-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAttendance.py
96 lines (76 loc) · 2.82 KB
/
Attendance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import cv2
import numpy as np
import face_recognition
import os
import datetime
import pyrebase
config = {
"apiKey": "AIzaSyBttgLVbtWWdtRhos39BzbqvQZDIJaIe5U",
"authDomain": "mark-it-ec28b.firebaseapp.com",
"projectId": "mark-it-ec28b",
"storageBucket": "mark-it-ec28b.appspot.com",
"messagingSenderId": "187768173767",
"appId": "1:187768173767:web:e9ba36b17e9112fc6cfae2",
"measurementId": "G-42HYDHB4Q1",
"databaseURL": "gs://mark-it-ec28b.appspot.com"
}
firebase = pyrebase.initialize_app(config)
storage = firebase.storage()
path_on_cloud = "Attendance/Attendance.csv"
path_local = "Attendance.csv"
path = 'Image Database'
images = []
classNames = []
myList = os.listdir(path)
print(myList)
for cls in myList:
curImg = cv2.imread(f'{path}/{cls}')
images.append(curImg)
classNames.append(os.path.splitext(cls)[0])
print(classNames)
def findEncodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
def markAttendance(name):
with open('Attendance.csv', 'r+') as f:
myDataList = f.readlines()
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.datetime.now()
dtString = now.strftime('%H:%M:%S')
f.writelines(f'\n{name}, {dtString}')
# upload csv to firebase
storage.child(path_on_cloud).put(path_local)
encodeListKnown = findEncodings(images)
print('Encoding Complete')
cap = cv2.VideoCapture(0)
while True:
success, img = cap.read()
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
# print(faceDis)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classNames[matchIndex].upper()
# print(name)
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.rectangle(img, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.putText(img, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
markAttendance(name)
storage.child(path_on_cloud).put(path_local)
cv2.imshow('Webcam', img)
cv2.waitKey(1)