forked from AnonymousWu/Tensor_completion
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsgd_new.py
107 lines (89 loc) · 3.23 KB
/
sgd_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import numpy as np
import numpy.linalg as la
import time
import csv
import ctf
import random
class sgd_Completer():
def __init__(self,tenpy, T, Omega, A,step_size ):
self.tenpy = tenpy
self.T = T
self.Omega = Omega
self.A = A
self.sampled_T= None
self.step_size = step_size
def Get_RHS(self,num,regu):
Omega_ = self.sampled_T.copy()
ctf.get_index_tensor(Omega_)
M = self.tenpy.TTTP(Omega_,self.A)
ctf.Sparse_add(M,self.sampled_T,alpha=-1)
#inter = subtract_sparse(self.sampled_T,inter)
lst_mat = []
for j in range(len(self.A)):
if j != num :
lst_mat.append(self.A[j])
else:
lst_mat.append(self.tenpy.zeros(self.A[num].shape))
self.tenpy.MTTKRP(M,lst_mat,num)
#inter.set_zero()
grad = lst_mat[num] - regu*self.A[num]
#self.tenpy.printf("The norm of gradient is ",self.tenpy.vecnorm(grad))
return grad
def step(self,regu):
sample_size = 0.003
self.sampled_T = self.T.copy()
self.sampled_T.sample(sample_size)
for i in range(len(self.A)):
self.A[i]+= 2*sample_size*self.step_size*self.Get_RHS(i,regu)
return self.A
def sgd(tenpy, T_in, T, O, X, reg_als, num_iter_als,tol,csv_file):
step_size = 0.003
opt = sgd_Completer(tenpy, T_in, O, X,step_size)
#if T_in.sp == True:
# nnz_tot = T_in.nnz_tot
#else:
# nnz_tot = ctf.sum(omega)
if tenpy.name() == 'ctf':
nnz_tot = T_in.nnz_tot
else:
nnz_tot = np.sum(O)
t_ALS = ctf.timer_epoch("sgd")
regu = reg_als
tenpy.printf("--------------------------------SGD-----------------------")
start= time.time()
# T_in = backend.einsum('ijk,ijk->ijk',T,O)
it = 0
time_all = 0
#val2 = ctf.sum(subtract_sparse(elementwise_prod(T_in,elementwise_log(T_in)),T_in))
if csv_file is not None:
csv_writer = csv.writer(
csv_file, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
for i in range(num_iter_als):
it+=1
s = time.time()
#t_ALS.begin()
X = opt.step(regu)
#t_ALS.end()
e = time.time()
time_all+= e- s
#rmse = tenpy.vecnorm(tenpy.TTTP(O,[U,V,W])-T_in)/(nnz_tot)**0.5
if it%20 == 0:
M = tenpy.TTTP(O,X)
#val = ctf.sum(subtract_sparse(ctf.exp(M),elementwise_prod(T_in,M) ))
ctf.Sparse_add(M,T_in,beta=-1)
val = ctf.vecnorm(M)
rmse = val/(nnz_tot)**0.5
M.set_zero()
if tenpy.is_master_proc():
tenpy.printf("After " + str(it) + " iterations, and time is",time_all)
tenpy.printf("RMSE is",rmse)
#print("Full Tensor Objective",(tenpy.norm(tenpy.einsum('ir,jr,kr->ijk',U,V,W)-T)))
if csv_file is not None:
csv_writer.writerow([i,time_all , rmse, i,'SGD'])
csv_file.flush()
if abs(rmse) < tol:
tenpy.printf("Ending algo due to tolerance")
break
end= time.time()
tenpy.printf('sgd time taken is ',end - start)
return X