-
Notifications
You must be signed in to change notification settings - Fork 115
/
main_test_bicubic.py
234 lines (192 loc) · 9.3 KB
/
main_test_bicubic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os.path
import logging
import cv2
import numpy as np
from collections import OrderedDict
from scipy.io import loadmat
#import hdf5storage
import torch
from utils import utils_logger
from utils import utils_image as util
from utils import utils_deblur
from utils import utils_sisr as sr
'''
Spyder (Python 3.7)
PyTorch 1.4.0
Windows 10 or Linux
Kai Zhang (cskaizhang@gmail.com)
github: https://github.com/cszn/USRNet
https://github.com/cszn/KAIR
If you have any question, please feel free to contact with me.
Kai Zhang (e-mail: cskaizhang@gmail.com)
by Kai Zhang (12/March/2020)
'''
"""
# --------------------------------------------
testing code of USRNet for the Table 1 in the paper
@inproceedings{zhang2020deep,
title={Deep unfolding network for image super-resolution},
author={Zhang, Kai and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3217--3226},
year={2020}
}
# --------------------------------------------
|--model_zoo # model_zoo
|--usrgan # model_name, optimized for perceptual quality
|--usrnet # model_name, optimized for PSNR
|--usrgan_tiny # model_name, tiny model optimized for perceptual quality
|--usrnet_tiny # model_name, tiny model optimized for PSNR
|--testsets # testsets
|--set5 # testset_name
|--set14
|--urban100
|--bsd100
|--srbsd68 # already cropped
|--results # results
|--set5_usrnet_bicubic # result_name = testset_name + '_' + model_name + '_bicubic'
|--set5_usrgan_bicubic
|--set5_usrnet_tiny_bicubic
|--set5_usrgan_tiny_bicubic
# --------------------------------------------
"""
def main():
# ----------------------------------------
# Preparation
# ----------------------------------------
model_name = 'usrnet' # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny'
testset_name = 'set5' # test set, 'set5' | 'srbsd68'
need_degradation = True # default: True
sf = 4 # scale factor, only from {2, 3, 4}
show_img = False # default: False
save_L = True # save LR image
save_E = True # save estimated image
# load approximated bicubic kernels
#kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels_bicubicx234.mat'))['kernels']
kernels = loadmat(os.path.join('kernels', 'kernels_bicubicx234.mat'))['kernels']
kernel = kernels[0, sf-2].astype(np.float64)
kernel = util.single2tensor4(kernel[..., np.newaxis])
task_current = 'sr' # fixed, 'sr' for super-resolution
n_channels = 3 # fixed, 3 for color image
model_pool = 'model_zoo' # fixed
testsets = 'testsets' # fixed
results = 'results' # fixed
noise_level_img = 0 # fixed: 0, noise level for LR image
noise_level_model = noise_level_img # fixed, noise level of model, default 0
result_name = testset_name + '_' + model_name + '_bicubic'
border = sf if task_current == 'sr' else 0 # shave boader to calculate PSNR and SSIM
model_path = os.path.join(model_pool, model_name+'.pth')
# ----------------------------------------
# L_path, E_path, H_path
# ----------------------------------------
L_path = os.path.join(testsets, testset_name) # L_path, fixed, for Low-quality images
H_path = L_path # H_path, 'None' | L_path, for High-quality images
E_path = os.path.join(results, result_name) # E_path, fixed, for Estimated images
util.mkdir(E_path)
if H_path == L_path:
need_degradation = True
logger_name = result_name
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
logger = logging.getLogger(logger_name)
need_H = True if H_path is not None else False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
from models.network_usrnet import USRNet as net # for pytorch version <= 1.7.1
# from models.network_usrnet_v1 import USRNet as net # for pytorch version >=1.8.1
if 'tiny' in model_name:
model = net(n_iter=6, h_nc=32, in_nc=4, out_nc=3, nc=[16, 32, 64, 64],
nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")
else:
model = net(n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512],
nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for key, v in model.named_parameters():
v.requires_grad = False
number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
logger.info('Params number: {}'.format(number_parameters))
model = model.to(device)
logger.info('Model path: {:s}'.format(model_path))
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
logger.info('model_name:{}, image sigma:{}'.format(model_name, noise_level_img))
logger.info(L_path)
L_paths = util.get_image_paths(L_path)
H_paths = util.get_image_paths(H_path) if need_H else None
for idx, img in enumerate(L_paths):
# ------------------------------------
# (1) img_L
# ------------------------------------
img_name, ext = os.path.splitext(os.path.basename(img))
logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
img_L = util.imread_uint(img, n_channels=n_channels)
img_L = util.uint2single(img_L)
# degradation process, bicubic downsampling
if need_degradation:
img_L = util.modcrop(img_L, sf)
img_L = util.imresize_np(img_L, 1/sf)
# img_L = util.uint2single(util.single2uint(img_L))
# np.random.seed(seed=0) # for reproducibility
# img_L += np.random.normal(0, noise_level_img/255., img_L.shape)
w, h = img_L.shape[:2]
if save_L:
util.imsave(util.single2uint(img_L), os.path.join(E_path, img_name+'_LR_x'+str(sf)+'.png'))
img = cv2.resize(img_L, (sf*h, sf*w), interpolation=cv2.INTER_NEAREST)
img = utils_deblur.wrap_boundary_liu(img, [int(np.ceil(sf*w/8+2)*8), int(np.ceil(sf*h/8+2)*8)])
img_wrap = sr.downsample_np(img, sf, center=False)
img_wrap[:w, :h, :] = img_L
img_L = img_wrap
util.imshow(util.single2uint(img_L), title='LR image with noise level {}'.format(noise_level_img)) if show_img else None
img_L = util.single2tensor4(img_L)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
sigma = torch.tensor(noise_level_model).float().view([1, 1, 1, 1])
[img_L, kernel, sigma] = [el.to(device) for el in [img_L, kernel, sigma]]
img_E = model(img_L, kernel, sf, sigma)
img_E = util.tensor2uint(img_E)
img_E = img_E[:sf*w, :sf*h, :]
if need_H:
# --------------------------------
# (3) img_H
# --------------------------------
img_H = util.imread_uint(H_paths[idx], n_channels=n_channels)
img_H = img_H.squeeze()
img_H = util.modcrop(img_H, sf)
# --------------------------------
# PSNR and SSIM
# --------------------------------
psnr = util.calculate_psnr(img_E, img_H, border=border)
ssim = util.calculate_ssim(img_E, img_H, border=border)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(img_name+ext, psnr, ssim))
util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None
if np.ndim(img_H) == 3: # RGB image
img_E_y = util.rgb2ycbcr(img_E, only_y=True)
img_H_y = util.rgb2ycbcr(img_H, only_y=True)
psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border)
ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border)
test_results['psnr_y'].append(psnr_y)
test_results['ssim_y'].append(ssim_y)
# ------------------------------------
# save results
# ------------------------------------
if save_E:
util.imsave(img_E, os.path.join(E_path, img_name+'_x'+str(sf)+'_'+model_name+'.png'))
if need_H:
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
logger.info('Average PSNR/SSIM(RGB) - {} - x{} --PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, sf, ave_psnr, ave_ssim))
if np.ndim(img_H) == 3:
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
logger.info('Average PSNR/SSIM( Y ) - {} - x{} - PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, sf, ave_psnr_y, ave_ssim_y))
if __name__ == '__main__':
main()