-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsimulation_int_many_2_1.py
executable file
·483 lines (405 loc) · 15.8 KB
/
simulation_int_many_2_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#!/usr/bin/env python3
import json
def geometric_mean(x):
N = len(x)
x = sorted(x, reverse=True) # Presort - good for convergence
D = x[0]
for i in range(255):
D_prev = D
tmp = 10 ** 18
for _x in x:
tmp = tmp * _x // D
D = D * ((N - 1) * 10**18 + tmp) // (N * 10**18)
diff = abs(D - D_prev)
if diff <= 1 or diff * 10**18 < D:
return D
#print(x)
raise ValueError("Did not converge")
def reduction_coefficient(x, gamma):
N = len(x)
x_prod = 10**18
K = 10**18
S = sum(x)
for x_i in x:
x_prod = x_prod * x_i // 10**18
K = K * N * x_i // S
if gamma > 0:
K = gamma * 10**18 // (gamma + 10**18 - K)
return K
def absnewton(f, fprime, x0, handle_x=False, handle_D=False):
x = x0
i = 0
while True:
x_prev = x
_f = f(x)
_fprime = fprime(x)
x -= _f * 10**18 // _fprime
# XXX vulnerable to edge-cases
# Need to take out of unstable equilibrium if ever gets there
# Might be an issue in smart contracts
# XXX TODO fuzz if we can remove
if handle_x:
if x < 0 or _fprime < 0:
x = x_prev // 2
elif handle_D:
if x < 0:
x = -x // 2
i += 1
# if i > 1000: # XXX where do we stop?
# print(i, (x - x_prev) / x_prev, x, x_prev)
if i > 1050:
raise ValueError("Did not converge")
if abs(x - x_prev) <= max(100, x // 10**14):
return x
def newton_D(A, gamma, x, D0):
D = D0
i = 0
S = sum(x)
x = sorted(x, reverse=True)
N = len(x)
for j in range(N): # XXX or just set A to be A*N**N?
A = A * N
for i in range(255):
D_prev = D
K0 = 10**18
for _x in x:
K0 = K0 * _x * N // D
_g1k0 = abs(gamma + 10**18 - K0)
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1 = 10**18 * D // gamma * _g1k0 // gamma * _g1k0 // A
# 2*N*K0 / _g1k0
mul2 = (2 * 10**18) * N * K0 // _g1k0
neg_fprime = (S + S * mul2 // 10**18) + mul1 * N // K0 - mul2 * D // 10**18
assert neg_fprime > 0 # Python only: -f' > 0
# D -= f / fprime
D = (D * neg_fprime + D * S - D**2) // neg_fprime - D * (mul1 // neg_fprime) // 10**18 * (10**18 - K0) // K0
if D < 0:
D = -D // 2
if abs(D - D_prev) <= max(100, D // 10**14):
return D
raise ValueError("Did not converge")
def newton_y(A, gamma, x, D, i):
N = len(x)
y = D // N
K0_i = 10**18
S_i = 0
x_sorted = sorted(_x for j, _x in enumerate(x) if j != i)
convergence_limit = max(max(x_sorted) // 10**14, D // 10**14, 100)
for _x in x_sorted:
y = y * D // (_x * N) # Small _x first
S_i += _x
for _x in x_sorted[::-1]:
K0_i = K0_i * _x * N // D # Large _x first
for j in range(N): # XXX or just set A to be A*N**N?
A = A * N
for j in range(255):
y_prev = y
K0 = K0_i * y * N // D
S = S_i + y
_g1k0 = abs(gamma + 10**18 - K0)
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1 = 10**18 * D // gamma * _g1k0 // gamma * _g1k0 // A
# 2*K0 / _g1k0
mul2 = 10**18 + (2 * 10**18) * K0 // _g1k0
yfprime = (10**18 * y + S * mul2 + mul1 - D * mul2)
fprime = yfprime // y
assert fprime > 0 # Python only: f' > 0
# y -= f / f_prime; y = (y * fprime - f) / fprime
y = (yfprime + 10**18 * D - 10**18 * S) // fprime + mul1 // fprime * (10**18 - K0) // K0
if j > 100: # Just logging when doesn't converge
print(j, y, D, x)
if y < 0 or fprime < 0:
y = y_prev // 2
if abs(y - y_prev) <= max(convergence_limit, y // 10**14):
return y
raise Exception("Did not converge")
def solve_x(A, gamma, x, D, i):
return newton_y(A, gamma, x, D, i)
def solve_D(A, gamma, x):
D0 = len(x) * geometric_mean(x) # <- fuzz to make sure it's ok XXX
return newton_D(A, gamma, x, D0)
class Curve:
def __init__(self, A, gamma, D, n, p=None):
self.A = A
self.gamma = gamma
self.n = n
if p:
self.p = p
else:
self.p = [10 ** 18] * n
self.x = [D // n * 10**18 // self.p[i] for i in range(n)]
def xp(self):
return [x * p // 10 ** 18 for x, p in zip(self.x, self.p)]
def D(self):
xp = self.xp()
if any(x <= 0 for x in xp):
raise ValueError
return solve_D(self.A, self.gamma, xp)
def y(self, x, i, j):
xp = self.xp()
xp[i] = x * self.p[i] // 10 ** 18
yp = solve_x(self.A, self.gamma, xp, self.D(), j)
return yp * 10**18 // self.p[j]
def get_data(fname):
with open('download/{0}-1m.json'.format(fname), 'r') as f:
return [{'open': float(t[1]), 'high': float(t[2]), 'low': float(t[3]),
'close': float(t[4]), 't': t[0] // 1000, 'volume': float(t[5])}
for t in json.load(f)]
def get_all():
# 0 - usdt
# 1 - btc
# 2 - eth
out = []
all_trades = {name: get_data(name) for name in ["btcusdt", "ethusdt", "ethbtc"]}
min_time = max(t[0]['t'] for t in all_trades.values())
max_time = min(t[-1]['t'] for t in all_trades.values())
for name, pair in [("btcusdt", (0, 1)),
("ethusdt", (0, 2)),
("ethbtc", (1, 2))]:
trades = all_trades[name]
for trade in trades:
if trade['t'] >= min_time and trade['t'] <= max_time:
trade['pair'] = pair
out.append((trade['t'] + sum(pair) * 15, trade))
out = sorted(out)
return [i[1] for i in out]
class Trader:
def __init__(self, A, gamma, D, n, p0, mid_fee=1e-3, out_fee=3e-3, price_threshold=0.01, fee_gamma=None,
adjustment_step=0.003, ma_half_time=500, log=True):
self.p0 = p0[:]
self.price_oracle = self.p0[:]
self.last_price = self.p0[:]
self.curve = Curve(A, gamma, D, n, p=p0[:])
self.dx = int(D * 1e-8)
self.mid_fee = int(mid_fee * 1e18)
self.out_fee = int(out_fee * 1e18)
self.D0 = self.curve.D()
self.xcp_0 = self.get_xcp()
self.xcp_profit = 10**18
self.xcp_profit_real = 10**18
self.xcp = self.xcp_0
self.price_threshold = int(price_threshold * 10**18)
self.adjustment_step = int(10**18 * adjustment_step)
self.log = log
self.fee_gamma = fee_gamma or gamma
self.total_vol = 0.0
self.ma_half_time = ma_half_time
self.ext_fee = 0 # 0.03e-2
self.slippage = 0
self.slippage_count = 0
self.not_adjusted = False
self.heavy_tx = 0
self.light_tx = 0
self.is_light = False
def fee(self):
f = reduction_coefficient(self.curve.xp(), self.fee_gamma)
return (self.mid_fee * f + self.out_fee * (10**18 - f)) // 10**18
def price(self, i, j):
dx_raw = self.dx * 10**18 // self.curve.p[i]
return dx_raw * 10**18 // (self.curve.x[j] - self.curve.y(self.curve.x[i] + dx_raw, i, j))
def step_for_price(self, dp, pair, sign=1):
a, b = pair
p0 = self.price(*pair)
dp = p0 * dp // 10**18
x0 = self.curve.x[:]
step = self.dx * 10**18 // self.curve.p[a]
while True:
self.curve.x[a] = x0[a] + sign * step
dp_ = abs(p0 - self.price(*pair))
if dp_ >= dp or step >= self.curve.x[a] // 10:
self.curve.x = x0
return step
step *= 2
def get_xcp(self):
# First calculate the ideal balance
# Then calculate, what the constant-product would be
D = self.curve.D()
N = len(self.curve.x)
X = [D * 10**18 // (N * p) for p in self.curve.p]
return geometric_mean(X)
def update_xcp(self, only_real=False):
xcp = self.get_xcp()
self.xcp_profit_real = self.xcp_profit_real * xcp // self.xcp
if not only_real:
self.xcp_profit = self.xcp_profit * xcp // self.xcp
self.xcp = xcp
def buy(self, dx, i, j, max_price=1e100):
"""
Buy y for x
"""
try:
x_old = self.curve.x[:]
x = self.curve.x[i] + dx
y = self.curve.y(x, i, j)
dy = self.curve.x[j] - y
self.curve.x[i] = x
self.curve.x[j] = y
fee = self.fee()
self.curve.x[j] += dy * fee // 10**18
dy = dy * (10**18 - fee) // 10**18
if dx * 10**18 // dy > max_price or dy < 0:
self.curve.x = x_old
return False
self.update_xcp()
return dy
except ValueError:
return False
def sell(self, dy, i, j, min_price=0):
"""
Sell y for x
"""
try:
x_old = self.curve.x[:]
y = self.curve.x[j] + dy
x = self.curve.y(y, j, i)
dx = self.curve.x[i] - x
self.curve.x[i] = x
self.curve.x[j] = y
fee = self.fee()
self.curve.x[i] += dx * fee // 10**18
dx = dx * (10**18 - fee) // 10**18
if dx * 10**18 // dy < min_price or dx < 0:
self.curve.x = x_old
return False
self.update_xcp()
return dx
except ValueError:
return False
def ma_recorder(self, t, price_vector):
# XXX what if every block only has p_b being last
if t > self.t:
alpha = 0.5 ** ((t - self.t) / self.ma_half_time)
for k in [1, 2]:
self.price_oracle[k] = int(price_vector[k] * (1 - alpha) + self.price_oracle[k] * alpha)
self.t = t
def tweak_price(self, t, a, b, p):
self.ma_recorder(t, self.last_price)
if b > 0:
self.last_price[b] = p * self.last_price[a] // 10**18
else:
self.last_price[a] = self.last_price[0] * 10**18 // p
# price_oracle looks like [1, p1, p2, ...] normalized to 1e18
norm = int(sum(
(p_real * 10**18 // p_target - 10**18) ** 2
for p_real, p_target in zip(self.price_oracle, self.curve.p)
) ** 0.5)
if norm <= max(self.price_threshold, self.adjustment_step):
# Already close to the target price
self.is_light = True
self.light_tx += 1
return norm
if not self.not_adjusted and (self.xcp_profit_real - 10**18 > (self.xcp_profit - 10**18)//2 + 10**13):
self.not_adjusted = True
if not self.not_adjusted:
self.light_tx += 1
self.is_light = True
return norm
self.heavy_tx += 1
self.is_light = False
p_new = [10**18]
p_new += [p_target + self.adjustment_step * (p_real - p_target) // norm
for p_real, p_target in zip(self.price_oracle[1:], self.curve.p[1:])]
old_p = self.curve.p[:]
old_profit = self.xcp_profit_real
old_xcp = self.xcp
self.curve.p = p_new
self.update_xcp(only_real=True)
if 2 * (self.xcp_profit_real - 10**18) <= self.xcp_profit - 10**18:
# If real profit is less than half of maximum - revert params back
self.curve.p = old_p
self.xcp_profit_real = old_profit
self.xcp = old_xcp
self.not_adjusted = False
print((self.xcp_profit_real - 10**18 - (self.xcp_profit - 10**18)//2) / 1e18)
return norm
def simulate(self, mdata):
lasts = {}
self.t = mdata[0]['t']
for i, d in enumerate(mdata):
a, b = d['pair']
vol = 0
ext_vol = int(d['volume'] * self.price_oracle[b]) # <- now all is in USD
ctr = 0
last = lasts.get((a, b), self.price_oracle[b] * 10**18 // self.price_oracle[a])
_high = last
_low = last
# Dynamic step
# f = reduction_coefficient(self.curve.xp(), self.curve.gamma)
candle = min(int(1e18 * abs((d['high'] - d['low']) / d['high'])), 10**17)
candle = max(10**15, candle)
step1 = self.step_for_price(candle // 50, (a, b), sign=1)
step2 = self.step_for_price(candle // 50, (a, b), sign=-1)
step = min(step1, step2)
max_price = int(1e18 * d['high'])
_dx = 0
p_before = self.price(a, b)
while last < max_price and vol < ext_vol // 2:
dy = self.buy(step, a, b, max_price=max_price)
if dy is False:
break
vol += dy * self.price_oracle[b] // 10**18
_dx += dy
last = step * 10**18 // dy
max_price = int(1e18 * d['high'])
ctr += 1
p_after = self.price(a, b)
if p_before != p_after:
self.slippage_count += 1
self.slippage += _dx * self.curve.p[b] // 10**18 * (p_before + p_after) // (2 * abs(p_before - p_after))
_high = last
min_price = int(1e18 * d['low'])
_dx = 0
p_before = p_after
while last > min_price and vol < ext_vol // 2:
dx = step * 10**18 // last
dy = self.sell(dx, a, b, min_price=min_price)
_dx += dx
if dy is False:
break
vol += dx * self.price_oracle[b] // 10**18
last = dy * 10**18 // dx
min_price = int(10**18 * d['low'])
ctr += 1
p_after = self.price(a, b)
if p_before != p_after:
self.slippage_count += 1
self.slippage += _dx * self.curve.p[b] // 10**18 * (p_before + p_after) // (2 * abs(p_before - p_after))
_low = last
lasts[(a, b)] = last
self.tweak_price(d['t'], a, b, (_high + _low) // 2)
self.total_vol += vol
if self.log:
try:
print("t=", d['t'], " ", end="")
print(("""{0:.1f}%\ttrades: {1}\t"""
"""AMM: {2:.0f}, {3:.0f}\tTarget: {4:.0f}, {5:.0f}\t"""
"""Vol: {6:.4f}\tPR:{7:.2f}\txCP-growth: {8:.5f}\t"""
"""APY:{9:.1f}%\tfee:{10:.3f}%""").format(
100 * i / len(mdata), ctr,
lasts.get((0, 1), self.price_oracle[1] * 10**18 // self.price_oracle[0]) / 1e18,
lasts.get((0, 2), self.price_oracle[2] * 10**18 // self.price_oracle[0]) / 1e18,
self.curve.p[1] / 1e18,
self.curve.p[2] / 1e18,
self.total_vol / 1e18,
(self.xcp_profit_real - 10**18)/(self.xcp_profit - 10**18),
self.xcp_profit_real / 1e18,
((self.xcp_profit_real / 1e18) ** (86400 * 365 / (d['t'] - mdata[0]['t'] + 1)) - 1) * 100,
self.fee() / 1e18 * 100),
'*' if self.is_light else '')
except Exception:
pass
def get_price_vector(n, data):
p = [10**18] + [None] * (n - 1)
for d in data:
if d['pair'][0] == 0:
p[d['pair'][1]] = int(d['close'] * 1e18)
if all(x is not None for x in p):
return p
if __name__ == '__main__':
test_data = get_all()[-100000:]
trader = Trader(135, int(7e-5 * 1e18), 5_000_000 * 10**18, 3, get_price_vector(3, test_data),
mid_fee=4e-4, out_fee=4.0e-3,
price_threshold=0.0028, fee_gamma=int(0.01 * 1e18),
adjustment_step=0.0015, ma_half_time=600)
trader.simulate(test_data)
('Fraction of light transactions:', trader.light_tx / (trader.light_tx + trader.heavy_tx))