forked from shinshiner/Gene_Chip_Ananysis
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
224 lines (186 loc) · 6.65 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
from PCA.pca import *
import random
from copy import deepcopy
from constant import *
# 合并疾病各阶段
def merge_disease(label_dic, origin_num, annos):
disease = ["Huntington's Disease (HD) Pathological",
"lung adenocarcinoma (NCI_Thesaurus C0152013) has DiseaseStaging"]
for dis in disease:
origin_num[dis] = []
label_dic[dis] = 0
rubbish_key = []
for k in label_dic:
if dis in k and dis != k:
label_dic[dis] += label_dic[k]
origin_num[dis] += origin_num[k]
rubbish_key.append(k)
for k in rubbish_key:
label_dic.pop(k)
origin_num.pop(k)
for i in range(len(annos)):
if dis in annos[i]:
annos[i] = dis
return label_dic, origin_num, annos
# 提取出出现次数>=10次的疾病,返回相应基因芯片数据的序号
def look_anno():
fin = open('data/E-TABM-185.sdrf.txt', 'r') # 标注数据
fout_cnt = open('output/data/anno_cnt.txt', 'w') # 疾病的出现次数
fout = open('output/data/data_processed.txt', 'w') # 相应疾病对应原始数据的编号
fout_anno = open('output/data/anno_processed.txt', 'w')
s = fin.readline()
annos = []
label_dic = {} # 各疾病出现的次数
origin_num = {} # 存下基因芯片编号
# 读标注
for i in range(5896):
s = fin.readline()
l = s.split('\t')
annos.append(l[7])
if l[7] != ' ':
if l[7] in label_dic:
label_dic[l[7]] += 1
else:
label_dic[l[7]] = 1
if l[7] in origin_num:
origin_num[l[7]].append(i)
else:
origin_num[l[7]] = []
origin_num[l[7]].append(i)
label_dic, origin_num, annos = merge_disease(label_dic, origin_num, annos)
# 删去出现次数少的疾病
for k in label_dic:
if label_dic[k] > 9:
fout.write(k + '\t' + str(origin_num[k]) + '\n')
else:
origin_num.pop(k)
# 按出现次数降序排列
cnt_list = sorted(label_dic.items(), key=lambda item: item[1], reverse = True)
for k in cnt_list:
fout_cnt.write('%s: %d\n' % k)
# 排序,此时字典变list
label_dic = sorted(label_dic.items(), key=lambda item: item[0])
origin_num = sorted(origin_num.items(), key=lambda item: item[0])
# 标注顺序重组
for k in origin_num:
for num in k[1]:
fout_anno.write(str(annos[num]) + '\n')
fin.close()
fout_cnt.close()
fout.close()
fout_anno.close()
# '''for test'''
# ftest = open('output/data/label_dic.txt', 'w') # 各疾病出现次数
# n = 0
# for dd in label_dic:
# ftest.write("%-80s" % dd[0] + str(dd[1]) + '\n')
# if dd[1] > 9:
# n += 1
# print('all diseases appear more than 10 times: %d' %n)
# print('origin num:\n', origin_num)
# ftest.close()
return origin_num
def look_rawdata(origin_num):
fin = open('data/microarray.original.txt', 'r')
lines = []
fin.readline()
fout = open('output/pca/pca%.2f.txt' % PCA_PERCENTAGE, 'w')
dataset_np = np.zeros([ALL_DATA, PCA[str(PCA_PERCENTAGE)]])
# read raw data
for i in range(22283):
line = fin.readline()
line = line.split('\t')
line = line[1:]
lines.append(list(map(float, line)))
print("Data has been read successfully.")
# do PCA
data = np.array(lines).T
print("Now reducing dimension...")
lowDData = pca(data, PCA_PERCENTAGE)
#print(lowDData[0][0])
print("Finished, the new dimension is :" + str(len(lowDData[0])))
# save pca results (.txt file and .npy)
print("Start writing new data...")
j = 0
for k in origin_num:
for num in k[1]:
for i in range(len(lowDData[num])):
dataset_np[j][i] = lowDData[num][i].real # the number will be xxx+0j without .real
fout.write(str(lowDData[num][i].real) + '\t')
j += 1
fout.write('\n')
np.save('output/pca/pca%.2f.npy' % PCA_PERCENTAGE, dataset_np)
print("Finished the whole work.")
fin.close()
fout.close()
return dataset_np
# generate one-hot vectors
def anno2classes():
fin = open('output/data/anno_processed.txt', 'r')
fout = open('output/data/classes_label.txt', 'w')
target_np = np.zeros([ALL_DATA, CLASSES])
annos = fin.readlines()
n = 0
fout.write(str(n) + '\n') # first disease should be class 0
target_np[0][0] = 1
for i in range(1, ALL_DATA):
if annos[i] != annos[i - 1]:
n += 1
fout.write(str(n) + '\n')
target_np[i][n] = 1
fin.close()
fout.close()
# np.save('output/data/target.npy', target_np)
return target_np
def labeling():
fin = open('output/data/classes_label.txt', 'r')
target_np = np.zeros([ALL_DATA], dtype=np.int64)
annos = fin.readlines()
for i in range(ALL_DATA):
target_np[i] = int(annos[i])
np.save("output/data/labels.npy", target_np)
return target_np
# divide training and testing data
def divide_train_test_set():
dataset = np.load("output/pca/pca0.90.npy")
targets = np.load("output/data/labels.npy")
visited = 0
test_n = 0
test_idx = []
for i in range(CLASSES):
num_labels = (targets == i).sum()
test_n_t = max(int(TEST_RADIO * num_labels), 1)
print(test_n_t, '/', num_labels)
test_idx_t = random.sample(range(visited, visited + num_labels), test_n_t)
test_idx += test_idx_t
visited += num_labels
test_n = len(test_idx)
train_x = np.zeros([ALL_DATA - test_n, PCA[str(PCA_PERCENTAGE)]])
train_y = np.zeros([ALL_DATA - test_n])
test_x = np.zeros([test_n, PCA[str(PCA_PERCENTAGE)]])
test_y = np.zeros([test_n])
j = 0
k = 0
for i in range(ALL_DATA):
if i in test_idx:
test_x[j] = deepcopy(dataset[i])
test_y[j] = deepcopy(targets[i])
j += 1
else:
train_x[k] = deepcopy(dataset[i])
train_y[k] = deepcopy(targets[i])
k += 1
print("training set shape:", train_x.shape)
print("testing set shape:", test_x.shape)
np.save("output/data/dataset_train.npy", train_x)
np.save("output/data/target_train.npy", train_y)
np.save("output/data/dataset_test.npy", test_x)
np.save("output/data/target_test.npy", test_y)
print("Dataset Construction Finished !!!")
if __name__ == '__main__':
#origin_num = look_anno()
#dataset = look_rawdata(origin_num)
#targets = anno2classes()
#targets = labeling()
divide_train_test_set()