-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
142 lines (116 loc) · 4.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# commands to run
# python main.py --input test.mp4
# python main.py --input test.mp4 --output output.mp4
# importing the necessary packages
import config
from detection import detect_people
from scipy.spatial import distance as dist
import numpy as np
import argparse
import imutils
import cv2
import os
# constructing the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", type=str, default="",
help="path to (optional) input video file")
ap.add_argument("-o", "--output", type=str, default="",
help="path to (optional) output video file")
ap.add_argument("-d", "--display", type=int, default=1,
help="whether or not output frame should be displayed")
args = vars(ap.parse_args())
# loading the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([config.MODEL_PATH, "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# deriving the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([config.MODEL_PATH, "yolov3.weights"])
configPath = os.path.sep.join([config.MODEL_PATH, "yolov3.cfg"])
# loading our YOLO object detector trained on COCO dataset (80 classes)
print("loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# checking if we are going to use GPU
if config.USE_GPU:
# setting CUDA as the preferable backend and target
print("setting preferable backend and target to CUDA...")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
# determining only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# initializing the video stream and pointer to output video file
print("accessing video stream...")
vs = cv2.VideoCapture(args["input"] if args["input"] else 0)
writer = None
# looping over the frames from the video stream
while True:
# reading the next frame from the file
(grabbed, frame) = vs.read()
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
# resizing the frame and then detecting people (and only people) in it
frame = imutils.resize(frame, width=700)
results = detect_people(frame, net, ln,
personIdx=LABELS.index("person"))
# initializing the set of indexes that violate the minimum social
# distance
violate = set()
# ensuring there are *at least* two people detections (required in
# order to compute our pairwise distance maps)
if len(results) >= 2:
# extracting all centroids from the results and compute the
# Euclidean distances between all pairs of the centroids
centroids = np.array([r[2] for r in results])
D = dist.cdist(centroids, centroids, metric="euclidean")
# looping over the upper triangular of the distance matrix
for i in range(0, D.shape[0]):
for j in range(i + 1, D.shape[1]):
# check to see if the distance between any two
# centroid pairs is less than the configured number
# of pixels
if D[i, j] < config.MIN_DISTANCE:
# updating our violation set with the indexes of
# the centroid pairs
violate.add(i)
violate.add(j)
# looping over the results
for (i, (prob, bbox, centroid)) in enumerate(results):
# extracting the bounding box and centroid coordinates, then
# initializing the color of the annotation
(startX, startY, endX, endY) = bbox
(cX, cY) = centroid
color = (0, 255, 0)
# if the index pair exists within the violation set, then
# we update the color
if i in violate:
color = (0, 0, 255)
# drawing (1) a bounding box around the person and (2) the
# centroid coordinates of the person,
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
cv2.circle(frame, (cX, cY), 5, color, 1)
# drawing the total number of social distancing violations on the
# output frame
text = "Violations: {}".format(len(violate))
cv2.putText(frame, text, (10, frame.shape[0] - 360),
cv2.FONT_HERSHEY_SIMPLEX, 0.85, (0, 0, 255), 2)
# check to see if the output frame should be displayed to our
# screen
if args["display"] > 0:
# showing the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# if an output video file path has been supplied and the video
# writer has not been initialized, do so now
if args["output"] != "" and writer is None:
# initializing our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 25,
(frame.shape[1], frame.shape[0]), True)
# if the video writer is not None, writing the frame to the output
# video file
if writer is not None:
writer.write(frame)