-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeech_algorithm.py
executable file
·313 lines (228 loc) · 9.6 KB
/
speech_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from __future__ import division
import re
import sys
import os
from google.cloud import speech, texttospeech
import wave
import io
import pyaudio
from six.moves import queue
import time
################################################################################
class MicrophoneStream(object):
"""Opens a recording stream as a generator yielding the audio chunks."""
#---------------------------------------------------------------------------
def __init__(self, rate, chunk, duration):
self._rate = rate
self._chunk = chunk
self.duration = duration
self.has_input = False
# Create a thread-safe buffer of audio data
self._buff = queue.Queue()
self.closed = True
self.time_over = False
self.start_input = 999999999999999999999999
#---------------------------------------------------------------------------
def __enter__(self):
self._audio_interface = pyaudio.PyAudio()
self._audio_stream = self._audio_interface.open(
format=pyaudio.paInt16,
# The API currently only supports 1-channel (mono) audio
# https://goo.gl/z757pE
channels=1,
rate=self._rate,
input=True,
frames_per_buffer=self._chunk,
# Run the audio stream asynchronously to fill the buffer object.
# This is necessary so that the input device's buffer doesn't
# overflow while the calling thread makes network requests, etc.
stream_callback=self._fill_buffer,
)
self.closed = False
return self
#---------------------------------------------------------------------------
def __exit__(self, type, value, traceback):
self._audio_stream.stop_stream()
self._audio_stream.close()
self.closed = True
# Signal the generator to terminate so that the client's
# streaming_recognize method will not block the process termination.
self._buff.put(None)
self._audio_interface.terminate()
#---------------------------------------------------------------------------
def _fill_buffer(self, in_data, frame_count, time_info, status_flags):
"""Continuously collect data from the audio stream, into the buffer."""
self._buff.put(in_data)
return None, pyaudio.paContinue
#---------------------------------------------------------------------------
def generator(self):
i = 0
while not self.closed:
if (i == int(self._rate / self._chunk * self.duration)-1) and (not self.has_input):
print("telos xronou kai adeio")
break
current_time = time.time()
diff_time = current_time-self.start_input
if diff_time > self.duration*2:
print("10 deuterolepta")
self.time_over = True
break
# Use a blocking get() to ensure there's at least one chunk of
# data, and stop iteration if the chunk is None, indicating the
# end of the audio stream.
chunk = self._buff.get()
if chunk is None:
return
data = [chunk]
# Now consume whatever other data's still buffered.
while True:
# for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
try:
chunk = self._buff.get(block=False)
if chunk is None:
return
data.append(chunk)
except queue.Empty:
break
i = i + 1
yield b"".join(data)
#-------------------------------------------------------------------------------
def text_to_speech(text):
SCOPES = ['https://www.googleapis.com/auth/cloud-platform']
cred = service_account.Credentials.from_service_account_file('solid-scope-361216-f63934ecc11d.json', scopes=SCOPES)
client=texttospeech.TextToSpeechClient(credentials=cred)
#output of: print(client.list_voices())
#voices {
#language_codes: "el-GR"
#name: "el-GR-Wavenet-A"
#ssml_gender: FEMALE
#natural_sample_rate_hertz: 24000
#}
#voices {
#language_codes: "el-GR"
#name: "el-GR-Standard-A"
#ssml_gender: FEMALE
#natural_sample_rate_hertz: 24000
#}
input=texttospeech.types.SynthesisInput(text=text)
voice = texttospeech.types.VoiceSelectionParams(
language_code='el-GR',
ssml_gender=texttospeech.enums.SsmlVoiceGender.FEMALE,
name='el-GR-Wavenet-A' # Better than el-GR-Standard-A
)
audio_config=texttospeech.types.AudioConfig(
audio_encoding=texttospeech.enums.AudioEncoding.LINEAR16,
#speaking_rate=0.5,
#pitch=2,
#effects_profile_id=[effects_profile_id]
)
# https://stackoverflow.com/questions/55291174/error-in-python-cryptography-module-rsaprivatekey-object-has-no-attribute-si
print('Converting text to speech...')
response=client.synthesize_speech(
input_=input,
voice=voice,
audio_config=audio_config
)
print('Done')
with wave.open(io.BytesIO(response.audio_content), 'rb') as f:
width = f.getsampwidth()
channels = f.getnchannels()
rate = f.getframerate()
pa = pyaudio.PyAudio()
pa_stream = pa.open(
format=pyaudio.get_format_from_width(width),
channels=channels,
rate=rate,
output=True
)
pa_stream.write(response.audio_content)
#-------------------------------------------------------------------------------
def listen_print_loop(responses,stream):
num_chars_printed = 0
for response in responses:
if not response.results:
continue
billed_time = response.total_billed_time
# print("billed_time: "+ str(billed_time))
result = response.results[0]
if not result.alternatives:
continue
if not stream.has_input:
print("exw input")
stream.has_input = True
stream.start_input = time.time()
is_final = result.is_final
# print("is final: " + str(is_final))
# stability = result.stability
# print(("stability: "+str(stability)))
# result_end_time = result.result_end_time
# print("result_end_time: " + str(result_end_time))
alternative = result.alternatives[0]
transcript = alternative.transcript
confidence = alternative.confidence
overwrite_chars = " " * (num_chars_printed - len(transcript))
if not is_final:
sys.stdout.write(transcript + overwrite_chars + "\r")
sys.stdout.flush()
num_chars_printed = len(transcript)
else:
print(transcript + overwrite_chars)
num_chars_printed = 0
return transcript, confidence
print("no responses")
return [], []
#-------------------------------------------------------------------------------
def speech_to_text(duration):
# Audio recording parameters
rate = 16000
chunk = int(rate / 10) # 100ms
language_code = "el-GR" # a BCP-47 language tag
client = speech.SpeechClient()
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=rate,
language_code=language_code,
)
streaming_config = speech.StreamingRecognitionConfig(
config=config, single_utterance=False, interim_results=True
)
while True:
print("--"*50)
print("--"*50)
with MicrophoneStream(rate, chunk, duration) as stream:
print("new stream")
start_stream = time.time()
audio_generator = stream.generator()
requests = (
speech.StreamingRecognizeRequest(audio_content=content)
for content in audio_generator
)
responses = client.streaming_recognize(streaming_config, requests)
transcript, confidence = listen_print_loop(responses,stream)
if stream.time_over:
transcript = "πιο σύντομα παρακαλώ"
flag = False
print(transcript)
break
elif not transcript: #den milise katholou
print("no message at all")
print("εiiii esai ekeiiii sou ekana mia erwtisi")
transcript = "Σιωπή"
flag = True
break
else:
if confidence<0.75:
print("low confidence")
print(confidence)
transcript = "δεν κατάλαβα, παρακαλώ επανάλαβε πιο καθαρά αυτή τη φορά"
print(transcript)
flag = False
break
else:
print("μην επανάλαμβανεις ola teleia")
#steile to transcript sto rasa
print(transcript)
print(confidence)
flag = True
break #apo tin while True
return transcript, flag