-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathinteractive_demo.py
450 lines (339 loc) · 14.6 KB
/
interactive_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import argparse
import logging
import queue
import threading
import time
from time import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from geocalib.extractor import GeoCalib
from geocalib.perspective_fields import get_perspective_field
from geocalib.utils import get_device, rad2deg
# flake8: noqa
# mypy: ignore-errors
description = """
-------------------------
GeoCalib Interactive Demo
-------------------------
This script is an interactive demo for GeoCalib. It will open a window showing the camera feed and
the calibration results.
Arguments:
- '--camera_id': Camera ID to use. If none, will ask for ip of droidcam (https://droidcam.app)
You can toggle different features using the following keys:
- 'h': Toggle horizon line
- 'u': Toggle up vector field
- 'l': Toggle latitude heatmap
- 'c': Toggle confidence heatmap
- 'd': Toggle undistorted image
- 'g': Toggle grid of points
- 'b': Toggle box object
You can also change the camera model using the following keys:
- '1': Pinhole
- '2': Simple Radial
- '3': Simple Divisional
Press 'q' to quit the demo.
"""
# Custom VideoCapture class to get the most recent frame instead FIFO
class VideoCapture:
def __init__(self, name):
self.cap = cv2.VideoCapture(name)
self.q = queue.Queue()
t = threading.Thread(target=self._reader)
t.daemon = True
t.start()
# read frames as soon as they are available, keeping only most recent one
def _reader(self):
while True:
ret, frame = self.cap.read()
if not ret:
break
if not self.q.empty():
try:
self.q.get_nowait() # discard previous (unprocessed) frame
except queue.Empty:
pass
self.q.put(frame)
def read(self):
return 1, self.q.get()
def isOpened(self):
return self.cap.isOpened()
def add_text(frame, text, align_left=True, align_top=True):
"""Add text to a plot."""
h, w = frame.shape[:2]
sc = min(h / 640.0, 2.0)
Ht = int(40 * sc) # text height
for i, l in enumerate(text.split("\n")):
max_line = len(max([l for l in text.split("\n")], key=len))
x = int(8 * sc if align_left else w - (max_line) * sc * 18)
y = Ht * (i + 1) if align_top else h - Ht * (len(text.split("\n")) - i - 1) - int(8 * sc)
c_back, c_front = (0, 0, 0), (255, 255, 255)
font, style = cv2.FONT_HERSHEY_DUPLEX, cv2.LINE_AA
cv2.putText(frame, l, (x, y), font, 1.0 * sc, c_back, int(6 * sc), style)
cv2.putText(frame, l, (x, y), font, 1.0 * sc, c_front, int(1 * sc), style)
return frame
def is_corner(p, h, w):
"""Check if a point is a corner."""
return p in [(0, 0), (0, h - 1), (w - 1, 0), (w - 1, h - 1)]
def plot_latitude(frame, latitude):
"""Plot latitude heatmap."""
if not isinstance(latitude, np.ndarray):
latitude = latitude.cpu().numpy()
cmap = plt.get_cmap("seismic")
h, w = frame.shape[0], frame.shape[1]
sc = min(h / 640.0, 2.0)
vmin, vmax = -90, 90
latitude = (latitude - vmin) / (vmax - vmin)
colors = (cmap(latitude)[..., :3] * 255).astype(np.uint8)[..., ::-1]
frame = cv2.addWeighted(frame, 1 - 0.4, colors, 0.4, 0)
for contour_line in np.linspace(vmin, vmax, 15):
contour_line = (contour_line - vmin) / (vmax - vmin)
mask = (latitude > contour_line).astype(np.uint8)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
color = (np.array(cmap(contour_line))[:3] * 255).astype(np.uint8)[::-1]
# remove corners
contour = [p for p in contour if not is_corner(tuple(p[0]), h, w)]
for index, item in enumerate(contour[:-1]):
cv2.line(frame, item[0], contour[index + 1][0], color.tolist(), int(5 * sc))
return frame
def draw_horizon_line(frame, heatmap):
"""Draw a horizon line."""
if not isinstance(heatmap, np.ndarray):
heatmap = heatmap.cpu().numpy()
h, w = frame.shape[0], frame.shape[1]
sc = min(h / 640.0, 2.0)
color = (0, 255, 255)
vmin, vmax = -90, 90
heatmap = (heatmap - vmin) / (vmax - vmin)
contours, _ = cv2.findContours(
(heatmap > 0.5).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
if contours:
contour = [p for p in contours[0] if not is_corner(tuple(p[0]), h, w)]
for index, item in enumerate(contour[:-1]):
cv2.line(frame, item[0], contour[index + 1][0], color, int(5 * sc))
return frame
def plot_confidence(frame, confidence):
"""Plot confidence heatmap."""
if not isinstance(confidence, np.ndarray):
confidence = confidence.cpu().numpy()
confidence = np.log10(confidence.clip(1e-6)).clip(-4)
confidence = (confidence - confidence.min()) / (confidence.max() - confidence.min())
cmap = plt.get_cmap("turbo")
colors = (cmap(confidence)[..., :3] * 255).astype(np.uint8)[..., ::-1]
return cv2.addWeighted(frame, 1 - 0.4, colors, 0.4, 0)
def plot_vector_field(frame, vector_field):
"""Plot a vector field."""
if not isinstance(vector_field, np.ndarray):
vector_field = vector_field.cpu().numpy()
H, W = frame.shape[:2]
sc = min(H / 640.0, 2.0)
subsample = min(W, H) // 10
offset_x = ((W % subsample) + subsample) // 2
samples_x = np.arange(offset_x, W, subsample)
samples_y = np.arange(int(subsample * 0.9), H, subsample)
vec_len = 40 * sc
x_grid, y_grid = np.meshgrid(samples_x, samples_y)
x, y = vector_field[:, samples_y][:, :, samples_x]
for xi, yi, xi_dir, yi_dir in zip(x_grid.ravel(), y_grid.ravel(), x.ravel(), y.ravel()):
start = (xi, yi)
end = (int(xi + xi_dir * vec_len), int(yi + yi_dir * vec_len))
cv2.arrowedLine(
frame, start, end, (0, 255, 0), int(5 * sc), line_type=cv2.LINE_AA, tipLength=0.3
)
return frame
def plot_box(frame, gravity, camera):
"""Plot a box object."""
pts = np.array(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]
)
pts = pts - np.array([0.5, 1, 0.5])
rotation_vec = cv2.Rodrigues(gravity.R.numpy()[0])[0]
t = np.array([0, 0, 1], dtype=float)
K = camera.K[0].cpu().numpy().astype(float)
dist = np.zeros(4, dtype=float)
axis_points, _ = cv2.projectPoints(
0.1 * pts.reshape(-1, 3).astype(float), rotation_vec, t, K, dist
)
h = frame.shape[0]
sc = min(h / 640.0, 2.0)
color = (85, 108, 228)
for p in axis_points:
center = tuple((int(p[0][0]), int(p[0][1])))
frame = cv2.circle(frame, center, 10, color, -1, cv2.LINE_AA)
for i in range(0, 4):
p1 = axis_points[i].astype(int)
p2 = axis_points[i + 4].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
p1 = axis_points[i].astype(int)
p2 = axis_points[(i + 1) % 4].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
p1 = axis_points[i + 4].astype(int)
p2 = axis_points[(i + 1) % 4 + 4].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
return frame
def plot_grid(frame, gravity, camera, grid_size=0.2, num_points=5):
"""Plot a grid of points."""
h = frame.shape[0]
sc = min(h / 640.0, 2.0)
samples = np.linspace(-grid_size, grid_size, num_points)
xz = np.meshgrid(samples, samples)
pts = np.stack((xz[0].ravel(), np.zeros_like(xz[0].ravel()), xz[1].ravel()), axis=-1)
# project points
rotation_vec = cv2.Rodrigues(gravity.R.numpy()[0])[0]
t = np.array([0, 0, 1], dtype=float)
K = camera.K[0].cpu().numpy().astype(float)
dist = np.zeros(4, dtype=float)
axis_points, _ = cv2.projectPoints(pts.reshape(-1, 3).astype(float), rotation_vec, t, K, dist)
color = (192, 77, 58)
# draw points
for p in axis_points:
center = tuple((int(p[0][0]), int(p[0][1])))
frame = cv2.circle(frame, center, 10, color, -1, cv2.LINE_AA)
# draw lines
for i in range(num_points):
for j in range(num_points - 1):
p1 = axis_points[i * num_points + j].astype(int)
p2 = axis_points[i * num_points + j + 1].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
p1 = axis_points[j * num_points + i].astype(int)
p2 = axis_points[(j + 1) * num_points + i].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
return frame
def undistort_image(img, camera, padding=0.3):
"""Undistort an image."""
W, H = camera.size.unbind(-1)
H, W = H.int().item(), W.int().item()
pad_h, pad_w = int(H * padding), int(W * padding)
x, y = torch.meshgrid(torch.arange(0, W + pad_w), torch.arange(0, H + pad_h), indexing="xy")
coords = torch.stack((x, y), dim=-1).reshape(-1, 2) - torch.tensor([pad_w / 2, pad_h / 2])
p3d, _ = camera.pinhole().image2world(coords.to(camera.device).to(camera.dtype))
p2d, _ = camera.world2image(p3d)
p2d = p2d.float().numpy().reshape(H + pad_h, W + pad_w, 2)
img = cv2.remap(img, p2d[..., 0], p2d[..., 1], cv2.INTER_LINEAR, borderValue=(254, 254, 254))
return cv2.resize(img, (W, H))
class InteractiveDemo:
def __init__(self, capture: VideoCapture, device: str) -> None:
self.cap = capture
self.device = torch.device(device)
self.model = GeoCalib().to(device)
self.up_toggle = False
self.lat_toggle = False
self.conf_toggle = False
self.hl_toggle = False
self.grid_toggle = False
self.box_toggle = False
self.undist_toggle = False
self.camera_model = "pinhole"
def render_frame(self, frame, calibration):
"""Render the frame with the calibration results."""
camera, gravity = calibration["camera"].cpu(), calibration["gravity"].cpu()
if self.undist_toggle:
return undistort_image(frame, camera)
up, lat = get_perspective_field(camera, gravity)
if gravity.pitch[0] > 0:
frame = plot_box(frame, gravity, camera) if self.box_toggle else frame
frame = plot_grid(frame, gravity, camera) if self.grid_toggle else frame
else:
frame = plot_grid(frame, gravity, camera) if self.grid_toggle else frame
frame = plot_box(frame, gravity, camera) if self.box_toggle else frame
frame = draw_horizon_line(frame, lat[0, 0]) if self.hl_toggle else frame
if self.conf_toggle and self.up_toggle:
frame = plot_confidence(frame, calibration["up_confidence"][0])
frame = plot_vector_field(frame, up[0]) if self.up_toggle else frame
if self.conf_toggle and self.lat_toggle:
frame = plot_confidence(frame, calibration["latitude_confidence"][0])
frame = plot_latitude(frame, rad2deg(lat)[0, 0]) if self.lat_toggle else frame
return frame
def format_results(self, calibration):
"""Format the calibration results."""
camera, gravity = calibration["camera"].cpu(), calibration["gravity"].cpu()
vfov, focal = camera.vfov[0].item(), camera.f[0, 0].item()
fov_unc = rad2deg(calibration["vfov_uncertainty"].item())
f_unc = calibration["focal_uncertainty"].item()
roll, pitch = gravity.rp[0].unbind(-1)
roll, pitch, vfov = rad2deg(roll), rad2deg(pitch), rad2deg(vfov)
roll_unc = rad2deg(calibration["roll_uncertainty"].item())
pitch_unc = rad2deg(calibration["pitch_uncertainty"].item())
text = f"{self.camera_model.replace('_', ' ').title()}\n"
text += f"Roll: {roll:.2f} (+- {roll_unc:.2f})\n"
text += f"Pitch: {pitch:.2f} (+- {pitch_unc:.2f})\n"
text += f"vFoV: {vfov:.2f} (+- {fov_unc:.2f})\n"
text += f"Focal: {focal:.2f} (+- {f_unc:.2f})"
if hasattr(camera, "k1"):
text += f"\nK1: {camera.k1[0].item():.2f}"
return text
def update_toggles(self):
"""Update the toggles."""
key = cv2.waitKey(100) & 0xFF
if key == ord("h"):
self.hl_toggle = not self.hl_toggle
elif key == ord("u"):
self.up_toggle = not self.up_toggle
elif key == ord("l"):
self.lat_toggle = not self.lat_toggle
elif key == ord("c"):
self.conf_toggle = not self.conf_toggle
elif key == ord("d"):
self.undist_toggle = not self.undist_toggle
elif key == ord("g"):
self.grid_toggle = not self.grid_toggle
elif key == ord("b"):
self.box_toggle = not self.box_toggle
elif key == ord("1"):
self.camera_model = "pinhole"
elif key == ord("2"):
self.camera_model = "simple_radial"
elif key == ord("3"):
self.camera_model = "simple_divisional"
elif key == ord("q"):
return True
return False
def run(self):
"""Run the interactive demo."""
while True:
start = time()
ret, frame = self.cap.read()
if not ret:
print("Error: Failed to retrieve frame.")
break
# create tensor from frame
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = torch.tensor(img).permute(2, 0, 1) / 255.0
calibration = self.model.calibrate(img.to(self.device), camera_model=self.camera_model)
# render results to the frame
frame = self.render_frame(frame, calibration)
frame = add_text(frame, self.format_results(calibration))
end = time()
frame = add_text(
frame, f"FPS: {1 / (end - start):04.1f}", align_left=False, align_top=False
)
cv2.imshow("GeoCalib Demo", frame)
if self.update_toggles():
break
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--camera_id",
type=int,
default=None,
help="Camera ID to use. If none, will ask for ip of droidcam.",
)
args = parser.parse_args()
print(description)
device = get_device()
print(f"Running on: {device}")
# setup video capture
if args.camera_id is not None:
cap = VideoCapture(args.camera_id)
else:
ip = input("Enter the IP address of the camera: ")
cap = VideoCapture(f"http://{ip}:4747/video/force/1920x1080")
if not cap.isOpened():
raise ValueError("Error: Could not open camera.")
demo = InteractiveDemo(cap, device)
demo.run()
if __name__ == "__main__":
main()