-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresults.py
31 lines (29 loc) · 1.43 KB
/
results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import pandas as pd
from hr_db_scripts.main_db_script import get_db_table_as_df
from db_scripts.main_db_script import db_filename, fig_dir
def make_results_df(models=['poisson', 'rf'], types=['train', 'test'],
metrics=['RMSE', 'MAE', 'std'], suffix='revisions1', filter_nz=True):
combinations = ['{}-{}'.format(x, y) for x in metrics for y in types]
data_dict = {a:[] for a in combinations}
for m in models:
for t in types:
table_name = '{}_{}_{}'.format(m.lower(), suffix, t)
print m, t, table_name
df = get_db_table_as_df(table_name, dbfilename=db_filename)
true_col = 'all_trn' if t == 'train' else 'all_tst'
pred_col = true_col.replace('_', '_pred_')
df = df[[true_col, pred_col]]
df = df[df[pred_col] <= 159]
if filter_nz:
df = df[df[true_col] > 0]
data_dict['RMSE-' + t].append((((df.iloc[:, 0] - df.iloc[:, 1])**2).mean())**0.5)
data_dict['MAE-' + t].append((abs(df.iloc[:, 0] - df.iloc[:, 1])).mean())
grouped = df.groupby(true_col)
mean_range = (grouped.std()).mean().values[0]
data_dict['std-' + t].append(mean_range)
df = pd.DataFrame(data_dict, index=models)
df = df[combinations]
df.columns = df.columns.str.replace('train', 'Training')
df.columns = df.columns.str.replace('test', 'Evaluation')
df = df.round(2)
return df