-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathutils.py
325 lines (256 loc) · 11.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
"""Image loading and general conversion utilities."""
import collections.abc as collections
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, Optional, Tuple
import cv2
import kornia
import numpy as np
import torch
import torchvision
# mypy: ignore-errors
def fit_to_multiple(x: torch.Tensor, multiple: int, mode: str = "center", crop: bool = False):
"""Get padding to make the image size a multiple of the given number.
Args:
x (torch.Tensor): Input tensor.
multiple (int, optional): Multiple to fit to.
crop (bool, optional): Whether to crop or pad. Defaults to False.
Returns:
torch.Tensor: Padding.
"""
h, w = x.shape[-2:]
if crop:
pad_w = (w // multiple) * multiple - w
pad_h = (h // multiple) * multiple - h
else:
pad_w = (multiple - w % multiple) % multiple
pad_h = (multiple - h % multiple) % multiple
if mode == "center":
pad_l = pad_w // 2
pad_r = pad_w - pad_l
pad_t = pad_h // 2
pad_b = pad_h - pad_t
elif mode == "left":
pad_l, pad_r = 0, pad_w
pad_t, pad_b = 0, pad_h
else:
raise ValueError(f"Unknown mode {mode}")
return (pad_l, pad_r, pad_t, pad_b)
def fit_features_to_multiple(
features: torch.Tensor, multiple: int = 32, crop: bool = False
) -> Tuple[torch.Tensor, Tuple[int, int]]:
"""Pad or crop image to a multiple of the given number.
Args:
features (torch.Tensor): Input features.
multiple (int, optional): Multiple. Defaults to 32.
crop (bool, optional): Whether to crop or pad. Defaults to False.
Returns:
Tuple[torch.Tensor, Tuple[int, int]]: Padded features and padding.
"""
pad = fit_to_multiple(features, multiple, crop=crop)
return torch.nn.functional.pad(features, pad, mode="reflect"), pad
class ImagePreprocessor:
"""Preprocess images for calibration."""
default_conf = {
"resize": 320, # target edge length, None for no resizing
"edge_divisible_by": None,
"side": "short",
"interpolation": "bilinear",
"align_corners": None,
"antialias": True,
"square_crop": False,
"add_padding_mask": False,
"resize_backend": "kornia", # torchvision, kornia
}
def __init__(self, conf) -> None:
"""Initialize the image preprocessor."""
self.conf = {**self.default_conf, **conf}
self.conf = SimpleNamespace(**self.conf)
def __call__(self, img: torch.Tensor, interpolation: Optional[str] = None) -> dict:
"""Resize and preprocess an image, return image and resize scale."""
h, w = img.shape[-2:]
size = h, w
if self.conf.square_crop:
min_size = min(h, w)
offset = (h - min_size) // 2, (w - min_size) // 2
img = img[:, offset[0] : offset[0] + min_size, offset[1] : offset[1] + min_size]
size = img.shape[-2:]
if self.conf.resize is not None:
if interpolation is None:
interpolation = self.conf.interpolation
size = self.get_new_image_size(h, w)
img = self.resize(img, size, interpolation)
scale = torch.Tensor([img.shape[-1] / w, img.shape[-2] / h]).to(img)
T = np.diag([scale[0].cpu(), scale[1].cpu(), 1])
data = {
"scales": scale,
"image_size": np.array(size[::-1]),
"transform": T,
"original_image_size": np.array([w, h]),
}
if self.conf.edge_divisible_by is not None:
# crop to make the edge divisible by a number
w_, h_ = img.shape[-1], img.shape[-2]
img, _ = fit_features_to_multiple(img, self.conf.edge_divisible_by, crop=True)
crop_pad = torch.Tensor([img.shape[-1] - w_, img.shape[-2] - h_]).to(img)
data["crop_pad"] = crop_pad
data["image_size"] = np.array([img.shape[-1], img.shape[-2]])
data["image"] = img
return data
def resize(self, img: torch.Tensor, size: Tuple[int, int], interpolation: str) -> torch.Tensor:
"""Resize an image using the specified backend."""
if self.conf.resize_backend == "kornia":
return kornia.geometry.transform.resize(
img,
size,
side=self.conf.side,
antialias=self.conf.antialias,
align_corners=self.conf.align_corners,
interpolation=interpolation,
)
elif self.conf.resize_backend == "torchvision":
return torchvision.transforms.Resize(size, antialias=self.conf.antialias)(img)
else:
raise ValueError(f"{self.conf.resize_backend} not implemented.")
def load_image(self, image_path: Path) -> dict:
"""Load an image from a path and preprocess it."""
return self(load_image(image_path))
def get_new_image_size(self, h: int, w: int) -> Tuple[int, int]:
"""Get the new image size after resizing."""
side = self.conf.side
if isinstance(self.conf.resize, collections.Iterable):
assert len(self.conf.resize) == 2
return tuple(self.conf.resize)
side_size = self.conf.resize
aspect_ratio = w / h
if side not in ("short", "long", "vert", "horz"):
raise ValueError(
f"side can be one of 'short', 'long', 'vert', and 'horz'. Got '{side}'"
)
return (
(side_size, int(side_size * aspect_ratio))
if side == "vert" or (side != "horz" and (side == "short") ^ (aspect_ratio < 1.0))
else (int(side_size / aspect_ratio), side_size)
)
def numpy_image_to_torch(image: np.ndarray) -> torch.Tensor:
"""Normalize the image tensor and reorder the dimensions."""
if image.ndim == 3:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
elif image.ndim == 2:
image = image[None] # add channel axis
else:
raise ValueError(f"Not an image: {image.shape}")
return torch.tensor(image / 255.0, dtype=torch.float)
def torch_image_to_numpy(image: torch.Tensor) -> np.ndarray:
"""Normalize and reorder the dimensions of an image tensor."""
if image.ndim == 3:
image = image.permute((1, 2, 0)) # CxHxW to HxWxC
elif image.ndim == 2:
image = image[None] # add channel axis
else:
raise ValueError(f"Not an image: {image.shape}")
return (image.cpu().detach().numpy() * 255).astype(np.uint8)
def read_image(path: Path, grayscale: bool = False) -> np.ndarray:
"""Read an image from path as RGB or grayscale."""
if not Path(path).exists():
raise FileNotFoundError(f"No image at path {path}.")
mode = cv2.IMREAD_GRAYSCALE if grayscale else cv2.IMREAD_COLOR
image = cv2.imread(str(path), mode)
if image is None:
raise IOError(f"Could not read image at {path}.")
if not grayscale:
image = image[..., ::-1]
return image
def write_image(img: torch.Tensor, path: Path):
"""Write an image tensor to a file."""
img = torch_image_to_numpy(img) if isinstance(img, torch.Tensor) else img
cv2.imwrite(str(path), img[..., ::-1])
def load_image(path: Path, grayscale: bool = False, return_tensor: bool = True) -> torch.Tensor:
"""Load an image from a path and return as a tensor."""
image = read_image(path, grayscale=grayscale)
if return_tensor:
return numpy_image_to_torch(image)
assert image.ndim in [2, 3], f"Not an image: {image.shape}"
image = image[None] if image.ndim == 2 else image
return torch.tensor(image.copy(), dtype=torch.uint8)
def skew_symmetric(v: torch.Tensor) -> torch.Tensor:
"""Create a skew-symmetric matrix from a (batched) vector of size (..., 3).
Args:
(torch.Tensor): Vector of size (..., 3).
Returns:
(torch.Tensor): Skew-symmetric matrix of size (..., 3, 3).
"""
z = torch.zeros_like(v[..., 0])
return torch.stack(
[z, -v[..., 2], v[..., 1], v[..., 2], z, -v[..., 0], -v[..., 1], v[..., 0], z], dim=-1
).reshape(v.shape[:-1] + (3, 3))
def rad2rotmat(
roll: torch.Tensor, pitch: torch.Tensor, yaw: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""Convert (batched) roll, pitch, yaw angles (in radians) to rotation matrix.
Args:
roll (torch.Tensor): Roll angle in radians.
pitch (torch.Tensor): Pitch angle in radians.
yaw (torch.Tensor, optional): Yaw angle in radians. Defaults to None.
Returns:
torch.Tensor: Rotation matrix of shape (..., 3, 3).
"""
if yaw is None:
yaw = roll.new_zeros(roll.shape)
Rx = pitch.new_zeros(pitch.shape + (3, 3))
Rx[..., 0, 0] = 1
Rx[..., 1, 1] = torch.cos(pitch)
Rx[..., 1, 2] = torch.sin(pitch)
Rx[..., 2, 1] = -torch.sin(pitch)
Rx[..., 2, 2] = torch.cos(pitch)
Ry = yaw.new_zeros(yaw.shape + (3, 3))
Ry[..., 0, 0] = torch.cos(yaw)
Ry[..., 0, 2] = -torch.sin(yaw)
Ry[..., 1, 1] = 1
Ry[..., 2, 0] = torch.sin(yaw)
Ry[..., 2, 2] = torch.cos(yaw)
Rz = roll.new_zeros(roll.shape + (3, 3))
Rz[..., 0, 0] = torch.cos(roll)
Rz[..., 0, 1] = torch.sin(roll)
Rz[..., 1, 0] = -torch.sin(roll)
Rz[..., 1, 1] = torch.cos(roll)
Rz[..., 2, 2] = 1
return Rz @ Rx @ Ry
def fov2focal(fov: torch.Tensor, size: torch.Tensor) -> torch.Tensor:
"""Compute focal length from (vertical/horizontal) field of view."""
return size / 2 / torch.tan(fov / 2)
def focal2fov(focal: torch.Tensor, size: torch.Tensor) -> torch.Tensor:
"""Compute (vertical/horizontal) field of view from focal length."""
return 2 * torch.arctan(size / (2 * focal))
def pitch2rho(pitch: torch.Tensor, f: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
"""Compute the distance from principal point to the horizon."""
return torch.tan(pitch) * f / h
def rho2pitch(rho: torch.Tensor, f: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
"""Compute the pitch angle from the distance to the horizon."""
return torch.atan(rho * h / f)
def rad2deg(rad: torch.Tensor) -> torch.Tensor:
"""Convert radians to degrees."""
return rad / torch.pi * 180
def deg2rad(deg: torch.Tensor) -> torch.Tensor:
"""Convert degrees to radians."""
return deg / 180 * torch.pi
def get_device() -> str:
"""Get the device (cpu, cuda, mps) available."""
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
return device
def print_calibration(results: Dict[str, torch.Tensor]) -> None:
"""Print the calibration results."""
camera, gravity = results["camera"], results["gravity"]
vfov = rad2deg(camera.vfov)
roll, pitch = rad2deg(gravity.rp).unbind(-1)
print("\nEstimated parameters (Pred):")
print(f"Roll: {roll.item():.1f}° (± {rad2deg(results['roll_uncertainty']).item():.1f})°")
print(f"Pitch: {pitch.item():.1f}° (± {rad2deg(results['pitch_uncertainty']).item():.1f})°")
print(f"vFoV: {vfov.item():.1f}° (± {rad2deg(results['vfov_uncertainty']).item():.1f})°")
print(f"Focal: {camera.f[0, 1].item():.1f} px (± {results['focal_uncertainty'].item():.1f} px)")
if hasattr(camera, "k1"):
print(f"K1: {camera.k1.item():.1f}")