-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathperspective_fields.py
366 lines (275 loc) · 13.1 KB
/
perspective_fields.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""Implementation of perspective fields.
Adapted from https://github.com/jinlinyi/PerspectiveFields/blob/main/perspective2d/utils/panocam.py
"""
from typing import Tuple
import torch
from torch.nn import functional as F
from geocalib.camera import BaseCamera
from geocalib.gravity import Gravity
from geocalib.misc import J_up_projection, J_vecnorm, SphericalManifold
# flake8: noqa: E266
def get_horizon_line(camera: BaseCamera, gravity: Gravity, relative: bool = True) -> torch.Tensor:
"""Get the horizon line from the camera parameters.
Args:
camera (Camera): Camera parameters.
gravity (Gravity): Gravity vector.
relative (bool, optional): Whether to normalize horizon line by img_h. Defaults to True.
Returns:
torch.Tensor: In image frame, fraction of image left/right border intersection with
respect to image height.
"""
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
# project horizon midpoint to image plane
horizon_midpoint = camera.new_tensor([0, 0, 1])
horizon_midpoint = camera.K @ gravity.R @ horizon_midpoint
midpoint = horizon_midpoint[:2] / horizon_midpoint[2]
# compute left and right offset to borders
left_offset = midpoint[0] * torch.tan(gravity.roll)
right_offset = (camera.size[0] - midpoint[0]) * torch.tan(gravity.roll)
left, right = midpoint[1] + left_offset, midpoint[1] - right_offset
horizon = camera.new_tensor([left, right])
return horizon / camera.size[1] if relative else horizon
def get_up_field(camera: BaseCamera, gravity: Gravity, normalize: bool = True) -> torch.Tensor:
"""Get the up vector field from the camera parameters.
Args:
camera (Camera): Camera parameters.
normalize (bool, optional): Whether to normalize the up vector. Defaults to True.
Returns:
torch.Tensor: up vector field as tensor of shape (..., h, w, 2).
"""
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
w, h = camera.size[0].unbind(-1)
h, w = h.round().to(int), w.round().to(int)
uv = camera.normalize(camera.pixel_coordinates())
# projected up is (a, b) - c * (u, v)
abc = gravity.vec3d
projected_up2d = abc[..., None, :2] - abc[..., 2, None, None] * uv # (..., N, 2)
if hasattr(camera, "dist"):
d_uv = camera.distort(uv, return_scale=True)[0] # (..., N, 1)
d_uv = torch.diag_embed(d_uv.expand(d_uv.shape[:-1] + (2,))) # (..., N, 2, 2)
offset = camera.up_projection_offset(uv) # (..., N, 2)
offset = torch.einsum("...i,...j->...ij", offset, uv) # (..., N, 2, 2)
# (..., N, 2)
projected_up2d = torch.einsum("...Nij,...Nj->...Ni", d_uv + offset, projected_up2d)
if normalize:
projected_up2d = F.normalize(projected_up2d, dim=-1) # (..., N, 2)
return projected_up2d.reshape(camera.shape[0], h, w, 2)
def J_up_field(
camera: BaseCamera, gravity: Gravity, spherical: bool = False, log_focal: bool = False
) -> torch.Tensor:
"""Get the jacobian of the up field.
Args:
camera (Camera): Camera parameters.
gravity (Gravity): Gravity vector.
spherical (bool, optional): Whether to use spherical coordinates. Defaults to False.
log_focal (bool, optional): Whether to use log-focal length. Defaults to False.
Returns:
torch.Tensor: Jacobian of the up field as a tensor of shape (..., h, w, 2, 2, 3).
"""
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
w, h = camera.size[0].unbind(-1)
h, w = h.round().to(int), w.round().to(int)
# Forward
xy = camera.pixel_coordinates()
uv = camera.normalize(xy)
projected_up2d = gravity.vec3d[..., None, :2] - gravity.vec3d[..., 2, None, None] * uv
# Backward
J = []
# (..., N, 2, 2)
J_norm2proj = J_vecnorm(
get_up_field(camera, gravity, normalize=False).reshape(camera.shape[0], -1, 2)
)
# distortion values
if hasattr(camera, "dist"):
d_uv = camera.distort(uv, return_scale=True)[0] # (..., N, 1)
d_uv = torch.diag_embed(d_uv.expand(d_uv.shape[:-1] + (2,))) # (..., N, 2, 2)
offset = camera.up_projection_offset(uv) # (..., N, 2)
offset_uv = torch.einsum("...i,...j->...ij", offset, uv) # (..., N, 2, 2)
######################
## Gravity Jacobian ##
######################
J_proj2abc = J_up_projection(uv, gravity.vec3d, wrt="abc") # (..., N, 2, 3)
if hasattr(camera, "dist"):
# (..., N, 2, 3)
J_proj2abc = torch.einsum("...Nij,...Njk->...Nik", d_uv + offset_uv, J_proj2abc)
J_abc2delta = SphericalManifold.J_plus(gravity.vec3d) if spherical else gravity.J_rp()
J_proj2delta = torch.einsum("...Nij,...jk->...Nik", J_proj2abc, J_abc2delta)
J_up2delta = torch.einsum("...Nij,...Njk->...Nik", J_norm2proj, J_proj2delta)
J.append(J_up2delta)
######################
### Focal Jacobian ###
######################
J_proj2uv = J_up_projection(uv, gravity.vec3d, wrt="uv") # (..., N, 2, 2)
if hasattr(camera, "dist"):
J_proj2up = torch.einsum("...Nij,...Njk->...Nik", d_uv + offset_uv, J_proj2uv)
J_proj2duv = torch.einsum("...i,...j->...ji", offset, projected_up2d)
inner = (uv * projected_up2d).sum(-1)[..., None, None]
J_proj2offset1 = inner * camera.J_up_projection_offset(uv, wrt="uv")
J_proj2offset2 = torch.einsum("...i,...j->...ij", offset, projected_up2d) # (..., N, 2, 2)
J_proj2uv = (J_proj2duv + J_proj2offset1 + J_proj2offset2) + J_proj2up
J_uv2f = camera.J_normalize(xy) # (..., N, 2, 2)
if log_focal:
J_uv2f = J_uv2f * camera.f[..., None, None, :] # (..., N, 2, 2)
J_uv2f = J_uv2f.sum(-1) # (..., N, 2)
J_proj2f = torch.einsum("...ij,...j->...i", J_proj2uv, J_uv2f) # (..., N, 2)
J_up2f = torch.einsum("...Nij,...Nj->...Ni", J_norm2proj, J_proj2f)[..., None] # (..., N, 2, 1)
J.append(J_up2f)
######################
##### K1 Jacobian ####
######################
if hasattr(camera, "dist"):
J_duv = camera.J_distort(uv, wrt="scale2dist")
J_duv = torch.diag_embed(J_duv.expand(J_duv.shape[:-1] + (2,))) # (..., N, 2, 2)
J_offset = torch.einsum(
"...i,...j->...ij", camera.J_up_projection_offset(uv, wrt="dist"), uv
)
J_proj2k1 = torch.einsum("...Nij,...Nj->...Ni", J_duv + J_offset, projected_up2d)
J_k1 = torch.einsum("...Nij,...Nj->...Ni", J_norm2proj, J_proj2k1)[..., None]
J.append(J_k1)
n_params = sum(j.shape[-1] for j in J)
return torch.cat(J, axis=-1).reshape(camera.shape[0], h, w, 2, n_params)
def get_latitude_field(camera: BaseCamera, gravity: Gravity) -> torch.Tensor:
"""Get the latitudes of the camera pixels in radians.
Latitudes are defined as the angle between the ray and the up vector.
Args:
camera (Camera): Camera parameters.
gravity (Gravity): Gravity vector.
Returns:
torch.Tensor: Latitudes in radians as a tensor of shape (..., h, w, 1).
"""
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
w, h = camera.size[0].unbind(-1)
h, w = h.round().to(int), w.round().to(int)
uv1, _ = camera.image2world(camera.pixel_coordinates())
rays = camera.pixel_bearing_many(uv1)
lat = torch.einsum("...Nj,...j->...N", rays, gravity.vec3d)
eps = 1e-6
lat_asin = torch.asin(lat.clamp(min=-1 + eps, max=1 - eps))
return lat_asin.reshape(camera.shape[0], h, w, 1)
def J_latitude_field(
camera: BaseCamera, gravity: Gravity, spherical: bool = False, log_focal: bool = False
) -> torch.Tensor:
"""Get the jacobian of the latitude field.
Args:
camera (Camera): Camera parameters.
gravity (Gravity): Gravity vector.
spherical (bool, optional): Whether to use spherical coordinates. Defaults to False.
log_focal (bool, optional): Whether to use log-focal length. Defaults to False.
Returns:
torch.Tensor: Jacobian of the latitude field as a tensor of shape (..., h, w, 1, 3).
"""
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
w, h = camera.size[0].unbind(-1)
h, w = h.round().to(int), w.round().to(int)
# Forward
xy = camera.pixel_coordinates()
uv1, _ = camera.image2world(xy)
uv1_norm = camera.pixel_bearing_many(uv1) # (..., N, 3)
# Backward
J = []
J_norm2w_to_img = J_vecnorm(uv1)[..., :2] # (..., N, 2)
######################
## Gravity Jacobian ##
######################
J_delta = SphericalManifold.J_plus(gravity.vec3d) if spherical else gravity.J_rp()
J_delta = torch.einsum("...Ni,...ij->...Nj", uv1_norm, J_delta) # (..., N, 2)
J.append(J_delta)
######################
### Focal Jacobian ###
######################
J_w_to_img2f = camera.J_image2world(xy, "f") # (..., N, 2, 2)
if log_focal:
J_w_to_img2f = J_w_to_img2f * camera.f[..., None, None, :]
J_w_to_img2f = J_w_to_img2f.sum(-1) # (..., N, 2)
J_norm2f = torch.einsum("...Nij,...Nj->...Ni", J_norm2w_to_img, J_w_to_img2f) # (..., N, 3)
J_f = torch.einsum("...Ni,...i->...N", J_norm2f, gravity.vec3d).unsqueeze(-1) # (..., N, 1)
J.append(J_f)
######################
##### K1 Jacobian ####
######################
if hasattr(camera, "dist"):
J_w_to_img2k1 = camera.J_image2world(xy, "dist") # (..., N, 2)
# (..., N, 2)
J_norm2k1 = torch.einsum("...Nij,...Nj->...Ni", J_norm2w_to_img, J_w_to_img2k1)
# (..., N, 1)
J_k1 = torch.einsum("...Ni,...i->...N", J_norm2k1, gravity.vec3d).unsqueeze(-1)
J.append(J_k1)
n_params = sum(j.shape[-1] for j in J)
return torch.cat(J, axis=-1).reshape(camera.shape[0], h, w, 1, n_params)
def get_perspective_field(
camera: BaseCamera,
gravity: Gravity,
use_up: bool = True,
use_latitude: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Get the perspective field from the camera parameters.
Args:
camera (Camera): Camera parameters.
gravity (Gravity): Gravity vector.
use_up (bool, optional): Whether to include the up vector field. Defaults to True.
use_latitude (bool, optional): Whether to include the latitude field. Defaults to True.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Up and latitude fields as tensors of shape
(..., 2, h, w) and (..., 1, h, w).
"""
assert use_up or use_latitude, "At least one of use_up or use_latitude must be True."
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
w, h = camera.size[0].unbind(-1)
h, w = h.round().to(int), w.round().to(int)
if use_up:
permute = (0, 3, 1, 2)
# (..., 2, h, w)
up = get_up_field(camera, gravity).permute(permute)
else:
shape = (camera.shape[0], 2, h, w)
up = camera.new_zeros(shape)
if use_latitude:
permute = (0, 3, 1, 2)
# (..., 1, h, w)
lat = get_latitude_field(camera, gravity).permute(permute)
else:
shape = (camera.shape[0], 1, h, w)
lat = camera.new_zeros(shape)
return up, lat
def J_perspective_field(
camera: BaseCamera,
gravity: Gravity,
use_up: bool = True,
use_latitude: bool = True,
spherical: bool = False,
log_focal: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Get the jacobian of the perspective field.
Args:
camera (Camera): Camera parameters.
gravity (Gravity): Gravity vector.
use_up (bool, optional): Whether to include the up vector field. Defaults to True.
use_latitude (bool, optional): Whether to include the latitude field. Defaults to True.
spherical (bool, optional): Whether to use spherical coordinates. Defaults to False.
log_focal (bool, optional): Whether to use log-focal length. Defaults to False.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Up and latitude jacobians as tensors of shape
(..., h, w, 2, 4) and (..., h, w, 1, 4).
"""
assert use_up or use_latitude, "At least one of use_up or use_latitude must be True."
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
w, h = camera.size[0].unbind(-1)
h, w = h.round().to(int), w.round().to(int)
if use_up:
J_up = J_up_field(camera, gravity, spherical, log_focal) # (..., h, w, 2, 4)
else:
shape = (camera.shape[0], h, w, 2, 4)
J_up = camera.new_zeros(shape)
if use_latitude:
J_lat = J_latitude_field(camera, gravity, spherical, log_focal) # (..., h, w, 1, 4)
else:
shape = (camera.shape[0], h, w, 1, 4)
J_lat = camera.new_zeros(shape)
return J_up, J_lat