-
Notifications
You must be signed in to change notification settings - Fork 119
/
utils.py
205 lines (163 loc) · 6.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import json
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import pathlib
import random
import sys
import time
import torch
from PIL import Image
from torchvision import transforms
from torchvision.utils import draw_bounding_boxes as tv_draw_bounding_boxes
from torchvision.utils import make_grid
from typing import Union
clip_stats = (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)
def is_interactive() -> bool:
try:
from IPython import get_ipython
if get_ipython() is not None:
return True
else:
return False
except NameError:
return False # Probably standard Python interpreter
def denormalize(images, means=(0.485, 0.456, 0.406), stds=(0.229, 0.224, 0.225)):
means = torch.tensor(means).reshape(1, 3, 1, 1)
stds = torch.tensor(stds).reshape(1, 3, 1, 1)
return images * stds + means
def show_batch(batch, stats=clip_stats):
fig, ax = plt.subplots(figsize=(12, 12))
ax.set_xticks([])
ax.set_yticks([])
denorm_images = denormalize(batch, *stats)
ax.imshow(make_grid(denorm_images[:64], nrow=8).permute(1, 2, 0).clamp(0, 1))
def show_batch_from_dl(dl):
for images, labels in dl:
show_batch(images)
print(labels[:64])
break
def show_single_image(image, denormalize_stats=None, bgr_image=False, save_path=None, size='small', bbox_info=None):
if not is_interactive():
import matplotlib
matplotlib.use("module://imgcat")
if size == 'size_img':
figsize = (image.shape[2] / 100, image.shape[1] / 100) # The default dpi of plt.savefig is 100
elif size == 'small':
figsize = (4, 4)
else:
figsize = (12, 12)
fig = plt.figure(figsize=figsize)
ax = fig.add_axes([0, 0, 1, 1])
ax.set_xticks([])
ax.set_yticks([])
if bbox_info is not None:
image = draw_bounding_boxes(image, bbox_info['bboxes'], labels=bbox_info['labels'], colors=bbox_info['colors'],
width=5)
if isinstance(image, torch.Tensor):
image = image.detach().cpu()
if denormalize_stats is not None:
image = denormalize(image.unsqueeze(0), *denormalize_stats)
if image.dtype == torch.float32:
image = image.clamp(0, 1)
ax.imshow(image.squeeze(0).permute(1, 2, 0))
else:
if bgr_image:
image = image[..., ::-1]
ax.imshow(image)
if save_path is None:
plt.show()
# save image if save_path is provided
if save_path is not None:
# make path if it does not exist
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
plt.savefig(save_path)
def draw_bounding_boxes(
image: Union[torch.Tensor, Image.Image],
bboxes: Union[list, torch.Tensor],
width: int = 5,
**kwargs
):
"""
Wrapper around torchvision.utils.draw_bounding_boxes
bboxes: [xmin, ymin, xmax, ymax]
:return:
"""
if isinstance(image, Image.Image):
if type(image) == Image.Image:
image = transforms.ToTensor()(image)
if isinstance(bboxes, list):
bboxes = torch.tensor(bboxes)
image = (image * 255).to(torch.uint8).cpu()
height = image.shape[1]
bboxes = torch.stack([bboxes[:, 0], height - bboxes[:, 3], bboxes[:, 2], height - bboxes[:, 1]], dim=1)
return tv_draw_bounding_boxes(image, bboxes, width=width, **kwargs)
def seed_everything(seed=0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_index_from_sample_id(sample_id, dataset):
df = dataset.df
return np.arange(df.shape[0])[df.index == sample_id]
def save_json(data: dict, path: Union[str, pathlib.Path]):
if isinstance(path, str):
path = pathlib.Path(path)
if not path.parent.exists():
path.parent.mkdir(parents=True)
if path.suffix != '.json':
path = path.with_suffix('.json')
with open(path, 'w') as f:
json.dump(data, f, indent=4, sort_keys=True)
def load_json(path: Union[str, pathlib.Path]):
if isinstance(path, str):
path = pathlib.Path(path)
if path.suffix != '.json':
path = path.with_suffix('.json')
with open(path, 'r') as f:
data = json.load(f)
return data
def make_print_safe(string: str) -> str:
return string.replace(r'[', r'\[')
def sprint(string: str):
print(make_print_safe(string))
def print_full_df(df):
with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also
if is_interactive():
display(df)
else:
print(df)
def code_to_paste(code):
print('\n'.join([c[4:] for c in code.split('\n')[1:]]).replace('image', 'ip').replace('return ', ''))
class HiddenPrints:
hide_prints = False
def __init__(self, model_name=None, console=None, use_newline=True):
self.model_name = model_name
self.console = console
self.use_newline = use_newline
self.tqdm_aux = None
def __enter__(self):
if self.hide_prints:
import tqdm # We need to do an extra step to hide tqdm outputs. Does not work in Jupyter Notebooks.
def nop(it, *a, **k):
return it
self.tqdm_aux = tqdm.tqdm
tqdm.tqdm = nop
if self.model_name is not None:
self.console.print(f'Loading {self.model_name}...')
self._original_stdout = sys.stdout
self._original_stderr = sys.stderr
sys.stdout = open(os.devnull, 'w')
# May not be what we always want, but some annoying warnings end up to stderr
sys.stderr = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
if self.hide_prints:
sys.stdout.close()
sys.stdout = self._original_stdout
sys.stdout = self._original_stderr
if self.model_name is not None:
self.console.print(f'{self.model_name} loaded ')
import tqdm
tqdm.tqdm = self.tqdm_aux