-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_GAN.py
263 lines (251 loc) · 10.8 KB
/
train_GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
from matplotlib import pyplot as plt
import numpy
import random
import pandas as pd
import time
import os
class train_GAN:
def __init__(self,
disc_loss,
seg_gen_loss,
unseg_gen_loss,
seg_model: torch.nn.Module,
disc_model: torch.nn.Module,
seg_train_dl: torch.utils.data.DataLoader,
seg_val_dl: torch.utils.data.DataLoader,
unseg_train_dl: torch.utils.data.DataLoader,
epochs:int,
gen_optimizer:torch.optim.Optimizer,
disc_optimizer:torch.optim.Optimizer,
order = [[0,1],[2,3,4]],
accumulation_steps:int = 1,
timer = True,
device = None
):
self.disc_loss = disc_loss
self.seg_gen_loss = seg_gen_loss
self.unseg_gen_loss = unseg_gen_loss
self.seg_model = seg_model
self.disc_model = disc_model
self.seg_train_dl = seg_train_dl
self.seg_val_dl = seg_val_dl
self.unseg_train_dl = unseg_train_dl
self.epochs = epochs
self.accumulation_steps = accumulation_steps
self.gen_optimizer = gen_optimizer
self.disc_optimizer = disc_optimizer
self.order = order
self.timer = timer
self.device = device
@staticmethod
def metrics_list(input:list[float]):
if(type(input)!=list):
raise ValueError('Input must be a list. was a: '+str(type(input)))
return (
numpy.mean(input),
numpy.percentile(input,25),
numpy.percentile(input,50),
numpy.percentile(input,75)
)
@staticmethod
def save_loss_plot(
loss_metrics:list[list[tuple[float]]],
legend_titles:list[str],
subplot_titles:list[str],
order:list[list[int]],
save_path_fig,
save_path_csv
):
# The loss metric should have 3 dimensions: [metric,epoch,quartile], which is then converted to: [metric,quartile,epoch]
# The order should have 2 dimensions: [suplot, metric]
fig, ax = plt.subplots(len(order),figsize=(14,10))
if len(order)==1:
ax=[ax]
series_list = []
for metric in range(len(loss_metrics)):
loss_metrics[metric] = list(zip(*loss_metrics[metric]))
for i, quartile in enumerate(loss_metrics[metric]):
name = legend_titles[metric]
if i==0:
name+='_mean'
elif i==1:
name+='_q1'
elif i==2:
name+='_q2'
elif i==3:
name+='_q3'
else:
raise ValueError('There are more than 4 quartiles points in the distribution of the metric being measured.')
series_list.append(
pd.Series(quartile,name = name)
)
csv_df = pd.DataFrame(series_list)
csv_df.to_csv(save_path_csv)
for subplot, list_inner in enumerate(order):
temp_legend_titles = []
for position, metric in enumerate(list_inner):
if metric == 0:
color_str = 'r'
elif metric == 1:
color_str = 'b'
elif metric ==2:
color_str='g'
else:
color_str = (random.random(),random.random(),random.random())
epochs = len(loss_metrics[metric][0])
ax[subplot].plot(range(1,epochs+1),loss_metrics[metric][0],ls='-',color=color_str,lw=0.5) #Mean
ax[subplot].plot(range(1,epochs+1),loss_metrics[metric][2],ls='--',color=color_str,lw=0.5) #Median
ax[subplot].fill_between(
range(1,epochs+1),
loss_metrics[metric][1],#q1
loss_metrics[metric][3],#q3
color=color_str,
alpha = 0.4,
lw=0.5
)
temp_legend_titles.append(legend_titles[order[subplot][position]]+' mean')
temp_legend_titles.append(legend_titles[order[subplot][position]]+' median')
temp_legend_titles.append(legend_titles[order[subplot][position]]+'IQR')
ax[subplot].set_ylabel(subplot_titles[subplot])
ax[subplot].legend(temp_legend_titles,fontsize='large')
ax[subplot].set_xlabel('Epochs')
ax[subplot].set_ylim(bottom=0,top=2*(sum(loss_metrics[metric][0])/len(loss_metrics[metric][0])))
fig.tight_layout()
fig.savefig(save_path_fig)
plt.close(fig)
def run_optimizer(self,idx, optimizer: torch.optim.Optimizer):
if (idx+1)%self.accumulation_steps==0:
optimizer.step()
optimizer.zero_grad()
def save_script(path:str):
# Get the path of the current script
script_path = os.path.abspath(__file__)
# Open the script itself and read its contents
with open(script_path, 'r') as script_file:
script_content = script_file.read()
# Define the path where you want to save the log (e.g., folder 'logs')
# Write the content of the script into the log file
with open(path, 'w') as log_file:
log_file.write(script_content)
print(f"Script content has been logged to {path}")
def up_seg_unsup(self):
model_output = self.seg_model(self.raw)
disc_output = self.disc_model(model_output).detach()
#up the segmentation model
unsup_seg_loss_temp_point = self.unseg_gen_loss(disc_output, model_output)
unsup_seg_loss_temp_point.backward()
self.unsup_seg_loss_temp.append(unsup_seg_loss_temp_point.item())
self.run_optimizer(self.idx,self.gen_optimizer)
def up_seg_model(self):
sup_seg_loss_temp_point = self.seg_gen_loss(self.model_output,self.true,self.seg_disc_output.detach())
sup_seg_loss_temp_point.backward()
self.run_optimizer(self.idx,self.gen_optimizer)
self.sup_seg_loss_temp.append(sup_seg_loss_temp_point.item())
def up_disc_model(self):
#on segmentation model
seg_disc_loss_temp_point = self.disc_loss(self.seg_disc_output,False)
self.seg_disc_loss_temp.append(seg_disc_loss_temp_point.item())
#on raw data
raw_disc_loss_temp_point= self.disc_loss(self.raw_disc_output,True)
self.raw_disc_loss_temp.append(raw_disc_loss_temp_point.item())
temp = seg_disc_loss_temp_point + raw_disc_loss_temp_point
temp.backward()
self.run_optimizer(self.idx,self.disc_optimizer)
def segmented_training_epoch(self):
self.sup_seg_loss_temp= []
self.seg_disc_loss_temp = []
self.raw_disc_loss_temp = []
for idx, datapoint in enumerate(self.seg_train_dl):
self.idx=idx
if not self.device is None:
self.raw = datapoint[0].to(self.device)
self.true = datapoint[1].to(self.device)
else:
self.raw = datapoint[0]
self.true = datapoint[1]
self.model_output = self.seg_model(self.raw)
self.seg_disc_output = self.disc_model(self.model_output.detach())
self.raw_disc_output = self.disc_model(self.true)
self.up_seg_model()
self.up_disc_model()
self.sup_seg_loss.append(self.metrics_list(self.sup_seg_loss_temp))
self.seg_disc_loss.append(self.metrics_list(self.seg_disc_loss_temp))
self.raw_disc_loss.append(self.metrics_list(self.raw_disc_loss_temp))
def unsegmented_training_epoch(self):
self.unsup_seg_loss_temp = []
for idx, datapoint in enumerate(self.unseg_train_dl):
if not self.device is None:
self.raw = datapoint.to(self.device)
else:
self.raw = datapoint
self.up_seg_unsup()
self.unsup_seg_loss.append(self.metrics_list(self.unsup_seg_loss_temp))
def validation_epoch(self):
val_seg_loss_temp = []
for idx, datapoint in enumerate(self.seg_val_dl):
if not self.device is None:
raw = datapoint[0].to(self.device)
true = datapoint[1].to(self.device)
else:
raw = datapoint[0]
true = datapoint[1]
model_output = self.seg_model(raw)
#Save the validation loss
disc_output = self.disc_model(model_output)
val_seg_loss_temp_point = self.seg_gen_loss(model_output,true,disc_output)
val_seg_loss_temp.append(val_seg_loss_temp_point.item())
self.val_seg_loss.append(self.metrics_list(val_seg_loss_temp))
def adversarial_learning(self,save_path=None):
self.raw_disc_loss = []
self.seg_disc_loss = []
self.sup_seg_loss = []
self.unsup_seg_loss = []
self.val_seg_loss = []
if(not self.timer):
for epoch in range(self.epochs):
#Supervised
self.segmented_training_epoch()
#Unsupervised
self.unsegmented_training_epoch()
#Validation epoch
self.validation_epoch()
else:
start_time = time.time()
print('Time: '+str(time.time()-start_time))
for epoch in range(self.epochs):
#Supervised
print(f'start seg training epoch {epoch}: '+str(time.time()-start_time))
self.segmented_training_epoch()
#Unsupervised
print(f'start unseg training epoch {epoch}: '+str(time.time()-start_time))
self.unsegmented_training_epoch()
#Validation epoch
print(f'start validation epoch {epoch}: '+str(time.time()-start_time))
self.validation_epoch()
if save_path!=None:
self.save_loss_plot(
loss_metrics=[
self.raw_disc_loss,
self.seg_disc_loss,
self.sup_seg_loss,
self.unsup_seg_loss,
self.val_seg_loss,
],
legend_titles = [
'raw_disc_loss',
'seg_disc_loss',
'sup_seg_loss',
'unsup_seg_loss',
"val_seg_loss",
],
subplot_titles = [
'BCE training loss',
'BCE validation loss'
],
order=self.order,
save_path_fig=save_path+'/figure.png',
save_path_csv=save_path+'/figure,csv'
)
torch.save(self.seg_model.state_dict(),save_path+'/model.pt')
self.save_script(save_path+'/train_GAN_script.txt')