forked from AnonymousWu/Tensor_completion
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPoisson_sgd.py
163 lines (135 loc) · 4.85 KB
/
Poisson_sgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
import numpy.linalg as la
import time
import csv
import ctf
import random
def subtract_sparse(T,M):
[inds,data] = T.read_local_nnz()
[inds,data2] = M.read_local_nnz()
new_data = data-data2
new_tensor = ctf.tensor(T.shape, sp=T.sp)
new_tensor.write(inds,new_data)
return new_tensor
def getOmega(T):
[inds, data] = T.read_local_nnz()
data[:] = 1.
Omega = ctf.tensor(T.shape, sp=T.sp)
Omega.write(inds, data)
return Omega
def elementwise_prod(T,M):
[inds,data] = T.read_local_nnz()
[inds,data2] = M.read_local_nnz()
new_data= data2*data
new_tensor = ctf.tensor(T.shape, sp=T.sp)
new_tensor.write(inds,new_data)
return new_tensor
def elementwise_exp(T):
[inds,data] = T.read_local_nnz()
new_data = np.exp(data)
new_tensor = ctf.tensor(T.shape, sp=T.sp)
new_tensor.write(inds,new_data)
return new_tensor
def elementwise_log(T):
[inds,data] = T.read_local_nnz()
new_data = np.log(data)
new_tensor = ctf.tensor(T.shape, sp=T.sp)
new_tensor.write(inds,new_data)
return new_tensor
class Poisson_sgd_Completer():
#Current implementation is using \lambda = e^m and replacing it in the function to get: e^m - xm
def __init__(self,tenpy, T, Omega, A,step_size ):
self.tenpy = tenpy
self.T = T
self.Omega = Omega
self.A = A
self.sampled_T= None
self.step_size = step_size
def Get_RHS(self,num,regu):
#The gradient of the loss function is Mttkrp(e^m - x) ............... Need negative of this
Omega_ = self.sampled_T.copy()
ctf.get_index_tensor(Omega_)
M = self.tenpy.TTTP(Omega_,self.A)
#inter = elementwise_exp(self.tenpy.TTTP(getOmega(self.sampled_T),self.A))
ctf.Sparse_exp(M)
ctf.Sparse_add(M,self.sampled_T,alpha=-1)
#inter = subtract_sparse(self.sampled_T,inter)
lst_mat = []
for j in range(len(self.A)):
if j != num :
lst_mat.append(self.A[j])
else:
lst_mat.append(self.tenpy.zeros(self.A[num].shape))
self.tenpy.MTTKRP(M,lst_mat,num)
#inter.set_zero()
grad = lst_mat[num] - regu*self.A[num]
#self.tenpy.printf("The norm of gradient is ",self.tenpy.vecnorm(grad))
return grad
def step(self,regu):
sample_size = 0.01
self.sampled_T = self.T.copy()
self.sampled_T.sample(sample_size)
for i in range(len(self.A)):
self.A[i]+= sample_size*self.step_size*self.Get_RHS(i,regu)
return self.A
def sgd_poisson(tenpy, T_in, T, O, U, V, W, reg_als,I,J,K,R, num_iter_als,tol,csv_file):
step_size = 0.03
opt = Poisson_sgd_Completer(tenpy, T_in, O, [U,V,W],step_size)
#if T_in.sp == True:
# nnz_tot = T_in.nnz_tot
#else:
# nnz_tot = ctf.sum(omega)
if tenpy.name() == 'ctf':
nnz_tot = T_in.nnz_tot
else:
nnz_tot = np.sum(O)
t_ALS = ctf.timer_epoch("poisson_sgd")
regu = reg_als
tenpy.printf("--------------------------------Poisson_sgd-----------------------")
start= time.time()
# T_in = backend.einsum('ijk,ijk->ijk',T,O)
it = 0
time_all = 0
#val2 = ctf.sum(subtract_sparse(elementwise_prod(T_in,elementwise_log(T_in)),T_in))
P = T_in.copy()
ctf.Sparse_log(P)
ctf.Sparse_mul(P,T_in)
ctf.Sparse_add(P,T_in,beta=-1)
val2 = ctf.sum(P)
P.set_zero()
if csv_file is not None:
csv_writer = csv.writer(
csv_file, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
for i in range(num_iter_als):
it+=1
s = time.time()
#t_ALS.begin()
[U,V,W] = opt.step(regu)
#t_ALS.end()
e = time.time()
time_all+= e- s
#rmse = tenpy.vecnorm(tenpy.TTTP(O,[U,V,W])-T_in)/(nnz_tot)**0.5
if it%20 == 0:
M = tenpy.TTTP(O,[U,V,W])
#val = ctf.sum(subtract_sparse(ctf.exp(M),elementwise_prod(T_in,M) ))
P = M.copy()
ctf.Sparse_mul(P,T_in)
ctf.Sparse_exp(M)
ctf.Sparse_add(M,P,beta=-1)
val = ctf.sum(M)
P.set_zero()
M.set_zero()
rmse = (val+val2)/nnz_tot
if tenpy.is_master_proc():
tenpy.printf("After " + str(it) + " iterations, and time is",time_all)
tenpy.printf("RMSE is",rmse)
#print("Full Tensor Objective",(tenpy.norm(tenpy.einsum('ir,jr,kr->ijk',U,V,W)-T)))
if csv_file is not None:
csv_writer.writerow([i,time_all , rmse, i,'PALS'])
csv_file.flush()
if abs(rmse) < tol:
tenpy.printf("Ending algo due to tolerance")
break
end= time.time()
tenpy.printf('Poisson sgd time taken is ',end - start)
return [U,V,W]