-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparcellation_applications.py
395 lines (358 loc) · 19.3 KB
/
parcellation_applications.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import argparse
import os
import sys
import glob
import nibabel as nib
import pandas as pd
import numpy as np
from scipy.ndimage.morphology import binary_dilation, binary_erosion, \
binary_fill_holes, distance_transform_edt
DICT_VASCULAR = {'MCA_Left': 22 , 'MCA_Right': 21, 'PCA_Left': 12, 'PCA_Right':
11,
'ACA_Right': 31,'ACA_Left': 32}
DICT_STRUCT = {'FrontalLeft': 1, 'FrontalRight': 2, 'ParietalLeft':3,
'ParietalRight':4, 'OccipitalLeft':5, 'OccipitalRight':6,
'TemporalLeft':7, 'TemporalRight':8, 'BasalGanglia':9,
'Infratentorial':10}
from parcellation_utils.parcellation_aggregate import combine_seg,\
prepare_use_gif_hierarchy, \
create_hemisphere, create_bg, create_aggregation, create_aggregated_volume
from parcellation_utils.parcellation_parsing import get_dict_match, \
get_dict_parc, get_hierarchy
def main(argv):
association_file = os.path.join(os.path.split(os.path.abspath(
__file__))[0], 'parcellation_utils', 'GIFHierarchy.csv')
association_file_dbgif = os.path.join(os.path.split(os.path.abspath(
__file__))[0], 'parcellation_utils', 'KeysHierarchy_ordered.csv')
lobesfile = os.path.join(os.path.split(os.path.abspath(
__file__))[0], 'parcellation_utils', 'TerritoriesLobesMapping.csv')
demographic_file = None
pattern = "*.xml"
exclusion = "zzzzzzzz"
strip_name_right = '_NeuroMorph.xml'
strip_name_left = ''
parser = argparse.ArgumentParser(description='Create parcellation based '
'segmentation aggregations')
parser.add_argument('-f', dest='file_pattern', metavar='filename_input',
type=str, required=True,
help='file where the input parcellation is located')
parser.add_argument('-p', dest='output_path', action='store',
default=os.getcwd(),
help='output_path')
subparsers = parser.add_subparsers(dest='subcommand')
# subparser for checks on orientation and acquisition
parser_check = subparsers.add_parser('checks')
parser_check.add_argument('-iso', dest='iso_flag', action='store_true')
parser_check.add_argument('-ori', dest='ori_flag', action='store_true')
# subparser for aggregations based on label hierarchy
parser_seg = subparsers.add_parser('seg_aggregate')
parser_seg.add_argument('-bg', dest='bg_flag', action='store_true')
parser_seg.add_argument('-hemi', dest='hemi_flag', action='store_true')
parser_seg.add_argument('-a', type=str, dest='aggregation_list',
action='store',
help="Indicate which structure should be segmented "
"or list of structures separated by , "
"ex: (\"Frontal Lobe\" or "
"\"Frontal Lobe, Parietal Lobe\"")
parser_seg.add_argument('-combi', type=str, choices=['separated',
'split_4d',
'label_3d',
'combined_binary'],
default='combined_binary', dest='combination',
help="Indicates how multiple structures should "
"be eventually combined")
parser_seg.add_argument('-look_up', dest='look_up', action='store',
type=str)
parser_lobes = subparsers.add_parser('lobes')
parser_lobes.add_argument('-s', dest='split', action='store_true')
parser_lobes.add_argument('-laplace', dest='laplace_file',
action='store', type=str)
parser_lobes.add_argument('-a', dest='assign', choices=['euc', 'lap'],
default='euc')
parser_lobes.add_argument('-m', dest='mask', type=str)
# subparser for parsing of xml file of the parcellation file or if no xml
# file, creating the volumetric database based on all possible labels
# and their combination
parser_parsing = subparsers.add_parser('parsing')
parser_parsing.add_argument('-a', dest='association_file',
action='store',
help='File for the association to GIF output',
type=str, default=association_file)
parser_parsing.add_argument('-o', dest='output_file', action='store',
help='Where to write output for the database',
type=str)
parser_parsing.add_argument('-l', dest='left_strip', action='store',
help='What to strip from input file name '
'on the left ',
type=str, default=strip_name_left)
parser_parsing.add_argument('-r', dest='right_strip', action='store',
type=str,
default=strip_name_right,
help='What to strip from input file name '
'on the right')
parser_parsing.add_argument('-d', dest='demographic_file',
action='store',
type=str,
help='demographic file to further match '
'individuals', default=None)
parser_parsing.add_argument('-e', dest='exclude', action='store',
default=exclusion, type=str)
# to build database from parcellation files
parser_dbnii = subparsers.add_parser('database_fromparc')
parser_dbnii.add_argument('-a', dest='association_file',
action='store',
help='File for the association to GIF output',
type=str, default=association_file_dbgif)
parser_dbnii.add_argument('-o', dest='output_file', action='store',
help='Where to write output for the database',
type=str)
parser_dbnii.add_argument('-l', dest='left_strip', action='store',
help='What to strip from input file name'
' on the left ', type=str,
default=strip_name_left)
parser_dbnii.add_argument('-r', dest='right_strip', action='store',
type=str, default=strip_name_right, help='What '
'to strip from input file name on the right')
try:
args = parser.parse_args()
# print(args.accumulate(args.integers))
except argparse.ArgumentTypeError:
print('BrainHearts.py -f <filename_database> -g <grouping> -d '
'<dependent variable> -i <independent variables>')
print('The list of independent variables must always start with the '
'Age')
sys.exit(2)
list_files = glob.glob(args.file_pattern)
print(len(list_files))
if args.subcommand == 'lobes':
df_parc = pd.DataFrame.from_csv(lobesfile)
val_terr = np.unique(df_parc['FullTerr'])
val_lobe = np.unique(df_parc['FullStruct'])
if not args.split:
for f in list_files:
parc_nii = nib.load(f)
parc_data = parc_nii.get_data()
lobar_separation = np.zeros_like(parc_data)
terr_separation = np.zeros_like(parc_data)
for val in val_terr:
if val>0:
df_select = df_parc[df_parc['FullTerr']==val]
val_gif = np.unique(df_select['GIF'])
seg_temp = np.where(parc_data in val_gif, np.ones_like(
parc_data) * val, np.zeros_like(parc_data))
terr_separation += seg_temp
for val in val_lobe:
if val>0:
df_select = df_parc[df_parc['FullStruct']==val]
val_gif = np.unique(df_select['GIF'])
seg_temp = np.where(parc_data in val_gif, np.ones_like(
parc_data) * val, np.zeros_like(parc_data))
if val==9:
seg_temp = seg_temp.astype(bool)
seg_temp = binary_dilation(seg_temp, iterations=4)
seg_temp = binary_fill_holes(seg_temp)
seg_temp = binary_erosion(seg_temp, iterations=4)
seg_temp = seg_temp.astype(float)*9
lobar_separation += seg_temp
name_lobes = 'Lobes_' + os.path.split(f)[1]
name_terr = 'Territories_' + os.path.split(f)[1]
name_lobes = os.path.join(args.output_path, name_lobes)
name_terr = os.path.join(args.output_path, name_terr)
lobes_nii = nib.Nifti1Image(lobar_separation, parc_nii.affine)
terr_nii = nib.Nifti1Image(terr_separation, parc_nii.affine)
nib.save(terr_nii, name_terr)
nib.save(lobes_nii, name_lobes)
# For now the following is only perform for one given subject and
# does not support pairing of multiple files:
if args.split:
f = list_files[0]
parc_nii = nib.load(list_files[0])
parc_data = parc_nii.get_data()
zooms = parc_nii.header.get_zooms()
if args.mask is None:
mask = (parc_data > 12).astype(int)
ventr_data = (parc_data < 54).astype(int) * (parc_data >
49).astype(int)
mask -= ventr_data
else:
mask = nib.load(args.mask).get_data()
lobar_separation = np.zeros_like(parc_data)
terr_separation = np.zeros_like(parc_data)
list_dist_lobes = []
list_dist_terr = []
for val in val_terr:
if val > 0:
df_select = df_parc[df_parc['FullTerr'] == val]
val_gif = np.unique(df_select['GIF'])
seg_temp = np.zeros_like(parc_data)
for gv in val_gif:
seg_temp = np.where(parc_data==gv, np.ones_like(
parc_data) , seg_temp)
terr_separation += seg_temp * val
print(np.sum(seg_temp))
distance_terr = distance_transform_edt(seg_temp * -1 +1,
sampling=zooms)
list_dist_terr.append(np.expand_dims(distance_terr *
mask, -1))
for val in val_lobe:
if val > 0:
df_select = df_parc[df_parc['FullStruct'] == val]
val_gif = np.unique(df_select['GIF'])
seg_temp = np.zeros_like(parc_data)
for gv in val_gif:
seg_temp = np.where(parc_data == gv, np.ones_like(
parc_data), seg_temp)
if val == 9:
seg_temp = seg_temp.astype(bool)
seg_temp = binary_dilation(seg_temp, iterations=4)
seg_temp = binary_fill_holes(seg_temp)
seg_temp = binary_erosion(seg_temp, iterations=4)
seg_temp = seg_temp.astype(float)
lobar_separation += seg_temp * val
if val < 9:
distance_lobe = distance_transform_edt(seg_temp * -1 +1,
sampling=zooms)
list_dist_lobes.append(np.expand_dims(distance_lobe *
mask, -1))
stacked_dist_terr = np.concatenate(list_dist_terr, -1)
stacked_dist_lobes = np.concatenate(list_dist_lobes, -1)
final_assign_terr = (np.argmin(stacked_dist_terr, -1) + 1) * mask
final_assign_lobes = (np.argmin(stacked_dist_lobes, -1) +1) *mask
final_assign_lobes = np.where(lobar_separation>8,
lobar_separation, final_assign_lobes)
name_lobes = 'Lobes_' + os.path.split(f)[1]
name_terr = 'Territories_' + os.path.split(f)[1]
name_asslobes = 'AssignLobes_' + os.path.split(f)[1]
name_assterr = 'AssignTerritories_' + os.path.split(f)[1]
name_lobes = os.path.join(args.output_path, name_lobes)
name_terr = os.path.join(args.output_path, name_terr)
name_asslobes = os.path.join(args.output_path, name_asslobes)
name_assterr = os.path.join(args.output_path, name_assterr)
lobes_nii = nib.Nifti1Image(lobar_separation, parc_nii.affine)
terr_nii = nib.Nifti1Image(terr_separation, parc_nii.affine)
nib.save(terr_nii, name_terr)
nib.save(lobes_nii, name_lobes)
asslobes_nii = nib.Nifti1Image(final_assign_lobes, parc_nii.affine)
assterr_nii = nib.Nifti1Image(final_assign_terr, parc_nii.affine)
nib.save(assterr_nii, name_assterr)
nib.save(asslobes_nii, name_asslobes)
if args.subcommand == 'parsing':
if args.demographic_file is not None:
demographic_df = pd.DataFrame.from_csv(path=demographic_file)
demographic_dict = demographic_df.to_dict()
else:
demographic_dict = {}
path_results = args.output_file
dict_hierarchy = get_hierarchy(args.association_file)
list_parcellation = glob.glob(args.file_pattern)
test = get_dict_parc(list_parcellation[0])
dict_new = get_dict_match(test, dict_hierarchy)
list_keys_columns = dict_new.keys()
sorted_keys = sorted(list_keys_columns)
columns = ['ID'] + list(demographic_dict.keys()) + ['TIV'] + sorted_keys
dict_total = {c: [] for c in columns}
print("Number of files to process is %d" % len(list_parcellation))
for parc in list_parcellation:
name = os.path.split(parc)[1].rstrip(args.right_strip)
name = name.lstrip(args.left_strip)
print(name)
if 'DOB' in demographic_dict.keys():
if args.exclude not in parc and name in \
demographic_dict['DOB'].keys():
dict_temp = get_dict_parc(parc)
dict_fin = get_dict_match(dict_temp, dict_hierarchy)
dict_fin['File'] = parc
tiv = 0
for col in list_keys_columns:
if '6_' in col and col not in ('6_0', '6_1', '6_2',
'6_3','6_4'):
tiv += float(dict_fin[col])
dict_total[col].append(dict_fin[col])
dict_total['TIV'].append(tiv)
if name in demographic_dict['DOB'].keys():
dict_total['ID'].append(name)
for demkeys in demographic_dict.keys():
if demkeys == 'sex':
dict_total[demkeys].append(
demographic_dict[demkeys][name] - 1)
else:
dict_total[demkeys].append(
demographic_dict[demkeys][name])
else:
dict_temp = get_dict_parc(parc)
dict_fin = get_dict_match(dict_temp, dict_hierarchy)
dict_fin['File'] = parc
dict_total['ID'].append(name)
tiv = 0
for col in list_keys_columns:
if '6_' in col and col not in ('6_0', '6_1', '6_2',
'6_3','6_4'):
tiv += float(dict_fin[col])
dict_total[col].append(dict_fin[col])
dict_total['TIV'].append(tiv)
df_tot = pd.DataFrame(dict_total)
df_tot.to_csv(path_results, header=True, columns=columns)
if args.subcommand == 'database_fromparc':
gif_h, dict_levels = prepare_use_gif_hierarchy()
list_dict_parc = []
for filename in list_files:
print("Processing %s" % filename)
name = os.path.split(filename)[1]
name = name.rstrip(args.right_strip)
name = name.lstrip(args.left_strip)
parc = nib.load(filename)
parc_data = parc.get_data()
dict_temp = {'Name': name}
pixdim = parc.header.get_zooms()
volume_voxel = pixdim[0] * pixdim[1] * pixdim[2]
for agg in dict_levels.keys():
vol_temp = create_aggregated_volume(parc_data, agg, gif_h,
dict_levels)
dict_temp[a] = vol_temp * volume_voxel
list_dict_parc.append(dict_temp)
pd_parc = pd.DataFrame.from_dict(list_dict_parc)
pd_parc.to_csv(args.output_file)
if args.subcommand == 'seg_aggregate':
aggregation = None
gif_h = None
dict_levels = None
# first do the checks on aggregation wanted
if args.aggregation_list is not None:
aggregation = args.aggregation_list.split(',')
aggregation = [agg.strip(' ') for agg in aggregation]
gif_h, dict_levels = prepare_use_gif_hierarchy()
for filename in list_files:
name = os.path.split(filename)[1]
parc = nib.load(filename)
parc_affine = parc.affine
parc_data = parc.get_data()
if args.bg_flag:
bg_nii = create_bg(filename)
nib.save(bg_nii, os.path.join(args.output_path, 'DGM_%s' %
name))
if args.hemi_flag:
right_nii, left_nii = create_hemisphere(filename)
nib.save(right_nii, os.path.join(args.output_path,
'RightHemi_%s' % name))
nib.save(left_nii, os.path.join(args.output_path,
'LeftHemi_%s') % name)
if aggregation is not None:
seg_aggregate = []
for a in aggregation:
temp_seg = create_aggregation(parc_data, a, gif_h,
dict_levels)
seg_aggregate.append(temp_seg)
final_seg = combine_seg(seg_aggregate, args.combination)
if args.combination == 'separated':
for (final, agg) in zip(final_seg, aggregation):
nii_f = nib.Nifti1Image(final, parc_affine)
nib.save(nii_f, os.path.join(args.output_path,
'%s_%s') % (agg, name))
else:
nii_f = nib.Nifti1Image(final_seg[0], parc_affine)
name_save = ''.join(aggregation)
name_save = name_save.replace(' ', '')
nib.save(nii_f, os.path.join(args.output_path, '%s_%s') %
(name_save, name))
if __name__ == "__main__":
main(sys.argv[1:])