forked from BelfrySCAD/BOSL2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.scad
462 lines (391 loc) · 16 KB
/
common.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
//////////////////////////////////////////////////////////////////////
// LibFile: common.scad
// Common functions used in argument processing.
// To use, include this line at the top of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Type handling helpers.
// Function: typeof()
// Usage:
// typ = typeof(x);
// Description:
// Returns a string representing the type of the value. One of "undef", "boolean", "number", "nan", "string", "list", "range" or "invalid".
// Some malformed "ranges", like '[0:NAN:INF]' and '[0:"a":INF]', may be classified as "undef" or "invalid".
function typeof(x) =
is_undef(x)? "undef" :
is_bool(x)? "boolean" :
is_num(x)? "number" :
is_nan(x)? "nan" :
is_string(x)? "string" :
is_list(x)? "list" :
is_range(x) ? "range" :
"invalid";
// Function: is_type()
// Usage:
// b = is_type(x, types);
// Description:
// Returns true if the type of the value `x` is one of those given as strings in the list `types`.
// Valid types are "undef", "boolean", "number", "nan", "string", "list", or "range"
// Arguments:
// x = The value to check the type of.
// types = A list of types to check
// Example:
// is_str_or_list = is_type("foo", ["string","list"]); // Returns: true
// is_str_or_list2 = is_type([1,2,3], ["string","list"]); // Returns: true
// is_str_or_list3 = is_type(2, ["string","list"]); // Returns: false
// is_str = is_type("foo", "string"); // Returns: true
// is_str2 = is_type([3,4], "string"); // Returns: false
// is_str3 = is_type(["foo"], "string"); // Returns: false
// is_str4 = is_type(3, "string"); // Returns: false
function is_type(x,types) =
is_list(types)? in_list(typeof(x),types) :
is_string(types)? typeof(x) == types :
assert(is_list(types)||is_string(types));
// Function: is_def()
// Usage:
// is_def(x)
// Description:
// Returns true if `x` is not `undef`. False if `x==undef`.
function is_def(x) = !is_undef(x);
// Function: is_str()
// Usage:
// is_str(x)
// Description:
// Returns true if `x` is a string. A shortcut for `is_string()`.
function is_str(x) = is_string(x);
// Function: is_int()
// Usage:
// is_int(n)
// Description:
// Returns true if the given value is an integer (it is a number and it rounds to itself).
function is_int(n) = is_finite(n) && n == round(n);
function is_integer(n) = is_finite(n) && n == round(n);
// Function: is_nan()
// Usage:
// is_nan(x);
// Description:
// Returns true if a given value `x` is nan, a floating point value representing "not a number".
function is_nan(x) = (x!=x);
// Function: is_finite()
// Usage:
// is_finite(x);
// Description:
// Returns true if a given value `x` is a finite number.
function is_finite(v) = is_num(0*v);
// Function: is_range()
// Description:
// Returns true if its argument is a range
function is_range(x) = !is_list(x) && is_finite(x[0]+x[1]+x[2]) ;
// Function: valid_range()
// Description:
// Returns true if its argument is a valid range (deprecated ranges excluded).
function valid_range(x) =
is_range(x)
&& ( x[1]>0
? x[0]<=x[2]
: ( x[1]<0 && x[0]>=x[2] ) );
// Function: is_list_of()
// Usage:
// is_list_of(list, pattern)
// Description:
// Tests whether the input is a list whose entries are all numeric lists that have the same
// list shape as the pattern.
// Example:
// is_list_of([3,4,5], 0); // Returns true
// is_list_of([3,4,undef], 0); // Returns false
// is_list_of([[3,4],[4,5]], [1,1]); // Returns true
// is_list_of([[3,"a"],[4,true]], [1,undef]); // Returns true
// is_list_of([[3,4], 6, [4,5]], [1,1]); // Returns false
// is_list_of([[1,[3,4]], [4,[5,6]]], [1,[2,3]]); // Returns true
// is_list_of([[1,[3,INF]], [4,[5,6]]], [1,[2,3]]); // Returns false
// is_list_of([], [1,[2,3]]); // Returns true
function is_list_of(list,pattern) =
let(pattern = 0*pattern)
is_list(list) &&
[]==[for(entry=0*list) if (entry != pattern) entry];
// Function: is_consistent()
// Usage:
// is_consistent(list)
// Description:
// Tests whether input is a list of entries which all have the same list structure
// and are filled with finite numerical data. It returns `true`for the empty list.
// Example:
// is_consistent([3,4,5]); // Returns true
// is_consistent([[3,4],[4,5],[6,7]]); // Returns true
// is_consistent([[3,4,5],[3,4]]); // Returns false
// is_consistent([[3,[3,4,[5]]], [5,[2,9,[9]]]]); // Returns true
// is_consistent([[3,[3,4,[5]]], [5,[2,9,9]]]); // Returns false
function is_consistent(list) =
/*is_list(list) &&*/ is_list_of(list, _list_pattern(list[0]));
//Internal function
//Creates a list with the same structure of `list` with each of its elements substituted by 0.
function _list_pattern(list) =
is_list(list)
? [for(entry=list) is_list(entry) ? _list_pattern(entry) : 0]
: 0;
// Function: same_shape()
// Usage:
// same_shape(a,b)
// Description:
// Tests whether the inputs `a` and `b` are both numeric and are the same shaped list.
// Example:
// same_shape([3,[4,5]],[7,[3,4]]); // Returns true
// same_shape([3,4,5], [7,[3,4]]); // Returns false
function same_shape(a,b) = _list_pattern(a) == b*0;
// Section: Handling `undef`s.
// Function: default()
// Description:
// Returns the value given as `v` if it is not `undef`.
// Otherwise, returns the value of `dflt`.
// Arguments:
// v = Value to pass through if not `undef`.
// dflt = Value to return if `v` *is* `undef`.
function default(v,dflt=undef) = is_undef(v)? dflt : v;
// Function: first_defined()
// Description:
// Returns the first item in the list that is not `undef`.
// If all items are `undef`, or list is empty, returns `undef`.
// Arguments:
// v = The list whose items are being checked.
// recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned.
function first_defined(v,recursive=false,_i=0) =
_i<len(v) && (
is_undef(v[_i]) || (
recursive &&
is_list(v[_i]) &&
is_undef(first_defined(v[_i],recursive=recursive))
)
)? first_defined(v,recursive=recursive,_i=_i+1) : v[_i];
// Function: one_defined()
// Usage:
// one_defined(vars, names, <required>)
// Description:
// Examines the input list `vars` and returns the entry which is not `undef`. If more
// than one entry is `undef` then issues an assertion specifying "Must define exactly one of" followed
// by the defined items from the `names` parameter. If `required` is set to false then it is OK if all of the
// entries of `vars` are undefined, and in this case, `undef` is returned.
// Example:
// length = one_defined([length,L,l], ["length","L","l"]);
function one_defined(vars, names, required=true) =
assert(len(vars)==len(names))
let (
ok = num_defined(vars)==1 || (!required && num_defined(vars)==0)
)
assert(ok,str("Must define ",required?"exactly":"at most"," one of ",num_defined(vars)==0?names:[for(i=[0:len(vars)]) if (is_def(vars[i])) names[i]]))
first_defined(vars);
// Function: num_defined()
// Description: Counts how many items in list `v` are not `undef`.
function num_defined(v) = len([for(vi=v) if(!is_undef(vi)) 1]);
// Function: any_defined()
// Description:
// Returns true if any item in the given array is not `undef`.
// Arguments:
// v = The list whose items are being checked.
// recursive = If true, any sublists are evaluated recursively.
function any_defined(v,recursive=false) = first_defined(v,recursive=recursive) != undef;
// Function: all_defined()
// Description:
// Returns true if all items in the given array are not `undef`.
// Arguments:
// v = The list whose items are being checked.
// recursive = If true, any sublists are evaluated recursively.
function all_defined(v,recursive=false) =
[]==[for (x=v) if(is_undef(x)||(recursive && is_list(x) && !all_defined(x,recursive))) 0 ];
// Section: Argument Helpers
// Function: get_anchor()
// Usage:
// get_anchor(anchor,center,<uncentered>,<dflt>);
// Description:
// Calculated the correct anchor from `anchor` and `center`. In order:
// - If `center` is not `undef` and `center` evaluates as true, then `CENTER` (`[0,0,0]`) is returned.
// - Otherwise, if `center` is not `undef` and `center` evaluates as false, then the value of `uncentered` is returned.
// - Otherwise, if `anchor` is not `undef`, then the value of `anchor` is returned.
// - Otherwise, the value of `dflt` is returned.
// This ordering ensures that `center` will override `anchor`.
// Arguments:
// anchor = The anchor name or vector.
// center = If not `undef`, this overrides the value of `anchor`.
// uncentered = The value to return if `center` is not `undef` and evaluates as false. Default: ALLNEG
// dflt = The default value to return if both `anchor` and `center` are `undef`. Default: `CENTER`
function get_anchor(anchor,center,uncentered=BOT,dflt=CENTER) =
!is_undef(center)? (center? CENTER : uncentered) :
!is_undef(anchor)? anchor :
dflt;
// Function: get_radius()
// Usage:
// get_radius(<r1>, <r2>, <r>, <d1>, <d2>, <d>, <dflt>);
// Description:
// Given various radii and diameters, returns the most specific radius.
// If a diameter is most specific, returns half its value, giving the radius.
// If no radii or diameters are defined, returns the value of dflt.
// Value specificity order is r1, r2, d1, d2, r, d, then dflt
// Only one of `r1`, `r2`, `d1`, or `d2` can be defined at once, or else it
// errors out, complaining about conflicting radius/diameter values.
// Only one of `r` or `d` can be defined at once, or else it errors out,
// complaining about conflicting radius/diameter values.
// Arguments:
// r1 = Most specific radius.
// d1 = Most specific diameter.
// r2 = Second most specific radius.
// d2 = Second most specific diameter.
// r = Most general radius.
// d = Most general diameter.
// dflt = Value to return if all other values given are `undef`.
function get_radius(r1=undef, r2=undef, r=undef, d1=undef, d2=undef, d=undef, dflt=undef) =
assert(num_defined([r1,d1,r2,d2])<2, "Conflicting or redundant radius/diameter arguments given.")
!is_undef(r1) ? assert(is_finite(r1), "Invalid radius r1." ) r1
: !is_undef(r2) ? assert(is_finite(r2), "Invalid radius r2." ) r2
: !is_undef(d1) ? assert(is_finite(d1), "Invalid diameter d1." ) d1/2
: !is_undef(d2) ? assert(is_finite(d2), "Invalid diameter d2." ) d2/2
: !is_undef(r)
? assert(is_undef(d), "Conflicting or redundant radius/diameter arguments given.")
assert(is_finite(r) || is_vector(r,1) || is_vector(r,2), "Invalid radius r." )
r
: !is_undef(d) ? assert(is_finite(d) || is_vector(d,1) || is_vector(d,2), "Invalid diameter d." ) d/2
: dflt;
// Function: get_height()
// Usage:
// get_height(<h>,<l>,<height>,<dflt>)
// Description:
// Given several different parameters for height check that height is not multiply defined
// and return a single value. If the three values `l`, `h`, and `height` are all undefined
// then return the value `dflt`, if given, or undef otherwise.
// Arguments:
// l = l.
// h = h.
// height = height.
// dflt = Value to return if other values are `undef`.
function get_height(h=undef,l=undef,height=undef,dflt=undef) =
assert(num_defined([h,l,height])<=1,"You must specify only one of `l`, `h`, and `height`")
first_defined([h,l,height,dflt]);
// Function: scalar_vec3()
// Usage:
// scalar_vec3(v, <dflt>);
// Description:
// If `v` is a scalar, and `dflt==undef`, returns `[v, v, v]`.
// If `v` is a scalar, and `dflt!=undef`, returns `[v, dflt, dflt]`.
// If `v` is a vector, returns the first 3 items, with any missing values replaced by `dflt`.
// If `v` is `undef`, returns `undef`.
// Arguments:
// v = Value to return vector from.
// dflt = Default value to set empty vector parts from.
function scalar_vec3(v, dflt=undef) =
is_undef(v)? undef :
is_list(v)? [for (i=[0:2]) default(v[i], default(dflt, 0))] :
!is_undef(dflt)? [v,dflt,dflt] : [v,v,v];
// Function: segs()
// Usage:
// sides = segs(r);
// Description:
// Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`.
// Arguments:
// r = Radius of circle to get the number of segments for.
function segs(r) =
$fn>0? ($fn>3? $fn : 3) :
let( r = is_finite(r)? r: 0 )
ceil(max(5, min(360/$fa, abs(r)*2*PI/$fs))) ;
// Module: no_children()
// Usage:
// no_children($children);
// Description:
// Assert that the calling module does not support children. Prints an error message to this effect and fails if children are present,
// as indicated by its argument.
// Arguments:
// $children = number of children the module has.
module no_children(count) {
assert($children==0, "Module no_children() does not support child modules");
assert(count==0, str("Module ",parent_module(1),"() does not support child modules"));
}
// Section: Testing Helpers
function _valstr(x) =
is_list(x)? str("[",str_join([for (xx=x) _valstr(xx)],","),"]") :
is_finite(x)? fmt_float(x,12) : x;
// Module: assert_approx()
// Usage:
// assert_approx(got, expected, <info>);
// Description:
// Tests if the value gotten is what was expected. If not, then
// the expected and received values are printed to the console and
// an assertion is thrown to stop execution.
// Arguments:
// got = The value actually received.
// expected = The value that was expected.
// info = Extra info to print out to make the error clearer.
module assert_approx(got, expected, info) {
no_children($children);
if (!approx(got, expected)) {
echo();
echo(str("EXPECT: ", _valstr(expected)));
echo(str("GOT : ", _valstr(got)));
if (same_shape(got, expected)) {
echo(str("DELTA : ", _valstr(got - expected)));
}
if (is_def(info)) {
echo(str("INFO : ", _valstr(info)));
}
assert(approx(got, expected));
}
}
// Module: assert_equal()
// Usage:
// assert_equal(got, expected, <info>);
// Description:
// Tests if the value gotten is what was expected. If not, then
// the expected and received values are printed to the console and
// an assertion is thrown to stop execution.
// Arguments:
// got = The value actually received.
// expected = The value that was expected.
// info = Extra info to print out to make the error clearer.
module assert_equal(got, expected, info) {
no_children($children);
if (got != expected || (is_nan(got) && is_nan(expected))) {
echo();
echo(str("EXPECT: ", _valstr(expected)));
echo(str("GOT : ", _valstr(got)));
if (same_shape(got, expected)) {
echo(str("DELTA : ", _valstr(got - expected)));
}
if (is_def(info)) {
echo(str("INFO : ", _valstr(info)));
}
assert(got == expected);
}
}
// Module: shape_compare()
// Usage:
// shape_compare(<eps>) {test_shape(); expected_shape();}
// Description:
// Compares two child shapes, returning empty geometry if they are very nearly the same shape and size.
// Returns the differential geometry if they are not nearly the same shape and size.
// Arguments:
// eps = The surface of the two shapes must be within this size of each other. Default: 1/1024
module shape_compare(eps=1/1024) {
union() {
difference() {
children(0);
if (eps==0) {
children(1);
} else {
minkowski() {
children(1);
cube(eps, center=true);
}
}
}
difference() {
children(1);
if (eps==0) {
children(0);
} else {
minkowski() {
children(0);
cube(eps, center=true);
}
}
}
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap