@@ -92,8 +92,8 @@ def test_tiny(tmp_path):
92
92
assert np .isclose (
93
93
torch .square (res ["residual" ]).mean (),
94
94
0.0 ,
95
- atol = 1e-4 ,
96
95
)
96
+ print (f"A { torch .square (res ['conv' ]).mean ()= } " )
97
97
assert np .isclose (
98
98
torch .square (res ["conv" ]).mean (),
99
99
0.0 ,
@@ -125,8 +125,8 @@ def test_tiny(tmp_path):
125
125
assert np .isclose (
126
126
torch .square (res ["residual" ]).mean (),
127
127
0.0 ,
128
- atol = 1e-4 ,
129
128
)
129
+ print (f"B { torch .square (res ['conv' ]).mean ()= } " )
130
130
assert np .isclose (
131
131
torch .square (res ["conv" ]).mean (),
132
132
0.0 ,
@@ -265,14 +265,13 @@ def test_tiny_up(tmp_path, up_factor=8):
265
265
print (f'{ np .c_ [res ["times_samples" ], res ["labels" ], res ["upsampling_indices" ]]= } ' )
266
266
print (f"{ np .c_ [times , labels , upsampling_indices ]= } " )
267
267
print (f'{ torch .square (res ["residual" ]).mean ()= } ' )
268
- print (f' { torch .square (res [" conv" ]).mean ()= } ' )
268
+ print (f"C { torch .square (res [' conv' ]).mean ()= } " )
269
269
assert res ["n_spikes" ] == len (times )
270
270
assert np .array_equal (res ["times_samples" ], times )
271
271
assert np .array_equal (res ["labels" ], labels )
272
272
assert np .isclose (
273
273
torch .square (res ["residual" ]).mean (),
274
274
0.0 ,
275
- atol = 1e-4 ,
276
275
)
277
276
assert np .isclose (
278
277
torch .square (res ["conv" ]).mean (),
@@ -413,12 +412,12 @@ def static_tester(tmp_path, up_factor=1):
413
412
assert np .isclose (
414
413
torch .square (res ["residual" ]).mean (),
415
414
0.0 ,
416
- atol = 1e-4 ,
417
415
)
416
+ print (f"D { torch .square (res ['conv' ]).mean ()= } " )
418
417
assert np .isclose (
419
418
torch .square (res ["conv" ]).mean (),
420
419
0.0 ,
421
- atol = 1e-4 ,
420
+ atol = 1e-3 ,
422
421
)
423
422
424
423
0 commit comments