangle(cls, r):
"""Create a regular triangle"""
return cls(r=r, fn=3)
@classmethod
def regular_polygon(cls, r, sides: int):
"""Create a regular polygon"""
return cls(r=r, fn=sides)
def render(self) -> str:
fnstr = '' if self.fn is None else f", $fn={self.fn}"
return f"circle(r={self.r}{fnstr});"
class Polygon(Object):
"""A 2D primitive, polygon. Use points/lists with 2 coordinates."""
def __init__(self, points, paths=None, convexity=10):
assert paths is None # not implemented yet
self.points = [Point.c(p) for p in points]
self.convexity = convexity
def render(self) -> str:
return f"polygon(points=[{','.join([p.render() for p in self.points])}], convexity={self.convexity});"
# TODO https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types
class Collection(Object):
"""Represents a collection of objects"""
def __init__(self, coll: list):
self.collection = coll
@classmethod
def c(cls, coll: TUnion[list, Object]) -> Object:
"""Ensure the list of objects is a Collection (idempotent)"""
if isinstance(coll, Object):
return coll
return cls(coll)
def _add(self, obj):
return self.__class__(self.collection + [obj])
def render(self) -> str:
return "\n".join([o.render() for o in self.collection])
class Translate(Object):
"""Represents a translation transformation applied to an object"""
def __init__(self, v: TUnion[list, Point], child: Object):
self.v = Point.c(v)
self.child = child
def render(self) -> str:
return f"translate(v={self.v.render()}){{\n{self.child.render()}\n}}"
class Rotate(Object):
"""Represents a rotation transformation applied to an object"""
def __init__(self, a, v: TUnion[list, Point], child: Object):
self.a = a
self.v = Point.c(v)
self.child = child
def render(self) -> str:
return f"rotate(a={self.a}, v={self.v.render()}){{\n{self.child.render()}\n}}"
class Scale(Object):
def __init__(self, v: TUnion[list, Point, float, int], child: Object):
if isinstance(v, float) or isinstance(v, int):
v = [v, v, v]
self.v = Point.c(v)
self.child = child
def render(self) -> str:
return f"scale(v={self.v.render()}){{\n{self.child.render()}\n}}"
class Color(Object):
def __init__(self, child: Object, r, g, b, a=1.):
self.color = [r, g, b, a]
self.child = child
def render(self) -> str:
return f"color(c=[{','.join([str(c) for c in self.color])}]){{ {self.child.render()} }}"
class LinearExtrude(Object):
"""Represents a linear extrusion applied to an object.
If center is false the linear extrusion Z range is from 0 to height; if it is true, the range is from -height/2 to height/2."""
def __init__(self, height, child: Object, convexity: int = 10, center: bool = False):
self.height = height
self.child = child
self.convexity = convexity
self.center = center
# twist, slices, scale (float/vector), $fn
def render(self) -> str:
return f"linear_extrude(height={self.height}, center={self._center()}, convexity={self.convexity}){{\n{self.child.render()}\n}}"
class RotateExtrude(Object):
"""Represents a rotational extrusion of a (2D) object.
For all points, x>=0 must hold.
See https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/2D_to_3D_Extrusion"""
def __init__(self, angle, child: Object, convexity: int = 10):
self.angle = angle
self.child = child
self.convexity = convexity
# $fa, $fs, $fn
def render(self) -> str:
return f"rotate_extrude(angle={self.angle}, convexity={self.convexity}) {{\n{self.child.render()}\n}}"
class RadialOffset(Object):
"""A new 2d interior or exterior outline from an existing outline"""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#offset
def __init__(self, r, child: Object):
self.r = r
self.child = child
# $fa, $fs, and $fn
def render(self) -> str:
return f"offset(r={self.r}){{\n{self.child.render()}\n}}"
class DeltaOffset(Object):
"""A new 2d interior or exterior outline from an existing outline"""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#offset
def __init__(self, delta, child: Object, chamfer: bool = False):
self.delta = delta
self.child = child
self.chamfer = chamfer
def render(self) -> str:
return f"offset(delta={delta}, chamfer={'true' if self.chamfer else 'false'}){{\n{self.child.render()}\n}}"
class Union(Object):
"""Represents a union applied to an object (usually a collection of objects)"""
def __init__(self, child: TUnion[Object, list]):
self.child = Collection.c(child)
def render(self) -> str:
return f"union(){{ {self.child.render()} }}"
def union(self, objects: TUnion[list, Object]) -> Object:
return self.__class__(self.child._add(objects))
class Intersection(Object):
"""Represents an intersection applied to an object (usually a collection of objects)"""
def __init__(self, child: TUnion[Object, list]):
self.child = Collection.c(child)
def render(self) -> str:
return f"intersection(){{ {self.child.render()} }}"
class Difference(Object):
"""Represents a difference"""
def __init__(self, subject: Object, tool: TUnion[list, Object]):
self.subject = subject
self.tool = Collection.c(tool) # what to remove
def render(self) -> str:
return f"difference(){{ {self.subject.render()}\n{self.tool.render()} }}"