-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathintro-MLEs.qmd
696 lines (488 loc) · 18.4 KB
/
intro-MLEs.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
# Introduction to Maximum Likelihood Inference {#sec-intro-MLEs}
---
These notes are derived primarily from @dobson4e (mostly chapters 1-5).
Some material was also taken from @mclachlan2007em and @CaseBerg01.
---
{{< include shared-config.qmd >}}
## Overview of maximum likelihood estimation
### The likelihood function
:::{#def-lik-obs}
#### Likelihood of a single observation
Let $X$ be a random variable and let $x$ be $X$'s observed data value.
Let $\p_{\Th}(X=x)$ be a probability model for the distribution of $X$, with parameter vector $\Th$.
Then the **likelihood** of parameter value $\th$, for model $\p_{\Th}(X=x)$ and data $X = x$, is simply the probability of the event $X=x$ given $\Th = \th$:
$$
\ba
\Lik(\theta) &\eqdef \P_{\theta}(X = x)
\ea
$$
:::
---
:::{#def-lik}
#### Likelihood of a dataset
Let $\vec x$ be a dataset with corresponding random variable $\vec X$.
Let $\p_{\Th}(\vec X)$ be a probability model for the distribution of $\vX$ with unknown parameter vector $\Th$.
Then the **likelihood** of parameter value $\th$, for model $\p_{\Th}(X)$ and data $\vX = \vx$, is the *joint probability* of $\vX = \vx$ given $\Th = \th$:
$$
\ba
\Lik(\theta) &\eqdef p_{\theta}(\vX = \vx)
\\&=p_{\theta}(X_1=x_1, ..., X_n = x_n)
\ea
$$
:::
::: callout-note
#### Notation for the likelihood function
The likelihood function can be written as:
- $\Lik(\theta)$
- $\Lik(\vec x;\theta)$
- $\Lik(\theta; \vec x)$
- $\Lik_{\vec x}(\theta)$
- $\Lik_{\theta}(\vec x)$
- $\Lik(\vec x | \theta)$
All of these notations mean the same thing.
:::
::: notes
The likelihood is a function that takes $\theta$ (and implicitly, $\vec X$) as inputs and outputs a single number, the joint probability of $\vec x$ for model $p_\Theta(\vX=\vx)$ with $\Theta = \theta$.
:::
---
:::{#thm-lik-iid}
#### Likelihood of an independent sample
For [mutually independent](probability.qmd#def-indpt) data $X_1, ..., X_n$:
$$\Lik(\vec x|\theta) = \prod_{i=1}^n \p(X_i=x_i|\theta)$$ {#eq-Lik}
:::
:::{.proof}
$$
\ba
\Lik(\vec x|\theta)
&\eqdef \p(X_1 = x_1, …,X_n =x_n|\theta)
\\&= \prod_{i=1}^n \p(X_i=x_i|\theta)
\ea
$$
The second equality is by the definition of statistical independence.
:::
---
:::{#def-lik-factor}
#### Likelihood components
Given an $\iid$ dataset $\vec x$, the **likelihood component** or **likelihood factor** of observation $X_i=x_i$ is the marginal likelihood of $X_i=x_i$:
$$\Lik_i(\theta) = \P(X_i=x_i)$$
:::
---
:::{#thm-ds-lik-obs-lik}
For $\iid$ data $\vx \eqdef \x1n$,
the likelihood of the dataset is equal to the product of the observation-specific likelihood factors:
$$\Lik(\theta) = \prodin \Lik_i(\theta)$$
:::
---
### The maximum likelihood estimate
:::{#def-mle}
#### Maximum likelihood estimate
The **maximum likelihood estimate** of a parameter vector $\Theta$, denoted $\hthml$, is the value of $\Theta$ that maximizes the likelihood:
$$
\hthml \eqdef \arg \max_\Th \Lik(\Th)
$$ {#eq-mle}
:::
### Finding the maximum of a function
Recall from calculus: the maxima of a continuous function $f(x)$ over a range of input values $\rangef{x}$ can be found either:
- at the edges of the range of input values, *OR*:
- where the function is flat (i.e. where the gradient function $f'(x) = 0$) *AND* the second derivative is negative definite ($f''(x) < 0$).
### Directly maximizing the likelihood function for *iid* data
To find the maximizer(s) of the likelihood function, we need to solve $\Lik'(\th) = 0$ for $\theta$. However, even for mutually independent data, we quickly run into a problem:
$$
\ba
\Lik'(\th)
&= \deriv{\th} \Lik(\th)
\\ &= \deriv{\th} \prod_{i=1}^n p(X_i=x_i|\theta)
\ea
$$ {#eq-deriv-Lik}
The derivative of the likelihood of independent data is the derivative of a product.
We will have to perform a massive application of the product rule to evaluate this derivative.
### The log-likelihood function
It is typically easier to work with the log of the likelihood function:
:::{#def-loglik}
#### Log-likelihood
The **log-likelihood** of parameter value $\theta$, for model $\p_{\Theta}(\vX)$ and data $\vX = \vx$, is the natural logarithm of the likelihood^[ <https://en.wikipedia.org/wiki/Does_exactly_what_it_says_on_the_tin>]:
$$\lik(\th) \eqdef \logf{\Lik(\th)}$$
:::
---
:::{#def-loglik}
#### Log-likelihood components
Given a dataset $\vX = \vx$, the **log-likelihood component of observation $X_i=x_i$** is the natural logarithm of the likelihood component:
$$\lik_i(\th) \eqdef \logf{\Lik_i(\th)}$$
:::
---
:::{#thm-mle-use-log}
####
The likelihood and log-likelihood have the same maximizer:
$$
\am_\th \Lik(\th) = \am_\th \lik(\th)
$$
:::
::: proof
Left to the reader.
:::
---
:::{#thm-llik-iid}
#### Log-likelihood of an $\iid$ sample
For $\iid$ data $X_1, ..., X_n$ with shared distribution $\p(X=x)$:
$$\ell(x|\theta) = \sum_{i=1}^n \log{p(X=x_i|\theta)}$$ {#eq-loglik}
:::
:::{.proof}
$$
\ba
\ell(x|\theta)
&\eqdef \log{\Lik(\vec x|\theta)}
\\&= \log{\prod_{i=1}^n \p(X_i=x_i|\theta)}
\\&= \sum_{i=1}^n \log{p(X=x_i|\theta)}
\ea
$$
:::
---
::: notes
For $\iid$ data, we will have a much easier time taking the derivative of the log-likelihood:
:::
:::{#thm-deriv-llik-iid}
#### Derivative of the log-likelihood function for $\iid$ data
For $\iid$ data:
$$\ell'(\theta) = \sumin \deriv{\theta} \log{\p(X=x_i|\theta)}$$ {#eq-deriv-llik}
:::
:::{.proof}
$$
\ba
\lik'(\th)
&= \deriv{\th} \lik(\th)
\\ &= \deriv{\th} \sum_{i=1}^n \log{\p(X=x_i|\theta)}
\\ &= \sum_{i=1}^n \deriv{\th} \log{\p(X=x_i|\theta)}
\ea
$$
:::
---
### The score function
The first derivative^[a.k.a. the [gradient](https://en.wikipedia.org/wiki/Gradient)] of the log-likelihood, $\lik'(\th)$, is important enough to have its own name: the *score function*.
:::{#def-score}
#### Score function
The **score function** of a statistical model $\pr(\vec X=\vec x)$ is the gradient (i.e., first derivative) of the log-likelihood of that model:
$$\lik'(\th) \eqdef \deriv{\th} \lik(\th)$$
:::
::: notes
We often
skip writing the arguments $x$ and/or $\theta)$, so
$\ell' \eqdef \ell'(\vec x;\theta) \eqdef \ell'(\theta)$.[^1] Some statisticians
use $U$ or $S$ instead of $\ell'$. I prefer $\ell'$.
Why use up extra letters?
:::
### Asymptotic distribution of the maximum likelihood estimate
::: notes
We learned how to quantify our uncertainty about these maximum likelihood estimates; with sufficient sample size, $\hthml$ has an approximately Gaussian distribution [@newey1994large]:
:::
$$
\hat\theta_{ML} \dot \sim N(\theta,\mathcal I(\theta)^{-1})
$$
Recall:
- $\einf(\theta) \eqdef \E{\oinf(\vX;\theta)}$
- $\oinf(\vX,\theta) \eqdef -\ell''(\vX;\theta)$
We can estimate $\einf(\th)$ using either $\einf(\hthml)$ or $\oinf(\vec x; \hthml)$.
So we can estimate the standard error of $\hth_k$ as:
$$
\HSE{\hth_k} = \sqrt{\sb{\inv{\heinff{\hthml}}}_{kk}}
$$
### The (Fisher) (expected) information matrix
The variance of $\ell'(x,\theta)$,
${Cov}\left\{ \ell'(x,\theta) \right\}$, is also very
important; we call it the "expected information matrix", "Fisher
information matrix", or just "information matrix", and we represent it
using the symbol $\einff{I}$ (`\frakturI` in Unicode, `\mathfrak{I}` in LaTeX).
$$
\ba
\einf
\eqdef \einf(\theta)
\\ &\eqdef \Covf{\ell'|\theta}
\\ &= \Expp[ \ell'{\ell'}\' ] - \Expp[ \ell' ] \ \Expp[ \ell' ]\'
\ea
$$
The elements of $\mathfrak{I}$ are:
$$
\ba
\mathfrak{I}_{ij}
&\eqdef \Covf{{\ell'}_{i},{\ell'}_{j}}
\\ &= \Expp[ \ell_{i}'\ell_{j}' ] - \Expp[ {\ell'}_{i} ] \Expp[ {\ell'}_{j} ]
\ea
$$
Here,
$$
\ba
\E{\ell'}
&\eqdef \int_{x \in \rangef{x}}
{
\ell'(x,\th) \p(X = x | \th) dx
}
\\ &= \int_{x \in \rangef{X}}
{
\paren
{
\deriv{\th}
\log{\p(X = x | \th)}
}
\p(X = x | \theta) dx
}
\\ &=
\int_{x \in \rangef{X}}
{
\frac
{\deriv{\theta} \p(X = x | \th)}
{\p(X = x | \theta)}
\p(X = x | \theta) dx
}
\\ &=
\int_{x \in \rangef{X}}
{
\deriv{\theta} \p(X = x | \th) dx
}
\ea
$$
And similarly
$$
\Exp{\ell' \ell'^{\top}}
\eqdef
\int_{x \in R(x)}
{\ell'(x,\theta)\ell'(x,\theta)^{\top}\
\pf{X = x | \th}\ dx}
$$
Note that $\Exp{\ell'}$ and
$\Exp{\ell'{\ell'}^{\top}}$
are functions of $\theta$ but not of $x$;
the expectation operator removed $x$.
Also note that for most of the distributions you are familiar with
(including Gaussian, binomial, Poisson, exponential):
$$\Exp{\ell'} = 0$$
So
$$\einff{\theta} = \Exp{\ell'{\ell'}^{\top} }$$
Moreover, for those distributions (called the "exponential family"), we
have:
$$
\mathfrak{I} = -\Exp{\ell''}
= \Exp{- \ell''}
$$
(see @dobson4e, §3.17), where
$$\ell'' \eqdef \deriv{\theta}\ell^{'(x,\theta)^{\top}} = \deriv{\theta}\deriv{\theta^{\top}}\ell(x,\theta)$$
is the $p \times p$ matrix whose elements are:
$$\ell_{ij}'' \eqdef \deriv{\theta_{i}}\deriv{\theta_{j}}\log{ p\left( X = x \mid \theta \right)}$$
$\ell''$ is called the "Hessian"^[named after mathematician [Otto Hesse](https://en.wikipedia.org/wiki/Otto_Hesse)] of the log-likelihood
function.
Sometimes, we use $I(\theta;x) \eqdef - \ell''$ (note the
standard-font "I" here). $I(\theta;x)$ is the observed information, precision, or concentration
matrix (Negative Hessian).
:::{.callout-important}
#### Key point
The asymptotics of MLEs gives us
${\widehat{\theta}}_{ML} \sim N\left( \theta,\mathfrak{I}^{- 1}(\theta) \right)$,
approximately, for large sample sizes.
:::
We can estimate $\einf^{- 1}(\theta)$ by working out
$\Ef{-\ell''}$ or
$\Ef{\ell'{\ell'}^{\top}}$
and plugging in $\hthml$, but sometimes we instead use
$\oinf(\hthml,\vx)$ for convenience; there are
some cases where it’s provably better according to some criteria (@efron1978assessing).
### Iterative maximization {#sec-newton-raphson}
(c.f., @dobson4e, Chapter 4)
::: notes
Later,
when we are trying to find MLEs for likelihoods which we can’t easily differentiate,
we will "hill-climb" using the Newton-Raphson algorithm:
:::
$$
\begin{aligned}
\esttmp{\theta}
&\leftarrow \esttmp{\theta} + \inv{\oinff{\vec y;\esttmp{\theta}}}
\scoref{\vec y;\esttmp{\theta}}
\\ &= \esttmp{\theta} - \inv{\hessf{\vec y;\esttmp{\theta}}}
\scoref{\vec y;\esttmp{\theta}}
\end{aligned}
$$
---
::: notes
The reasoning for this algorithm is that we can approximate the the score function using the first-order [Taylor polynomial](https://en.wikipedia.org/wiki/Taylor%27s_theorem):
:::
$$
\ba
\score(\th)
&\approx \score^*(\th)
\\ &\eqdef \score(\esttmp{\th}) + \hessian(\esttmp{\th})(\th - \esttmp{\th})
\ea
$$
---
::: notes
The approximate score function, $\score^*(\th)$, is a linear function of $\th$, so it is easy to solve the corresponding approximate score equation, $\score^*(\th) = 0$, for $\th$:
:::
$$
\ba
\th
&= \esttmp{\th} - \score(\esttmp{\th}) \cd \inv{\hessian(\esttmp{\th})}
\ea
$$
---
For computational simplicity, we will sometimes use
$\mathfrak{I}^{- 1}(\theta)$ in place of
$I\left( \widehat{\theta},y \right)$;
doing so is called "Fisher scoring" or the "method of scoring".
Note that this is the opposite of the substitution that we are making for estimating the variance of the MLE;
this time we should technically use the observed information but we use the expected information instead.
---
There’s also an "empirical information matrix" (see @mclachlan2007em):
$$I_{e}(\theta,y) \eqdef \sum_{i = 1}^{n}{\ell_{i}'\ {\ell_{i}'}^{\top}} - \frac{1}{n}\ell'{\ell'}^{\top}$$
where $\ell_{i}$ is the log-likelihood of the ith observation.
Note that $\ell' = \sum_{i = 1}^{n}\ell_{i}'$.
$\frac{1}{n}I_{e}(\theta,y)$ is the sample equivalent of
$$\mathfrak{I \eqdef I(}\theta) \eqdef {Cov}\left( \ell'|\theta \right) = E[ \ell'{\ell'}^{\top} ] - E[ \ell' ]\ E[ \ell' ]^{\top}$$
$$\left\{ \mathfrak{I}_{jk} \eqdef {Cov}\left( {\ell'}_{j},{\ell'}_{k} \right) = E[ \ell_{j}'\ell_{k}' ] - E[ {\ell'}_{j} ] E[ {\ell'}_{k} ] \right\}$$
$I_{e}(\theta,y)$ is sometimes computationally easier to compute for
Newton-Raphson-type maximization algorithms.
c.f. <https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization>
### Quantifying (un)certainty of MLEs
#### Confidence intervals for MLEs
An asymptotic approximation of a 95% confidence interval for $\theta_k$ is
$$
\hthml \pm z_{0.975} \times \HSE{\hth_k}
$$
where $z_\beta$ the $\beta$ quantile of the standard Gaussian distribution.
#### p-values and hypothesis tests for MLEs
(to add)
#### Likelihood ratio tests for MLEs
log(likelihood ratio) tests [c.f. @dobson4e §5.7]:
$$-2\ell_{0} \sim \chi^{2}(p - q)$$
See also <https://online.stat.psu.edu/stat504/book/export/html/657>
#### Prediction intervals for MLEs
$$\overline{X} \in [ \widehat{\mu} \pm z_{1 - \alpha\text{/}2}\frac{\sigma}{m} ]$$
Where $m$ is the sample size of the new data to be predicted (typically
1, except for binary outcomes, where it needs to be bigger for
prediction intervals to make sense)
[^1]: I might sometimes switch the order of $x,$ $\theta$; this is
unintentional and not meaningful.
## Example: Maximum likelihood for Tropical Cyclones in Australia
{{< include dobson-cyclone-example.qmd >}}
## Maximum likelihood inference for univariate Gaussian models
Suppose $X_{1}, ..., X_{n} \siid N(\mu, \sigma^{2})$.
Let $X = (X_{1},\ldots,X_{n})^{\top}$ be these random
variables in vector format. Let $x_{i}$ and $x$ denote the corresponding
observed data. Then $\theta = (\mu,\sigma^{2})$ is
the vector of true parameters, and $\Theta = (\Mu, \Sigma^2)$ is the vector of parameters as a random
vector.
Then the log-likelihood
is:
$$
\begin{aligned}
\ell
&\propto - \frac{n}{2}\log{\sigma^{2}} - \frac{1}{2}\sum_{i = 1}^{n}\frac{( x_{i} - \mu)^{2}}{\sigma^{2}}\\
&= - \frac{n}{2}\log{\sigma^{2}} - \frac{1}{2\sigma^{2}}\sum_{i = 1}^{n}{x_{i}^{2} - 2x_{i}\mu + \mu^{2}}
\end{aligned}
$$
### The score function
$$\ell'(x,\theta) \eqdef \deriv{\theta}\ell(x,\theta) = \left( \begin{array}{r}
\deriv{\mu}\ell(\theta;x) \\
\deriv{\sigma^{2}}\ell(\theta;x)
\end{array} \right) = \left( \begin{array}{r}
\ell_{\mu}'(\theta;x) \\
\ell_{\sigma^{2}}'(\theta;x)
\end{array} \right)$$.
$\ell'(x,\theta)$ is the function we set equal to 0 and solve
to find the MLE:
$${\widehat{\theta}}_{ML} = \left\{ \theta:\ell'(x,\theta) = 0 \right\}$$
### MLE of $\mu$
$$
\ba
\frac{d\ell}{d\mu}
&= - \frac{1}{2}\sum_{i = 1}^{n}
\frac{- 2(x_{i} - \mu)}{\sigma^{2}}
\\ &= \frac{1}{\sigma^{2}}
\sb{
\paren{
\sum_{i = 1}^{n}x_{i}
}
- n\mu
}
\ea
$$
If $\frac{d\ell}{d\mu} = 0$, then
$\mu = \overline{x} \eqdef \frac{1}{n}\sum_{i = 1}^{n}x_{i}$.
$$\frac{d^{2}\ell}{(d\mu)^{2}} = \frac{- n}{\sigma^{2}} < 0$$
So ${\widehat{\mu}}_{ML} = \overline{x}$.
### MLE of $\sigma^{2}$
:::{.callout-tip}
#### Reparametrizing the Gaussian distribution
When solving for ${\widehat{\sigma}}_{ML}$, you can treat
$\sigma^{2}$ as an atomic variable (don’t differentiate with respect to
$\sigma$ or things get messy). In fact, you can replace $\sigma^{2}$
with $1/\tau$ and differentiate with respect to $\tau$ instead, and the
process might be even easier.
:::
$$\frac{d\ell}{d\sigma^{2}} = \deriv{\sigma^{2}}\left( - \frac{n}{2}\log{\sigma^{2}} - \frac{1}{2}\sum_{i = 1}^{n}\frac{\left( x_{i} - \mu \right)^{2}}{\sigma^{2}} \right)\ $$
$$= - \frac{n}{2}\left( \sigma^{2} \right)^{- 1} + \frac{1}{2}\left( \sigma^{2} \right)^{- 2}\sum_{i = 1}^{n}\left( x_{i} - \mu \right)^{2}$$
If $\frac{d\ell}{d\sigma^{2}} = 0$, then:
$$\frac{n}{2}\left( \sigma^{2} \right)^{- 1} = \frac{1}{2}\left( \sigma^{2} \right)^{- 2}\sum_{i = 1}^{n}\left( x_{i} - \mu \right)^{2}$$
$$\sigma^{2} = \frac{1}{n}\sum_{i = 1}^{n}\left( x_{i} - \mu \right)^{2}$$
We plug in ${\widehat{\mu}}_{ML} = \overline{x}$ to maximize globally (a
technique called profiling):
$$\sigma_{ML}^{2} = \frac{1}{n}\sum_{i = 1}^{n}\left( x_{i} - \overline{x} \right)^{2}$$
Now:
$$
\begin{aligned}
\frac{d^{2}\ell}{\left( d\sigma^{2} \right)^{2}}
&= \deriv{\sigma^{2}}\left\{ - \frac{n}{2}\left( \sigma^{2} \right)^{- 1} + \frac{1}{2}\left( \sigma^{2} \right)^{- 2}\sum_{i = 1}^{n}\left( x_{i} - \mu \right)^{2} \right\}\\
&= \left\{ - \frac{n}{2}\deriv{\sigma^{2}}\left( \sigma^{2} \right)^{- 1} + \frac{1}{2}\deriv{\sigma^{2}}\left( \sigma^{2} \right)^{- 2}\sum_{i = 1}^{n}\left( x_{i} - \mu \right)^{2} \right\}\\
&= \left\{ \frac{n}{2}\left( \sigma^{2} \right)^{- 2} - \left( \sigma^{2} \right)^{- 3}\sum_{i = 1}^{n}\left( x_{i} - \mu \right)^{2} \right\}\\
&= \left( \sigma^{2} \right)^{- 2}\left\{ \frac{n}{2} - \left( \sigma^{2} \right)^{- 1}\sum_{i = 1}^{n}\left( x_{i} - \mu \right)^{2} \right\}
\end{aligned}
$$
Evaluated at
$\mu = \overline{x},\sigma^{2} = \frac{1}{n}\sum_{i = 1}^{n}\left( x_{i} - \overline{x} \right)^{2}$,
we have:
$$
\begin{aligned}
\frac{d^{2}\ell}{\left( d\sigma^{2} \right)^{2}}
&= \left( {\widehat{\sigma}}^{2} \right)^{- 2}\left\{ \frac{n}{2} - \left( {\widehat{\sigma}}^{2} \right)^{- 1}\sum_{i = 1}^{n}\left( x_{i} - \overline{x} \right)^{2} \right\}\\
&= \left( {\widehat{\sigma}}^{2} \right)^{- 2}\left\{ \frac{n}{2} - \left( {\widehat{\sigma}}^{2} \right)^{- 1}n{\widehat{\sigma}}^{2} \right\}\\
&= \left( {\widehat{\sigma}}^{2} \right)^{- 2}\left\{ \frac{n}{2} - n \right\}\\
&= \left( {\widehat{\sigma}}^{2} \right)^{- 2}n\left\{ \frac{1}{2} - 1 \right\}\\
&= \left( {\widehat{\sigma}}^{2} \right)^{- 2}n\left( - \frac{1}{2} \right) < 0
\end{aligned}
$$
Finally, we have:
$$
\begin{aligned}
\frac{d^{2}\ell}{d\mu\ d\sigma^{2}}
&= \deriv{\mu}\left\{ - \frac{n}{2}\left( \sigma^{2} \right)^{- 1} + \frac{1}{2}\left( \sigma^{2} \right)^{- 2}\sum_{i = 1}^{n}\left( x_{i} - \mu \right)^{2} \right\}\\
&= \frac{1}{2}\left( \sigma^{2} \right)^{- 2}\deriv{\mu}\sum_{i = 1}^{n}\left( x_{i} - \mu \right)^{2}\\
&= \frac{1}{2}\left( \sigma^{2} \right)^{- 2}\sum_{i = 1}^{n}{- 2(x_{i} - \mu)}\\
&= - \left( \sigma^{2} \right)^{- 2}\sum_{i = 1}^{n}{(x_{i} - \mu)}
\end{aligned}
$$
Evaluated at
$\mu = \widehat{\mu} = \overline{x},\sigma^{2} = {\widehat{\sigma}}^{2} = \frac{1}{n}\sum_{i = 1}^{n}\left( x_{i} - \overline{x} \right)^{2}$,
we have:
$$\frac{d^{2}\ell}{d\mu\ d\sigma^{2}} = - \left( {\widehat{\sigma}}^{2} \right)^{- 2}\left( n\overline{x} - n\overline{x} \right) = 0$$
### Covariance matrix
$$I = \begin{bmatrix}
\frac{n}{\sigma^{2}} & 0 \\
0 & \left( {\widehat{\sigma}}^{2} \right)^{- 2}n\left( - \frac{1}{2} \right)
\end{bmatrix} = \begin{bmatrix}
a & 0 \\
0 & d
\end{bmatrix}$$
So:
$$I^{- 1} = \frac{1}{ad}\begin{bmatrix}
d & 0 \\
0 & a
\end{bmatrix} = \begin{bmatrix}
\frac{1}{a} & 0 \\
0 & \frac{1}{d}
\end{bmatrix}$$
$$I^{- 1} = \begin{bmatrix}
\frac{{\widehat{\sigma}}^{2}}{n} & 0 \\
0 & \frac{{2\left( {\widehat{\sigma}}^{2} \right)}^{2}}{n}
\end{bmatrix}$$
See @CaseBerg01 p322, example 7.2.12.
To prove it’s a maximum, we need:
- $\ell' = 0$
- At least one diagonal element of $\ell''$ is negative.
- Determinant of $\ell''$ is positive.
{{< include HERS-example.qmd >}}