From bd3b5f7731ecd7127c437ac797fdcae88da0e851 Mon Sep 17 00:00:00 2001 From: Douglas Ezra Morrison Date: Mon, 27 May 2024 13:02:27 -0700 Subject: [PATCH] Built site for gh-pages --- .nojekyll | 2 +- Linear-models-overview.html | 4 +- .../figure-html/unnamed-chunk-104-1.png | Bin 86790 -> 86939 bytes .../figure-html/unnamed-chunk-98-1.png | Bin 44699 -> 44503 bytes Regression-Models-for-Epidemiology.pdf | Bin 3013154 -> 3013802 bytes index.html | 2 +- intro-MLEs.html | 2 +- intro-to-survival-analysis.html | 3242 +++++++++-------- logistic-regression.html | 12 +- search.json | 14 +- 10 files changed, 1662 insertions(+), 1616 deletions(-) diff --git a/.nojekyll b/.nojekyll index f38b1f54a..796047ecf 100644 --- a/.nojekyll +++ b/.nojekyll @@ -1 +1 @@ -fb006b97 \ No newline at end of file +55f3eddd \ No newline at end of file diff --git a/Linear-models-overview.html b/Linear-models-overview.html index 981677402..94bd64fe8 100644 --- a/Linear-models-overview.html +++ b/Linear-models-overview.html @@ -3926,7 +3926,7 @@

Note

full -6.900 +7.071 0.4805 0.3831 5.956 @@ -3934,7 +3934,7 @@

Note

reduced -6.581 +6.767 0.4454 0.3802 5.971 diff --git a/Linear-models-overview_files/figure-html/unnamed-chunk-104-1.png b/Linear-models-overview_files/figure-html/unnamed-chunk-104-1.png index 222915efa265f9717229dd919c49fe5ffa02615e..f7e5419346c8ec408903967465e6f7f35893854a 100644 GIT binary patch literal 86939 zcmeEuX*`wN8#WtdNMuNvCCQvJ7j`L>gbdrP$UJ49hkYuFkP2l^<}t%Y=46v(o-)gj znauO{u4l9TJLmL%dB45C-}!LP*=KLh^Q>pBd${iFzSerCd`FI)l%5n150Ct&{Pnwd zctmhKJc26XBjB4AllC4wJi_DVGBV1RGIBDuR<`!45APcp%Ng4k+nXERmAi(ACl(Z> zu4l%mP9qidF`wsb)1!{$kL1_=tf`T3{N&X_?$yG_6CB1Jb`GCmw7Rl)Zh^IS zuzRg&eb00zTUieO>A;iknPOkhj2Po#Xwi9kzJyn|zmRkrZjjVmwu)vQq56!%L!64G z_?6fEHuU0CgB!f()1PB%`ko%0U|-WFJnHbPFZhaZY8Ka-h8y)F8IgC`+shwq`xM?7 zu&n8Oq!f~W!HZ^ypm;5U+dlkK4k&dC~;tHP2^iF45g0o@5emm3KaHbm@dfic}3EEjHrXt^r>W zO)ZC{pMLZ)$1fM0c2>8X5ixIxM_!84kvx7;#0S}pZ`8VOITwI#?pZ2_0hGI*z}0b&e(dr z^h?Y7^_MK?d`1Vyq<%Cx#M#H$4f%f28|Jq+us5({afp+%=x|#QvYgL(pG*4FJVK>E z?wa;@zANV+Jdv#aT>U^nX_D6OG0A-acW2QI>L5D3(j#>rY#(HJW%|;kIn3H*=6C&& zR+9}s!s(ejx^Ri$j?L&}_M6hD&pfd%b$>j!n(XYYAlaLPtaVtlxS_Q1Ld;n6 zrir2=9yj<*jEC=Ujz_^aF+o+S6achWFcv1 zHdSr`^!E%wMbWlrxwVn>XD_I!-Bm67fzL*+_*zZ*-rjn?g)KhCL`k!_N6xNZT(e0| zes_M?@=iswge8;rww9$ZO@QhfVoFxHFCIRO@b?cdWRT3_&u_~A?MvLBeIYyxpCkU$ zPh%Qzm{5@(&xOC=ZT~`W5y5{Kfrzlr#7BK{tF{LN#t|W`1i<)oL(4D*68amqXmAwg_<;HRD(`g&uOr>7!&PlniOip&^7%+No{8-F(Dd*uY zUukn)MAMZPA?Gsnbmtz=BzG?L8cgj~FaK-|tlZnK4CyZWDZH4DDCZtrD=b3ORs4EV zyt~#{dQ%4#!>@edM5+TaBd4N7`L^rHfJ!UHinZ@XA=Luji-D1M-FFu2$ZWlrqoSUt z&`dnzjMa3-Y)+uniC|k9g=?R$FkfoRK^CVE-)r$ZH<=@H&&ffhZlhPCc1B>gv(f)~ z=2ioLY37G+eGlR7q8&DW#=9Ghw%)4bjn+;KHA$7)<@t_=pX!)BGL;!;3mS%U^vm68 z0|@*ia*0F+^kC#^BX^qf(tY7!q&wX{y9gR;q{^1C>w4)B(<@G;U@5Py8tbBga4(*f zHU)tj3xnmOr9-djoCR?woCN_FV=ME6pn_Ei$?HKK-@vnFaHLPYL0g)M{Z=`$l@#e9I(=6*dU|@p z`Tmb~U0SA2wvRgXwUF~)%hDs@E@U+R%XCMMGrsX!ZhtQqa!v5WM!>lNyE>*PBje|^ z-mWMr8ySuAd{yf^IuYmNz1f#pxm{YxW7S`5=YQ_xUi)3K(dU=G8e=x&_T2o(JGUMc zV^#|8_Sitqt|u)@nqZ{?eW)ao~|(O z_d;u(ADubgPF;hqixod_M@8PfTi~drxEM8BovauY$*mzA2R-j|(;Ki%_WR3(csCr~ zzbhv*@nB+Xeu#|hN!h$Voq?y_<{ncVW+lbtX1Q@gc(q_1qbmP4WF`^D8TXOJD+u9P z|0#tr%F@ z@>=j1(uo~%J12Q6O(=|ClxtVldZB30-O~B3hXulJ#WeBVj-n!(z$fts#{8Dd4vW`H zt5t>e-iZiIx}Vpjkhw` z;=?2A(&L*krtWLAr&FTsZ*7i_s9TP2T0~=Sw7VoHy`{1IMqGfj=R%DgNPCyocEy1q=JEyL{fMwBMpc zN#2}Z!qLpUkb5XZa_#&1!7}MKNyW86j|G!H%>bTV{IFP0gT`0IXI2pF3-8>nn4DF& z>ueI#_bK<}y?wH&{^q+G&WW*zbr~NSr(FypT`*_+#|t(Y!<~)A#g%p?IlIT&T>a;U zilmPuZ|@+M&t@|(K&>Lp zdLwfS)KM8ZN(HHbgl(cya!gKYYZlpG4KPa)<7m~CJABQEnQz|Pb99{153l7ndW<~d z9GNd&X!=^V7-VZDsMR}LTVnPOtTo-7MQP@_oVsInon2t)ofX=q`F=LSxhQ zBL{!^iM}?m+|tuUb$X$?3@9X5l#fJX3=BNKXy$+K3#qz;2#Q={yGLjywWUHsOC=u> zvbR=L8RYnI2bjhwmq9nv!toKs+R?3<9NR^>);kk5&r4A35qZ3~)@K{C0Bm}3XSrE! zG0oX-b3CF>PHHJMpu1b0fd+xNiAat;$W`gzq=wXWS`G9#^xnEJx$@q=IFkMi)4KoF zfcPp63o+ePK(%VK)V0nY}D1|*03>iS8>(r?}&RIe0uogq!;Z60V*owjmhZt%1i(2mcp1dW3%+EUXwReI;(tF|CLheqM? z%9*3bPAO}ayE{d64QYiv%gBFl*|ZeQr)76G-`*e%i+%r@TZ>l%$CqqMYxa|8T8%!ZBdNC{W`CG6aoT+=Ds6qe4Bvl|8i z?X-iPx<&IsC!c#L2 zTn2_%Gm@Uil=bB2WX?(761&Ap%uHqYo{iF@Q&Q_6o1Kg-xe=&hZqpuGo%C@G_u!?X zoy#k=q7}I}vH=o!-2h=MzHmgm2naTo@8b&cqKKL#*ZY_7e|@{uJo~dtEqN;?);+x? z$Dq<)7v&w-{xYEW78PnSwj1+xRFHj6Wh6alDB~{AD&l6s*3hy$FAZXK!K1H8*~dCZ zg=tx!eC6&B0+tQ<=E7>Mq{qqZvZb%nX1YhU*|LuhJAF=fo6H$8o*f^04<@SY1{xhm z7t!GJ>k*4pZW#>4Hq0C^{xJ-BK>~4aX{>&nl-cvwrzKCm=GpS~!5&Gtf?y)&(8PTz zg!QW7L0mC?mQmJYCdp3VD*rkj;AcE19yw4~^as)(# zkdb@Or!CAFbl9^+{&I3yEL-UYA(Z*EA9;gN`z0yu$U=cvu}Sy8`onWPAG49dtf|ir zl3nunQpX;0g~}Y0W$R^`&+y&0a`$UPoX7mfB~Mi2mE~`jLaE+zW#4>t4!t&Klb+Ql zK!;Gh7PI{pvz1}XH|y^vY4Y@c20soU2!^|*e6N?n(o&jtj!#Ky^TE#U(4H5Kz~@FO zC_N<}ZGO%mnyr?2ZV0WeGZ0>cp}%Bunp1;gxowY{Ho~UX2Z!XeL6Gr)#X2LMMY(o&X+7vZdgsif)@b*-fH;R@G)b%Nn4=X zN;)%Z_X0{p^1IFK_uTQy))29gr`6M)83ywm^fA;3YbRai?U_q)o3}UDr|YCKcKJ+q zcVG#+Ym0R(wuPBbQ0&808}tgAmNv$OZIm0Lkr=cZ@E(0xmk`RwgUO>CZnNi5P+a zNPvOZgG!gFgi41X4S>9n`IE>P#xV;mvelPDrYTxnF+3xj0-aQue&3)U zqxm8NLUi2?6MtDq19Zf+-fgiUFu^~OZ6W5;1KGt60EX(A?K0OMk9UzdEfx(JzWq|F zYz^^}@3_fV?>c~?NvBBTV^SPZjU=4W${5L=))4OkhZEA>AAD1)x*txMyVns0tl#Ci z{q|y#=R=-B>cn4x20IDLWppOaH+L3%_O`3HhxRZ_OU#n)G?;aty&|J9=TE&*wq%oJ z%iAbdc!$W*e*%iZl$P(`-*oPzNbja8GoIEyAH2a^7v{Il8E6q#L#q`xl{4R`y6paq zvfIF?$O5wPe}e4q6r#3+x?*E5WWM^mX8~^gBuzD?aM}rE;L83V>LQ%kh_!bBg2b$Z z>)3E5j+t&%+HdtOBn0wv)5OK8K$RcaRQ&>a!tAxr(Yg>8gYP9ymg~YAjkI(x@Uq0x z$h%&`7k}10c^@p1?)id;iP!~TL?$VQ3-{nZhA?wO7Uv3}`tHeKxyJ&f3`i#~8{+85 zm*%LI#ykL-T=uAbuD)T*hHAQ;-f8So%uBf>ZO!?2Rua$w6qC#G(^~##E zn`c|iNBCogV~@W%yoK3gHuv*FZ_}QO)UPT6vZ)0=)d~<^mpkJU%>CgdLX)6y<2%ME z_R#;)y{%DpCSoP=@z>QLBy|Pzxh!z|fO;yA&{WmudQ!t!PWf8zy!E}ymUM{AKT6C| zxY9Y<;H9%hMrAKaw_*mA^v|O^6)&q@&ge7%rEo%L8(&)FR%y9#oVvp`MO{=FUZbVY z+>WK^`hW{v!1_9`fwzyl(|-!0^Ob;z*z1BM+U+7}k0{wiib2$g9Awb@)A)8h6d6}pbGGjbf43k&mXXpdY@PtZxE_14XMx6K(LcnF6irc8+ zGz5G@YPMgevL(RXsrgGS9j|wGz9K4K`YYGq+R%qQ(hO=@=w>NYM;!|9meiMfx`9t$O)exVgg?pY+k^NsIWrfEZ!KmVy zmh(ma`SMWLLmk9oZFJ0g^Mg2z%%+iFkD!5Qzct$lOh{xx3B z5Al6{3HXG>YWi?k!BTRe{6Y65^(HdPri3e;Pv@lQpsSH$p}~9XSm7Q-Z4o{S5&U6z z)&lXX#A+XX3C+S>Ui`$pYRRp5<@1i}>eFo4(W`R}>uQD#B&ZNdfWh_Nzs7)@k};Y1 zckkF(kWc@@&TD~6yyJ1+@*+DYGzn#@Jv0Ritc|!Sa15(@&80e0JQ^Hm-k$8F9)`O; z+l%=IHJ_#FVL-@SLwUOqfIA4X?kiN6Q7u5?AxX*PeKk&X{KUN$ ziW?%0<&{2_Pp4;C2ouho!_M~{m1dc%9RS`}nxyx3oU?2>V1(&9U~NmbYc*^ zOqBcTG=GNb4eSu&=?U9tDW6sdE#|Ot3F`)t+Xptrs;mmTWb*AP zs9bBOQsVSg=ejhpFW;hq1gnhh|LDM89%W&`I?!~lJy|h}^g%;7Uuy=UVJg?p&+i4R zEv>owNsEvE8F@YQHxBPP zixY&=Vf&u^@q}ja!~5SNg?aePepUC^oTY>j>Ysdp=haiqcwpi2*+gxV5kg^uGxRdQ zpa&`=U`Y-JQ{~xz(eWZBC;^Imbm!!mfBOT{opw?^2N@WJ3$gd)kbvbgW_iviZeK^_ zeFpnl;&i7#{U;QgIG7NA+UIiY_V)`hV7= zFd4sN^;c<7Ox2(cXHk+|Rihz&VnXn7ebB?GGhJN}6gFbRz66nceW2&^-DSutiqGgi zh6t1}Lv?4)9<1P@396M>*_6(ml<_}qof{J(wPmJZGF*ks)-_jAK%O0DlV2k^SUB9= zVGY(E#FxmvY}!-*o@{&&me&6CHQ_%minoR}Lh^dZ-mNhr;30qf+Vjl-pZY31SMD4PJ#9zh3*4r=cQ5Fx@5Ss+y-K*bQ3~Zk#2i{F3H-B3^t> z^FHovanFOU2CUluWp;T1jUId%VRrb8|9zO&1JgISj<-mSOOJ=^Px&PmM5W)ZLl%-| zYUL+qWt>;qUuw1w&U3v`e~aJn1elb|q^_hp!ORCvLrC0_RkgFZJPH~nAv`%{7n=Zu zR^mh{2E9{9T-69V&?RmC2U`O!COMsf63dMekXR(1X}-a}-*66WiuCEVca%vE zY!QVdSC+o8=h_UEXyg=l?`~;?4FEcu1Fpl7q^tnen2$v34la@(I>HA9q-f=4NcMX3$JP76M3L-ulUI_%{q`i!5+3A$b041{IYVIvdc2th@C#N_da$9$rE%Iu z%E@?ex1;!3xN&_6ta^U>Qi5r7Y>yXwnd+4ocJV>f1YN|F4iim5D>i4~tUlmnHfK~% z;4Gw<cj752ieo9SO+$nrLwc z!`-b_CmNJ8c46T)AR&zAHSh*gkUkGJ`=)=lG7{y-_?|V591oN)T$jH2I zdg4S|c8{b33D1#us`B*E@3JU=PXrpTH6CMw=$PESk(y_am7W6Ri}zntB=|665Lzxi zIej>gdZlgb-*#kFftKX7u%jLImvUc)VTU0!>|Ze)WWq`?XRCedXK+UOKmTTZ;Q{X5 z?~;p$bECuY0T0aqYrDHv{^bw9jR8a;w64bsKNu8zhA>>ffO)hoB!ojDyugMiY2P&O z5dIdfqpzPm1|uv4jLv}m=PTHW0#!vYkxj`|vSy)`R=?|LkW(hBBXrMHIpoUtP+O7$ z2Ye=X8LdkP-odH0@h{x_74Rybr_tt5+>gW{PC49%;*=9uV(sn$0oQ|ZRW-oK$;k!w z?gj79SSWmoQPVx=ean+u@%(_fn@NZwx_MxNW?J{YzUH#)x2r=Jn73>5XCB-;6kf77 zk$Cf!;nvEOc)+dmgv752-NQ`E4*j8{sOo#JktAMPg$sTw_%_~#NcQ=u6M-lB()%`u z?yxQZjQ_LTA1(K<@B+O(7)0^%6P$}5+7z($1sFea;U}|xk&WKYX0uN)5JE_Ktj_g` zLZv1IHoVq)INO@f9U8`OA9^`K$s<+doPz=pw0N!8(g?G&Y1b^detpXgp$dd4BcOx# z959n29;ZHC9$XCmb-hH-d@~w5O}`lk+_#Dc4AH>6jVtcTVh#1;69G>)sLx>XDz*<% z0g`O-a?|Df?l6S@X(&AF+ShXkI!$-X1-`|Zo7(Mrjgi8TYAC?E*>B%2vWPSFN=5vR zGto=BcQg;c5Lw!^fWb6?&`RkPsImi0f@=~Vk~tg6>4nZa4|%Omwx=j1CQg9Rm`9+nMImowWCS!E z;yMCBrzEEmUl{_bUeK~DbE)tf?sd7@USuna11$`@*P{E+x276~uL`eX*UaMDy~Po< zpxe@z*m}Ri=t!VI_A?PgLMRvh7SI-<+*P>@S|ho}MbE-@*pqG}NI*HBw*sZF}dOR`?pSiUuR~M0^^ByRUC;8nJ9^G6JqVl>eD1F0yfR zyr^(hYzHkD9@NdgeIP8%_TmU@lFAE^JQRgWU_sGhc7}}hU)cD9@w|S0I?7&t{K~H? zUY1tfPV*`R{iN|3WkujOG5rkEpl3b`2={u6O@E&a|JlJf>(h7Q{KA#qTwwEv@m#83 zY;vi%r0`d=ZBp{>w|5aT%a=c9SjGO`8al$Ta1dl?pFqKszO5uK$q$>5t|f4smQ~pr zw(4LMX!Fvb#L--1Sw)U1ENH|^VaZ|QT*`?!gWYLFen|V%HX*fv>$s5r8V>0Be8r@O zuG{-TJC^X)L`B=j53z=HJVUUFV%j_%x|A2{gk943+9)9Ul}>iZ;!_Tnp9Ezb-cMTW~GQK15masK2!2M6YKW#EwA0%pPWju zjB+eqjv@gLmAh+!11>|7ZS6k`t$L`qw6x{C1wGKz&FXL}C^8}$NgyAFdd*_Mhx={#<#xGgU>x{b z1uw62R{9JRusj9)(gskUF@Z|RT-AEY+;M7YGj4a*bP>ohuC(n+E8=YB78%ri8d(eA z$xdBKwhqC*f*J}=pD1M6#f#99k)@xc(Jee(|aohb9BRmG1w?KS5 zZky}4*S;dO?PxD};Om|22S7xUubm1T#9Kb@SFaA1`A#sx5^aEWGthe)LtjGK*~=~N z-+I;q#C7iy6!l7-t#1^W8vV^y_7^*n>II(lt)#!=0Kl|f{Pmf_bRAFf$75>l;_>Xh zj_!&zRPoqL1;f5VYo=^RAZyAsLS z%~LZovxj@lhjkP%Y@oQ5fGEocD9=e5mH=DNQHI<;n^GtHtgs=^q~6&dieU>3I{WE6 zjOusnbIZETdEZYJiEl@X2?BA9>4!UtE8((KW~ILVtf+y^0ZT|;7Ysr1o~x(57)^%%HRdOBmE1<_?+bv z6!vj{H`xw-y@M&rOSoP)4!hIr43uLsr2481WepwiwuQvM4b;1dS(e^grfu-V1Z85LA};~xu1_T0~M?ysl2a9eVZ4{ z+GH!c2fS@O!hjjTiF$q+1$Hw}0$$jR4 zCU}|{1O;4p7D*z$+|+$Ec>N_VfP;;8Bl*Lm0o{{_2olzF_ydf0{0Pd1(rDc$e~2H% zj$wdmh~eFZkO5FayzP7$I}GZ}-|Qa;;b#DnzTD$J-H{fm|3@@h0uhKajh%-Szcy0X zva9CTkIxx}UiAAlpoGG`xn7i@<75lS>01jYH$X2PO|5jL^~{ZT%1=#W-Oe33cB&=4 z7?j#HV6x2ZN=YeGg+W%-o)Mhe&(DO!jxYa3INV7`n_yoZzDmNYUnX`Aq`8S$4;x*O z|2n&?Vzdh!r`j|>+K=CfbKa@LO3Mq2%Cklp@`zyS|E8MFtgODJ16{Y1i}2NQ?6k$} zK=ieF!GkH??|eaKGD+`cg95-4veCjKHvMmc@aBdpeITtGUpPo~j)BHBtjdAF*iqjt zdk^{OgJ}hX3E+Cplxs(7WNMxOoO2+-aWU4~5SAezC?pxvh~Kic3e|B(;y_}$0+wHR z)W4lkvUS4}^11kBqJ0##Y^g?o57XniM`(ty$k_KfPz|DS#J9;he%6SI#XeP>T3iK+ z9!RPkItVi4m=dV(e7v}ElmNUG+us79+_|(1wNJ~Z8Xr*GD8|1Ese#@N*izJ|+^2t! ztNT!(7X;(1IZV6z9|9R+DCG>3!rlbMUJ**T`ZIPgOaL2prwE#;1-@*q-pPv#ubCOS6t!R-f8a_z$ z9Iw%XB5)t2{%;bYxX%QdK3#SbWHEp9oP8S}1nagu_<7_HT|(tLux?KMo7WBpaky;z zV?!$Vr|Y{EZT0)x%dgPm|!t|4r$^88$d8 zsIPk|a3ec3Y4G7o7BDHBQjL2!lPV-x0ep$hJEb@&YaJEyea9NbVryN^(H~|~fU_o9 z>76o_J~ZBrG#trlw>6d0o#y)i^0#<>qW@=-b@nBtKG+a4>;0ZjeeGatj}CV@A0R0P z-oJbIPTiRH46s!&6W?bH|5^K$=ng|_b_fWLtOhenN(4(|HUezBkC2Sr05MuXlI!?^ z7vNSOz~Hrhhh}I~RUkXO2-I)pgl2&8(Pkuyl=V)|5ChfrKf~DJWOAQ-_=U~?x;sh; zV#jkqYRsGkuBXjyBaRQ_BX%YAB!i#)yE8vL#dr~S7QnvuE0=?+OrZj_q_~n+&YX?B%%loP_w`Ie%*&aaf zBE|%->{m@lz2Bqr5B>&C;0bf2YP|R*ppDk6-eQlN7Nq=pgElpHx&0eX-`MAP75Ycc zDht49Z~C4jeR4|FMmO4ZP`Kt+iQwfG_12ZYfw|4cH#)4W{+iT0O%k|rp$9;X@*JPt8L^*lj0{14*ABENYa#LM#=wF%9n@&_`Wg_4Gr`|5 zBGQH~^$W+ZW~pr}UB}iNc0gNL2Z{;y-JRSJuS~{%z_Gmd*~5&-MMZ8x9NCmHE-n8( z$R!bSzr=$m8bgq)ORZE(1k4oHj|>#sjq-OF{r0@yhCX)!dNSaDbAj5?d9o8I-Pa0+ z_8SDy6|_{E6`pR-S)`@HdA07o-8r_Z zXwt*wR*R@o6dj;}pc;d1nc%k4Jtx#1ED-aBPmm-E?1l5|MM@5D>MghUqlC02Y*m>@F zzfWe%5eQO$$%o(IN7|B_fu&jWm)>FX;NAhX4NH`$ZSd7cN6^r2B504{qvH~(X`P<9 zt_y36B1|>;_OmBsbhQBfm821+AE+nTe-pQ?3&FF%u+!ma>Ugf!O|U&noWEjY6 zpTVa?Mb6kb`A$qp!^M+_OXe7JK#9*3cVhWI^|KIdpb3=Ov?zI1!0#u*ZwMeO0dos& zC3#N9UmV{vW=c8?s$VaWlHs!Dri=$y3UROfzr+OP<2*Q8);BpcE+xiU`^v`fqn=t1 zAcY`jlAitWIWHv@V#q<)A-|hkw4X8qk<;{550KKKU!(16PmjyK-DgsN&l*q;i_ah`7=9TJ2n{SMt8dz$M}E^P6jT=^*Xy_PT9e z8O5Ih1#1g4GC&tr3Gw5zc@246(CzA!yq8|-os(952W|BPTisfhBp5_(or0v*VJvv5SV?pw)m$^$A=&?6kE2 z4Nq6*l%KZxe$8KE02NocK+`jC`xGpbvK@5Sc7mX`*RswP^G-RIs_amX$@DCdPTe;z zDCunzLhRfWS204*Nqt@T+I}$`&p>!mK%eomKSjuLvvehc1%d+~7Q+XHvrElaUZL_0 zD!sFqceO~ZfLfr(s^s|~j`C$~@q#4@Bq~s3%vOY_V%ze>j#=;$Sc3BT2NX8*y^)== zzHkJw+F5+iVD&e#_5vw*G*ph+T(vYpz#ukE8W1CW1+mrtSib#9GXqY#9|~u*<=clL^2}z4dJTES?I3lskvv!+x(4U#-N%d!7?-ny7=Oj~mKxk$$3bro448lYUTWUZF7)b5HgMRU%q=S~MrmxD?F*@A#1Y5QEXqRyb z{O=AJK%!;^?$QbZ%@27BVfxF?vpn?04omqUkS`_)cyW0Hwk}*QxWbTw-R=v|R^~+4^1yaaxB9Ph? zm7EQ74R5U7iYNnMwR}7>>~PLgxsk7TqCty0F_ec+_u*A_l%ml-elo>kpf;HpRhv<0 z^Mk%hCy4YBUgB?L{}K@ex)ZL;A;~FUQ%vK8M3YV=n6thG$-jv%RURfZFq1E&7$boa znmH^R;{6EsHB^?VQ<3|*N#ZP|q8oG>{C+@7K)SKw&7V<5V_!m{epq;b&K+Mk9f{f) z*Dq*?xaj&@(^#(Ns6R(p7gFHa5&*+2NnV7u?LylYU1}3;4(HRE`1QP7xNO$`(N1tl zlEl`Ssh2DN>j^;_9kh3zL-Dld)sSuJTp^Y$g}6z`e~wE`#(xJi#q_7U&vD)nc@mgRds|gDPHx3zl}nY%00l(I&x$7#0!IK{9s(3zviq&M({><`@eS^*19<3~ z81Z|2JS$z=td9+gK#~gp*3{sUR3NChLk;G51=?V-($S&^@<}}30E6RbZBVK9z{H<} zR|Nb9Rs59HX^;|aOX-!h(?AqW(pvcAAE!RW{xS1uzzMo0dLScz!>EU5!>Y^&qje+o z1ne2;I-$W~2d5wgk$u++7YBcLNnfxfA1qFZ>*9zeutSLXfVKgq0LSj6V|2z38N<1=2u>4??F z*yJH89q6Q?)73LZ{1|MW0`|KOm~Tn^CdvQ}s)LbcAB@8lu#2@P1Bi13fj9<|7=aF# zRH(NIj#(?YR%QLX{(P0hDJ}R@NaSw3|*#sRbGNBw&yq zcw(00n&;V^K&Uo;R<`L+Z)$3c+R6m;K@ zuOkL%!<+Y!1oAi;*vG|Dn&Pol`guQdPTyo5*mG!0yeSBnPj^zCOu}hdXbe!3oWEo; zL2T#OXXwO^P;bolIw=j=+wAn)>k9^$k7;j#gm5%e-z_EZI-17EOFIVVim; zBy30%vE;>vWkI0?YvyjtKj-qg91U8+=gE8f<-h3J6w98x0($9o)g+uXpqHp;V@Izc z4cOgT4g5z($OEAEA`nzib4`5&lfe6|4Df97N(p^sZVrX|^n&hfH#yOe8mKE%Yux&e zpe^1Ua#_`jwx9~LF7eaw?gao}BRn(95Xc;KMGW&_?_2@ZN?vF-)OSy;F;!?+5Gbd? zo@&su19dB=CWK1Xh96Nh@jtUQ_d1l4{pNBV09RARKRQYgygJj}oj=NNvzHGx#{~B$bGpN@4?mO1bLMMwfLWUA5>)`At0b1=}qg;W??YE*b zj8cA`bzh@^bf?h-?MIMOvzTRaqTY}xNz&>JiHVb<6DN3*M=oiRMl=Okb1H>YcV*>h z&OU-T;JGmjkhs<5(Sxk29~!yFb-bRR<8J%sl>N92!2K-}h&u9skE$c|)YBAuk7Fk* zl>`ZP5X)`(Y;R7)8Bou4epw^2y1X6z)SubLdAwS{CZKwJ$g1%96BK7lGNIY6VoA)# zXivt|M?HYP-GFuMwu2>P*=C8V`8BrO{-|yPlbd%AIlk_hrz=yQ0cn>$P6vcO!qL1jvN! z4ef3F^jM+;Xd7v>dW=DmXz0ZNJje>jzm9ieB39oiC!$q%3KPWUKyd;giR0GIUw<=F zY-B}hpZMRL&Rd*3dU1IT20g&v;3&Fm@&Te800tARCR1)=4z4OW=4OEF+M_ zu87DYMm^}Yg(|E71>#D3TrhT*ZU$;*36(-LiE4;Q%gx3Ksj?#|T##(xd#q4s4Q`$&_DL0c3>{lvh1as4XtlM6t0BxW7hQ|88dVOYHeW&^(a9*t zMNKN#ukC}VEb4t2-&0b3%P9@c#v$6gZPnm(Qowd-ZHg?Ru5E<4^<1*w=-?^z*zFP) zBWeYgozx$VuM*yExP)>^!}84ZIwDv$s*dJGai#PT96Nn6Q4y6)uvpI-#|Rx2G%_K* z=jOcEEMg76|E~zeN1C|pk-cp+qpe@oZ2CjV$0E<_vrXxZ5HbNX`<~-0Cyz$27Ecx`dU9FWqdr-xKbb+-%?y6jMnE@_4HLa z#=NuC+}F6e@#U?G<|dqmf7@iu-2Lp`lIImG`ek&=E5%z;p+P4HY$Wqhpl{Ht=p|-9 z_C-EN`%T+!mG{ml3!)$m?Ag-%gN_2UijK_o6vhV-e2t89_x8GDwOv|NQz+2PC?)x#`2$*2o6Z%gxxraF=8NGrQ6km> zdmABpPm9XN`4%I)%aVIOFa#(OgWdJ6Yd)(cWZIf1kbZ{xi9dE1f~w0F3X98`_v|%< z3Vyt6H6NQu7OEEF&{X^gMgHpf-PIf)Ca`hb3&LKDF$t}`$s2omgXqCkGK1wfrfE>XQF!jyASL;AhrK8hr3GgRWOVvN9G-5bj#FpBDyP=9V z0gu66u|2Q=?a!cuN;hrZy_Ath&Opr4X(&#_&E7Ja5mD2{p};=xbFZ5rdMDXzV@$kM z-{z(s=%hGbT~D!ni5WM*a8!U3u}o1({`7NKyg)r1q`?32EYL&cEho%QfD=80+h)K@ z20`@A;xwYNq~2cYu#bU=Um>!ZDlhNLJ=h0y61lRs;7C>&&OBXeqPX};9GzxrcXk-) zO0}&pplIthJWa&S*`hrAIaUE9S{UP|LF2vC&LpbKxY+aX=h63d-4%@F=o2yLV2U8N zh$P+p(TuH(fzsovj-rzKkoT?kR|NnTT#|z-2u5%~6C_ZVrO%G5$OYoC(maAS=meNI z5>6JpdL=^8p=e7I|KptZK|Yd+2m)n5+4L)zMPyO6WLG!RosQbfpV{4vn!~e01qt+C z*Z2Aso~odCWGk7=6CQrQ->N(t*L8>7V}VK1XJz+%qRtV0Nr71IpSS#IZSzHU;s)u+ zKl`DaFMaJygNH~2l{Qpk;zr1w6zZGrqYb`*q4BpR%_mI(Y1vnP4<+do+el~w8ECXW zhmJ&oSpNs>tXd!}BzA+oW_~Ah;#l1TI0U8b+;3tC<&xL7peUv7i4DRfMEN}frS_J0 zGL}j8!tG7fKu^%sjIp#DaM=^v$kbX4xAhS{zR|Krr*o7d#G1~Bi?pv0#TD+?`rc@_ zzI|j}_0Ch%fQ6TF)*~5x)pN}Fk^B=FAb0FM+rLIq;i%LA>bls|ZgCZ>S+>S(Yct&f zcP~0l*uL}z!V=^4o?B1ajDMBhvPwSjj*Dvx9LyrfKpr{Yx(W$s+nhleu|LXN#L>>Z z=1?hpewXtDRbK%)HU=w`!60&I6znUqf6jEd@MNUUCF|Su&DN?zr=J*LntA$k%Osrp zOr_|^8y222qeEk?-CSFFM1NAl8p#SS<8Q@*fYE5XX{#Urx+@xC4VLeKZd00!PqNBv zV$4+gg{*Tjm)=^etdEE&M40kd?kvrEpPk~$GCw=Hu{au~gT8o>4B%0OXQlgUk}g1j zYE1qfsD+s&bbny_*U$=)cf4&7N&r}@6z@c}UYL2`=VcKNbYr?O1FdF+6`x*HY_gtL zV1Y$vy45D&>hlza^I0M{IVH)Z240<2OtKbL?f+NbA09zQqwgt5YEW9HzG}1GhIkL! zwCS1G2z%LEl262g^YyIO5|`H0I@%@6CAcEue*Ll$r_tIj_1z8X6F$WPBfkW*cyefvBBTXe z_>uE6Z}pSA$Px)nZ~20A*QA5Q9e$P>qM;o;od|;%j;lpB1HB{XTL6V_(g$R5PrGU3 zoK60fvecsBKhmU&vTiC#b`~z(qBeU3)DnHZov{g1FIR<<6b34n!g9(Csj;QX_H#(T zfNn*BIx!g3EJA&<^jeW!;839hbbk;Lq2|y1FW%OcZ7uJtd2)o1BA^{zh@T;OV`#l% z9Syb@zRKEyNNW>70xDUrXVrrJ0%wAz`$5pfs<}MD(O-c=RE`r+ZVG*w2F@z`cG7EF zHLmyL(>NTj%|s(3`CLJKX6V*+P=pYtAZQU- zNe%p3k9KH!2Axa+iFxVt991BArnR{e7s?rXevtaTSW=>e_MsF>?Jjn|*Gke1wB4(| zvG?SD$>5G$;TQ(T`JBPm{uFC5*>lO=bFECnI=8Meb|~GR^n_UsJZc`lcktG}@|>h0|%BW%I>@5wpIaCdzDv&q#67 zKhTI8#q1V}aVk-z>2i&8S*TG@992DQQ(gSJ&&>~hj<|(Dh+27^6C~)`56O|i#cho(WC5wS_?~O`MXEJ((JE~ zHxkHwZ$2TVZ8N}=JA?g>G6@DmkhBpEv`MIxUSd{CdDcukGeg6KE1P4lkY5$nE5Ig+ zNIbKWRWVB3oPQ~<0;xctXvn+tcBIfvpjwVwgmK~TPyP85Ev|JymzM-!dRw7&-}yA* z&g*zcWuj9smUNoU!wEh`2e!QUoBwEvxolLHBt)@)^=laD#0fL3EeyrkA8n?Dvz{ZY zp2qLZ*1P=nvP<@mUvs3eg4D(^L4M`kq+1v7RpF(ny!U%8V4#01oR@2RZH{`^upI2r zbOT#K#=*wHyP(tkR@@;O?7y$I{Wy!Y*gyQMjh#{huK+aU6GRRE4`1&ck7fVAk8?#C z5h0Nk*{ed?E=5*G$X=CA*<{m@QuYWL*_&+2sJKJ+CM(&q%%7kMe7&CIcpk^`GJ`hyqU)Mv!7PYKf}xI4vK^PzbOU-{63ju{D_otN0e?sW7lC}o zc`aw?P>g_;Q2EU0%;979LZ8ANYl`l9#i|%9tZ9Eu;UTg)yu7S1OTKVEIYCQkrqB%1 z61hsZjhgA>qIE^mLG+`uc3h&OL#j39>$>d4^j_#fyrkz!#_?nT*9GB|bJal+G7j|( zo>s6z&K|sFxeAw6&=iUi&x^Q#e-XBb|M5S|Dv|+A*~Fgu`SC1!88=g~kR3eSRxFR* z4HHd(%uORd*4+fH{d8NRR1||&kvSuLT(ClnU~=E5qYx`RFtt(fp4&g3Og(!Ybp_W$ z%Tis(=J8aX3pHx5>GCiUMv+0O6cSaChnX*qcC7_I0sooiMpoke$1BaMl%dMXs#|W~ zN)s`=ZlX)Sonw{S{NxpC#_Ir+X4X5GmC=1)Vi?stZ9dR1oh zmFUe^)Iu7rrBZYW*bfu~iLb1N1P5Q|ii!IM<;+>CAA1F+C64lf`p0m8-T2{JMt-Gp z#U2pLAyZ%1mjB*iBCim0vZtw{X6GYi+}l21bP{gwNeuYb8DbO&VEJceZ$Ss zwHhaB9Eox-PRv%FGTV9}WXo%}#0W8SY8QtRQVYK98uZ*4Cl_#>d#QO=&()1fw_Ft% zwC8SSs1gsR%BUMybfyJ4H;VmPeSHk^!+k))fwF^6?eT7fOs?`jXk;P?4& zXn#L9wHYISay^E(Ok zvC9%uI_(kwXyf3M_4Mi;Yr=)5)kyW^LG~y4tM8_mASEVxw@mi zNnk;8Z>#Si8VlD@7K8Ueztqh?OX&*f)Zp8aLesV@S+w3~X|7#5c<>2&@qkraG;TbN zjGj76YW_8x={3(M2W!mT#8# zKtB`;{uh)eU4qJ2lVUQ^%`*f(Vml} zlKk0jp1ap%ZquSqcWfw*i&^B&s|R81a?_#}wQbW(HU?x}xmF69ZYfx3lg5{4fq4)? zE#!F4HJs%Jy#R*by#fA69ut4iz8$$}J0@M<^z2r>g7AN~4ki}8IQro$|7L0<#j^Z- z<0i@tfQ7k?L@JDAa3rF=vLh}*#$$p3NzBxD*2NJM^U(P(C4Os!)O_Zl_Ospc&9NfU zg7_^5LGnKz?|mG<_Y?-?uiycf+3bACJ1Xf{9^*xJ4S~icIwhElO;vgbfXTSX*!cQ0 z_y1L2{QkA~oPjoms;eCn6H}BqLc&X^5GLo+VSx}YtI`EoTN}Jhh2E&CL)8@($;>N% z?f;|Zz(7$Dm~h6$mvOc2la6*}z$z4&a9w z0$U~@vT&m?ff0ij`Vww$K2AFnTw`FSl7b7;;1kYWg^;XdBDi$N0J+`wl_kMUmHfR+ zl)SmCw%eb#Yvvhvg9ht3>A}MMaH{oZHQ+|nYc}r*TNTtqTvl+xIS02^=|?~-gzJ@} z9e9M;*AmGyV8qLl-RUd_h!TaG-)v|49aQ}0wX0WtU!qPF(s+zJ^JL?G#Jg}-DM^}` zRW0i!#WY2lcz@zD2>gQC)w$~9#607(jP)Zg8aT-2`pb z#!xsvm}r?h-fa@^5Z5=E=!Qj9r-i9Kfsw6Ul9Rp)4TX6Fp|y>)L&+Xoj_wLJM+1}lyDL2{`UYxpGg@c#)C;S}z zB>lvT)6Q$g8QKLFs18CaT-O_5QLxc^{CutX)g6?fDO!R-d0gRzP^a;(08p^0$?a}83c2+2$iB}(Fze-`RFsrtQ5G}r}HE#EReE}k!>I&Bq(wNKo zGj5gAvMvjQUy8BCe5r71(!B19pgCz{`0qm|yl6kAq*-Jh254vB03nSqOBmbDV8BNr zwI`cnlC8gf=)N_;@H-kvcva`w$z_u+@}E5luSko~sW^Ep>GtbufBW{WcDm4E ztpc4Yw=SyNs@Vbl_8q#{&QVRdcoYtgnAq-kY{=^bya+A5tS>)Qa|G+QF09b0XJqV# z;3hG#2K|m)0FB7)!53@4)6wBK;6Z&6UcSnuRam#SM#`=C>a_QKMkT(ze)+kD9;VHq zNb^kBCC?g>O#v706x*+6b9hh-!W>aQ%B9*=I*oPOw4KFX{vZrzPo}mO;fjS@r;D<@=Kpk;R^Rbu`FV# z%>kj`82hg+kp0p0- z=3ZKNdCe#LFwSB2QFw$7PK}or=hYF#`{kNqAk?-U4^wXd#-n7M7@Sa1FWes;4>myc zE$$+x1?|(OUOf6g;sQ~n*K(~%t;5w%@yEmga~6Nt zMBuV?&Q9?sw&AgZX!`3J?C&`uiE3we?I7@A>WP0MIdIR$b;;soM|sc37)7zO&3YwM zS5Kk@uED*h>G82Z73kAyUnFqyzn|lU-o$({e&uRo}+wvdt zUlXQpzLede&o4!fY*s9^To@Z8l;O{nQ5i3O-&#CMFygKM%=DL%TphgH19vhF;_vs}8N__^K<;eza zv0awgaPEki7nCx0T2S5RuxvAsX5!T|skevqfValU){#lz;Ee&i`bsK+@j z4spU(3I;oZ2N@;1M>@(CBBzJIqSx<&1?4*?#712Q&`){z52LQ~(!Y04ZZ|e-TV0 zVQoPWjQ~DCJ&fRz!Hp;1v@K!mj`QzK_3Kffv+$<`Pj71ThZ2XD^T#;Sv|~Siz^F@_ z4lZJ&*8C5QjKtuZ1m3}VQ03}_eq+(YMbg`u1%OW+qW#`Tv&gMbtAx&4z$Sxs;4yZRZz{HzNaO~N?H#%B@s5Kr5yI1dJF_?xbb=2`KuGi6rx8Z_g zEXaO`idpvB85mtI-EnWt(&Qn*&;?BU*}Py?sNTGJe_=Xu?v3rY7nfy0P^~id75DJP z9Ny#`7Nr~=0i+*nq<`<-@3b;?BT~$>a-(7ZIBsaorpli`@B7#syGakLX^a=SB(gp3 zZ7felfT11z<6B^a(zLAaxzqLTjYWw&`}DgwL5^L3=z^htkp&OGY~8Fj7*S6=;d_+xd7$QPF0X&^QNY$Wk>ZPYr8ErK@Hv6kR~F|hp`DY zllK2srik*k&I|L1A?Ux2Nfj@tdaEE<;*GO;knsa27K9yULQMmCLeVC#uRN9@|9aLa zp!!#J-(F&+Zw5@;HPr_N0CJ`5!yC+3d{FuDVk$w#dy0{E zYlQYNY0-VbvL9Ll3XH-j4h=L0?-xC6h36QkAg(;SNreqKtmAHOihnqe|AnqKF1w`tPLxuA>udc11nJb zjX*`w*Et+IgA!z4W_N;T8a;q;K|oZEytRN}iC~EOu~S{WxZ~z55{sY-4h7y}O_o9G zCn`bvy0JGtAEKGJ4-m`!Og)Z*7WVRR-^vyxf_wS$Vd_TQ2C&=~95}q>J7~N<`BU>$ zTyW59Hb{rs6DWoxJgeGy@8$w@ya6ZjRruNifxRyK9N$$8Z+oP{ogXMGh~z*j*#z}+ zFzJY(!kF*Qj&^3~d*@uRQQbB8C%hK$9ar(XkSU!yKaQsR)LVe+?}( z46}5`tPpA_W=%cjFQmOM5O!X|YLfG*BWq3HI>72xpAN_>^I#E4mw4TUXYw8&gF0AfU)XR}L^RMVA*qMc!3{kcA}U+$vDKSz+ymy%>1 zOIst=t#m8HH7z#pVw>8)KgA*aohR)i1-v=$IWlCC;nSEYHY50PVM(e}hH857^p3#Y ze%|F<3F^az5${1h>Ex?}LwW zA#zCGJ_QgX7Mlq~=zBOv?O5)|YF|-I?IZDO%MLhb_|&Y_`t@?HSgzot%m1k%-ecJ_ zuGZAl81%Il=?l$F(Mz7gqF1giu;zvLJ4aj>ijgLAGx1mFe7F$3UvVj=T&E~FFP}#f z5AAm_#DJGH@nAl4ydedjig^2YgM<&qDQl~KjvVrTq{9@&LMWdE)FofRW}M!6-=aLHz`$9KHd5eYbowi|C?ghjqORC@>O%E?w%Qk}lu*>*mQ z;?m7Ek`}iUx3Mj3V}uzO0w!dFCnuSkD#s90> znP z>kc5;p^)!N$$@LVMu9h4C^#7+t$-huJFMJMd%9FuyKrXA#qbgTy#*%1mOXM<5Rdko0!Y7z8pzAU;q9R9L?eZO+s`~VIF{m~ zNi&sz>sl7bhp&LO55@8=@;nU3KVNJ=s~A45202ROVu=BBfs3V&p#5Oa?J_~9R3>UN z(8O&Rq#BB$E-;U*9j|cW)}_&U>v*3_IcMX>*v!cCfR7qo8BrYtQlBo5)iXeV!j-cG zhuZcxcch#_peMmxM8j*Ur12?);;_0ySL^L}MyS=d)UZr#bG#h25JE=^hG}jq*g%@d z_K`kAU&9*x_O0n_xBImQysh5(SmM*M3U^*Jt#{uYrNf|PBi{f=D7a|HojxGa@idC7 zPoBAG=o?v64%ud!_1T@n)sBf}NrbdUnyM1}tr5DJtQ8}9SFeNE^?m#1>a2XY(kbeO z2<|vib~O%-pgAczZLGhBC`LOQ_@p?CuVT&Uq~Wc_qM>UpiW0P01&a?Z!In;7$v(m` zz0XZkc32-{3LUmd#Rbw0S1`O;NLyb|feRXL`h*(BN|Z$oE~{81k*_Ky^-jFF67}n- z@oB3tN!f5B0ek+R=^}e#)Gto&(oj94!bu{nThp`y&m2VYm2WJ30QVk-mi;@tty4`* z&g{RnN1@D4E%Mec(SAB`DHtB>ZWX$C4Wr9^YOFsh>!wr_$u5+Me@7=AxseZ#@t1%? z`x$te4{2ce2(*Mgyw`SX`hD<(Sx=6xwDZHTS`RFu@0=r4Khn;*?(ZD^ zu1O`WIeHbEVJx)!avt?(j)a7A%w_@dU zVr&9au@1OgbX*aiJ5|ZA(*LW6Pg0EcGC518TXX$k*!y-cC~dTQ1D?pzIXd2+r)DyG zftyaCc5aIpP4^Jx|KTy?!o&1Y5A&q$jUiHjyn8XE={lNhgYKy&LoJy+8iG$40t>KF zp6!oK?WS7K7RVap%~8&E-lCB5r;>S-U;yLSB$$o9Cp;*^_P0Bl36Dz1@j5cofXy5R zXGC(4v`Dl;nX8E^5A+*?`gclN<(6VKqXq`Ah9)eyQ&=k>yt$gQ$WP`A37D%!BsvW+ zJ@w3F0liSND$~!%L2lg10L=YJTQdqG4{7ozdh)L>-0=Z~LRj~c9ntU9<|Trn+@`u@ z`7%=MdwObYeyWn}!CR-p!vb9wQ$Nopl)~+)ig7Gy7jD8R*BT2-nwhSTFv#$+*Gug% z^HB`t)K)8ZTI7PMQ|{EAKPd;jhNtn-ID2a@o4`bhZW3qew#3t?Pi-Of$G;G@8GRJ_ ztpJ)a@nv(xR^ZmjfO*Kn3C1HR0bR6Irg?jrJ(OG!V1MID zp{!ttK!*d=u1hNR_6|Q`IBkRk!Nc_NyRkg@V@?E1Q)j2*GgnQKzL~E47{fHBPMPKR zDu6#Tlo)~Te+h=memRXa9A!FOZCyj(Mn@kQ@m>7_AR7x9&JjdK9L|{mtpudzdq?1r z!}~udL^v@COk>47hZ^fC%s<24ePCPxV4Q~0QO>|$e>!H3tV^)f2!~-+J!mw>{Dl^X zD#`)Wy!n{Ux%kivfI|3wUT4NlIiQx=vce$%+Yop1q0ZMVG!1$Om7wj~oF>5RRnYg{ zu+JgTmr<8^KAyw``z#2YX4+lokBhsu_VEewY zV+VzwY~C=x;IXsIMAwF98 z0|)RWTs081pQ0mt@=@Qh_&07#aT4q@UK~Gt9*s;=q3ipsq)GK0tw7wmIJsFNqLE+u z$zn)p=@@&!4wU=3|7x&`Djus)!W(_-b@y}hbo3*_uAd;aXM~aCamvO{y+k;DGiZul z3I?p9U`BlY%Y};tDA4;{7GnWry@^{T9ER)lUNPIRnH2%gBYDk&alN|JRixl-(t^e; zCYa6~ge}5TKVgD84%43yZ2VJW2G~)tDp>YE%RPn(#~s1sAaH3~njgY}M5>n_)yCdXW6$wuI;uc&EE@P4>h52-kEPN&Li+8!ksvz!7b&jajiwM{I6kR;4O zI#O^R|BV0{N)v&i?Li-v(jYjT+B{9601i&&^*I#;w=cwqx@+wNxg(Rn=i>yFBJ9%L ze&3^_4;d@^5efW=O6}@O7lMS(@0*PwbuW0~H=fS6Y z%yX-R@JDwNK4a}|@L3F>vUZa1|9Eq9_xLBNDv4<-9hcemWIy}){w^$WAfeoIY4K4} zpqv@LUU5f1J@gTJ40pfauu2R))7(lY#~T zR^#nvutf@JI@->LWm~#Gi+Q#fwc_X9JWFA|IbSl|`0RU>KKbU;S|D$-b#TN~sgR2` zNLMS9i&I{{2jrM19TwG*zj2seMkR3jhh1$2vjZkaG8qA!UasnanBov+Iuy=*tiOgx zquv;(3-Crxv_c6g3mel2m_Nph_hY_X>}_~0XqC2R+Ienqp=)h$42lC%QL%5VU?o+^mu zOoNOw5V&;Le0-aVdSS%FdV^q2no&0Nytir$J|JZUj-)aahwA}$mc(PP<|cAlTC0g~ z$JK7lmiQdK{IF>{mHOhvi^}X8y1g(w61ZAj;TS_2eNjFtOPd>8#831smkz1amrLTq z4{d!2vn7C#f*=nhP_8nI?W}~nLnsxJ$n0*4Q==Rl4aYz_O&HE;zHV`%3Bd=P(GUUR zzB*0?x)6Anx8E{9_gCd-`^@X;#kUT#rqu&5z4!y+ zoN|HM$%s;As%@Y3yEST9`RM9yjI{1`@XCpR+OH0Z^hUM>!JbKwB{d4im1_Vt)s+O% z9*Q(!=luAmeXh^IqWfiS0K9IK31Pq>3UMFJw8mHmAH4zR`FTbeWYB;bef_Z=zw_Z5 z^A5y9=C>)_c&t2;L^wClifxU2yAV&%O+#n>L~v<~SW&SxtO89A16K^y*|^JAdIf1WvbZcsn=O*Aj=)=X zMiNq^;XGw&=cj&>LhzeQAvXcDL`G1@{4)=EKH+^k$XtDQG1|DF0iIa24S~Eqwc@MK znK2Mx%Xl>Z9u!p*dIMi&Sf?=-@<8tehX87agy(bQt&6E(4S=gfOh7rMD!(fzFhz-3 zj*-C>W2I8HwKYQaQ#SoWAI75r9C<{c?7OijEyS)p$+4pG=p z1z4u@tur!`GJIAIlS%oq_bJPAHnxhXjC~+u5nJ3|sNusxSBT$#jy{EFD1)IojOH~h zvH5nbjr|;`f+OI$$^bZ#pO@a}ngMB0TM+6b;2`9012N=M2kMa)L&dWk?-tO|(xyCD z3Sgl9U2&nCPvJPRq;hi-T$ypY&%O~Iq2lT^(=ZEI@8u4C%?7Cr^rx$2Pl>)lY0;QC@l40 z2v|{f`;1m#7XLIS!R!+`aDJSkji+kX4g-TP2WHGa(jir68-s3Yo0D8eOP$$)677Bd z<05^jv(v4u0F$N&EC5UK0{KRfi3xCxI_6CF=Op#0Zb9m9cWH-gB|TxW(ORB8Dd|4y zo0*S71Fl0oQw5G5@q!!~kW7~#=QH(8<(ViCcVZ$oMRnjg9{%dnmiN(WIIG?OCop`kch^E0Wc{M8o)_(dnXYXK<)H%H@Vm zmG&{Y{RG0!wjh{2~{l3 zqQC#;XItMCAJD1{@t}%-@V#FSf-3l;B;6cFT26j1Oa|V#ENK?OVtBdQI$+WA515Qz zbk>GJeWT%ra@0FL>e$Oxv5_ZKa<5lGTwVf0QO3z}aYI~FZoP`&#hr2f3O*_^k9Uw7 zn5E=B1NGSb5Bhkz%tN4{d8Wg*QWXWS?7SaFa{sHZsp|UfMV-L=loxOj-MQz9Od$}e z@4*ufB*C&@d3aR(Gc-nOb}=nt3^Mv0r&`QyFazu=d9P6k7_L~LaUAIbK0+N`wD24?;Nnu-j2EzD@cE zXbbns(W~q#_+XWn)PXnMG`xOxaB}doGI>W~rIc%g`$#or$7{6It?75s-ob>rRp7UX zGPDp7~Ilki3%9)g~C7&U0jc0e&4#5yfCotqF&U&=k-G5)QV-#+M9EIDhng14f_9 z8*tjw^~_xe@S8if8Sh8IQ-5fHYxAX;1i3$W(IZ}0`B|O~cfgYH;_ROJ444UsA zJ{$UUj)|#()^j`PUA?|2wQbIDpM8!h0ZWR4iHM)}BQ07Hwa@sB(>QDu$qHbv{TLw9 zk1I3J!_&i*OS~tcLO^ri@LQGYQJv}bvzU{!9pa%Hn%2A_TF;X~zesSmcH=vdO=m7S zep3T;8m`sqVW6h}Csb{XNTp(i`QD^X3zJUDHRlS5JR;;P`R~mU&B` zZ1o#{&C#6rz6Q<&dbZ}ZLKZrZck7|1J#*$4WA_#U$02YeUNpY&xpSj1bqW}ANdTxM z_~{*$?Y~#Kj(zer^7@DTTH*70=jB-6W7H)RVP=|tVGYE)WE_u~f$QZ%c3WL&eT@5V@?F5t|D# z7AC71&%)!gPhQ`QX85+-Rh1ahqTceq>pH$Jd zY5A{JuJP3<1$5bI_{o?GY?g1yZmuU@wqP9ZbY7uy;ga8UN>q9JQ+6{^{|S22g_Eyp zp~QvIjK*`a<09`ye#iVKjbYPb=IW2tlB|snz{meKYbE;XB0`P!#GTsv3aQ{x&FjUc zO`3_>y*LlYX{rG=ZfQ@E)2kJd{d5WFv0ZUjY58VRRas>b z+bCT*w3xMCt~39CnNh{rh~=5k3gN7RR-ipw`||R@7A+t3c>}NQ-L1tXkW0!y?{Q9vsDDd?W{)wxgLvvhNtQzY zM~2WsNCaMeS2&q_Yq50WIYJ9zjVR>@9m9-6ZGIb4C%SforhIVoN8F~tqL=SPNBxw0 zSmJxrK^j`xxN;nlmv0_)m8-OjbF(C2x(>#1>sRuQn~uml1_6)lQe2;(>{8r58sny|HR^PF>$A1wMawt+k2bFgs|lD- z&0cx5(Bmg={_V5W!;PWwsf|M2^bkRF0WEU=9H`5ZkC0oJ-r-%J3W7XPwKC6pzN^$2*i8h4@nz{30oW3iwHvy07j2X}@TYAnq zxMtxCrk7~9WaDdg+j*{UmL!r7DW^hZ993mffipF`I4D%L8`pko6rh*2AxoNBNwquG`F~Cgq$HvatC387|MCf$93x|7; zgvN^*@J>f4>8me0#ChB(^0A!_XfV*N%#PKp^r$g+eiLhdgHC=k*&XaRYzG~BHZ1dV zu9Xasuyn<~Msymwkuex)ifmP9iY|Y0R8+h(D^*+Qk+3Y<9WDRvK6PufEB$oDbF3C6 zV*U5WIX~guHWS#?`pG7>CuT}_O`ltTk)fY!_E>p%A|{9aqW(J4 z#hn4GIx{pZnw|{aOQz9T;Y#^&4nr z&SFy)$yW~P7k*0K1-}htNdR|4$_0fF0mL=jC!|2=1jWbR;d)Y~XEc$oJ6P?G9ih5F9H^63ehJa*_wP6u;q-)bRun z280IIRwl73^?0{;h3tO8l3koK`iSrAERT%kqNyi(P`SEs@dxIs?zLnYcs0)_8zo;h zGq^IFc=g8vf)adtLiUji6-84b-U=CVj*eop^P)eVtxub|_eb|G zh%{fus{*=r{d;>q&B6|_dS4W*X|0o)5*EEXA^Ni#OBYbP5gr_3a{++;_{1;H6UPSa zO$xT;9~HItH`2$PSDFPH!s5&IH9&Ybj`x~dpI2&CX-VAL1FNZ*Erc;g`qkSFiidd3 z40_eAH6C(rj;kK&+Vq%WpB_#lOKNl6!ZWvspWm;ZX|_4fr(*JEQV|Gm;N@Gi%8=8y z^`yh7pfcl*=xi27`O!2t?48xUG`*?zkubd#*_f4rn_`~XBX43`dWL-}O{PqWj&7~) zNzNpVo6_~TR1``j=f);bHUeLBv1#uZ^+L4Z^pBx&(+Y@*&ah?ga5eK<_MUgRFtONB zZXGYgM>LU1Rl&ddEkGm94 zR((uUlx)$NtaK}+l2;R$3E52WUFd1CbFZ-1bMPb==Zgz-b6;C&AY-sZ-KISF*X(elqlM^3Dk48EnxoQ&-r)NlPV?6_!~ z^|hUHV5uunVR`e*g04RqY1i8H%K6IRqw^1vpwTa;{WnAs2slL}QnW281&8 z>OUYk=0;TJP;#tVm@>pBCM!^NvUfD$2!5 zWGy0M{!bQ#o=+6hg#U?I05|*e_q0wK&+9YvB5LM6IWeoPlND?BZ-R3kM0Nxd_7!=| z{lsJ1T56?j>kcraZomGUygqj_&t+{3|HBstnucF9o_4G({3f@f*ZSG7x)bF|f%q?N z4WkI<2-JMOOfMJpZ-8l%Wlla_o50}>l_S56&?ACR^n6Va;GDMR&m?aKJ;52}972x4y2x&!U18}E zmlL}Mwbf^!;?!vI%98ijv5McZqW! ztznqftqhSB1Qan_g8rm28^);h^U!6Ag*<#sN!o=mjdWJVT&jy*UmXZxUXd!RpmUy$ z!vFW%KSYQ2q4!5;17Bm9o}Rp*>2T{@yFLmR7dPSZq5(nzWE2$@#cl(~ebRV*=;y6;%OW@&S$z}c_}oUxi3 z*Y7#?g+AH;=IC?yFr2})0N)As%0qy-`kjNWBA9K#foK=JHl<#HRWtvuN4MEZEy)I-<~+BmoAa) za6h0e@xTuIDvj&h1sIt*T3!lNJNV4+Vwmg6a-%byx&wX@QJfL358~u%EpCk7%w$Zr z!GF5t@tB`YZF~5}0Dy>vc%V4f(ifQd!-77Tz5sT8(z@ybtH96c60e8HYP&q+hX+9@ z4CHvAjELlt@%>TF9Fk(sVCm#49#1D-kMOIlFtd|(u7@c`5IfKjZS~KX?-OMYKYaft zF5#D+pg!5RBvqGOu3ivtSEpep0kRkzuWM8ISBw64@gqnd36??}VQ#DS@)LDIpoq}n zW96U2h=P$}o3@UQ&MDrfDu0H%N$MlOADk8m{dVv!Q}ko78X9whc;G!n3Qs*I_e{~X zKLG#1Pu});{N~+6lXKI+KmW=3{>PM(&Cu}hqK6}(A}cs!`EN5IsszJ0Qwa`DVM!Gs z!G?q6WCrfh+L7Ut41OnzyV@UdS}_xpXDq^()q zK3&gemr_@s82qWg@##08Gc`W|Tq!n-d0g~W6(V#bs`w}x%%>Q@EASN@qenj{7{RLI zgJIfhPWAik_cFJFAQ$+~0Wjt1sJz08P$=Q*IH#;tGtSv8UJn(#dQ>)dZ%eG~wH*0V z@FK;@xo{JRk}Ehsl#Bt%yD-@7Os60D^yiIBcpfWX#SLAqV*}B5N6pv30@YOf-G0ELgdkC(h^NSLvb2MI_4a%-#N9gCmX{hv7zzF0jn@r>p*yNzf6cCh~H*N~R# z-%|<@C~ONP?D`C2OorxUPkNPZD-I_Aj;#O9C{>5(@P`d1!STF+<+9# zO&{^!MG}#(s5d|~4S>BO%KkQWXY+$qjXt{1hk>3T7zTSr@uZ+L@RlY+6p}Aom+G12 z&p`UI0rh}VQgMXKL5xD4=1*c!BR%M|`!OmhCeZuqvn=txQ=E>@WzW7+eKL;|L-780 zgSHXC5_eho%sT@w54)*=Z66)zONyFn5fJ)cuVw$&z+_a}9RC+M;@Swp#^7F)R8q z?u2FkB_G!K6a?(QgsTYqqGLJ~T6dGQT0k?KTYpgfjxuzCHkj09ztov@!Pq+An0#l0 zh|MymC}L(j?iHTn+>#wV#YrT!yKT0N)e9Sjxb5dr*o3zgky}9$Jg`lliBN0(olSyDpCxM^c>#)U!{4yQcJjw$**B@e9DrH^Ah&J2pZdm-6qGN+gfUG0{JsUcTTo zOj2SJWQ>%=@nHP1A@rY}0%d}={yUb1s6n}sQ$EACm?iut+SXn11~Wu?IFeqH;-Ic!!Eb3yKiJ(k z;_>%wTKLrz#d1__j#f$OskJZWbPDl?gAtD@A}1=mHz>GzFBZhRq4>R&7}WgM@$Z03 zV%yfi8T01}6X~Lm;S|3#*#7-wQ}fP?K~#^5GY6hs*m`{ZS0bs|aPb07 z3J44g+9mhGpaR_2$$FnYnRgdw8~VjD@a(}6`bj}f&MY6r8wA>}PeknUzj=!Ziq-Ru zQu@j1@Y*0z_@A^E-Zhn;cUYNc@W&&&(l8tIwB?Ew0SyC@5JIWyy0rjJoV;2Y49Jt9 zB~ga6NT>S>Qh}s&4Vp;CB8#4IfK%&WAj%CRj1ZXe%YvTA5HQ~QPfLGdA)PA_6NfJT zN;veI)qTY;>e85NS949a)t47nYc~3^_O{&T-iRK_cBR$qg@<#417S2kg%eqwB8d2y zU$mRJUItcdNLz_$XDMS5*ANgJC4strsaxBs9=Mpv0KDek|8YA~)ZK-YMA_jmB10h+ zb?Gh}0?_X6o;s7Aa8OUZVH$BWPvSS(RZp@_4we5Ltxg3AXrM=~=0=)QgS&VvpJ^*P zLoJ&PCW9w}Lk1zYzd(X6Sb>KQtU+*L7VAC+Y$TqR2oBBQ+pgf`d%Z=mq8yoEMPdgj z8;<<0kG;_0zY8}Wb7nck#`<5YNTu3Y?nM3Sr^S4$ufiL)2A-NcyOK|Zwo_~5Pc!?Y zus?9fpF6PH`A4!kZ=4^>0z`*iZuI$7M?Y{sKa;8J1SO0E1)aCWb7xh(VDs&|Ld?3# zlUk@YhF2(8hd%v>QxEk|V0GG6}4w6K68B*Zt@GZZQqTD^pek{fAL~2fiq`grD&r8G}DzrzdrC`oyXo*Xh= zJ0^$rwtAUZ^jjwCFdZOQjWs(DIV;8p8pY16$H8)UUX)$d_zZTY&&L{!5z|Khwa}ehChMeAzz?w9Jd1yKa5Jq_Lmty+PwVM$D>Jm^O9c z$*xoKCrZ4yvZiGF!;OG}>4|b7-U9RT^X%_0Lz||5=@-i`kjp!XIquYY0e6Z>H;KKy z;ubo%az|lQjguS>drNK#snx zop@kKgo7CFspz@_WVdjjaXMR#?gy)bmhTikQnkFY0d1G2o3X-vBSt3|l*1kZW7mk(o+>dqR)-R*Dj3uj(s>0@SO)MlqrMej5JHnxy?a(VYL*P+9?%g9642Z}T za4Cs1X8eg18em_^2ygS5g1GsAdn!!qfy7V82CU}oJ(nU&J%{Q1qdYl_E$>c>n&6mj zOQ&icXT)wuRk<+p;*l34c$cV>3%AF<0$4SEdfqHXVv!vTOI$n^qA$tAq44*7DrafG z{a<<+Z%ZQIfPl*;O;9OcdKI%TL&K@b@X~%#%B@&tU>jdt9^vfs-oyr@bMtuN!jY~3 zcL-?iNadbAVX;06qIpflkVU!sOg!C^!7JDPssTB?fkhbgm>tgaqtGNvytKb_+c@K| zMse#MuON65@F=z?X*o;sc=`tLSwNI+4m>dc z#v#D>YVZ02*^`>%%oZ^YTOccDE6_$>c6ESbb&w92+n8aaKfO4^44T!TV>I{Ca8@Vl z@d8=n(f^d}py)95d{{c!NHD~um@D>);O@go1}O>LshO$rfBd)vNm+DPRiG zu46lnM-|*o6A$yk6RK2OL^zss-}SZYYPZ8~B(9gAe0Od4Nb(5nr z^#2F00S@W%Q{rG=tIE1$Im|O7rRy{{s%b>$PY5vpb#Vih5;_Twe?Fs^u_d|}IUJp8 zyYsAS`HbtAVzb-<)$cAmKwfRRuBh~OMqJ>30x@zKB2ARPi$m>3b2NSI%}TzFIp*GN zEt^VVu6#CyyAW5I5V5SeRdY>^#6w$X`Fz)wbV{vXM@sM)b$+p`LXKjK3FX}Cc}G)z z@m({C?4PCdE3P7=wAW2J0TZ%cy-(E3Co}`tKEcTPx8pSxRhJjO#-+fdJ ztMat+sN0&^Q|&@DRqU-!q>8A%hpFvTZLz2r)1#sSHR~AI@&3^1#HG@{3;s)puodPm z3^Fn@OVHyr07Gy79_{#_9^?^Ayq_9a6iDa536(?vbo=sR(7akN4s**~UO%}pp~ zmN&#(*0Xa?Ch?Qs@+$7=_9qd~yT_Mu6E#)pSG#Wa?Q|&SyL3NMPPi>;=G-zkigWTR zj+d!m|NI9c9Vf8R`~>bn^>jA& zh2@_Y5qb8!(}GTK;SjA5%>v`6{z?dQYz~o^>XzJ#32HkqbO{dzbxR?T z9rOGdKw9=IEqhgreA+wq1-5^emO#)_Q$?E6J*5>Bbe ztV5mEnJYQ|TM_zKo6ne0fQt2c*w5q73)Ou#=?ntAIQ{6%zF*|xYUVIb%6vcj;M(h? z7O_1YB%J1-#2}D-ejqAQQ ze*3m?{q5UwImX~8EWJz4OOq|!AS*roGA`!u31grlxs`x?(kO;&vcDbRw&3 zPEVaHGEW+sTQ5s=v=5l$fEKN{V{@a{07P*Tppt<2f-x zwd0y^8PfZ-NAJg1@mnpNS~=eQcJrA<@AvqPvHZ_9Hh12RY}5hU7{~A-5La8lPoNH3 zj_Zo8F!GZDlf*L3yMnf3zAZUpK->(3+^yO7mx<3|MRf*iV76PX{e`ZCFm;HqyFl%H z+4vI2?K!>j?OgEgduBINRlBmXVki2^YfD1(<=Lfgf?@)@{c~>a5BP->g^(c_`W#*_ zn97*<{%tBlMfjwsZ_*tI%GZAx%WQIZz4-IcfBiI~QawNYD75o+CK&lqDDTNSd7f8+ zPCUz&j6ly`pGKcCh)G`TI1w|GpB$&9{BezLe@i6CP1=;~sccr|VN@j?L88^D9m z2-sZt&dbJjLifMN1AS5k;j`a^^cxPPg!U7g|JvGI!Y%zro~VV&L0ryG@xJ`P2~j#| zytXGCLfIH?^f^zhzf&Av@e~XEHtQK&3b>Yigu>{QQv`oQ#JVeo5WV&Y#Ik&7730G? zrwRF{cRiHiG0s_6Ake(q?dR8Hp@WM6<|Hs`B|T}tjx6^QnWC8rffzjS6__@xvI_V zS(R99KB4c*lpSzg^i7ocR(Q(Y*_PuQ>ahoJ(4H*yCi$ zS7w`mD`z+8zgP6B zO11w=0jN?EGHZu|KN-zG=6tm$to>fas@il{W(179SZY1~7?}KektMSOxMBF`Ti9T zAPl~|mT2>5-R=MMhIQoUhI)Fbadzm|t?W{#Ih?Yf1&7&MzR~*X4H5Qo=G6uEdo5J4 z9xBPtJe-n;zNV>OSY?W9p*H&5uuF_H8 zQx`xy_VWE>Q~zsUAeMiq@iMMEr(pA?Th!|C<<8kM*8uId1ZKfY`TEes*#-)eO3ji6 z#?$~l-&ORKdb`;?k0VYfL{nLt@K%yg#uRyr#h<|zFKh2osPx%(P!vk`K5mD;d<{^K zhWqnhWsP=ma>hnw=lXH6*d%-zyRB41SQC{est6aydU~|aQyacqxwCy6x6?r1AA&b{e3tP zR1tTYZT%(zxH-!JbB^h*Px23I9@+xvrUq>vP!E9zAR?3V@xJMgeZ01gnA)5N_;Zfz z^mAtJ8mT4Dkl5%-{NH@6aook2n7PA{UH;~Iy3|RLZ)|O&U5D{B>@Fq$G?^p9to6=w zlUiPQk?-m?Ph(KzbF*goy{4Sd{^tQlD>mI%&fzxRz}d&)bE~<>^7lLGMgxn6N(J=c zM$HmNSi5b3xih>6%yzDUy-#EfnL(qbv^MfHzzElZpk@vz!8Hs-$v|MP&Ny`KDW!9j zOxxd4axbrR$Jx)^mW+OeI}5tO=Hme8afU?pxb)`8jQ!0@JiT*?cvIkO6+UnKx84+wtI z*xqBTlLSG)g8wf&mw{kl1~FQX>&&B)2a@VWE^cNe zKK?`=uNRNuW2sU&?flv!8_JyiP7WCO3b?s7aGC>Farwe_G8&K#i1eBsSz_7f_lUID z#EWp8i(*l)lEfK!A%t5hWj3i834??*YiD;0Y2$gQ`ilMRT&3;i3g+$t*`N9BV4>CH zn++l^acV}W$C)}e{&Po6Ai_01622?FC+m|+qMGwO>IBDRCa)SFfc3q*FuG!t#)bpl z0f0Z<{i$XHuE$4Qm14m8cccw)(*dTM7DN~#fOp~d7NQoMGdtmHc>)vw*ASksBk2=F{Ao#bmVSU+#F~c1`!Lc=_6q2YR-PQH;cY zu*&95CSQ|(VVzhlp6Ql_;u~!6h|DsP3rM<)Ag|oJzMJGmcS`En4J&CxNnpiz-;0AA zE@c=PO_NEA0m3@)ccd;OKa#|=B%x@!72%jrV|s1S|VZ zxJzvwgX}9wcoEDiW)~nP91UV(pMp~(4zk-Un?YV}6eLXR0QR>$&wmgek{IImYd%OI zf>dPmU5tn`Br+_l7X&N^>eCKcV*Po~56JlGYI*QDY3_oG4IHw)M-8}{JBlj9eH1S> zL(-Hrk5(qSwr7GW)SeY(BQ~#&uj5R!V!&!oeSYS~(E53{>KRVKgn_u7+E7hll8FOT zUQ0(wmy;O>4v}rLj8XRTSK91vg*)36pHdF197lW`Mq~vv|@sPaT%^HLP& zr3{q=>|e&h&OPYP(qd5SF~o!ac!^^}u0Btqp4{WhT%pT zo?q1rBdaWIYFg!tgElqN>txLHFx7=r$kv1+w%bjk$E?vA#wm^?Gh=6^Tj+by%!`7z z2x{fI7_YB#5}9X{dE=;gZw$)5;!hu+re^bl!b?1DM39i2?**7cIo0FCWSQU&{gDqK zW4cog_iN`VD9(K$prO$syv~M*#?6^s03n5xt-&4Wcqou}Iw&OD=cg7p3r(MUibX)(R)FNzC}_77}<;ZWBD~aMMV+ve?HzaHYA8{ zE~V$rWYSrM$|A2j92*(UET|l#t-6BU?SCxtC0xyh{zM zKf9C=Vi=&vxj&e<`mF^ZtGg%LNL4*8a$JTV6-`yb+!-3g*lxprLPbb&6G1ZMY(>Lk z;qF=cS+P_{5SxF7gW`3nlLX`IQZI5CN@!>S;se+=1BejBV%KhpIO;6p6fOtF@E_69 z7?I7r;s6IAj+lSnyx%WxRv{gbM5V2evmsoas;dmbnoKYytb&J>kZy@*j_S2p+UUS6 zaC(wKyrIBH>f1h<;*RuMugDD74B0E~$zB$y$^of=z zH4awtu?V)1mIC_Dv+pN>!EC=(wCm?sfb1a%0d0%o9gmnEG4uViA;Nvp!ieq!HBSIX z*a)D)*K0G7B%}5I$GmBKAz<_YQ{o7HiRno@H3B4YxGCgnnf`XdR8((5c}%EJY%ayO zu6h2**Gc8M5pQ>Em1RatYTwu>CMx*QZW%!AxRE8G=W!_Yg%{hXJ|A+9wf9A;&TYf2 zM711r&kn;jiqcQZ9&1cSWRLAnd+L2yCT3Ei)wqp7iV2MmJ5RU{0n<$!P7Hkvz455- z!GD=Wv6h+w>#lRtY0lFw#M#LhQn4*V>MOuuFR-FpP4nb3+M1}QDr#2>y-@ah>tHuL zU0tqh>G|y7$MV9K_n1Z7&b0qqr4q?{#!oWeZ_ea(mT=)4_UTQzv{Wn?NKk*;F=8V~ zW@oRSY*7GQb?wDFP+0i9XvST24v9FG~B0yXW4Lq)_;{`%&mBLprkeq%3QZR!+6fNpn z@ShKa7A64v;^+sE1Fiwp)MvD7FL-S3XxZKui**&R|* zze~IdW4(8!tk z?wSNDRp%SW;j3AK7y`-jTmQk#37-vlWoJKRJi+4~$6d3Y7_uGhYOp>unBSP)Tt)VK zF3q~UjA;e}iac8x5U|VkkcW)LTdj6SV2Gaas9tE3!Q0 z1eV}jo%D!`0Qi9+-t$iS%PtRGSjquwVU^7u@o=%J1OUJ4=IaLWB!pSp(9o4V24(c&!pZ)h zYrZzj%XtwxRem{5>*FPx}jl#|G>$%^sM6g>BFO z&}oth>;OOA7_l(QzuVwpjang`+AFIPA`9Qr9VUy>t`rdJqy<2WS+03jye`8HJ= z_-@3tke|*1Z8Ka}BgDRB&L{&-gRXEA18hGcOlqh<*0u>2gb-sygRupHKKZc{;d=q% zS?J!qraXivOgWn`RbHi1d=uy4ya}weCVE(6BDqRef}XqxCeEkg1UsU1(xrsJH*<#a<4sR*e#S~Gt5?dVc=m=2R1aM}f8 zVYh$OM%@F()v7F1V~^8Wz<>6WgGI}}7YAbepBTiiWfHEb=~#QZ$;Fu(_I-w_S~se# z=TiHM{9XRuoefBdiOg0mzPflwsS`8s@-8ioJXuwV7~jOTR$A$acsrmuyHfKG?BL|H>DniCG0Ml= zGOLX@;!Bsn(eXYW8Q{PvNevXL_3+pTo#Gr_Rnm6ZJGA`6Re5bWm zI4$7pxRc9+NgLU1lW*{%vBlzv9mzOJUp~;R~g|v#!QBY@Cv$Zd!h0`Sp z89bP~3YVA8)!!RLLXRh44%K)N`z^SrPCePYH?#r`a0aW1gnR4)X`YbIPVv=sjs$1? zQal><*hnEN+IhJMPa^s|cy7jq4D5HL60yhKc&y{``G?OZG!10p3rAtjo8t$ens>;L za#UzI4&32;69mpi|_I?KcU2)JQ=&^i!( zMlImrk^vYaA34&2T5I>=xPf>gHvdmfouT`yH<4b>^AI>UkHR@GpgtK1Ug+RHB$_7? z@qHA2yR4tRa=@qA+vwU|Q^1r!1M%Tq$O%E|gLkIsx9<{5Q}WXXo6M(jGL- zyT-Di5_<~n=JH<5d#_66MTVWvV`eWzU)FDxB*xE2P&w)O9E>hcmPHwgHHmIGY=z%m zvu0PD?5fT6uw78}VRI$-R(Ak9*%KJwsy!bUY|a7VC)s1jC*z;=uFP%mda<-A^?RpB zJvzI?Fjq$gN)N?C5Doqh~lJ%uOI> z%BRWPZ-w=2JD#IDmx#j`$!v$oB5Iw;*(vT-md<&?Q)k~B1~%kx=TUWvDe;c;ZODcp z4=)LmOy(>yCC$f&RNo^+bTcR25I&DkAM&{KmAtJ;fyZQ$`Q(0aB=+Q>x?l9%C;t(( zb(7RM${ajVRQNLK;72*KL~ch$04O4_<=QQ;#`T=<@%%tl*!{JW#cs@u_H2QTw&N^? zwEir@*>xbk7;jVSpugUrfhVx|`(cq;?Zx>BhQ;*dvYp?6tIqyHXP4Wmvr@Cy*d2p< zx6?HZX;bGTzKgWA8%1e$`<`>t{H}e~=#r@~r_beej?{*M99E#g`7sY+or*YK1x@GE)<=(7uZw@Vt8-0KLmIT+HemRE8`x>2)2_!dwKO{K%6(9HOlowX zm+e@eaNK#p8O1Lt1a@Lu7;g~4lLy;YK1kPdW(k@AHiUo%oRhl!VqNXB0wtClvzN#D zg8wK$UIEG50v4nN2)qp-3Y@(er{gPmABZeMz`P?N7OmA;S`}8WzKJqnuqmXr!yahp zW`e#vM$rrjrQP=sYEsS3eqDJ7Dp*lEcR#Iica#qcn#k_%7)W0)3zBWuYVOd#qX_X2 zd`NldTM-nG-@@~Y;O6_s1vHMs<+kIpAt&ukTh^n#J9OhnrJIuO4yceZ7b)tJC- z5J{6XLb+P=dg?=w)-A4P0yDo}ACFtS_O2DNS{;v2C}nE? zz(HZTLazM$5oflhBAJlKa$urEmECieDQYUT!-18!7eZQyowDgIKUB%fztjcL9Q3)& z2vRm{1YuOd4a9mV7VninP@%{anK^9_#tctIgiCxmRATDPvltF zt*KmaG%Oy!T#_d{us>d8CO$&^au7B9Y)9z(-O0%hm2vi7{yXxei@1**L_*bh*OD-J zAAF^!N~ia%hNmXCRYo8ARnKND?#bpb@?Q(I!7R>q+DRDmsud-AjD^#zodzc;CiAyc zOn-iV_!LEdM$`e33r8_II_X=iLK$4t#|yuZ=;l#pgY7BD!z_W|4x^|&IFY#|aU@RV z*AWPe^Ad2}R;Rp089#Wns}O2Q#imke;Q{d0f7y)Y3|myy+oy<1rIhx^1VmwdORwl&TA+Qlur> z(UpA>!VlX?+S6721~n#yBO&nmm^EhJ-D#ZqgGt3ET_oMRi+#_j`N_Z%-D~e7TTi0w6?~-AYpkIjr3`Ztcdj%a zStP2RUC$$_xq*lYe?|w(-Em*3Rl3aGjL+e*#e7XL7lfIz_+l;-jFFqvizlWy{FVp@ zAL4bAwrKW|JcI4xYZOAUY6qO*@dQIq2e|pH<5ACKpSu?u4ut4tgTk39!hD%#yw)Uk zix_#NR3mgMq#-3GTBPMg=J;6(i}o@EyosS@6T8ye7;;@!FUXh-yB%90J(E>7CCWpN{hi*LscOrcNi(2l!=+vvO(d^Nv3IyeH z#O!$ivW$7F3l4MATF)v%K-ddL(NUpUR(l30yQQRrpe2Bpk(x?98#J=WBz4pVPBvHx0`c#>e#*<|A zakks@R!!M8t63M?iKijWx3&{@-z;ZcHnntdO-*-Q-0%lBEV*ko!+VdL&RnXfZbJEH zT?nxk^Qq34U&-=*$@6pG!g)TcK0sGeyS1SIl;aM;ns-l{ZKUG5zb-Jv7&nRCbt~c7 zv=n#2hhe*~yIl4Q?YU*DcU5XC0*<}a~^r7 z(7v-SO;@v01uiz?vVP|Db_mFx;|l&5Pd%>sq|65=wPZ8UjP`x=Z$VwEyoA|Y-^Ns1 zB`N(2cuyB(BKDD#ekD%++BuIl4wq4>=7N$PX7aVXGS_ONXSoMwb4D(A4~*2(brk1@ z>(4-mMnzAT^UG)tM^9F1rf@lwJ-W&P6oSJ%|LVBelks3K8G?z8>Qj~w-$yqa7Z=8? zMY`y&yc1QdA-t|`8*u$sqf$$D%&iB;DaJ9Mk~%u9-8Lke*X~|$7218hl#Vj*IEPDh z3Er9RV{6KrtZLUAt!p&R&a2;)^jw!yA&}(PRtUCc=iFpQ#)s8p`thC2c?0SZ_ayBp-`9ro4wa;r zrY(!PwpoC>w@D}tYX{Hbl8c4PoTMu_6vm{2)2^yS!lgT?!4X49s2Q7osZ6mEb!{k; zjg%?$JsNZ2v99F6`N8Y}wAFNkJNZt8dn~5zqbE6Q;G{VahJTO((_cycBoa0mD2U# z994h0Ahf;Lx;o;bJ1_KN0cUY&k$g3`@AjnB(LXAF+j6Bqd(mM%*PnNVoZc(1^eky% zF-8vr+CVUpckHoiQJpPt=Ms4ErxiSA2@kU?=;&H|`)Ibk*D1DX%w=p(#pP~X9DU-R ztQea0-nNw`JCP?^2ix>kvyex7w}siERnDb3CYUTLiug9B89*XZF+aDKOAV2^P_7$F zYvnDaN{;GcCy(|m=wfyAO7=lI}+J=aSptlR~gq{o6#Hgv;I zdioe^$fD=NTBQxBi=O-{@p!5xgAUb|ENF657lm#q^$uaIO#PMC_Z=q=W9(LO&DHaO zo~()DrkLD@0`;TqPX0-!ke4K@l&K9J>elK?7M_Mg&?SZg`z1|PeN=Gozg#1RR&P^M zy7mVVcE)>hdt?#2rhl{9qg>P^SoYvdEpYRI!Fxu<$@fF}g%R|$R!IZePAJI%B-Wlg z=I$4fh;?S+0ds4#DSTr}*V({{Mw-@2P2rOueT>AcPPF>ZM)ciRlBcy!GeL26Nz~To zMhrr;YY~PNZNW^u^=}V81{VYBXK?J76kpIxnnmU+cvx#fH|@z; zJ15(2R?W~Fu;^^%{PiWyR&uF_A$5aI=M4F@9lB64j+?9v`ce5s1H+nmiIZ^>;{Yki zjGHv`?UlXBGh4wFguG&`2UwpDXS)%L-6J8)~MmW>*1j^-;nuhU+dxvO8C}+6{GZg-c zt%0DR0pwG!RKG?tt7E-&`W7J_VdNvBH9+B62Z`)lP>#(P;MniuJ=q=j+%kS$AcB$z zhz2hJsfWMupaZYM`G{Z0eY(O_==x!VJ<$P?tk8t*4W$&J-;&BCL+ToBX3ZX4R{qlhzaKrgBSz=r`W|dEWrYV#C}f-Y-_guRB@hX1 zH&uc^Oj<9T1l#PrFX3V;A8MZ`xs@ShR@*@okz1J((3fsQjp>B*^Ua|CM2`~nj6WVX z#)1Nysrdlv-^&jR2Fs`q^Mw8E64je4 zm9soz2t)O^DOi@3{F=A|hFj5FoC6N#v&cnRspQJpScOzj_08s7C4#+WNNqfLmk?~F zCg+>?7Fv7lF*H<>x5A{d!LZ>!woi=>~^fMH24p9}q zicP|MTAVQOY-B_os0SG?re0s*>!+JfRG!S>7x8*x*gS?4L_OCbjZl}8X3PpBT>0ii z!<=!#?V^x6_RX}Tt=jY&k8ESouY`J^&7ZQn4LSk2PZY$f{tDr?n36(3t(!tJ9Ple} zJRw8TTwD8mr2pNFFSL0a)GCgX>}?&QBYnQ{yeRH) z+MY9fiXYZ8m{12;;==e?I1`v6^!K+aLq$Rq4&D$TB=5|X35`HWs$Rf|*eb?d`g zN|abRb``l_7Li=)cjPnpXWrA)r*Do(R+IDzkaYEkS>0{f#hRrT9n7fA6#a-wT#79Y zA3YJ{)mt~tDk5U$PZV6Fu%Oy(^&MD)zR+1;=GKL>S%S#`Qnv6Od- z^I>xmS6Mw{HLnK93tcv-_I$)i-8N5fP}NFr>dAWidqf37$-=2RE2+Kl6eE4RQ1IBL zZf<}m>b-jLA_tj;E0-_}j~0&*rxrCPqegr`-<3t=!VyruVIBkJ>2gwN*h-pjxqvQ3 z&k!}{%lbB0deWOdRQX+>$waxTV0XX(*%{f9cV5SgVYG}BQfx|guhXQ(>*&@MRkAh9 zOCcm&6+uo#{C=^P5BFsIlSmFG@3hSexCDVOQzf)7(BmAE#g~(@gYVXo(K9$KDqjzk zVup!4V*jK}kB*H&v)z!PFuTzI@T={Qp2L&Y>NffD>fsMQ$gKoqk|`PvbXz*frDIFV zr~9bWv{eBBQ+Ax^Yx7kmB8o()XZPT=3Nio3)*te{ETEgw72*^Nic3bVkz%!5n}ge(kR7? zC#Giu(*caN9Ceb2ouRnWU!&&aPRxc}vWv<-L|0!;_MJ_|ze}UA%$Z%O>aGfiJ9sB> z_(P9O?WiDrT0}U{D6^UdO>+2h4qdHEeNe1fRFHGcSy8g4tK64G|8sRd-;MilPb|_v zm1Zmpi$a5&o95|Z!Lg$m?XztgI!yB)T~$12Apa^roGd`A&5B5ca=GuL`g--ek!Ox! z&XRZ6`AUW}LOiMI?$&jHA$HZVm$a-Q&B;s{WYg#&Pi5Hx#yat*k^pQl@_Gd(Vlr#a z-S{ptaq5)lgn65_yiPwque-GryXM--iETwSoWMwbJn=bM)AT#N{n|>w`ctz=9Kju7 z^C=$=Wypvm)HOwsB2DwPxJYFS*l;H$cAEv#>VjjF%@b0VmwiSAG3(*!m8L7ZhX!j8g8Mw@j?l|lYPvhAxx^J z^Y>I-^!0rjh0i|j;j27-krwTMR@853(4V*zokF77!zJ1G^220OcUVo|YlefNHm{|Z z8hZJrSjr>{h#DU6zHtR~5Md`HI?6fx;1i8rK*9ECjCh$wl*1MMX1CUD=iq{QUE{eg zpLXjH#Ow^DLm%G*?Wj`PhlfYuZmzO5Z!kY^a~vxbbKCMBIHjX(*d5X%V0JA+x)yYh z%d`gRHyU$lwxSRPhd`0)bg zoe~N|U|x0#A=g_T#f}M|D8PzNUHv$c-w^d+NFpN2`?EYn9`4Y_V#>x-dGTG%rW{@O zPMnp>TsQ6d8knJR%hXN#)Rb8XgAYzRUpe5}7p|&CmlKok z5%Ka`t@VnUr?VqzZoLv9Y^t&~(aFpoP2xi6%29z^OH3%$Vf@P3Z$tK0gvZdr|1A2B@|C^NjbO_1V5E7Dx#udij`H~X!&a8t$Lp})gT zY%wzD^&x$-dmsofcScsF+9T&whW4X`fn+vvWoA_6Tgyyz*_;}jD>Ay;n6X6mQ2O1P zU1eqSbx#gD&Sd`{g~IWi(CM%qouzjvCWnIEeXs=5H@s$${9cJ`M4Mg_v1-l_Zu3bWj8{9HUGESoEn`gS&?oP z$7EJf*VL^mHPt*}rXl>fW{w|{I=C%SuU5V}*>K_qvr$69pI0!S-y);MKT4n7ubUuRJn)GA(CIsuLF(RUKY zp9GyJYaB@MzAlnnw3n0k2k_0`iT5Smj&px9JnYFkNIRipD!4Q!lc*1DE$wZ;BLgdkxEC z@HJ;()tDMa+!GSS4AE1q&2*4xip%ew6$quSUD#bQPQDd)%oZ9gImD0QfY zKrzIMZ^=aBY^TuCO?bR6-1)CISdI!CEPxHt61^ zy=V0{)Fewj{S&F_X*B^B@uN;@907=OAiQqVb4!)NPgqms&xv=F!Y}X+qijgRZXv78 zW+txlIUdwlXGHj-=aaT_rLFG?z07=wPY)NmzO>3LxyE7Vy0uI2?(qz7`vusQFO$Uq zY|P=aFZf#|{xt!I5ik4R64+?o=B??zL_=#|aEmjC2{@RP{V^wrNl-Fi#=ea^<|NKF zN7o=6D&&z-jxOz&aYZ2S?qC;bo|j@WR?DEmPJU@ysrlBAt>~(+e?h$`n$!9E4UaO@ z&_&%QIm@Py=Ox_U(Tg75lXp?LF~wo-Q9ei)&TYE#qBPkDj~Hi`S|c>-p%7N(UhQ(n zRvS*nu3V4IEqD906-*07quMV`xZS*#nrq_r4&AwnqCKkB+#cV}W^V263dj`M5LZjI zyB_ML79qG#|8|i;OCCH@yYK~Wc(NAc<;Dzt6@bk|3F!20Wq<3jV3$xdRXY`{1knYLTn$zPHnf_ikatXw#9ACW6RK=sOC*zcurb3@*^TjfE4lYY}epP4ObIBYCU);Py2 zry2pLw~SDzCEC_Hnf0#G$)3F;P`CSKTNl>ra~ioZ+98pt$&4`PzA^6cPvloG0HKcQ z_)z}($D3zIg-Wv>>*iKV4+|k8H z`{Fy7TQ9aE5We?4kLX_uN&0A~w<;#=pc&lkR_x-86M#zk)D>pvAr^;qv4`d`RhVP{ z8ops^>cIn>H%3Y_e6+$6l?YQ^d?d7-Jc2xhCyt`!IWsHDy?%@dW0TB`jC7;L4L%iA zgm5YZjlCW3TB6~|=>f(t0;y{;WSesPA&rn$iXNn-Qqe$jfW`|k>XXGC-cuwo+2=H5 zoh%poqvIE3AsTzh!p;|Q^c&Fxk`vmi`m@plBX<;N)`BQQX+*oTB@40^Y{%$fDLDez6O^wN!llB znD!PGH>S$^;=^YW=PsHGMeO3(=`B^(;&&$SIrbK^bI)ock&o6v3A{>-`LI}-1((9h zg=Vu3`zE5>(GyBF*VYsJ;50`T^J~P3AjA7<%aH=z&vk;YbCcR{sjm)<_mphQ6&%mi zboik9d4#c#wBrGy-DZQ-2ZQc3o}e|r7%3bZv<8QX7vElYaXm;02|TRUo8`GQY!&@9 zo%?L;x(~ zK8P&87uH8nIk44aGiBMix-d2yy`ZGU(szws_@I3&P58Fip!c=pjpZZFp-Q@#w+Chw z=6P+eF!js3Vd`>9nneB2c5?h?>f|IIF;Q_7MCO(~pxbW_>so%zL8m$(ml~a`Rh^VS zImV!YBoc915yX_q1JD6(-F+38A(5Snaxc> z++yu^hoomIh`Uh-v*cW*wiL$ZipfX@YJ1b-Ye&6d;&)JVaivsqui<6lUu-0?M|5{I zly6Ru-Do$8Z*^NPIxs~{`9a|+M=@WkvQT;oBw}($`Oiweh6n)y*wX_q+k_OaTqtma z2ubYv8$5ZuIE~UznRc<#=y34}8im*1jyyE%#(o-43wHIs33B!30Evp!tUvqIVP<}6R=&Guyw+a9k!ya&?G^M)Ciy%MTAS=%hRfyaNjbD41nHW{-qev3!ENqKwODD{ zE}W3Y8J>H<%NjU@8w(Zp3F)LPmWYfaXk)Rn(4W^gx;iP|pw_+9Hqm!S#dOy@9-73n zcYhi}rNk#X=5iX`jnHWpg&pwhG+o_8hWP|F*VdYS*KiSAUKIK?_QqoS^)rQ)6vx9- zMK0Hro=*{f!c=zc;!^v@Q*JrnEK7S|S@bB)Y)f^UcoOF}}@n(;Y1n-OaKEs3m8Wg@anyl}JK+~MccLkr=N<*+b2{>(BG%Kb5T zmOPm(GW;jYumigU^IN*zq1QIv{@)8S=J_!4m(Hh=3=WrR#Z*-;PqjZx3TVDts@*(0 zJvy!{XU{l#1Yx=5!jkG5AaiZ~+^5DF*414zU zM^59`QDMd@`XXj`x=dD0vFE6bp4yno?e{>K3xr7>?ByU>S6Oz;!bO@bzNN9i>Y@%Z ztl&JcS8~X{Z>(P_5MdjjajZP^V8Ekr|De|*G!SB(O15(cm9DcS1p>Jfh$d--sEp_XIY}}i{Y+o-b>wnIJy#J zU5A#{QvSgI79&b`PmliCS$cHRgeaalM(XxsV@NAawynh}{EsG<>j;+BBgNN;bBhlV z){Rq#s@p3kjJSHkK|I<{8bMM*BExq3VOoM~C{sA~PnL_s3u2;S&_^Sgo@Ai!Q zyD9oa?zo;q;TM=CcF6vZRVUO`Qh|1kJgtAhIZ*!i$b;AXy~0%A@ak5H2#XM3$`#bz zdVrT^py%D&yZ?!2P}@D=?QwI`{eha20*D;c?!A5eu<|9-!ahvYdVP_)=@=HmM_Sj> z=a#F4=HEZz-O`afhP30)W!M@Y@_UbvujUJ5FJg53CV30u&JvKmzE>E)jny1Vewxdc zIL~!s2wGrydgWOWdSY>V`0`U97h}m5zTKomzS9pFj@gx5rGj<9bIAZ@-hIFsZbk72 zv*wN?JH}lLiD4DX77&tA2zbe8L%$bGqDyzGH33AuTUR($%F4Jp!Z0H0q)++$enqB# z#;21BK@P--b*+=oHTWJj!&7UZATp_tt;wCbFhbTe26vhm&+Mx|R;JP08pC=tSVFr* z^d}HX8J?OJvQIehFqJ@u=~#c;nJzV36*d3vxofB7^(H;s8C8hbQ-fMEW3RR;3c`T9V@u0$QWa#h9 z{$_G;KmlAGuk_%+Vur!JQfDByawwI+yO9r52}jUyIQnw0%p2SFmCN zzb9W#ZZ21>Ak43BAt&`->I^G5JDK6>Ci#m|(gNX>2?+b$+!f1A( zV+s7Z-Mkc9Jf|HcP-F_pl}+=YO!Bt;)nzTFR6i*ll6F9BDbIa+k{E!XPSL#{uwCJZ zSqd7Rr?42p1IBki;Gr-SD8TuOb!gV}?k1xQ^1KS+g67Vz8zC|Gu}N#g>-?>)0U*b6_?Reu8dQi{SH_AUIK;33;?Dd{(wp*qkvF~^Jfq^B+`Mtq*(?ih9dy^ z3wJCbk`5@bpPFkPQI1)O8Ap8(NG0Di58e4xyu}7I%D|k*3{bhR4g+wIWv&QFP=7s; zcN+yL^M?ly4N1=YjpR27S_;~LEmulI0|+k}Y_eYhUXBn1VLGRY3MjC-a<4+TIZ>jG zY=)Wm``3xXrJ%``Ie+88BO|sNoX_x}7D&J7Ddzd~mUz-5rQCI0ile|9$*XDEyxH(-3PD#dJ%KO7OGVSf-s^Col0>p^2s3FuTkTSZ2{sc z8$g-V?*UuqE(seV^k-4d7 zoSsA(@Behq8#P#y#J6fyz9GMCmVgYI&J0x1T-Pb6qo?Tn!39SgaQ^c?<>uxN10(|J zm~c@XgLnk|Djps5W3@xFXeL9(_A#f0P6(lziC0BSq= zV2X``(p=M#tRds6GKmbvpHg6fhvq23<{wXmX=dSQR+*^+INuN5IBCiN!AoF zzJiwkCY}$95k@m<^MQavHIP#Xb?ySg{(%UL#Zo6);@^$<=Nq(efik`J^+38}@s`w# zm&D=t&`;syZMTh&(S8ry-y`_@O=Kh>I7rk^51IZMoqtUb2+_UL+o6qr9|!S%jGZ1sQu?Qes~;XOL4I3N*9aOb z9l*Xm2I7!IK=xk`AeVm4f$(o|K*`+C4-w}DK%abD;T1dr53>zclbP5<(?1g>{2lb$ zz1bp{Mj%>BzRg>Q_;Xr@_X67{wb~fgLo@P>=Uv&Mxg0iyfo60z zU@lKClfwNP2edc=poIAmXsnF_a7^0{xeE-WgcPty5)DT~f6-}v_9HCSeGO-`sm~Oc z3~FpVIKOWmz7GuqZpHMVdGD@|(3?uuiDAjf?ptP4k~Q#uw~YM0Wsw9SR)0eu{^l)h`<<&yN%;37>RS0p({u51)nS~AFyVvcc-*xV9%}H9n|qU! z{o1ESL6HUWEzUYXt_1xXz6}j1%woXzz#jwU#i!)b?}!112Mk=-OrXpkYNo&{EC!u2 zy&a|;!mmkXOY9BQ@kT&J=599WiSeAgJOv;#OG82No>Dq-SxuP*m})5yB08k^zyBpp zU(m;#`uypb|8v6FP`+92LIpJ-n%&HiV0`V5*X0Hd0k>(N-uLI#{`XfKYo}BE@2kmQ zl^aQaQmdrJ@mt7$#=sB)9DprV8F-)sKBvNo0SO|rIG|B|I9Csf{$+3e`m+lL@~N^B zl;THdZw*n1@|LyF1b(ak=e&i0J*NUrho>_2?~MpN7M!#W&;n)CYlHm`I8HCl&{KZ< z2;z_|7jnRmn05r?M5w+7s8Ml<`x(6=i&w%zY6IFcp}Ue@zW9f(HS2Q()WL1Tq$y?8Bfrww&HPwGB658va?P0?DwTN`fz;+rHo@0I5%A zdx7-p(`95xz>m)Z``dD8M`jFoN@jGgM<%^pum0ge{^_K@b^_w+$G~n>Z_`x#!_WAy zFByS8?g&Q2{Pzd{*iCE^?!Ap~sV}(ytlWQm{MVIwln_w=dLXp8mfM>v^lH0xoL}vz zc|2KbM+K&zJftdUL~YD{zdH3#1$HtIA^)d(4+5TYE8;@$-_X;p;e%d(Bq!v&v z{3B2~IbP2STiy1{bO0YD0LRuOw>0Co=>pveZn{0V=L0)jUP!H1hB z0&e4?JpBLl0RLrPQ-LObtiYc=6bybg@tbi~<9rW5@_kNo86@-98d%nV1f0|?03rF# zO1U=Yc~`_$W;{Tc$Z8yF>~9c%U)(jT2aKa^&I-`pr$vFg?}D`ZF7PDEeDselz=8zS zcG3ihOaSDx8G7`4Iftu4-t%^Wws)W72|%w#j2@sd$A8BW019TZS)w7N7w>c zby}v_pF4)rK#BxnWB|P$d0>86m55?~4L7kCH1McIfNR*4_voX=9*~Dq1Zt(gQ%_A| z(rT!sTf@;1$ug!eEBpc?@u!X2M5%Kw-x#2K*bb;XG39$ZSfQaJqWuK>@LH~>xu zEt`DyVx0@jfI%l!wclC*|CsiFVX=PxOU`xw?CvO8o`0VGU*i$pc5inVQ^Jb>xB~yU z1Ly!Rfy{gVdg$!waR>?!*U=l>fAo*cq-Durco;wLrpKRtt8W^Jg0b#o>0zl_`c9*)xL0S=r${(#Bpm>8~_pgW_r-SKCC7U<&`y{Rd2@b9qfMP8Nt_M{b1c)Epx66wgQxohJ zzjg@kUNmYTWM@>6N%(6_-@(S`;s7{K>EX(RS{0pfPJpA)+i#$#aN10gmj_rqtir%J zvqBRl{f}mP3zL<)U%gc;)p-ESM1lFepH`;d=@Q#G?}P9WJWJ}ztDm-K8|Je_dxwc)t>6`2>Uhd}%)T@#Oz&?=7RU>bkH|Ku|)F4wVoPq(u;< zZ`~5tB&UqXT2g93v@4eQZ zYsPiWD6wM=q~LlC(@PvA3WEZF+s3LGy5P{z>oAx$4U)v;-!R@Th40cx6z}_Q zSwI|(xWgFEc-ar?XeZK4Uu7Q2i3tWw3sTw;r9kBc5aFU|B@v%ca-NI__wSMvM8U!- z9!TVf|9(03*D&vMe!V7mOdj3yDssW|OE3QM`!?L@U;E?YHmG~?4^?b1DMqJo%l0=v z4(KvSQ16KN0**VF?EiS#+}D$pUrDGH+nC&KOKG6&5#c>Dk7j-z)d!ZH8I*SO{abQZ z(EE_Dkic-vRpwLs=Sdx-`;QRJUpp}E*Dh5*se*RRcc29*$;soo-zmLbEN{&A+*l~z zNVL#uVACz(ffgTM^7>;qlmNoehB4$Z_l_5yhE0=49+WX#>6f$ipZcQsSryFIn1+1% zia6Gs%c;+!&I#Dozr#kNXy~+#$n%^}&L3(1#}D;Am@MjV#b5%?`YKw4o)7u!_dEWt zqhP3L{J?{Je7Kq!Q4%DjlnI#sxa{|_K!1b*19C4Ma@?Sh2p2aR7+akJ_y36KfB(RM z1u_+8$oDGjuRsh3AtrQ>RE+ueE0wy00Y^gZ^A2%_&J;d~D{&Qp!@1*suRz1_tAg-( z8VVECxj*vVX+cx_C89Pso-hnS*~zKI!UEa>sPBX4EoJJm5sI{ZfT_>3>TCwf5THwF z=-QEoiT`rM>HtaJd2q56ORYukoPEcHX$RR{Cf`j{tg0z^dynU_!Ou2^jYq zvd~E_4=ADp1oU;ZvF_I zfX0BD|N34G+5Z3IFZg3Iwv$LhrGb7VOatIZxX~h30+2u^-7ewAmxnr#0rA?xOcY-w z{Zlx8{R}Nipug_-j8SuQ^F%ASYh~<*`sOilC`IvJY7e`J3)0DO7P;Ok=vC!^U#~?+ zE77>RYO6uj*<$zk($qrbK_NS9UXczRaVr)Ex&`U)YaSq70nQm*C;hFL{|Y_IkQnBx zo&J_6tmA0CJv|MhiS7V`nkWv#(51k8^Cs*FBS9VmT0q0`4oslD`;UvS6J2%Ly!0(e zG>Jv+b#UE)Z!1AS-ou6s;R&PG z+VaiYrAF!s?hS0)S`zgkhu*VY0_F7*u-y&Yk!qYSEA1`AVcXc0sZd!Coau|&`4>gb zJ-ahD_zb3!ws@c)y91#P&%OQ+{e6V_=fEyUf*2NR=5i_vu`8G_P) zNWV7y7Tb|+aO3V!g)odS!Pm!3xP6}LNG@m_F+b^V=VhG4J=_Iv!p*s&p*zr`yF%x} z@fK*;y~W}VJ&Hd%){wu6*O3xJiDwMO_o?IqmqW{q=+2V`aveRTk2r;41U$>Se_Si~ ztpd#NdQg71O{}pi%UK?d^qGLk+`0~2Z2wf|hwtYT5%%#Xupf+ypTn;(hwK8tFW~3x z;E@PMm0?@V_+n{5NnV)f!LI5!IkQSNhv1FafWgo8PB0Y8!t=iYkWDSuSeivC84dB9zcF0Q!=e_j^?|1M*O-}^Uz{y>2#^s9g#>Qp z;t8FS#eZ0UC0YaoNR>!bK7@1$PGgK<8-DYePiej^6`S^E(4DSPx;`7~p~M&k-}{SD z*3L?T>beFk)0S09Oo-w=%HkTG1xDN%H=j#vgd%UJr|c)va%4P*S)WZDuxUl4)&vf^ z3Z+OnFXv~D3gC;bSnfmLOLfn}|69kAU7|bfX@Rk>A3!wS-X)&{`F>0k98BTHxRq1F zxgZ=u=hX-wi6al?JpmPC6VWt@%BA*J<0zs;#zy#Br7kYf#5k4XwarqG8%hULq=`fM z1!N*vBFYF_9ui312EAdr(gXnniz~G8y~_%yscMd>2^p%AE)NSF6U{w47#RQ~l=AHS^n3>MQvDltC_ zj`0BruP|p{3ig^D%!TWEDZwDm&JRQ}6x#)3D8#Dl(?G8<6RiI1H3l}eg5q-r>p_x%z7;Dz_0y3Y92La$ddbW1yL z2IY6P(a(iA$lJTHSs#mep?Y0f%x@~kOBYmHsP~!DJrgWJWEj2Gnp9=R<(HCP-n|LU zWH<(5~dRMVYVN3g3Wj*kuoya!|_D$6F}Syv}~w zRU3LsFQ-xXv2ejr0QQt)CIr5umw-GR6Cbp#SY>Ug68F zmz5;abbc5vtV1+p3Qjb*~6g z85D>3XhOGM(ib{&_2q?^F*L}Awfl#jwB8wha{A?Jy?->tyG-)Sj+9{(4Ixe`6+RUE zqI;{VI>I*bI^)&%IUby%KlQEC`xw7>f~fiYA&|mAj$Rxk2T)|1g8Tl~WW|?8XP@?`*D6Sok19ms zuOa7y+okb?>ib*8A1tM*1;$MD^zt*K=099iz__qnpjDxyQ%hRJ;crmgpra7L0;0(E z`h)9SAm3ZWgNn4RRRk8-twv9sYVqR-(8QaaVL zN@A;0aw$?zLdLY}65AIU92W~$rCcdx%+n=%+52plZ;>1eHW7;0R^ezPV4MqCL9JdD z4)#CaC7_W~5k_rr(aNTc9(^}+kHaZN-+nHnqH#aBoqk7URnv=aI_iF5J4mW4W8#Mp zI;W>WWBxwW{35ffn#aWj7c^Vx1IGCh>9#YB+N85gW*>fuvi)JKdt>fPgFUoZ)+o(* z&BOQPrKO~h&z_HqgAEbC2!OR?;d6qz&(BvLx9FJ+nT#qB9jC7mTqq+h&}}FR_#DdI z_4*-X550|FTaxGot1ZZ)Z(Cn%W~KO^9s14svY5?TY!$4$joP*;({vg;2MLuXj!BJN zbN071PZ0>)cipfMT()4>v72?H-|CIHb_Q_>j3Yd51u@K5cI~Ma8VO6XY2`9}d8oQt zpZ82%VxD-J&0r&dcH?YuWS_8w*t(?12Y%rl@yHqkNkIONi5+S>y^!-W;8`g>K<%tf zhmB`8EShkke4()tQ{#51v}aj$ZKKYY1|JGmMMqSiw@(zb>uF*@=aSJnZdhbrj~5f~ zA97ma@?o>n27p zIsyG*l_|03G_FIMVr4k|h{&-OF|n$J3#;ImBb=9O)FYOQ1}wGDseVEpWt6M(OEKS; zk^Vd=WcnG+BSM)+Zew^gxsukNva+kL2vLXLEd3+aPXH?C&? zikuF)mTwbO`Y>eM1Z@u{y1aoWw}q(|CQklD6fP~v*WOl?NkNkv=Jpb$L*IQw8WkXB zFHx#l^rH^1Ca4Lt@;38?mc;uX{Ly5 zpWeMT=^4shU?;SGBpCFlF`Ko{hl+*^Q)}8L!*3&dV9VN(ps~Vkd9(02RqH4TXD-|;w^2SW?0SCl8iq$dL)JVMN1jURC5^dg!blRGwbw$G1~$f#4@*~M-#@b9 z=yfgg?~l$W2h+>~0Jbv*_$aoG>_x91%_DP{D+p8&5RDyC*^XVpK&j1$U)M`ECffiz zf0Oe1oF36YES+8oaMw|n(`1UF#Jex^>hdq|pD5Uaf_2V|tF~9Y^uONh6wpWEN zJlVZ8?`1_QG_A;l4Ob(Fq;h)Mj@Lmq)>2q9t^Vvvl^d-2+lhlb|-kg>%#yuaOoOpL44cZ92$@;#GVqf|+Yv|=@^%C-7 zcpR6F`?BWs>_Wij`>jCYF{`J{%({J33{Lrze@+{C$`m@$g*x{}kSWXmL8Brz7NrPh z?Il6pHqllC`R)r}Yy3N!R8mU zc#y6XUMu~0HFs+himg_!vHs$g0(Ild8~fEtchV(KhTM!dYlt$EeqJDzv)V1+!e~-c zb+4wKrvq=qvFhKbBqf9mS;QRBoak=*bU^m5f`NcLBYTT$5OG~Eow6f z7`yZ+eYY6M*P0Z##g;3*eEXtTGZ;hFX`iokNA?FyQ1ufJA?x}R+K#5uj3H*34%N~D z-p`Fko>w4<7D|Dx1t>1aGe96Qex@sURsfXv5W{UoG24R9#Jq9t&Ni4?AjdDMfbvw* z9qEd|E|>T0}wpZK9q@jsRVPzK%M zyVaAImroUO-Bwx}srkORfZ$6o!D{*&-_XedR6vs9>h4&W;&t=RPY4bPX08LKheVqO z7tM^4ABEazn7ahsIY!<|hCmzsS}%^|ZEzDvf?BL`P8_Gg@WiA=YRbEP0SVxKpVth!qrHfdoN%gUhe|KuJYOI)HHCq8hIZrV$<3xH%IVhU|Okm zt>{re22#W12@~zZzCIQNPR!x$GmhUM)h{9Aj3ofec_m5X%2QWFdJ3>ep9JLGa{IsW zq7VSWNCrWU*T5!A0HDAWqj}MKu#9C6rq`sxsNU9zZ*kvCD6ZG+7(yp6BxQ;eZ?%!L z@}&GZ28kAc2x~j=N&a%2=$wd6ds`2&)r>mH*3pSq!W^UO=aJ8ye}?m&-xi1;4?qx8>EOyRNPa;kyuRh~(sA8l zn+wvGN+Cf1UA!Uk5BlZ5K(Lnp-Jbcz@SfT5D+zoFZ~01-pc)Km4&H|!fmf1 zS++Ui-)Y#9RehR@-zG&Ss+$2AI)9cYkbZO|bMcdo*wlvPiCP zz0_e;ef(D#Q9{`L59+8$urWLGq=iIF$}7PJew#wLc12z3Gab`Bx8{_?h%r zUYz(XuQpidhy0zWdWI&KMm~8UA{~KW*I=<_x}Y)68|{L-klJ%X zyVO3DbMG>no~f60OR}e5LquYt0{l|yeMKdGKPBwHXZ@Gw_2=KvVA#2IgLL=Bk0&}n zwHI8VoDeZ~#dn`ZkOn3(_ZA$$69W)vuAW|}vq^A42(T$aWDYnCfZ;C)gq3Xd z-h^X+V;qP-*%9&HEd5HQGh}}r6$QjDgK4pggX_vSzR^@7r{AB@Y7h`erlKD^-U3YT zLviO;DY((ERE8|Ms7QmKHs|FbAsjHn5DM|V`e)>NQqY|1Dm#!Kkd#S&w>SSy(%nC* z4~{<`i^^YUq{_zB1+d}eAsU1qAy4oJW`V#5w4n7NC`ne-N zcw&r_&IPnu0b`LDXqvwE`rN<#68!WFy*yK;$A};8SSKw0ltWh(^gq-R@YG z^>v~u)J1fR^IY(b1kf)KOqXL*;K>VU-eHka#%IBm#KcloBD~Jo=G;zy2b+oxllYPc zCc$F@IVlYDq=OCqg|GMQ?Y(>CFI!JMYHnzX+n9G<7#tcHnBCuqT!oo8B2+GmAI-st z&ZUHoVEQrLhj1iiXn(!P9I~0@B+oq%TRM|miz&cNaF!fe`u3QEPcjW=aDHrngh@%r z6EXut5*$W+&7lV|vl~Y!He^%+^ALkCIGb%*oVQtyqHD3l$Z@Fxdy-&?Q^jRe%cHY0 zY2h5DY3R#yyUJs0J3ykcm@qkT@UvZag}R1r0lvleEta*pKEBchXi1%5-(wQhG}J6Dl-Qk(bMEE3dY zuVAxX@@$*jSCM5es7jo^hB+f$)rAsX^D1FG>3Jbilg@5oPpwtH7enMf7 zX&m%4T`;w%SSONNqW>fVv}oFuuCGl0hoE8Gs#KjxPQX-)|L+%% z=DAHufR;H_q0Ie1#1~FA$gec2=6{GN!E1ex!|l1VSLpv+4pGTrAc+6o^52d9e^Gq$ zjuUM*yYGkbcHe%IKjO!l_UgI7TTksYX3Pmv2k6PzUR1G`nLi$>lLiwNMAks1Z0*ET?z5C7<`eLL(l}j4BPKGpQ zFFD1PyK36TA>wT|jqF`+5*j#QZq{derh%T7269yQ49^{3phMa ztE}C3`q)}1uN@SsfKS~X$Tt{0LVnB_MUN{Ned#=&jR?R^q;cfelC#|Reoohk?mzI$ z!tq7D!YhNBbLQZ%DFUmn2$-<^LfMMKD?Y8ASg~Ok8mlNcm#^wHUp(1s36ma$+ft+S zV%H(fkT*+EI++m5rP;b#&nkd-?M{H{9W2lcA0W|SW!P-5Q{@}BtsbpJShno}_@|DVzys2aL;G!~V36BX9d|VC! z*`3{4GtowEF2iac+Zs}h6j18pncI!}`=NVmBp;ihHu$@SzC27?Y0eU)ZMlO{G0CSL z#H;6=f!^!j`c~YIj^NdB#rF3s(~r#;qHg6X+)X`$IT2JP&o>Z`B|17kv^&8!iQ`tg zb&9Y5Qi98J!-MER5AJ35SBo#MVH&EL1z0{Ov2d%MeDrhJ?3NCsHMCp1t;AjZs*-V* ziSQ1OC&ipQgqa?P}z}^UXr4)>=Z*apG7!Oy?4Wz~Ep^ac{@j?X*CJETxwZFi7m7Qiw zD^a*&2*SVEo;TPYP4WDBySYXf&&c6?F6wrxodQSh?R;l9)`d%el8}hbN(wAh6Xy+N zlXv6^dslrT@L^uyD%g1Y?!C-et9<1emT>Fm`E4?+>R%@@JYV8ePp$*En*@2i3Hi`K zvPfrd^Rs5g=`-dqA95O~PD{Q@e@s7y`=B9G03GCiXCt=}cfH&WgM#cVF!0oAB}A&7ik7m;`?fMz_ zmYFHDB+c!VaKoa_y9ZepBbH>62SIOSZBVOJhJw#3{fX6+gJ^U9QDxlRamvb;!UAd~ za^YGlY!U_9PJ!KVPWPDag7#7aci&~=b{!{WY$3(qI(50z_c@R4RLlDhsm=ti&w6&B zoJa{%kdbA}5gX``7RRM|(tARE$Y^i5YE zy=7wFJ#)d(lVX6(LQi~qDabv(6AJk_+#dH4UVL6vxxbc0BA8suiPNR;?&_yIOm78) zIi>+in_eXM8p&6a$5G=XP^C2zxSvA7Z(B_$siv=~fPqEevnF~0Ban^Yr!dg+f)<9A zZhHcjGeCYNP5OQdW55Vx7@1Sp= z=rVI^&umGx)LQ1;gxDjQ3oA`7CX~-Ir-rOCh?OclYlRI>Te`s!p6aVR_QI&XX5QL1?L(q`jJMic-+{0AxZIUZbrass&C+1U|Ge z=56GcPHx2DAO-cQ39RgQNH4pNWT^SSRUFa0^bNNg8H)m;H8P^$RY1to3* zmfDVq(aelU@K*H+sv&i+&L?W4d4l)B8gWolXcrN6%cg-1bq2jT8n+z)T}!pTv4$`m zvu_fW5egE+>EY>;LDcrr>>nL61wHRp92dElYGjm6tZ?=Gj<#-Uq*B&Wp%1 z22cwN%;nTkBU(l)f_~F|GT~9$UEXh+N>;1qFy?T?hDAio`eeD<^yymUFqQ;S%rz&Y zo~t+}0*-APK46Eq{n3gTX;sZknnhOlp3$9GVWf3N&cXghWjh?x$Ve^I7{~onR02FF zil@`!mVd&II=c;`dzunbh`2Zmb|Bp^MeR|^A(;0nwkGnw@%D{Hb$l|sL4h6bE((Qr5O^noOzXor&=g*;zktF2riu!5911;0~4hWtKP2MxTbdaVo{(dz48*uS}Ts~+RK+o}Bb6MzrK zSF9IgndqN>Fb4%53OORHbpC8@0`E33XS9dU4sA;G0&3QmISLA|f8LH9hv#Kg@cA3L z-xQ5(%>tH@s$o{%yxpL3({eRq8&8OqR&-HlwiU$AC}k`t1MV<@fo=)03gAWIuhdAj zYSOc+>{jK2&t+EE>Cs5x@>&&nTQ6s5+%^r?9jUUoFt#C)P9dl4M(Qf~HJVg&v8h^X**f-O%0TtWQEC7P#Na?RmV;n z2f0kW@NN^?nN?j{IxV_;-;Mo?G!pM+-^XM*@G7}KGx`P-_X2@`^1-6F=xlZqQdD^? z`DbR4p1O%Z*_)G?Gh(!9kFAQwBYQY8AT3(21RlNped)Y*j=hGytDPHrr&u^Pk6#to z+bHCGvTgQ2_Ok7CYE;^>(?Z$GvFTLE{T4+%yEj+AayNe+)O}DxN_s5$V0Th9Z(NaX zlrhfI@YK}7mg9Lu^a-+$PkmC_IMiX$sI7YM=*wCa!|sl%MhvS+Ae?}BR52Bc&p5;N z?d6hNFu3N*^Bo7l@#5Ijni^C?)QlRL4<%cw=*XabpVc(HxOk=&KycbY1|m(H;$w6L zr&Gcv8b&b@D1+@PIz5U!zJLi)T?Sasg_i4KNMcbMs1qig)2rM`TXF&${SWg(UX(kn z$-rQ#>+2$ECnWt^AAmh})OMOq&D#(`)QyWsR2qNnY&_wsi6 zix`5ftesy3C+)K9dS22ui9H(ImTS|9qo%+0MWYRpGjk7)DL^tLN&6_h6!BF!~r z=K|0Ns1+RBorN>%596|WwB>Gp#H}XTEa=o`b)Jf{j+*P2={slSTThaa~;3{k4&;ypORYI~S%X5(7YTnM->>H)#dQZh$_v;oDu{vam$) zx=LC4Lr^YyvWR%J+`^!j2&muRB>m~kky}rvH7ct*XmtE5&=*m&2$#a3HX}SxO*kcb00>Z>)Kgt zfH^*V2p;IQai`t3!0XSK**-%B?DkvceQSddGGQMKc{<=tA6W0{EKwtMiU3Q?J3++V z2A)i!eYb(PpQG-d2Z`3GBH475k3af)0$L^IVaW4UFc!mUUjcmX*4wiU|9OT zTdUR4eibnB(=?8HZ$_h1267&3OBMZgAN4i<{mi#((x$ zN*b-h4E^`YJkUJxF_C^pO+W&&bx}Ldh6K)7X4QkE(rdW-6QZyX#04(UNO^1Fyiooq z(i+@{9xo|%(m&>}WejYk{60?d*6(LW$DqRN2Uv_bEnl+N(4Sp^?LHDiaJp|bGE2CM zKr@QzYGOq>kg|J(By)?5R>s}NVe%^AK;*G@-Fhg0mOq~E$n4%>2f{$R+WGH`%*1>T ztKI!-Cc4wJ`=RY4+#r(U!|>z$kH^oZAV?roj|tAfKhuvYcXU(f)DwcJe(?3*|IB8c z!Fh&W^}^9td9K58>f3k_@%yc#k{hrFp#;DdJXup*fS_y&6U`(U(i7~pXP^+*-x6?^ zTP1*Cw!>TQ7}>3JRmH8U_2~eQXnd3`D(OggY?1Bg8b2fVn=-o?iISrVTH_YoC~i(A z)wso#33$;op8n?b?H{MzqYbUT-Bp>5r+&p*1UV`BUs&FyU>m#buOumo?oBJULl2l- zo%s8oaHe0sdM*QTp0vNtpl!RnIb`4V6ay@mUsDjY!kE^?S-#qaWL)fAt(j;z+deG& z#>M#VbiBr&l!iIN~DD9MNAx%Q7Z?k|U=9!493e}oX#2YY5!dR6v_Wy~hPGHp&w zFf3YwR%2}MYJftEC?9ed4a`Fuf35r~*L)fYHw1<~j>l8@D=W%D+NuFJ%VFrVO2%mcquPMk zf=K6xt{(szDDpnGgNg1L<2Sz`IvUxsSV)G+XD-pAKccQ`h_3$3$OHUXZtHmgx6zD~ zV+nwC?dQGEh0q9E5b91xdZZdPTHvyBB@`i*M(Qx%_`N-MaM3M1 zc*XfF7=EAP=wD-*Sw!0+zcS0mk1Kso+48nH&UB|%(8f0 znydG3mu%0xQ*~VA=2-pN#d#L1SKxIt>GqH};8?=$eR>r_s%KB+7_=f0u)eSPVnJG` z-Nn-_olc75M=Cau4Gv~~`8%s4g@u7D1T4Z<+6{PPmSiaz9RW}91uoL;QM8ZiyDZfR zSuk%>G9fVxg7Z&weL0Qb0IPG>?xnkGZs&e_DkKP8aUT-cjMkqT9!9zoA%H>NEn(;N zua8S;paaE;)ZU8z68v%W-a^?wl5*!BfJO*PcSK%yBvcK-m1PPbaTad;UMTIrmB3KV{rI(4KzQAB8K(nrdQR!IYc3#%erWbKV&1U_p; zq+$>a-@RLjSuVz7$=9ANuUJv3IW^(3X0*^bZ{2AjBky&52y&bT__Qg1$)kltL$#me zz};B#ZQA>(mvuOeO~HZF=gPwSqgg?BGyOd_t~dd3T;C}n+=~orW{1J}@skw6lfJq` zvTu0Cg*x|c!OqL31MFLXDz*E`+g#ACTkhh$7EN^UpdF~Lm9lz0=edYXv+Yz)SLOjw zem%z(wrW^TYj?dU+fyIB&U<8^Q~^=xRU636IeOjO{u{U^1>GoS*3HV(u`2L3D-rEY_fTO!G5&?w%vZ+(;=s5^6Z$k1`S!`C>vW(lU>0}|rE!)NA zowD^_iwHlnNx=KuZD-W;6TMy zX00dNQGNNTF(*8BL^<<>fjh&!R#@ESmRj6P#`9)H*5MSgb+v*S=*X1>MbIp0-67G=-)dI;-nCI@-noh$M z(RE&;td_+6PXv&h3wJa*``14sdt7BEvJ$iV#w@|^CUojh*soZ-hAAam`le1hVZ5}M z#-{!}v%PQ7YFN@PLrwU0VH+TXZBS7<(3v`WYYTrFxJUaMmrPDzYAU4>AXee@xvQ7v zz{6zE%>Xpk9Epd46|;OG@;HZ>QSQ!z_q+02?-!u0qTSYox<8_31qpqHo+BhjqF(ih zxEp|+_M19Z5$d!U@ssfn72+adE}O^*Ohg+kGf!}(x*)Lb%6q^c%z++g9+X5aLA8b= z;VheC4)2ub3F_!U(BaGN?9UNoHXV}Dcmy}Vy({`~bNU;2n(dI@6|KJy4<2Kvn%>Dg zbM9joWPF-N8J6r4N}dZz1jn&cYh`2HZgV-RGCt|ipOe>8h$=eR4_-U)Cn|6qIC85% zajWA6oaN&XALde-Evo=15#~|=#43|IJ;9af`YMoDCeN(7>5F9Y0yws^(8tKF@I@@n}ym9iBm38{Ct8ylGEUDf0@q%nM)U5@20O=-GmdIhA@YF zqcjKgkHb<4UlN9wO~hK{?xvn5#4HESIJbyUPS+$tT_&p6r5u!RyW7rOl&(MXOwRFX zNEsGZ9PBP|Luf;(@8B4VKnBM{twBT`X96R%G8RM}XPGPQwA{dy_hx~MuHY5bd|#Pw z*xz#!z0uqv-{ByC;b=>u-7&cKb^u_>*hWXxXX2yswN6>2WL9A2^(z&yS{}x`{>tI0 zC==#~a`cs8ybxk<4Ld*tNGgP6{qoo=ht+wPRq?E4_B8>3#Z=6BOn^Ubl+B}b?WGY9xCCr#?q%g9nUBqvoYs5H@?2UOKQ;$^ zI&pNGOTo`BY8<8eD`G_5PY-D*o>5o_r*n^Tudm=G~T`AP=R&>yxy zI;T+#P@cWOUOJm=en^sUw+5+X6l%|4ap?gnc-asLU?HMJrBq)VGWvL96cIp0I&M3 zJQ9ZZUAbmNawj1E++|}avfHzMU+Sd3W7|mhCC_YB9_%^Z+j&B>OPk=fJ>4_)HTt-I z#o&}sjK$R@Bmk&z-AMyNR-FxKM#*$d7TUBm$>b{-8AN~XvV-i%!YIq1|DeLQ{n^Q` z!^+*+n890PdJW`4(Qlyh(3ynt2X!{>GdYx$G8WN=O}hgNZhX4Va|Jyl+xiFFUDI%~ ztP@gI7g*(;IR|(;@%Hu>+>@NvXJZV#9X~dQ1|0c@s2#x03jcZ6Yglw>P`=rcvCdVp z0wkn$-UaY4Rs60<8hvZSW~r^c&P9}$NuoOK4J{dNY8pHvd4&>P@>R@_u&RiMM7+;! zKpuxG@Q;VvPQ;isMVWnI{=Fhd3-}siUaj|?@y||M`nj0LI$2&m#DzgqRz8!H6Fh)$ zDi#>$>$B^6;5l>^_1iR(c-D8T??1-l@KMEM5D&H=s}C_>`>vrlv@^ItR?jW`^vDIj z2%V_s~Z@~NLwo~B6LRMk# zQL@|}8&7=*3z>N@`6H!+C(Le*&T*t6Us>wEKh#gDw?U_1!M=#fC!e6~A>nU^>gnCZf}9fW0p z`uLDJmL#+H%Sg_}U%Qm* zp*yVO)GZ7xC_w=wNk$M+qDT}3+CY{dsU^08ZzB1q0Ts6;_> z&Ipo|{c& zj)zAG$HP1FiRdW!&6;UPA08e7nZ@<%YF5|fuG?ALIcVI!YiuHCVr$}HVXQ894G&K& zFi^|DoKcHPDzZ42`)u>W&JQ16lkE$?$+K2(d(=O@Z<1>>$P;XxclG7h`JrfwbAsc0 z?=3D!QC+3@oIDyliq-qfdB!qzA%HhNPc5F{;rXrB9l3Yyw8V48g1M!^MONjFgWHo) zOFmP>j*G*jFN=8eLWenEJoFj76CGo@b(7WA;!dBvTTghm@^Zfj;R-p2&oKU_vVUQT zwRX5?qi_>zHkY9$hyQfwac`Pf1KXGh-ad6rj)5=1)!lmH9-}SdY6B!6p_}vPD-E@aH}>)ckWnPgKI&1&C&`)dM#s2#vphE0 znX{BFxSlo!BFshVR-SGZP12acycc=REW~?SFDIJ%U*%a07+*Q5og`I__!tv*4TIz@ zq^jkRd}0`N+^PPe^WOT73nDt4XzcZ6T2lJw9Q@k(%h&2rhasW0B4yz!Ei+`>!mPC^n1{j~YJ=|uB)TV12` zBVR6T@8cC}TJG1+O}AaV_5sWOvo+<*lDQUp*>N9t^Hk?nV$=KVodOE{3a=k-F|q~! zxJY*{$7ffM6%8m0n0CEdyKi>y?Py+0jbf}Q zMQ=-Qi&aBNkFBA&w=E)|R8~8-wA*pU>8u&OC9hL`e`mBq3-$|gswWFMC8~RT|CrAa z)ZBn}q41p0H*FH{5<9(Wxm8J(ds2zKTGn@S6XJD*wRd1Fjdo8Y<`t~ zZS{5YHOo2F`0x*@@6C>}4zczlzV!y9d=5wlq&L-tg@A7-Nh^A5o(i)T=t;@2zm+GD7OZ(Ar-Zm|_`@6KJ zZ0J!=uMgu(f=5(r#~-mPNYk-Bwkh>^w6Olc#Yai9KNDT+xNLoe(8vqvB_u^9{pJ2c zx{-j2Tl34E4l_B8WMj`QqVw`2X8o(a{unnR$-Klxb9~}c-1)hZ=~BkF4`lga<`Z~X zo|nYF*eUE|Xb0RAO&nv7itTYqZ0Z(VCLc{Z(zL*0$D+GqqO z*7dOJGeVWVC6#4vUC+&yV;Ha3tK1N~i}CPYJ<>UXR}_amg5_`{tugLy1PMaSP z!eO1Ke~;(jBeB9+3&FsP7j)4l54p;UZ+ZNXiC}%Hhfmx(=#u{FuxWaUCw%m<-`A)6 z5}4bTYTv;f!0!i?_oY8_*zbR6!(l>&2HY19oAk5rz{4h-z=4|;KVl$*`t)H}PsP<9 zwh*xYmg)Dj{I^WMw7KNEC*q?g0e?^c4e^pnDMMCvH);pe7T-IDDOjxKbL2RvS`grQY^EbTNQ&*;gCzf zyX$_nUpZqLrMEtl8x0iLPOpyYrQ`HT(J3RU#?kQBY)*! z{t4^x;hHYlBEEi}OiV}xDbjnrYdN&AjKgrZzo*vFbAdYeoU(t5&qnTY z%Q-ARs{V{0m2K%lfugx>zyK>BrfckTJDL!YX=q?B)@KnWjg<6QJ1-P)^7B)7fHbY=!ir27@qvs(6AEdqw9?dZXExi3VO!59@0G6|K@lDUik)czET zZ(%gu&fCf*q#yqnBSnz(zT3A*QGRBR>37!NC11Fs(?u*hlhwBsz0YLSXViBf4J59K zTKB%hTp2=PF*?^@Tv@5-VYzs({$&wnV_-Z<8e>tm)~<95fuMDqY7Sg&k*>62uwI&= zo=*9eia9lHiGI?tO?u?$@%sIhj&!}kYuDNC`<=spC*~H?w|yO=fFjn-HmV^r;aYe| zCusU+KVn@KyQca$kU_K}<=F|OF3FPjlBbf16nOMXOYg*rlRd~5wQi(==(SakZxje< z(Gbq-VIu}UuFgYt>6J@;VreniIl_wdbh{8TAC}$TIv0!k+Y@174Z?$z_rfN)?#g(3dw&kep95J zw7F!hpwKpEB76dMna_H-%-yVpYf{jDCR6eBb7-v)zt@VI#D~)r)7H9luQIsQhl+;8 zoykwoteMAqsc1f@(M6%$d9M3QZ?>_L$x_*Bvq5P3BkHksWXMIb4whHD>vLh4!Q%`f z)_y{u<<^-=t%i@)#W=FwIrV-eMlH2~>(tg)RUdWB1?&zIo4QuA93Uj1 zZhyhhR^1C}(c(Jd?dlTlX^E)ni+!asG1Aw5e>BLc1f|=4VP92pU2~&E9eXltKjl$& zc%8AV12tlu5zPC&uypF6V?La;9O9dO(BLIps~5cNz~}>Lc)17%?{}%rIFHi~mAVEA zwp__wv#-*!O6&>Qx~9LAda8Efgy|EVeV9;HqO)qAG7scg5}gvWbio zi|2fH+x^vj`Awld&!zH6Yh!_oHI`(dRc{XdG5=Pif%LUiw{P+(V<|DlW&1n3*%x)T zqNAw9QOgqBOXIEBcjBl$>dm)3_G0F(abk-_<73-Xu|ZD+JN>^euDS0T-zjN9fjfDu zFY#cygcF=++7lC*Vx8I*5_=>(Uzz%$e!P+!14;D7ldrY$#VZo2Rc0ZatoXX_-tjWg zXJ77*Ic|OTGYk6QvK@fji_hEX)KKLu&*-GxU8+Pyxs5$j7Fp^uiw!)+?8eHyS}R(S z-FMF-IK;VK5yXrNy=Cd3vSAS2SV{&Md`iatN@?R#hQYr2Of_}w-Sy{HLNk_1VPo$< zeDvB;(Ex!RFGQTaKU?yu|9
  • !}l~D4|_J$Lf=EZ|Eab-oD1;wbxuH4f}*}-n8(N zBh`npZb+sV$AEH4l-HL>#7yOlWSQ9Fsh9u_mCK1vTqxmh)+48=?DKDYbZGdIU%3J% zGC@{9WHq~q7 zoubWQ&)f(G+e^%%LrxmG#~LmPC(L&Z`s^U^jRTDwmd5tq9(v8sjJjw03?nlO(W>8vSy*usiPrrCF@47xh z-(ChGl$f?lh0wVyQI>OM0|71S>`xZIoJBY)BqXN9Z+2&`-Cq0)77Kdd=+T>NUEd;SC^Z)ig$NK!Th zWw5R@qo=kkziL{UB@w;vYxUe*WXg1JvWm~h;2W4q(MlbQdr0Q5#9uB%?~^8x$TTtd zb+Rck_t~rVrn*g#Kh?VgO}{;DOOOj&B-GWt#lc^##lf^*Xgc|O{SD4#%Hfo?u&{?jp z3w4)`1-<0T zf}Z5(J(*=Iir+CyDAWvg4rFwGFU%Y=^LcH40`-{XF+*DG2)}*HqUYsnj!x6>{6tcV z+?L1Gx5>Syum2v?;1MCt!b=pgbtDi9N@ThMPUpm)u05lr^3CQ&eBI|~n!IBDWc0hb z0)DSod;KYdGsbHsb9M$mO^{Y3jW6bFqO`P8HoaMAR4z}vF)#WdX4Sh`y7Vh42t_@= zrE|i@#HzYWF^i8cCTzdorf_J?_Xt_NPzNJR6YoHnf}_Rll{2mEEO(zifX@-oFFp=e zURefE;f9BIy8@@M&gcEzC8REPEPy}M5YZn%Yv^`HolUSt`0kfSy%j?eR&yJ3HTiYN>_HNiY#_(80Lrw_+nZ5E`4^T=@V4Ejv)yPL z{rr$!`3l%iZ;f81ctMF!Z+OS5Gx=8A{VwD8?-w0gBx!dS3P<=P?(GK0)V^RUZFJDq z42L^MC8vZCG;qIELEF9UHdf%}Vsq6FeA6SuFJ0ac2cZQN#BZr7F-_{(t|V*hLJvoQ2Tn1fEI6^8%E0jGvNxLlfkCm+>)mV zS*jJ|hwcy07G8+YCbwhT$R*~pzBGhzV~0O#?I?nku?MJM)q7SWF*cRKt}Od2nZ?$T z8z1Mv+1_zahdWj76UR@j(5&vk6{7bVqu6B@tUzko_fckP>~>3J+LknSRa$9|dz(LV zAolCdI19F@b27TTXfC5PM^L7t#OX4eBetJEg9wwKduz}=_E)y9eDTima_wB^>@0s} z>E7aO*@$}SaIpPtgYk>&Kjc7;|8+2^D4WIb>gJt)LdH}wr;_nncr4}hiyb||)n25= zhnp9iuT`;BDrGWMnr}V4zTp@qB|Z7pIHEiyXL(~7kp*A>VVVC1?oL>-k)Ii|pCahB z_48U4$2Eze&l?j@PB4UGv|N%1xksy<&dt3%b6wHCDO}JjDSc-(7OU?D_5hM=vxeWt zK52q$;`%RS7cjs=y5jInK4WZWcj*At{X8ZoH7>l|2x++PVx#Kwy1 zZx|;3;Lg((tf=XtPtV|w?Ace$Il(DtB5myK?EKh?P;H#Uz{YXx8E2>unO)KMC$%zV znMU}zpAhy_79P7Gh!eHNwtoaG9V>j|`G5*4f38)PU(8h+TdKtFe*wq0p6&<$-d{3( z)>AhY@+b=`0B|R@cvAnQvXshWZTeQx)>r^3w{}|n#$KKDes=49Q}cJ2hWl&a69bk6AZM)qSxH%BY>jCBDkilEuRAkxgqx?K-i+922GQFRznb zz_4IOACmJ$dCY#~_3#1!Z{O1o(aUYW(CfF8I(HOcCMD7f+u;@5N!VQj`x@%UPqqa~ z_$&7u&NS@}Uks9+G5c9G{(>8vv*~m6RxKv9FY$OKK9Zy=#C@Nvdt5~>UFP(Xo0-US zeRe&iWoL5DknDC9jv<^Gt1uSG48u>7xGSw^=GTD_o(P5^HI}=gMmDO)wX1h`c)Es+k zS6Z)=n-DigV>r1C&S60k1w~SCZFxXy;C+KU9p+tbXlk9?$Q2k|Q!D$4dSoIemT$j3 zU(+RXBqgx43u*Ic?tN1`??;yn>_(`U_E%zIdo2V^C==7QRkwvc#(Z9Aa3t4h;@(|Znh&s#QRVI)7-oweI_wGX_n>|R=vQ>$kZ7&JZ zEhC?JM#@&9+{VdKTi1ooO63+EC1bqZC6HJfkXll5F$fdVWBjBjWzI|qrG-F2gY$sv z*WTqI`r*u|{UBY0qCOQ~B`G~#vAY-`wA==UboxZ$yQfbm6ISSLo9a05byu(B9m4UW z_eh)??abK@lSksZfp%i$P4G1K-yej(fOM6?;%kR|P;Cy#C;3vaYSn)WHLP{u+T}(4 zcZWzT$<9DQ(PhCOY}-Y4$)Zh`9MK2#}3~+_dC#gRBM?F;*%loi=G&4~V^3ea17BMjk=_86xcn0DA-jwyPZ?}o8(W)U%kkR4 zWsuLMGfEdr+Q2yt%$B2r=zkZSTRGifcMJd&Op&mnGAv|>51Xy!vCTe)iE z+Du16MMVXN*7@uIoJ>}DoGCbnB#P#i0AjHw_ha#KbD=RSw6)<>4Q4d}U|h$0=6O43 ztXIxMy-bgPYzOFWUA(Ou*80wMLl)`CoO=odnH?$;=}sG_o-RIs!VVQdt+mN1WtRW@ zWMPHhkppKElXAn(R{%3|cL4a+4fWUrL95QTo)~7xr4-HOp8x5~W76@h@gQ>INkpmJ z!Dv92k-R5<+OaSN>iw`DiW-@?55FE|mt1^0&YHYt*SEmcb>{WX*v(lvCTC60)Le`T z!DLHp>`1&penlG%FOXd};4<$MZg$^Xb|dGMBdaY?&;>O10=pI zA50sK+TVV4j<3JS-k9fh7OQ7o@`DAEXs?y8_CwA+GKID(!$U6;)A%`+BdBKXo;euy z=zfaRBG$J{?eq`~>hWjQqG37a(VccnDC{nK6PIhBNmxzX)rY$IJ;UXmW??NOUaL*7 zOwX%sV)OouMkrWY%X|glk)m9B&!BuDwOQO^5|k9h~ICS)7&=-(XIowrMy0C2`n`r@zO$k$JD$Vr)Tk) z|F1Ns!=NtFzbZDHoRA~=Uf~^=vqIQTreS%BdSsFT&LPo?53}k{yU_SdnyFPt>lACN z3J6~pSb^!P)6ofN0jy~@tul(wErLD3B%=DPaI<2wTmVQaTS=&$B(dH3Ty~BV9o|=4 zBsT}=ecnk}|9F@~@-6DJAlTycg@X=CI&)fdIABck!>6&DfZQcCAQzIq9kry!hb^4C zPwZ8?rCVVy9!zbk0?QH8RMoEzBUPV(+fy$ zSx!Y_xNOUoYsEmJ>~enm;R;cje(|N$`Jj78=>ab*0iL|55Pma z5Xt)%9LY?K-0wkQ5K+$EIy$FvmqjYKYWT+>?P<`yj;W6>rsl^KBtebW1qB@;zjAT^ zr=N5+U_Y2=a<-f<`fQetFp*#R37;<*unkOIjrlh)#X~OurmL`O`e_)0sO|G0uOIA* zKc=$lm?I7PD{KY|=1j2^6pkW+3Ky6q8R~l zRPH1568@{0*Eh&v`2<#Y%ZMAU;OmK>j!*LND^P-i)@3Fq4y@E+rk$;8u9{ zE#Ioglo0TBm`eMv9AP&=>e-OuxTvAN3TD#sTeO7e?)-us%5$T_J`l6J8MNdzC9(V? zShY4@CSVNI#}4n$nrCO!PL$h~!ec(YM&cqQ~LpjuN& zKCo;-s%r~se|0{sId4S?xznE7V2wS8`I$uQQ5(oW3+XXzLkahKv+fSiE|(mKS-?_A z`OC773x9lovjizuS)=hiJ`>VvUf1Bx3A8x%QE0}oI1E(hS6)ag7C9hNE9j|S;w_A- zpg^ISBRM~tDPQif?*ELE)0DUsz!=WbDKiaaagbdT^a^cXnZ8kVR`L}|G-1MtY>;}| zU;szSiKr@wQ|5i-h{ot#Ig(eL3-3_4^U;tL?Er!;^m_I)aYMK7kF6Jc@sGIZq#!GO z`bvZ-y_7;1hf2+eTb*cLhVe$Xl0eI!M>u2kz9HlR2Iig(C)ecwD0O*RjEGe(n3`j zf%xrDl5mOBZu7m_%iqaSViiD?soPnf8%JW-k*>Yt!=6h_q_lj`fkaT3+aeXI?7xO4 z_hKF1n-r~sw)YG(9Tqc!Wvbkp;Lo+$-B@4%I`PmuW|lW{ce>Mb!tG|mHp`d1Cq8Q8 zB5k#77%2_U(~lZSwK*n@V-h3VDm4WfRp5+_1ZU*Hpl-g_4tG05{(=||i(h_jZXuf+ zX;*Q1102QkX;qtLQ<6I2shJhx?Fq}TO?@kY*lxV_^Lrq|9eEDD7FL-@72BwpZi&0Q zuMzr>VEtRD`)@X}!Q%p<)98^^lj)55`kOpJ=m?I7>e)UUdoO44B+p598XTZGv&~Yw z^KJmsjDxJ|Mr9T>;v;=wW*a;b|GArQvoLjr|Dpv_4DUb?2G|RP8RR0ab4(~hR)gf! zRI3~>T|nCH%C*EuM)H`MR6r0a8#Mw*epwHpe6Q*2EdCcXK2+!T7)B0pI}MdMLnKb^ zD>-I5JCBaYco6o=Hns+I1pa0{G_j3piCnl(_ka-MGdbF2pP#<5_eVd`hfVkYL~fS!m^_=VEhM)dOcAPUfKu=L@zzNdDkU>t@y{Q#?<|yu z;iZ>L(b@~bW=79%_Z@%Tb?^kO4~H*rI9(=9P5Gig+`49NTRi?kV(jxVmgk~n-%s>C zYHtcDjDd?19Q@4RnX*0=#D}4$w*FyP9}y&9J&2P2Y}o(1v#?eE&i5~m?e~`J>Joya z`pp9iaqj<84h;^#>LUAbBOvp;A6LCeU}*?2$)q2iZ!K(fswF5ke8Cr4Tjk@_&fklrie*UO2*t@=4qT(2cT^;_ZwvFcCQK6I zQJ9}qLmh4Oc}*#XL|DyL3^sD<)3C?N;rgR00RcwStdd^_o{ zry4g#F!=J_SjmltI6L4k#CbjppxH)_kIXoe1w{~=kM?$fwa%6Ot?^susUoZ!xiia7 z@t3cu=iO`nAoQ{0t$^_uNVzt_&bm6`AUlNg@$1U`3&*w|MGISXSC=@?>6T4^T&brC zaS0)KHm@`%s9)oymr1q7^U=to&L|#h>?xZRHW)lribFc0n@`D)9Dz#knVZr|&ZJSm zVX*v#lwXM9MoH$3hN>hrbaXMgjiQx9GgDIo$~XE`zh2VT&hU+$ZCGI7onu1-k)pQs z-E}Bo&BW96^8ShRU#sYJ0548|8|p_KBVL4{hDP-J06vvaKh>!o z4W6{C&rWv;4dX^+e6!@2avjakRK|I3YE}pb&ilLqNj|LPXJPpw=fw{hktL* zzkf(R4I;yThUCOYDl}AqC|`&nL0(vBC&O8i>C^ZlM)T4 zcTjlFc==MZ_*|O5Meq}x+r#UKA(S-P9L+G(cg+{R53<>6PZFDD(kGzajDbnCHsck+ zoo&mL@@Bq<_dgSMwd*gOg~x@!_|SG7Z^v+U_+M#5GYF)Y^|g@DgE{ceOtdP3r_z3K zLFLac4&)m6IzTGgsz{3qI7{)@;L`zCvH@SYO?$iC!}%M~%SCMZ-(c^^$m859+oUn{ zt)Q986`=SC5mD5?1A`%x(2`%Ed@F3FeKS&o*A_@b8(R0QaON?Y1WiavQ{DMdV;t0` znf@D=XYpa_l;A6)!`g*eUxEZ3I_7xd5zmc-AM4Efl|70-2oR{U`hgg@Jg<4?5aOKm zCjy^XjU5eVM}M#KGdnbAox5n=n+1-zfRpU9KX@*Er(k_a;Bki)KH3HANKy>~(x>QA za^}5R>S3HOfb$X72C=X}93A?|vB^tPS5N*;(~n$b#dN8zI3A;6IT!(~J+OyIPc%4t zJz!UB1PhrtF-$A*?dE)*QRR>hk&hpZ#(6f_Y_cfR9{^LK7c zHUZ18yXc+0qRbYNq(CiNJlN|LuG6v?zDx+xq@8*-+ zdW7fxSEfXS{D#d9Zbeu==N+1@{yE2!|H5rV6v=d8fg@%t(T8mQWJz%C|K)R{>}uz! zjKIm)^d=_)=dfKln`PP*k(`;?q9Jc|20m&BLhuO;EeiuC!RL@mm$z`R{SZV_6F_S= za>VT0+gEizt8c_jLQ(BQglEnJ8HnZ+#vI4jhjE?~UO}Lpu1h^*`3ZoTAKVw)z%~Uc zCp{6)lKvISf4tUN1te>WLlOgdfElw%|Kfu4w`wx5ieuWh%q+OjB1CKERU#s1URt4* z_=?ZUzF?#?i+0w|7^h;y*`9k^cYp~{z;$s@zJ&%xumb#Z5tUNZwdNl>twHnrf8bj|G@wgl0I~7>v;dpgD`G!9^x4)UNAO{pG=N+1i1J)47I6DH zipc!=0_O`HE?o54+qzxqVso5P>|)q5u|NEepok@d&1Cw#j+MyT!r9oxG^d5k)iTB@ z8PU2lU?F)oD|!!^@*ny@Bb{R6xq>snzY#`0&_Q(@%lTanxpo=opiS<_NO1w}ul0xX zf0rfKQ0a?j0Xkp+Nw^is2Mi7w4oK)2V_!bNxy6 zV_L)BW?gGs2-C&(vKg;@^Z{u~VsXEMFPxiDA2y7sj|Ro3#5>AZ zAnk|&^CA1tTtdaMtU0vev%FTGm~0X_os z^T@}%NegnI6F`Lr=N-q$N?-%CpZ%B=`ug9>E2M=C0#T&TWVJ`%QThEQt%1`mMj&^+ z;(J#31{wGEKA%(=irf+xb&F$*hAy0!#J{_$ps zrEf7EIIM*UF6_gvqCHvvoUXCelp%w6#1AB$-&uycu^vAib775xeN7k&6W>? zc9K5H3muNSV0Fv1d+r`Nn4|xKQ~Bpw6S`rG^KKm+KOr2e>NQ3QaUA!aHLmSEqEvax z9(3iBM1Ug}vl%qxGQbOX2}&Ro1is-J%DQ_!O*fy584%#Vx{v@f$RjMN-0TST;tYFU z#X%Fl=Mm_fNe9SPhbkD4X6}Z3z;xZv#b`@#hDGeF^yz;-IJ=2WpX{@nrXx z{P;Z}o#zs)x&qoCs>AfM6XS8$BoGE|Nyp~PoTUqcbY@Yv0?(KW;=`1QK%f&xIb?WX zcSl%ed_92HDifiTA*{4CT%OxFWmmC1DgU+D39G79NBj*^0^Vyal$%-A<*PN}et`-a z#NUkwCpSPTPNZoAl~MC4lsvN8A(DG*a7rpnG6uLTi&mQ@#)0tF$mgmWR+l7r-E(7} z4oK|*`cZE^(MJ7r5DHCKOOgt66}6XnpEErRtUJ zhnw93T}a?8eZ@R+`-RlbG~^N%407n~Iq7^eLg+$!748|4e+IA<7gyn(vWS2jS;CtS zIzKaEL2IEP#O*`Ig0U)={rhEmD~(KLa$Puc^w*QBfh@|a==5c^5HyF)=ga~<(B;eU zJg#K+S3V|gRbf7&6vo$N>Vlm`RO*I$TDmx_F5trE-x*E|%5X-m(ICe9h9Q9qI;0>w zM-WgjGb#1%AaDZaH`26J0y~v*cNcUR8SPEWN&AESZQ@xDeAY%l9eQ;t!J^w<$%F{t zO^9kT5t8M`Jt#B?fG#tx*rf8RfD#tX4`%r56mEcw(`xl7tahhf|iRtAlLp9 zeZtLR=pbcGyjaGi=k}e+Z{Y$?)2&4lp?Zf=-JmOA-g6X~LL5#~Tk ztAtwH$>dugIr7bKK?)Gm-CB*^md0{IG=sVlV3%ni`VcB}AYzFY>1D4E+(h;7F(DR%RkX7IXfuJAPJb-@g+}aE{-=X;)KtJj}UV520YnWt%cCddxM=R)* z1?mgw7$mce_f+mX54w#9_HiuFoclJwf8oLo=vufJv>?4%;su+TANUI+YE>w9-N4Cy z)Z7<=15KWjBhd^X`E9U`)3c-&y3_SUuBu0zwP=pI+-I^h!_x}#w4i4Zze$~I?_V_O z{1#ImDDMsgnC2r;WeY{Wxd+&)SU^Eg4`u?3I`sMW&9NL%?YaTW64d?1=kp^RCk6Zt zFth=vbrxYC)TLFz8dv~%-It&~kc{h{_#MK3v%QC7$=jpH^4Qr9=B8E?f`lPDzK|7_Zlm2luY>I%EBwWS%6^O0s;oJ zo#(&+#IJ3WX*&^Es)5!9;og~Rwz`mLDPYr|$3xujq+o?}PO_5!Em;C5MU3D5YVZOW zc61I0ywGN#JK55XSThN}(}>jdZ|S0Ytc{aL;7Y$sb>1PB%P@kJ>v259t=HaB7}q|3 z1{`6$kQw8D@gh=y9^0J3BTk@($p(Eu^UFW0$m>8kS0c{0%h_s*9(%71;gu8ruv-l0EB{gtEPu@oQ1l%WO(;yoaQ0$WeU)9d7tLd@;oBoBY@(D^X9&Z#&^7=qd+ORY6Z_{|+Rj}CzYim$Nn z(6kS;IeEU3#4lviQ_am-Z2sYS`!N)0nn@O6=?S_p>AK{Q0#?3kn6f?WB5txv(K zrUNV8VSYO)p}^TNZ|N=IpXW2zo&M@vz+!j$c7Sb%g6PaQ4Ul4(z>9wRvnwn!uc4ik z{D8=wdXYf+;KJjfwTY-IvDC2)b|ql5xdF_^fGTU;1g@|EK;J4jrrai?n07;xDfwm~ zE2VyQrfYAFVD~p)k0&u#363h6hRFE)TT($rJR|W(N_&nXGC04k!NGfRp~0jgd!eD9{# zFle!d48ujBJwq@1m<&#K`IFXL9nh0lueL8G?cuRNHg$m->H279gchA4q za~9t5NY+BZ%mw22(k&an{)-J!-8_~L?W6BmQt=D5e8Q`Y~O?WRX1KgQsJI5@8a zTLX+seg7~xxM^ZBI>%i;`QrCAI? zkws{k%|ILleA^}*XW@~)IVl>1?dgo|?ZDrzGL#vOBVNIKh_;w}g%>vz<8lc+-Wbar zIY#yzIDjsfnvI14-;UVc&#Li2{ZJt5IZ82@KcqL=s4Y_vwUSgzd*KJt~lWc-0)!n z=C@x|ml1INFqLz!gLNl_nOr_1l)nqQ)SfwQOaVRA82H!idkkDn%-m><70uiit>Y82 zjq7SFF$0y<0q!`7>kk-$_YpL>95uIWbDxT)wNOt;cp+}-cT_~hXJf91e}4qKi&~yT zVoRJRr^y($|7=^_!7WgnAE1k?5n%-H-RSF!g~U4J?Uf1W>^2L6PP41WnBExd_<%fK z=Q+F@BL?Iw|H%JsID`$MctZs?dQMBjl2&(0Xs3Z&syRng`!UWg_%j0YKxk+3Q;`S& z&zKnCHpXfh?4GX;UyIX)%wbI6jU>(ImQuP;=SAWiAG&-mCoh4W@k@N>9g$Z6I7Jr1 zDMGosz@lXYs%QZ~*Z`3?l^*W|N9*lBPzfl~42RSLFIVU+)TaPraK*2U_!-`>Em@)!T2|eop)M04}-3G3~Ir{uX@D2-=!AJvu7s8<4D;anH{`hqnPQgeHNp8G7eU z_MOiUl*V`oQnU`r>$>S@%tdkIrbfft%|wp;NN zX(k-h+AXasL~z%Kn-Hq%TnFv_fU-A4#i_;%&EgAs;S?%6$K3KT5|68Kz%W>N|GX5! zTu>O7^=RM$F0JsZT5@sMe#NJ>j~AqzkzR!!zP{|Y+)DYyDfvxo)Wy5kZiZhkw;K;;-pKAj_4$I3Zgn z7f(R%EHbdQ!+p>{HCsPaIGC5n)&74AHc*^oFfQCWhO_$Mo^d>|ND&+VI%ZEE0P-T! z_?z})R_K95X|@K$*{?Y>XS0rwiLt8lRkwSfZS@KZeAx9U%#)xPUa)?M>w|z2xCt$& zR*xBhFyzf}1&R+ZS80!-XAMwgy5e(4WT+Oml{-=Ur1sS!c zRN}oV9Y1iadFZYL3&r^)ptoHX?g}CO1#AHMVgy+kSH5yiv7Nj6X9=KP7e_+~Vv82M zeD!ATJ1oTT%ycBx0q+_Ub~_f^XYEd?drl3t+7iDXuR34yv%uyS_Fd2oMlrS$yONUD1)=RkAFKunWWVtwZ z(+-7`R9cH+s?r#zf+_%S3mjdeR?E9kMjoptMWX0*QD2iH_>%}gk3k+6{tnc62W&%8 zl0M4;$a#lC$bbmh51W}wc{;Oan-4LwE!3@@JVM54N_nMgV_Kol=*l-K{ODq=dPR@h_M zhUqDk8TwJU=mZ9TMX+RKW8_xh?xKVNaxZJ&j5J}tEJ)URKznbxs|CC!2%|G~<9mfk z=Ki1r3`KdLxa{2@c=QJ^fDVB(Fz4L`+9A7r3o2%}i`x2_q1&7F?AasJRYudtngdIE zSlZ*gyOC?llZ`fgr`E%~xJs~IS659!k}m`4v|B%nwCFOrD-}@(UJhWaQH6YoOD4QT zp?Oby&4sqsGtem}j{WR%>yh&bg%;_U)#j~*nWUQ77I#EIaBQDWbP(p9Ogi7*7%IN? zzMUE=x)$(Sf#6LL?r4Y|1x&@*69(I4cT&8A;gC#-hFY4S_5#o@>Z3;bU0dt<<2t?2 zy>Ab=sMuoMa#F@RdYeHX%L1dB=SQ}`Y$U14GZBh7xYdRND${e*4S}#GVr>&lMh!4` zx7JAiN_win3>Wo%@>Z?|v8I2aWvBP>yF(@Cz1A7*TgxJiw)&G2c1J(oLe&l=Ebgtw z+s1l}JM<)$%+)e#c?``5;2&W#?D>|q+N2#1X9n@P+M8-*8TRSt_p025fR=@nZ?y-X zj#X_Lc8u{pyu0@E31X>6B;hP}s{2WJ*9c|Xebpu(nK#l>wCjzFL2o5ROAJspP7=$! zHNs3A`l9A)ox*1gNLMFCOM^R;H=9=YBP$f&EfiDz#Z&D3EXoHFNmxOv@TarLO ztH;n*4GVUwu9n4JHLme*UTmwTXTsne{=q>_Q=yGtTt3(CMIp!3<)3>(BGJSkH~0&N z{07FtOcuO%p_w7e$GfxAMzNFEfXZ2pIeYbz$zI+-SS8iKViEUPxS5N=+}(uu0W;Hi zk8)vQ-quNiX%wahl}}^~$XZ^mBnq_RNr16~_tM@px8m4konC+PebSgz>MW?GIF=E+ z@zsD+IslXH?x>xyn=Z}o(|)(b`TCO^n-aDGHfEKgV;P<OUIN{`TMVRKfu~Ong$*-5 zM)LY=jg*RrNNwMnckF#9Fg>^_JJf63e>=6wQYKD|xYamFQbY>0Tf07O0`#H8d&3YM zyUTBUe>3jquAHv+PrF1Ca%_bLK-;b}{!JyK%Fl(%J!`OLOH!YrQreHcs0@F1yj+PP z#p$ZYtE(wQZ0fwMB=H#r1Ozn&-0|n*G9EOHHSCXmy}+~>H>u(Uf$J* zN8`y)!H8IW@o@ixuMrnH5K?o!zO(8V@YZwF_QLwam1jd01|%_3oQv&=HCknEMM6O? zVmzP5XviL_Gva<6x*J6{4AFV=SzvyTmw{lH;0ejsuXpQDD$F`Yp4G~@(1m2=Y%=rV zGLf{3ITw=7qre_>YO^NbRVP!wrG_tFvhw+y2}U#!{}n+kYXY#~<)n@^DtrP8INqQC z>OaFk=S?smOzHtc=$Q2dRl3NfeN(^Ov)AGN`uw?!QykV4C;V!M>)TffwAnH9 z$pSw}YrSWSx&2eZLEFNQpFPOzovDIwXPn|3%!_PqiQ#*S+Et^lZ^W%~$LcgAE0*I{0fUxIdjiYZY**PgS3=mZ z3_qz}+V%((avfX}I39Zb zl=)y$wkCLysBWQcw1F~FqldGfYY(sJ*I`R7nJ{AW&g55bY}?QB4A5uYstY>y?KM}` zG9_EJw8pC&E2OZvS9^$ zXN_1z)9F@3VfKC;_r&kUJF)wJ`1{=o)Dsh>JX*uh%yqAN7;Lo?1q`mgY4B1 z*_({)t&H%Pt&_dCjLP2G+wb~x>YVs~f8YP=bviuH=X2lJeO>Q$7kd+&Ke(ddaqEd! zhqWkwEcj57(}4{u@i|!(7A6~Xu9~o==25&6s<;Dxzjrl{Rg zA-Ab3HC+XdJmW7@eD=+{bwhPknAzS3$4K6FZBp>y=f20H2#IL5@xpG^#}l3%I~xud zuM7|=DR#4cxK7Gg%%rMU2s z92#jE#6N+v13Du;sM6*xHu%3$qj*U-OX1!ZP8)t<_2 z8F??EMDWoNM0*j!hF&b?EQGGl6f~3LkUnRBLcn$jOrZ{&lWF=uQ?~Uk$pk(=u#E;# z)bkK=_;`7?UoE$EEP7&&y<&-&VZ5H%(8uA5U|mSRlfTyl<=s>36VAGmx0vu;cUIJF zidSAfPb@j{yR!VV@99u@$Sp=;nhgT8lnjU$^g-~UoGKedQa_41_}+e1 zVM|uz0e~fieRCl!oJ0GuqUCm@)Q5Fc+ z#I!in#C!SY1KkP6vu2FJg+BbX~ zHl%YGOpUaibrVa3PVZoQX82fca!CZZ)0?>Of*~Z|u=z~VedcxJAGb19r7#*5sTNf` zT>`XW%~*eL4x)slyJsCI&Z)n-|72)5?L1iE&Kf+P0UgaT3LGTEcoc|pZ|Qi;snALZ zP$>mF$9)Qv+V`k%P_3K^+_=1i)TH%GrOmM+$KxYzP4?+z zob)gITb>m60h`u)Wt#0YgWP0&3+i51y zv-tq2*`s;#@PW?>e|7KY=H|;NFr=IgPMN&?#oS84K{wcSTk3uU2c_CO&&efA0uPoG zmJB%2p`m(@j-I{F{yE?*pUIuRm3&XnR)M}bFxFXv#?8qq9)yp)^>`qMc!ziW5WjZ$ zBPCe&`l*doAm2#Lvkf)#qvmZ0T}Q9k(C*(*P$aCMx^JaeReHsNh=8%3En4;PMf4;6OGtR>rj zbeRgxDc8F}M~z2AygN0=hy90aWG#+zb;ByYqVEcEDVV-L7dh=%`uo@%qI!`jsR z>?q?YloFlgWNQg!Z1+H2yyFzBjd*t+5)Ky?ms3_YjSc(kPs=U%aoW2Xc+_Z815AWj zMd~DA+M!^Yi281{^`Y;Jlzni4xP?J#0H`ol2P9{ z+W!vdOz|=Ee&Cyuynp|G&)ds)KU|X`CkT^&Npe9j>bSQau0$8kEgaf+8Muus@BOJE`MUD#@L?z`rvq%;4#jNu+a z#Ujg6Eo)$sYaoT39V&JNxW;Rmh4ryZp+c+TYB9z+A$8K*?ZX^-8hzOa|8Nt@Gy~O z(%PVbpo zH`vCC>QK?w23$9n#|pV&uN|9KSHQ+O%icFHyLC*8aO5wKKs>a~i#R|3Dav)=1L|RJ zZPYkVUDEM@mZ&d5=A-t`~mf2G`l zy!#@qhaD`Zi$X?~@xZEmPn=6)Q`kA8&3;Z~U-Mv{hz3`!=$e=J)0DCMPp_ZPW%6Ti z=?af0zlBPml~cue7Az-?{nld8~br>GrPEhSk^e8Lj0}Jk1}2ohM&k^*}!+ddz?$ zVAjXes)T_w{8eisoEBpDN|4tfC$a+|ts}qzag{|oaf?rSUITbcvC z!v8H_(B7P1v(URlsEGm3Iv>_hORS*1G~A1z4;Zhjoc(McqksTrq$X&wV!YoQNH6gf z`Gu3>8OkXm!17)?#(M{v3o6>I_JM%2!W;rzJjLS?DnNjxSblwPaCigGDM@Hy8u_zc z&OGXJEB|7y&C6g@`<#ob8#O1s?DcR=Y2Ks+b$fw}G6@!13$)nToGG*G56Uc2C?BF!QoO8~(3ozMfVI1_tc{Rf$=F zsH3z3BYIY$2P+E!N?=Rn@E#sDuH%nyV)Jx#erNHdfBg92k#C8dK{bliZ*bE6#|k~; zfyzpIahgxw=M*PL2(vRc4;rd20OfW(po?4&V!ox^= z%JWLf%Qs=@c@%S{x_cSU?H?{gBizjw`+;F}k8P84gHwPlx(cL_xJx0p$S;54PA@oV zq*zaVt|vo&?rl9sV_=CR3X<5T-PCU=`Z=i*ql&|oq& zohfp_nGcq$L-8^cSb_MV9*ycd+|!%k(53RN8CP@mwL`C}-;y9=unYkcpiHad!qUScZIrv)`&=oqa%${LJPN+`6_0UH^lm!@)9){E9_c6U6d3qH z#)cP;QAgzm413yM^P%EuEYy}^7=hB8whNP zU0gtTm#mZ|o+zSBYZi4SN291Nv^7=kbT1GIef8ybiq(DTwT^bLjeHJ_iG&YuuOEK; zBj#p1SHJZp&jUbpes?F;Jp z$vj3aXvn`}0*fiH;3tznbqO~P&9@CNNVF@R9aLk~Pxk&W%~5zLWGHbuonrqMrJKgf zZg%Uk>FSh~BcuyFfqEy##%-j8?3pl#e)8qeqmga9Hx@nBm2_x;epqJ{zo57bcy1dMxB{qwQKO-YKL}L`LYP( zXiv7_mvv$x8R%$)tkr>X|CI$foC+@60Dkh}jYA>y0$i-ak~pef5!B`F$z|{Q<#b&) zQrLCMd-MXja3+BJ)!&Q&p<3(R36LLzKO6z!EB7e0eoO)KUXXhgYBX3VCGq&7qG~*^ zT--HvSf?RZPUq2*wfL1|zD@%TC8$U(b^uL!T;_iC4)qn&Nc&->lH!QfbM9zMls_K& z`?qh&Fz2NjkT!r3rb)JYwL4VI_hfCg$050sr0ce`eVw|i-W92*MUAmg43Ob!a`T>_ zd#CZdz-GIy@;EdoG3?MMQP2`eA6NpvkQ-^eBQx=0 z(3ZRtFyykPUAi$Alj5?qx(LZiG24)H7!C^{8hWgoX$2+^dtSe4&Yk^I+WxZp>uMK^ zMm*J?eLmpR!BB3O>Mr!_y5=6J2mgHkzz}?zUOXvWnNXH<(9B$>7g2~6U<7gam19TN zAa3`%m%BC=69m(fdT-*KIv>|2j3A7o*mzdK-ef6?4H&zX;})HqCtA*xKKhYZYXge= zjmCPh{hRF93be+$KcGjS0C375&i0d~kdwpM(qs&h^2@mG(7{~0J1FTI!c(0w32SGi zm(;{VpVX6yk#VCTWHH&%Sb0d?k2pNz1vpFHnS|(Pr!M7LDglp<&_sDtFmav zIK=n`Bd+ewl~7J(`rg=zeW6bRF6(`$|h`(F3Q7j0e0Of-lVs z?5E|EpsFRfKfqO_t%$THl^MwS()Z@tUADxlAAsN;ftmYqJ?=zbI@Wv~9(H3eZl4(~ zQC5-wq>O9WT-U91hK#0wA4RsQ2%O@z2{OyN$xW81g<&pA5A^99v(I_d=^ zR$f)XnL|AU_O!unnyYLH^k%&3%}wF*#{2d>dYuSp83{-~G&C{3 z;)iQQT(}%N*4h|cW;dJp>|QJaXl!MRNZcE^L;VZ~CGxW%V=)=M6B2w|8z9aag%N`U zd#=^li{PnkXj-mcrVNTk*!2sZ2rt%=~EJ)0WlH`CRs@j6n?Ves~ZLsaS+?`oInBOF!N=KO#&PV(^*qYDhO8bU0;Q6 z-+m#>MG2$`wG`S-W3Nj{Tekb#!&6TN1Gzz|fZ#^07Y-_j5vp$?m@Ew{qz5LQ!B1^4 zE4s7l9r^|hL$m1FA-O6$*v(v5@lf?GDSsc_WvKCw!YP?QAAHX5VTmVN9>mC>a zOojy}@-W!>&;2!=A$(L1Fj8xfhfSy?NgVhQzy3;g904IZC;Oo?lxqPvXRvg}MM$rP zj1wJnUMv|zDTCdWN3%1&R_0nA-G9dYyCF*`aV1a*kV_th$l&f&o0km-9if?a)4d1`Gi1kM^*3IF@2ba$sfjtS1P87_XPG8D6~NbvHt z?}Fcm%Vtcr6x=UQs-53f(enK98{oqdmR4^pjqAhNs+@rK2<#TahqHJE`AG$py&c}@ z2|SQDv4L{?`Pu&BW09O1Tp&D^E^l;J2UC zs@{&~WKMy#89Ap@{^)W)c6KoTRW zb`^qUg4oGU;PuXSq;i@3`RC6o>pQ1o%>#Q*$b7Wb7aDT7>WhP-BEEVCX8=&) zhG<@yqcm6PHc6$et*tZbRwDARV;=1SKp@(!sa5G*dTnR99S^M{_2YaQ-UYQ>)6BPV z1zEHm@H75c2|dSI?!3NRZQ4artW|0)6?ERf^j@`-wenNzxQwyry6}rJU@LH)vYO!tvT7%q!cchInMJS%-~qmR~(P6O45C`8G8rjjkc29whiMdY%LElf>Jd z4-xl1lrBG`U+}rvaOMUsH-v%qSwK_9*9Q>iz zC1fF^xb&=%1P=EgxE6+cV%X5sG#eq=+7iW%#P9}@dbALiXmNPPzhX?q>^rvUX7Dh2 zrm`;{+#}!G+0uVj(_8R%sm!hKt{^AXarAK2&+TbE2lwo(L=VDQ(N=0>$f}Jk{DNth zGe|21V~jM!4mNyi$hw^q3~6$XyRPwJ0Pok9J1mv2Ss(aT$X{WQ=aD%~FjL%5d+7)j zyzwG;dfXNm(;wN#BFKRrh^q!QG>RTF>bmU|y}a(C0nSz9Cgi*^2pR*qU$j`H@a6

    6cO)87-}sRoP=2fEP8OliaCl$*!X! z)K1jKsEuqpXqs7fW|*;^jUq!2DC?=qvM>}f;b5T>g{GxIc{3O>M0miO zz;o7+5i1350F}|N_48LA~l6+V4A7 z0atBz``gsO%`a!=*Bpd8Ynl8$-YUDDsZtKbsT!#f#ZD)OJ41(-BHk*eNM}6E(cY>W zk_A0?>&$MhiK~WG_fCiL58<8V5CraltW%w7^5#Dl?a$^wG{@c5ZVn_h)h;|diUMxC z&a7G`uQ4+{mlGu5Tp@HNP$jM+xyI_9U^oh7lZk`jweJDLf*qJ z;h{e%)O#(|(Fax{*+V2ltj3>KF#jS>=8g@oDcu`Q*WgILU5+%3;@}S_zKxa`);TpC zp=Vr;kR!LzPE+JoypB?08?K>z#D;LU`iO;*RbinlMz0<#lF9ZPk z-^(j##dDQ$1M!EnHx{2yzuVHch{-}aUF%OL)V$|%Zrs4}Xdt@Eg(~zmWU+%&R!#LgfD+*ELbSN z(`2y=OAs)r9QW-n4^xVXj*O5AuYD9=D}BQ0rChDjwikbsbg;#irsLLn;vXTXyC6W1 z3|)g2oY|)rAKA@xCDRiF6k!rO#xIMHnXLT93BNCV!gBJM(y{L|R~w_=Br-J7m|0k4Omm*p}r%N;F z#Ug+P6!0v7LRje|WhwAn{O?K<_0cm8xlNhX;o{}?^wp>S@SG7EDVe2 z7VAIa7#%C4GFa4V!AUzhA{B+WyoVJheHs0VZpk6pZb zP4@IQ$s-ClrJyA`uZ#>-yN3iJheH;3!oPo$?p)vi%Dh+;@MUJe_<9E@r~c??s^7ZL z3G9Npv$yH2?BDP{q+oc!YQpuG_nRhFt#zf+LNv=#rg^Le?utt|rph|*z=paqK5HtT zDIycA9eKrAo8c7giQicO(HP?Lw-JxguTcWlJsRiF^*Ggna^veo1VyPjN5gNem+F|= zK1Sqj;1d`_OAa?A6e8UX7c^`IRuMNp?V~f#ooG4khpqDTpCbu{(^@~@C_z!!cSDAH z9az2;D)p!<@h5PK3T_+pIpuT<+|mhon*^J$%Q)_MjWQy+tN&x()H5DXeF{UtDd?!F zHw}~zq12fd;HyN}WshfPMMeMjKCBbnKBjX#ki;>9VB}ZUnq!A$u#PRK{6T&DZ*5R5e3_vraS37U)z3Q?!4~BVm zXg#?0s^f*6ZpS_PMucRoVvWg^GUU?!`^~UPGVw6jY+ldHil2Eb`X+}Q0|?MXBy1&A z=`-XLa6z<#5EH_RDm^O}q$kXl&^%d_PGYtMbVTUCIFG!iPf zjZU#B3DS%0guUa%v-Uy9U2~9C%Nc*!X0iDkEssnmj;wd!)~&$2%1!BL9^>;~hmVB= z9I65M)gx9ht79mCVuW!wuv(2V$JVx5vy%L~sp+tIJSFL6>HSo=neUY4pjICBPSC9} zxvrZemgAnPvt%oD_p2VP>39_QOGCiVRs)xX4lfBXLv_!`M@~dj0K&on3Gm4+D!Ka( z1v_h}fRZV(xDz+F7i(`=yXr! zAWD_;3dg?5G8YfMQUT$+22!tqis{9ZYu6d)1(YJs-StO;h+^z30M0xnC~CTJ(ygc5 z$dJMfQFBp{V9LJvc=Gt4r^DkgcLE;BFEch7N$p&K=c4hu>DukV;hgrT)msciRDpqc6P>=zj^a!?4`M6Xe-Y;hR+K1>)pMVrt1ey*X~-? zC|vSHwxjTZX@KPU{&R^nfu40%mcGjJt0w~^qZCLmoNs*m^vOZ^<^&TOnwn+)(QWWx zUNSMC63@aa1yv=}qhX6oaUSXZ_1Wk=5is(M07ep{wuYASirqXL4c!X#{)QF3YycJk z1i4Z<1`;aDo-+G9$i`Pe8camUV|V2V_IGpVkxtek_l#%VVXA|*f9Fk1F-R$tfy2R! zLWOLFc^U2;V}%J3JN*)=pUT89h1~{Cn`kDEgoLhH!bu%O|Fd|#+5sk&BcmHD-vmnA zb%k2SNh=kW-^1}G;Sg{Q6N;S(eg6CXiN0{pEj2czF3kbfLB6Yb zOENtlfXvfN^<(h+mBB~%u1pdZ%4C5sjB3<=<@o1xW~q??2{;BsS?E!id%9k{Y-^M|H2XMLqzUpG4qphK{=Em? z>5++n)|luC9mw~(-2ToPzhr!}5qauAU%4mw9YF53A=U(UzEz!b6Xw~3sOY(Qg4o8e zz(6_yobzUV+vem>z!1_~UK z&tt7jKt?5l7Eu;u?X*lZ5&hPA`jpE&o6tYF8l5s8oWBfPYxBo?v}lVQU?3#nqXi^9 z{H36MQ)m)B-}mp|8KD47)*_f^q&f!j|Gnyq7Q? zH@b@A*FsM3x%I2CHUkw;a_VS73q={6&-#ay)5DSi$(vK0p0*gkcHTb4^Qafh_85ny zk=h4MCpffv@KoCMhw*;bBC@Z@Q%A6L*gPaeVxR;hbbl%ue&hEB!Nq$?*^==U4AoB6 z=WWxz!fG?TYFz-DDQg(PRQ#J{TdR|cxE<@>ug&y6K&4>E3=#&~Y#{)5s#9gK=_dy6 z{sDv{>08eAYSKj~hNOPnl=!Hf7guu43o8j|(#}sbsp@p$?>CJ+?U@q*S9tJQ8mBSZ zNtjO+E`v}bg>4ZI4=&u6z9N$&F?^}tzan2FP#pf=E9iY|0Tbq^t*sq9JqC6r(W#CMdPoQ18M2(_ z2*v(YCO_>kol`sl@NY1nYEf6M5+^iHS1QB6=^Q)uC#CIA2=lCx-AvE%*X*>V88X89 zJm*y;Os4kCcqb9<+NbV4eGnO#bj@`H#Zm2??RogZ|4TMp#k&#=$O?SZOO%pxZfPY$ zdn_*X!NDJQR`sMbiZt$5sng}&c+xih6@kH@!wyq4gKm>@SE;?H>cQ}4jd1Idu6kcgWGG`ck0seu}lAi%qE@siW3DIzI@ zJjBO1M(J-@&my&ePJ)=hLHy$#6DHV3d-_ zET``7-Rd4#j^Jt0$W&!@Q%4FX;8Nm<*ZXn-F2+*r605@u+uQsy=Dqk531McA<{2DN zaO+hdB@Hl1nfvz>0jTVMF;m#@x4!-eW}O0OxSu;8dIeO1-Pf8^%DA+jvTGfW8teZ$ zo6&eg6Owhntn_X2DN7ihY`9xd02uXi4!;phTd#Pfr$6XlF41$?N;?AZvU592r8}?W z8*wRI62w9of!aQXTps8IT2iTgf5ZT%*!u8R1(CJ)3 zFBZL379W71&z#ca(~Lo6goi!A-tA-lv<32}ERBwu{Vew0Xk1dBxaAqtX_n!1?e-N0 zZsNJg&2WJ!#roD`deouIEAM0_49*CA2l`xF_3L|@ zv-s<|o#?J!vZfz?iR?M;VeJr(vD|6LL5S9QtC2qRaoT?&I-1YIeEJO6IkJbi1IaRH zf3{K{HOE^xAMoBWVjfQSxDgvYYw|cLS0>7u&ysXuqb|+l&Y2%CzO}d~jX9^%A~J(bJUNw2T09M(OpJ(s6HdupR+<8N=Ax6xZ6E0xxP{iC3@a{DZlW*`YS) z!Fuq)+4Wq6(gSU5w)Fd3=ZA7@SnA`)h4xmlx#lb5CjRi;Wsqe7Lz*(+!R$bra0$MP zxTtxXoSb~yPPChJcCeysg3tqi;95{3%<~DK`ls4^tKyP|Ptq&4(ZyA%Q({*W{g>O5 z_v|*QiPF25hq?d`jlQ-ipx?G-8=+#d`gClG_rBtMtCE+1C-l_LtiG2%102GulBp8@ zosBFVSL&j~A@j<*R`=N4W+Qx#93}tB3(GIz*5||@wJdbTpL^6wqxjR3uFW#I=(^-Q z%Q!7LMX0DPF%S`eO`eHxy}DFnQquGu)Hc2wdv`#vuzf|!&o)+8cRqsPA}>znJ0;z+ zh^>o}zW!8w4+eyTD=KRq47H;xrQU?@7_)1cIRl`nEYq%8pjFc(ZVw(mha@-j=iPAKiL#7 zY>~?Lkbm=DNB3df3WLtHq!-SNJHy#-^E{J>O$Q?1sVRyIqfN?yTA0cDtM%^FTmFN( z*>^6-j~e0JSTa!c@46S3G+UcaGkw!deAGzsopsmH<=wj0)%9r44BE~hoi1;dixS;M zOQT8tn{j%o{seJ_XXL0K)uq#z6;SIJ);=XTS;!&RcZODfG)w4Vx<}@Vx>nxx!U~VN z)}W2e!7SarWRI|&xF`KZ717%(_0+XvSwb5A{^c@Mk@XWhZPtZVl`o58sR;`_g{G1= zoHr)6GKF<3cXcLqs4WXnHqi=R7VysExpO{uZ+2?|J{Y1C?Is&y#UQ+kQa5%ZOUowS4j;q#v_x z5{8;rZWtis?;-u~0;s5ycYv3j7$fxvJ~7kcT#2G(%{zR-cbX87ya!Sd64>A7P7^va z2m6yOM=blY3$nH_u~J_u3gK~|<}{|Om(TZXq8cso9HG+gUb=mkJ?Wa=Asfdk0&SNa zS1Bsd)msX6)$!q9*;=x3&1~PG`i$#axs+Gc4tY?2l!@U9*wvbh;6`-QPQ7@Myowe( z@*SMq&S6O^@49m|4g27v{eT&rATkR%@wzJ^IS*ZCK3rh=^#-DjgeG#Goq1G>)P0j{ z7e)*{VB!q=R(ZR%LKedl{8uX4hEoV=U^JrcsL=Z*8}pbT_jbU%mfUd+-tHb3y`9`M zT-rBEzSN^=HQq&Iaq~Apat51EZ1d&!Z57QB|$8#(Yf4TYCVllmSDs|I5Wr z3zxImLBV}zW~=h7F%HLEhHOvW*PZRWs|f#8HIg8|4M6GL-fiaz)!Vu&$?OvIY7%B@ zus4`@_`70*T(lL`{ksrZZ2TTS=wbGDCFIjSZW3QeSymD@Q|L>cZQ(q>y!%2NJJ}pC znlzs#-!2!^p?2s_-~0>I9RYH+CF3@nxIFjhU0RR@=5CZuwtZSFWHj?V5!r6->_^#I zt3b83-`=raP!93u>RKr&Y8G-_F6p@6kgfyZ=R9R> zuT_RIP_j%onRb<_=KUADH@A|7KUePN_FsJF{CiSDv*6v&ouu3B!7d7_k8cPYJaJqZ z$vk~%Z|D-G*(+H*GD*(B>lZ?E9P5sx!HU^MJ7epXI!~{ z1jgr@a`*4hX$Sigx6AqU^sp>hkTG6myUT33w7WH54?u4tMsA=Yd>@zr4dnm|lt|$a z8X^hZF!xJ+$^q2!QICm}lES)N*e#iPU^f$DUK>fv%92Dzko9rzDh|NSRpd=7q~ zb>aZomcw8dzzn4a*x2=MMJI^#7zM#>aG~JBb%-!sgr6Mk7wBw85cKv{xj0=GUbZc{ zdeW7wj~R!5J*a;kS&a^^3BBqxzmw+8Swgzu!fHl*v@QLKfy?%g3o^JmakSl-FX%5p zyKDr;8w9y9hQb#jnCA^b{u&^8LT4mR>tCQU451XfF`vMM#wr*iGH~GQt24CZY726! z+~WJd2x7KnBD@NM3Gl@*oI7{!)`E&U&|Bfs682TdWvAuiFhLvWxIqU#7U5H*k~_yD zk?V!RVLNZkQzM$G0j5~}ksw=eeols6)+J1?of z9XLu1E8#{I$L8iJ?$1sQxW7mK13z>4F5+HH2M1lRmK(5rs(JleCQEx(52&m8uXT23}W&!FYY(o!t5waYb1&LiSo(Ru}seW zKrAE?yy?<6=xFdbbjppQtso)e-=XEd$3ytWePyG0^V(nErdZCvkG_NaXjnzEOUtLc z{Fj%*l>MX2;A%}5{U33fFbb`eK-S9Oga07{`27=^@jQv$yYh60G{?aaFeCK#C}w;u zw5-&As-qS=vg82N*x(Y3yQ^nx+|hQ#ciug6oBm>8xRri--%dtXt9wAGOcW}|Mf&B% z*fy9F%J8l6+i_@dr>sjGDAyo+MGB6d6aYX6&qMGj=d+`*(BJNa}EbO-pcqOnnkNXPD$-yoDM$xW2*)Fv zlJFs(5hxgv-S&1$oIbxvgAgx(wbPlFwd57l@_E%EmJJ8kR1y^lL2U|=r z#|3F5zB^t#9yHycZsm4;ttx=|sm#oTl6u#f3qXdn5b0gOp*AhRJYXP4edT~lWu&8k zBL*;81W~NdHKw>6czGhkCB>#;BZDqt;Iy=#TYW5S5#h@vdOsy?{8jBN6;-rWM&idW zTc?(yh2eu(<9q5H;;}B1u0Q^o`L$^;SMQq#&k!rbASnWm{Q1$nSv*Dz<5mcSi@w$~ zs^5O(nGo+7r;<9tyvHPhGOSFte@1R({>wv@hd+(DWIzDd^Wd2; zhnhQb>f=s4|MjxaIhElc`foame$C}CMR5QMAl#r_2MDMRYP_E$h<3g}Y-3Q;O&Oa) z_xjPg)}6GaeP0``O3c9IlT6iV?6O%9r?TSoxk;7N!2{R@X0pZO2|*G!d~L93pafDt zQ`80o!%KOQz5ftec;P@hu_)4M$7@Kx(7MPmIqM)Fu{f?^??VCIi8|`sSzKy$n!=N~ zK>(vlLETD$Qeb(2q8E*F&(f0$s?YM-&i~L~;1f4IexvrgOYCBGXQD%01P#4A8jpB= z{UJTdNhD<7FaPH`$Dl4B>(z{Fwv}_T>dd}ZpqdZIc?mHY4r#ajQ@j6hl%XZ@wBm5m zvs^Uy^qs_g{x081-MgkGhU4K)Mu$Uv+=9aIUuNRpBPR_H5wA6j$NNmrd7Q7jQf)S< zdS8wGq*~Yo`CC%_P}}`b*|^bu>l!OSSTRZX(*!{*XQTwY0Z>bS%ob5c==|>A+}H0C zi$`X8yE=?B{^PDqVu=Jv$RU-%h@r|YdE&o6%M^JW`q+8lU2h!=DHQWtbTX)f(rZK6 zMm~Oija^MoZ;mo6#D#)-QsMgg@F64@Vq*G5Fc#=#1we^75XzN98~dm-(po<>cIhZl z35Xv-)N(UL>3=$NOE{{uW}v z&~4Av0b*VC0Je7Zieuf{hNGbdVDUz{VRZdj2V~poI8HK_?ru)27<})!hwBo+q!7oB zND$#432F&^I`BFk#~@b{=|h-tTd{>MIK55Y=QtEXFUZA8wuocI)PL$k@wCx<=*8-w zFR$2X4SES3Ll}^&(m<9m#2ZeyKmfg%R~-0tLLiyF25>z+nANO7l3^3?{};qb$CQH) znCsEPT?=(kTthA`uF73NR}1h}sP}g!=sU!B;`cBM7^aeZUj3HFAY7 z%NUt&suul$JF}FDHb~}R$#M0#=CBwkuhHB(^uW;@-9!%R5&@u?9lky})v!E!m#RLL zl_Ctc1!8GW`#@NJ+ly}vvenA}xL`-&($>rElfV(NMmU``Vd7`A1WLk(Km;uFBOvGg ziDm!S%#np7L^uU)AqF^r$NF1Fl+fhLSMMr*#948M%Ow{f6JA$&fg9a=++_pq2H>6T z)=liHdEbCZhqiODA3)G4p|NUyT?~DhX3eV-^IM z)x$L&%34Ib3q5ZhBvwX)pUqsnhd`Iu{y>fV=dXb_KdB`7`DjdL+1wrZO_gD|AN`U_ zS97c&GuC$tnxqkMZnzn|c1TW=L_8AQ(W(}$j08Y;{rAHD`_r&)br9==8&v}$O3H6Xj312K<#$OxH3s|$vz>KEVGLA^RsAJJ@zO?szC8XkAm>ITx; zAdV-vIzs%4Y0vOQ)kCkKdtIy?gT@b17i-|oz!a$vrlym!`%MlwsC%r4a!MWew%*U+ z1(8I&ASwuQkEjQ*{LOGhs9(>B{z25R2N1k z_Fo=Qu19=5Q#PWz@R)0|A7q(iPd(K+P;+58hO0$_zCd>?0Xm)`7glm^OtrTjj4!6s$@ZLrM5L?~Zdr?eB zIB6+gUx~torV!JZ5{MlraC$-ibmfs^oyw%JF@oIbp)bq{xVGp$(Qz+!PCM)NMWmu8 z!_o)-pOL#l(07xft26Y%Eorz_0e`8d$Rq+1$CZJpFi0(%UVcPN6%C#xR$!qiIkfIz zHl0C^g|Jv-T6T6EtgKR)=Uxp=%yl)Ur%Qg)R{wP)bc^_3og`tTItzyMi*u$Si-lUI^wfj>Syc^~!1QHS<=qfGc9Wa^?0hZrK2#)yN6@v}B-( ze6OEBHyND*B7yuQInr^Z_g#boi=*{|eTKvbT0#Ie`U~vE7bz5cw~F|ZOU6sq_k3g> zw{*`FsY%U*+J79SQlyl4@B+xYE)@rX>HEAW0-c-pB~2?Egd%fzE93kI%x;bW z{Dhpiv7YfTaY33(6XpXZgjtRwf~{TuNhXf=dw- zR=e9){NFc1j&7b@1=`|3hMYXlE4lxA5 zK~N88qdwRG4H$9=zG0+r2aGPXu=FWz2*Je{iN~0O%`X(%&1w{|hEj|^NhBd{I?1Zc zKq-bO75?0OXePWb^YXP<*Nwxbdm|V&a<>@lTD!ZbG@Cd114*BmDFqREcvB!X$V79l zw}APZK>P_(of6Ae+mOSrj3pBJX)w>lspXG@~0IA3dY5bRC&TX)}hwS@p zFc*oIq8Hcs%vM?|)=yjI4bkN~+M10rQ^0>Hc7IS-Ey35GvStnrK`wBPEL{a;q1h8- zzYgEE9voLL1i~w+5S1tiC1GT9I`5PTb!qeatN*G=etk1EC2>jf%i|kX6|-@rYT1Rc z5ifqCQ{YeWGf!+;mG9<6?#b4JX>8C3(|CMfqXJaXiSJqgF{*_Ipm7E9=p&A_?e!o3 zi-?nK1(ha`-~A~>Wb9Zj#v17ei5`pLEJHraseu#a<^wPJcy=JKHSm+~shG1=11{T; zVG;~=K6UH325k3hU>jcq2QD)0HF&o|NlC8%Oth~|!!}7&PJliXg^yVxaT>@{?$x<& z4V`4ikpqSZY_5J^?1zxxV9~Pzewy~rhCt>6c@kQ2uA7rIR5-95GdIq)``Lq? zHlM`;Tq?ub zpICd=e(2N~Q7AUo`0Ul8J!>QOn`;9TKe=yNmWf2+C`XX55DAqHqd?Ve8G zF)&g1@Y607uOY)^!JhYoV}h%4gKj*f+Sm84*2$HH294B9{Fa~<$lzQc zhKG5h`i)#5gyfuulfj_nU2{**ozkhytYlCiD&bPgGQ%@rghqzDn8&26p({s#Ts6c$ z0kIY5IMrZ`QP}Hj2SYEM@w7U#q#8b--Lb#m>|>C!y*!3pGq)l=8~rVF=jQdpeZ}XQ zQ9%rdE-I~b`tNJE+ge}jLFDGo`5um;n0D-k4d!^~^Yi6P{(!3q4F>sAx3se^0HXEQ zy!mo7kO3!SH^EwL-zSwK9Tp5EbjU3}$@5R-s~s(Fs2w_BFe1cbBeT(Fe!gQ|R5C|H zCj}1q{(-o6w{qX+FdD3WCf^F+D~~Ul4L5VyEr^>Plt5%sB#2B3?mzA;kw-xR;fuACjSh1_9h;PMF?KxyD!^mn&67F#9aEG(?=w(U+s3jhk- zdopyR>8;4cR$W4R#PSIsCRfhU;00F2*pe^!01iVZgQs;XOL}HRYO((qn_k`H2>l38HzE$b%o!LHYvH^v_bTDK^%o!P_Z}ipl@3(8lubs;+vfqW zktwfHW@Pcx(h;|qn7gG8PXFF2w<;>$=tT{lGt)eK(DX?G{?#Da0~+|~B84MPCk@CQL5s-nkiT{EfkHJ#Hk24&}{y0kf@Ga%|B9J)MWVP{-?H1)g*CJ8+pF1)}X}O z=#IK{dJ(tHN#=R;iLMPJ2l+BrZ*!ewdXbe^)5)o_)Wg}jRh7&0LqkrR5Vf%gcFY=( z^yovQJXUT_lT!9BBZ)!+fdf38ghNCLs{!jx# zg&h3f3iCYTH)^4yDDTkj&v~Y?A$^KdN7mL6ptMDZ&~a?e7)2rn5aq!d&Ho1~9@d0{ zkxnoVrQvj|QY`G3SJ?2s;r5Ra@K8s9wDnFz!%sg(LD6&NOkbsi^B}$FL1!Zugg81a zLo@H-^@^IZvo*GAd(jtO%BL8KW6E0e2Lp~uc#y937%J)-fy4QU@YDR4Rmz9OMIZ&K@+0dFpkev@f6P60vhr((WvggOi!qSyF-(1Mf?-0 zL#SMR2Z%*Vaax-*P)(AznFn~W9Q@?sGyZ~ef#9#yf@lf2Pp|Q4Ka?-tf87`{r}&qT z4bZWgA<`KLFJ_uG)_JCQ7p7w_hebV#bcHg#n}k^@M*GS--4yfs8R=TCF^Mlo-g_a<85T5Lc*%%Wx4?p zr}k7ik9--JtW&^Vg}W4l>w!l3X z4)F&mP-3|5y??B#GHgrRfQYlfmThY1snDAVx;_NsRnD=ES`_$vu!o@|>jfnr;k#s$ zG9S~uPxcaEcnCiGNc1DOCQs`8#mXhiE2j9=JVtbt21Ti6ujgo!oT@27rUjIl9X|Q|B?_hcg_Io`%Oi#RaB^rn9 zJDU>L+%p5v%(91t)%FE^aBQl>CcWYqILtJvbE&n3 zd6P^Vc~IoC&EA zVu&`|r4bkPl|d1dXvRa86(2uEoiKi%VO$9O!yjAH`zr2Q6!-Zux1ymrIpO~1X+`;1 z+;ou^F8#Wzs^_5*KwtfxjgtWvAgOnApF1alIkgT!*j@eepnd3_8A%z(>>U23&idnv zh-RQoO)Y7UTye8Z34v3|I>9|jW!T=)4l@l63_GaEI1!DmsKhfML6j>&@fpQ$lR9A_ zd0=*f&+E;B8!?xsSb(hwH(M3BT@_d1JmMpOTikyU$yRY$jo4i(Co12C2`S%Y%dX$0UBnjjA0VA#0QP|>)Nfje zeYl765pAO}zA&^L@~uj7HsejazJzHjPH{w(>n0179g`Z0?wY~9>9Di}{w2ifO{*b-sp^(jz(B$|J8|<#E)?X+jVZ@sN z0;Zx2TLm8j7h2OKL<|dlg9rq3fg5fg#*R_J23(&=3TS9XW(TonwFl2lF3#Z#>dN=W zo5M!(#%pUc&ejDLO*7d4xUZaR&uO(X&zyVz6PIo+V|ao}9^5v64$5K#49nX0S%d6j znnqwN<;*@c(GlD@4b?+n!S6A;gb>apqz|18fUW{)qJ+&0mf|axXFL><{-*QQw`k1lle=y;@FtDt^o0mMRGCtQ#_PKp~%&=0$JuDD> zd)3mVtJ&in$MmUOmse1r12w9Hjwfi0AbCE3;|51YvLMh1I6c~D7C^316+>-XQ*Iuf zT=t}Kg&mXKox=lprx_YWnZKmh`!+e@A>6ffzS*L0hnvT0WFnpyR`%(*!rY02QfC4C zVG*0#qa;T8$Kdz_Fil4bFK3@zK5{2M0pK?PT{Gjg0+93eRPy*!PNnEI@qdOHgE4lG0K0b)LS zU^sT*$;My58)EwRZ`Q7J@DN<}a2C5^9)9FsU{9-c*7Zp^4+BKxJO`5IQk_st>0NXg zRkKPx)54i z9AjKG?Ex z#4L4cKCEZqX%T1_c!4v7_hc=`AyMRBef#rd(<*9bhXfZ>_W(yk@tA)tmlh`5NMmx8 zrwpS$#z?zGeVmdxhxMBXG}QB0s2ae_?}iq#JdU)yf!qBl#Fyp0%s*QaR0=J-Q$w_y z^)^&9-rc2Vdup8_GwjE(<2FO$_2Ik4Tt&3bSEo^zm(o!j2*RKP8RC;26Q+^Epf-NT z=Gyb)(BJ)`pxT_M(8UKPHQ_dFqz*;Eqk0x>peZ+3k)j!&i(m@V_8CmTMrQ zBo;K)F&#+U{?Rn_E4}}|`Pv`gV#kM8;cr8>2T+$8bf$UN5L0VY)RfL6N#!@T^4)Py zeVF3hFkd+B4!4@lOYj3&wqZWtnr^^F{@dS29opCy6nIV1C=3$LvjAOB5tx3Ch%@Jh&W`DUr`W{3ZWF9zTvm^hX5aiw5+k`^ zi|!`_1Uzwt1;zDJ24uh6)qsFU+Dx$KZ$sygL4@CqW;!6Tv~Vijlx1W`Pao1-L0DB( z>6BDtmDt^AT(Ao@LhgI06p&I7;B`|xJ^*KI-}tiU?0cD!CFF3V!~d zu9TbrspIbn3qo!#riL$X2IsweB^9!8NPQXtXr9GKWMMs9|7373jD9bkI`{+X=;m{V zoM^-lq7QY@cV7P|%7+i%s7xN9Vh0nyppYWCFNc9DGMTbhGVc$ecRW4XVJYQ9l)yEd za~kUFw_xnOM|=;L3pdL_l0-LPQ>wIU$sgl)=~Aq#iCf+g+%BwG1=^}dDJ7%(WoJNT z-2)aNMzB6N!&IPv_k@gazqI^$|L-&MkK0NyFq27JH|Vz<=Bi<2jnZp4{BX8EIi>p~ zrA?=tM$;m#G4nKcr|PgP$^J1OcX|u3$E+bq(GPP1-j9VpMPX)U4()@-mC?YqEpAmO zC{e$=?+11F-3oFB$P(K!DxJ~|FkquW<*b_OvB#4D#<3@8Bie(VfV&VV3LBEaNg`x$ z2qXflW`&Xd6Q}|TaRsc}oao5Ws)l&87#O5t!rl3NmECTjPMCldcW}POIpiu1(MHTC z=;$*QR+JRvG^b@2{fo0lxD}lWAToMS_>=iC(`WYaQ0xifc#rA@@fcSk>%x-Nk0*1#$XK zQs!j~SHf`T_IF<(f~Lc-#hEJd?n^>1ggg7dX}2N}!)1flJC6?+$mvOTt0ZNX|CmmL zen%nwHR_Nu{?*A6fK5g}_5LjaBv#bOxHYS?_D7Idpn^lDn`Z;>l|4vv?gBU9t?%=P z;hic{dVrINoCd@~f*m#4D&Nz$T$R3vX_BZ}JMO8xm8Fq`gWS~?kEdUaLda;{ z+RBy_6{72+F1EJo%D?W0_Z0Xsc}(J$4Qy+~3hj!t`Wu9MitJF=XIZmM&;z;e!5-*^ zk*XJ>SCaUBc$8O(l2>AsWE%m_E1m&|<}Y{8CeSng<`4kNHQl46uV7hIW2s$4GY5bM zQow{jzBX;=@7%b0Qs`k>4vsb@(3N0W!k*EhQnMV58IGa4}|Y!@advO2RP zoO`i86E$1YSgY&(P-iFnU|)3hOz3T_aYB12K{!rC+gP}9JEvMt&Fvk=3Opg@9eVP} zwo~08ucOGwPNGq{n`>Jj-Dn@Pnhq8o#!_}i;ZP|CmM(jc+uj8vQ?yT%k+f!R`aI_% z@PMk2{dOeFe9EGr2+E(|dH8Q)g5NRiVxm60o5VIY(PNKMfVJthoB*8aIS7Az6)wnP z^D?30$=(;+_Oor{;j=zvt!||T@wl2PlVRhmy*Yje#Ii^_qW5q*LVAtMUq;Z_PcO+8GqE*PXa%sWm-kc&>+lY_8kY1lB z&6joCHWOX+ksIumc|eTo>W9Lg8-~N?2^jT5M%$RW93<$6Q$x;ZI=|`*38;r9y^^F+ z5RD=fdT=pY(LU|dtlnPBZkkBB)fwbzI;|fz)RY#BDUj>Q6n0jY>H*n_^B2d&N%2`= zHBg-%NXYS_<#n9n-HUH2RPDrF#(hFi%j%H1POB0o4CW&A!{tJZ5<@mv8dUD9+X9x} zwIH(D4;rM6sp(9C$|?}FF={1Y4_Zt7N`N#?XmI^o-78%6aOjLag|Ya)%hvt9Fu!Pq(8&+L~@s zyUuG1R3#7N2^$x4bvOHr^=4f<0v)c!qFkLz(`dJAF6Ji-t@TNuP)cB*{XQQ>%Fl6% zf7y6~zda=SQ|`wJKL$89Sq)VO`7nkE{-_-+ig#q_6Xt-7nF<>0$b<JnwBj!=Co)7CH7)7Qy}7c3}dNt5YHdY15pDp-Q;iX+@jYT2-ZW zzWi(eW}s4M-^Z!_fw6w`@HugE!n5_6N^22$?a{kqoIfNjb%nH(BDdpo*}2~Ehjv-+ z)&)%7H1*z94Tvp0TZg=ucxm}QfPo5V7`L;QSV-jDWD4)%Gh_@ zw}KCz9PzJxRmuXYme09TA^$A(snhSyzmn&tCF}25R8*wmr1PQKn=%b_dJoO$E#`Ua zL0&H}wBly7RnT_(v>UyT(zLBhTd(YrUC;Rd%O^ z-y)xCWPLbQpYTfUTDA@SlTx%x|ILLjaB*eZtOF}3m?EEqv(bgG(&6A-zA@c&=+_D8 ztjA&q)XX{01TvHX?9AWp#^f)wy&87o?VxDm<8otznrXS&0TY{^c!51_oW%qTr&+B% ze72M~J?CE&#(zZ1^D|H6(gf3=<;6AMiZxIvW=<4a;Vw|XOEd# z)4umxQx30B<91(&4$q0-4mNh@!K8(Ei-;uMs^O8xiFzY}GUhgURLkKvm)u?3u%0|I zu7+;nbh|T&UP;Zt#h;%sD9QF7i|NEp%dQ^@^`WM?^ZipqzF&Z`O=UPQm4niRL&LVD zL5eGs$!pvC%yshpl-X$is;@LF-LC}Nc1-XmQq&07-AaFQ@=%p)ECc18O zRIz1yI>Fc0xLG|W3kI-0YhZY|EmQg`0xf!Lxc4cUDmxGOvT8cK!m;AbMEecguk6zfAVbfK$T zb8(RSrdb+LdYbg_A?WS0#hXjdz*HE)wY3YYzXg z+3JzqUF9@91QiY)5Cuove(L#7@nag$Xvc!>YY&oV1OhmaR&D%C?M|YwWmrlJ6(YkH z=*r4L!_CQsKMdF5eEt6A4;MP;2?)k}&{i1HP9IXlTuo)bsvTaOI7l6%UNQ+HsrOty?P3BtF-2 zIfq$3YMG*+hd<*^cmUr)w0U(L>2c)mV6I(gm^?m9iSo2BrGa=zenV4tPj)y{Sq}45 zc^XSwuoLO_!l#KQoL7WkR1jBpwezUsOU08~vy}a9)}Wgcc>&R>6>YzX@-OQmM)QfB zN)>N~!n!QUoC9kI{qd^gnbi^gv=@DQQJ4GF`VFJimh+`X38~-rLa1AvbFE=e{che< ztI-t~v&lW7nk3;Yr;be@!9mxo5Y8#?6HbTf`KU7bwfuyOaqp47srqiZ=OiDWYVz$- z1l?~nI=g(j)-O&TS)XLXAg((tT{z}z_AA3`&KC`w7#+NAxCUg5k<5TIs!yPeib4DC zS&EPS%h&<1+&7RgFas7ruj6}tFERV_@Ea5=pEkBk4073L=fX+?S6=;%ER z?hrV~X@%_Bn<%_X@xr~iHt)8}uy}R_JiF`p8m8ZyM3E3#Qymr}Lc4}L8MM&mOJ20&w70j6{60RK^0#D){bX}kGj!rk~GZt^# z6a-*jZyLy$VEGumY!oWGJAl*wO|-o+eWfM$HDUvI+p}W1KB49%liP9KDQe_k6ISoC zbqy~WlR^l_R0?mf#|d!`(e7fG{f-Y{X7t7myIoJI8HMz>*A2`@o8S&FRM$;{-OElZ zZYUGACA{Ov1Xyl_8`vv@EwG^|6Y{^j7xwZjgYOiRCKh1MEYl+ZbCsornP&croiAm=C`-9 zPDD=w_F!c7rSi*ba53j;N@m^ZhqJk%lY?TnxsLT%yRM1YcSYX4gqPV~=T5?ONGiE4 zljgP!B>S#ZrN~Jr(#Xcea#B5^lO>?C6o*vM@ka(w-t=i{q%3+LVF`pkt$Re2%mP#?`_B!elo z?mtqVt8VWa#>MSe`-d#tM8q{SL32b0_MzfY^7o?J7+C|W7Me2F>P)h}IQ(eOxyT_* z6nEJOUfzqA4{@63@jKHdvnRh#AuG@|-m=!uonyn`v9rE4r5-!VAK262M4om-b*O1F zOk1}^cb`4itk@{Qk|?&&y5`|Uby8bhy}bG(+XknD&jwcue#34j)1!T|JPOGL#Sc%7 zSN3%IdI`1zTidQr=L~i$4ULHFM_-~&wGoB~dqCvvWCnXb?|(T6Gk27rFO$_9vpDsc zM`+)u_a{jk^t`c?)tg}}F=i_fV%>#iPQsI!C$fn`RC48t4JO9mO95?-zdWC_t@UyH zd68K(^_PigQ6>gSL|tEmr7+~m+`9G%`qKl$A|Wt!j;+*`4!x@$3u1H+9Ev3Y*IMx(zQ#* zc9X;wK4NZbTH>|iz;#9(Br>+rXy!lLl=;|do}Hla z@@#JI?2BI3ms`c&pfX1ct0jJRo51w`8FqKtrplHc8^PYwXO|B`kk6#wRd-pRPuKJf zIl!NKt#$`Ijs1kJo$9dkIkNN9Zsmy$^#BWB?+l>(SILIMDh9ds2?@~Lut1ug>R$ae zi!E~?KQ1*R8kRC4YD3~!v;|e^JUSBswF3Bmws$>~|2!c1-sC&LHuXCOW^~Fu9~&xL zA_hapMo97&YO4{+bJ;RC%sSUxE<`MiZ2W{oSwV|l)hrmlwQb-Dame*~4$h+*7fk_B z0BVUAI&h$q8IYXxa6H9lF44(#0#ix1lS%kNqTm^aquNB6yx?8iv`u{?KC#vDy5}o& z+bvh36`HrJh_-);ih@FP(%^2Hhpy%c$A;ekyTvi50C&G>Z@N*6ebl6AD(-YlRX^Z2 zN%kePoRHOY6<(djXk6^9Vc-ys3dOu>=4+%})3_~WRVs5uv|HN9#37_8rb^?|M}N_n|BVUlx|b)jVF{tmvbH=rDbVqX z)~roDMD{hGVLMyM4|Nl>LhmJF`Z|!Jlrit~5QZ)!n`b8Le(+E-@v~xKFAEoHzE*p% zx|bH-uMcUr$(ddv8mcg|F3+!AN=(y^kGZ2?EtN$v&ZbwPA%6_d`AuI&-zJX zj}n75^62DBlnY?Gt-%M?Gau6;Rw;8_;A5NSXO*e*1szOg(XIzP!xRR}BQW*lb&__0 zU1hseS1Iq8ci-k~iL$?e=4jN46aDI@*U++Mo~Tmm{q$BVm}TOd0I8FW{GT24)khR4 zi8Fzue;!bRgFkh;$=ZX#=D1+JWEMxrd8o>7ry|rwm0mpiouHU!*_Ygkd;j9g z-gB)R&kgURvaW!qS9O%jk%+W_c3f=V_3z@EWhUMVFm&mUs&+Nbvy{$@ikh}WTZUwI zwGsufJ_9%Ls(wfG6SPFxwi0gZ%!i1hl_>tPKG@^?$yF@PZ+61y9+O2D`s2{D4Wswk zHYm+@roIT_zk<@$xRGhnlQNzZ-4Iwd>{3ZdEEw5Ym=iU*c9qkt16YKd?B$#oL~cYY*9QS$7av)~+N>GY*qBz?^gX;rvHD`h)-7fYdR+aL zd`!dH+9xpiJlv-{H6<)!`Yr9JGMjNEm=xxyydAJ`3+(7GR4SWv#8rCg1XYMf(=pvLYUq zLvr#Y{PEjVC$wE!l9AS-klm!Wo1PVO~BR?{9_2V;g*JgU4k13c0@q#?uVWVlgn z4Yq-p+7%;jO*+PBY#&|B$0Ixvt7&Z-Gzf(HV_@VP^n(jyYO0CjKL`hL2N-`RsNns% zg=)dPpMHA-Qy-qCqSC_I+Vdnn>04|Lw|GiDNreZ6|V zXM8y^6@9`a3Bx#acHJA)m+YROthjE(^G^{5c7rb&H4>NP&*)r6jLdCpnyPM_Ef#p|5oX4m&I}AR5qq* z?LHJwlBwO=^>SvX$d}IsYGtd+HfPdJkiV(9oI1^EYYLOO-VY&A% zY=u}plISw^yC>ksy)#+}ZJ2rHKpoE^ibrBaS6pXzZ>yb9g%WmzIZDw6HnS#Z+;-dx zirN($A7ch_DknN8>vO(vQR@=+a^2;zs{X7l?%dr>>QJ#KiFQNYMhQ z57X6jmre;B!|lsz8740Q_ysSA5BpX;#3(=}`5Cs-ZPPu^vZJe}wb<)?gR6;jSjR{I zE`>C2hU!?vlyb!fhe7D|^~RmyV&cQPgae+lf|7m@eM8A6Hccy?d{=mi!MG^9IUav! zAwD$bOv`m*)@?Z+qSP(Q8|>xAI;rs{Cs)W@dFdzCrI5G}5|Vvwj?d!q|oqR6rsf94)-cr>)U=~8=kc)yFI z;{0+eyVs~QGwf?<|M&T`YvwV8h6zi{L!6qg*;ST7WBG)+cUJ!!(&qR5ncjydH0Tpa z!bx1#j^{L|p9tmDZQ)-Ws7%}M)Ks3T*hm)1&Z=ekd-$sFIT9)|P8F6V0gY5p6^~u8 zUCQUXb0dWH^|Xq7SGmq!HAhdmYvs(%q4p*Nj?&lri$^aj``+l(933+10D6Y&n&(xh zR=IA&j=hD=PVDvWezB4wK}oXt=v-9e=^#s|YYfCE(^3^bRBa$Pt&Y~Cx}POi?iROO z@9sfLuIFm(PQ98l&oP%vw96b}0ZU?c!mDoPDf81Ed#(`g|KQ@3MBV!c#A1qw154<1&xk z4%XDyHWogOkX*0D#-A#xHdI@!(}_bLlq8QA%#BEwyq7NIom$&)dV1mswU1?Wk(L)? zZ@72WkWm8vA-WucXuhe-PQk@v>AWP97Ccmk+5>VL^OW)6qWwBB$9CN#i zp8DkVqQ)EfZ+Gn1`>?%ri>%Yso+4_-&sInC44|;@aooqXzMXZ~&R-$FU>jUT%oUYt z`$Ok|$7D1!QPwkjGxIYl^CkeZlJfmbht{X-wD0@PErzdqoV_pEN~OAQllPU7I#_>< zy4DHOd5XA^pEM=95^69C_cDli2)`k}BE{D%A#-s^v2Dh&kXz*Hyp)wmylKsG66n8L zEv25LbvbcJdFqYTM`F4HB;Ks%~bVVz7GQ^LJO6WNQYSPz;wkbBCZZ1h)Teo!< z8zGeEUy4BhiMevte?d2ibP5)n$q^wQ3LYn?N^ zs%H5LFUY~3o6UvmkA;i9Nr&BbDgYJn*_^et;hGur6YOE)YRLjaW1WSIi7}M{u>KtQ z5D$^jZqIDG!%y0ogj9(f7irZI%H$mJ7;bURiGd@WX+|!$Axf&zW~qgYK}X7_WWlLQr$;;Ju21ya}tAHsj!ATMZJy0$&Ne}QYaekaD7qgB8UCN#KOOqH`kE}o-d*Sjt3WKtsx~QRYq(A zndMO|@9Ymj?dry5skZLFdc5xBJYHo$r{6nE`|X&mag(${PpWwJc)nq?deLp&acwoa zJ}5IJU{ykH5YfJCTP!}bfYG>Ta{U_qc_X9ZyhgYr#?oCAlg>*Z%`R-ilA6IhydP{( z<5T+#KUO3(8xH8QbZ-_m!lKSKuMf8u?JJwqlJuu@T+Eb5=3TloUTFH$nDOB z9#qfF>>Xc@L5wXuyv_x%uND%!z1B4l+~;9k_N1eT$wod;*K(I%7liF~C-q(Sv)(yh zv<1-MiI8M)TC5S~uq#CK%PYqH>)A|VpNiarmW_o8IlEtFgr~_5eZWr#_06 zrfzyK1vFQf^j63$uWcQOn6Q{Su9(8}(JSLNPAkxQu`fLclO6h1M@L`0u&$6@TyF`@ zF>T67f;$&HmKb$HHQIf0n~6fhUCWf^-J%MdGyE>Z6R;JM5X|t``K{S4sp= zWgn1zYl3PhX*5mclut9M8ZG#Q(+DO}#S+UBa&P95Tx?LUC5_5QKG%_tP!Sk>P@qv! z8xV~LS}A!EEnw0z(Zw?Werw4)9#YVuRZ#-o>TxK`n1#TdS6=7Ap1ftcn<5pv zG*@2Jh>p6+d)-N#eC6wVcUcp(O#y7o}sR0j&{$8{VNB}=1=^A1bBj7Wi}eD z5o;XRT9apX>LV)tjWGFlFPPUT;K9v7a-;aM9C_(}GuqvCWA~Og{Sr&F5G1@Nke}L; z0TuojFOSquw{6=z($=3z+{!u^d!ueIbf!G3_3fj!dm-l8tga6Z<6CX^;|~{$KBA`= zd{FzoDjex2N6rEKMAZ#e4Y1<$mi=kcV(d%z0^T^X`_hj;#(Vg;qMPbJ^4qI5N$RgGqu_jf0cSN{d$H=O|?TZX&d=bh+R&V3OF zd2Z|}q^OF`GN(e}pPIanY`+t(RAm}(4q3uvvern=`T?=EP($h?--|o8Xez;D6IRF7+w<$`r#0>y_-f40Yya)wWxMEN8=DV4BHdfF zY^J5dLIb>o4jUYIc&q%qdWEhEmzuffly^wJ-8xWBYNTPasq6|Xs_11ycx(Dxg-i|# zZR6Yw3`8`xPn+6G-t&CZaRnD7cJ7otoC!2-Z`vU!d;BsrwEYnnT8C)*y1!MpOI{Pi@|R@i~`H0`HadEYPi2~=aU#x5|!|edQ6brC*QFr_n_LX%#fGyoh9R8aI7(0 z?+J;i6f9{XPgLX6z(bZBL0%#jMH_TqB<(1-Q8kbH&mI4!vHnW>#{d66|;Ku(-1 z#BNF=!UeHsb_&~w*-bC3*LHN8h2WNwnWpr#wO z-;lyI%I6Z14ZG1HSdfcu^C8EVwnqBch3{jl*Z)eAyxym>;FT3ie}-=HK#b9x28|M} zn7BB8%3~j0G7wv|=SS3iG)~d%syNM|Wf2GuCA@38a4lZ=&Cr|6dUb^zBO9|Sn9>jx zpIeOKBd-w(ks$;5y*BHqd~8be@auTlCnr$g(R3j=nhNh(WQ zmu+ff zC?_vK^{dS3XIVx_nuf`-!$r<^za#p6RB`6@0@p_P0xLrcndt~C0Mz*&$tU!1E zy!D3p$))E`^D^Fh!_WYzG3WyI)a|0CXPc0-{9QkSXCL=XZ$I2Z*{b| zw8c*qI?|(&+KyjOxs|No)X(&S!FG)2@L6YnW^$e-Nfm1aZzPPytZASSZNdi2joHHk zp&`Qa{kGLuQ=dDse`{u#o43?%_d)DB=-c6XJns)ys>7NDts&351PQd(xtI+f6vOJU zD{!as+zWz|^an(`N6tT`P$PV+JwmFi-!~Lu;y~SK*zvI4ZI0_Dn8=*TqX@3{ zAL1~)r6XhT?qrVC*ntp*IBm8YyK(5{ci-${2&K8wm@X>9=PCpEnNL=7h;EAcZq6PS zs}ryau&(&y#nSheBGTqPqzSI}`oLiiglh1Q?j2|x zFd$9NmA1BTQ3_itdpt3Q%ttQ8(E0_YFV(n~vOqlM;}^jfzP0c| z(^r_uk1o{En6Y>4m8(8l5ZhQ`;k`ymOH%v!SmvJcHP3f7#a*ge7^ap}RIVOFs-v0o zg+vkao^f-l7-UKH{puFB3F%+ecuWSWS|C|Di_jkIyQInnJOp-OOaXaNg^QPW$~7yy zCZi53joX^OTAdGBO#QqhNiK|K?&FW!zrEi#`Q5EG>f|tZPU~fsczo<`3}GgHoLcy9 z_1%In^_eOH?!sKXbp<+G^%1>rzMIa{IrEvumUq*!U+MYw@S&3$Qjcyjszh7(y{-pR zT!IDoXGWl?-5!Ix)gcmn?S@P^$rv=dvUHkqv)fg$RMhNv%VGp($Ig#j4E2j$672!H zq`;jj@k?j2F_v0V!uaT`ejdg35Zt~zl71={)y~CKYKU)%gSee|Gl{$F6z-MJPbM0| zuZ8Z%ZMf!PE4DqM>>(iG3>K=(O^)Ffb?Ax=c21#jUtW7is z+3?h>a6Z-Q8S9$I;?aM&%hKPW11~alLqhYF-TIU9#a!#_o4%N%oA|_ab}V4;{)u7V z9Q`xg7!Pe6(qdt2{iF5g9oYp^jWoia zgOQNn&BBLEgjKdWF@&3h`f(a*5^2$LU47)|v%y`+`Q4HSo#>`FF~Re)NqKPK&ebZq zLI-p-85%`O^0;$xb*;hAI&mMrPIZHx&Z6fRMz@v(k-f+gC?y>&7zuXWoiR3o@FjoOe(Vn6H z2`898rd2O4pI-B0?_U6Lz6#od z6Uz+U+U(e(eZ!Q&k@E}Aa;vzMHSW=9m(QDi-<^Yqm5|cJv7N~9-IcJ&Co2mvLAH%l zgR>4vedmtlG!R!7=U?mv3z51g^J!07rqr)_K5CA0m$Lb|m2A*9!?r*8dD(AHT&0cWRq-1TnRPxsIyDa|MEzbsiTxVS9NwtDk5!p?8V z7KL!Giv&uBUkBH!2#nZbezFNm?TRVWlNTi}h$q2P>$YF7eu*mZ zKw){~+~Osz17z(@R>cTNKNNW=3`FS&VsQY43HSK$H%r@_nt-lc8%Kb$TPCWuN}Me$+`}b z7s9_tt{4r*^Dx+aEog#q*v7479OicAWA$NF=o-N**>|o<5H3W@Yijz=EtYs7zIN9n z;rhLg+tT{B@qBc+`_16S&o^t5#cZ0!s)pQic0CTSI{$JtSW%z~Hd<4-%4s>FL+4ph z8w(UYip>^VCgvmVch^s&KS!#oTZQItinwD>gdJ8)RCPk7p43XG*fKGe)GgKMK4yp% zHRuVqaP>7=567{^MhzeV?q2!79Rl)AErkw0W2- zge&XBpqIfkgn6P+o8*4_aQV)~c@Sp(T@!bD{K3z zBBEvIg3$UX8MGw&=48IW%2JibV}~y2{`xWDee@x(M0(Cw zaVlY(8rFCoIXnC!pl%i_s^G44xAw2(+T>z)oFczmoo@Wm?3lsIId*pXGs@{x0>*dT z-c2=w2MYx1Le=2X=A76n%-9**4y>JpY zU}d43cyaXO@s;s{qp04X>+V^?Z@uIVBEdREWYg2zrc`44OM2!RpV`g!Ij3J+M82?M zZ?*jXItF^t-W*Mx^BN-Spel@`M2K)qW>p<~mQ^~JN?rp==EoZ70Ac) zKvWOpwixT;oDtqr2Im`}ka!G+zCOs|$Fnl!j-#&?;!PCJ3$u-Ujp>ot$s5Ur2L6*V zw1kct4j%;sO&42)-oi;LWPQZ~0(d!LM_rOO`u-`YFeL&dA%crQ7Vn9n1&9|pXDg0u zx=6r=WywQXN%qx&^Io^8_>;2907qPb`GqBnw7&iVm(hjmn>HPiUxz(x0)v%;b~fdl zzl{nI6oeb25Wi}ArZ8-E&Bp8coaBhJz03Ly+eU>NT`pJ~dUQMb;3efj*ygU$@m>}9 z=g+(&J;RX7lJFz<3^%`~D$(tf9ND(|Eqh5%HnGY-q$|Sq21nZlLXHcG!VA;(vq;y- zu1eJJOVP5|stj_>S^<4@9ndN|v)B>Fp>ZAs*{>!ecvP|9ID=j~kCUQFRb_=!N-vna7_+ihAENeFQFru-@YVjU9QxU$Z=$9S zw9>amI)vfGjxuCYvc$Ab7A4r}g2$7Ir#fHsw1pDE?V!IAEV{bZ6rPB zqA@Mi+}2bD%hlKG1;6s2Og|AGt;}KpQ#1QemLSxeIHNZaQ?@0r-rbL6Y^|`oy=4ev4&ZHC-`EAYbD(n!MirY!`gs z?@JGHQy?&0h+P;I&{~gAtr2qO@A619V-+NmBcdDL4YzstaBA`|D9 zCBtEFYoR#5$Jdtuc|<_yq+4f5Vs}ANK!ZqkR+8OEya4`;6r zvG#^MVSDX;b|B8P4n*w=lfm5y7=>QNKkoJ3%N|?$%6gB4Mfwr**A;m_+3H#Q-U#Xs z+?MZQFGabWCf6NA19}d1ePW_Ljv{1bU%X7qYJ6T4!b&i6d5?@kLX}B}VQxTBi)(-# zCByF?nZ0dNnut6 z^+b2%<{a?ClN}D3+AF2E4Yw36{5=63WfB1ZbsI|^BJ>BIGCHa$FeU#)SU6;VZ?54s zvTLs6f|%AYcgMg5k+B|EDehbOk)7zfN0332hnoxGJW_AtPve@N%JDw$cz{Fv*=>I` zS}tNON4≫rPn!@?goKz=SmQL^;<*-Q-cNJG=@8Z6@ju=Ne`FO05C3puPP>+|f02 z(-#-x=YbpKXZpEA6lXmw0o`$&R{Q&#Hf&AGSd0Z(#&)8JhR#?s?XU{*-aeq_Mn5QrWdXKd? zMLncPAMQ@(thH(6zg!$TlATUc@L@>Y&`?zn3HvKzRN_7|=$TKkpx(N`GKj6s1IU z+%*1Re1m~6oUVxR7)>`n`GG1H8gD=vrU;-|D`NHkA9^$oIxw@)@xYe|xq4r_g%GgoZ90vL-bu_jjkm|IFUO@4)H&eTZY?f3k}H^#g>@_M{x|r**xqW2|fVms}S6ROCWk>9P-}A?BdWPi(Skv8n`%vn;kC>hX zo(y4u_y{7PciQ{Gj&8Iul=0H@_j_a{^6>wz>_3m?8JZuPVMiC}92x=lp4gCPVxaH= zHn^xJOSupStgm0cy7H)&KvJmb8~$~PcSKs6ZxH*p?`FtWqN1W-gS&K|ixK|+^R!!# zPkRz0o97`BG9_6}0+@UmAdhMPs#gE_r0nJgOvdg`RsiG{Q^NQVP?#?0RCX+V*<(~wb#`@g~T$K7ZlG@Gd|LUO)Fa%4%~fG3WE0iL)oQ4F1mOiMYF zIrszH?=1b39)#j&L7RT+S1lW#rK!Wg5F#vtIzPph(esCpfS>0L#!A5gXJ*I0e(Zn0#7DMrWS*5j3~vD$6>H#B?knKQ5y@wo zKmW(Td)I~r@cXBGw*Y=ax9tuGncvTcV2swnVq;^J7Ozeh;z0g41i<1H2MAvMmBsqU zT}tQ0_PjjkocE$Y9oljn&tpV8z_4f=l#)XamTqyHTef&n^v}T+tWB{a_##232aG@( ztLDLKqi%xzC16fpMIy?$1Fq){LYR>$BpDY|KRQZIEvT$i7Q8xAA_fT$L@0B>nX(F+=Q{G7>m2{j5vA;d>h4<{UFvm7l>QJ*-RKrgLzW2>*s{b2+|U zjs$+U@>4AjuMSB7-9ZLMcemmRF(HEiHXLMu1-+Z+%s%y!47y z=0n6k#!|ggM_UW;co^HtYuOKsP|$LKEtxEzPkP8R1)#Uu&c6Y{tcM(teuxgh8LP*o zWJ2DaYY(L)|MjF)RP{iT^Sl>GguGQ?MV9{<4eP5e7NKXWji z1{19ZEuT@XxGyHEUN@ouEtxc5#>=Z_y~*RPeTEMd3jFs6bqto{gCDn_G673O94w>)Bqo#(za^1G0)W9h;{Z`(n~Dh_av2#q3;?e5VA?Yl zL}9)L1kUwxIDekDA4o5e0!*~VZG}48|HD65c`$U}_X)Z+$l+2cBzFQ_u{+@HP(-1Z z+=|r147Z1{)U6T>e+~g)0y-q)*?XBZEfF3_9Ts7l>h{(uX`msWh5s)L+20-yg@o@j z&4?b}N#_9`cvmuy!)pC@aqk5Q?G>F=z#tL;bqMIPApa{aEr;Jf}>mJ1aFHrG+E|x+Y4CLB=-nr3lVt0qrwjvw{MgT5K#X`jg zxT&R>!+-uc*Z*;WSOlQ`ob|Js1C{K9E+9JFk|f0;vb;RTeQ&!~maS38YbqDdrof1-@gwxNW9VM?ic$LIM}OLD;2CeoQPfAP;3`WLk8 zt27@W^)Hx}#9$W)UglkDan=8-O#d^*->stcq1K1#qJT(*2R`$?o^siYKQA@`GA^>D z`Fh$%^TZ=J#hJmQ?_&?)AElN$veYX1KYY-pT&!%=ym_8yX0^A=y!Z$b&(PIG;-{3YmqAi6~Y8DRnJD>3h$h-q7o!~bLf{Cf>@ zLe)V(EpFJ0;V=UCqn<|JwV~cq-TSZB}N5iWEXAW2nq! zSSoXdOd%`{hGmSR%vSAogG^<}yvi(#GG^9*BJ&h7Y%&v>EyH@xyB)jQ|NqDL%lq!< z!}Dvitoy#N`?}8IIM4Gq0(b4mRyrK(=MItw=HX^;ok}pf9+Wyc`9E$)G8`Ga9CH4! z!ZDDB3$J;xNoG}Qey6Lq# z3G*97sXi|~w?6M1`+(rxL;7UOPY3(&5KWr$`qV?$mp;m${cN4nTWl%PZ^rXKpM|->qZzv_F+!h8X_83@7PCkFuUi$Y{9a;a4&X3-*dXOz-#sc zAL6=h3cVevY1nY(c>%Us4G7eefJ1d+m?HGSugRrO62K@ZJras+SWOJw;|Y@0oxl6PaQhCiS}-)u zb~_*X#jI`R%lgi6?hMvY=j48Q1zT&$Uk>*Me|`l=_bOA!pH)<(vAyXx<}w^N4z!c} z2c;E@KY^`kLtKkQxu1UdEG5KOhamI|`8HU6-si7S*xf%HYMmj9`3xP9z z=MDfw@(M2afL-?#j`j$Ywe6Z9ilWP~6#rE=56!J=0f+2a0{O_t$lbZo4lr?5ha@F) z^r{QLrNckA*54j)hvx%*Jn#XT*V+NiZ6ZqiSMq3n5!f|ZTCpc8+pe1UqeEy~`5(D8 zpQX4&e|@^wOq`|*n6p1sBOK&EZ&*B$j^o^TDkerJ&#dJ*M5wdv8!WWJEw%cwy0Q1EgHe47bGsT7pLCn&EQxeu@0m-Aiv-V41R8Y`89foK@LQnq{2pG&&te+bF@xa=2tc`7d zxiXv^CS?q>J{sp?I#|JhKXBAu#QbOXUFnam{pBU&4(_r6O4~J%n8|K4yufnqIaUx= zi6rzlGbMxr1n_-C3FsoXas)}JU(OiwEk6ae7ffBJ*ntYe%HT~#w#*1}Z8Do8>ISA@psA{jz0oTG zG8f9*emh4r6i9*#=JqkXUS>r*;Hs%aHr8^cjBx#dpFPoskjFinclP6f?{FWz_=X}< z+W8=P;+h6!xdkl%^e&zp-=U?@_#BJo3z6Q_o)=uY4{qyy{@^T|Y}>_b%VMVfiGon6)V_EsA30|&xvZ%U zBXN=1o|f(D26nNw;!eG$Re}49wHg%RgueI-Y>T6`XZ`PBDEc*RYlgAj-|j`91@{?~ zrymxj%lPYY+qyEhHr${4t&sg&Klx`1z`xQFKRkYokoqfXwzXxy2moB6eKec3%rEm4 zKqCWhocM)*V>IXA{Y1gHtl+3#Clx0&NxnvK+9w)nrv)|sVL9{hvSdNj%C^23`Imta zdYS|oJNsC7ffGySVT02Us6gH)oW)Vil7U#Ql6+xMo3ZFtef!%c-e7(L+2*KC1*mtd z6^5vQw>b)cA^os!Gt>XP67ONUzYsSoVzC07cw!=Ye-m3YCyt76@bOBg+j5Ce3jAVpb%t z|9Lr3Mwz%YElP|A_=LLgMWOi))ce=nIhw3GS0aeKdd45@mt&N~BMLtYM za6JEzn0XBcKIj8*nK@7sh8&&3UKNQ%1 z+_8a*1tLr1`1#c*789V1g?Rda^~RZl2Y}1Pyx!~1ql>Mn=bDReIIV!jv?ZWXcbboM z0ibIKPdclM=01&2Onlc3l)2*%^1B^{JSShO)N|r9Cu%^+=wMNoXQ{`6 zi{vw?waCmd>rzdTr+*-ssX8PG({OX2A`3nLFDctLee|{{qz_esAlHTj$n8PkKM7pc z^|}ERYwnKV!3_g!H4T1oS_uD4V~P8EUPijsDC+dpV*xn+QT4 z&A^Dh;OkQVOKhlg0Pmkw_N|J2K>IaIyUqTh%rVF^!yv(wJ#wMb&8%b;JmJzUcT0Bn zU_Cs50<#G1rQrpKFfq}6fGH5c8xedu9Qj8 zHs}&mcyPLZ2^m9v~%|f3|gc zUIkPHL=fb#ld8M`pE(RdS%loRu9GvMY7qg@+uLr(?)=u&onEygONS6+vF)}c;NmO_ zLE%s52JPH0VrRd6xL911KXFN}$i&^1vAzxjyV#4&+h1@nf_BP*tdd#vKvSzbmj=Ds zjjivP=fqG3f4>KAeePx7w~dpNzoxnA<%q|-0vMtU`v4=~1}K&%LPU&Rk=QE(>_ORn z313^eFY5Sd-#uXm(XCOt&s0x@9jEGaf2c38C5FvrtTDD7&@w5x>3k(0^3H=U<>l9a zVpBKAN|Thf)ICj}M&1Ffv=R>S@=fb(tqZry0hL@Fo^06up7^IpJ-p~xgTU~o-FYg> zyi)>^#;iSG<5jjbLq(#*QC*`56ErtL7_u)KOE&H>U?jp2T}cV-BTXTm(GO5T7;Y1= z;p+ar!h(pYxa7m}(;Gx9(%ZaH_2e5?_t8pu1*Npox}FMborq8t%BNKuK18?JLFa;QEeA{yr`~!7mlap*V(vz-!00;p+gvQjjotskY}>(lx*+nb(MogRKcu`+LXM#F1bsmy+&*wspfQ>+%?r}y2@u>@h(7kT!F9=*8 zZ_8g_Jsos?S*MX&Zb~!QB+$oZyI?ixYNph7#cR}K)OsXkMTO53Qq_t>%cZQjDW@Cn zS~x`bUP~DI!`pw#*QSH9_~OvAYrE6i3D6C(Ol4n-KD0nfe3829eOj2$Uj7h?_w)p( zVIanOeJ1mC)~!dr33yjVL6xPH@ZF&*wF?-Ghnd%0>)ek(zR`Bf9%UU!WM9CZaki?XXtVnZbKKb~1`tK1&DLAEOZNz5^ z*-C)6mv7fRBtB#c^)<8a1|V7}=@V2lBfOLS1$7i|k4=c@ zL=ZR=;_m>ibZ&9woPq+SH$z(q(Ojn-@0anlV<~`Sd{&`)I=4j&7oRZinlM7Unvra| zqE<`m>AT{-Y_>o-UmFJP3$+I4%?|U$Ue|5QIw}Db)DnoghAWkZ$B)c_gu7bI0eM8w zVwCzTE5_^PWb)I4QyUOxo`I^q{KoR-ruYZR(sN>!GIyyS2=N5$6H7k+AOs+*9Nn7x zVhVaOyD4`>Jh*0R6$hE!6-PR6PG*WWc418r8Ax0@ImhK&UM`ox8W2AXI`uV0YK`6= zb7LdloXl^HCyX>j2fn^dy_#}ll~6sgBN-Fe%Wd0#GKa&roQmf9-iubvv+L%|50Qk_wl1XkoYK)TpeRk9Y3f5Fhf#k!xfD;R$oymdPK9qY$qFycB{;9Wh^DWrlu)+_G9A0w~36^+?bDX_C-C6T3GK} zx8!_e#uKI~h57iU`>D%wWAJ3*Wo5b;1vvXN6pn73QmJM{ zpKrD2s7r^5z3Izr418;` zx4OQ>{^2Wlh-u!}z@085!_VHmzV2A%0VF?~77N~Cjwm3KvAz!PZt<& zcd7nDrZvV7!~;f7Ok$6FrB`rtJKS`QaSSGobr($*p`PUtX%iClJVG<sg#1?gS6eSOIejN^BvraR_Fuf8@_>$^+zq1W(; z>m-+Zacg!J7mxQQM(v>cXgO@~Hq~t`uhslw;UhNXwhP^+`!G~kZv~LrGj01&h{5a* z`=%5~b!y$hrv9<=l|~B_9klR3aD`cyrxKjp>#5lr`r_CbF@CZrr@}CUz{Pv5@umXf zrAgJcXi1yvDprMs8&>11LLGe?!g{12dSb>?Qp%{O8A)^pk#vfrJxda8BiVse77MXc zxi7&PW#GZN!}QN}g$QiLH3%i}MYQkMKb!V+DS7YYcSAsm4Lbg3iwKL~GljxOi>j^h z(0G6WJS1G`xx686Q?J3x98}UQ>aY|q#>X6&b{H>xT^21JCPtq zl~B_}hS9<6U=)13=ci+Qu<7lQYTol66bl3GB}8I#wm4SiM3`2iYg%nI_bzLX*)oOXk!2Hghb^}hp7yeiUq^x;l&wgN2*2j^bw{yBJt zz5jw@xFKFNaFE$B!3HqPo3OU-2e^ZQ(ZQkMgJico4>(liD$d_BE*j=%70cfSOIIrZ zc;0hq&Sp1CNfd5%6oVqWLWc<6c7Gw&e{MjI*H2j??#-@$Z~$h*w?AERE5ZCbN%;Fe z(XSDB;gg2O+ZrLAVmF8BM(BJCEuabftp=8=jQUJ%nBcEuu#^8TI>3eF?Ezr-uE^^! z7eX+c7?&CW${sDYyT2?C_Y39zCzk_5Hr7}DH+a7@Aj8Ex}y~G0J;2%OmDsr^ukUAcFkmw_%*NGTo#-x-Xl%D226|+n*sl&IY~IH%>=>M}2~k zE;=w{q5!L&0@#oa>E0tZ*N@UahAaMBqyZ%>^?mYQH!JA|{?$fy;HYgY|5#6P!Dk@3 zXnR(szl)q=b~m)(#j_UrqtWFnEni3?w|HC5Y&`^yX~My zYy7q}gkZJ@QU1xd@m55WGpniNp6j{VwH@-I9C}^1YbJ1gSn6a0Qd)c({ zb&y!lU-J6(ZJ!)kI`oIAUk#Vc^~wFOvveU$R)X$ z9X<-esFUrW**VKODtKjyV26XUxVnY9v6pmq+sh#T#<^$)Z&1@ykQbeO3B^Rvxg;;*8h z#xvovgZHOD`0+~}4swVH=kvmM{rqiz|B^ojj@(~GrnhN-xzzVxGOK{~l=dbh{dOP7 zFX{NeguD`gck%CER_+9wrG>E*_}3GV;oi`Kcldw#@#gtW{Ux5DS!w6TTKI~ujlJ|Y zuX3PmC7{Rb%IA#=SPYJ#%ns=gyD-pOQ9R1>IUMaxf0MEG1}W97gFXXl^i6~d1vA(1 z6NJ)J-gNVmonnS2*d+dS+0+J;bc1u>?FdWWw=PW!EFEOYd|#m(@)K~M^LP(N&@gLS zKo6QTK#Wx)#gn^`E<%&Jya;q6CJl%^Ge0>NPd&qw`<$U+*5zIo$^F0^{SL2qo37I* zfcL1++VWoMs}|eYCAU-IPSMGJd$+p@Jj$o*Et>T3flLf+BH|Rg1kb-W7#jZ=)lN2b z2tV-e%|JoZngv^IeK8)%`254}!D)7Xjb_)<>Y%3RFSHUE(b_F(~g&a z37w;rH_GN>pUAq;KB9~{(CCLM==1U90O_7%m)_koa>#4D1pQqvp;4vMxq3eY_FYX#cV6qm7fE8=Rh#I~CUcVjOHz z;i@yX(~qcV-Z>-ZJ0@LJ+stA^oJq*N?lk5|L6gfY4GOV?*|j3ITD~i_m_QJ2FS6Xz zKr8-7g_F-*^pVEMTN{KVxL)-_2Zn3xHtr05CnXSqMN!I3LzA^+bi^$*X;zf9OJU<% z5Kk%JAyk0K40Oo9gQ5->G!5N{2(=m#m9|mM_Oe?vC5v5lFGu1$tDuXm$JXC-espJq zxd#?na+BL8w07B?A@7@Ge|ergK~s(`VV{X2-iI=?bg|22CdbDv&5GiLXs~igQja*E;a>U1 zLY6V19ooI@nMXkw<8pnB%s1#us|-7Dz7KHMhx8(^xUK4A_5t$xJYi2N9WF^Uc!N89 zV>Ikm{4SjGE>#SmP)B(B8jgx;Q%G{^zK3MvBdIQVUKp=57Pz(9GZc}s)kvQY|IQO z8}9*B?;3Q!$=5|KLyGwBeF#quT8C}tH)xKl;!{}pVC61*AlMp*ydUQ#C00vKRq}Y| z$;pl^Ob)NyLaUzf(a}1ozK`{o8$GVh&`=~*J4g#L;Y}Dt8i3xs2O!Cn|M?IPx|W&2 zMI<JZWuY^2Sr^K zgQt-jRW>4}sa4~3^3y`pIvWkO*U_hVaVShCou$>bCCS4yvj25;6q>5x?48FvgYGeqs?(|R~x>!XfDtNHAU*&YsA zr!CxR5(TEQw$of2Gj~6M_*7TMsi9$2J3^je^ol8WuoP}SZ+)e~R~``%`{Xe}=qC6O z-x`^4i6?>h?K@D*Xms>prTwDT57xpT4xhktm#DANk`yPQcQIR_Vk}XCVkAwfEl(IH z-c}F_4UtRD7oP`VZ!CxQLhQL5Pg;pLoRe1L&VuC~$s2iK>=ez-lGB%0L{HgF-Fccp z=FloSde3R3WwDlvqG-mlC#u4QMU{uE*`r_#<2eSR0>(bHGc z0MDRi?vON ziJ{Go-`X}Z_`|-b;(K8Qvz9n@%O61?q4tIcmvm^RXWB=qd&hBayn}-rK572A<7w_2 zC@kSEW^I7gxU_{K?c`Lh-q$Yt8;bBh(NR>9?f12?(6p*C82(ie??};XbriaGO^|rY zRgaJ5z>8c;^P7L&nG7FWiUjKZe9zUI9bECSmE7ivRJomyB_UKlFv9?Lu~gnJYKaps z5+=BZH3#{w4SurEsSBSKdbJ<7Mzgj)?HiQ4&6XH^bt`u$9O`pPs5J$fo(0fTc7C0~=DY}%{CxH8 ztZHMG{YyiL3Gv4$p?A-~@e>?$BYDROyi2S#d1HQP3?JGL-9b;|=T`diJii~B?k19} z8f%D_%)Ci8ok$_8>o|iV(8VC5qRID@@YY=iRtw749p2iz~9IW?kV2}>x&Zi`^-Jf3<;1qE?2wJAA?E-z53RoAjD%Bf2}87DBwro# zV* z)mG^=gEvWr6G0Zz-=ZgfFA8fi2uNK{)y5zf=^g|i3IKiP9o`54O4IF#!cS-x5`+xR zG0-q8SwNq}P_jH}ZEol?xGA-M#4AJVc@oFkXUNC11%NX@ptZK^6mY9iHYY1X0$vjp z7rugAejg+>KV2S`3zwH9p_0ZPIOHYXnC_j@3UPWKGefwBRW%_cuNT=eGe>GNtK0^ay94e){;KZOl$-+#woJx8p>68 zrq0Pn4A!W{aeoH{5pG$!x%UQ;v4#x|>uL~a+!@>4jNcgYft8e#kmhh&L+WtMYh+ZAG(xQf0Z*e<3<;=D5Wewac^yGZ6Cz1 zPg-|oGlscy?0)Z$HpyxP6^Sw71=Da8R&x%zrA0k~BljjZ!--M6BxVDd*THBE9YV~2 zkvz)5_mr9Z!nbq^m&3t(6iH1%KCKsH`LyFq8T=e!O2;5|V zX^^oHXK1&n2G7uAHH9>x&*tUwK0AXyM-c~e)Y8LGE<-d?;Mg9W8PUStajSBlHhZk zNau&wlpV$&YP;47+v=qUAF8$t>LHU5wHg*}DpPIHlY*+;Z9}vPNN4o#uovciVNco2 zyc{6aEA82oZC2nl>4yYR@zp5-Yp=zhS1c)qF- z70!KO(I*xmI+7h1Q_FyX(r++^V2N3+3~6e9M!y_~na}bg+LsH=EOd(6DuI3YOq%Ig`|HO+*JL*JwwHtIderD1H8BKW$=`-F?I^KRA5UV}5ip2!r)* zfGWIofT*UswwQ&M{K}U}58{3`csFFYAt4Kj(bqLqwgHIrCG;+bk+?tGIJ9xXd;f9{IvImXlk1V~`8y1v zf7pV~%i!$s%`f};Bf%<=rphixo!I@aKV#z734^fazd!tMasJym|DBE>Fem^_&^`JR zK!+-zCWt8c^g#>(GC&8GpVNE3Nvl`Q8F9(5Ug(#UP!#APnE+J+;+w#pBvb(IatX-^ zK=Qf@N*}f*8r_v(EO$a|^Z=Zc1gF=`>wK}IQ=5O%n2Bz=%a!DI?Um~0kKmida1g`@ zL+4b1Di50P>=P!WcH`!al{1DeKuNlJkpI5V?)d5eG6R_8YPWRYhe>2shPuH~Gs4p? zGpTW!J7DcIpwE{O*bMLj0VEtwa_*L#K6c~lXJmF{;9E6U5CBRNNMkMn@rKksGfCE}abFR-uls|+R@oCR_ z^%W=R*&l^z)Jf>z2$7T+KkEU*zL!cD+Wi^jm$|EgxZ*Y6PJdhvJ-oSyN)06~B@;Lk49_OnFvXv9Fo2YO_bZY}!ri@IGUHV`czgI6ux@3$>m^HCh+ zCyNiR-*h14wLd_p9-2#AMqBRCv$`26f6wiZ69+T2IvC2Wm7+Mo^hD0n&GhPPO5@D+ z#comdwoda9;Ie(yIobhzoN{H~0-SQsC#KsWL20-XO!s&GscOLT=(}4+HsDq8cDH=V zZR9r>8(ob;z^_DsDS;^66N!w<&&<4A1|TwQ28AJO2om=iC|Rp9z!;DJ!p9ai(b z-%(qr1;WgBjPxk}_5hL`UQkLu5%2Z~X+A|Ec1Ux=KRF}~x*h(0cJwOL(56;jZI#z_ zuHpc`J^2;T$Fmn9s;O_Eo4ogBwU6X8KiyYuoR6Sa2#ks3bvbifOKJjS(aMRvP%+^u zc(wLpLH||q3KqqQyUG&cR|*@vMW`4!_Od(Vp7R>hz&zkuA5{ryZ_nUOifw5btpz1p zVI(J1#eEcoDDWF(uHuj>hxH7E>S^7F-e`H4Xn$l?Py&eDCD2pvECj3}zcVjr?vQ5e zG|WRl-Bpe&<bdE@q6C)v8ho}%8G^{Q6Pc=t}3x$qSh! ziy#zBYiu6*7aWLcJTtanp?qyf)L7Wi%(ZQD1-dI^DfxkvC0z zb!OKfaq>eBnd5N7A!bNRvs?TQ$xqzPTH^v_QIY~6`hEuLXDOE7CRcK?Ej1&0a<-b- z+;JE_-HG*X1cnsLpuEq|vl)L0;Tb3O@JG<6>et97rJ zo%^^~&f~i5OvSdLYhekREgx#gY@*(n+W`@Se|FkD_JlXxAIZelM}ph%X?ugL|ri4S#3UDgZK|@9+1ENV;*m4 z`NX3IqLaTdT(L5vQGo=oct?$PckTK5)*8jG7oz}G zi(u4R`t3A@Cv^7V2@7#Gn^6m!F`Rk1kk^{PK{IgiT8ZV%ORuN5 zZzBjclp=hu6e4zk(zOrZUIz6%pF+$1g4=Ql5m#aQ`EU1U4;BJJ={8NoxK@ARNSsgy z7T%-?SAiQ0*DNi+VJ*`s(>GoO0Pph38dMx=stNlOd;Yqh;Z(X{nA3tiV=Fuc(y#7? zMqN!lKxO0%{Q%(&-Z8hey#{vIWfx>z&hd}i+zm8;kfn;EeryFYT+uF7y?zaBtZTc# z{`?gq895*5<{$D3^-@wak3*)Yip?%J62{#&Z3+|Ff)d(h7lRcU8H1SG8AbiglcIw`L3QSX zU@M^hMgSh4$oLGM4YlsgnbS%7Q7&=q>!yJ4si$1_U z2V@hLVWzLHUd&mL>P~kTXpGD}pBWUH9GMcT?BFKuat*MNI!T=xx{bN=8nVl^{g*Av z+5=l`+Qm`1q2HmWt2uR&{@~q25j>$eDV^&=`_pV6gT6D$n+FXCO%U|0ol%=s`u*(+ zDt3FF%wgCerU-m^TzlyHOwB5SLOQTC)RO=-u$v=x*=3oPwI5$LDr>A#G+CVks+W(M z5Rv2~AZX~d zd?KWs93lZvo&foE>9lMH>^r-t0nyE~M3XDbP1cnkAhhL_YZd#&;#bbD7ywPnq!Gkl zEAF+onYo3hlH=OPGd|a?zvl^hn5*HXjzmNUHPf7gVFXwdaeeI~mLq~Ug5%}AJ)&1k z%$FCkeD@<=Ct8e)2+My20d{Lz>H^D`D@Cj5gffC-J->vgM48!5e1J*u zfoJ|Af|!l=f-)AYUP`z?n+zo;MKe0wOuc0YApyDx1X~xZgcY(f-kt}nbk?1EYuO0& z;@L!0X-KuTSs&C++_IYtRv7vX8x6LTbhNmKE|^UNZ_S`1N?Qqc*D0+U#}WMJ$lO41<6n}aWK zet+QZm5yfSg2?3-v;1TfXup%RJYt_DMDv1(O8a&!9a?Mqzgj?VQ z?M|w&QDGNMnh+R`(nY|>#K&5;?!{IOqObaI@e@3w+K*{Ygyo0nUeKUQ@^iT09*aQO z-*^17FS%a7_u(zm-&%?`$s0?GFn^HCYr{qvrK|-Mma_CmMFMJ4Led4^N9xk0Z>*M+ zR(BPw|HbILS7G@zV|G&{md$I(BSGUz=3npFol17DuPz0d!{Def5yb573`3R(mJUs{#V+{_1PT5)JSJ-vKGD-+S2u24yOXz(dMIF-NgJ*?cmx6!Jp`CeV< z)7(F?wIBP|zup)ef1XvJ+(_#1T|fVD|H*vIa4k6}yDrbMWNc|8@&TkJPW9wRdY|ws zvYS`wVm*q=_2xRiwSim&gHd>plz(pOZFTB=TA4_Vm> zXeMz<*yl8pMl-+Ho_MoVonlA69yk?h}@rsLaH-NuDO1&d$rjo22lCONbEcF zHr}llZ~wpx8|Be;WfTF2fhMIO@@$kFl>2?<=zWsuu?0){P=F=^slZ+VrbxH2a!AQq z(kvh82D^bNd-|(!JELIFbJ`+fYX!Q+^^H}TbBit-(jA!9hzsqUl{$G(gzwdl)EbU1G?;mlNOX( z0_U)1bzpl4c}Fy2JYgvCG7vyLgicZU?uYyi?^{^}D6Ly2WLLgC?(|4b5?D9;X7UwE zci(rVjXp#@%2UQu2<-X&C;apu!2=-1<%u{}H?i&ytA@DPso}B>;zTvf$L5#~)kZ#- zeF8I{lMt(Sex2XVd-na;^OjBN*-5d}j4=Ja4Aq&v;G>+p#`WUU(__y5couS09pxmd z@AF%+t@lL5tZIkjgfhEEo+VOu`V83u@Z9oMf%y&}FKwyYBWfNKpsL9(nv@51&do*X zqIgI~sM8eK{K4NYm9XQgqXim}j)v0H(Wbi*VC9N}=rz~#$AMIF-DF6Tf diff --git a/Linear-models-overview_files/figure-html/unnamed-chunk-98-1.png b/Linear-models-overview_files/figure-html/unnamed-chunk-98-1.png index c52402412167acc38749777e85bb960f31c21731..aa97d668483393c28a961ad258fe6bf7a57e7561 100644 GIT binary patch literal 44503 zcmeFabySqy`!76%ibbe20>XnRDbhJ(04f3^5`wgJNjJk-D5;`=G$JA0T}mlPmo$QO z4mCr~y!+NC{5{O~ciunVbJls!!L?j#)(rQ3?|biSU-`K{`}r*;`Qt|zj=*5Bo#-6PYnZI9m2mv%)pp#gjh8#<4cD8qM2zE~s`?j} zSnG#-H;OQL)49xB@%2FKvH5+-rzETq|i6#X5GPrU0fv z7eld}+xqt9#bClD&(*%_Vx<#1l>YF7Yh-kFQXvC(G1oe259VysO7s zbgG_1`l)WzF~`proOaf?oHe4~l8wC*r#;FLz`?IxfWG`0sZqfBo>H&S5g9x-_*rov zq>(7LDwbj5RtQVT!abQ<>hQoXh>wrm=BY2}pS=2lmBQRpTR$QB2*b2l{B)vOJhppu ze&o~nO&qM~js@=X+;sbe%Sm|l<+jvMOJ-{9<;T3;%+j3N4x2n+?-IDqfBn@XEE8ME zj|=o?5?Ehxeo?(2aKByR2DxxUD4WCm)spruHzM}iv7-Lv{?jg(>T#y`!$u$t~ zQhsaw)@s@Krq@PS!pla(zf4X&wyeit#_P5nHLSNO7c$L~}*UGO-E8Uk#HaKKy#v}x>VToAo~Mw^Dfp)c zkLXAID^=#vUG_7%P2^(%=F#~D5wm_ZUw(`m9?81MMRRPTI_}(D>2w)WdlGp;nArp@ z+vB3xC)?||UD^S+L}Q28gJL_Jk{GQ*af;D&lD2KLCJ`Ug@ror_x=fPm#%)*5TEh`y zvF=ATA2pO2TGLqO*0o)2IEG>0JS%kZ+q>>wt0Y|`u;Ms837*6CXq{0{6HpLh#+uhn z6cu4y;4>MF$k!Z33O*5m{|w+i3`QJB{MR=J5OE}beI}`fek`P_QGvk_u{lmpmbT14PZ?OIA>z{v!IKv7PrrLWA8Rchn z1T4bZl3MP+-t6a}`oOxF{{0l_2Ucw&BD2B_HM-v)|JTilZ#fXS6%1u{fHbbJP~CvQ z$jQhM&4g}6noCXTV=|!igo?l@zzZGv>zTjb^Z)Y~dPGUd+U82EEQP+Rm92lNiqX}< z!ND&}Ga@3wFUwo>8cC{_{z892oe0T6tY}^;dh7c^Z{=+RRf`LMR3!@|=H<(lJ^F(q zRBGa}(ivw=;NRYibb7ZvmN@ot$^7&!(NVtL7#qZn#A)|19p~%XHYLVc8+@<@>c~Jc zD^1i0Zlh@C;ZeSC*^eGL{(IG{-A{x|dlbSPrSD1}LwU1ba9tjC9Pz@eN1|&H!>;3j z`L5_O!<+1K0oNj}a<5l0#C}{;(ri!_v9FD8`d?(G2cAD>^E zj|Yk_YK#kp4O$Ado?r>o|){xn5wazB}jg zY+6ci!F5`q=n}yEC(Fu|Ih>ny8;shVkULY~m|VkM(7fn7OPK4ZCxz)t?&S zh8Jl!Hyu3rOs0N`VIo7wSU>~!n!{tdlcCIll0V(peLeZVMo%7m6Ms$k1b7yrHBLA5!df?_^rH3wb8uX;!HIMb$=(}*p<<2kDA2&%% z+!hhie+H7}HBpptQ)ptCo_9&r@g`TuiHeIoQocDEx$AiUsqC+aVNDJJ>t_@mfP5-M z&5>jD7ymfUB$jQ^U^_Z-61cOX5~og^9w0w0kzcbt3~qoSPSeOzLK~m?B`Yf@DSak; zRjHw90U=6kC%$tCj{RuUvrL7;aa?ek?aF`f{gcR}ew(s|j)Gp@fk|n8GRo=5>clYJ zh_NavnqR|ag%eR+YRpRJA{0oC;(_0nM7(Er0uQn82pJ;JI^z?en1s?Ng5>uY<*y~Z z&&>*JE-X00P9SDOz%0o3I+v8JFEV^!LIXWq0eiht7!gs5IDuRFAPT`!SZSwS_}wY{ z>*l0!lZ0-y|3c6z@2?P$=Y5fbG|K)S+ShWw?9{$e*jEaF#%}vcVP7fiD}}#(&V5f| z-&6QAuK3?39*PSi_NU>!Q8Z|;pp|1N%a73)+!F?&+>eqW=6J2}eMdYexb?21*N2w8 zMF$x6mc`5*LG3HSr41_@UQMHI^%7KpI%=Pv6#YiW6uu{nit_+}jFCy)T^qqIjO1ok z(5y#0_nXg@&SfgF;Ff*!3U4$0JC=-l2?}L_gB22iULPMG098}Iw9aAC9UIHLBhRSV zMLaLb{k_}%{?L}_1It&4u=idb^XE^xn`e>;3MOgtFg^TMZ)X6#UP7Q56 zs~GW`9KN$Ww%(}>kM`cki=~dWtyu4wvBgc=YW4U-Zw7y_ZCfEM3lp;$EY4pj97wV* z>^oa0bMW{UKKY}nvh*7n{AO#iYpENL#yvY(wAWO$i&EKqt^(R&8-KUN-dL;B)6K%h z#s;qv*-Q1J9xd8;KO`TI+fLqIEaTr@bg5EMmf5`TzT`0yDYMlc4Aq|U`z8ZLhp$y_ zHrx6|kc9YKe%Fw;YG;DqzwN@q8ZyaXI1Za{Sm$>tUW;QVfO=#-(}fx}3E%C6C$@S{3R;sR zC*Eiz#qRvzJTK#aXk%xLw(6SQqzTWXLlk_KL1JUi*fayS@8X)Ob`+@m)R`9r?SFh0 z*-o3Ri^cCuIey^?J7u76<Qk2~$RUn+N7^%GQOcO0~>+Vz8>zx%Q%O~rWFD5TJxF&+$CUF%dx*8qr%qbuwT{H@XA>dQz!jQ)uoHvT{qvD?~^T-GHr=6{7PjackMKWDiDT!#ImEW zz;9Sid+)&|6=f#Dhn>ry;8_(dGGLW=%1QnOBWnGwX*6}3W67Xh!)e*LfxaUKr{WzR zSM8dcpKfbtonsi`EgHN{I=%bhpwY}Z%2kO_Ir0S-^lciPY6Dw7N?h zyRo={T{4$KI3xs$%>F8Vs%Pm&gVdF3zXWf%a9r;Y(dGC#Ea(pBn1*%bE+!cPQ)bY z07H}BPMzL+5^}LPGC_7%%c|PGV3w^m-~OoU^ro-nu+Cj7@`)LR{i)yn*kCzh=_$*) zIirj$vtQ;)1>ht1FB&Ll-9WqGfs&Abm$;(FLZ=E$BMfMH7yfUPd!aZ8;| z{8dqvK;UW4Sd%{CjP8M*gICac+-Nsx8Ne@d6jM~O zV4WdqyXp{y@>r_C6uM=tyt9{E9INx^wp}kZ}Ql+ku-CKNVZL&A2icff?UcI)>C=I^5NLg zN9Ne&@3OFd_b1ri87)4$yY4)l$;!%|Ns5*wQBr($@bxZL|5mo?fV}*%Z+6aRq>*np zY)B}>KFcp-i;&wzbpv*CmOCe|77uufqiaw4BcBBNtWUx5Zrj2BM)}@?-p|KwcGGFk zDWHvb$`%T>b1d$8k4U(BPf3pSxzk#E2MO96Juijh(7{E6CagA`xB8G#yB2>YG=EDa zreygDBIf1><|^c0(0@0Ms-p|5&{%|*IL>q!#-gS9dWTJ8z5IIZHVhv>eKVS2KUxeo z=CM0#JZHSUP{glWZ~Q%)cY&m>R}U#Ygv9TjRu9a(VDx<3O}*t#M*1mJ(Rz;EoI4w| zVJk&?V<%RM`OTwL=);~W$4HfE8UqAC9p;<7@pfaO-Syj1I`j%r^aI|{Da99w7{-qz zZ(y!kS5?7xXOw4h8ko5kr#3$*d!;rnjxi_OO`7rWmoHy#dYiw1X?IU(adJGc z@@mBpubuxRY0O|=r`p&FY;l$)(&LC%RKdN&&&O}aIq6*V0vn#X=P zE{4VgDZ=_yKdhJQKK2I6ij^+xl19tronGW_?^sL-+9$d=p!9@K{oNotagS{dKE`Jr z*9)s&m#(n95+ljuR2aluMMJ&)Wy^8)A2ePg}NiQNDB&HyNi+`sQhOJ45<*SsL4gw3W34ZBT8`Me# zvy;h%ds%KTe2W)jtv9E~s&wtcAg72@C1rR9p1EuM8M-`>EWdXh6YkD5AY;i-StOW3 z8i)27$L0zpAtqQTB%6HQwO+#VlW#NXSGZ!8?@gYjXnzh9;-d)mx$r4VY@2_PlipOn zp5LzA#*5`^;{*1`dzsYa>{4_d$ zMeL|hOa1^*Op;#j?%#XLtb7N)J)h^F_04pr$zgs;dt^%;eSf8etpCvCoY*Vm;_qux zDWunK0o`2n%EjrdiEp5UTY|l~s|%*vs^adTc3y7n6-SAq2yRjFAYaOYtmNIf8=4FT zHZBT-4vsouPA)|it-tN)KWhLzSw6n38G1{pK{Tdja@q8lu;J39*_G@zX-WgLhZXwj#%hZszhabFPVNogCA(DYme$zoHP;Sz zsTr?G>%y6KgM^ru?D8~o^~Q_Qyi_gqE0vgvteS>}IS)+Ph)()R3{jw6@=PkjkELcaXsQ;Jd;{kJYwNmzp|c%tSBBr7)N4pKSGp~j`9`9HP^i6 zI%8ovo)%ECF2e=aC`>EgAmC|v6Z4_6VyzW7m`tzMtG16{Tq2>6%5IinXA0c*sjs+P zro|=}$XVPVEy1Z6ac3}D@NzxYZ`85z^?6=p;b5;?<9W1WhU<+9H4U9NGRr86_mMWG zAINT%9aSom@ZQE4=?N@0)`X4C%-Ov~4yHNccQLkkTfntdE02LAy(2N){A2ZNXrJV= z#ZvC(w}PC}PCa+u1b5U>z@x^#_Npq0CpIT;4t3L_X0LNb-x;J>dwf#q9C5qrivA$K z@Zxa>3U>>y4_H0#2v@ok;L#uSXN4pb_8;2K4 zt$nzdv^eXZy$RwQ1wGtKn7_gbci1OiG_}S(71H*cSjZ&KglgMdx7$W(j#b7}RX=sQ zXTvgA|0vDydA8sV`BJQGLh71l+R7Ib%4~Wz^Iplty2NR_=N_a9z=N=s7<-W?^ z>TpFG#|D)thdObartQ~o0i6up5KLLAskyBSbJ$u#Us$yCa!Q_8W?Chg^uVFm=!FJC zJ6=0(;e*SrN4lIwVs#y@Uewr$)rF#w$|l}%A{o248|vED-4hZre-$zRsv`p3)|Nut z0<-RFS=S$YlN_Sw`u#~A$9MD(?Dra9T4l9hg%K7IB0087W8Pn(kj@7#3WamuoEiWi z>RK^UXypEOr@um5O+64Vt#ecm1)Wqz1Sx6Jt+B2887(iTJpTR8c?pO-E-%g+yZbdDW zfb#Iza152}B6x^-?K3K;EE&F!`0gz4H%Us-{r2gur91DhhxALeS4>=i6BuktJP5;| zhVMFQK*60~*72OHZJQ;nUN%>l`UMCe1^=M9bn)9|xP>e<2W{ z{BI3x-(R8q75e2{{4eXJ*cZ8dk=qx!zpDcK4OWnAzONMamBRl>Dd^uSd~^O6fOGuq5OBS$a<70tlG3)PL@EV$J+K5 zm|I4d~hM0fV;hzkbc^8$NZGl5uT)G4=5Z!881{-2wVh1-SaM6=fIEu6CT-?Mcfvq>;3_MgP#7+*ZX^Bp%2G7 z+iZ#3AWS$CH-)qjLy(;PE9U<#u@HwpvK9$j109A+&CSib8jYX#z5yAfnHcI)1wC3( zbm(=9*m%IORsW30QChy6Q0YNpD#}4(cQBH`s{`WQ1q^*kF207I!I`LZ^L3$T058?nqeVChNx zVCx{+Y6%y~A|xlQZJa3GSfbMLAjzceG!4wmXoe^=+}jgMXK7VUm=Y2KvbF1Ry{4d` z5ee0(vM89tTKMngzHi=G@>=p3DBpPak2L)@JziAPPO$!vM|`^FVn3^fpm6ReF&-e; zZP{)q8v7p4!yTSK6P!T}ovZR-NH ze#cJ5PFY%=u7xd`KM07L4?>vOse}}_8jJU&@+N1Ik%DUfGs`s;OZGQUp1paF?0_! zW_qh|PUuy>viXh#>-4MtW&i&9&Zro&E-6^xBWCAs1~c4xn>Vxoc%#S&i$UTsj-Z5B zke&w$8AUtuhX~7^n*J?4m$tqQs2mN6Y)8I%XUEsKf~w$OPCw{2?i>$>$1r=XwF}t} zm)|K_la?6-C7VuAX&mTVESD!ZCf&nb9I(LZRnT#KlV$U>d-}(HKUGnsO zDFGb#=DME~&p#{on_fwIgV5na1%C{r6JQ&9P;-1{Yc5M!HRUF8w=k-FreDKfj&buLk@GnX9T4gQ!a3xFta!4k zVfhn+n{53=iU&-K-ZhG93nb;Mu&L!5o8Fy@qKN?akV_`Zy|lSEy$PfnRe7Xq;RM#= z;Kpb6;8S6rH1YzS{?qd7MiXt-o>YFn(+TZfqjIL@vgwBvMwolusE-Xdglh=`?Wrqy5)2A>`~0`NdGHMja279o8X z-6FYk697dPzNGf-sarsLqFUmByVGIMsEm?UneB9ksqW0>iY2eCe#P{EEc0)Rj^YD< ze$Z^*x@vbrL0NkJPK2nfZa=W+15BeI53$_zW$|{E*j?*{(!`yTBbzOuP2&UU*eZS- zpc{ldHs*y~76*ll8((j*cqsmM-@g|TrF(Qu0tT&hC$wN2-;9FE55ZSHvv&&j-U}g@ zn2sZlEkKR~--CaVR>EQO>zXfoCw{j<_vCM8?C%@L^%7TaX;8M>efLFRk^-uK8yipSS z{`eG;sc93$BEVU-1mtICb1If!{jG?#mT8)MFu@&AabkL1b+k;fAE>|Z7Em~GoP2AV z#GP5pwg7N+<{j^^*Hv7i<<)u}1KQ6V0nP-NRBi>STQfc+9_?qvk6=zL>Yg z;lqk-^4sOii-w#PLH*xd4y>fJ&IipvC*W33 zQKg#HF>~}-opnA7uokEEsC;yR>ofC8f$us{lID3qw1kBr4KdULt62VYw9`~(^=+5T z4wH&<6O5^!m92uonw9|1a_R` zfOS!#hMt!&uU@581u&X3&7vbWf%>p21qh4|fZK~92L+k2JduRe|HgTc0O~#8exlJ4 zC}$cBELzgVCIZMMgQ(5Drd#8Om$j{OWF-I`sM8BG6jmS15)15NZfNT+f$93Ce>q^g zyGzK}7U14FLWn)r>Gsl4MUlQgblhhWXJR}S@Ajt35Ps3%1HhQ`X&3T9MOp~^HH&67 ztiu3JSoi2gF}xZh1az+r`2aeh_?XNh1p!PESZG8B@A|{A|oR^0o<=cNphiU+&cZ*UU2~L=X4md`y@&cLg%AB7E9(NoY8Jk z0`9d`^1ti|@R1kVMgF6&G7I1{Brkw5C>QeDT7!z`$q;0&`Wcg#!+)(w$+IYl&;1U?;o)mGIi)E}8rD7G48b zh`a7!1v&x|r_(~un4ya60C!`4#^MKQyMeKAKVRQ>b5K4BFQ&Hj$e%mM+ zAOYtq`}x5agC!1~%pUXYIQIYOh?m|YW?}cslNrB=-CUhY1}Kt0Ah?EcT+P$t+{~`0 zOrO^$E(@A`HQW43L2yZdF9LQ=#<2%L#uXuqm4BE&Ex!_oZg>_k^vZrkgnjE6;yK|b z0Un<9C&wg@!pF^*As(5zyJ=p8tkSKEsC5P(XH$>4jG`o3UDxfO zff^_UP~6TTmyu{1pm#(0bhM;SeaLGE!$aN>9d9`CzRWQ5`{LTORXPs{yMS&T_13cLc>|OuGZ-@Ri%fEf_I+5ZAV+gBk*p)I8 z2LPW=>!P8bMl|1jeU`5Zw=)G#4pEjVQGW7mFG3rVsD%R--iJL0mmI!-dSVXXA2XnB z_!5ZOEs$Tyvl_rgZxNr0g1i_P>{pOkATZ<88Hnaq*lD0C7$lvo`rW3YJx+P6ACxiq z8h$FQMVrtithcx!zgr+1*zfTfuo2ST0|1Cxy?fvr0VxNg)PbB@NFAt39mXw|EiKL# zpB~l&FzKyfOl9wPFIxiR0y10#$*|~nQ5{r)EtqBGZh6)&%fckW@T}q~fHKSUkthp!0xr=Z`NTodEFO(H4J2GT{8;?q-Jq ze&QA_hpWd0XsE$a&l70Zmia(fr>)0bg^`< z12~^O|9xP3h=TbZX>2PT?svUa>qEV*P;QP--zip@# z^*BDFX-HV0$Pohe2$|h#B}bzuJXs;=Uq4zqc8@y)Es4&Nt{vdTy@WhUApreuY;y8u z0eO;s0C4XqiJ|`O8UHAxHdRzibWC4oMS+&>Y}bbj-SznfF!=?h+*)y!wQB1_@Rr!qN27w>@LX95J*@UtedPqjZ@V-WyZ^+P+vt;7(ah~ z>6f#S?+t363fC4N&-Flov;;3mfL(wf;hJb`TMump0I9(+Zod9C87a>JAm(g<^Pgy@ z*Ox}Yc2okQ$aUp|#UF^c7Ggcnz0k=igMKc-Qn&akKt)kLI9%>V(AF1%{OE6d39}p* z?tgxf5Bd;#EHN9ACDoAYv*e8_BUe+35))7a=w(0@@mYTK39armfPK@HIq>1}&yfi| z0|UFnU>yESrVw~4I-s~q=X0C3T73fE$CJh&ahv&=VGkF&Rb7vTH^8mncLI6kO|qS7 zdH9Vyljg=`);B*jF6toFgTtPWgc>gpimy|20Ti#|Eia+fH=_iLzklKWLCmHdeoCs;iV&AKq|Pyzlz_RRET2#V@X! z8!PJbkmxllTS`{eD-Jr!TQ6Bz{a#&t$o4AahvScN+)iT=CVD7xC~`QuA~ME(b`=#p zGqd=?-D1ieQ`W6Uz`vY@+JYm+31y8?PXW4*u|p;GIspeC;RQ^)m!LcWy~f%Gnf)sg zH-riL3;e9G4BJUELT()c8!OEEn*4{egxtDy;18}hGhHGym@5D|ethO!H=(juTqW>? zD&MjbbWk8K>CEZG2m&)h)b3Ewm_+R%OvO@r}`gP zFYXNZ?WyBy3qncATYA8i8u>~^XfQ%oL6gdhpxcUs=52ow_ZM-0C+^*+`#W)8o&Nty zo!%XV8Y3aD0C!LVe74uPuB8BjB`+yg;I21%R1bUE52UH9@MRe8w5R{J8mP+$&eHVT zG@rd-f&v7P5;~x5&HO`RD8p(=)E*n!ricPqrt>-gNHGIA%5OL{3u|bZC%)+bbQ{CX zMP^@1NaJ)CQ$c}P&^oVKL`NpA(@8syad!0T5^Wn=Mq6X(gj{nTzXW9**;lR?ULgQz!>mksHx1~)G-xJIc)+z3~xyA zjrzBNrOT)WRqrTrkhV1c)G9UtB}0DFZ-90|`}}0vA9loTd`<%p`bY*-(wYdMPmYfD zS;*bF8R;cAW%uQeha~%}G+ZpSBxg5Nvr5xw|E)IkQ>vA{S3;obFZqzv^d>|BvH@T> zYoG#7(Lda(yfsOKoy#oagQ`L#UIo>}N8f`CnXoh{F#l{11lhx#YRfE-p}CHY0o&Nv z5s>UXUnxGe4gh&FyI{GttG&^zldk2UQm9I5dX&HXftK6En@-Sqbvw#vtQLtLa-Yk9 zxJIw%aJjw)MRY!-j!~d+M}%eOTNaAl5zrMJc~&_l3iNDAtR%y7KFdqd8`jr=93GZ7@tRU;f) z#5);Bu=Q(D`n&mJ(`S0Od{sLuKNIj3Gm5r1034~iy0Y6Fa2kwsf=;;Cp?6K*<~MSsy$2;P5B*rz zHgmX>1sVb~De#s2Aq|QeBqPe*jB*}Gz)v!X8-f^2!L#2E*aK43BmgLqmi3qnHwv;FxBGi1S<#UrJ0>x$0)=W50ODW(mCkRM(;OYz0kWwqFecDw zmDe1K9{^cod)A^l8twNiJEMohPi4^5y#>j%G}XYZIZ*76HJo0-Z7;=&fRcn~OiB%u z`&$dN^<+QfmBCpBm6e7)mZEE_px*69_M1jFzR+;Llr@9R<@Va*ab5e2ME%Z{37&Xyhd06;Sbz$y1J!t|)lKdwXF9NXYe{IdH&U z5>wMe#%g4|?$2K-Ci|Jrz_e=#z(bTWJ-S@LoVE~+9Ty#Z0l_;^w*-g>fCzB@q=Ff8 z>Qw|4b3O9R@e1~1vAS?4Ln;Fktn6ndqGbRRf-g%`ukSW$RK6NGxkP`)-gCqgP}C@7 zxp$}C&X;^RNHz>#ecM{gR}*SxOIo{da1&S*_rs1#9# zl9r#}EEX&kC0&C6sz0m1Z)fYPPNQwFy~c_qY?jY&?=lNUY;7pQ7y^SItiD!Nx{g+4P7p9UW%imQ?A}FR zUn-Nr?We&ij|AT3I*}R%oC|ET0JygskUCj)8{47Etw&P*farBdE}5k#Q4>w4=e0y! zsr9U;!_!vXm;Fp%m0lQR;yExd9D1dI?l?XBY3-)o%8dd?%#cemM5`mt8c--thHVe_ z7V^!bnw4ADd=lH<0`Z}^xjJ^^=nC9HFX@l$#gv4g#*p#CO8Mx9EWqFNvkc7iO|Fgp zqa$f(4lf@UmA)K;F=VA)?>w7TP}~F1jNHgBVsyv!t3nQd2uvb20F0%np>FyMnTJu; zg=g7CToAp^>a{*H`|&}jcDgE%mQkpsyKYtNJ=?{mj-+S>$Re@eYZ=3$m2wq7$&3KX zMcVg0l`}Z~C)!DUBlu;ON)_3y@om$WvNYz>o^9iFFSnE7yXI|$v)6@l#V*(D@}hUS z&rNp^)9X~YZ*E&V@mkNF*%(V{SwtB0Qu*zo;aiRwd?Z&xOr<)m4)lQ>& z${x-!_2zpm6^{pLsRa?4DPpCwjvy?BZ9ccKkBms&pVCEc`Dv81SpzsqNdz#NALC~0 zJtI|8Ri0$<*H;Q$%r4jg98ZnPv;b__(@av7kDuU2UIzto4C006LRa%kA*v)fAG$Ml z=gd05X6C6Hf{1o1tZ@vNY)DPMQ=+WY#%NaQHt7xS1e^Yts1uhrui!5ac6_E0xJVwvgPeSw1P8Mep8^ni9wryOF;Qz^NnE zj)w(!FH;LOOl#}`(6t>$m8ve(oqCq|x{`s2A)4lr$>T7AEq)u1tcQi+M+I+q1`b34 zOqk2$l)xfcDn-Jv(mK0J97^tNQE(1^x;l7RKvdmLF`C1G5AU83#lJoH$4&1bW$# zUyD#04Oe{_kWN8`-q;$JOp&Q9w2ay_2KE~XN(t8TQQ7v-&mVpoTKq(6QX`P+jh!X- z2zUAmmk*QN89Z9S90}1)P&M5+Goh6v0&0G z_>5F!(#7Cs@QZarhbwN6WsP*}xs4x+DTV*BenZkkT^d;EB2S%|yGu)6hbgC7P&&?i z#`=C~ICC{|-sdQ~Zp2Gx5~IeK(^;YQOK;I-_jdSBR$<lhFpd(bgNmi zZ8S$aYZn^S09K1++<7B@qS@Blft5RPO~C^0~UnYB7KjH`t)6v!SF6Er zI%j-cil(0-^D6$SLe?(HuzQmS&xsz(b;g#?jh6?;M&hv;Ib_hh&|n&xM3#T|78RUK z9a-ydd1dfSoFiY`Vno+w`vyqLRO1iVveX&bDJQ-q7RWyPDfir!rD{tP|1JqqLspez zGJY~@5&XA+>U(wD8yQ} zIeA_hhaK;PAb!K>AeSG=@^K~zxZMwgMs?15Kw!z_wbJA>I!nn^335yU1HIM|v&^7( z_r|Pmpeu9LXN?5ewBB*cn=F(Z8-WxGmLvHxL0+?(wYWXy;<#Q?!;cemUp0mfOW)fy z)YpHU2=?_c#0a2+O9nM&kzky^n}E^U6aZ61$=|L|`K+lTC5Nj2+(>qKAaTg9$z{+R z*VpPTf~TDdh+np=gq&ly_!#GrKdw9~5Nic~nsjp})ipU7gF^_p=tBWH4>>VL|3kaj z1~{{GRZmF6y|+2jEmOd8KDDY}Zzyi(;gaqNcYJM1O(`cW$3+zvlz5swy39SJ^mMs! zT!yYCMtHI({YLtO9zK{CfHbZ0eHX~rdn%J<^xe7r#<0e}a#e9*q--S5rMNG~({&GK zUahA-Y8ZBB>mn?WDuT+Y-fx^r9Xir!2ESW{58D==BnyNI$?40*xnaNiQVfg;G??%_ zbgU*i1k^4~J)Ma3ZMT`kFgf><9!r7S!ZuDp1K)j*UiXc;FbtO~VD?=8=tdQ9HvV9B zqmFk~#gMtJMKEE_nnJdl{r@;jk=#24Af0iFx91Um7 z&F|1it1fcZ70xmZSPN(m?q<8Jz*}&~?@jSI4Ys&jYBI)3gYCukS~5IZ2B^*{?GHwe zN3VT16_&ro!=u8>*S=WpR5%2DA~y`#xwHd8hBY8|h$)hPAeLX7x=7_-|Bg|B%f5J7 zFvx#kriQH%z}VNN)DYe)Rd|2u@$tg#_@iV6i>eqqVLR(NyQx^Dccmf()x*ctiKU7& zC*6G8QR?B%#4ctei#>;qw=tz6GV`o9qTWb7)~lS5lXAJsc|C1bx59R=cec34nt2bX zs+5CL^?3bSAn=B?n8j!=ncbJ;cp7UUvGSna=0oe_)!J*HG!><6f+4@|P&ezRb~+t; zhbQD3fRLt5U~)R3&de~TrFdN&=RYb$!YM3EAgv%HxIW zniYJy!R@c?2CyKK54r9!2pg)j05J9h}ecxu!TkdMGmD+-GbnbQ`ZCC_)~$53cA1l)S@YnEQT%nf9H#lI3 zS$Ul2%j`b=EJ4mU#$kFjoMIJX9E9L$4y^RtRt;u7DaZiV0NEG_;)RlpVv7nCM~v@| zi(s8OT{hl>cM6A z9dyI$^j9)*qp=}6bH;d^*K}?SXY2?2nK@{(`yu!^00jx1`%1n_7ti2OUcW<=188wt zgJrhNbkXycdfWZgV``gM`SG^zArDh-vR+Tgkm1QW0bdKAJJchB0#Q){YF1> z2x`>uUdqm-x##yJ)$s8w2nRzk>+pZ?Kp1NA=uKC*tNmSzv4x^7bY~16KfOZImZJ0Z zG<^b_FSo$fDsY@{*l9b@GqP_%=xM3Oi#B$_`a(8CG9bD;IAp^7U3i$h3JDF;cPdo{JzCts-hnFb1TG2%1-A)Y9-^x#1u?9e?=jE7Y%G*3 zp?Xz6-EI?V>%AH|1N{HS1RMDJ2jvNIc!HAM+$K+6fY;flW=0TGPW`hXvzlvD(Yo-! zWLeRB$mK^YKQ=AX+?2}fT5O`&X=41A^3DlZxKCqDMTcv|P0A5F+q7YR;fL;;S0e7w zj+N4IWO57G7Iu_WGY&65^)!{cH^pCx9c!V;=S0z%d0=~D&xc3*1;K&-{cE7w;p%vOR(_J?hF{FL7m zmAkVf)(Rt&V_jUL;X8nIA23?845+j!8dWJXO72w_?0BcMYqck(L^&N){mpmSDVbT? zDHM3WwcRo52MS=NJSf2{)`nRlgU7pF zmUd#)xmmdPt3SRrDoo&=@Z^UbFh{Rwoh@9pJw)d^7VmXuuNFt^5oiLrkO1mc*6)ob zmWvB^SDN@+@pXIx7@fziR6;gDvz=GJsb~0{qn}CIL8R{C_3fo9qy*^4Sp9@h@h`TP zv1tu{nc7rdPVC7OcPg#Fb^3%25@ZEd2js{YS8bJ+Xx8X;j5`Nviz-7IIsZ;~f;3(uXn+mf zzwGyf=KhrYE?7UsbAL+qr{tF-v9C+^pcnS1WPeKj#I5Y>$$dS!uP68Y$=?)W8K1Tn z40it9^{bb_5t#c5VqZc0zfln3n(7V(p?`|e1!ok*Mgwtw&vV*8Wjg?6Y6}-)q}+0s z(h4u`=Al7NY%aFm?C{Sp#_R>u#uA;F`YYT+*pf*B6p8tx<08|6jVZDtWKnkY^yhJ^ ze}g+qxkqWRi|!JPzehoT{VM&3KB*an)6>*H7p{UgyG3H|J=768#dWvays*z?uB7zC zEiY8K;djtT{`HVtY|BM|furlx9!t-#QGkQ@jA9fvOYdW-rs4D9wD$}@TkTLX)PQ-( zyupIz*F)R9P=M2;a+`DE6FrnrU`po!hzuRENY$@asN@)TF6qr5Atek)d9o1^07GKx z{H7d9OA4}h@j`Ryc}WLo?`0n~bvW|p+y?o;IeXi4`3b#HAc%NHQp@iAHM{=+O+f>* z1PJ#fv^F??|MJh9#HoPa@N)?O=ByK2E*a4O}!C3FF zr~E!e3>*MUe8=Sj&+lLUB?wL+|KgNCPjE0$ZYFS+?+w9u3j*R86bg!jd%?YCufcCB zLy5VB=B*3hg?siFk|xtzOl2U7pWtO@e$c4dWQM$?Filng5Q$>H2fa5HT2_Hb^=^qp2TYYVXQV2Iy=A zA-ADS!_UpSqb5EV>j_4G1WrM6ntI%FQT0HK_twlQyzFzCXaH?CvG6K)b0Pgn^=3DAHMVo{LCacRZELxm zV&Dlldo!Rc60A_-x*&mq3ighN3Yj=y)*qK&AVNq%!TuF+P9x8%-PPG+Lj~{Ye`-o_ zPik3qSqCWafa^bb!9angHM~WD`H&ts3UKDDVC&ap@7}WEH$7lN(5{SAQ6GuBjoIYF z&NtH*kNI(Tw1OJa;0uWGF(a=asr^Hm7&8dGkc)(C&6JH z1-fbPwkXf(jsmhlCTvta@3KsC9Z~@{eF+7@zDFGxI)kxM8~U6dZlj6OzJ9Y)!vI_Q zZ7LtTLXesRc{wP@-Lv7OVR`S-0d-xs2~_J0S6X_XA!B>>7Sjy$!vD^Gkf zsq&sgf2R@wdjn`j!+o?z8G8&;2|C78AZBREm?zi`SOYcS&0Xjw=rlV37k)||!h!9H z4B`yHO`kf2&z_h*@G~%k&h60wG?_C1tm3i2B@LMEAjYf=uP72gp>j_@J+{+%2@qY1 zCIXhiB9AX3#H1zOcpOGs)Z?a4wIeA+ zs*u>kS7udP0oplYAX>MeV&ysi%;XFP=96?~)vlgO3F?{2MoWyQtZiHn1ro$1A_6ej zIx`ElNDp_2MiHp7h(gdckw0KlmMA_Mp5TO;k#Uxe=2OvI0Mxc=i(PcYDiYv%}9kI+`1|$H<;^P?49AehflG!1-6>s z`bh-|C?&1Z3ITy$;gAhGL>)9nn+MLMVhvV$3r;u%C&6~&rgwold5<;HPp(_fS3SQ? zHGNZGN+ucIl9?R6IpB{-CUzOLlivb75)sgea6jp)C{msqvF{851oqE<0Kkvd>gZnj z!@XZXZDd|-LD|5oQ|LHA0W%T@ORZe%2Qb}Ly*_}PR}QeqpM+4~YZh`T6Gr6Y26;+*bpmbL}gKNxP z>pJ#EoFp*>x%bl^artK8i&_?Jkpi@QQq_|{$u>W-)ZJ{Jt7iTypwY86_PXrHcd;U>b5O4UhkBIuCVwBm-Dt#W);R z8beOB@ftx(3I-j>RTASIZxr>gni55)cACRm?zC3wB@xIVw1xG{xJX+!bzm3|#CeU> zF|9v3P$4k{*l1rvNa^?BXx+4a zp?QtoP6P9Dg#Jz9p`9poYCGwSKRh|wq)}KSPo5Pw+~yR8g!!?gO$cQLS<;}Mf zoP#ImqN@QlR+z1Ja01jm)bDAXF!*ZEBOrxaffs|7GnUJr+3DHRL_Mf zXTa!4UKUJCMj5USt-shRbb@c;H$(q?V3;SX;u;Epc|F7LQ`o5_nF!9(UCOx*c8UVA zz?Pt#Zzj-kr=#1~^V!czQcb5KhFZ4mEw;Fuh;+sKVHbt<~NYN%K2K~T6Y2X1V`7QbP;nPm;p zvULKT6b2oUELGH39c0ZcwX)b z&uUH*3;tXMt_gREE2Z_3r_NEj{K0HjOEuFOi*t;TSb#cNa0y;KDP^Fk$dPC4ryf}_ zBQ+aw`f!knt_<-t<91+u0F^-w=7rB2L3A$M;LUvG9&uWjRg zmTpUkSG6q6njH}rh!BM*Ur}a>{Q?L~c~1kY0sv5?QU1@^)#h_NH@=b8U>SkNmA?Yj|+hG6B2NOWv zTKVgEj|0$f^kK(U2Z;_zh*rxS0QJ6>)uz}2S73)rCSi;uhn1L&(>Tqy zPWzQfnKXqcIgLZaI9I;kGuy;f0@@i&-*;T!~Op5`xaxa(@ARLnR&xa zU60{Pk~aFZSlQeKm0Nv*7-fy>C!eZ>dKNV?UAuQ^IHNSxKm8eP4$LJB9f~4YiDF%o z=cntm@b^Tp40D8jf*PWCj1_<1=Jz(tP3qd|W1uSE7b4(K<$p2_XYs|EGltZTax2m7 zKwOqak00Fbo`SLZ9aXxOU90l@hr(}8on3ru{EinBB=V0$4V?-Wa!_Q9RLy0=yw>+1 za_6tvD;6yt2ZcFhTi{rCFxSa|={sFmni_MGGm^gqH&=P3D3-NJ3}&;68Pi>ned;HE zJy!kzM2=#n$$pJak=hBWFbN*tlId1uE$V9U8!1WIQw`_1hT;`U$TFPyMQW)w$m^mvDy6B*G&u8Z;%Of{8*I%Sk6_U3@2+=MbMHKYf>&Lv z-7}(o1F_Pom8yrN&MAI?N8MBrD?(boKVRn05a8BiJe+V;1`5HOv`KN0*UR1@edl3% zZP$6fh(R|5mBQV+Vza0fxr1&R_{p_8N7deKtN>*=&hJaNrVuB7vymd}hN^V9-iaP7 zK3eNbu0xCbagHg%2%EEh1Wke?6dUXYC|0VygHi{&^eR_PSs(rRQgE`vhXSq_F(I*V zgO^nR+k+U7u(Hq&9IL3_e+xj3=!&J5e1jN5Cw z!(xg)$Rk}F!lij&?tDxkC7?QsQ}z0+V}L(JOHW+i39KZil4avO(Uq z^>v=o;c}doHTbktR;x!o)h47GWZTB_$h%`>s#!2>XYU3B$7}e9+Xq6CL~f~H_GTpD zK3;?54_mj58f<(J1Ienq`$nb&aTG9c-nVd8$S~^GW0liZ$wU6t3|OVCb5-NiVPbK# z2xXagSE~Z8XxjLv{L)l{#UF!W^`=l|T5>t>dGapWc53f-MTzR8Db_ZcO|G9N%w6s< z{|4fc)PB06SX!Nbk|Ckhd;sJ@eP^N4OZGmV4TLHh8ujPw1fBsOVpMtS(08I312IUn(W)EY z#;!)DdqCK`&tt#ZSvL=m$Hj=gm&XJ6vOA8e1 zk*q8q_6RnwYIZ36U;%f+tw*WFFj&~3@dvJ_#lAxxP)0f z+mcVPAqJjmb2Hl{Sz?l#+CbvM&UK#d7tm-DD3LiqNKtZE)z*70i7``fRE3jc{UYBm(gR*c63C00vQZiC`G{q{-r>Ge3r zJp#6Lr?^a*n*G^-Z!m2yAwvefK6--{B?AfY*#xPcfAgHC&1-m>^@zi$`_)soz?qCK zWTqy}RW`St6?M(M-0-y)jDI8C5I6VRPJ_#TX_a6%TSFuD-#;kA$Y)xf5WeDAe05iN zKUM4=VE)(sD;(zlFJ}J!hl^KB_-Y59#s6bTDcABWj2CHGr&Wu2F?pG!x>YtAP;l$9 zAttyLwO9*09S}A9%ISW@Lx=$uEuz0j18og08lRx>FupKKSJ58upKwH)a2nZR2#QU)r68xWfbVKa{$nh^oJa}dp} zFSC=_{8s2?krs*B7w#{^$q{}vnEpP`LfV=FJ!$YM$p8xHTDES3QkgA^`K^#Zn~_ZO z?mwncxa#9NbvujEWCE;v5bULq8sOA=t}}!K5Cs)*#al=uAPd0_AA#G$h9*r>9Si!u zTm~;QIrEyVMz2hkOj`Zbr<;%(=qxl@DWO0D$bfcxi?qF$0!k(w2q_R?4o?Qbdf_KXuZ3g9h(Lek zmTuBGatuJ|Vk_VSz6ER4zqf%Et>^@BG_{5ejvkuW*pFS$XCTw+V`F8qb!Yi#Je}gw zF%8TjA3k(S1fZL^4m!sQVaVgM1(Juko2Xa61T0pgd?^S^a*)(NV$7M#hVC2Q-tJRF z!GD4saR78GU$Djl4n|8xHv|pQO(RD2AErlcNm}d@Uowo{R9?WoJHF!>};aak2w zKMvM4YE>C1)CX2IedrFGmv5+R&selV?HDZa!Q%zc%5kG)iqG#$kV-CrYw!CLaWwn* zs;=jJ)OS~tkfH!IGv^#jHouON(#`7g+2EB+1Mh0zw3*_PN^Pu)SLe~8ewc25vPQ!F1u?oq<|m(w4&?6XO$*RL9Jy862A=W4^~pFjIVCbEUC=yML`qd6sd?1MaFBX@zS2=;>K;+PUCCxwJFnibt_;wQ1UewO!)-(jC!D_!s;~EQTE2IPPb^*)yFqoC# zMSU8$5ICh1c^C+o=B)_RL+l<~@2w85w=W@;<%BNlndf7dwg#`ILIUFfrl|BnsU*i6 z@|>XTMU<8fm4CT_qCyA_tTreia5Q-Wr4gjyplKcKtqp;TfYP7k#azTo-_?n_Go)o~ z-_QhV*KU9od7IRp_&oc8;{pPG{0?c|!YoLohV&bkdj%@Kq4ych_`t_($?YyDui160 zzmBSlK@QjgTLnb@M^ZF~3e-5i_r%X9B@oW_*sOh|Fv=}FZON7DIw$7&cK^)1{MC7t zrSM5&zqp^UiVz-Vv~Z60aFcI;AIMmAxi7!xpNDcop8SLIq9y)v5e0cs(f-l`Bh5t# z_{&8q)gVq>A|Cvz15y26oQTnudj$N~iodNeu@iJ#{uxCW5ElIrt=l+k5=l=s4xY8K_ literal 44699 zcmeFaXH-*L+cp{y6%>^!MT)`}1Suj_YAk?Awa}|XdXwG>Q7m*71*9uYKzgr1C7|>w zNEbwE2%&e*T)5qjZu6Wo#`*D$_x%Px9A+e}xz?KVo_D?OYx=9H$R9bxcnAiA9Z|S? z9jZED$&3FTr49 z!NKbK=1l4|($S^)Xa8!x-En*g<+Z$gdj7GYEYF$rpzWHz#|OvRmvu-EI?nZlND9Bn3`sEc591h{7 zYY^(56-*OOY3ZVE)n`*XUz$-2-FI_-Cs|)Rdu6jwz%b^Jv(Jqf^6$r3V8bKayg42# z>?}FT7Tk{;f;G)W>gFG>mV7^MO6)z$Yi1$d-FhL}G~go7Y~biTrADfBjb>V0#HB4m z-eQ{C(^3x&V#u97o^#$@T6fWmeMvg<>;m0k#-P*u8in{vACa1coJkahMNY`jk^Ya$ zePQ)P@#uKQF|{z(Fsz<*4Q*ubC-^%*_ZixAM$}iHoIGaXrE8R!dWdnt{MAIV`K#5g z;hCZLTx;8~;#-#6AEzhU&Rt5`VV`SFe~&X)XRjdlaW~I!ZY49l%ibxVz_0M^{wfn& z*tc^GrxH&-%!R_?<|zIb-EL=--s6ttO%TNy;!?#b|-SUpapX+ zUX-GzrKiQJ{zbQ~fw;G=W?;FTMtu2a$4RHZ%or_soj&$<#yYg@yf+;0&M_Pp)gj+L z=(7(w-KSA3JT26yamc&OPPayWK}zM0bTY5H_3iw`*V@7w>%^=LFz-^ga#FJcx|`ot zKFK_@`n2+ll><3C_)Yq2vtztNy#0{xNBvo6D`rf}ur zEjOZ>0kR6SQE!>K@n+*7lLH+=30Elodf!Rq7wIy8iI?&@h2P`9jy%($QcNOC(>$P{ z_E(W9*Q?jT*U~8!pRgrA_C9>c`t-xxBe9jg?7JZJbMymW8G~@Pv}=-weCNr0lF%fmcm!0$Vxbf(62;qtbRP_@3Vob zJwysW(O1YQN8s0LdJ+;+9(UqUsb#IQl|j#lih$53jQn~f=P;V`^744$OHr9GFH@Y! zelg#AJ<*F#TW58!xcc7y!<*KV(Y3vN#6Cq%@8@l4sHH^Qk*Z4P%g14rdP?mCDi=|gB7v*O7g@Ugw0QrZ$8@F;qBf}D{h_l-_|ZCa z<-4=QQY7D-W1~%*W3=A}Tb<5gIE+G(#38rW3O45(Qpdt|Z4(BpPkbdF!@V-nvP?^E zPf`ezD|!5#|Jupzf%CTgB|`QiHL_UC4N|(tLzi=dSfs?2<0RevtjxDxlZ*_N3UJ#d zztGU>%qj}Ki=s1dJN3d9m6cb|T`Bav@nx9Ekk^92^uhf1%nA3~^7v6vWHmCkc$cUj z%Sa~L)n~7FsRd85QS6-L*^zOn>`d02(hr>%=gN-u=+?ldQ=LH`!>qBxoGWj2Q7bmP zZ&_l;(1v_G@SV*WC)4U z7ZQ?$FXpsL|DIW})8Jji#I5O`)oWzGOU&*tA309Kn&dK!2+4H%aSC6Jfql)Yga#D> z+fGDhKQ)1^tX2qi*A&ZLA3}rXk&(jl+qfeMh&C#HKS_f6ithrUL7ynYVNt;v?+ES8 zTf8S>nPmrK;t36E4c^|m;1CA^wUS^7UZP8Cc$3hecc>|RO%v765t?oF!=&(xS)y@H z0)w86_Js+Z$h=2rw%_Q$VLHyo#P*i(-xIgDgnPSiZx{Yc*X$|MJw>`_3;(4S{y*HA za~!&#{x4nLDNR9{#56xfc*yEOI-n0!;8N>n$SfM9rzh^ z9sm~vokZD>)+VpUkq9j~xvpx6=J8xJt(xXEZBTLS@EYExy(;fQNOE_mu zgtR{rtwsb5nE zro{%fm^H1b+x8cS>pZDjkJf=(vQ&f|v}3^Uky^jVODHz_coKMozUfzg8S9@vn*w22 zro7CX{r^%_yVjfmxS$Mbv;?F;WOM%~(CJq)7co_J}`@mt^m(KRVN&b%dg(w68Pw?2l#Ee?U?07 zLi2V2EY#j2?k(akLij^y_jcmmPTW(ce`c6tR?Hb)MdF2t-tx@Ox60=0&vwYmthW_)DPH_7oNO(tu5e#y zm!;Ex?()SXqM%LgL^5x2|9P9dPaKmU*+Z3}8s7B&FJUm097s`|7^u8#)nBlsyJ#Bx`!OfPjCszw-iSU_o$Qm)Lx&pH;_mCM|NJKHO0 ze(5g(*y*ft+w~0edPeis2u5n9Kg_n|>q8o%VNm32KXAhO$!A04*6Sbv#5V4{+lW7B zI~{rzLz5p}=distPB$bv;M7s@#Wb2W+jHBjIp)G-ljxA%H$e@ylfeu8#r+Nzsj)8C zTnF9F)?0QqTNc5qr><13R8E2wcGI!P(3aD(#`kVbX`;D%D>i1!Q*~`iPwNAzz}$Vf z`d7AI{g$!Y2SxtM=b!Z)n-;+%qv_YxW~qmCZ4BwR*1ORv$7D9|>Uc~hcRc61*}mLo z7cUn)we5aU((rpqv@Lg>z|G~$?p5ZvV9`OX60aEqtD>sRmQ!2!BNmS{HWm0WkpS%%npZmAt=Ivak1M75_SVpj_j>=hba$pYsDR!s zo5^dqVI4^3nN>0pK;vp#d){THXT%Cuxx#l3;}$n2vpp)4LMq$v$(utdvNf~fU4{GC z2XyVORSU6fJha7WYcame_^1N-t_iY@{#b(Tthy58QG4(nZ8j^7F3DKh{}cTYb-+?;X04dvIhhU zq-?|eC1ksG?J7B3meve}vaWrUFB?!`aD6VfS_C#; zit}gfRI$J6L!Ss&u|3(GF_YkjF(ooBLA$mxO&d|#~ z^>+W-`q0kSknCOe&)R0RW0)D-K~}H3Q5PId?d2`U{dZPmJE#4qRnFYYCRJdc3EJWZ zdT%7Ot7JiVimvbdmg@F5)iRbrtaCrg6QoX^bTzBEa38&~h28b)iZd&R`AVvvJU?Bu zaw`UIfLdjykh#g5dDyyg=`-f)lh2_!W*z(4IxXL$>7oWzoy`q{{+br=eS6gT#-sH^ zSIiBTTEbUd-y4M=WN|xLxe$wEYCN@U69(_KSW!@N}doE8a|1!7{0^T*f0@s&KQdc}%>*#JW=EY=f1ZE-e+4?|y;jy40V>=sYb>BQuqUIj&1nUOTsu z^=_eja49QG*2$CE^;<0!cKaKr%oq1m6-ku@9+_F6!ry$S>f!xmgV@3Pw#;V7wrkqU zr{G4PsP7&$SKi>c*GS4g%2!LjY#@zv`21E|Hh9#NynE2L92>A=zhdn7&}2?SWcr1s z0hht@rjzxDBceQ?>vHC*!sCd{8?#)2R#@sSWGZ87S>VCl;&lxuKY_T4prJ{0d$KZiBwU6kcb;Qbj>c?s)x3{Pi_0HmN7eA>K2dk<(i>eqwPQ<-f zdO7_A3HA{Pax+|MjbrtQ_A{wRHzMe6^`pMjQ?*nwnbVID(?zdR?!>r0yG|a?K5Q4GfNKdp*dw>c47W|hfnye^T4;PP zv1G#$y|sLnqt{=%6=B+6a#)CC@QX{IO`yN4hY07xS9L*ChQMJ7%swOd@RF?i(8l0O zz{^jbEYvv9ZHLDWE<@fc2IaN)lh|RwW?{>&oTl0L*R`%6J;*vy8l`_Mu>4;A>Dh;q zXJNc{#i0t1J&IDtH_r0}7m*j#aB6+EIrVED1vN!7g6oZ(TfP~;-szjT9U?yUruk`D zSJ&s4WE5|7s{gvGzETYv50wyN?+LoCM5$5BsoQ6V_O`!rK~j9SdUFN2vm*Tn9U)ui zc-@#PiB#>F*s!m$*jEM4*ykFC-b)S<215ro;FAXX$&Fy&WQ*=Qd{c{xwu zc&N?v4dpx{HA6sesp*AVkB`IZdSVL$oA6AnB{z$*PsinZw8_#f6@C)`tyH7cNGvcl zm)F2|R!+o)S(#q6qNWCI|HwQ@qX1|=P~2ItO7O}u>z`x@8+qO$^?2^QDNX39Is9dr zxL04gsooiTjV!ITAgk!9SX{+x_cd?mj=X%3+ZZQRzB*-xew7s}amJGmvVDQKr-02c zDlR|UaBz58Sl4j#QXs=ug#VW>>{qa*S73~x2On$qG$f;!F$)?W1j8Y{g&93ij~Lk) z4V8&gxiI$JHjL}VDNDnpv(tlxLG#Y;dTWEOzr7576kJjTt7y1>LqK8Hxm#aT^3p8u zH2G~|+^j^R1<#meec@pw>#FagI_poD@Y>7YX$)ZbP%+BDsUJZqKYAfypE4WuJB!9) zmUs`y|He3qBS>AnWbcZb)IV?5Zc3b?uVu-%!jON44E1{JBkAW^mCLkzVb}=SBhV)?JMLb?uxW#k2~n`@zf(4l({62L|g=8%Yk73xU!>#p>?D+ zH;xYBB-eJT+}6e-0*fitXdcAf$ zpX9bPsfsKkJ&jyUWTnloi}#xUv~N(jH@^`zh@896%Jc9kdb!sMGw_nqp;l?x{*k5R zhtuIDedphIJD7VaZ908>DxY!;x%y$?((oIr{ud0FH%2d{QtHVWZ2(Uz>4a^`DNv6d znu=LWd)ooW2Ij2IQoP=Mu}!`M#7gla_e)*3^nKQ~A#J z1|1OdVWIc!Zl4=29%Sy!=+AqC>ZQ{VD7{6}+#tGf zv6aTq8(@-k{wYZR^Wk{BFU$$AeQZq$-`_I-C0^<<7bo#lsq|o-e)uC+A2<6)w;TNi zhp0?y^!-g>j2q70zD~%xBWB*n79M8HmjX#LvsE)z?-Q%)^=@sjEzU4_Evtt(|E869 zwcOJ237={G%IS2M`!r(HZ}V@E3k==;aAZU3Jja~>?OyPW3VNgGSB3cZgc~W)-aR<+ ztk;pZvpgntv!Fxe>_fl0eXk<4O<&SXBPKR3ACr1+>{21M+>_||Ebe#!b3311)tafj zo>JDG-!$xx0dq<~W+G6r?A}5R`Gi2h7C^jmRlPnG#-V(TQjSk6=cID9NTyrJSb9cQ zRH2J~6 zF<5xPKr>Id;nK;J=#;StLut=x1nD+ENE;M%Y3Mq~oi&Xxw8|_jYnm7=Z6j0xx1pi% zEuzfNlC=Q|4X&zm;Ja?Vr>j!Kq{W8)nxptJ;qdch&jSBUVT0%Ue*-!D!a9WsOuR1~ z0br%USe+y61b&6XrWk)I|NnE-gj}E+YF#oPQWE$TV9}5K<_-V-3VT@eANz4{nf{iv z|HUl>d%NlHjsHKpvtw_W_Lk{4FJ;d*{p}O}|LK$3+f94BX>T|E>5#*S_IA^c(BOY< zb7+u-b%W4uLn$NI-A#O5s!4>ti@#OhTkZVyw+sH9agiz#*aGR|;F=c;-gHrX<<*}i5FI8sfZWKK ze!?#^@lVEq^cxk0@Aqfwe1BwA!2WpwO7mxN#I!#j;MWH}83E5EZUvccX-$b2ioZO` z&w;8*Y2GNq)@x7LB_UTIA?Z>237-hP)i)~eXC9wUMwN{kp0aV63;A~O2<&F3ARWI4uCh_nl;-;@QDtb1y5879-*Bh+WH1L z68$~Os=aDsR>G(fLV2X_KYTn%k+1Yl^_DfEE)CymBa&VgUujSP;o^{4pLIn?Yv|cy z!lwYNCYxqs06oUv<6tXNfSMe5!!6KGpn;2;T`%uJhb!i&ftkFvl z>Y0HXT_?6V2CoZZ2onJ_xCj=7XR05w9KSVVHW`85G{Jl1H;GtH(n}D^7{L>0QAGz6 z?ArlYMbLX|+E5iJI)h?HK=4NX=>u6M{{jLkRw$f(!f-f5&q0t8ZWPu(SgV&Fms#DMjMuFu+7 z2bj3nEU@-MpgbUi+}<>BHUMa$b_|_i478o0W_yFa%%3;@?H#M{lH?6JlzuoWk+d4{ z6^Gu!+I57fO25?5HhED132CIjAmInlBmT0lHE+aTe&V3?9BL#(PtylVymtWR0d2q6 zW8%L9WPZNGIX#s1<>7-ja{->_4gDdRNW=^wB@9E!l95jyZLMSRE5 zmu(iGehZ;)!c{x#Lm&wRh?Y#9FJ00EuhUAZe)6!oZXl}9rg(tuFzd`wI=#E^jE?0J z>?S8!r=@RaPPpD1A~72o2cE|XKx&dfwl=emY!#KR$%&!T;vi4VTRE+dn_^-a zvZ>qgb_50aq{)udRL2%6QRSEClgCYQgcai*NXJ1^<}v??v*WX_-N5uW&~T?(w%D%N z0jVl0-4@z|%uZ_fidF#N5gPy_N{M8U;pFha@#3hhSWkTP*! z_)Z2tc;D2JkWM(xb?z;!AiG_($LPM(c&zJkVcL+h=#ZCV0L5Z%9m}*U>xrMY_-$p* zX+fJBcq{xIvH||VI@&DAO}x{@t4GJnZ2?>_lgXHs(CtVI{sJmUsCm6B+eergTr&CO z@=*oKyUT@*QNkIKYu?c|MG8;}B)6e6?dC>r*MHl-Mj!L5k2w`Vwc=P%gqrL@gen8S z!l&13p{Ya1DpOtZ#3IPntEfsX-6{h>svCX@V^q|;cH>{IhyR$KbJi#xBJ<9vNJNOj zXl<|}a>W%H0jx&RNCvuB&d37@(Nggj4}z}+^hpE7Y90qvZxJBbhN_P`kQRs(up7@* zeQPPBP5-KHgITzc7`NWri=O@Kw@xa&O^CnqO;tT4g9%p<+SOw20m0|e^^Icf-k zs3<%MH}IG&`1+}Lu)Eg=S{8^dsh%B;=p~Y@9xhVAo2j^(c~8IS;sW9)zZfE4M`AaF1BT- zV(oi0w6S7Yd{)1HEyCb`6ThE}Ho*azcS!$tS1lKgToE8^e|L~I#ui`&!A|5)29hi& z1!{(qp~y{y$5dKsJHUFxK>&|}@i@=pePvzECkVbD`DI`rJfL9Vg5&q3eMiL-+zw2X zj>ko(sKiEbC`WZ_cSREU1Pgz@D$nA6r);5FqT}1Au#PWg@dKp;gvvl9q~w}l$o1%< zO%7(yncT_uhxwHRCfiDcqjn^)Pgaw25aDf!edo)B43im5Hp0GBUv)=h{4oZplCi>L#?XUSsIA7 zubUY3#Kro6;&2kcnpPwuX0H4+M?V)4vW+MWk~{!LA!>)f4k^mf;lTW5ErRu5N^gJ= zkRj6R6Kp(NpHzLG?P5zG@O!=L_R;vwoc>gdMsI-2;4uuZvjJ|&PX-ukOvjukWBIzgMBp#P`xVDoGLSV;{^MBNghJZTky5m zyYI;`vGI@}i6uk_*Y@KbZw6HBHAAHD<7lK~4* zW>n3{uJSOGtqWx}RC1$n^{-W1Wp?R#m&1V6~ zc`ysoh!nR!>)g=9I2_{nOmjXC&mdT{LhDm&JqLk59gEbz5V}XuITVJ`_vjr@$RL`< zd%Gm)TN5fF`c@~9+bbx3~@xb|#sLwI5a^zYE4w`V=L)J}1;VT%7}X$hEC2 zZgFNj0J&;dhOa%*0W5ID_onD>T=!xAiYG^9Hs@{&*AV2?p_t%mT?X)$ik6pxW+_}Z zQ<4Jt%Fck!`9(>y?3FN1RTa*dyO)3ilkZ`ZPpCnci1;$C`37?WRFOWLS#YBlfGKnj z$utCH1Le>4uvwR&Np0nWOzQPqRiF8=Nl?>faAF<;5Rr?lqr08>e|V6KoIn;q%^Y#F zkpu}Gqb1itgK5Cd)a3MTKi#5^-G7l_Zg7=80PA}jHV8c$nFbf^`t?dS@J1YdB&<@VoI01>x{!+)lB>~E3|0UR^ z`bgz#0A#@eq+b*$ZEJ5Fh{2{8I1rwU07xW&b1+FR1NkNefC(!ZD!=nqF1A-r(X?!P z0YH0)vgkmkRWvOj8K$5Qf%ole)im@L-h#mM@0%e|h(+;$i&dJB%+{o82MB%p+N)d$ zv#y;bwuvXPc<)DMF;e4i(OY1_3u5dx04Khn93_Q<0zyfqhu;#D`ShNF->dWPR#}=ZM{NFk${+a3fl;)l=aj^Dmt6tw4`%4-<&s`}bu1aE0N0$Q;{O&j zm~T+5&MR@odpR&lc{r`PJRRaxjf-&ssCd~~vx5ZhR>0lbi+!0H{@DbbS=5`}Q2yD# zwrcHrCf1yv@ZX<&f<4-LyxE41;Lmpe`<>~Sx)>pkO&#PRGdf*=CA#=$=j4Ik^5?l@ z2#6$#8)6olk`N^{ruP24CgS+Q&xd}nc`5o~>RVrrAt#(`3^y@`NdkyX#~ivK zT9SvS?gHJB>_!ssx2}2<>WjpGPUY|PgN9<{$${WLKzb72@pcx7A7=7iY?}-?n>C@1 z0kc!-mSUcL1UMh(?x1XnzHop(0K~^Si6=j%-yH3GY7Q%^&PHg)g((3!M-uz3`-GNi z8Kh48?9#6gk_}5XkjGV!e{+D)s8~8MvqQK1|Jj|teCWIa0GweVYDWl-+RG0>Pv|r% zLL2stKj`7&V1C8;%V7WbTLp%I^Tp@pX+rrTHENJLRu;b`{EvM8@&U{atY9nU8X?`3 zzyb2nQBHoA|J>%653N36)D7hqgnUo9GC+h0Pm*^1VI;u-30q*)C`hc@ zDbor05%3MLb@mo=Zz1<~-E2YV{W(WCW^{6N?T#uHZz z&eJ#c8X+2=1sMr!UZGaX`4l;9^65g)74~+jBZ}u4!t#}xiBYXBX#-KIW+|Lk(=Q5p z4|&A3E#A`9>~?QyUG(zKu-#Q_7JeTHsx=Rw50_Gw|GPfiyKrxE_9W*|N9%{Tu(vz* zcE{fC*xMa{%s|4PVFkg||1R}7fg}d~{I+FK(dfll<@+`3$Y3G8Fufg1bT!D~OO4PoxXXQ{~SQmufJ zowA|Nn#uZNhiV78VB-^zTdEup6Svu13W$6mse%uw1Bn=Ui&qbhb61U&jOI3lzrg|2 zhmxxF+MOul0Iqf_MV_ZVs~=cX6gVcO*>N_^l#35XL6c?d!y_lcSwMNx2{hT$*3s7$ zgR)x+DE?FpypjdHEFM;E(SUVCYyi|`CLf-#y$V=NoO;a@gL{j3i#f(+|tbba_gqDdeDvF95Ktsr!Q5I`m=8a z-<@Bd&Q=8pTP;d*R)D&*xTLbMJub8J65=ocWGLgkpl2{}SnytT4=#|uDv|}<9h65z zlM$g(MWp=fzCka$>_E|-<`lv&*4_)bIm#M{2p!c2&mI87EpX6R4_<0!QY+YC-k=MqT#)*Y69w&a)>m4muOuYB`-*tO6=9u7Qtgw%P9l zXOqrD$?Bq$PIJTWWMPaux8)yeVW`-p*}nxD`qj1tWxUP1MwyN=|42XCQ^Mrjd3_Qf z5|m|j)>;C6&sm02obzcz)L8nJQA&n?HS1i1YIi{3-EEfY-gJRNL?-F9ir7~_8ltIH zK7f|9TF2TUbxDdSo#f6jqfFigifU0B)o$-rpg`fA?zZFRBL=(Uh#J$NsS1$J?`RZk z(Id%&x~B0Z^imAB?X2kzP%eiz034q|(DUGvqRZa(T&Xmn+JJZ9rmOch1zks;>j;SAieOft~4NHr2Be40pJ7do(uJrtW10IOPR> zJi1Y&&pJ4|D7JljA~7@tknQC0UgZ%@cPP;GOQSp~clEPalvB92DOcPqzzXoj7p<}Y z88rP$anZ1}hU>e)ydZHG{dM{}W<`<=0ddDJbxoVYG6?U^9B{TvUDJrNZhmV?i6hhY z%a!Slc7!${<_Z`;E2AHxc&O%a7icZ@0${Ab@z5tl0{y`a3|HXH?+||FxiugAS3^%; znhI$E$};9XKk;V(qD&thh?N@)4#fbj?G6j{SOC2?lVT?`|M{^os*yZWlU9~QL*75r z9^PkLZ?MDfb3$HqXj7Rf& zj00(9Y9~9J!b6D6$p^gW-W`;%VN9e$_)i;!v#U1*v&{wFTt^t%bGrqZ^U7P-I$y>C z=$vtfn0kdh*CVpJm68J{K~X`c$=S?z39~w?8|tq3t^>VJn|cxl*m=gL0KbGP!|U3| z?P4kTOm-KovYOLm;(Ydp-1Q8FS)v|F{{_yMSBXosOcuN&8gN{_}Yp!`NupZJ=AJnLG#+h zJAaK$Vw*zpnTUFM5R;kK4f_))!(}5GF6sn5?8Dzma{Z;nIr zg>k?TP-1Fc`W)Rew&LLJbu83@OTH#tCSoX2p3+yuR(G%)zfq#)tb6=HN))QD%9BYkzY~Ccj!piQU#U_1&}<^ZpTUFQvgRtl@4$ zR7giBrpPwdkO2XoeB!aO4C88fP2?l*eEDx*rg$js`;6c|JKVh)8`_oIC7+<(eEqv& z)BLMJ7I!dV*WHw&s8i+Zz6nzL)>?E?zQz0{D`3f&^?{!K9HMApwG_Yp^t7Je6M!nb zm^(1Eyt2PI78GtR57r5-@j$D(Hds7=UZO{Di{4HKwpp{X$ zVp6{V<#m!L0;MW`b*5R2nL3*GceXGmm2$l>YtGsZi}UG3q~54l-2y0`$0 z8+tXsyEauX7Y&uTBHPNf10@bv<;DXKsH7u>@~Rw+v6}-s6_!trW%z2X#Nq^y_D-ex zqs^l_F9jx>K>_#4hig`a>{3VgYaKPT*G4kqbTP{B{l7%jCwKDgY0?*%Ypv7aTa3IHirX64zQ)f8yC#Nos2_G&i zL+X95yV@nzbwTA3j{7fc3EFL&z6*F7kB*0t$_DGl)>EZ6)=_m6*)WaumbB2jGj<=v zx&^n^+HfqokW>mxd+FsvD2kb`+1LE`I>?~yppO1%{bwgHeb+i};PzEzW2PsyOv_1J z?d&h5t-rGg99I*PO;L8w&ty+CuuCBp5f}Vh0Uh28V~$y|{n9GJp;oFQx@=GSKwm;T zRDn05dqG}5?sRSa7-N^&Wt2&zk7hP> zpBY;a@!@CfE@`&;cRU3{RZ*IMqD;6*%T9(6!HY?GfaUFCgR!f!A2#HYnC4{T>t9$rWBQYY|h#B6y+J z9%KGV%*G3xU1mvlUhZ)TaA%KqSAz~4q&CTG0Y!JcX`!qmjA25;5|tHh&+x09O7GE3 zxeTe}bz_G{qB1@_JYrQ`x68tGfsd%wS{vXu1N_qgJ~D1ZJPmRZ`%J&mu)Be!SaC@- zE1&Kt(Wx1uFy>Mnvh$qJwuAT(F`<+Nq6SDITQuke!FX4eE?bUD5B!PDqjyDxAA#Rz zyH`Y-#ztbT$7X#(+{v8sfJl~I1#|ai1r$tx*VH1h2wuTp=}{2FW{J)Dq}4SunGJ2q z@39bV9QoodS4^Uu#BBa(i@j81{Ptq%E+CBf6JUeOqi2+*SHlx9ea+ zA$(cPK=+mF7%z^KamG9uDVXUIky`{lzZvFCgIJT)y*4rD4M2EgbdMDypGVyBS6BsL z_L4Hzyiu#`sIMO$6?=C8aCu8890Bj%Gk# zIwQ&~FJhaI!c41{>b|CjgsLnu`wKo44Ugevxc?+wGQ(*zw3dCEheBJ$y|miYUFVLp zfJ`%JEDDG4l6daqWO?6OXPE{oq)X={J%`93>&4q7egfzDO(}4e{@yjw4{AjZ0ZfFq zW_0Mvy4ZutFG@?yA6lTGViJV&ymG3wVZsv2Pz<{Iz{2GmrH2NymxyPaR(DsSW_fQ_ z>Jt7TubiPs^xT^-2+yewQH!>j)wh3w4d2Kay?->Q?#NWws~EHybTgk$*E*Lk^sJm4 zX0j=`n+WSLYBwB0U&@ero4;)0^?-CAwW{Rxprcq9c2@!*1#?PNI17<@l@zzxk~EOt zKw$5I0adwR60l@H<>~hrqJQZHq;~;d`$sn<)upqTxV=EUb^IL`h>dQ{Gl~yQh$~il zsq+A9&&%Or>9X$mqORQ<_^>`a_Tp#)5V&g5(*SJ2#w_@#E)5GQbUbZzqu6K==Iu14 zP_6Zh0AiiVv9ax28?~9bQe**WdrAVNS5=YpXF}LiqC-0t5J^)NhAl8O2tMfYdyyUT z^k2sz6z7NqyI=6M-Lli6by4r2xX?c`M+w3J$e_H=NF5R5P|r2_RGx)P&a?J`Cwop{ zwId)~Q~)_Ai}^SHXiGoK4>46`J@Sn?r1W*i3BXcNRp1~RmqbQEC5$Fghb@L##9GVd=!JXDAWe}hQa1|! z({#>Log=$pu%*HKN4^Y(dJEED+J(Bge?}xE^H4itmt7Zub^dq_v_`6z(-P=&Imr)_ ze0w+h&wTDp7?%o$ew`gDdOMo-asJsOw3RH@WY_*S?Yf|V0!}c zKV3j(_iwbqU|cf_S1#WA6BDwxe*e?gZ*R?Z9h3jV4lC-@Jhx`y?wyTBNP|FsawTZA zqaObxWwlI<-{`hxxZrRn3PhaI118Kw#G_nupxhWd&Mvjf#Y0LlaTWw%hM#)*ccVRX ziV~3IX$R@@!JJxUVroO9o}Am%J13cl{s{(A(#P)}@?zcBC-u))zkHxpttM^tH^Tw4 zZ2`#fZOfLXU)Gpd%J-LVukZcUx;EZ)@7y5E%ySV>!xWpk8NK;g-O8F1b9Y$r5 zFdFJ|yu9;F=@A_Lrk4-}kxfP3&(h^DUg$UI$l6y8mIT@KAI!0wU-hkP=FIfLRq-$mIZ*c4cL6IYTRGHb8PnusaD7UF6u`ngQps5m6`>}KoI{HVWu9_-}2!S@3ayJhNfC0A= zw3=rwf<|X&=i()5?UM!?qi3bDLHv+MY2by&I00-djVpioOr8a(aL-!aoF=0o#(yg5 zK8_}rBC9d4LWEpM>9GdjGYddfftx%v+oG4S8P>WH-iW01xV{aj+bk(PAgQCfq+dHUAE3aF4qEkfE#sT`my>!>ZJIlUQ<7 z*oloaT=IqQ9A5=k)DD0Y)uqXWC<#tS=;a~lzD~ds(vxyD6v5GG=PYl;XBo>na#^_G5vBXGeMF&Z_uoarPh!j#B~6M zA#N3SdMEIEQ2E1=Z{-9(O5ZNL`MVhX$U{#7UpMnI9n*igrP1-#f39rJueQ!_3isJw zh^ITjSG77KB~yJIxXlv}s-K*?+-sl3t}9*WNZ0<`4hWN7MhyE zceyq+SK%=7bNQpxhM(K%2K2EE&Oh3Z5WM3;~%vAX*LR z9MKVHqe~HF?nCXa3k|B~>MTFF%hti}3f=w|rmDg&AEIQHRcfkp`vGmcD>!D%KHU;* z@2iw9B7A@_PI+kkb8$NaNvQ3zr9Rnuj~M^;6X03xM3{gRDf!z0#b^JhOYX%A5eRcW z2`Zf`5W>m>I;WH7rqa_Qz^*0)=yX;rSw-033CP2X7%RocfG%*K1vu|%+E379aRTBS zbJ-<2$>f>?d`d}xE=#x)(8pK++@vxNz2gJbF#}e(@jeKkWh(h9(pPwiTMfecezfW@ zstkk8pa>D%lzn@q*bZ>tkw-6ldt$#H@3qDgDzoiY25_qltbN`?0HWNtH3LW>bZ!oV zP5_G&SSh!;VHH`qHx!AD5EG=zim)yoK;lzCaXuBo$uoP+y|Z|xu)X4!17UPA>m4c* zyijo1#9|4eVcx&gmaG&N90Az3sM7QWI3LTahl-U1P{Wx2Ko73Yxq#BDDt_Cz+LuVS z4Sx{}(b)|GeNX^e9hMKhu3zEZSH&WGzDTphlKqDSCCH;dVObO^QDahL%V*21dcijE z@KVw|F$0M2Ec{Q0Uxh#leKu4m473q47rn|CxYnfQUN--=;l*O)7mo& zK%W$Mcr$C(q?w_&m$Cyp)F4GB1hi4H4OI9}4i@P>!&@?ZZ}*VYFlE!2Dav(?dj6KZb)9&0zW0V@O-D@87v zFecdvfzcqr@Qi@zP1#m^fV3~nbi5BkeWqIlv}8BDdKhsM0ALjF1T<(W&|aC5UIGTx zBe<7w;Z<%!#w6ydQ?oz1J}N2B$V=3u*!OB~QqJ-3%=2R`SO7Ddy1jlSbkZ#rI6YFc zHUM{}0vaK7bM=*OQFIea0cRy(dLHs=FmLCfZjg4Mh6hKhtUVa%bs zEh%72jwqF^4zqJy_5d^10Wl^StJOiAY{!9`Hc%g=!|4LQg0?bv*DS%iiS6sVf#+ag zO~EdT2p@Z)p_3M=_Se0})g-}PWFeNO(^!^&+aGQWAf!rlOpZzd`BT0``vOF%==7bg z^Rw7c1D&dVQssKEZ(fD1nW}T`$9V?}a`6Ude5L&sFkRUHqZCZ{OS<`B4qTx&2C9~kPRg$~v0b!gxXY(o4$?Okb9 zlh+ot6g9N95JVYNKtU>_fDDR4;s7#)p(2WiiosTbfTDpiMMSM-2%<6=NH9=_h$s+b zlseQB;T3_FL52WoqE?I{5<>-q@Xie)t}gz*A8)PlD~l|?ko(xSX+t$ynQ^Tv%TD9NTj4G+H39 zRboZfPj&bws6W|gg7q+h)6IE>w08LYe8~y*Q{y^BMt2Y)r$C;k(ph72>}ctfI;X*r zdOX49h{awzxF#`-DxVE=Z}eayN;*cScBRI)q1)ow5PDVVk)pQLjQ0u^=k7t~Oh2cn zbp_03vynk`L5*GjA>IObTZN-Jt6MUTEPvW_{T1wEFp$&>hD*Uxsx6G8a)KC+f zx0!DIw%PhX^*ifm!p$(VR3h~%?ZTcHbYT}rc#fyw3A#$T_W|G!2+nA3ia5pD^K3xxQxbKE)V^Ym(<%I26*Xp8#(>IrwkU?x{V@9SKtRtq{FEvXPZlRC23o@i zdKHm(X+P55L!DL6iQ8n5ysGN&dhH;)&sM2b=Vd5~ns*OHqD?#iJ^|y6V%J#0F^gOn z9?OD}`ESV9fN1bImG}!{5GZs-)EI8#+kp%=A}i3tEtM(H8ZUAtpRe8+Rd;}k)&65@ zzTUIS0@f=&#l>i#PNMt#q}=2I?H2P$(CKbN&D_DDOQX@GX3H+4M5@#NXrJk9;M6xc zz3Wuv=pnaA>`stDZYK-GvEtj=V`YPGclN7)X3wxGhtT^&Wx@!A!ZJMLXN|5`zM#F- zQ2RSAO*aGCl@I#!(<;5uKxW~)y|7M#F9?lCT-*(iI(Fidyos_Jmareb(bSUocWVHD z1=F>1{a2&(#|{KhMPbBl7PDBEpSA@}E5pGMDx$G*u8UGOi5;WB8rVjtZKsgzxuFVb zn(%j=qN}jgA`@|6{|>s?`$=@KJ0LTRgY%XokRoTq=LWFr8y&U34>*r~jzmsVyc!OX zKyWS0pmeMjpoFSU8Bw0pu*Vy`iJK%~h|Z!-T%F+OH+)kDO?_h>)0L&h!y0eFWxV?K zBa5FAvr*se1`aS@Lu5x3|74#Y06$E9bXrYX3rdv|QKr}^?Kt_czZYflj{Uset3oT; zPNdC?tLgq>LJ>Fc%(|s;;>j7sLLgx1!}Ej?{gS6WH4HR}4~!BQ86k1rssW>IjvCAe z&Et(L2O-*qa3_G~=^C0i30tARss*Hy#Mm|N-|iz7q_;sG_$c`4a4&G+qVx04+g!tJ zZc65lkbuPFgqUP?T}9xgoKvIM1zvt>QR@uy`k0W>B(ZS{l;90u_YJsDn1&p?Er|8; zRu@L`06r8=2KYvR9fAe@@T{V8KJVzy5lrP+zJ=6PC05}3Lw}h53y1jsT-3OHlt*!S zCt_%%JoqqxowGNNh8cw7*9Aq>UciG%SfAnT_SA|*C0_L7_xo85aG)M?Zebkw$y*4= z&?AsSWIQ>l!-ElU_hALnF9*Hh6Oyczv%`t77xrN4S6f9zkH1gzbj#!!I%HlhT^Fa) zwbJf+nr9o}qCIDq09`21OpXFiF!c3|m3AB&F3xw96UysJDp!{{#UT0~qMwewv1-|s zpw8giHs}7N=@av^ZAf7fvXje~M(lcJPIMwo5&&kGL3QNaj5uY{I$}Sht6ue(#iG3n zVkjZf?(o)EA9U9IPS0OeMs4psoJA_+71yoE=z0(sqobs=nIFYWC73%UDmZC~1R)28 zbWncd?QBz9$p&mx5cm1Qzr6#_GKYQII-ecE7Cv|>!8qz%EmP9Iz``$q?G~jh+RL*% z42fDb>cv=bexO{o`~a9v^Td9k`ehsbV%+53C5?|$z*X2Y`uacGJJToGOWybM3NM?Y zujeY;Y!oo~jTgP=)RQU(s_@=|)K_y}H5GKR7AMRpWmu62@BRCMbCuBlqa`IgA|-!% zD=Mh>knHXdNJf&UCf~83*JNW{`|J`Dn{)OgnAu;pMAoD-JJ-8o%|}tizyxUeBN_S% zEGNB8T@;H@%+S|-4~2TZVd*dCl+mX@$)pWsl;^k1DMm@{i>wNGhRRxG)t%FS0;K>B zW$kUr4untI&6|u;kwUXf#1^K~E4hypWjhjj7T4q#P$#2`0uTSab#|HXw(@{m%EVA> z6M&kx3&|P+IH9+p`u^P4E3#T({I~)lQ{@U|V@fxH;!cKMVbolQ!&E5!MeHmiHiLRH zpZ8aH1i~($o$PfBs_k}r)qQEG9F^Q;P8zKMrYusAbXVN;2G4GVW4N@{64=j6Qu+Z$ zwIc~%B)M7vy6^dr&MbsbcymsG%2K}G zBUti$+d2|w-(Po3{vs{BM$58Kz6ApVX5*rc% zT`5j0dmqE*E?99d#Wi3$)F@FfsID4!m@S@?CLEI>J}+X0@B^!79u}u7(BzBEoj1;| zsOj*0q!UkmXx5OgHSuI&_WjoNw=5rd=Lxk%NOf8IUQ|7~-1>KHZfG<}!nopt;Fk)l-?P?RwIC$vL|h1L}Z`7%qMHX} zmsXczvgZ(T93Yw(9M2dFU-o`la1w|YY>3Q6kGfgDf~nd3D*#J*gE;9Z-(>r#lkE-G zunCu@8X}be&O9nxOiufFOHc$$aqb;lFzcXGrgQOajDOm$&u1nR|K}$HhPDEj*+Bc z9Xd0I;E@Sy_RkF|6+V_4FIv97Z2bk`ZJ2=*M(mL&57b!kfvwsO6!8Ix)L=J?H-pf+ zB~>@k5~N7<|9N~T^zWphN~Q4ldJdjX>sky_MQoOC#a7(QB~`4SpZkB01UGZFKe zvf7&wdd3u`Ye%Q1@Do+yxC9eZP;jq+7HA=;Sy)(J*>CsTSL^cO3+Qo*#L38eT4r62 zGFtVG^X(nbdFrodb2co1f|2E|_3L3!83@LWzs#!&hSNG^5!78KX*wV^=TJq-O(+@` z(uj#FPhahDG4^^bg4Tztjstbg`B1o?dplvBD}O5>_~|v-sRzA#YTNnQZgz*e_Wf4c zLEDnCTF54A#Pg05Ztfh%e_u z`uljR;YB%i^n2WR^Et2FIo`x{Yz8&dpG?*-mA0N);7qaaHUwnMR4OZGue3K{KMSJZDisKdk%p@ zgs>I|eljFKK=kL)WTAFp5A@Q7cqfMon@EF|#`q(tg+@k$Oyz{h&W^I%QP`M83l;10 ztbw6w&BF;_wQ5-kia6a+%D8#*?v5ASoE6;G034x;cyy73Jdw}PNEkM-I``AlH%D*X z;gvpwMA}fnk-6DL>2pz0Dp_6G1#^9HLffMKq|uSkit#@FqWAnX+0FaaC8v*mBp$MD zeR}z!wF#@-hn7`kOETzGGw^2<#-5v>FS8Lr+sPJ58fnIDHReeP!Bv*4;;Kv4;&&%ADpxC+5n;(4lt4mrk#|M#!gey zs8R7h$qa28oEBq2@Gtntlt`OuKk-R+K#CbL)T3`JY>B>KmML91Zd92*=;#nv2Zaz!ThhJ_FX*b844WL%XdjMim)_CR z{5}G`oA_+wJ%&C3Twl+`8dw)fZ`7{aGFl$#JoSh%C?Z5#46YDSOb$`Uf`2g0D~kUl z6cjpGRA29{k^VLQIv6g;4^kU1b~WJ(N2<0)AGymjUhYnYM810eiErvOq?qL7st727i7XkNxXkdsJD9Ehw zi9MB1(fX?%0AE6?&BX6Wka6tyK}Mix9cI%sX-+IHKg82x{RhF4bY(fUrK7TIjZ)7Z z34M*n;X#=uDTTRoglpJN3KcCz!-KLfzX^K0V}fWeJ7?KM3LDC0dnFpDJvJ$EAC$ap zPUI(zUiMUN65C3uvV(%WCU}bc?s;8D@-ZBV>}E=Az%%8}bvSMJ_UPz<3FAy-fdWeO z&$y*=hn-cY8P+QHLgW1~Vy071l~3=HMshtnwH<#J7@Lx3 z>R{ZlS5w41aLUz8EhC)ekh{Gdhu(OGHa^7*uzL3gnWAKEh~`cx?)tGnZD%3~?AM0+ z%QEx9?iwmJh+}xmo0TO>r3n$SrfKlYj5t9m*<$PP_7hsv7R){R2n>E>F=H5~jf~GR*Pk6*sn6$ly0|r`f%I%uKuww7D|eSpj%PUc z^ph#=Y&nNA-6&PHl$r}GUFXW;wZ`*^x8XFAQ~XU6aKu}JXH`HgnK{pn^&R+t%UvBs z)E7){et%rtgxWM6Co4y{=8PO|y1Atl?@-@~)MJA7WM4cLJ1>vmSDhOa9MFVMigbKJ zG~t5R`ZYH@C)bmuPGyyNsdO;^M}oa%0y=QUvCraZ)(MiL-&J==eqHw6ZEj$XNjKkJ z@!f2{@@zcrhsyF*^M1rK`+c1a@JxKRGL_^gl!bZn`ec(O7!SipP6a&%4el?gjp#o_ zC;sc%q5uNS^Wl@m=Ju(3f_MSaAVpll!-!)5(g6O2xAN*@zKu_^pW=EcLYp-aI;OD^ z?uA+{*h_8?Oilj}m|ELTO=SaLza2{-q8JE^lyx?U=1^nez9gF1QF6g)2YR z+Q^wlLsx#i)#2AWVz;XiTc4VPwY#gCSgo7fU1Am-jQvl?uVg5;JYf|_yvkw~oM)zy zH#@Gbtr~A(mi;{_Ln@#b0O>3koZb<;)AuDw0~D*N=b6{;`xEto*olnQukCmS>=of* ze&wce?K>EXwd;$as<;I600)`QDVm~3uWZ7Y_dXc}`P+jmxWB{>(}%G5ng{J7FmNUA zVX#edt4z_VOrxKTwO3P9saH0j^$i>EmnT8>AxWO;Dp{TToVN~rKy4%W$}0P$NKnq1 zQ?c#nVaK#x<*i9q#t3YAHF+JUqEEs!yRKx>sajlhlG!Y=PYSHr*otTqB0Fk9BaeOKnP`a~wKhgjz0lBEqd4DEi8FbHM;hT_I^ED0*$X zMhMLSa&vA7UHJTdKtDdZT;?Tpq&4Jrq@TmZD#i~T1u@Jce?m|qg|KkLJwP0a${6cU z?ud+C*achyFbAQnZ95~lp(YT9)^sRm4_R0aEWY+>=bZyf*Go4myEShRpe)8$(d@TgvXF`A@31{3a2x6gy?ZfT zLclA7d8}Fg(kH>bVfFOzaJq70*w05wHPM0^`IQz; zJ{wVnDPsuOa;1xn+k<`fx#U_Ek8*pR!PBhPo%K_?O*s6y@{5MZ<*BE90*yiS45uR( z!m*BtAni_dw#UVMbf)UI(`>?j}gpdUd`B2!tjAo;6oeqfjTX{S~B5F#z+HVsTCJ9cd zlz2T=3!X;#KOA>q#PB{PB@@YpUJVS8_{9nmp1K{ib!gDrd6GllyLwSZ{(MHS%h3VT zorwaNA&+pKzYKMptfTX(JbeTaqKT*d{vB+by)hujmWL4~zp00z(4k>DD{&ph#qwE7 zmUQ!iPuE&5M9*}cKV#SbcBwUT2Hlcb@1$~C4D?V!xxMpa`SwWbaJUj!%dvi%dD{8L z&vrD=s1PGd^y{9oY75C%r)qa8k@yL?EmHvq&x`0ZPM52BKdlyJBh9oeUtg_U`k-{! zw|6W=&v(fDH}f@X47W{!J_MNHBt9cScm5th^QZ_AS!0+*XL>4JD>p0B z6c+CNaqXXD8ymHv6n{YyUl9)Ztd=rIoVoeT_`!?VtLC&U$4w99uW-zrU+`1#Q$vb~ zh!8u2Jqc+TO}PF)JD&=(hocR;=a>Kz~60sRh`cfh^_?j7*&KzIk@JCNRi z-1y>xvc3y&aBvC;z&klRni$x?yDt{1NZVmBqjsECrG5T+xZc=4_tj4sj!c3KISkTr z>Pu2XobutC*>kpz)In)z{gp|F#{#Pn+} zN6UYr2UVEg}p1dGXyko8{%Ys5pz{Gpy7XFug6EQvHegWnr(- z{IX_9`F-1hNIR&K{f4iysLppi5$xuo!;DA9O;z$Vv5RO7$J~|I#L5Tod^CC^ zBK|6ZV%%1=G<_34Tux?x{_ZPKwxy>|M@6Xy6bgRruLO~%k<(5DD^F<9Z~62{;X3nd z4(Dw3zVQkkgwtfgP&H|~({(O8$#Gt`jFgkFEfmF~_-l5Lo>}2Job3}BIDKf|c}ieb z0imGsX`*D}yWiOR0GBVGUYAGqZlD*BCp?bUjT4FokHxs6pgiutPBv*)+NqMZN40c7 zF4j(<=4X18)yr71uyq!l&52+-w8HChppQbBOHtIm4>9w@?n01-qk#RqU&-Y_o55A# zz(bS4R^cG!R0#2(p)&EoYl1MY(9Oar*8As#@O+96ESV(%JuT`~qJ*N8)O%IoVzm$p z#`B73Ay$@?aUVuIErqB#7teD`Y@t8&)ns)rG*85*C+!xc}S-m8nm z<@VIA9GpG9(~&Wd804sFYUi>bF03`PiIb2ShOyJz`5f=wp8;;!K1g0#N;iQ)e@8wp zamSF@$u2?^Q8GCVo{7*|8h(h`uEy*~?9kOEX}ORs@WkcR0Ao~ApjM4228t#zQ_=z5 z_lvul7c~Nj9DmXuKf+A@BgVv6XeOYIm`wmwv}e}U3E|}gCY#caZ`eSRFR3AGolQKF z*z7ejZ&t`1xhVU71iWo7VTn~vpZ_9*qoR?ljCsq|+H3h}*vHqfb2Ja`%F)}l8Tu@p zudm2b8j4z`icN0>9DL^BJ8LsR0^wwOUlA)Cj=61C>Iim{`PF}rbz z(I4?0+!qI(zZ`v3GxoU(^Vr_(5^w}Fyy^V@0X)w?V7l?c9D$&UJUl5@XUt@`HGj}c z;Q++6mBF+P_l(fC5>l_nuhQmQbi{OBmR~vym{5347kz_mz}>gsXH--k4ac{QpWt?B zHLGOi$BPSwQ;KYNGKntz0#6b=lD3m4@mLjm5P4>fNOe9+LrSgUtd=odg)rt3`{{ck z5^Avz^ik7d5fO3pWnZb-4Rwm5QVY97(_|2&cAY`dZ1VJwry|BJ(P@l@(GFzreOA&* zc4r5t>1GV&2If$TJ+H%J3|LFU#F4jY*pCMJr%m&(dkrX;huIvnPa3+itfniHJjs=H zjnv>vC|b`<)XpZUP*?v{3iQTD+BBA>!dtI1c@=hB9S7F#{HUo(v`oy82P`8Yja;lNf_Ng57Ir-{Iy@pU zmZ| zUGFNjF=AC->B zni$>M0tKNb9HtK05e*1`>@>!p0>J4`^v0kh*#euISErv!J~o15tvBAPy}qwl z6cX!LW5*b#qR4CGv9Zdr#+H6v{^(GGph4}ZVq8D{SHDoJ9Z{R--BvAHpds5^dYp}H zL^X4&PqJKyV-2$Dx3>(z5gn{Z9N{HBtSTfDMnLs8MkdQ* z^U;yN1Kv(qWcZ{?!b8tYvn_-|!EcT+Eb2pPbb2SThN3EJbZ~3uag4#Cn`+eVi5m4^ z8%&Mk?&WhyVkh0D_i0C;6Id16i>08(wHQrLls)Ipb6sax)rccmrW~i-lZq~`dF&O; zCx8U2<2rMdFMndtx%Gwc+1n(Xlg*Ncf&(;l!#pTf$wbf?D|&{KGdZ$UC*#-i+&zh9 z^)MLk^MdN#UDg_74v5WUe??Fvwc(nheQPh_>GV8PmAKCmlJHB7;14Jr(MnC66#7MU zH9c*3s{tQD=TlPATdNwTgIR4i{T8FJ9AEnuo} zI7=?6>T~{Hk;)E9Vi!njOQlNoyW{{J``g)JrT+28pqvuRB-rm7KVUkk_oRB$)Nir? z)$4Qu702^Y0KfsS7ipi`^Pa5pe`JOTzRHwAT9j_jjop3B0CVs4XkhLOo~}5^n>Hl1 z)-Ms1RCL~lE!XGhYJ&Gb!oOb3@wncMx3@e$99)$ZPrj9y)GJt^FG@>cBznyJK;xT=D%F=} zgk`~%3+}rGtICd%R|&CKj`j(&pcj!eqFGHCI;q;()+9%iwd-i)DmQ)fFl-HFH1Dhh z9TcfliPe{DL0H3)!+&M|*#cFO?!RTeLi^ho1GmG(c3JfCL#PX*@1< zWZZ|AIMFcPFkyvPU+um8#b}BkkHj8tg4RKmnb;Gh9aqrKO{AK~%j-?C94O=Md3)^b z`cBa2<@iW$$!n=$?(wV&xQ(rKA*gzLyk>lRT+{`TtL3SJ%k(xj?-rHI;r8wOm$XrRo!>qWpBYHBwVo{a4dcA5=Dc+_Lgiz7y z?wDp?VA??#!aeKkD6Tu}Fkd)NA90hKnZU+65KUUCuA9Vw_6i0U5}n+adxP3RJH-#O zP(@6dkK9$9w|KW%`29}$JP9!0l8qY;D{QNh#+?jT*G%rtN?UJ6mr@FFmzo|y_j(>J zw3$Fd|E=@~fzkD+lMuu(6(2c=R{GUt+ox&+Xtc44otk1NUEL4Itmi{$p+Ue4H{;%0 zXg9K4xX2gZByPqkLUi`*lJlfYQW6Hr0V55Wz?nqz;4^bqI;)jEsNOqe*6&(5rXA!4Zh*%auRP_Y+-HZ0s>lkVd5qxn)6cH4HkTAsP#j zkfQ6-x!@mkfLi}YX6@fW1xLyc>2+qhgyG25qNdpLs|$y7KKmS-#zs|4ppCC78a9S zbvnH@q>D%Ao%*vH_#oFFm_6|Um)vKJxcIF1JtiPO69mKhBSE@iH2kA;5)=`(tWo&1 z{$_9|jMFE5v}-UD@?g1Sg(z~xP6^IX6jR~fdHcdrEa7s=X~Es-CDr=a*u?MeNDqV+ z(W65LxuVGx2c!nJAk$H+CEU|eB({}y%6s4Eg)_ACb#--<(NsA|kkiFmnxdx$ z0zJWE-CfgUELHzpPuK?`6J=NAciyIfBl`C_STS|dnPV~m;^8nqvEHt0vM*IK;iKBO z)zWn~Cf6HT{TQ|8812;Uy-}Dc66})UQ*vfv^(&Nqo7C~1PMX`+ZQT?+s;YwDaj*n+ zZ1OlO8h?-*gezmDxW71?Zr7&geY*xIZg;1DasgrAob}RQoNc#Fs`#%>Z?O^SW#DXc zC0B}-KFOxJ?fRJOL(8IHF1nsg=^oNN)RnmFv32LJMwh(lW%$kM7Y}!`2pMI!;bOnu84~2ZP;Eu(0$(m&;2{ z3#X&2Dr!|<%*FY8b#+S0Di@AB{@Iy<{#X|Lpy3*x2ltAa<};7M@MvOkXP4$C`wN=i zK6d7`*cgIR)&MFq!szx!y>D-W+g)JrobRzGUD`;e)x$9V*oyvoJwDX1Z zGSaP1Yx7b`=5njERaN4V@oLYNceFys9sAdZ)ww3dI6I~jI<#2#=$g7~s-mTd%@xbx zpACB(JQHRT#AmK6FND;=F2PJ3g)=qcJDDx?{q%j%c|e_YnVzqt+s)HeaZZT0b&tZS zqn5T-<$USlu~3Cq&*YUB80q4YdF)Ff^DZ|kmmS~;Z@9d|GO&*tUu6NIly(oq&?sJ~8-$X4I zT|s=w!0BP5AzVPd_pzSUP&nm^PW-Xs&rR*1WYUzE=DWFaPh1VsoU3-(I!^EdL8Fz zd~0_J{%65ov-MY?eb47b<5FzyhLrvZmM3-I0k*n!a%^;i2-(JvjQ>P_mrsM5tpsVsXnv-K@I_R3g)*vsPK2QG$$-t(&t zTLa88p3JiUnNLzhxLlp?0oRH_g0fgr1wH4TcG>kQI*@TkYd`8N2eAG8hAfCo2ATiB zUWj@^SXcZ?#Fp6dCO3 z*N${MEeMqTaXrE_u$C$-gh?(qMca}1FSmbcYairGXFIfF<^`5yqBrfGVwe)yK=2fK z?SZ$`YYvl!IwXI$r*3{!v9Z@R#RyVCvtfo2RM7f3qMnyVn8Y}2Q1jtI=eq}iEQaQD zjjzQwQ7?RcA?fKwdKZj$w?J8;sAF1-mP{Lgmy>VOU)vu~*GtvP1etwfKGfLt>y=-> zOPX!NE1B_Z%pJX#(|GnHZw>kp{JU|jiEMF+@d{F37Exx{WZjAHqshvQT@U(>dSLgc z_b~kh8^dzTQJa+tC+Hq0uRXfD=8dLbs(`lpy^2#JC%zt1E1_#K z!F#RM!!3piLs$s4qs{`z>jASX zsKvs2T_pUa&H)#OP_lI8a0=_~#iD}@R>vsc9~{+pw@&2~g77uy2mkJ^ctBQ*I9(C} zKI~*eh3|vdKe3*DDiQ?<%FF5R(X3!{wO!H7OI<#@HcH%4gqtCLH`ie&6s=^>u>cB`4cX;@VeT^wo|$-yi+~ZSq+3W z6q8T#?3iI>+sW;?;&2+t&fy&|6?V(fhxc-^yE)6w;~3Ly(#KbQ8pFL^eV1kQ|AHJK zWuGK)LLf5uF19kjj{TfVtN&g_T&mY@+a$AC08fJ6azN&KNn~G+QR6nwU&8&9SPL%n z$c7@HVS0Y4XrbcOE;c<`jJ)=d2{F*>2g$jAm4$`ws6kznn`7L}1L7~or+w~E)bVuV z#~Sk1dguwcmqjV(=F63QDq_NJkr$N!GgZ=m>2mB)lh%R+D(SNY9y0&x**`%_6AU=M zAZ1gV453YNj=!&UA&&tJ{XMbj`GTvJD=lCDa@?XHyFzR07e^oTBc0sn*6IIxy=QRi zBI!@9{}4*%FS~=*rG^n~er8|3e>N;qK>Lqs6Z|S*h*5St&UlLWTY2x2uT|YG3~;)I zmcCPE`H4bt_ZOC49_GJ6GLT8mnU5h3(bLB;Dm9W`-OSIZm@odH8co_qf4=44d3KX# z`iiNcZM3(0l>OyjYSyA3P%P3_r1Vlc&Cj(&>C|Tb`r9N9Dt&2F+r2r@^$@GrdjK->%dc zrPxyWRzt|@wat=i6}1 zh21P`hU_3BnhJ!!6U3Rmjd2u^DzYX0t6<8>jN_d1-eE$@zE<;cVb>p1 zWl|_sqQZ2x6v>EsiJMAJtbI=wQv2yaJd_f_(%Z6(%IA6^kn+FMSD`MeT@Fsn+&G*< z*e8fVtriwZ-6H?4e3?ekuT9nVM|kXJkqdwD`DW<>3F~)DN%8-r_RkRW#4Ki{rYk|} zD2?})W$Zyo+1h)-8kZx@$&QIN^3qzQs7m)-6uM}@x*u;6Q2b{z5w$b_RF2f=(DRy( zl>bSl?OvhOQKZak-`pP`i~K(M-da)wnsGM%*i_#=vAAAzBs478fq?;J@M>Q%aC)7;XNTQ-_LfGrMcTRvsMuMU&|i2CxA2)?&i7!s{9W$9`qP9N z%He3zaI6mg*D!F5!{Z_+>{hC`1^jzsr2^}diFA)hJwu1$aCM~I)Fj8#$v>?dn_z4+ zy5+qm0mt)HrdS;g?0qaVl<=Z;bKh}tL98h8m8iW9b(cx%O|v~CvjnZ~Ai4iEQJ7QK zyc2yo+fJKxNA2_pf>-x1?+(AZfxSCKd$+2=?$(@qGWn}K|K~0xgf_Eag3$^=fIsSt zC3ym>;-D6Vbnyt+3V>|E*2zt2&DNsHQIgY3t(HFZ{3{;+C|%7~1m|sV>9n5Hy3z@@Ubq-H#nNrc zs2a%`g`LnHQ}@`|)N~HcIHNI^7DJt-ckdD&73Rs!e;j8ccuty{MXueAO)stuhV?AY~G*osZwGn9JLboEu$vz>gR zEnnQ|Y~uxAHp+T+4deeqcgM@8t&mvE*%U%iRR%M*dtLpZ{%*6{05@ky#;(S{Y$sy@ zv}o)aQm=h+TaEb*mW~_$)zEXDyU*`_QdV$BxSto6@rKIRQ`NT?5A%4v;kVV7NrA^M zwdnS4(*M*1{uu;)byM)Gbt)^~{UFNgtoq>R*~2L4YULaV6FSRy!JYTDbr@CK+%Ell zUTs6D>&;79u?1#meP)WorRn%S4!v#=m>qGp7&$~fAE4;5-=ara;}q*Y<^4U&m@c&G zSy9>gan9{HL&w-ktFx)5jJMGcN{oE|Bwbd>bJn6WR?Ui<`8Du+z;2g`*o1wxY4{hU zC_^_=*7j+&Y&TRjJ;Sz;+O%YfKr3 zv;12B>S>M-97AQnnkU3T2mbz7J;LdqjZZZLx*j6!Gioh@vc4*br>)?&-JICXsyA?F zo4y*G6F{nsBj^#a?^KQWA_(8)Vm`mg02!BzNG< z(ff$;TYhZa-l=ujv#XCIQ#4f0Wi$8M`J4y~Ebl+Q);vPZtU9#zL-^BNR0jt|MvEA; zKj{B7wy$mEfeWwVES0l#=GX{{SeF8L++#JpnG7<`e{qg`-Q%6Ufu7Sd1vV#?eE}@s zatG$Qz2x5h>G21{YUWHV%~+ewXgUhb7^y`TvC1j`=%wIK?@c*r9~o}h)vfyDzW47= zc^lrR!8A1feVrBH>D+8ke%VKiEDOJ3?(+SuClcxPd*}Y=rMLc)QAlzu{p&&j=$7)) z+|d?h>FvDl@tza!x$nMdYX8ib9LaJVPmB3mZMTZaB!!h zR-jS=i#!J=J>$B!kDuvjzgfBoO?-;CQD6fEeDe_H{7_Fq;}Ty!FAFXnFZOnAzIq_w zsNph&;L-kZMfr)YSi)5B5ngpZMv&2Hy7gnBHFWrdX_gHczEPC1TN`I|6K+_)YERO> zYf45)5r_Nib)#r2M`qEwsYDNj#TugHg&GG4Xjof6az(qw2vUSK8FciWmPa%Agp$Fx zg@aiDZCn$S6rg(36ImvXeSZmKdwhq@u^VC~e2>tNN0#}ZOuk)k4x7YeU&@%bcHU(Z zY#DMwv#lm}@7qr5?du-8ixCEm8RE|zT#hTz%_1r9BtdiD7WneyeJ4{f=}Mx;RGat+ zgl~J8O7NRX^d%;Qm_y@>B(OqhJy0=9o2BqWSSk>HQ}ao}%qy4^$kI6N+cy)y%dg9@ z*1ktL?wVrakqIY6Q1vk!%-x<7hzy7=B`3pL{1@=p7YJDXt9)aKhxaF9#OiXHf^Yw8n^c}R)QmN8L zKe{YgmRagiB`P5hAIK$*a-6BpUF9?rXQV?PdB)T`n@f5R+8=qLIcT}9%VDX|G8Q2$iNdwG;Ib+~6O4XkN#?OyB%4j0*S^L6 zz_^)$tbiMbp&FC9<}r7!#BEncP+RY;Q^nN?|CDloWoO3pgcrlFS#v9TrE``t(eXs4 z`NR;Pn3CKba|;nTZ&1FRn>r1Bw)&{q^l*(rAAR7FigtmD5js+Z`VO>rpugkqXUunC zy#u>(qzVUF3Si@6{r|s{@2G!^egB=j{Z8#3MIBAj2O^Ri(;VVD#nny>g_oDNoh|fw z5~QbyPQPGuHcZ+_sxd#ihw*SPF>>t_FmNfDMtTYGw)<{XF+ShTja=>R9Zc`SaqD!(~k1H7yrhQQx+WIsOe8^6{rBNR8YttaC%JoC-T zhE8fw42w<|^`GBJ8!-J}LTit;NK%mKdpdicKm zWCBk+<{wn>;aE4%;K%#b#6!(^&mtgKJEZa35#a(H4p%uW^c-fNWT13I)Q}tZ0Jx2= z_19Z}oM46LG~F^(Y}!cbj;N9NbsRwFicz*)Ye7i8nt%=dSq_s?gJ#QE2GuRc<;C-S zHlm`>LE7_B#JOY?b!9k*w%o|zpKlRlwH*<|*UAI9I_;KMNd{%;L<|f88@n}*2)^IEx8vIo) z-0gPWJq)*7 zGZ5dJhnmcL-1$JyRo{Z~ds!lCXaG)oC90n*AYky$imzrivhf$75WMm-Q&6ja%mZfpwOkPJmvK>wVwxyDZtgJ9+1Yy z!Wt4j#1UA-n&lhJ(Vn7jcAf^`!}B=tJlPr~w?cEpilh2^6o;qyD=1l6@?^Dy^-|;= zxs>)EX&%iCRhJ15T6^Gl$jb4ALg!+Soc-iEyiE4wh*!z@Wgqm5ha8|}?B$KVKwI*+ z(2!HqMU1R76X*C`7|&LVGG2-aryRiv9qoSBkH*%cE827i*+u~h_SDL|5%tSH8S4&$ ztG8VBrPFR4K_PXMXI)Y{?x*UOko%rRwpsSYYkM6L?Ev?PQeyd?V$@UZF3m7XW2YU} zMLXNp0&x-kc2157g*z9Hb{wL9OTa>EMB#F%u=4^;4I9X1g*-F#j3E1B*O@`I^y zqs8&oLw4kjenymnVbmR=eS!6QQ~)imgsolT-nJ1NHZK5T$o%byF>S~2hccUSW(P>} zeatgpx_U8;9x--q{u_7Hvo-W2K^dGhm8`lr<>QtL+ecV>)E>bFosjNKPd2PxP93=S zgXj{rHr8L2spl?#r2G!8?iZ`pL&p_**vZ#rt2(ob?3DjeVL6wpI%o1IeUN3f%?2Y-9t{nPvL`bGju!omr{lGG!VU*i0GqwClusf9ZNr?DxIk5hoz zbbG3Q)+dbmUmw+Q08TEp|1b6xszbK;%!qAwwAYZTqKb0A=S3!pgzSWUXg$MDno^;~ zWM5v83zOTes*a$j6M8Diq{z%dl13s)w$8;Vm|wpy@Ecu!7#oYc>x*t~l?%zDuZ&wD zKzuMJ7ppZiW5udn0Q7h%7nSmN4>B@hRJ1(Jl+*dzX3fNT^Ev_;4J|+x2 z3ztrWh?-*c?|#}{fK9y7j$s82b6zp6q}R&-+>gnb!2Sb=PPh5~gzJ8&;Q)dkT~CMv z(Bkg)mKE`EjUOtoj9BN0VY(bvJ4)G<4*@hMV&Fs9@RLw4U)W4o@f9S@>0sj>Ys+N}XFbkEif+ao#rW_(DTdgg4GD^VCQ)}} zow+V)wx$t~QSxhHBcsF*{_0Jto*)tkh=|zmk#3*-3b@PE<`6fF7~l}&xhwcUS902i zoPMH@-!9dr`6$AtaR4__hPFR~XtJdKg%$B(9LWsacp5G}oTLUXfCG&xNg1-^+e8a_ z*@u;Drdw>-g}x?R+EhHQ3&Cm{n}*XhxiRxv@g)TuU#%{UpwART3@&^SLxvfKK;*XV zwtH2O#YN$2c7$T5Go0=%I$NTzrMWwT8>R1ewcIH)6$A;-@B(KaS;(m51}{J)1U9?U zLEI{A=FHmd(o>?uobe;#WvX;-zzNpmDwdW&bo@h5EcIa{+Mc`;Q2QqnG+HL(h<6s| zBu6{Acvl0D?B2gWp6i-VaS-9z_jCcfH|0LghiMla4E^*?lsX zjSq4%(Z>N^pI0e6;{Cgw^Sji>gT1xM?Q-gdrh^lX=C~+1hm6jQ`>v{ew8@2p65d?~9ZWE z^VoH^2KxQUpR#=_$%!Obmd}44&KlQ>_11{W;49~_A{{#ASOXleGfLxCZwmtL_I8~v zoSMeDS?Kh~Q>8zcG*%r4;>-B3H7BinjmiV$TzI~nXTpsJh1F>%i)tyuyD2tvB`bb3 zjcxu?EQgr>QOK8Qv|sfa$6qlzsWgwTY;h(+`NI>9X+@c~a=^~fvniV|G-Hv$@AXp3 zbwbR^mf5}B*;PEdF19CQQqhUS$MC%b1}d&$hVzKm@9h%9mAQ5V+=)*X!hy1-dm)r=()Pi-D(qbjjvg-(>&Wh;&W?yNFntF(G;^|uw?n{ z$CyFiD3Xqg-l%r-I=71!6vmU2imDP}9KorM#s#NxruxKXi$;&*^oNlIB6VdBWZ8EY z^<3LpJ6bjB-92$gFyuc`{|T0z+EA72keat zFcgnuaX4osMvqu{aS$$M*+7PFwW**QY}KXzVJrGpPa-P79v7*cBR@zXtmGSBVhYJD zHOPME;e`&_8BIlkte^Iz*V4{*Rn1G6>Jk&3PSELx~4N5nfP3WCvC&GAFgm0ktV_ zQh!|Ce2usCP3R+6c^B$$AywlIoj4gAAbKZTUSA?JfR7LDBk_~I~{n)sKC4q2<7;pJ?y;O^G6kyUv3F`a7 zURP{x1kF^Q)0wfq8NYBGjwJ7)LPma(D6I)BI*BMeznbFW=uIoOEz#k^x|1om;z-*B zZKw$9|A>)Ys8&s%K+6fPzz#pa>%vaS;42~!_}Kj{k`_Ie58Ffe(>+hRj8TooY{-JX z)Ht}*-<+e!$@v)erFsv{7-&Y|wJo%EyM^8~u}~pLPrj_=6fa&r4sR#%ypUa1zhIbf z7UIkD#2-wfD8_c#SCrdW6rFRD+%(n(Z&IcXS36p*{hoW1W?spf_Uo~GdK?WI8Q%fZ zee;j`l%#CH-02c@%V`q+{m*-7kyzF(^C5&4Xx8Dq)0rKPlklX72Oz}l3R-@WQHA>K z^FV54Hr$C~Gx=%&O#>l3|~AEkxx_vOEL& zNW$h~Ln)1FmhDydqiEQ+kd(1r@;e=U!iWCAuhV9vm&lJ_l|zFjV-J{Ro$P~OQ_vCz zPSFzMtH#n~R+pr{vSIZvxiQO#(Fz93D#mW)Q}{QESoN{*;mj%YFxN%4Yeq3D}jgT2T&ts;2tmlJ&Z zt|f(2Iih7@OGE&_T#ep)Ymz9`jlpmFT&V>Pb0J+~yQ9-LS3EZajq21*TE7i=;I=;f z@?MF zoB0SwTP#_LgBBdNC4}#!8c~^r&?amyCZyk>QcM)a6ECMS3Db5&%$W*u8*4?I6Y%ty zHhc=f^`-AI5&A}kAs>h4sH}LU(L(bGr&X1U>QzRcL0A^M$ zmj62PsSm^ua3Z$v(H_D`#Ygr`E9?F4p0jl_zGC>F6X&uk}#JL6u_qj{=})=9kCIhSKfEmPhNXb2cxQQAMSh+Cj(L zQ{@6{xwKE%7<|i$O{Zz59H@8k)KPzwqbGY9Bf_(2jsQ!MV_g@uWV7xeZ1-2zee{Cn55Y&)$F&wLx z2FU1`++_9&KP0rG%-zk%M{-+gCw-i9L;5`pX}|Fla~{)Awu)<9gqSiXzdD)w^;pI^ zaxukr2NkgW*1N+t@~bX2n}G&n4Tn3_^tw0x=((*m$E?_Lv0QN@+}VLd*~643hhcou zWag4}wIBI_;q$>~{DHDaX`0r$qRU}jH9XrDH7z-FU(5bmJGNPB=%A4D#x_m6+7OFl zma^;YID?L=h>bGU)+;slUkCG}DAR++$E(z=p+tbL#A@zF1)PETorpmh<1Y|S6%<&Z zImDh1m~v?(so~yNW~8e8U%cb6FfGvQ5!U?kar;NcT$F+@oZ&85V}=}TJ`3f90Rl2_ zvVd$3(P%ALDd}+7nH1VLDTf8_qJC(_GpfT;Rxy?apDLD{8`UE5a_IK$ZJ{%=kHmz- zR<*!|K;Q>R|Dem3`aK1Q)oA5QS4=r+ZZl=gSzW)VByLv}Tw- zbK`7&>J3#bZ2LeLbkRe6fyyGxb;>v0@RbO_Q#Ew#3?cx5Fa>}6)P&GMkqn-14q?!w@f-Bn**K zpc-?@=(PGe|I9L#5QQ;Tkm5V+Oh|l7gQ0?y$}5>3>PLN}Qfe!q;)_*Q6>I0jO@^dS4&NDh24qq6PTkzSVb0n|4gHRwicI&Va{V4 zR8mAmdV-P$fsRP$bh|83EDy7h{U`0rPqf6xp zC3f&&DO7^hYO#QB0mtj~=Wnnwp{P;wgb+~!Caq@Tp9`1^w zr73hDHO+ziT??&lUS~I7E<3I5(4AwH&7Cu33?TfGA4cr6WIIfx0&QQS!aeebwZx2& z@%VzuRGlQR2CDQO;yiyL5+$fVfBVU47lgdm%UD20h1nOQHJ_vZLaPenGQLl%SMcGH za@0nO02SOXK#T`|;UGqbd>=;iK?P^=5@UipCWw46_<5-~skAuc_^G(~`N4e(RE+Td z9c<#!LRLA6d*NXPz$rXbKoGa!{~5sbMqPezLKC$A*6b{tzYFc~K105GLf7mJ*=D5p zhb7Sb?D$B2L)qcSf!_u+1?9u?N=LGx+|S6&RDS^8etUHyAG*ytH_jF&oHZ=GxZljb zmiHp5_Eo_qBqqMOX@SiN?_Wdw1pUI)x8Asf7{xQ9itp-0ovYr!(^1G)Sw)O`?(^(5e z3`{;^Cy{H!=u!$yZ;ey#GRku`2~f2Z!)&6VMA+mG*Nzv(Ha!fCo7*e8l#k-@ccVQ) zP&&E3SPg64Y(4h`{I)x+}pMEwJP6v*j3olXg5a{qIcPz zH!l##P^)}&iM`R>St2-;*6^iXth@t&#PirSNYXdeC{o5MWht&lY3&7pLkb$)dZ2*3 z5FEy%Ug7<%1H`#>DFk7o?2fkJM7gdf&}7zKj_%hyHCK|TFj{2N_pP**&*sPZG@=d0JQE2?5scTs_NXV(B z(Qs6&?`p{-^R#Zi+R~~gfp4`T*}G|W3qX^!J8+wq|Fs#%Us*yGtY9essa8nUJ2laO zcdKeS4Kk*(9Yx7mu|3K)ILY)eTKa=Kx_JBC4u9sm(4aYn;#ih*Q!cY%;bhs|Sm{l> z#&}uj9HnKpqmmu^6=T4WP;fs0L`^`yD8uY^-;e!@13zBX*UrAuzl04IK_36P7*1hj zQWi(3Mr~JMfW=>UYw+MfkLJ4D!t5rKs( z*i1~J)o+4zK^O^Me3*~2Nw6T%yRy#bgSpW~n)>c$;4idTPyc2>ZizowjT1|EKfdkc zvN&ybJZ3LJ=lILz%xFzw>0UG4h=Xg=P2fi%%Ni3V))4X%e}_a8i6 z&clghLHU4S1!Ijn*AKAt%$hBK=SBozSb0PscmqU=1*$O^Pu%9m?%ap|KfPQ283Y%J z1)GZKv1a8Wg}Hs<$FcHlud%1VK`WinkaP+mjzosAVB+YgwlvBW9)l3X`*x^@+^l=+ z6i?jzEWbw-L*fr1awBj}<=dPy6;Z+fXS|c@7g15uKf;DAqecajMG!*Q#NTcCLR*0& z_XgLq{vcM2AenCjQ_81a)p^$aj5Krj)7_ zs=P6=MG*h}L z@9SZ6HN)f%XRjwy%jT=7jklhF?W!S8GL>XVO#Bok01;0V9+r?B*UqH^ax1nZ)|D1ma_a7PV0Lly^4bBqI$5y>--gZwHMndn}|H#TLDt5@V-4%{) zVKfjTJ8Tj-^gQgNAQenH#>s%-Ik;4yHzfFo6IX-z0TaF8u2-Qnd>JY3NISPH9*(GO zcn1b6-tBpNQ}TYTnBlU|;MeRoEYdn=wIN~^9Zpnuw|%yqp?e# zGj~S;MAFpFd>`!nzMb*&1>(Ik@*#oOB5(rbC!6lVU^66#nbrz*Tb1EnfKBy7`rUe* z54Ws|NWJC{h)tzG!F{r@Y;ngEo(vyIlCnRs8Td4SduUNWZ}y2Is$K13l)P8^bJTBC zWU?B6S2R*Tl+{Ex(O`tHF3*70iDg}Ex^G|3!+_2)B49^B z*q+&VXsY|A+d|93@2n(j9oh@hl%B>~7QZ$+mjH@S#wlXj@n{o2i*#SlV#o&6P62n> z9c@ro;RXpK$0EOMOz9^5v<@h(Y}Fl~Dyqy@n&Fl)JB~Jx%a?sAbeI$%$MJfbWmKoz z=j#wAru!qqXj1Y$yUN#qY2DSz{*IkcP?=Z`bvB>BVeE>8LTm5-t25MdWBRy5!!YnCNnwOQz}A69_!C*DPX?Y#dZ}lth&$wqlwO=<(#+L)7f^A6XjR?QUo<^ja|+9~99EsautQoX6`ZF>Y(HJAXI*9Uxy!15&CWM$)ta)63ZB>3BF5NEY#?93+X?h#`KErC#zc1mgZ|9Y=~`XTRf@{*G+O|5zW#68Xfwc)6tmiuBWncD~vvrzR4sd2`_M+bAV$ zBElsuJZdh}$Rcs>OL~woPf>VZ%?;tPerUtwMv2)hem2JCyi8NM$`Wo?$x^;WZ#2@K zRs6uqX)NXNhsbrUlmaY7G>08Gdold#YY7AvF~VvOHc$D+CKC^KZNRiVG@!!~v(}hjnB2KIi4_;FyMuQkL5c;CR^9u@q8zzWCFa^2)-?U4R z7c9k#%Lx6E4?MF*K?iA5As&YZYlh*_Ln<_gpW(qNDG2nCF&$!L1TZxbJU!&rfVcx5 zPJk2Qj)onI3Kj{2&gRe^skp&Yjs%hj+^EpRaUTsM6Lcmg1Wt*BqlF;b5eopo9yvtx zkoRH4cd+2~Bxp?k=7JsR|K@_;@B*BCV9R7;W^mu%*Zc;0gZA=q8|51BVJTd2;0RBYtXa29Vuk_s%mCE5*dUBm-}m$jE(k z(~ZJ*Qe*s1mJRpM{MMU4yB-gbu031lbsbX$8({T$r zFWX7bv|{pXv!ms=Lh>}^HN0Q8gIk?xp9Gv z{U&UVt00b~#jU*dUxB}}2R0^IOA_A^W(tn6kdglh`s4ht`*NY_4AN2W_iG|!eM4W7 zd%d;v@r($Gq4>*!w0C4adtS6p?#PUBQ&Qh3@4}4}Ti(Jw=sMf0$5TgI4y}1MKhrB` zH)3w`Hyzs-Ot;T&S)Uk?cnJ0*JidD2l{})dG5*H8)~aL$B&uTqS}Wgbc9WgbwtXRm z8=hNw9vW=+|NKmSYNbM$Ol$MOg(a5@;#tKxH;$$*uvRQ+wFVqrYJX75XnR>PZ$Rke zUx9RPg!1;if)p@IBKY`(OfDL1n3moPYp1eaWgCP!Wt|x3n>TYauOD+YhY$@N?fLUu zb>dn12#KRaL^W??%)B2)wuBe+3KCI2_sgwmdb$2?t=23C%NDOGLCiiTT)2?t_C`9# zhgf~ZU2*i}V_2phBf;WXsoDc4j1FvR>hCw0+6K)KN)SEq4X?y3qa%0ich5`4ag1-q znJd3^o{+?K#f`^DKghxDB>$=BS1u)M>|FhX|Eiu+FKrhONBuw=PP(gy)+`c<8d6;s zvsWX5n6!-RcZdMlscbHk9oONrIGP9{UR+`C0@pp$a`yAYGYwX>I;U z@(2O)S^sINp4t?LM`8>0Z%Zut{#mQDE*`W3dYFLs`Qn976~!@!7wqnd*0&W< zu7xX9n7fuvZc!sR*1f8_V#976Fs1&=zb9}<8x~8fPw#8woQ^xR+_2MvkZX?ucP3+Z z;r=Nmq7SfZh=p3_8> z7bVbJ6#)bx%wz$%0eqWYw(C|(JT*LAAyjhoPYC6O#p^;(O_%7~4keE7J1-ZLN}_)2 zxvdXm_RD%;etS&VC~=` z5)uxz=wN`iB+n&M4gNtqVj_57z6j!g;+6wqZE;PDN`uf^llAwRWc$vVRgAx3IJW5f z_zVC)d15oDY2tk3;O8{oA51J*Hkv)IbgKl2U%ilg14~v&9TTb2oJOdARKLa>co~SH zO(>YXk9?1zJl`RjLqi{$u0HJ%RdTTP3Z)9k{!_YQsz%lLT+=IiUA_!s&*=f^ zr;e+6t6KNF(TY*6`#G;i_zyh$Zn{V17r`uM>bmv}7{$Uw2=v&j?_&)*c&p2+L#D&b?oC(iPz2evor^+PDPppT56=tLB1~gjML#G{Tcer}~Q>gEq-PHETZ!+#Cd$&)l3SA2#2Q=g6(y+)z)^NnXq9GPsC}YN}vAr5}B%m4z(gfh4AfiU!wb z`L4ZEZ>}#-OLe)RV^zK$_;cTd{L^l2-fpd>aKKaB;E@iEwqBu6`jm$^2$E94LcA#5 z&yUQhbN|r@M<`t61WW8TNr-5ADiGLIEB(&Vb(kCri7t7wDJL*R+d#gh@2v?ev*TM} z6KYN{r9z!7{++U0q`!CBt%wx+ka02G?d^-|G@2IyAJ3% zVLRY9>X3hc8e)oxIl#8f`9zRrNZmM!e|*HbA;ajNxL_$ok+1cSWmqyyD2NA6K(&_LDZYdGb9&0Z-$|ikeJ=jS_dwm313>w)rv?}vP<@l61rpV9n{DzD z>l!1{qHl2~PbIaWB1f+cs_d!Mnypv_5g=)ADTXH5c&Kl8wes9dzL>J&JM` zbrhe93^uekS(^qPoKyP*SY&%XnOzT`-o9$+Gf%gF%&CfgKw6F!2}n0KA324nZy#?g zy`wN`jOi-(>U$(!0fPIOCIbYgXoxJJn{=l7`QJ#74KfC+eS7 zu*ds8)0kPr7v!~`zc-Ox;(iukY?^+(pP++IRAF$_J9cQfd9`-G7tm?W6PZiT@5#pY zQwl|HF%ayv-*K4ez2BK}md;Z_I;l-z&aYzW8QggwU~e}vaC*}C8O`gWr}`DjWAC$`<9SNfj2DL@Lx~j zcBSSswn1eWKe1ph)e?)`$%XcE^C#SIi!(;)POaSQ=%71H1nv+cfsQjPI!4}D5%n7F zpt@>rX$5tXO4pklt?=vky7w$wGG$SJkm+i|4*I$?lOufGyl=RtMOh+KC+UD#ge;Kn zLWpL_KBO)7+i!v0br+S{k>z(U#>M`{IB!{?oDqmBPd_s`Q0Xi}>G?cDiQ$ESdFhsI zKO?*#TRAw;QhK9~(|?CTn)OXN4*hpY4K%zrTY?Er#l;YzaT?aUE5BMeHi=6ePN0(=7l!5}_`Z{{q9-6XV13{Tn_#u8C`q{#$23B|}30CtVNKQv;x5 z=bip{N@7_WdL=k?N>pCh0ObzIm#F5hHRZcxv&%bWrLA}y*1#_N6jsrq8KQ!bVR_XJ zpn&1)ekscHhT6Wsho^oJ$n@p)nK$^6jKNm5WkprJF70Z@qSzkEF?D=yZZ|2cIjb7u z5G07~_%I>z+CfHr$z%Q6^t?d6KMPa$!)$Vq%}=@z=aLY|zJBrjQFO9=}0i5gQ!o+WkwS9?e3d4ifI_;q#Z6DD+jsSf(3DSenqt z;Acs)x2e)c^4i!8H{u&PhF6M2mO=Zt0WgmB+~h$y@$&tLPY9FQzh-%DU85}ma$uS+ z_}SS&>OJb_Ebb?62(~7YhRZql9U0aH7Sc-bU(`>-ygB+S=>zE6VUG8Tc|I!Uw+aAP zxyOB)Qd9?*UHJ=Rs731y$%TKMgg96)d=I_LYeLD!CdWdQlhc!J`5|LwbOfpdBqA== zQ8c=nCDYh)f14%SDw&xr32=9B49;w@R5X0fiK-<{P<7umwyf3&X1pim%|Lrlhr4cz zSm}oZk4LxoHa%f(%aY1%Y4^ZdgJNU%qD7gi=Wjf7tc>v8Rf}ajtD@-vGjx3v5vGkRP9% zz#t6aCxH+LFaU&Ysydb8bU!%7qes%bW~ET0FWn$Le?mtMev^{-Sp#I0npb=~4-rcu zyjd4Kn#aiqpJ*vN-Z7bLjRR`8XAebDoTfG;FFoH#iA%%9))X)QM)@lYR{Yo7 z3zI7O{$K?HrB-SQpB>mw#v)t9J9=;Y@stKH*1)?L1#&R8zT8v(2-&`jibMWdt+=QExgrdO;YjJPS zlrpJ}y0r%8t<$hoAEA;x6>ey=MqKeyGmEzQudk+lh>bfkX_*LT=0gZO20b|Fsye+27bmwc)sy8o;TyOEdM<8T5EBqT_j0Z=Ys|WZwJlS% zDg;p;8)C80i@Q;;?ut0c~rQkBz0C#MlY}Hpuo2fGrnn$ec zW7RTJvfR*xJCj!(7Q}l@Dq--mr@=K{;A7wS$u>vBMAoR4pRWjWzF z+Xl?a1@Ys)T3S55CNf)auW%Kn4^wjq;?Fyn=X$=0Xjs7EKg!5&kUp^B%pxlx?feYy zepilxMTE}C3TMQrVHDPQN5HY``rEWn(vsNR#0K$C0V*Qs>tWt^Gqs-URTjCgG>^}1 zZ(?VW^UotfZnsoFaK^hTzeEH4xfUNeRhAWElDs)?-OE%^HTqgQ7+F_~V()?-yYy29 z%$Fs5&Nl^-^oKJx;Ls|_w6De!Lh<9jG8V+$zWjcT6#Zszz?>%=$gza8_VrukXl=h| zhwM-ED@lzCP@S(}^E(Y%H!p2ni_7je;w8aawTy5a9KgjYV)oOl8XpznE{v$Uol?^K{F#)eE$YC@)TkJ=skOz*)>9UEKFqg8$E=?f& zj1N6zH_U9#oB45Q@Wxpa9a|+ej!`c?vJ;6!QTKwT2U7a_IM)L#@EUmC?!!p=&SkNPasDzPB)k>V*;_$k3y3?X{Q# z-(n)ojUSWecB{HH-tU(x+`E>6>sp`UkH<&%Ig;k4dIm=g)0}F*pV{>dk(Ws~#j5F7y{F)2k1IO^S!xs7B}K4_7aYp~gAL4<{m$1|+Pi+X zwVTJhHNKO7qWWlihIpswo4PK>lF=P&>PN2;OgsHeBB@8cN4&O5;lp%FuBH4O5MjGh zhkVXQU%@H$Vp0Z#msXWDARYPn)0$I+sCa>nvF_3-mDxZO(ee0GgduMqvYuJK6sDW7 zgzbPw5%_kv=AD6HdQGIqkXo9S9l#%=gg4t^-!j#Hs^C>y&Ev;E@vv`O{tJZ}+b#IA zp;Mu6Ije7oa=AknOb$;%4f;0LGiN?WS%q{|H)OF)QC*KJ$GKjnYoDpJ^7bGK5iE@9 z{XQkC4|6D0l6=mz$$fIIae{uEE)mArmTJ+}R+5&BMs(!RydTw}zn+MnhE)Z@z`PH< zN$X`IoMeohmL?2Xlsu!d!jZ_q)(KKm4aqJ1f>!AF_UE_AAF9k_m7rK0Ch-nE*bcU35ujb6iep3(bHfj>GvZ3jo6 z-LjEuStwu=!85;N8y-cNKme`NP$H|+GA3(wM0R_LW6)YY75is7bG;--34H!eKWg<}y-Jnk z`>R1#FxyWFtt<}y*k%r2KBe~jdqmiCY1WtCAw|x<$9DvFs!b*OpHSb1wV*0A*g0EU z62Nv>d$mpnt}!3r5lA;Y6o-C25^9p~1j*TOoSs#OIZ2L~DC~f0qQ4?=6j|Z&Ej8F} z!wRrFd(V)GoQ~QP1dn7$i?a~dycu#ulXFT-bf+alL%X%@g*GbA$4 zFGr16Gi%kf7n2Z^h|arv)+&u*FcIk_*gGd0b8gWvdQ?jZ9m{IWLWt!MJPm33oG>dn zdT__9C73Rmg(U>~JaBqdfhm^T}Yhe93 z@o9UcE|HJ@9>&RKKVbEWrJ>4ey^;46i|p`}B-K>3L7p6BndG6D;|1NGjeSfRs#5jJ zj%{aC_k>l^`_K6Wjy|2{QXBV?uLHbDXyUHK3c$&LOzZMsk({+$F!gzOA*Srf{fy`xZD!4>a4;YZW zi;TA1u9FEt@>o3GrlY4g*FGj8RvbfGeCT)I5@|l8lD6|bzIiMEko=;gR96NFE;v^@ z?cm@uXJQ~6X?a8wW$==*)EnyH_EYDIUFfFQ&gwpDtn)tSBERe;BE7*AhXoWVrEt+ zm<{;@$aKx@YRrB&a2e-F&bu=1#D?OR-(lkP@K;#UDBU2kL0%A>-&lWOskZ=n){5ipbnkeNFJR# z%Eh1PC%n7%d2IS7@t!(MTiJBJH#*I?O*ejU^6ye*Ox_^lwfZi6O7br&)7}37`)3;} ze&zqRd;i}%49ti}g8mQvfwPE6Fu*|>*j`v%0s@@>=$`-;^cY;oO92&KK@VVOk!T@^ z_#_$dX|M!9NG}ly3BtdX-7A0uO2uG15rB{&Y7#eOaQ`|E0|bwWgdYh!Aw+@(30^?( zLH(O(lWc(tfdV-}!M`Mr305fcFP1A1CLurozpKClf~WX#u)wD=xHu4~YtjVDDt9Ot zAi-}*M3BLSsz64_FJ%&R6tI>t6%c}}Ln4Xv-%A+cYeb@s2v&0VTN4dAR6r*0N`eVC znFM;^Kxv~O*Z*seAlKja;DPI6NRTPHc>Zgryf!xL z7}at}|H9xF{QtXEkO!Q?1W!!ECCJ0|e`4VI2VVa-1|A+T^(z_)GzcEvzd_J}P2zE| zAi!9X1!y9Yi+ zd~Xfy3SNQ#g49;E^mP1N{MQgwYcESHOE1g6XN15Z?65#cY!L}*{y!c(DnwQ1>+vj^?Lh-53$BskfM6=c^n2*D}Vj`Q})&F1KO~R zQ7?eQVrlKh4fAkyQZBmUrphqa9mM7}_69>6pu7R;?puZ7$omZ{Ih6 z-#;Bs&8gSj=|;Sfly%h9Y1RxaJhadZ9a7UKe9SC3OXm~d5*P0e&CTll^vthmdWV^b zX=S_?s56vv_={FTMreAl4$+AuOt)`{peX7+c2i33_=teJqL1vWTI)?wu3 z;kiUIhnQ^vC-q^jI{j$wH}=|DMnp%&ypki`v7sL1#tN@hr;_fsJ6_l#nk$<5kZUDU zb2yOOHkB1JQjZE>{QJZCNjl}>ZAEI!%m*c^;5Q@}eG?hW%}GIgMY4{I_cP+BU2hFL z^*?k0!q#pK9K3uu^m(r9;RfzFxF}e1<%V$W^4^OjRVk~Scs=Pl8CkIoGJPvznQEs; zqMc9v)_uS<&16(lftVCnd)JgOd_hUjF7yI=Ptx4SIKg*IuDIz1#%DdGx!CqhB2fF5 zYxNrOUDI-FJ8-{5yiH5%z$PkI7-(fHkWQ39n}S@TP5GxsSRDL*q75~4bo-lHVjFW# zM_w*I_8#Z#kN9r)xcA6QBdH}Kd7a#VL@D$?nhYDaZ!WG3n44BY)MKpCi)C2!rZtB^ ziX!}0pL_eo1NJO0?#vKIAJsH8aVcRj?;KNbSwjigaS0H zdY_jBa$Y~x5k6LhS8lJ{0T))gSOq#NK(h2JFD@ih3%=^6-@j{}CCat)S8CZ{g~V%d zxzrjvF!%=rbDP&L+=5|EefKDpb1287iy(78+uzDD}ax0$u8%r|V zw|(vD$|C`OKWPBlyh+Z@*xem@B9P-YpYoq(WfS^LQ_mHJ@}7*-8BOWO-5#Y-NB?0G z+PhxU6m!r$vWjAQHn_o@1RoZYXqql)i z9}p@uCAJ16XG&Y*2stl9zo>BoQuZ%5>0YLLx_UOIX_9cQMP@bA@klxOc1|ZJCmn5V ze5dXYSWHPMm8~&efyUX`Z^FlH)O+=%jNuwk6)8%XkzP|(3DRhPRXKsULv=DFKf_c^ zI+;%Q9!W+Av#t@*u*XpPVI#;hg=AudPyukigwo?FPgB*teZUY?@(Jg*yS+57td9GH zy|+nT4@J=9SdtXUJmDtRY5S6qbF^%IZzZ`~r8eHJz*DLPiX&?0#uUROw_;~qgH|aZXrU+oXo0G3paus zp7hJw1U>xE0PZxq+$64o41Y1l7gKkqC}d4!@r2q~AEsFi+5Huww3tLPEF6z(E2n6Z z?g zQ)s$40Qb>@nhnQ;1vuu~z`Up^!dQ)H50thVd_$;Ebx+sRRykmT5>Z(^GDFozLxy|~ z)AknS=U09>xSmW4jECW z`ncrT3N+5m_N#=KC(y&gG#bZ}vAt(*v9gCjS4$J0aYtSSp%8x5nHaJE7CRzu)E!oW zJ%C-$Xb;279%Epi#-4UGfXOZchM6t1GjhQ#d#7kch=0~f>uS1v6b$DpX`jr z$Er#BxfdY}M97A(kscebXj$wzndwPNm6~L@q-ydzzz0O zlZG$Jj`J#t%%C?zZ84|}23~FzXWx4VaM60Q#pE+-gFeyEG1&@x)%@%j>~oNLKjC$_ zib8*VwW>9neP$ZxFs%bSiy4hX#g|dL;lP2x3J9l38$^ZaLyI1iB_dUe^fxT3ARtk) zNWdBEl?l-!-bT?fAgP2+W*to&Ps^bH-jtI@637qzW*K%B;e2=#%3HZ5Wb9&@$XpGJ zFxKh_Q;_lZG>p#(^;)s-Xf*7V6s@Q#PPJ%c5B?2qag zzTH~!3RR7kEr3CZKrDu)nWLw)nL~RXXW%!R+p(ws(NC;41|CO$SXcc$*K;Qidymq5 zKCFYj+Y~)I3Hz15c@csCxbd>8P>S~d!Ecr?T)a*+fv$Uzv~iOM-zbXN53bF@^d0k z|KRFe6t-R~e?&5W#BaBchc$Bd<93%aFXegpymR_rRbGN$oL{OxJdd&Vh`xmo-3XkH zw|uyKfRs6l$e+u#JtJprdM+QaSn0%8v|&j#aEBKwP}fxl#oG~fm>k(2G?K0Y>vExP zIBmUZxt~FHZ>=)gh#x7Z3NHTa*X>_{1e!P;55E06=&4(a5C%+`b0jX5*DRU*HfmUo ztX6DTwhhxxtT6FHUGdl`W{unrE85l+30o7BHWD0&T4)lO-^TQBx|&hsscM#AQxu`V zm^?<4?8;A?0{z+j)1CV*_*IdGT)gR#CkOu(zTYWxL%(3}Ag+f4scFXcb`&uY#F0qx zj=3&}iQ|#F!)Eg0`ox!$!&{(gTbBU%|a5T9%!!}nc1%6 zX2tFIy6v7vEZEDuIm>yC0N|eNw3#DjcUn_aD1-Pe5Rv9apV?%4Rb%Q$U`0K^%c;C9 z7uUVV$GrQ_QlcjB)7lx`#u`Fh&zDb2RngxAcT7afz)c>aj(bHO{Q8CX)*t`u&YcXH zkF0pSF5`E8V3v>c>U87^@&Ki*u%&_3bb=D9+uQaN(l*UJQR==My-(1UQk$kDNT}#k zj+OVw)fUdo*Sc`jiUI`m%WyXG5pO<>C85i0kKIsVffew^U8@)cYU^cdPEE+STf7?hcw+j!K`o)ih&Z;POQjFy0 z*?UecrvWw3qp}IMPXv@@g3l2ui0e%Icm0 z-Aeb@7}*xAS>NwT7T+RxHe=6rYw0_A>mTiKmNLnBvXg$YG1H)&Lu~)|n0k0mmspg) zO#nI75H$4wFVab`T%@~^pk3v?P*O8*&CVM5;lkWEFRoG>v)&Y=Z}9ugcslf>>sHjK~pxLi#sBn(D4I zT8Xx?fbwrQj6I;5{js!_-H)Dz<<-jBUalt3;#08e&eFlIG0RH{qk-hck$41s*qELd0ssEvB-k9Vn^a#dCVj65It+Ig6C2g)Ht)+_%0{g+cZkyujcwV5%ZZ9?5;_}>ET{pdp7oL3j z42{a(4wZI@u?a|S$A{NgWrHG5t#&xZk!rok; z9-MX@R~_FF9G72UGKK2OnsFUu2G){Rd{ny&kp`rCaAubmZ3VIfBb7u;f8nbPUsm?J zf0b?O__d+RJ{QBWzCA2(*uCB1C4wq=>vj1Dd*2C^;MsV{G1(S-OnVk~F$rdScz+&b zo%ZN)wN@zzc+EE+2W~`(n1gXs0StF{qgZ6<9vxDvuV*EugU#?^UY5fg1F61l?e~s7 z);=9yE+Z9!e)JJ;H#KyA_3>xC6~_3nD zY<2_&Ff=QN4G}9Porb4tqHN(}WtfXPYl{x8JI}=i56NvJpIJaMKmY#QeQg3a_4s-1%M7IPJgHa481HY6 zqwl7y#k*2tLGsso=3MfzcRa`=n$2gMR}+m$wSyx3OOOx)n^Q54$+CU-3Pu-9GEU?Q ze#33=@0+M{_XM-1s!3dMQ5I+I^mUqyR|Bqw74%Ag;Ft8D9wO>appSKw%jtQ8`7bxZ z2Is_}A{o{S7~Pd(DiGxd|h2<$fdjHAN=`FtRrj3Nrwd>1oH0 z0+YYpz)t2B7o@|BfwtH;&#dgeLcZbVqA|jvE&iOd=E7J-ri`m7Wz7^WSw?@^c2lLJ zy9{XHx$QLd3dWtq?`(Xt=kJYwJfvX_VA1IoIgUCOCf7n7@nuN1w>jX%+>pK@ABS^w zUpCkg#AzQ1n^$XF6GGse>U(u6JGh}|TbGR@R9|^6alvo)NelwNE1@D2*NjONtDtVQusEJP5b>=V7;RR?+P#oUaB1RJD3o=kA z{w_rx?9gYQLhE(t*iFY`m)cinR+O4E%v_ApsG94YapqJp%uP1+?cad~mu}RWx^!@0F znW)fT5TrC{eHvYNodD%%?q5pyBY%pO@=gm}$95Nz2RF^~hy6g7vBn-S9!nt7^<}zd z%N*fO`ygyRtedOGbx4LdkMNK#437beGb@7y0#GUMkJ#$dC+yZM*ZXbA2EO`z433LO zuYVGZ+(k)}N*!^ZSVa2<9Kp|Ci!z%Q59ZcU0+rrNtqwaz>I{cKKfBsZUp%v8B~d5i zrOf}i$|fdz4M#SW=ug=-C?D)sytvkrO?EXii5M5f&y(xkly3kvTR#Zsg-T zrRDb&0n~_(I~u{SnoMrR0*nmck2b4}W#ZSLJT61PK}pPFyqAKD`VW&k_Bl(b!u(6R;BXg?%$#_mYw4$7$kC}R zN8O4HhzfnF7zlEV`VH|xnOq};-6WevDrVTcp~9Fa`&qenkGu=?I$}5FGrf~*571W< zuRCSw9+MYPYAVO*{Ub<&i|XD>)~}K_k!mvy!bIf8IxSlf72iU*SSDe)jFv!up| z|BOrw5d39Q2^6qQ29%2U{US9*gw{k4{_Kc^4S{~EFahO1`tYy({p@e~Ki3lIj?^9D zKi3i%yMqu5LjO!^@Sk;w0a6SHkVO7xi~_re0x-bF4geomp8qjM3Gw`AjG}`G69D)b zz^OCDP;ej$$cF+2h$aJJC@P!~FW5Z;8-&0m#LETl>nCM`qK5xCP?R!&0xJWKnxX8w z5daaa;Q;vGZaDCSR`ahLpjZD-H}L)I1}aCu*#88L?FG0&1jmE}&>=x+*icv!lLYwB zCI(FqLO+TAuQKRmfBj)b5ddz~e|)Ji3D5_%aLEIKknD5-GYXhypMV~6kPGNW2ETJ5 z1wy_T1N@M|G#d;+h(k4C5((Vd^}kiXaS4HO&KN!*L7|Wk6lncz5BQ=F9SBM42Ha!) ztDt5QP=xpwU;)9d;?!7>hNh0Z_fTmJ!r*#{UASLH>6)q3{eFLX1eJ@E<{A z0AsKrVuBNAp|AZyR5Dw{e{E&QCNoF*hfqou=&>OE#AGE%|LkiClw_FyWR;LUdNQql z_BHT#G$0m4ft8FO36=-48HNP);pxkeVSu0T$i3k>|HDssU<*tJ!oP(+F*G{JoETXo zBKS)tAwA@S3|R=m-^T$6p;I7pf>O4>Dcu$|vK0i#<^$zNR5(s(26qw|3{Ey9LxesO zDe6#0$jQqO=`$mnMf=CdS{=yf5dKrkLttIWPT?Va!-&u*p2Ns6|BC{ilMi}(p%=nI zeSQB;W28Tjbs~Z<2&oys2i4425Z-XIBm`Lgf8oP(@(X}3@W?@Moc!R;dNO7>{{MM+ zNz%y*kipvHP~^CgL&gXtiGQC1w$Eg>i2ol|Zygua_k9loLw89tyU)INueJ6*aI*>;9K`ko z9k4tpn}FfpaDq1%jfx`j-&KnU!w+yMm=S!HG@ID)kSQRoQKpIJ-z~idMOc5O3BBbr zAqc!48qvFZfN&h9A;ka|$?e3V@QU3n5`JDWzWWi0-K~nzw%`0jm0?CvW z4h}Lu`~aT}ig+YOdxiYpJj1!QX>ZNM6Zmgno`Ez?exaKg0$hUvZ3fWEP2#7HHto;b z#7`E)GhN!p7;tL4|E>|l&jRbsDOrm zUEU!56!x@Wz=7S+t0vC0YQVw(DiI*QyVF*n!TFZ}tNh?Y+j4J;@bz5adj0)rJV1Ox zeE;<)^na;cem|3G!%}Q12!WmH#F`6|lHKfYZ1o zjbWIiXuw$RYm(g2#=xP_|0oPmdf*VQrA%@&79h!WkpzOMuAm(y1FDqV60{}Vw4P{p zDJDvTv<&FC4-&vPJVHmfJO=zNe0%Rds{qJyz;^;xA$sRJAuF_f*l^4D#8AY8eOek+ zWU>47S`KXRt=|O352WwjSq0GM#wy-i(|*FfwFQ z+K1TvS_E9=?OOay36{b|;RnnMsIGz_fP$kya5_Pt;Z_Lx&0>-T-}@5aC%0C@f0LaX zg3W~37X)+Q!hi`8Xt0Pvt2 zq-8-wZiD~bFOu>@aPK`ImVFKmzIWXU*Wicfcg9nQM(2eNuR4c75RY-`M9^=;MnoPl z-6h(+1jC({5dJBG4i7O;L6>;*2Eu|!1Jn83Cqaoq=+1#>%uTMg4kw))23&g%SevZ^ zbYeg%R3c)afbFo&N7p1QOsEyqg~ZKKPSQs1%I+0(@fsTSg-E z`~v)UnvFXq5IE$!6+(c3Pd861Cd7at-2nTY?4mi0t`>Cngiej1yS^PV3!){CjuYeV z{fID?jvV7gE&)ZT=g>hg;5G?V`0!sO92CGB2h3J>21ElB5c_}9xp#~mW2q4j{$`uW z=CTe4jO-r{(qo!C|L&5BNB0aS<&6sCjGip29n~Ez)PVVaZ#b0N&hnT&Q9Ar#^|e@B zV0i`dy#XG}ps0e?Ma2fmpxHO-9PgPoH`ZmyScuCvbhNY_HB=u8d)<+=&MNn`>LV=h zm+rY*NBFrMmV-%DQWX(_Kd^CukAp`~ivAOi;b*QNNTaL6{uuKOiAkMUW_};ovM~5G zzAgEp;Lm0}6M4#3u}i16>Z`7ao{zFoaJ9!FB6Db~c$C`tEq2ia8eZj8ITA+-%RP^9 z%X#~(K$UFfmKk(lDe(zdQo|{sAM^IvunBsf(iKs;=1U1$u%?41 z-Z8$w`xL8vPC5}gRJ968TW884lfX+Ru0qC{Myas$^qn&hY5n?YKn(pwO!sx(osJ>pL0Rgj?b4yr>4(&jUW>o8b|H+j|@ES9zcV>F71 z-$3$L9CAj2K6eD0)4BJm&C(>no^-pLX3W@`JyaY~Q$c$!F$& zDKS5wP*i%$_;-x-6{Z(i1sZ zLZ;?!2SalXWSS66yo7g!&+7&r;@Gp>8N91d>%}3W%49D5@Joz5HAV1sj5<$@)8|r- zW7!#N!$0Z$8e_Weg6xqwamRue?FFN-)*tLMIOM+f)#M@7WI4kmCB%`hhseQLkAiSX zmcx{I$b9l+!|XvMtOubCo#drx|CA~WapGiy?Y_Bh(uZnN=qqNX zkvf>ToRBNR+8>6Gc_kq4(9;%7B4n-E9EEG~tHph<;-#5F4-&tYT(BL}7#X^N7t3Bg z8ByUu*^?4A9E{Msf;YShoume^S9xy|>?!R@i&13SI?~gk`M8OQ!iVFUbh8CjFdt$@ zF{@$MkpBbmF$%~jjJJ&n1{6HHW@-P5j?*7l60i0#2orBAeltd}Pf8nvl_<#``7`p% z%DN!3;PL>{lG1zQ%qF}cgV|v|>=i>HWWfb79BA}Arq?te^Mi0{LM;R_3}ui(NM(F9 z*b_OW59Knu)U<0PCQ5U&qHT6#qU+0Rst#G zqV3*hlaBPFfOGP+X=g#lF^sf00T0c4#qPm_2iiL%VJnzc?ruibq-pBZeZHmi&GLVzb>{Y&GZa$==KaR5t}YFJNf>eq4~`v? zQ=9I`2ujCjy37j^bZ_a>T@Mez97U>o>n{TM3^Z&bNi3=PcD)XF5HK@IM=%{N-%iqN zoIR;)?9EnK^+o^Kpw}1`V_4(hh--_nq$IVbA;~d%Ez=6qY4Hr-iZB8^iimc=zRSy;H5v(~RJ?ri2{_gKKhX?4d((osWqX@1&9LTtWf z(7G-?Gp8jJ;haABLh5D4*nxGeu^^8w*C>6z7r(u1-v%yPi7jl)rbgeXaHrp!QD+P8nc<>(08oo%Gs~bX3;YD z#*7tr1G-DTEDx${?}YVd4OU!QiWm7iZclxDY$o!XeRun#@-V`fboO=eCyS9>1G z{qpM0t<^PBE{7Fi)Gj17B!nm}N_>UQ0JmzZm*qCZgU*@z?Rx z$MX#@FPKY@1+Uz$f6BEsjf;Hg;-L7TwYzxZ&$+wU%Qe{f$;4iF_29t^e+kO(Ydgp1 zu|ruVsxkf2?}arNJid4IhcoHp;wXj*R9GrLTv2sd&T7r^fGG!%h9*vn{#N2z$XAO(>?`W}w!h>x0l4cLm;Gm)EfE$9k~sv9e1m4MkpGaNIUt@4}b3nHW>w zEGy%qtJm}s6WyXR({u%uZWT1IrSyMzph?qDF(rJ!>9xKzL#mhZ4ZwKTf~i#18WFID zY5Bc<|62IVmrU3kou7o;*TN0#?U1pvh2w^?4OM3in33YZ$t>e#j-Y$PST>yTjpbX* z*SgynlMVPkKL@xX?ailH#Cz~)o%TBf6L|f$CB)j5@S}dCY0}Q(zvOFm9@^NlH??YuDtH=a49}&3scbJZN^tU{;}825MB}IP=4NxIRQ3UAvd(MYALN?-RY}72J2-A ze;7CGSeaRUkLOc6aPYTg+b6r*x`(@8k_k%KBPVFPR@@9mX14^_+tq(Gkn9Bt99j7O z0{c~e;hrzaIVV0{($k+mQJ;;F=G-`YTkihS%>D55FY>*2<=`}mxv|p-=Z!YKZHxUC zd(3#``G5P#u<;0IG29l33;Oo$B1J!w$!!(mO{{sN_!+S4#g(Tq!Pe+sw*j+(R_+h}m}YU0cSRa@Dn=`6&#&7w^BXgALSs)8QqO7| zbdK#TIYH8YmJ|;gR~6YCWAgL6%eENA|AjakZ<|7BV8#U)SEUA8BgCAhRxeAZNJ>{1#!b2nc_5B!71&=AW~ zw!3n=0i%5>zwW&Ci@Z6+KiuMPN5xOEfGA%Y=|gIJ7YgaqaQjUf>B5Sm=M;Y*nOqs0 zas(LIM&ZwhfPKVXiz<1>#V^dYf_Q0GC9lXS@S7aH*NxtkqM!K$u721)*Qt6PFlk$Q zzG1o7HhczSU@E=-{PP+~Hk$hw`?-^~o4f0CiEmo*fA8ZbK$nH2NT*Ob`bV3p~&Zod9u;Ll5ZDZp#Mk64Rfc zA^4AJgR$YU0`&KxlK?>90PSyRoZHArl$qXu;7&bTCqVB4x_f(77oi6b7)d31ygQ%_ z#4pHu8(#x39#BS!9Yx^2iV}e`eHh-|n|XsSeH!ZBo4J<}JsKKfWa_5t4R4_983%MA z#t`HMV#FKNMi77yZhIefqzBZ>x8h+!A9~w6k$09qz4HAm;)K!zfXc1Ndp?3*68-Mw zTQ-hf1LN-HyB1FW8}&|q*P2PccngoQz3}7yp2}{ zZ{vO@gl9GV{5|gCi=bygg^&7jK@i=I^gnO!2?Wv6L4N`S!JmP+dhR>D^KEPkMYv7V z*W%oiYJws(R_WPr?&dt}fL;~#rc@IIUiKIO!)Q+FlR$9o3?T5CxS$_Gxr-couIL}$ zp|Q0r4CnWFl^hxa?QJ~8f(XZEu)2?@hzJ=L@8c;7a)y|Di|MCf2m;+%j4M4u74Yp1 z^r!-5Sh%y*kDA;Jx6{S~7s&+S!<&Yvu@Nx>3?g?RBVtRG!SucZ0B>|dzqu?H1eQDl zaR2kHn6=*yC@}zkjKCid^(ZkC zg!%q|T61|hf+q*%Iac-bU2qG8;`2vD}jlSt?iWYzgT9P4naJ4!V z4+3HS`*m~M8xX`P(UZV$02Sbz{QpCPZVv9m<@e}{Fu&M;{R!~iDd2IQu@E38V;~#o zcgDJs3<*WK6T`=(LfTRO6T^FDK-})jc@X77CNb{HdEkG70Ab;6IS;dP$ZxDWTLEP0 zad(wG5VT(*mG=?$Q3nJ-R&Onyr61CDuQ(+ghB%=82j~D`Yz_L&EeAl;83-HJoqHNs zf&2lw20Q^`XA=^5d#53YgnbA-<{f-Cc@F8qx&a}eh;|g{5+>Xg3=|gwFx$uIH$L#7 zkcbJsOb(@o@&3Ps$#+Z)+^7{30_M#|cu4pfai2~4zZmceNqBBly+m2QJT;5?wtWOC z-P#B#eGJL{+yZtPU>1a$f%1t21F|J+d7_h?oc!A6K}}^*T$u2W2PzO@%RHb`$>+9? znToK)?C2+6Z@att8BwJU3&SH~n|NSJ<0++~F(nEd>yPZqe?D4+uB31!!D(0)aOm)i z@}7LFfPWfx-4^}bY<&)vjq@H4*K_aLI~XO}PQtMK-uqyB%8x*^c?p3v--T<}_Pi~s zCYgdCS+K^>BI&m~a-6Kli%yhJGJ3kbZK7E}tL$6^iysAj^U_?hU!ExuMpLkc!KTU2 z`zn&Li@A&x$c5W&qd7_-6hAuJdwkRfQ_+`J?<=|_#gxeZU4h=(RL5QJ0QKUIP ze*KW}ate1alO-3F7A1w6%P7HV~s&(kEmDH zPLxkbutM4|kgz~b&b2xX{zhUZ%R$<^bu~`T_R9WcxV#EwqgL?0Bujxnqz~~lX#M#G zgXO`aNw}1%1^j7;u89Llt_@f|&lFq&l}szVrDSTgrHODI{jpsjSa51; z5%fUmuN@UXY+%o_hS0V3TqZ145wuanDuCjfMyY;s(XUGaVGG$_NH}$#WDK_%kW(0nQ^`whvb* z;9ecu1xhZDY(hTzm;Z46ki8YOlDr@Ni8IShiY$;?n|jQM5U=8Ajn7TQVNkz7`D7ZR zCd%7mT0BAQ%FZ4ssrVWDc$u74;KP8rL|eZfJZnpBD+Y!1H_LqI3ATgc=MadEtsFWu z$QCU4+2c2=gfA)^j76C31W&9#F&b|rW#}hAr9+&0%1BZl&8S>Lm7W1=;}uE+M&>sg zvSz+{h@xGp2%;DEL58x3P$Xi3p5oZ#C5(~ zTW5%aR=0%}Ea1o)_qeYrL$sb#i0;&2?@-pzZ81q#ztqd3=uvC}mh z`(3(gaXI8;lfgO@4=u#)8$ZG)K5@TjIZzijS{QWBJzm~a2-Y^JW&QT^&t~!A+cH|o zQgZ2JX}`bf7gm2=wWP9j*G}3eaxjXeV`2X`i(wb%7CJ6b2OLzILM z{wvnx#j z@vOm&latB8DTCRGYAwm@-Y>4x11WB)qbt(zo&4-^TO59UF(>jwA1UX)qcR^;_=H`< zr+%%m=#;T)<-b+Nf{89B8pT?ZLwy!{OSFF4(F!Lov|^}nd7W23q}E2d`0IMocs+~F z=q)guZ_U)`qxsfc(#b5$oMPQ!iW z0EQCH>LmZU`ZIn}yeTiDdeynPRb zRPzeNI%qU(Sz>J?%V>ENQBSN#vYX~>lC*nOKE7|L6;xB6Vn%yE`vZ;WIcKIjqw@7< z4OK^$f|1lWL~2M=pXA@=$|Q$+I8BcEoG%|c|L$F=a_k+<-x*TH46`*KmJU&Ew5eQo zl7TS^@UpyY8rFCq?DY-xlZOgw+G&sr=Av2gR8#izl2-kpwGSzyNpd?vHvKld4rc$V z>jgwC@XD0UW0uB={E~1 zer!;YFm}QFw&u5HMl7#L_6?DLPOeWXqqe&3HzIGx_D9+Xe#i9!$&Wq~Fd>WD2jjBT zV&Z=7V5S$tXZW2xzDCQ%tb}mvlca2U=zUz3ZmQvcE!0^5^O-Dh-$Q zboDR}MAA;rys<6wGTmWe#F!mYYF>*n2+O9QXbyVXt`UTZYHYq*P%a1v+@D)D}SuAL7f5^IJfnh?K!pZUe0US1y z$NJqozIK-{gk)M(~7`h z8SzRds8P(nCohml2)cgbJyB>Q44q16oJ~jJ;Ba^6=Yu#rt zrm-cj>}({u;seeO8+qzQplyrCLnbI=dLF(96r>=d8%K40)kNX>6rWGiE6G)G5;BgWVgM0qx*=7_+|k z##a`;PG9uWZ@=3xk=+UF_)3%0^a$HLdHxYf<|>ryQoR zjbF;<43X53`4*}n_`ok_fUoaUCQM3c-QlV!SW!aCTVGwFzt=V3FhA(p&Bt3T=(`%7 zUBKvohLep7f%13Z_t7(N7_d!|_ znBa@Yy4@3#u$W;Ag6U5AS-isj-h6LU4|So;age?r`Hq*=tCNMP0wB=$e2@zsFi7#C;(Mdd%c}O4!$}2@4=Y#}FyC=QM75N4#cd zj=R7ELwdY?Y@gkei2M{MWRI`$$j9(IS;)uc^D}$c(7dU9I)>(!R^%2(^OJupEaIg$ zA$!wKL0j3#pd(b_D0NA4bTTH9rcZ&%p<=4G&s>~otb!fgJZ+ukwcPq(XQ)fVenc8+ zZ$S)f#rEuNl=v#&(%f_QIzB(Owa9$23fCQzC-C3%>|caW8|}rvQMx{&-1~j zX##v0j~i^iIc4fNbOV2N0?M`AD6DCs{UGJ4Ut)=~v8nmD5>6Hwp!`BkoCjA{v+8#Qa z=ZZi632(18T1dlK8CqsyCMgSkp*B=h&@}x!TQxNeO{fsv+AwnAw+oEE${f5)*@{n5 zlC}946?Zr0q%EwfZ11yar%yTU=9d0m0FA>aSlMo-CG|N{BYE}a@BDPQX3OjXXgCVa(1wod9ssNjD=J_kCaFTxJpyLKdC>I>y5jhd1q9%{&BBjCIzYJ zsy1EMd^^q&yE#cq#R?HWQv1bLJ_b9$Z1Z39q5u>dvm&El+~c>kwDRYd40^}U^k#cg zQ1VMFb!=enfo%DEYV}`xNYWdMnjyxX(imC#=%{gd4JBVbcVS|~o=!Ksd}uaq`@MMT zRm1jXT52Wszml|=esOi_cap1{XV!n3^VB?b!mj;m*VDBmTgRHlO6GO!%~oeGL7zy} zL>`VilHd!!!+FcM_`|}id|O7g5?{F53QDQ(#9nLy*0p{fTw3L(UEK8@Bdh*X*K+EV z^K${}NuJJ5%ZF2;>#!mf`4B9>y6jV}4~O_jBcE2VtR0Vb*aKV1w_X|sQSTL{HQ;|Y z&UjJc^i*ylK&?)s&2>lmY)A0V_e;c>xv7%gzv-d1)SB29J#Fhxa|=*=OMhJ%yq}8{}13b}By_W0Y?3O!LDp z$fxlS8n+}55Ru9Feuo-#Q9Bb)jXd9jPYV*nWv=RTnhOk(A%^X(zoOqyTy}$?Z@u2nS{lbR$*tLr`!bpo` z)+2_U0Bc_k_QfD9oE9O@7r9p7(_#9#Dtj~X4f?tv^W4)PL}AWkh*P`xQFHax;H*YgfX3*V0oWLW6W$FcMOxGj$S`#pq1NmsSc)MNH2M{|GHzgj@ai zYB~|sP3v~Pi__IgqjtuyRND4;K7AAQ zL(9fF)6H22MJC)Smiq8(yX(WlZ||>t4ks(GVmotmoXx7L7!RIpAsrDEQoObq+l`=~ z@mO$~4=DK7IO0s?C(^wnkf_s6wXH~Lo;MTJ3z*odAFx4KsOG~m;ZR7HA z)g*2P&)#nUcKPuH1Clh46lTKVk=KvI(+l z#vFc#<3uXoi=egWOtN;QBl4So12#8V+59xo|_FY-qE!bJs$bC$6yhY zF6)iq4g*uT`Qj?>XgHo;ZEVpLxN)!Xr-m%2O_l7AHA+iIVukjXz5ISS7o5S_MzC^J zM6E_eVKTPp7y+U~BVZJ8(oz1XEtNPSw(9>ok9A`>5^bw4O-N6R{ekZRg|2B=no30IS7SZ4iWOx=#Bf7`-Mhg@N44VGF^_$BS5!ZevBe9Lq z%M|;k@8Cxd9j-MkX(ZPNlCDoCS#zzkO`={S^BE?YrDX$UG?ld2@8*I^hFsk;^(4}x zq$lvH++O4~a;n*MU1O;D5Z!E2O^O1j(r)lecuyx0Awq!|>Wv1Mh+xNqODNG%BV;(C zCTMp^a62Cq^PYb=5P?SBftt4k%MjHP&>sNa`5FvC0ND8Z8>}CK@Kl7#BEu7#0e#)9 z60`$Q+1}uj-Re*b%o~vu6mhHrUBtYDS6L8$O`&NRH|Qw~qS*!tP%VHk4}utc2@Sx! z!=zn2p;&op1VI6T^9?Cd_YUfQD}aLo8!!+cKF2`;1r{LPgdplt zpkCOwm-I9bdJc4Q1EjishK>Ld-y8j#eI=Cs4&p|X)j@?Y?jTyM7H9|BopcYxFCumW zc?W_-{?oMqU)+*34Bw$M_wpsiA2$~WUWMMP;ZXTS0V$>|BWvJ|A~kOndcV`e?kZFf zU?ut?EC}OGXaPWR09!@CuO9$~ScLYV@%NO})+w|G4G@{#@>g9~P=E^R$7A_VFXzR? zf(KV+Wc{D0QWQ{z-O?_Z_$+gzcc^d<6Uz@|c%>pS3nCN3LWKc;C<2_|PQB`@1)Km- zuX>;WwPSLDYXjIH^AK!i1db?+E9D)nk*~$_80Bs<0Fe9~{ayt6D}V+6wr>={+hN^k zxNqk|&xYj<1;C=+O8ih^EGeKnH2iBY%Uj^;6M@ceDFa|)gn4f#2KX@m+_Qm1h3+Y< z%p?|3iaW~cqJ#y8ax*t9h@5hkxI3L3JUj%A5Mf=*l7|Y9==k4s(9i!j9RLHw2D()u zlfxHD01m;hlck69PVlKT&!T{OM_t`;WU_TAK`0`kH+O~&j=Vw(Z2Pgx!bovr6D$Z$ z3|2rFev8$U;IcNN-6877M65k%a2ZC{{|Jdz_MP36YYUjQfx7S8!2`mNDR=@-KcGW(+d3WOu%Uc{(tQ&z~=zJ z2DGo#z^`w`ugnOu4c2`*z#?wH4;Qkb-H3SEKw_eT2;`4!Akdu# zlC6lX3IsQ+2gbHF%L zQhbC=JDUgw{Br!}R3Ye|*dPHQ5gF`)BD6T!Y|e49LR^WCkLQEamTtLn!2AchXuDA3>z$n5ueSD+#P4JYi6 ze$x=(=NB8^{C13)t9w6M&inw%36JO&%cD z$k{!BcBCXMh!9$K0aW-yPWJo3!RPsa#>I~@-GRRE^GSdY_bOLhE_Q%)yp_{7IM5Iv z$obhxZ|^e;LR**}VDWEV=y5qAA%0Qi-V{Xv<*p&JM({76_}@qGGdH@eq3YKIq=EmoHZIJ3E*}9Y{;@G{e)ME@mxqD6BLy29$7dlw>}os@4i;((MO2+nk1>O?{qt3ymczUymeEC@ zwnywLZq$6u@@_*W>L&$rJD+C!ST)!(e_kS)5~g{Prhpua{b5p-=g=)lSc0c#?QQCX z9Vx#D6}dIII%AETn+SaE{m1Rk-wkawc7yI#{ENwqjdGrluF2S_D?YLEsOqtA`tL2j zVr4y*`j(W5Ev#P7Gv@v0579I%+NhuWj5=wg|IK9n?)Yb;Urhr+sfQzE9(q{btUlrL zBQj8=m=$N9=YId4Al+qu4hcpJi{4*7wF+5ti(x%5|EN|O9likj9Z0LnyV@Cuf!zA6)f4)HO z;&8lrm*Tcp8{E8X_lZlPIs>b|AWGhlJVb@T#O$mcoNeF0z%{KlJQ4ZAj$go*CxFA{ z87HriMMO-V+>@AZQiFVd4$Q#?-H%Lyd_~`_roIyBvfasg2NaW-DNj_~P&i_~`sS86 z{;|tUiIiNZ=G;+`J(TO<3=Df)Oof_f8nq%J9$37A^X{>XYLc&*xnc(Gs|921_TMbd zWsVKaV)>;09%!nK?Ia(GGv*z%`MUo+i^h)Q;giSDWnI-$Xh?|(F4a7JZaWmu|0#lF zC>m$rp;R^1JL&ZgbS`w&%l)5<1SR@#!9v-KWTt(arhf{Lt0o)J3M>R?7G(X0}KPCBq(-;3fb|yCKligTL&q{b$ zoE+vebR>)MFOnEDkjK12FvSI%wB!uig9ZcM7gic?9T_@xk ziK?3fLLAM1N3|sxTEq4szmGkKWs_@ZuztPu4noKj^Cl~9jQaS|6^AnXO&H_Ww4ubW ze;jONKcxO5bm}ZJ)u55I-|IK>H;!NtWA!JZrIWk@n}06zr}=nxaP7 zaBLXP3?X0YOWY2Xhjnv}HI;qxo#L$g2HrY*3#?pVpRNMb1v6|LeNzwTvboPtjWnH# zv;VV|8)TPFv|(a2gsJdSLogVd6r1~^E5Y?lwD(h=@#w<(vub%sqQM56pk0fg>x-70 z^b+JYzt3Y&Lp;Q3UY%^kCY_k-DUnXqwCWR`Ez~K8wA*pWtPy_+>{+z$v?)fSAe!$l z!+Rd@7cjwdofredXWi?>nSLMW)t%;k_&%CT%?t6^u58!Myj8&g*H^lQh5j+k_Qv$$ z>T|pLO4}8`+6N|8PLurBn0(6m#(W)fUnitNxYasM>$1Op_od~W~5J|4Z z$#vE7w**uQu#-{R9;6SP-*%>_ArDts+Fols)}UtAjYTVmG+Yz4NeV7r?y9 zF9V*tF6`#_a*wB8?5ZetC+qNG|9iKs9303TBS4(M*tbD&a!x?K*4)i50uvAw5&FN| z9qgDGIa7;}1?-hmm}})W{(R-tN;-=akywLFHp|#+8c5G;ZT~`($-Zfn6)v^yJiqt; zh3dNx%+ZS4qwC*JN5YrIBwoArSkV@6TIYq-gsD(shE)d1uxCC)O5$v)Lw!bcsHZ~C zS5a9duaX|flLX_xXnexDgO{hzO2S0Xg|k8`ZfC+uC&56E%SQAl);i*AZiG9{cXOm< zEegRO@jJKy278zmPvA-!I&MjUyfRTVQ-9i&z8}bxXz{@^u&oXSaGf*P1lF)g4m)V3 zJA3ksIZKi*4A?oLC_Tk(4*lNdNRH}n9$A>I!WA2H#mr!Fj_;qx=Hg^X*yGo|Vn5=n zZ`+V~Pl#=+{^qMCd;{c4E|DYu)ZF}#{!3f`3`o66_rid)iLZdP2N1nkWAE{^B=Sg1 z;bZ!f7?5kT23yZ#Dq|>jDTF^Dej2JqB*+#%`ndiFk*oZ^6yovxz$xZpn3`F~lic8) zBo50IUDQ6&@?x^>2Ad5SdIx!Ql_2;qCQ|pJ(t}6MC7f zuzMW_SPijyssMX0yq`bo<1?UPGFB5(KCE=B6f2+CLqV^ZjC3@C>yvTcRKC?4ryGeVUdUp-3;Ph(?sb?PTd zu=&;F#8%0*Tv{_QhOC#Y>n30LfHGOueM~qJB=BVVIiJkc@KBF|`7}2FLVZNYhd9|` z^Jg}+?vE+exuPP3)1p~rX_H(8bLE!aYS{(Lys)cy$R-?4DlL{`%63pIFtD^R!)gMHSLvMGD| z-mfnl^q0|(O%@kDg{YuS1~Qd`4T353eI*~3KT(UHeFP4|Cb6`^(qXdpS9(T4!Tzhw zsyNl(JwHW`0#9}r=U4Fiqy#+U9(sjvcSfWjig)&y=)t`x1u4u}iQP}5;@o!?xPoM8 zWEEk&!)#AgzjDQV<&A%|TlkZUDnHkOd74pX|H-Wt_v36 zy-@8;lBz7V5b@#~xCZoWk3;5c@MY$g+84Nm&`?G4|a}k2A zm0m38<+lq?39xPo%b1Vxzo*|quBQH*BpkB@(~gOAbV8ycBy$bkuf5=bWz%-2Xuz4U#l^Q7GRpg_Xm&EWEee7V^J zn6R|hc$86%UuX~88Uf+aDw03rIo#q)Q2)n;53QjOxc(K@TGh1pX}Epy(?||}i{W?X zbkSe1AzeDXw!%XIPX1mb^76uKT)a4D6}J2RS|Y&ZY*!>lFY-`=)phu z{P<$$Ri~;EC^H8`}jdA6qAv;INgyHvFHU-<99_Y5jX9#T}bneDT(I{j>(C z^7``2?m+ z{}>69>WAA{6=$+Fm;11^TL_I|7w0+owvr0(5MxbbDv2~(y`T&;c@JG$^wG^u@Vo;ZvAJZ3?fcx$0}-^Y4ueDOmHr zgoh7XV@~Fv|5@yu?PP$@M?Ngm)KkO__C9-v#2!+ z2WHP~3F(8OsLx?h5K)_=J~dMSGxsDqe~kDyt9aC7bl`5kul7jqj-iMg;Vr+ z;s_Gtk?>@8+W!Tk4=C^RtC14c<+6#*k7I@QBaOtuTq_pHpE30qwbz?Cbso9Fl$Vp9 zY(90zb{v0XlJ{>dvHR*`x9KHM;XM4g5Lx*a{6t>plW%@nX7bfDDZ8Q#my^Ot=eN$W zW;timOJ5|jPvETyJ3D=fuhpr!{V! zk2`wzXV>N1@nzCce?|UZ$|$3fG+0fYnAx!|&Y=HObs;(8t+)xaG09E&-*zG29U&R{ zUx`t`6bD}qCXf%GPe`tQfFxE0XHax4d*G<^I9nKop$>YyaO05m3i(@_I`eN}yWODU zR`(WkFa^Vf_@F z#MvIDocqrz70%~Elba*a#IJie5&AI}S??eQi{>X}y3S2RetXM;GaBQK%0$^GbHOL` zo4k@O#!sEqFmaDnerfOr#}cj%t(;;FTsHX33NH;bX-#B{ge>{^%^265eEL_~tppQg-|NuR8mSC*_K`i4<&)2*rrACPtTW$LO;MBGm|6m0rz(#zO?Ys~ zGH`HQwnZ1u$Nd;17Z&U1aW@YPyjw*|%cQRw!SmFbTU*}=Hpj*sw4*O4jvG8yK7qd% z${()4Y{LoLH)~e<*Ib8d+8rL2_E#(K>FAvPsjg$cJSmW-&cZJid2U32p(D0=!ZKJd zk@n0kgu6MQl?t(viymwbljK5kw|tV7Lc+M)?vMAjdF$<3^?`viKQ*3jb=`}hbeEH= z?K9E2q#46(N(0YQBftE<9A7300`IbmE!&e%>2uzrQ9etK8Uvc{)&T)WO@4mv9X~)) zgOqELrFMIkluk97dyfQ?*JALs8I-2in?Tc_M@-*OM#@Kj>tkF#gSEOHM{Ep>{}gw> zRQ+<91IxU^#{TJ8a44IVgzqq$XLwXGqFx(QC0=Xl{jI9TaK#Zn<9iBL`9gdt`9%*A zS^S|V_+mBX@Q{12O3_rO+z*>$XT+ejdZ)_MrIBP*s%GNk;w66Re8WSzZ)LM#bz3uG zr<1$C>s-ve#hoW4ykTE8-i8$VL(*+#9;yrEaj0MJV`b``EH!A6oK-2F<-NQJ`QuR@ z;Q7+jdTD2T@9*c{ZZ<|u#$Pq$@-zGIu5!bTp2?B_V9QsXRh&`h+k1n4*cSxP(PI9$ z9rK!-md8MKy7YT2joS0*LS&w@83p8u?W9KToaGvt|gvV$QDY~s_yUwNrR8r%d_ zuKk7u$&<7Zdw-jVJOi3lD8O9=TFevilRqnd&wsMKIE|m{E(dqB!`2YL7Hf=Lpl@drA}(xS#Pz{w20y@}k8hAxj~D&1>L@ zy#8rJWBPDw4HhIqrvZPI;pfKcSg56OZY^C5FPr|93@_`=;92~zm90??{{6L3 zH10=d5VOu1N7Y$DOOq(;iEK`bpa1U<(?Wj=jx|mq;4;Z#>tl2>ImZ*5OX;e5#O$%V z4>0>(#$G$@kpDIPXDKf(K4W(sZk#xIkcf{Vw4tpYHP@2PxdTgho#xGhFJ!-U=&zRb zoyJNzxI?eX`mr{n*JMMap^mC){`{iu6}hj#rg>;a)Nt<(^`f8HVg4`QIKx@dQJd(+ z^u0f78MP65_+O;bD^^iE#T9Y&qLa}0Gv|*kt2&W4HKlO8`!nkL2MpcJUOG2TwLX!0 zyNM(2vHn){Fsu^>u#Qa9I_-KoMrXeLTFmJl96jrGr!9;As>&HS_!l95jfu{NXHpS* z#Rw1dg*R$$LZAN5z1ySrq&XZu@wVgM^LX5jtNPNTz=Do=si>~9C`p25e*Ib7mM3NO zwiEo|Oj#5jAb^4Onticeqs`Eh7UF~{0N;3uVd2T9wlfLCK1%8S_k-D$`a?PgH<-J@ zJ*8_UJ;~A9!B3Ijq_M;(*}g1_vL!oR#SAokMu&6Ru5o!(OkVfisLsqjug2qne#$AI zh>m%~gxEfJ3}@EF&c(Leafa4Kom9@m3fgZ?aki}ucU^VW#%GS>KrQafNwVjI{hiHq+Jsu5`T#YyA@q0dFMek}GCI6C0fdbkN#R%Fc$Rebeh<<0t6Yzk(J! zcu^DEw`Q=ewDp90Y1TqFbC^~Rb>*}?Q4+_Cs5X_H$hIkK9G2+tInO4Y_^rHOe^aUq zxMDxfEy`K23jJ``wMNplBF*rarPIMxUE$AqQsS@!tJ&wA`}R1Yq-G~NkfzRZ6Nx z?~m|vH`qh!v-!^>mTpt!#(Qtd(G23F^n|^RwJ)U)J9xflR#m)v|JHp!jvLMpnWHUw z214Xc&L5mJvj4l%RJ~*>#b^nT&y%d|b8e z@^#21$M%=y?on-7SueGgiAft%E6u^;$JGHb8!a&GbTjtnJpwEE_;Sj8*NXgLS&1NG zJC(DrW~e9cgSF;w6+RqYt;u?;(Y8Bw_3ryUL$mdKYC|$n{Rf>2i?ti+g>wrNS-pyc z50up8+#l;d9oG8(^g?*DE%}>MMp0q!^3`X1?p?Kcjb9Fe&G9o;K42c~3U_$l^#|pb zOZi_l%imiFiOTc5Pa=VfdCexduZ#uwYm2nIHn*=rkns#JzH6^n_^-8Po?yKGGtt>g zY@oR-QGZt6t=WIl`TOwN>mWGH+igE7&Ey&*^m9w*U4ReZ@xX=x2<%XHJ~WU3ki>M$ ziDs3v5F##8*@MyU*v;H*_AZRuDjQLS?7(gm03^+V*eGGox@GZL5T%tjKV8%!g~IWB zfY99e0)JrGFuxk)$E?P51ZM&^Z&kZ>@ng?7{wDgC=o|fq(eTj*`3Az0Wt>7m?v6*VB5)ewMpefj*+=3u563LFadMuK z!#o#BoorWv3sCe5!d2gLRGPQFGVVo7)L2yEO0{{?bsS8I1sUK>ouEjd@?vWm;1cC= z;o%`SrkLr!2c6O zE9zMpeETa%f#Fhu6TKqp-YeQeX_yS@E612#vU+$E-cwXC1q>0q$A#!J_a@F8TL2& ze&Pd_r}A*YimGANGSx+$hrhM7CF00s%9rEVvFR9k;aI$d1}dTX2(^SGUf5F~HgyX1 zMgkgr8wsrhMi((oe_gk!sWF(J{390e?~9zpsklmt1qleCiK#o!u=V;Tiy`{)bZDH&i^ zq)V=BQquSH{p{q{1A3>hWrAXH5f>5-fOL9NQ7$vtQb{iJ+=}TjmjvuoG)9bc{&!NU zFNZk}C1^4J+i#(13HJ516W_*}U8NZpN@wYV2Pg8Qg_Xbug`Pa%E0^1wVdPNoBs6Xk zl0!`-FbAn*MmbW%I-uAPF_ftHI^sAfv>o6W+o<^&vNsPr+M&FOoy+c%#^aQ`1LdH-9d<|V6XFWe; z*@e=ZKsLlu@zDm>5>8kD?*z0WKmwLtG&51=!EQ!##hmT0I%~qI+*w|%yFa_>fj;u_U+lEA3c4IQZ`Vmu>#@z5oE7wcj(?q9~^Rdxq)Z;Jwc^hfrSra(P z^5wd&c0+07qrOg?iwOoTVBsom@t#2c<8?;9}svAt?xWF1a~!y!lLIZI#n ztHMfcP({3m@yF4*OYNsVAVN~tyQS^@;Q4QM<1^m{00qeVCq?o3aM0WPYTxD%uOlM3 zNqBoMlD!pK-R9I*+eM-{#y66vk#bTlEl9ak<`}a z<>kdVd3K9nJ#GMEZfh5D=5ZMZ=ARzUo++3Y%=O#J0yvW8 zDMh>6p&olk{vU}ic9!z_;SXvie=zJ4>&aDfX(>h5rj*HNe3zhab7F~#6iwrh( z&XqnIRzE)Mb6oWR98F(UuQI@HVqXzkxM?9wW8K#Y@$s^d52u>j0?eCpC&fX*K=qL< zR9CEJ|GbGsMMC41NmblpQ0-o|l_`O#vVyh(7f#||OxQO^Z1;XaPgM-@wEGp!fhr(^ z@(#Xg5jTg5k9G#(5)t9_wPNv*S-&#`Vbinqq?A7VfxNtDIri)CK-!7V`pn6_Vp^Tu@GG>i%v&`9FuRsENCt#~T0Y{gYU{Sz{A4Xp zR;`7@LKF`xGGqi5)+&?Sxuegat%2T;9hUQxzzw48 zt*uSn5n2IrJW64;WCt;ZkQZR)+^_G&CsXq^{Y?l6qa!?m?{lYnL-kq^d4D2_OR4zx z5&3B1`{MC0@w4kOo$I5#TIbSB0aIed1M=gkjDMG8^QCS-8?KnqH7poGYWH`4ie{V{ z&uEPLCjh~w|IcnDIpvRQXT;G?$BJ=i@e;RwsEO6qM4AtN1$t>x`J0yp z%XJmtB=kc)u3BaNA(eix5tgUbe|IA_++|deQ(}93`ASd4Dz3z( z(A@tUXI#CE9UAZ3(B$AQTNav>UTD+rG_j*B2USx%?|J^tf% z8nZ!(0F)NEbT!{I^}QJv@y_G(OkmE0c)X-_C%UzIXh~@!i1%>z^QJ%7fgQmH2$l_* z|D=F_OD}&r^U>9w`WUiqx;Qf-J{w{qi1c}7vMVbEOr;$XK8(6>{;dadvaAp87Us9) z+X&qIl}_ItlrhK6yi!aiuiy7p=VSB@t7QXD6gm8|>oW&0)yti~?;hg6&G@v^5enp< z;Q^auwgklrYP6qtcOyQH6O38_JEz8E!W%=;?{)EoGxIGQ-+ePh&c-5Jnj|B$_x|x8 zlKf8gizm2z{3|6!MS!JTm&6_k?H3GCU?G&%6Wlc^6<^%PVxMuNT{gBnkKGxh9D>so zU^&U{ZQ8d$CN zuls_Y+OGRvHXfdK0zXVv0H)USi$da7Jz8*V;*&S0<@0^CcEwG2h{A-I z1Ql0Xj1u8)IRlT5}v-voSZC8l-=H3h`ePzb|#+L_s6?U5;_ff=d0zOA| zUKx4pK8xf#_U1Hgg>G5dbINT8OHCUKaGhyv^`5KxIh@2f@=K3CO}UG71^v$Uk?bGg z3=b#xY3ZXZ`17{c`m4C?E-=JI**gul_#u}o(leh|UOQV`swcpiPfgd>(n<=y_QRV< zFOk4|zLr$2>`Jx$fNiib7Ss_ftp^MJ-*l5lo_{t?PH~YWeb1dnOz>*n0hmlxioGwV zXI=IND*SNPHz8MV?G*4%nFtE9dh`#0zVt^4F`D$Gsg;`IXL=uY2;^tQ=7c#vc&P(r zUWg&_4qeegDUd+6n|R#`CtKjYl{co5WOHr!lhCV1DVzXWEciDTaJaW2YYAV_^|b#FR;6hLti;^T8LyXc}JFO{|YEucxw( z1_A9pog;kAGZHuLKF4N3RM&Snno3zK3hd=*P7f?zY&v^rX2}@+Z-|LS+Qu$1`rs|H zY77N9bbvkd;-K*;54_3GCa{5IMGM%7ajaGt$IQWHS1J&YN|e=ejVI7KBC}f}82A%R z*F|xo*2kL?nmygpPwowdBl>1?I&CY)k8+gQDMn`{M$oBoEQ{95>)j)$&m+NU)7im5 zRi|)5hNSkwjYQ$fFZUr^OO_5;pjFW;;ltbmB^rw`_x}Od0}>bRJjbf3Y z4j-PZFYAAlx$Gg-i^q2AH~*&Pdjvpd=1y*lAD1;cB!&B3Q@-J|bEo!%#schU)S$l< zZRs!}7G&*#UF{C{`lPqt|b$7i+GsACZ^YQ055>qZ+~)%KxrXNEEx zyJGwg(k!`u*XOkFeqU9n>L{%cov)T-aGfS)TkGf$@vqsHrvUJ0i3~)e zpHE9yS06??m)F@#W=pN0Bo9WyXK8C+N4j?zIYD_0p>bJc4X(axLBkJk|-FoqNQfai-a(inn{rupp zA<-UdeT#CQ2>ZD~kOik#Ob29^J`AB8uXbfo7p-#wbt`{T6*VGQ&n!h!RhaLHFtqzR z&j0Dw^_hZFF)+KJ8kgiF`$O`j;Br$+CNeds$h%b6`c(;I@O1)b$SoH4v#wth52O7R zUp9X<+S^_Xb2w-FHB|~IjwpGOMoQ!l(>ZV0_~5E_+r4w%4ijCiD*-*o#*>&Nq%zyv zgxXJs>h3!&pFfwqPIBXEgxz+CTeq>$kyCvniF?sDjraeayhfXn$EjQaQM@1ZmDyXZ ze4(LZ3UbJO1y-2@v~8yO`U#Q zw=Oj}gX4AmjNdk}6c;g8rf!hOy>5k#>#oCy z>3UQha=78?s7{-=InqH%{k^q!#5|6fX47B!{heryQ^GR84;t0Z;P1xiCu+kRqNm$B z%EJ#8bHPPy3q+taL96Sh3Th&IQ`$CT7&{$gwoE>TZja0IL#rM7U6gmK;+C1pTKW3l zh2-gViz6MANv+wL85qpcWcYv@Z|oLTaEQrIBromWl=+ERVfA6v__xQ$<=J-SGWUqA z&L{;aVXkV_C+x;}0jp7#ahSbvQ78~qWaQVA@Kk&o}9R`7ljnV-8!VPHt)r4);$Hp z+G$Bgb^HPfML5Hxb`Zy&Bjx>h{Z|{bpX;!lBPMZ}eBTzI3ZV0U$ZyEN`7joEwCW2> z2o4$xIR-XQxI-Cx6B$aSQCu|`CzL9ejNz*%%ll(LB2~PiU(97%`AxNR83Tm zd(8*LoR(I)lN#C!!I5Lfiqhs|R#-!NOC62s=!6`J1E%0|+Y5+@EGZt}yf%o17mfMN zQ8DQ<`9kaMmW4Rw!?TZvun6!^x7j?#VINh;rey!NUnDmlQpi@2gU3TR_t*LLc4Um( zox|@%p-z>MNRJd1X!J3bDEqw9rdqACPqG7=h)Lo0Vs~E;9jjTdiFd>BIpHT{>|1rS zN^zstTF?C;=f)==ci&=bF6iBzvXp!%^relxc%FsSF=%nlVk?_VNY2mzBPA=!Up5%o z5+w8N5d%SiZ=-=$cegY$)F_|Z ziBUrh_h*Z;p>@#CVj=i)H^8+FII^dGn20u}dNc=EC6=u!vajn*t=J>2Pk^xSsZ`b| zTw${>A$>vB?5TQgLi{A|p*8bK!UoV`D0+45UWHb|eButxmp#RG_>P&#Jwhn16J~Eb zdBdqwRev}+bz~PL<7SOp7@;)ex=s0#K=v0ep73vhWcFvCvfd^tiMiYw`e!Oi zT^OQp$7W9rL@=Fzq%|v0u#d$ypCM{k1OKmM=3WWF($tY53a<9dQLvefNB8AJMl7MR zg;UwU&K@&l!1we}jBiuqe}%$57&$N;y#yD)u5!mYg9B(dkZ+{Q*^ylt(hs16j@*a) z8*)B8)d+SYYdAFT-7AiPQUZCnCpmKs<0Cx%Xe}*k-H~&Js_FU|o(#=Qvs8aAJndWU zBzle-Ki>#V_>LDWaV{~RKxXdW=q71ds1nIPb@|c>#yL`S$2nqo$8Ex%e^!~ZQ^2+; zTH(JFy|Uk&TiVxs4;X$%t~K`(MzXbWW`@1&&Y2n@vH8mPd=S74zyg9pu+Im0!u=#V z>1urvC5xK<$SvZD`Ip{#p2CRZ-g(H*Ad?Jifea+cmmZ2d05TWZGe{EG%UxA*e+gmD zE4*3=rI&Cj(Dliw^{F7yY?aOblX*6he;MmRO%#r>^eTz6Em>1&Gq@`m%X!4N_d{z1m7$Q@B$Yy7uLgpiB`IpGN>Lpt(eYJ0)HE*AQiQvgD4q zy|HrhZ@&?}H*q^N3wXf!7VsW;+2a&odCn?9S+yxSLGTgXUeg8k4&gl0bj< z$ha?aswYSw-T&ii1?oJQpAsDJkxV|^T~766b&(W5wJ1R8cX&V79-8W!8J@Qp-b!iEKrLCFC$EL( zP;@xEFTV-Zv*hs$B zu!t0lBCuPSnR)sIxtfW4KeMTbB=5tA2@1MkZJsdbOCMp+tX{do$O4%P`W8KxGam@& zT&eVOnLrXOi=3^u@Owt$FO!*05Rk>(?RA_FF&QL(8zu_s$;K&hqft+J9^NqSkuUA7 zQ!Xvg%Fske3R5a2m80x`VyGBjHx}6+TR|qpb=4u z=&Q zLL_GG!IE-?qJmz+B6eLw>XzXcx?=j8&c-jg85a-x6%Ad*FRJ_}fb%nQGA-ypt%;ak z|NZgu?r#@R?cVX)zTVvRTK`@f#J`^zOD~>~>lgzSw#G=bzTlVjQTueekh~Q0q<~*adtZeVed#cbpQ% zTtBK#Y3KqDBg?&w&vy2&#^OxoXSPKrXYBqSIw4DGw+B)~QHT*+_(6)PPg;#Gq>s%-wH)108|) zOqsuy8$AA)GzqgiVngGZcyQmHloAhSH18j4w^p_qDg)ofNw!sWx0g3~FWNJCP|YH( z1)PYlO2#)9fuVe4ysI*!-x$?s=woJHPy!NLls*0vJK01>iI^xgZ9$)b)TM`0zm)$i6QfIFl^{TkD!RWJCfZ2(>D2qJDNMyg~N8? zh5K#vpUFSV4Z?NDR^$x=immS$ifP%xfq2ATT+(5YS%7pz%!J`K#`DYq^o%~rTj`$d zNIe-_mC8HvKj;?oX93g7$RBGryCasUhc=z;zc7FWvW0xk6B?p7#^Sr=xS2Gy7rC*x zsfza!3sfu3p!r+bm9T|ZBp9>53WLx)!Ln9&g5b}DVRJ9GVxoTn>USy7q)&W@%1L8? z-BWk}5(HeH8N=p$x5IciX0!WddV=xwepRY{$${K4XEn3obbth>o+apQG*!&weNLIU zF9RDs^ws$66?A!S4xVr>n9uWzGs(Vx-aDYaj(=_qhTkaGBdBQbUBAf%x43WKbATK@ zwj1Jsjh(rVU_r&rK0yXvTpA6^(k)R`lx0hYk^y3i$vyLN#Yd^ljgFvVmV|h{7MoQW z&UV2!u#3CH1ApkzqlvL6_}HoB_*q2UbQ+R;OxCrYm74NQOw$oxh*+5<71(FiZ*DIh zrh2nUL}Um)C%<+9V?1$j{X?$`Q#34Pad+PGA* z?}651yRU~}X;!{N*$Qb50hqQHf;%u8jT;Smv%XY=FTQJtK(?4c8t>J& z)d0+Zn2rE~<7ki}?OlBHc)N$J`2IQRmD12y{xsXLk94ZG+QVx-Vj;_)>i9(5JUGxv zJLwpssb`%18jotGmv=&(Kh!9wB0Nbx1>7GNH#U%~2tUtUjaw6)P=)g5H_zo_eSgnz zB`3Rg+Aa`uDNs7JgY-+Z`pHA7kadI5lwlypJq^h-W#)QZReJ3`0!a%* z$8HAbvv=b5s879D_K@y2BqA`j-Upa#;#)nCPk-iKA3x^iqEW1?)`#Rg4Co zWsG|3JXRCp@Rs)*xQn>lecx|+GI!F*Myn=J-joF{1TJsppsS5V+cN9EUj+=rrS6}27(Bv(SOfU+jA>5xH7Y#uFoa0mW@$x^lPGkX+=6{>qpa0s6dj{Op ze+=<^?3SZ^UKs_#R^pb@+^bkjDjvWSw4Bh({T(%#an9PR+HzN!X}wb^QgJK^lugBp zDC+%Gf^oQzJoN8~hU+z*iiU$9X^e)$TfCD!+&O8`mMm)Pkv+bBMghWx0dDLu1-69W zw2nSsE3dMw=jB#?&gVFBz2{R2i z7KyzogmMD*q#etaK&LKU;YAjES<1C7ncoF4Mz_&>l|Qa>Sz{>As8h(1JK;;Q25WOv z&q$-`Kv~yf&1((megRp0;?~?;O)F*QPJ~ITT(0T|leh>dQigaE0~4VP7PPB70yq)_ z$8!zvSp73W5**F>hQU*rN2Ju<>R7L$Xc7Zg0}Z$c@=jysw3|EF5@IjMx=7HTkV)VE@4T`-*yUDJ@5!U7LZ`iLTsq1x7 zC}}T(g_J)q55g!E_&Hgn^xXZhcnE{D>tT+uG$CVq+CrWl5 zE9g>=cfo0HO~cFGFjmy>O^qTZ2iu>H&CJ za|~Noy~cZo9D-#9<6qse>wmUaZE_<3N)!>;BpR;okQ2#8Bj84c&HY#HmV00XI*hCl zls4(UIVmVQmGOm2X*nb7tfqzyyVJ>(iM8YRyezKam z50aFTF?;dC{cs?<65_7)Y|pQ{Z$XKxi)2X8T08e{;8xT%Jl|c7qGZF0ga7V8l!K5= z88Ha1qf`J^n`H{Vc|U?eVo$^jSfiZ(j6Ki}PH$fxpsQs((2qnc0M(guoJ1*29t^6O zl~?Z2mqEpu^krJ{rs!Y|V^?a-jiLX0o+&ts+suABDYITX)F#Mg7_J9N(8mdq-TeR+ z$pQVMx#Te#;vO{Wyk{PiZx#dJS9bWM1M^6Qcp7T4ki+)XJ&eUncmTfOm$ELHr`I4v zMU%~!v4yLo>SnLM%1#!MTD!cUVL^C<)T)e>n2ab%xZnHeBE*knwL8D~G}Dd!sUPY@6PA*o zALJh%)j#(uaa?H(USq3|G#g;as!QA2s@IF-ri&Ux_g2- z<)ooRf(O7_SG?cMt!=(_#fSQ;ZY*tuw@}4X`U?krjFM$)iBUJn2fhs`NwH?Sp@a?$ z)g&e5PDLK||2hdplp{z%p)5g;gC*1DB`UIUlI1Od&J87W7tJ4sg%#i`bgXr5T_E&2>32kaR1k85lcZ3F)8i;!&K>!jj~~UGNbG!1sSA z3{b|EvLOFrh8RHVVMcN)YFI04JYcy=(FHjYmdHgq85PdDI2fy43(iL7I?2!Oi!5s{ zt>DClmHnB4`yu;pg1I0Sr4gWIq-H&asQvvM21VhZNlt7`B)VS|nlwtI25&JROo=$U z@Ek%x6wg&9x?Nbxtrx@OfH=oc8Hwf=4j~+-_@~@sl!~S~L^)L%>>P-c1^@71FZPMW zcqfyNWGE6ChDxciET_UIAi^lq)$@)#g!i7BB13<+AQFa`#tBdG5CxhS)7Va8UK73~ z&>CwFY|5i5`uRjIjgE1u7B(q^HxggAmoA>cn$i$JWM<7*@Uq>o1 zZcaByiklY0b9YvgCHzbM%PgV=-eF>Bx48}x@zu`*ZdVx1ormla!a?2d#1y++X@-{5 zEY%&6YW^iS7LLD9`5r)+so48H*q)7Y05?&gq&vV6S;J<_OncY<=La2mVX<}D0@7md z+<7N0Lqx-1jxuMKd=Gcxw%W^A{u1)hl5_PTPMHZ^^YNRg@vsCKwP=q)QFQbY*HI?4 z60Bbq2)gmI0~KGdLnM}^q44ClX?nU4Wkr?1Yjnk8D02x^BTxW8k}pIdig4`ev7TbK zRQ(WgH9T=tQ(OkknOxPp&{i@W2;XJC_?24m1m(Klr_jwVbQTIRC-B$R!N z9d`!{#8W(ulFDGa@0gZ?spO;RXiBOIhsKLJ+WS(2_bb-D_&c1EZc|wZx0)Z0qPKSX z%8Rtd!2>^-`EOF7XQ3seO#dTfP4e`X7(1zH^jzrlJ)L|v@b?4tcbFn7#`H3MIo}m) zIu~ON#cV$dP;!OJY5PRX*a8YaV?kyMEKwo|rOWCTh(Ktfdd(JQTgxm(TYJ1m{KX_RRL4Kb`5?qmr}Y+lCBZs@LH991JgcpuF&YBGnLDmcPrjuFnL}%(Li4~W8O4fgX zdXM8Q*9R)I!MxNFldrJu3LRD*rKN6#ZzUBrs6pd*$l(h7!i=fh?n=|2-g;8mBhl>1 zQf|)$awC19-n`4zsRr8v~izE!yw-}=mZr3L)-tOA7-DP9Rpu375ZT>Dr zQ%mD5mPwCVMbKIt7<;&fd4434|Fs>Y-&JgL;!IQnI-Tq>6?CVvw{??6`4%oEva?cb z2V(~5^ygdfg!pMEuvBlQ5VNkziKALV2vyh8hD6?ncK+R;o}WG(nf&{Exz~2kLp`nH z!0`Fk1^CB;Y7)OZreCcU@b1~-qdTq-htrA^Ayp$~3crkD8oi8RCRhKyA@X^!<8+|t zkQ2=VxKa0L&t=cCGjiX}kHF-m@RI6@OeDxzsL1~VN1ERC5>Q8K{8(z zp9r49k%uvCRb}6GhlO_S7=rL1eEd4%nfPx3IK7|hbJv;!e)4y6)3(4|H;Ot@{+|1rTN%isq#EcH1z6~m zNEAd`R2;+tD8vzP=XzDc)1j_!0su+?s30!+5~$lD;rpVB^{RxsF#nZk29Z$!1z~p- z1#wq;{l`0DJF3NQlt7jv6{>NO)c$}%vur@eB>Al<0TTvl^8|=wGyX?*rjIea48CBj z)5Fc7U~(y!q}P@TWEM%tx=u6ZvQSTx^J3lTQ;$NN4o5 z^0ZbkmfLllV9-c^nkeP~0<-m1oii?rsHU}BeMK{VIwqo7GZ;`pHFrorG8X+?k0kV+vS1)+2?9XUW-~(jjSt<0K54g(nJ5MH{=! zEKI#FZNkj@?j*L=l#;Wc0^V$w2>0t|L9majNuFN8G#Xq zwF`j}_0IqFdNCOjW{jVa@r)qqs)ycMS)Qvz&x?oF+sQrWeGjzI1rxv;t^_I}|385L zPyB!3Cx{L83ag53>sJB3W4vPS^?U|MUJqh5Z^~z){{tcavHuP2ePc(S1}9d@R%qwK z>p9`NPr0k#{vXi3NXbA-YJ}D+9YXuHO-}?hBz)=Y*8Ti-wKyqErH)DfKT6(_364Ix zC78Ba0C#ZBU~2&Fm$0WQn20B!3)Y7ae~xEF;ZjY(34MIf8C~LuIq}9=Ge*4RK>@$Z zVt`Vx+@r;KAx|;|&e`4;6J9s~5|NOvewq)=tetd|9Py2G?}SwnF6>{}qT{$Q!Ka}p zM2wiJ?O9?YN`xhAF~UXKt!*8*X#V^be+R`(ZNq_MpIc*URsnc6hJ+U`Paxn# ztW&L!f$Oh`f$LZ6wr>V_H)$)Lw2#f;3->HjGkP@S>D54Y>uwDsbXj`BN`xjY5h2}5 zX?wFuLhEgP^O-CL#Vi3$heK#uS&^;XiI2MzOCdwdQO(?i?si>_qY%`~#Y%&9^v(Hc z+x6_&n+ocVv5HFk6W}+!7FPw`i`;tCNE~EI5|Wn`+65MR zjm`N^#CDZ(NTn}4#5$9;gu+c2{BT2ZYW|qPxi=O?l8sNq5J!;GF!-Ux>Hk57H-vDR z@(di8-V7t2=)`>_L3Yz!VjfdU+rt&rW?_p1$KuBjb^impU@o)(U)1Z-#F(3;+RU*t zVZMC<B5KUbTEj}Avye8kN`-!`bJvL(0P(HPj%BOsQpc*y1#gnIQO%}g9jK*t4Mnu4O*!f)|0_z&VIl7%`2D;ms)ZQcG`2BUpgLW( zdu@_RFJ{ExduVvg$k5<2#EmvHe2I`jN0{kiW7p6`qjiR3Uinb@inRc~?Hv(-_4`nO zv0&ni>Vn7dC`mNFDOI7JuW3gJaq8u?!!a)pR8ksr0NqaLi^c{jQ>b1!<}bkgh2!u$084Qr~ zLe*n4LO9K8*TXdn84QGEa{wHdGQP@{GnmexQD!&tLbGn9jL-#xPEm0`%@Z-o!v9xk z*94NWTRVaHHq2UmK+N8E8+#;^Q(l?)s19ySK7k6bd z=UGVIb+3U!r!RzCPGZ($MGqFl#>+n=;gM~P+t z2(Y9;z-R^nOW$>y>-T!K!3u)XL&e6aR!OVyIMLcBEq;iOUzMQ{?Uh3i?b@e{W{dz< zl&f+VXsr`~?UmCV_iQE6fj zBS976zBo4QSWPtAYbg^=gD^U}dKzWFsYA>Zk-*<_V)@D!ncnvnlUYw}$Vn;7= z@M1-$a`0kCYjN;mL}PRCqDL>W^BzZ~vX>5BQRgi)QT;%~iX>}@*K)-HFy1twWyl)z zp=ih&)S+O>8swo)NE^hVA_*G!p==1u00xbP(#P)(sm1{tP+{x8$luPWetxHkPbIOT zYnX?Yp=+2deRp&{Af?i7-6i}FaH+Igb_FRKyQYp>_Vbk`Ja`|Y0{@0+#OscPNW|+7 zgmA>`_JmNx>vn`-#sj)7?t`<`pO{Ey-jV#3CI+*peL^AuZy&&B*NjH92GPLb(J3qv zjO@$W?z390uAAX#gm_|;HJjJ2FvAxM*!8BMQ*+I?fP40y3JGeX@Qcn$Fpuo)lrRwh zacq^1Cb89PdRWgh=Mvgr({-TqDFT5ODVl(~WH_m|E{fRB05F^P$P8=kk~Lf&MTRIP zY55nh{;1y4U08R)Y&T@Qram9h-56hj>|I(^4uaVKfVSL+C}sIbM2G|k^nJbS5o9m- z=Ly$3dwLQ3J%ZGHa($UIV?}j>3~%+4XEk?!E+otMo%{n&G>fuP>}6ez8>K2Pv)+d< zNc@YEB(U{`StR4f%A={>Y)ou}?!D>KTXVLuiuTqzuLP(lgJ4t#Jn;j*XT0{pj-(KgJL ztBI#C*F1ICVelWNbkVc#Z__-x9|URa^v1gKEP!X{#Uq;Po-SejU$VRiCax5FybjPJ z7;*Nv@3Ooo90T!T5|gkZ7${`KWii+DGFm@hCW06`&x;Sj%>L>Y5o03Tvpu8pV42@g zIFHweQaH<2gPzi-hs!xVq8|x<{<~iSdLo49D3ro26H`Q3Uav zp^Ppj2H0jsb!J)`>L+w;BF9q_fc4%zL-iv)gBIgY$g^iC7p5){j6$v>)8!L0FK+P6%6}e#Ifmbi_UCP!Y0K zb%2DOCl|(BgDw~WXBVu0=7L|pA1x{ixvZYN5Zsb-$QjIp&4+C2rie<{4Fs}{Ou2D~ zc|IXsHie>Xpb*S!RXHjtG|gaPX22A=MxpwWRyor8k|M}tCcqX=QYXU}xwgZDWSZ=R zx-<5z@MV$$<8=72Mztd|w_R2uX}T=L2ymvy@>Pa8e^@?3f3hlRREx+~`m@!k-}n{! zb>onKPYawJlrM{h!pv>}3~9nxC=2{pBn#qLew&8$0(&U<9tbUqFt_3CAo{*jU*xsY zvp)kN*8S`-r`obYA(CIDDKb3Vn$vpinnN;;AqElb{opIKJub0LqqTl~Iw4kxIWTy9 z&}$m5YvUVj$QSoX<7}Bo?hEa>aG9SLhQ?Z&;e5#ASkJ{9f(Rgs4PuIB+I};-;`_2X zlEGfLU*Omcic1k?ip*?(D+%I$Yfb-d54CR0RE2Kq-%uf4aM?m`9>NwcZHZ%&sJLD( z(fTvLG!kV$vJku`J=z|s-k7Qiz27gfLK^Ixs|X*oGs=FL^DYW!VO;0%S719&Db4mh zjt*^#T%WKw0L~D^3gO6d?J@1n7cb4aJtfeRCN^Zs7&A_n{`@?+)hJs%UJ`&336t~ z;OSU4#Hwyvtzoa z=(da~DI;Bl&UgXEVf;NywlBb1<{TcF-urq zA+aXCeuExBMemkOBbOy8w?{qWTXCjYeVlV*xVCwt_;Y*A>KJ@>PD!w3TSmk)wc7S< z@ULWEC##5BZ7Ar`mOtjTrmlWl3~o8k@Zl(@8<#Y-;ZjvbS|)5oayH-##{ZHDo3Rj9 zssB(0P+I;ufn^`;*{~?anZ~kiV<1zut&*ZC%`A^ivmuU6qoG_XO5R$8R7?L@)T%8q zundF8^Nsv|mqKopxm7DkVoj{56UTu%&sd%btCw~^T}(yEqLGFnsFB7l_!+MgF)3Ni z-;f(H|N1?Hj%O~pju@caw?17nJ9zcr_!+OJE_+@d@Zhl4WpVe4C^j(iP#JA7)~&~| z9}&@BtYmNUYs%979J8{!By(yg*@k$g=prpMa?gz;zW=}`4-9n+X7ifcFy@We^e{hp zZ7Ts_o)#Pz;UTMZTwYV+om>K`)Sskh!d|=}%V4A002a`$0Q&D9s*9+Gb)B)p%dLPP zs@8cJW~+YfaX4+nm3hq%VP_K@sN@+WwvK&lOQnvoU%R=M?2>KfSGR~|OPrp4{mB!h zcOE6lfAn5POX3G^U`8(zal5EcVkh|Bkr+KNV7C++cw3cxMh9Z4lM!MPLYE$d`j>> zcPy>XspYq&INi(_+3)^gM79Bv(Rj0f#u;{#1)G@%Xgp=6$`rh|W; zYuGyTRO7TDF|jwI%j#}8THb+_2~o1Ow}p?-F}e>m;RwEehOhjE8^}B*ndOoRHpG&< zX(FA+I@J0?dMXYbxyzF~E_DF1cd`{BnV-TsAL3Fk|8dxnChk|zK-g$FP;tM4Rt5{^ zUxMKcocAfKcTC*}=+8!#$X~lVKwaihujD+t zvxP5~<0}uv!@1do5#Q3yg6%Ro+=U~+)YL`h<<5a>zC%p2omy2$3}pGDy*+Z?)(Q%$ z&qfqKm4;N)Obc2y6X0J3R?aNn6~^*e6g@7n-9I{OUX4yohpx8eyL7WG>84%k?FP>M zIV;R8-?SN;i%i4ZXzGs~MUNEGN7km6FQuystne)TaJ#vij9lM+mYFr#T0JttQGy(4 z@%gEBvFv*|bWE{@3WTq%AqCm$H3-EA(7tv0ZBB>!uII@JHwUc#52ArqyuknKH8=A& z!ppl3Py__w{z&Ilh3opi+_;ysQ$-3b)=h2qgqK9#L$f zZIFC7y<`eHSyg*G%W(5*gHy@!1uY0kjeh%KC7r-#QMPZt+FuS--WU(WI+Ef3vAdL@ zxVAEem5$l4V*Sy1_WNDoi5bCml{>&=u1>MpoXUZyQfB4V zD|20zNALLCQNDM6#&R!z*>nPFq(+8sLNwhk!SUhCZ-=u?)vd5eB5gJ6#IixohpoAvF+h)mz}%87cR)c4IKGk^LQ1%<`S%0m_=wV6swq#nZz z?=8O;gU9Bl)y&q5lFJEy|J3%8Yw3R1g}AQYf2Ielo{c3vrxuO!SE~drIuT#n51gO! zG_sfdPk3C@nN6VZgvCgnPA;|fr_0HT2^InVz60jyW5Ub!(oWwoqACNgEvn}FbLPSk zBOdFmQl2jbcuqeDTlxm|jl;DFE?rK(e|5>s3GnS?4>}HFYWh0GERvtQ**NuP#Dja+ zv{tzTT~U1B+lR#R_Q@W!dcSgUb4xAp@Ew99#;2NvCO!JzmnAC8@>tU9<1?tzna30O znhka*a5YIfS4#keaossUGEqx_r?`jw_g1O`g#_X1WW_I)SAGF*KSubved>TU@pS4Njz=9x!J=UH~|4hK|H!r3#_e2&P4+AhOf@2y}O zkXj{~^I05I<;ZorgROX%a~Sn|8xGKl=-m>~x{|o01Ff8 zXrpE)p_N|KxlraMRm@%ZBgYcC9xM$OOe2%Zt)OB z3R$Jhu=<1AaF$^r@9!d)orrv2?Y~wtxJf%fYj6IiSll;ZWV_QtFx_DF3qbKc*V-pn zp(x;fQuEr%c*FJD(%k@+b=*1n@&(lUO@Zr9x9eubt@9YUD{Ak#pe={zU{gUVmpY7e zTb>XM((6t!7X$0jVVE$}P8mO?6R`K~Jr-)&EdyYBa&(3gWo4B3}I3Ff!owN0Y* z3EF;T9#8iIp;SM4bV+!CS{9S!7ymKqq1#91m-SyA##GGr%!wJpg82ul^cpB#&eQ67 zv$y(>cL8xa1G)FL2Cz>qywju9eX#d$kBCrRhn#c&hpTf8(k$w-blSFUt5TJ=ZL`ug z-?VMpwry0}wkvH-Sgu{oQR8vbAGM6*53QMDh*v*^raX7cwo}z8!ofmc1e9P zUD3V5cin<}j#_`d5L}l>Y^1fl{dqBk@?+!iw*Hf4;J-Fr3J6_8yzFe+|M|pQSM!_2 z4kFmXf%Sc0&zVQdYyZxJKxY8zwJl*PUyFXv%fiJVqkhcBj6w_VaA%j7I@o1ud8ehoklXEdHwZxwBR_S@*loF88>)wfM7N0ejAl z@CqQ3xC23v{IDxYip0bEiXkP4gic|w93f=31Bd~$6rU)0j->=dz)cT8(0M<1f#`V! zKu%{t$@~yN1^f`cqG^NfOoyBKx9BgY{2x`%n~`hkNiXadKc9w%=`U!{)lheXb20*I z%u4(&!l_s37*$rBbUbm7jo(K9&hUPaoAZyzxZH}LLk3~Qgy@o8K2q+;2GP2 z9s<%lahXO5h=kI=lJA;9s}(wS@VnfLyKgS7h5X7PLtm6);q!|Ka8Bhhu+`s`|5=mo zFQ!ktcwmaWUiPkg1A52v?+oR=G`H4*ZW^v-pcu7vR8dSLD{aFyxluu;^I4N&>8qX} z2Od&_Z?d(HOrUh*dUBoBfqjv33n*hhJ@P;|!e`ckZQ#Vx?zAGpu|9bd|?iQ5O z_6@V9GJ;MlirNR4NA9iflr!R+f@QG32Vc@%n%We?iaPn&ZJ$Qiw}(#}W9sY_akPyM ziYjCFwPS1dh%l4VCjSo34BABm>HYHc_T=-eRy7NSy`;Q!aXI-C^{Bqy?Zg5u3I~X= zvP9Xkk&KlZ)H2#T^OLS~*1dl|{Nv|qxR-3IfBd$JU@X?mW6ivIvk=fU>!d9SWwd`o()4iQ?2 zC1eOp6G43+#@Y}L6YF4&;@vv3ZvpgVUKDROBieEG6b75$?u>C}X-JpuNx7_*^)jQ7x>(0m#q`GO7 zoDIR{QKXt_!0>(o_Lu^{oJKo^K?=%fF{KfPU&n^yR9B_J3zD!0FDDYx3 zn*04>)Y2?i{pvWtfwgQP5CDB@UC|WAKECzXHXB3>I|3eDel*`k+$f;TPXn;k&A@6c z#(M+0)XASKv>&Rb#O|Qo*&prw^J1%XhfproZDywzuXUCW!}GpFrf2(e;k)N|PuDgt z-z2QlH??zO&2|7&Z{RYSoyc~Qqk6;Ka_7M2+MEY!#)W>w!}G&? zpyc!B=<569@#=`5pl1p9r*9|Mck{=Vn_}U7K_u=9N_<1o$_lQsRu_cz3MoUm~{Z3QQ*;B2oqerM*#2T^#*uw@tT9+>&xZ3P-p4IB*W?eVm!{F(p*!YA_mqEUfsPv zVoNFihV~*o{2qDltDzkTp=;YOd9o7{N9-8JnrwQ+EgW4EBV+$x-NS&iUyI+ej% zr#I&N0nV=v<;(Ns+QY7WF?ew{TCdB9X=~#=u%h}z)4>0?ar^q{Oh>AB z+An)GaRzrrRqxitSFI|Z@aWy+HLJ+qpX2ooo?@@zYA!f)ovU|&ph~AT{DgJJE$!89 zd~040_^7fH#9XVDpD7FQkGhuZ=hI{8yivJWd=@9O+hfu>_4NIUa(Rl{guzS^nEfd_ z@X}5v#+g}R#Uyq)j)~|J4o*2DbVH2Itt6rC|fh?n@1*w8N(I( zpip<9=}T3AMsEJ#fg&4>3Xr|OJ0WPFPhy-=WCfGysomCT*eTimBDl4$JS$5FJjQKu z){%N}sbt{e+!_Zk4#&0=XdNmrdTKb|9S%16XB`-l$D4$X!u2EpVF1RJ5vBtU#bfZ> z3D&sf_*m+g7Gi{y`eDAzBd`pT$*r{{r4(Z#RMYAU6HEwVF=!>v%u^65b7EaJRT089 zASn97I?3_GNP>WH%L0;jE3uH5cnra4$m~LkR>ww>%NSsioCQa+K-LOPqZq9Gt3>2x z1F@DZ=~oA3`cJZGbpaUsL&0WaeNIkFTr|-tyQcn@Rt3yeafnK$3jLvq#7k5@#LX1{ zv@2$5G!);pGz2T=bON?4FFXC$iz?wxY}Cd_xikn>`13YpEC-?XD+DvC2hep4N5O{e z!FfRU0})GQl(JQRS{2V>M&;R3aH}$u=!=YkDTtd54t>C1ngCDej}j0-s^%QG8W}7n zIPzdll=8YDRgbXfcU)y@p!yK#U1^g7YCuL{CUkz@;A6`u;tExzP?FMvYguC|_%ECR zQhlSy&&Bs85X7?O(Z~3R+~(EN5i@BluS5!9OQ-KRlCoQ=#043jM_i9{(2<-3F-zG zwhXRrwJ@}%O2*O|nAFjz?mZZWkJ7OOE63}J=Hs8rjp^kX#GR>a4sjehLB^ML@H@BB z&)#R`oK26%!L0VY)v0ReKbEMRRAZ8k|A3h5NCU;@bx?~-z0)W|C|d~i4S;5CYo-UJ z)s`9M0~}#|xl}=%oE8%)NVd;{MmQad2VnSgC5yG&o`%NbAOBLTBtFv3GUQu5;FVtZ z1C`%o(sHW5!AQjIv2l_gvm_XB#F}x}2}&^XE(i!qyeFlX(*0$FIJu+o0XL}`V@m_o ztNvTH*(!O2r;wpc^OD?}!T2YLyiECM>>XzDC$VY=K@p%j2M-(5(YR0?;gDpZbyDWS zBN2B-G{tpp8QSb1xF`{PL;F_$ohVCVDx z4DdW-#|QX)csOni9WCVtobT-LdA~j#Z;T@HcLUxp2JK?6v&iWQzK?V6c&KhoXF1)! zCmFxn1V3MnW@2*#L*DQuMvlONwwN#ezhaNK4}`@>8H^Z`P}V5 z;#7Z7GS8YMp!XhoG_YM-1b2x#)Ifsgfp{KB({fs1SKqxl%_wVNF%Lug`b1Kp&!{_` z-RBdEQmn8?fz(F4T^vTds7mz!&n1J)9IP5*#7uV{4n@R)1~cH29#BK-Bw#^EKoAy| z;6ARdz^bDvWk&%!El(&*7r>Q|ZFEI%*Ocjkfwaoe*Ug?@<@Rbme%OT-T(Dt*? z^DW*C1TD_`8AcV=Z{l^aFrAbMOSd9{eYiCU>T@}mtuYJHl0r{hRpwV)hQjYwwJX-5 zB=%zgNu43?uPm%7S220ZPTe~>z`PD6f}MgG{^3nEo~hTm1*VSj$mXb3pDtWB@$5oy zKmSjo+A9T$`ntJCU_Z?V4v7aRs@Nh|OaWx?6|t5}fFHwQ1~XW0VoOFYLPX&?1Jqpz zsL@~Sjv^xA<@&BI)4}=)8Y;BXRB3CMd9mdDR8!VH0YSlL;=+MO zlbTl_m9J3QG;(yxo78mTH5QxV%v+DdVv|JUZx>!9T z`58p(XP}`&2OqSqC+x6YQ1JBT)$%fSI`*p^Ct~&c#*~ zwD4*;qcCgm$9Kbm`Y8gqMtGd$wn{JyD~(EA$SDu*su7$T{~;O9V)Fx+tMvT8Mwan$ z7u^qGo;*dPNiGZPxAYG^Eg65)BQd)LG1px)o06wKWDZ!~V@P5VWtZ;GtBg4k-7X(w zrEbQwiAsblOGhp?0sbw!>OmN0m4#I;v_b?6ANC80zoAl0+cat~uH1q(bR}Lpcs%rA zZmTve*}I4(1X@fL7g<5nR*X`nSbff~5Pm&rSDHcf^Ln*)Ynyv=dd7KXBz+URtJb_p zhIDjDTEjAXFmmDMC#UgY9IF!Agf+0B{mJ%O7zxd7f%2^$5 zFw$+=IluH)b#BwbQlkh-j7V#3EV*i*D%)~~P>?l`)jS-3^&}*&@zb48nkI$GZc+u;{T(ad@qO>^R)>q`r;t#_NYPa`OWxmdBQ&B z&28dOPy2Z?K0u77lOSJp&1e;)(1zJHmZTN`5T)=chtzhXH~FaHAB%8B$5!#z3j>8j z(E-CojjzjaKkvCSVr?aR9^BN{6}HO04!>6ifm{QX4fiItq7nNxvFY?nEB8#t>G*FYK}C5Q2wf*o@I7`U~3Lumm*C2 zwJ8uRu17nA*b0O|G!zR2FeI1Z!V_Qaz(WY)tPtPDxEVrThawdRA~tv^W7N7V;{^Fb z*H>dXG}nMyP9Q6f@@bAv7FK1ZzzB4;3(d4zKD0n&FdZ!rgAV0yJsdG05-J2E=g?>@ zs>b@D^s~Y&z3Yfn?$^C{LM+t_({zC09F9mUv`0*^3S=9$p8^3yp|jRegKNMIfFhK} z0B8bmZAW-lgXVG26`%@e{L$q_?QxR3&=e|xAn@cWx#ZhN7iju6C&ppx*aFeb)8>it z9z(kI#v<)acST_jFE0;=_ds9H(6kz|H=V$N>sJt|$)PYcJbn@fJ+}+uRh}pi5HCpG zwhW2i<-n0C6Uu-Zdv)}v$QEUG17=Plxpv2~KeII&ur+?*i|qkc9SaUPyIuXZ^8)ll zY;t?Gd$VGJozg%e=pCsvlza-6a+7_>O7G!_j%;OeXBqQZAIOBrRJw}XizeNHT5g`L zj^JSSP7uLNL{M4y{Iqz=PW-om_28BP3;Sk!78gwNdlrBrT^eLBom)2UDJXV7hF&;3 zL!H|uGj7nU0r`5fTIGNJAYlX@Nsp{~STX|&rL68~o|H_#=N7=(@~knxq6{d^O&UP; zNh>0}fe0aSlcQQkc(e8)){dxW4ba699>_7S0#a+D=(&Xv-;i7cmi8b7u$qy8R~%Kg zhhhB3I}HGZyJ*h0wL|07>M9zbj1-=ZFe)g2X=0R%GxRKg>JjKRLH}g!mm)Xji2VU6 zYR$~1j>Dd0RfZR}-+mkc)OO01@?FD3dv71V1IiI-qz_b9&!#Y`j)n@aPZ%^;m;SL012U$ZU zmbl^oX)c_l)uby*KPyJee4NN!pHDx;Ss|Q&! zMfkbsfnw|y3i6UJe*9Ge3FK}>dun5G6v($CC0>O}e>n7`Eu0-d{~K)t6sLE3AQ51{ zl?VaAGJ11_&^;7-h5#{fA^vmq>kZ-|KxTr-p(c$!uA<(OQhn8!Ms;uo=@?X84Z*?; zu7Kf;R@*@S^Dx~D&cXc=Se4%z|v%Ycedh|vEMTqg|UZuDPFHP|C0xtbACSTPE?k!VJ+ZZcy> zV#O4wK2s^8K+8phalc}X*rZ^{D4ivbUPhhZ(xEzv9jKH`s7Q7W-($uGOQ&dNw?6~) z5}S{1O{d{3!i(p^?b9c~uRmn7ySU=5vhD91-N^LBZz98o!(a z6#i>!Mgkk>JNlxMn6`jwr1{NtP6GirEUdzDF@36%x2Czvc=V54wP!{Zd^B2rc~N_* zf<XcPeB~)>6tLA`5{j(OUYU;?x7B~(#7$3y7 zb}cS0_-%T~<-_uv&couVJR+5^XSfVIaG{l-n%D^HbJ$cj_vT7)X(2F23FN%Pk&U<% zgikD1s&X!BIL1}h4~>tjb#o~EWZjT7SVJMg0WIh~ZEfCTtKzAvXn~15iA%Elxj}Yn zI;vJ0Q$0OFmRB&N0)(s`))NT0i5|GJ836%mG|h};45)?^`EZN4Rx13HC^nbB9cKL& z)j{i-(JCv{NFM) zH755PQ;R#i&gOm_)a&iz`T?ZJj+miV)%cMO)Jzx~cpS`3n|bndc<<$GE4X10@EB#- zk(YdX1~NtGJj{62RD*Uv)Mdx|ru7CVtklB?Zq%0oa(6|>Vm>-@zl;xGLUC+|(Od=4 z-{tVjE!`NOt@+o@Pzk!>ma8=z+OjEOVcZdz6;aBAK(COLCENhs`8>Nv{cT^6% z50%ts7O&E1)RborrZehR$ViFgPIfn8t*M4YE?h`!=5+)2725TU8zDcH$#BumQZ-*i@a+MkqP9Cb`VGkbhWdz<;Z8CN zZ~7G(t4Z~coirK1#0wI!*1~IYZS)LOB!rscuWmkg1*{HR;lY>F1{|&Gsq{*Xc`LGR zd2~ihk(8dz6UMLt*y!!tcD1PO&}DE0VgDJ>81qSHYj-xy*WK!zAGYUUz43nHnCj!p zh;63F6@KY<3@P`jo!mON>_}Yq((z1L(~QJ zdw4Xpmxd10DU^?0zt#TjP45OlOJoUg=o=Uutla;k_lwg zC|xtOAK+{u^nD!1Yzy?CfeAfR-{R;qFq9zk-RDX|oFO)8>q04>@uY-*y74SSF($>E z2DKW6S$ae#L(TEdyYZD+%LKGo%)1TpqeCC5ns3mcoZ`f8LhoQr7 zD-#d^+A;J<#{KjczV460UdyD8{3_k}hKtDBiskaRg%b+AF_vOR-sSK^d*Z0X4tP^p zY>(#6i4-vm!sfgk;H__ShGZ=?G8jxS=HzQM%tSG6a|1nzQS@$2_W{_~ei8?DJ#c4- zfBRt55UvgZv?u5T!YK9(a(*>NE9e!HyfZ?*6OHHyDI<-*#zlK{Z9mb(jF9apd?4Yp zt6Rj&FX2PY!7~&1EnPZlI>TJd$roEf(+&+8g*3jA)HZ-@O9kbI;9W| z$3@W$jLg9kPK8j1hdR2(40eft2MP zR3PZ~wG$r_7v`?ObL&arr>vkNsfpig%*O7V&mv;R1-}t{=LIL$FzGXO0+~VpPU8{a zf@%saDO_$qX~8zmP=qCzQVm*>7NRhfvBTj%7R}*6b#b@27ULWi48TnW8Hw0IOYnUI zgjR>42XfLFMv#C?;#Z*Xj5; z25c{aT0mg}REa+M5}TPTv&wC(&;f+L?3{2qeYL}5eILuAqInmCTz*IZd)^1o%56w~ zHAMUm1wJt(ZX=$!_C!M_j#zJzL6k}d$> zx4GY6;|U2^)fLdL-}k)$LjJF>75$9RCi(*^A*Cni zffYEnB$tPhOmp5`?!mrF`B~BE-6BXbDNVvs3+{?ewcS4p3f4&<&-RT~3zrU8x(gD$ z6i5jeTq(h}tZDe5Ef9r%KxE9u02tsRn~1%R0V1HlFIhN%U`J_9YC%da+7hH4Q{-on zfL&Ic>D*!w#ZD056uN~3`sk!Ij-r=z$jgY;oZey+x}PYiN?(XzKzh~92SUDO@vT@) z^Ii&k*iF%QT}#_i86(;Y#1#%PU(s2XZtN&ACz0G-38ix)YiE807fw$5_stuLIihP* z>Bp++ZE`Em5~|9WEKuNrY3Rz5rdDZ%YDF?NlaUA^Rf#8{p+3ot9bD`hF-4^FIk>I^ zFkvsRc}2(ky_|q4Dz{7#0S#7m7aZ*+a~qy+azvcr_)fvOqZOqO*5W z%-1%!0y1@8(K-%~&Gu$fVJ6Os9{2@BmiNe9{bEYD{=>N7&izcTt}QVMS&J5DMkNE> zLh0u(8vFxH;>)VjE%R+%Oy{SWAAcdh-zZ1ft|OxbQd`}e?Tr_HohoMYWT1*cqXI6j zH?NDWc_Y5A&dJY(e-3Y@b2K8-RW!*s(S|( zq+9rg%v0GYL(!G;p^>m{9Sog3c*4UcFe6S?eFl(b9vQ0~yAV#P&V=%9Y_jt-lt`Os z4B-W@TQ9^%+z!OJ&4%QWPQ63J%>n2~roTePBTgSMwk4#kO`}?z-c~TN4F3>w{)|lvc9~0+7jA< z*rm`eda%R!W+aHw{1)BI1Pa2rLqTy7Rf_ajbli|*Qoh_gwU{;XEL=N-&g;tByLgWb zEpD^)zO2j%tC>WysCk~j`7Mp-V?Os=8V#W9v8XLAu=xMgtI6ef2!Rh-ew%UVlY zQ!Z8XO2%-5thEHq26fnpcJlceoZ3^+;>5A%PA3&adO2dADgCXQ+-RW^obK$RIr($( z)rB-{7dEoz30@H!pEr-*}wgYD%`GiS!W+`nprWZ9W!J<=hOf=j%ry3EE$=Nvi9~O%Ut(O zp(eezA%>n=+?Be4m_9Vr+IDq#I-h_Bo^Ir~H}8LZ^6$Uh(o)ax&DBrf^Vr*+ARX_$ zA93B#^dh(02a!&WD&{Ug8y{n_w*GQ)n=+NnUEf>pe0+j9nRcTWh?YhkeIvF3vMOz4 zXpzirnV+d&W@&rHZZAG9pF$u zmJ!E)EF)n62iN~pL)n_r4fN&kSzhSPAW?i!t0CexZtjryIUe8BhYz%zm<2SOi5p9h z`MpXgwP`1``pd;XP}<;i^hcUwM@a(6&xDz9{X4FC>CyOOX?}5svy(A~cf2#xKRgvL zsOk=rsRvMOzU|O4#1n@$fsJI_-%_w>jIgR?1kWufs zc(m_QEY71PC(YHTrJ6*QdZgUG<0BmM+~GNAgP#$;c-xYBL;U)UY4V|eZH6R7=*x&0?P#n{c=ogQda-Y@2y8j&t^rq2+L@V7wTETK^1KX^x={xH7<@G?7T6 zi@Voei=~h>4nnUBR#yt1GifdyZpXAu803pFT}w3h2|Yv#eGlH(gBZV;<`LF>R>T9; zF;khJilG|8cQz09h1qg`PYDZJ*Hf4XSHv=8U(d52Q_f-VHn>xC7c@8$NwEY9&Ohoe zBPYI&y)bwOTfZI5et`sssyP6hf%DfX97Fb*>KJ&b*fh2xIQ=~loIYW7oX@T(!`NS; zY8KW81qSa>#vGO=oVdu&S+=YX?iW#3NB?P6ns&dMf#F@H+odcWffcc6BKHX(Kf<;q z_7_1j449WaTgE`bQ%~HFI1D(%7k|MJR0quTRP6&@u$(iC2=}x)utmVDwpl+Bm#la` zT*AOV1e~q2aV*orF8>`k3QkxoXtD3PH3YW+1UF>r`8hBu=->7VNt&ZcG(70s1ve@O zGwZ|A(;$ETYV!9lOt93pU4VgCat`bIx}4~y0K=;9d0C<9odqsyhTCIJSk@Ww3L%|p zjAWyWqK3@nn!vyHFwX&gqah~Y1l0cJo`u$3p*bx=yo?XBd_Z@cf+V6&{+U5)9~h^C zCg|FM@7(rVKvL29s%ryD-_5ZkK~5)tfrx?$7~4K|42&V$a<;ULKGp$KGpe#nn*6{C zlY>UEnnb@VrjuJL46y4J=DbY=8q&hO7pDd7GwTo`1Cff5B@zONHVR;n`e#zVK{U=x z6H6VdTpK(+Vv&CVqX@%6#e-c=7wk4)uU#-rKK^~-IkkW@6@1v5mAL$0#0oM1KxJb-rkFq72rc@j# zcP}BHg`%Y(gRc+jw&%bWGnaOg`AHL2=if=yVZUDkL^mi-g9`v1z{WKoN=yUU)!`dP zuqcNAT-^ymm-6j@$ban*dHjvklc)QAaNYZPuWwG60OSfN`xkWa{d!FZ_;|PLZH$)> zkO9flN|2m=poFYV*!|{*2BY~b^1A^W@6`bMt7kGKk3i1WKd3CWL)AgP>N9!6fsG4! zo!}{hU9TA-B7b>oa7!oDa40KgRo)`0=oZ1PTGkQ_YmmIpuI%F?(y|EAMrp9f7}0Pq z&{C=m^_BqG0y8HG&!!}^kP&{*%x}q@Gc*Ud{*nB%upB2lv#!)$+_a_M7ph{b+<8%% zV`H38{|X01`%+52taQDQ%i!hcIpOBm(t>P$JzmNm*?Vr`wfSo)cz^?j%^~EwrO1w8 z^lw6uEbj${NW7r(43(Xy=LTw533nk)BtJ8H(Hty5D#ILjaeJVqesPR>xUkf<(xD7x zAb316r#QKImD$;Po5gSWVYxg84Hin<*it;-15hqc@p+9l;i`2XIs-m3IQo!y6lGo3Da0AHy5PXizE* zdDA(7lO6k1!t@79J#VD}CUX)hCL z6L{+rvPLCCF^o#W$p^P5Xi#G-L6?8A6+ZAw++&oF=V=etCJBZzLN|$$zJ2+>2%{!I zW}JQB43g%k$3t6cU2_XUIbXN5O#MurC}kV|*Now1vn;x(JMH6B)yn$c!SEZOw6sy;jQc>qCa%`qU?k#rFn2{ zrq}=*0dWJdrOov3k?q&Q{HF5raNH9B6V8x$i)US%UT98M!o(U}T7ColQ|-WNs)Myf+2KycUitU&qA!yuC#kz$!WFk9<_Ftn$o`M4nB4O4hWOX z1EqV={&SlZUfS8+ld}EV?Har6XQmvChwx^RC-@3`S*@qS(-~x8cfAK|yTG>P)}v8Z zH(%H}&VLT8)PJWhKUdD_r0MT>0D5#DUVyi&Z%SSp!sK`v*gBuWlUlggV(K?w-1_$_ z&mJB^e9k(vZ4^&{boC>+KxGs_9U`bI%&p5{}nqk#L;V|rDujJ9Y@*(q!N zORY{U-Tth|KmsE#NiWyM0~46=J4?m2<}JKeDTiK?o0gxGyxrh5&oglJ!o9LSL4rIZ zgPvu?Ta#O&xQwVMBI5QW+QOaQ1d2X07tj7af8@^?#i0(yRqBS7{7!nnOpNRk$$bmo zxrPVr)9Ma+`0b?iy3upWJBw}emga$~Prb>tTUzIex>IE9bIR#EhFOjp#?zmRv)A6* zdkws8u;CTx!(AtFY!hv@;RC%!Fmkxx}K zRm(obeK(C!DW$FtOEh2LkY2b&>;E@Kur&oqwUSkRJv>>sA@ zA#V1AfbHIyd{3Hk5XzjeZ~|^*p&8O}hK$dN)XLP#UHv9UQJoa&ZnBfgv}WlD-DO7| zluH_#%lRsvgH#O2`tjmb5ZP{+mIw^s&NeC1ozvX|^dKptkKJ;GO+X-hmSt+J^6o*c z^5fmlT;Ab}nznrxOzRI?S9? z+W{j-Ac!OXR~*`UU1VciMRa3~UAEcp0Lk|@%(@4cG z8$A{(d#Kl8TEJf44Avf}c1Sp+nS?$JXCNWyVKK6>!9Q-@k;ZHbs~2>gIzxCq!ei%R zNc0c98vC&jRb0L7eDrWbHvC@D7yQ=|~HdY0m0X!#)gS%1PiaAzX_S1Lk~txam)8nEfz zl`P1#Im<8y&ZG=dP(Pay>!O2ZWY2wcoe`|ob!g}0F)bFi{=B(yK}qe>9rplx(C;^S zCbqiPZ2)AFU{sWDmR~xHTjdz72)>e$= zfc%j+$dHKT9D`mTbQW4iSP>wH9pqmI>vKfj%Unj=g=A_%|3fC`tkhuUXW3`8HUWyl zKPIKKU)IC+%Q&7G5@Z6B#9pjpV2VQs?m?cYfIir@9ie`R7C`zEq?=yZ`FeW>d?fxN z1@v!~c|yN_UVneQp7eg*i3e`m1(1YKJm=)iA@-LU>Z8RG6RQCflem>llz^~My>Eo` zgO2S8_M!V8gn@zdsdi@$?FfF$$|(Dw);)P!De)Y!jGxUog2<{<|4m$^q!xgj{3bc= zv5#BZwT(=x`PC0^$87jv=JY525k>l`2oQ?RaCR+iN$2^nwwW=xUw=%!y=?OPmR|S_ zHMFKO4j$nmvA{urO`!WG4ve#l)C#$fsIQUFVx7ceGlDJyq_1RklS+wO$Mc=%Srw{z z@uJ9*zkJ={P)0MM3E zYZr}@_#+F2Nc#|Pd_EIV_S1n6I{e#H7*jb9KPxXFy1x}kGjU6O zv8BMsro7uGn89j^RDN&Ar`fc!d{G-doyt)%dWzvjmr@jydbXXyCkb^qT{Rm0LC20q zh~UDqihXkJt^isoVE@YzJG4spA0U~WLE$=a11;O78rcci{}?hiPqSjCJc_F-i|n$J zS75J|_Z)|pfSKG%6PAM_rJe31)?^E29Wl<|e>`U@AGuOeF_jW%+Of=RK-oBTmUj-8gH8Zu(MYds%Q=PtD(8*#USz|M>W8L%EM+ zpCPrzhD(V#(y{()HUqthK>b;br+Glnig;=rRJA zfch0i{@Qp({Rn(S&{wR{V*x)**A6l2B%w3fW)`lrdi=E0YWPk^`Lrbx;*zF1|b zQ7L=jwzTr%odw*|s&nqH;qy>7qJy#OvJiUt_S6Z5yYa}MTMSC$Bv9__C_}vyop1A2 z-zZ=LWl{M1D2!1eqZ_rk09q-q~u>GU;j$ zLE4!Z!%WE1nGCnOgn-N2#apKox>jRpepBx%`WpX%Yi7BLb(#u4=RD+TuL< zeqwJHUlD?t3s%v33wI0LmxBXU8ON5LRAu1=S#%5h!GFdb@m*@DJ%d{n8F-KvR-Yv_;tzVOtGR;URgPN2<-_#*ZH>cM#vba8%#4-yC{Y9c3bc2R}+Czxb$Dtx$`($)Enq zonQ-IISKk;L>MpqZ{hQwWDGe9oix=;h?W?@`u`OXNvDvNBX9nvh$sl)Z)Hwykz>mw z|9eaS&!RJgrU+#%JFCh*=P|z%xSu)JIr|-xxYRRW7*{$w_VsIyt+z1Amavr*32z0SotewfN^!8 z+}9MIE=1oVaP)rS52vl;FM->jw-9=~)=K1%p*C)`eNK$7O6g8dWs)!}0pg%foJ|xg zPMoQDsYFzF!&;SEo|XEH72pJ@Yt&T=A-cjr$pGD~X6YmfS8NU0cc34tm&OTnVQ{zb zwE6xiJZ;7fy5lS$78U<_o?}_Gz5vqTguH*NW)`KZm4y@d?<^b_HxwmN>H^V=OhTtz zBf2bQi+kgFz-Ee=kjd75o7JgFQJYW~Egjbo!LnhWkex@I9n*8~HpX{74j zmpagBx)ID|b>#el4hhb38iIaM6BXDCa(W*DO8shClVDR;*kWlK4pxVnifD}Z5y^Ri z7`zBpokz0i~bS4A1fq$(=f<8p{ zS3!+Lm!kwBhh-Kwq_~?x@Qx=*=`AL}#Kmy-I|8$&adEhN%(ld^IoZe@jRW1pJt}&D z01%Fjn#}X6vOFw}nOFjeT=uQ>%gvboOf2XTiGl!(LA`HO!#IIYpjP`)oR6fG2i>^_ zE`j4}s4y3QGq9M_-In5_fKk?21-`itP!hRs@=B^~3S{4r6hckas=yfYV3lF9{b9*v zPBAXQ9#8m|{IC$4iZ;{aloJ<-VH&H6E_*9lX%{R^2k-&G^8}#|jz!&bT*YvYtGI(u z>qi56LOF~|q$(Sc#`}uM(`7*S;@DZWdjkF?j*Tmcu?P{!dP6nD??J3>jR8Q44Gty0 zlTAcG%h%QzA*4`z?Q{Hkc5C8z0#s>D?){)>z#Ydc@aYz^I)@UfEDYB;O8ih&@56H{ zYjw@fs?I`^5K)3*=jk*&IQ^I6#_I+6HJSm5ahe_>?uA}ZiNJhg6KF2GlbRk81=4Cc z@#cxiko5klrPmIo(-WYKhQlld;AGG+F~buA0gAvZ^ks+$Kab6kk59l-C^g&>LDE<8 zs3&QK$oRBHCqn|QnjQ%v;M=L?3|Ng%1mdZeb@BJDfL^{40=|D#&QyvL5TP0DD&VO1 z`~80A`{Ocp+^RK50R&7v?>!Z)$prE zX%aDoNB|uBM!MkLOj)z07i@Q$p^p#pPleDu?3~DQ11a4IA+l%BOpu3bTWH8atq~`d`S#pS_Y^`xR?rtusAQaXNM5F z$UXLvcDj!T2+e+SmbF{1qP-FCt~2l6KkaBgA~k3Pqn*mJ<}NTMDm=Pq&H)|?s?vz- z)F8}y`4IaYufO4xaTdA6a9e3W(KQbn5mB;2g{e5L=pAzeVuitR1O@|PBmlR&-r}Xi z(wC~Y9Cc{<=FA5rSN#_BV7qDdv~xz`m$H|CbUPC~zj6G0g0RObepjzkQx>!e<7zRc z8$(vjZlqrBN?UC6XBvvz+7aif?!ML?B}?3@cMTm3Rn$Lgx>XI?+QMaB zj|UH`MK(DJLQX>8|ib&)To)l|3zd2UkDg?H-Gx-tsT@$5SEA zhCE6(?fNUr%)b|{l}6XoUwN;*A_{Lk`AT07!WwQ9!Wn=0<(FTg=2pi>L!yO9rwCb5 zx|#ALeI|Bx#T;E0+X7-)_p*=HKk^a8>b*+Rf@Dz9a z#J1MPBepc@E>8sTUw^%gV%XL*{WADB?q4ryrz{gYQ|b%W0RW7~>Ev#;&*b@M)HJAk zo+VW9hZ?pOy?^>eEKtQ8BWBVcxDzN66lNgGd(o0&CVAkvFUOzOI;!e#Qj?TgCb_!D z28cX|#ACJF<&{z==aTI3BS>C92HhKsVIdxDbhgH94g;(|qKr;s72771BuPfE4L+U2TefoN zOg{^l<;s;W`0$ATg=8W6;h24341g-G;weV#yUB+ z&Bh?Ht`y&Br#>I-fOft_4{H?*YcKmc@cF``c_g}GzhcokAcqaCKEV&Zhp&oZ|6f3r zTG0Ux1Iot5^dBom2*Awzzr2{Ae5!@496s9%y&eSaji??z*82Gt;m!T{^IfkYTad3H zVIfE5RtQ8=U0)(HMZMcPOxH3sGq&=ixcj+MwY_VkE#qmjz!2G>dXAxdgx5Emg8f$~ z+2Q;UL$ygt!~q2>->AvR33vJdOXgo_F<*Eq(cb>hPUM^`gfNl@gXc{8-c^LIrnmR@*tjs z7J{@lX&$6Y85U`XQM?4ROz=NMGSuWcG{$8;6nX@(`*ZrddU@IH7h2 zsbhXX6uO?|YDt3XeiP_}wThJjS(!IUK>yw%j`G>$?b3W`NzO5Nj_pG?;sH!Ljhkx*$pwcG6@J2 zC$^_rN8>Mz;(YaVkvy5J+ zOiw=v2TDIXVWb?S=8Tin^ro4*$SNQ7|eCxY)tEB4`@_zcQ99%DvR4qyosaFg7yAf2Bi;yuLQ}- zDkXr(U(yH++qP}n&cwE6GI7VYZENCWV%xTp2`9GhoO8Zgb?*Ju z{d@PW>b3W~)_OF2CWM*;C3#B`tbS*+T|3;{e}vVq7>zUTXmAs9D5P}IpjnJd`j z$MVetX^EF{jN-7CtSy~K;Q=}>PXGK=)d)1?U97{p(R||Lsta{+RIrPeG^Q|~9?eCI z&d}vzcc&q>7aHYZI=Fk)nDmcygEV>=S(-=O!RX~dJEpcE2H8re|2VlOnggClX3tRc706ClSw-vHsBug_mS@1esQ zfGbHI{QYYXI40ZASUuzOEO3<1U6C5y8Jz3A8TLsyXWw&B~$NbRoTsOWNVk ztxU499Rf}Gw|Lozx9D(2d<`klt)7PyXuE!oF^R|?%q2oM4Cc&t zto_?RA^8;ysm_60IE901{_hal#2tl86B~D_S^BE!@Z%?p2S6}Z&J+z zics8|LH^fSuGUwq`a{zwX!)+RwgdL59`Mh_j&}2#j@suy9;xEM?Fehye}BcyWUql2 z6>(L~_fU2gPQd3OgLs4EZ@9AFJ$LTflSGjCZESY*Ry+ij6KO#Qf`{)WWy?#&;Hw|h z+1|R)2JMbZ!6dje|B)O10|}+i2)t~3R6LV3DK)2Fwq>fqmguje$9L;8vgnK-${0rK z6+^IdH>#Pr*Jn4uD_aBjznZB@p*b(eRf%vst~RNrN&w8JN7h;aI?~JHK@(eBwYUUQ zXolxASG0X;(gTV^jxeN@1yt&?vw7Yj{S56K!+RpjS6F3(;L)mmkEarMT>>8}pONQv zI0mHvRpQWEf|4yZ4Q005;$tDp?+S5GTYb02Hc{Q2=+eJtJIqRm*Y|JST`PU=B+s4c zdG;7Pi2&kESpX-<;rE^l00K@R4*(}#!W@{ubqBD?u#eHFtIVy8JHqDpR=wXc2vzM{ zcVs3r<*Rc#cu+gvEToX$?K&zXE2DEN?~_d@SpAUH>>aNctv0g4oBD9%r%}#tTrN=m zZ77zMs!UgW-^BW9rYx$+j`E2bys5^EU&)Ri*baP*z*}yiREWz5^xo!+M!Zm0yy%kN zWz84Jg>sW)(}hk7+OpOwM`({;QCYXdKcv-eUH(!GeRg7eFQOEZ*s!s!Z4ma$z{H=x zElXBkgXZ`~*yx*Nibj7nfMkGS6}{#5<5cMKkf-8pBQ4;-FFhXhjS`GI<>*$2*#4sp zxUmwxKlAY52zTFk%Z0kjizy=7-+bZ^jbh{;sP=wiLs*h;$QcfB@$&UJawvFkugwC2{WeHg)5N-$F9E5ZIyV)H!U6GE2p3hB~RXbO*0*3Yg) zUjH=kqbDN!Z2Dw`k6~o5n>Y`sA*Q1+1jx24^|5+ln!}8sg$z-TzGJ`6l^T)S8h7Hq z@N5<3DeO%+9N*FJu@{z|cOrXw_bUkCjnX`!ck zIQ@VN?@j%duqeHrg6Y~ho&v?o^B@NUso25S()(9?1k1WkrrdTH4@^^f$_@vqbf3JS za$lP6F=kvQghK_f+BIH*2~`LB`!iK)C-zA({0WI#rV8VxOs41&pK<@N0rD*EPfQ@P z-*Fe%t)%BQHc6s@=3s%A#(!VV`F@F(RuN!!B*$mHD@coLC6Pt2iWoK(oe2Ke5L?v; z8l#r4`MQYQZeB*b$8f4R7Ui^+M6i2lwhePDl?Bz0JHXGIKY`PP!ZL3Qe@mrxjXn8G zN7Utd81m`+ZD8zQ5N3A^1tcFkI3&&4=5zuez8}#UMT3tQp~~6ydLy0hZONVt#?UGB z`~bfg1>$+RE^y`s@iyC9GZ#PD&V3ZVWXEfWjyeqW_q2hG(yrPm$foW;f_oUvg_t4t z9(VSfo9iwSL^z)luf6MTlPJRSvj>?co|h- zAAb&8CnE_-m;>qLonEOv3!&P4m-fJ69A2zfb_BB?OJLyjP$ZpPXf(j-Zwf)DSRS5; zAx!;*T?qI5UQ>QK0fl4A_xQwKJPPHd(Y~t32#K@J08TR&8|q~|PQt-;49@W8Nc!Fi zc87mC6Q~7k%Lv*Tn0wl|SSOxQ7z-C*SU@36LgLr-1WJS^4CV#dDUPVPd6E)7Vt|4v zTy|h9E9l-#ar<&9Q(y7WqWB8l&oXcVnq`vWY#R5>t%!YGt+`{HXZE&@HvCn{kx7R; z4kC;@jzG&vpD`76QbO&)HuX29XliD56i^uCP)7w%m>9h>0hn^WBbOl<9Hk-Pe3C;$ z=9KLyvSKsDWawKiJH_v+$q>d;O3^Z-j&Ht~Y=qMW?HiW&G}@i1GYl~X7E}25Gb)B6RzP>F`u z_{Eb9u{izXFjvExO0g1C=}N?ek!ZD8Yzhf&xwj!u&y7LU`B@u_$h|1^+9BP zNN22OUReR&jkHa+h)g|{^O7ey37JBvz=-Ye@^0%iz6tpWTnTo6&JR=+L@6RRQi_>T zd>H{$qmFkja0E*@qI>AxE1H#mcNndE3ND!JySW zlnnUJ<``KCsY+}B*D#3;hkwurLmDom&Xf3(RhZC4@@f>hzfWv|qML_|>pa!LsTRqM z(YCo4&qIWk=QKYH+l7w-TaX|7UW~)Wg}WtxQZqbuIQJbrpfO(72*VLNsjTHEoP>wy zVkd@Vde4MEU-(#Fq#Qp$^Xd!}SP_lgY1!vncA{##8Ah;+$;r(rC}-4s;+-!OF+{zL zER^8aW;?aDpG*IlF3$x=U&t-FlOOP1?;;c%ZGfo=tIPM65rODHlgpcQAjLfhI>IGv zg+}GC)XM5&&zHAI`XOTV?i;#Pu}QZ z)7+Shjx4G$YeU5`a=7r6)R*(#jk@RZH#FmqxvW6)LH;3;*^NT!ci*TN91B$qWGN>a z2k-6pMCPCvK@Elrd@g(CV?6rq>eih8$T!y&mxkX&oouh9TjF!j&*t?vvZ@Lo@`2tH z$G{RTqui@&ih2nk{nory62tcDn>H!_14d!?g*`}KiF_nG+ld#&`2DuJXS)g>0STRI`8 zU^4>ex_UXVNmzDEXmOrz&RCRftL&9cCqGqm@VF={=!omv`qI(YNrWk=ROvDv*i1z8 zN>sn|$HK;DL>$Rxegl?ZNB-fC^yA9P$DzFCY0}MBHt&_^J}a{a$9ftIIQqrkr^$l4wt^$6G-}iY7iYT~w6VUf^JhRJc>0v?6`cJdooyj`U1g^3k&5WL9v{{!Y z&iJfnYDebc!Gg`9%RZkTdF+wI0mkfH9Jpq7A#3bZh7^$nL7v|2qMXLg8>Y@yD(lfI zrp?*umMecT>d+;2t*;>THo5Nd!S$;0N!^2a4~+09IEfebZrC5qBpv<6WOA@K8x|jg z)0<0C7h=|Lz8Pi|8>oWP_Thh-897%9i>PNdKJB*&G*5*Fl)*0+;AK{t>+$Auw-cRE z8-y{uW#&2v?mxazVx^4VCyl_5?gy7@%A z4*@d*y^Gg%mYVB0``;56b4{p>>m(+JTh)Mrq8AX0uJsh=^CjkHdAle2^&?9^S*A4G z6nPG&s9fdk9qseek+H~edKV(>m+F6KBE`c2rpgDY{2%J zUOTrkoxm#8TgG4Pn?mQH6y!r!7A>TX#!4HmK4&@M3CK+ThMh@&Z zWUBa$8tnIyM@(lZ!Zwb5T$e#O|6!(kJCP=qrIm>({5{R2;G(2| zIYHRld`Cg7?5-QtGTC{9Slkk=2l9|8Y$tC0F;2#@WzA4w5}T?OjwUhH;dI1#NIJpn zP$Zy25cuK{DFRct{!#H}QEAFS+mSHr;*Fpq6QrL_h|c_d9s|5-a)AvVRD@m`=k|q+ zcL*4Nx#$gYMH6WEsDEF9M#4qavkmF{_d+-EQy7u$%Y^WUH)uIMN(}^_A6OL$P&|Fb zX>Dq_j9F*SY4z> zbtd^#zkvwOkPGBc1_2i)*jnYIj^V%MOB0LDeh=%`npz_#vIT~jl^b$kViiQrZgW+h z&&JW0jL>Tr*@`1_|J6zc!Zt)k_NV$|Mvad=(7@OC)!%$p;ywfRiW5eBK2v!YeTDca*P!>QI6o}+O9thaWz-`5B+@R`I& z3ERkohVqj41$;iN^Z?+HC)@uBH^F?bk^xK`SdsH+_Rpmx(c2}~O3wS-l3Owr@wbYz zChPoRxk)o#!<8Wv=G(2&(RyzGEGQZkutXku^H@YCl%NmFw5dC^vtvmU6q3qn?Tl&? ziT|>;jedu74(Khp7pE#V_+kAfAomLxMh3QmWA@{sKurJd%dO-`uvok!c4Uq^PUpFW z1^g}TpCQ!#f0rAH@6G$(FJ^U6B280nr^v{CmBiKq0#iI$o0UAT({qg+rWl9Jt8zr5 z#hOaxCIxH-MHa=8#2Ru`4DI+~>t`U$JU&ZlOl+DS(&y{Vg=zIRV1e}hwEXm9)7HYW zQLEM>0MA9O=o#%blJ2$I`NWYLsKGU;E_F{^^BEuRpMK-Dr@oen9YRx(SEn3yFm>S# zji~TR`KFB`J-O8B&QFU+Ey-x3g=JfBi(zKU6QZ*V)ZXTu*|m9WNuZVV@*s(ncU?t=V-s>q}K0Dm#UXEtNGh zitLdBl|M_u`zRl-kmJ%9i!1nkREaZ4>O_ zx(Nr=Vo4ATKo`|=8`t`^vKii*#8XM6F z#F}+X%!=+^Q|X>`tpzp9277H+{Kh``U{}4w1i%;qy#w*hP_%RqA%~l-nAaxEq2)7a}!ticOF24?wI-J$}-^2}< z)!;$vQ`)op=r?$iVDj$U5z;8Q)SUI;)U}A}?rN&!Iyw!WM%cg0Thk`62_KEY;yLZU z^gAm}`LPx{7{wI&IesfB(-&I=Vz|dOdJIQ?^;AGgHJpwQej$H+nC!pY(*9hTUy=Lx zp;^ysU6w{`98g@y8Q33-Y?Lmh{}Qg zWTAP}X3^=X{^=0WO>lgGot2yQf5(8P^c3R=c`>){=xt%iRUM2rR$4eBgK_$x3Q#A( zaOy|DZ=)v^LQo2Z=gsieR$8r$(DztMg-fFSd^yPV{#&-?Lb}n1u;4@nV0?^EdHLLXB=UW7oUM!6VLWX%de`_VVz4tiyIvY9{k-sKlOz#>3E29kt; zO@^X)G>pLbJF~ISBLpVZi?c>0z0^zwa^Mf`nZx6bKgO@qH;pgn=P zjW1%GuTQRl0KLi?=XK;(+1SRAtc9C>s8#^D64roj1EW?r(QD)o!!l&FGn)dOQ-Um$ zyUZH=JsGYR%r${a`Vil9207h~?uf2y$kq6dNK|Dko+yt=Q^INZ>=F`KxRGfIJb$=z z7Pb6aqFRPZNcdt}jfd{%y5u{5Ub?Pi7&3%2Z~@6gdVU_Y8QoDuUKcFaM)Xyf&_tjb zQn07bTnAbcF`KX(S~KRh6NH;HeFzCHs>|?ss(*9Zg<{y5*$<=K--0EBreyASc7Zfc zwHw05zH@BjHoHB}Z_pMA5>^(RR6}?y2_<6)sMVTu=*D6}HHrhdm_H0GRR^ZIW%V*{ z(S`~h9yoz~ZqT2R2}JncBV{j+Mi+nq8b-;PuJ}|`o?Vc@2IgmH*Vv&{e@lcle;Fs9 zEY$C#*cy4{@X*7t92PmfoBNDx!B!_;^%P~%0^}rfo59EB2q%z2M7!k(;%G!6;^M^% ztBIS*|Ef{3N=5|01@bLTboTI}zmfX) zoK{g!78P(~FUTMwa6M^gELnkmBum<85=L0uKd}fa12WKzYpG#mH7N-sHv`c)8KU5< z;&zK5M%^aT^I$0mWoY*V~U9H5<_D2!N6wlw|`KGGK{{)YR=?!WV6`Q-1-Y6I3ckAnf(M z$seQl%kj;xR3+qjR|vuP||Vt#ry<`?=b&*WF&vAlMO{~*5!&LS3G$aJ5Dm5 z3r^H8tnWD&IbdCEk&n`>mp4!gT75QV2L!gV`@xaRREji1FJ75~>iR0wqAe5bxjrwZy;q?NVC8(xkaT$cDuI1bC(tmhDmM{{fJY$~PF6qD#|bxhm+s+ZH1 zG_VeqqDq%XL_I4@C8(TseY9^H7ljTD#n+K8(`jeh9f7g+a&zAhqx{^>^U7J^uD_Py6aX z{^8MXqXfyB(Qp$4MNmXRHVH0fH7B9AaMLVp5>ln$;&X0DoQA@ujw`Y5&9x#GW?T0RsWvh?KF5u*8Fu-hn#?9i&8e%YcC zNq}C}a*Zr`VTW0_N;^D1*25QRdpWRdvAbR&T>c=Vb&t0_fs5$k;wXu2s3gQ#zPQ6; zf>RU)i_QhSOEz7QHY#-1(F5K_Md>d#_U(;+{!EAKq=_`Fl8LJ|oSxl20t{UF$Lo*KWH1JFR&hK3glRw_+@|w~;1_tbg8d!;cf7 zTU**%*IM=DvZ$B!vijYSaq+Sdn@*`_dTvnrnsOVcZ$!Xl^mPcCA_|q3r(ELZaIY<$ z%OpZDSTXEYx8(Rhj0{?yiLS35eY0y*w&9rS5*0(XI@?ot%Y`RQS(Mj^{acP+yTZ^b zljF!&_LuQ&H#SDUtg61)8~MI1WF>bz!}n)fLVw!oC0s&_wqcK)z_a6?1Ce++tuyfZ zNA*0=O%~%7%Tcxk=9SQa?FcQBGnV7r=;J92V{3Gk;{&_V+-{wAiCY5dx7pMVU20$y z9~TKnAjpv&rnJg`{x<&CiDnd87vI9$aNLM7+dJ&EftV#lJF-6|8Gmqr z6;EL8?f8^C{^d{E&c6WD!UA{CyQ`<4=hx|hcG25X7PsA>p2`bS`Jaq#T^!nUnhyHKT-dH6Z|nQP zOQHum)ZeIg?{TePKEHiFZ879tw%%p{Bg0B2z~imt?Dl>`Ss1MEmq8FE2i;vOZJ17c zYV@~bAYfuB5Z>ps*JnZb$nM-(V~c z{dmD;QovqoaDs(`_{~>)iOxIsssnR(47GEt|GjI;*W;Jv-Rdj4aN~_tMB@!$<%M-H zG5s7xeio_z6S~R%Tfkl!r@#cyjPMA*&)9OdAEh3DA-3CeUu$}KxY2XN)F#!+3(wR@ z&5Hx)7vm^%(DzC6N-kHzbBK$eJc;(>!RhCHm{Iu-U>;bN*(9Q3<<>J7guGEqm)b!n8KT zsY})w`P&CdO^d|0XR}_MR>UAl>`yu4h3o>(dZj;;LFIC}(dsYXyK4JyffjOM4)pVn zTdlRLwfxmMc4^HhEy;hBN_AR?^;wnlDv^w5Vr&vG;BQ6}lTI&BtGcVTXQld46GLtv1USm4oYx0rRPC0_x8LL0z&N zaomVo%F`8&3)Z>@o>P?!>zk^xoVt5_-29dY6N*Vc!2NQ(BTC9fo5i-0dG35$ZGySv zs>e&yW6`>y>`WH8n|%h}=Q2sWCvrfZta`O6wd|oi-jrN&++1pboHZ;T6ON^gKU<}P z4w;FZGP)@S2}m*@p0!i_l-x({zIeP&lvi{$R&u|_+uLI2>yL-q4hM1V?JF0)Wa>Ri zS1U15c2w4ToyItH~AtC3;%&ZxF=AWh5^*km#hJ><+N*TGz{s3?0D4znk8T(iIU3g61oD zf@QOrjIDIC(V~*TjN|3}lC*#&jzu$-msn$j!xF#G)-nz(a&kFDi^9c(#FmyJ z^fU444lO1r`uWUy$a|8CVQmx@BXy|dwiQ|l!kC9iH`w|7nP0#v{+S0l0 zCeun4V#^RmO>pB8WC|FG#4vE}pr}&9M<9n~elLsoka;St7Q_f!rmBL|tZANti$e<2 zbwwJpUbN_r)LWuO3zj)sp^#GJ(G$zZR{?J ztwcp)hh)xgu0spHM9lr(#7nQBqUkD(mpvFxW$c?rbAf=Nk-2|u9)OH`i(g#-aGXdyhv47FY*a3!8!mA#85)RtK(UCy zLVn=nE{8*1tPN_bmmz8l`&2Xrj}4;$E2kuab(|rTU{k++snA0amX*dMh#(V^?8d}K zCe&&6*Ic)Y<-w_xGH9=UJC59QfodPB3l3>fQ5CH3G6Y%j?8Rt20vK6y5fDJe3=#b- zUIt&yNTamo!%5_alw0)j z3nhwsZj=0rcnV@hJ{_}9)`=mMfapWO%gR$SfQmK}MSLX!1)wYM+Nnv@cvR+gRmAHt0W2up~#)-qxOW5#<<%sD> zJ!w_Hr>%*dZQ+j<;GtvW{NSJ=-w=zV1(M0yyvAKK;XaZmQ6v4#2T_WI=&*sH)Gzn?M^GWyCA68*e) zTImr^NrV*c@_IlfY|Y1Ax{A)74efV0&QyUWVz+INYx^zwb@cl8^kW1W@CpbB#L-De zS<_~4CytWLgtF0}N|ZNcYP1O|mQ8PzKsW07Yvu{cd{2adg(k%Xi-6>xfu+L*KC-LB zqMPoxqfq$@1fh@_808^vq$|XHazSMb*Xkl=aI+sf40Q4v=Q`}j_G*IvX*RL)*GqbU z_Sf-Jpc>`4hRH(b?Cwv)G{OcXdy}%-eUQ+3Htca6?EJV!PeY1%XGIe$jBpQKxR#X2Qj2~X<6n@^WO5@{7JZMV_Gm~ zr6_9wpw%0lzahe4n+%f#hHvD{cHE$MjP1zpKlF|MQB!;Hp46@$CN4Y^2o z=o8`jDOsb)!h)`#j^Hnhf{?}gEd+9tl)@?l0NuOPJfNsk(09W0!!li0I|!ELHfx|| zA|YToy^@J?ho8pfV5i5mg&?inX`7r+@%Azb&&5WsqFh{6HyFGTD`KKzt0~xhS8!IG z1HTb*7ES-T>ECxXIoY6T&fEQM)ge3lt+WdGsYR}MYzDP*UP~{_TnIMVPXtFc2{DHO zXvHHzpk}~QSGL<#WUcJdKwv1fNup#v^+fS?+6p^}Zp36nvr`qB&l6hQeBV~=wZAcK zj*QY7%5qTr#%LWwt*uH2e-7(vqQ)t}b;n^Qz!`mha0_{3AD|-f#`(jLC*G!hv?rHE zmAYZrECRJT7V%=HZ;Q#^wq^8bS?ygEfUrcVKWO*Og+6qFZBZ!Z<;?EDN9s2t`pTzJ zJNKqOH?}@|Gex)Kw?^&cF8Rd{zU{03`bf$a?u?zv$b8>meLEsDQ}wZ_K>_ajT3hU{ z_~Uffzr?Qsa|Cj(P7R}QbZJ{MdDH5BwcNSe+o@E;TxI8Zs#hI*rsoJm=n7U1pIGMnkqWUr zNlou;8dK;-Z%!E;Bu-d>P5vSUZjwl_! z{p%mG_?n!C#?9aLD<^jq!a5Vw!OQSdg0`ON=~c3I`~BEbb;mAjO0FfW6F&`PB04C; z`Ku>IuvrR0F=q8*7@JTLNHyYwZ1Ur3je|@^}FmUv-W8}jOu4auVTL3GgWNe=bZxYX4ZfRQyMxWia z!Mn3@eD{P=E_@G~ue&;O1X76F+<0A}2kNsV^@{AP5*`x@WJ$U&LW|U_f_~TUO%|kZ zf@q_dZuf_&+d0!2LiTmGPLEP74L|nhJ;B;isd!fKI+uCFPiV1AmgOrv$i;(Rx71C=A6*u*0Dobw)3rT5OOwX zQ$MTniP|IWOA4=2o@VDykr$1dxI*|C42{u&Qqha8@pL;t;*y?IQjQH8tOfAD&V4Z*UN@Gz`@CznqJ*@T#C^+7 z9;o^q=wxag$v;$+aqO!tacw5r&VjKRC7Hy@UK``)Np>?gat`wq6!!XJDB|XalfEik z7@%Y0x?JHn8+^VaJoE!m%R25{S$Xby zRvv)5KCt$txdC&Ow{c{|4p^}kC6;bz1q^6IL&5oM;a8jI8BXUZJ3UUvq+H#$NM98N zSsuczWZyTgbj?kGTx4mRpIAX2E3EeMilR^>&pWW-I?{Ci%_)Q|!*_lJ$@UQ>iwLv< zS~Bk1<&_CR7C`*LLH^>hp8i<*eF3rx<kK_|X2IWZ2u>pY^ zu~F85-G(QfBNFL!9ujvA^-@sfuYXxkb~k7o`))TV5wd?7Vq2W)liI~W@OlV-74sCx zl=)M3ZG()o$!VsStJzQYcL4GBmn2;!fLc*ZmTI6VX_F3TN`B4ZndefLMx^GQPsjYa zg*6|lb#0f0=CKbaeh!XP%D;;BgxnZH5i7JxiqQxi^6)E*<<}G_%f?58D9Vj^_cW2D zA73PMPfI~J^lGq|1M)^@h=fc{H?e=Bp(*Y)1PLfWmjYF7XGosmws z6bhaC`@|bO8Z8)0RrWYPdu6A6)p%7&Wv5TYcvWy^r%c&+m1X5WbmTZbAYR#NUNlb1 zq`8fza9Z2(QI@XGH38a9>{^S7!cHwEK(N|;t^LuMMfKxN{hri<4rEYIh! zm!7?^>T9*a?#qwyJj__8qtfJ9-_VEpZezEF5Cc~eDGv6+4AiM;4S=aH-Y+Zmt1(C$ z`4`i)Q0>|nr}uA5?v+w6umv;am5Z}XUxUU*yGQq_zqM;SoB)5PW!%ceZTqtiv-4+t zoM3=BwR0?%*zS*jJE=wjP8J+vmW#>EF5O0OyGP?Grs}mYPX2m#@7$ssLB!>)=h&Vd zzWaU_c?E{YJ`-`b%~=8-4r!#R0&%yC+3sQAW$-YVDONG)ZsF?>N}>DeJDXg=W$_U{ z{6=HJTCe@K0)W@qI+h?)JnVS2fY-x1mMC)|?D)BW*Z)Lk0cYU=r;s|jv zM5xhH6ByzCZD6sJ7Iz8=H?{4%E^k|k7M_+`ZQO^=T68A9dMdwqi)BUA#=64IJB6=X zaoulrgT`rJhI~zyOZsoIAL-U$Pg#?^PG=fz#e`C+Pp-0mGL| zRWQKr;UDrgB9GyFY?^5N=%r{p44Mx=XZ&io@On=7OsG65udzGiE3C^Wtb0Mdf!Gf+ zVUu`w?*vVDG{kppN^r3jnFl~ciA!G2zBTh2ZQS|kH*|rn${VuOCi`f&f!|*OrcRGX zsnbc()QWRa`|xeHV5`4AdlAp^cZO)3y+rzRs6qd0;XePBwD!h5%xl)|Zk3w%tQ-Zp z)PI++zH)s@VoXfsf7BG7o%Mhod77gO_pRA={|)~q;sMd4X9F|9<;6|@w)&hKZ2uJ= ztivyS#?{wo1-W||#K=28s2^8t*dpVKi<%T}uBXm$e+i!n>X$x#UF|5Fcyh z1L5LM>%*oZ2WREw_z#Mahl}%nU$o}vP1J6+p>ED-pCC_K3H$efh^DSV1YJZk1P;P9 z)CbjDCG;qBN}ism*dy0W33j4sUex|&5-P^ChS#T@#=p@Da%4T#GFvZ1^E*$a+4yKb zvL}>nL7NSKPH9@gXw_Tvx|TwXD+Z(JV|Myhxdp^4`fJ~`Irsgt*DKuWH73oc|BMPi zG?h1v(gX2uE4{fts8Co*W{wdoX>Vr>Tigq&umvwKqr>3>4Lsoo-TZn2@WP&M*&Tq z)nw1xPv8H{8-OndiijY^OZL54bk9&0ia8Q1w;=k@Bre!#MkFij0K2q6_=&}FaHzd* z10FJnW^wdf&XR(^1?8db)4mp&0Lve_Vktm>Tdw~(Rfw_=3f_4POG0W!O^hABLW9A# zSGl4&MqIxj*hNIKzv>4scJEL(F;(1SCoDXPm z!4WW2u(>2bcv{;<3SC%l8Q8vw)&>GlRPSXh$u*s`@CXOTr8u|&RapuBrnh}m=y0H_ z5V%cJ92ki5wp?js4Jt7K=D+)?$Y2w+8d<@m#;k3hROHq4u>AE|Ve1hvC&(>=2NGdn zq~LV@8|%TsQflVVmQAZ@EJGX$n`2-)z}d9+B8Rc=j;Ty*=Qr)UoY@2XBvk>MVVuar zV0tW8o?=K{sCseeiSOTnV6<$FoiiR6qb$oXJvgFNu{^+>r7-k*7i@3DQ}&Gp8AEY0 zgR$(^mvj(E2ic3wPliGjsa#3diBCceEbJ=B92~Ad1#_ zRed-K98|8Y73V4z2Bqt`v1S3B>AXus>_=dHnJlZXTIwG6)@Fsc`idD|BdZOi{oCp5 zBA2#ob4ZuAjz^|o#PasW^QBRiwjJx?VabC!`1~-4nKc|JOE?<@U{!M*?JE6TcQWJ& zH9<}7l=wOhS_lrd^Y)$*7ZJ3@$NEjBc+FDZA{kw#LX+_(j*aD-4HyBgq!cQg&EtmU zzS`7PzEuS6zO@-);Q3);<)4CkoKZF^Fbt%9T|oxkb^u}D=X2pt2f**`{$)eRZX-t+ zczH*}?)D3wT?^^?x}8w==OKQMB35taD z4~hjL89z!VlITtmDd5dYLe@a3Y2|DO`b@j z%>1)p(4fG_GhnQ*SaJJ22<@p42l9k~&)duM?$nVG!f#f)oB&hM3QJ%a(kC?JrO8BKVje*IK&M(fg&OwPn~67 zxr^T(Q1=}7L~t>+b_10iQNu)VIn!`*=f*#Z{T#G*opr?@AeWZQmM!s=sU4BJZGza` z+A^pbt9SFy1?9SCPv8Q78W0lhz==JKvYN1o)xkF%ege0q zA~|`-^~_e>Fjg}IegQiqTJZ1xRzc4G%441RCJF4S!qajUw{&5ac;{k*^=87wKHt@N zrd0~ImU>bK*7M`JctSXP-yOQcj#%Zwt*Ts2Q^_XXMg&yEu{3#&8h`MYJ~vi z3FQw`p9`lf6F=$N%*?v}aRuln8_Uof2q0bjuDb_CdK!WJaUxB@2i3-|FINPrR1;n+ zK8j9^RFLvQCb_uvt623kr=|?bFl2T`ejskWOzKh|WorWL|8Vt{QE@HX) z;O-V6IKicH_r~4b-5r8!f)m^wg1ftaoO`}8-n(zKRPXK|UA3zATC-*?>0!@Td&vIl z6UPI;SMz|d=R;X@@w=FLg>$&@T5(8Kh)C`&DQ57sO8m{mxL|tzsa@rpW~k;G^bONX zhe7*f)fuQGx((dd207AB!3lg(H|q8>d@6{{-Gyolr>C*!$K0Yen6!Y@bA9Z+ zG09%x#i>9|J2Uq)^u19<5Gyw_(NGsZRPD*%9euLJrY|wv`mN@XHwj_`$#MM0m%xDc zGN1G5w_EdD)f=`$UtjOL1QPdU1HE#dqk~-fJ(ayiKGb$(2Sr{IV_5bOqsxa{iYy;O zZbwiNa5R`Z<{7-}UM&CqX#)d%WayZb#YAD6nEti?musr_pzK8*$dvg z-*GDMeJ(PNley>VL){4tbneu6qAyHR15eqgS3!ZAv(bU^rx^w&N4`sn>E4j-;S#rk6R%sICMN$rPfaJ8a?%&&rO8f>T>ER{Q%#s{0Bccf?CvZZVZ+O?<(94?QV`*)Ew zNINyJ2xj!XuzW&1dQ-t|6nD~{Q9*U>mlUVGWR&&4#^*Xd!CztLui}lA-q^7ecc{^B zCLa&ErbnBGU2;<1pFd*UR>7vWxk9g#g?KGGI!y+JoX|AB2Zh_-N0ZCH{waHRJudzD zQaDK=_b=Aw=K3eg9w1dE@iWWb{{`7GpCJ3Q-uWSld;>89L?Czo!%w)VQwZk&LD`eE z`YP2aYDlt~w)zqLRR^>YMvCJpjne9R@|QjPlukO1il!qgouv#COJ2vSQJvI`Mf*tl zX)H|U+G!&MF7Y!Y;8p6km|7fn#M+IZC+FgU)X#u++y|-V#?wH!=tbvO*<~pm(NU1u zpe$V4VPM>{x8XeuQIqH)L|ztDKpe_MfI5$Pu7B>SvKEWt(w)j8OUIlt4SmQDLSKz5 zJS?Yb7VW5cZAX8i?sT0YXIdFuRXamNoWN--T-_fXs&nI3b$D1fjBwg1X+ z&1W!W@xiO@+2(IwCFrC!GU?8N%zrh#HlQ||Sm~*X@sv;cjeTCt87bIfk|Aq(S%~V^ z%$ff!{~ea@C^~wESdC+AYwq+ru@E%~vjz3}$I_`Qm8kUI$_vZVTgc^aM7np(jK~)x zrD?~Wd=&P6Mq5~fBVP&&rsFH45it(V3n%q0n%j~4AxnLx4t5-c5!+I8t6#tj~Bzz;_))KcxA9tbqVX}F=K zRC*}4oDUGcJ?tBQg7sIA=&nU+m_tdPE^PDmg-vKz$yLZvUg0TYEt79pS!ktV?(~04 z*ea{Y*;m9;A5TnV#fb&^5a!%_v(toyJvihMiAU5%3WvTKa`xe;e2wrNW$cHQx|!;m z?Zh?B1#hpnB@2lg+)f}TmyekAbEwh@iw`WBu!}ma*It`_G|pj)gTf3R+JFhLwl(*k z)De9&5m9b2(W3(o^x%R|D95Vu7o=tfz&%@7CV7&WwbD<8Vn>36Ovg|ef=ZDX|9(mg zldUj#zG9TYUihX6qi3c#juNq?35T zHu}?rxB#y(0&l%J%pr=xfip*TQuaLSuitZ8y1JQaBb*La@;S+Q#4zl&=#qlfD!Kbr zh#ua4?z5pXP75GttQRoq#qA#%j?8E^aqRY!NVj}W-_E)e4^H7N&d2mEP}`jk?(p*_ zoHD-pc-`w9_?EKXy3$Ey6=FYfoGhFLSGnAfoBUp6x{HK%YN?eH86npBlig_`TJf`5 zs?xIo`?BJpd7?1puZTwL*GQu8{1Huw91uudIbx&|-#2_fDvg=_pg>*$If3X1cCm#| z$9&YOlh*NB#gj<(`O)-mq10^9Jmwx$AI~SHlLjE~kDUjQ@7pwy|IEkJ?B@H!W^L~K zb1dj3ceBU$$ZD*UA5~0a~6B_rv-uK zpXQZ`z3qX7J|N@+iZ4fZ@|8XUo{$x5_4{=%-u7t9Bm)+l(bbRx7CPaNQEV9I793a=l>G!>L>-kxt?OHXKk0&^uR>*mqVY7F?Y6WfXt_EV~z%VvqG#nPk4cPvjFO0kP zN26skB92cwS)pNr?1Hee6VBT71N*Et9}l0o!@czx^mHc0IoCpbN4dTnyHfndGr4oc zDs*DvtFgXX8`YWT<9l64XCOr}G`*x4KwLOIqvQL>g-bSlDAkxt+t&z|czKxfvRN9C zl$@wc=)Z&%_pAa4%^0@Nu^Qs!6}DG>mm_is2%*pls@g)&(>j3??0AZ`+~IAMZbBrsjnc`sW_5iT6Y!xA&5<7g7& z{?ieh98J0d+$eGGa)YoodhGWEqfn+>@M4Zen401M@S$VySd@KDIfbqGsj=AW)@ZghNkiL0Vs22( zErLhIkxWmR>kiQ}o_J~D2hsA?bATFvu9(yHp*(3}cwODjZQdXraVcz zUz%|;u+dzwypP&2*@BfKyW$4|Zus_25(X?~_-D9l+_LBE2B8g4bM*_R?BuZn!Ch;# z=bEH|t$%U3_<6H4L$R7FWG}Zcl^duq<=#Zfqk2d!0245y9A->g+yb#Jbb4%))vN6o zytvU5y$YQ4`98u1;TLdPRL7;omx2{xg;Bo&7B6*)Rch(xRfDw-Ij)bHSL+bU)=W_1G0VJY}bw>3O#RBTv)`L3Rd@2=WjaQ4UIa+8P&>-=N*J>oKQ zEDOXE%gE>A#%{tN3fPSr*iej~;;CGUK+#q$1O6h^WaK$)9pLD^T>S3sU{8;K!^xeN zJl|!w_^oYX@K2lUJ~NPOtbov*GDo=#C!ZZ6jQ6F3vqa-OznEMj&9GfWb4)bytXw#_ zhZ#RT%J%X?T5=1YhEwqiUO6Be#mEu14t+rE(yiIkUVU7U3yBj!zvk|>{H5lW0 zFsS^sV(70=a=gtB0j9&0e~!o4{5R(kMSXB)fFnb(H5u$CSiV%o99pdgIhiOMtus3L zqy8_(buc(wi3IsT>Fs5HU-KB3uWNStUHFVbe|Ff89q{g2qdYr%vPnJOwy6V^O|$(Z z@sRMNN14}Dw_ia*DL-gKnb$OKue*bjT)#M{p!~_-AFY>oWpca-}60w~?)~bo7CyxWYrs z4!d`T7F)z=6+eYO+_gd1firR$;n7Jra|9ZS~X^4zIe|g4x5+j)z1M+G_mSxgK$T{z}o$B zCozx+IQ0$+natqO8M9$p4eI&~8U8a}F5O5P%u!50YQtq_ZC7+9Ba!hrDB58u-^G?p zmUpolT%|q~$?xt%-wbm)`XBUV^iZ5$s;_{QeO}#zLuWnvg#N=wsJ`1wLQ5JO=dm5uZD~h?o#s&| z9+h=CieW<0^*Oh|uhdn!MT+kHu`TdTPNLbPcpD(+d52W-!Y>rjlb(<63xy5T&|17w zd)M8qgR7|se?8}#1*TKDoMpdQQ{v{EjkP~KE*cY+6*6976v2zmamCP4~)iy;N<*|YjEnHoKG0d&HZ0wwa$3WMk~_#1MMp`8f`ea|8KAXh7Q_*bLgKm zD|v@hwEJe*J}<<77H|w!JCnOc_RM9ZUa2X+s>|ukh#Fa{-1m6o%gW8KVDAf(BLKC^ ziW_z#wj?_-&2kInSbH(#tG1nZm=k`YEYG07U}$B8VSt(~YDn3bp{ptquz@~ogWu4U z@hpPUo3KvDcVWB3#>pC(l8T>Itu-8BehafAHU>0trhn5^sg4amcPNQe+6n*EBl?(#MT++r`CTyjaNPjqPD*r0Vi^*h0Mb0KXB}t!B0bZ%NH%m)}C`x3=L8=sYbY@D;?F|1t z+mv*ZUJ6a6iI zVCZcyJpHR8_WJYS5dJcX=F*2qEAokEzYWyO^TZ#hB0MjF(TkbH^h5Be6GHX{UP*oX zCM-@h&&w69QTbj4d|suD@fcqe)i_xB0CTcmjFF6Io)Z$DK8de%X`BddGOkKjEUY-h zS_1X}a@{!OnP2C}S$6@`U>#*uairW1sG@$MXeQolb}0lLlSa2SU%udg0W1?4*J5{w$rP`w;EQzOZRK`w8&iG zTJx7{4zZyx#973(s_1ZJw>*I_Mmat56K;{ang3w6 zb@!N0btKyZdjL!-GBg&N+g-gmYfbgf^HIP{gZ{7f=epjJ1+CBtWksKK7-qM-Ha209XS+Eh zv9s=4vfg}p88Zg;{FBQBiA7nusqzY-oEqqJiva3u~S?-nFf{q#9UmtunjPwms z)y|KHdwNYE-))$~DZzOnN%JK?gx%1sRkrjy7-n=rI8#=1 zjRP~mutDyp^3l28NNYnT= z50Cr3iMv%F;RD;V)9OI5fXP5LU#f811htj)$^|*6dCi}t);&-|6S}T8OfuZUHbX_1 zgU@u+;X36vzbaoYT5XPCT1ZSA9#*Of#pm-i@?*yuPV6)+B^To3aZLaOc;yNlm)LMX z$(_Vbm2nFj;-YbArNXWRlOnJ1SADTmi>H2Z*n|U-BodjKkYo_&pA|YXjMAV=6{h77l9F+{&vRDV7RAz3GiL;M9H1_c1OeX zK=F^)+dSGfIw6@DzU!K8?7 z;Hd8hjg&Z$nq?lBWi~tXH92}=a!{hUUZDhK-luBy5XQQ{J$ge(Ha4X%!Pqf@nT8kJ zAUs>7q_)56JUJ;8CYeTlM}HzFe8VcK2>_Z5gcV9K(GAy%?p5p6@4xLAj}|_K4iii; z>5w?CU8+sDFl06w3QXjT5I#nV8?L)@8OPh*ImsX_FSLPiSw&uXOAL^5;E(8zR<$X7 z;Evpl^d6ikmzLlbDRKQ`GGoqA+?6n>5NEl|zU8GRS4xi6CDn8(aEvAG@#zi{YXvg2 zfGHLKNt%|KBg1yA_*V~%i40?}Up(e>Q-lg9OtTJF-^Sxx8uKm^Q&|X# z{fYJrh-u05cv>4ZVK%GX9nJT4Ok%dcW+mkoKCYUa>q=Od@O*=${Xwosb=DsQO*(c% zDnALZ%mieSQ*E0RP*ah+)NO!S#)1G^nJ0I%H9#uIQ(RXQ@W z%04caUBj(dJB}Tm6tpHAR6bZQSB6E0&=$R$Si)QMZBf&$ubXFckBX)$R4AKI`hH{G zH$+3H3KyoWhW2NFWO_3sOEaic)IyNXvHlUN*XBx(R;L-cwf#`_@0f6GP`TJF5~>$q zWFhnZg8mDY(NLKb6^E+STCl#KxG%9=J`QOji4W0Sexc`4-Q~~&u=&dhsQV|>_~?N? zl^3fQnSnb6FO!GswN~5+ZD--vK;;Y@dzpLLhAnn%fI~zk7T*F#LNxLiD1y~uZzl)pi|Uri z_s*rpaz;}^SRO$SpI$ND=wGm{DHi~UeF4T#nzKBQ(jmOB();kc$p-H*?IDTM|3>5S zvi}RYA=y~idH;XH5El0TX0UZeYjy{b)(_}!VZNaVM)(<$Ub1EWh|~Kk5r-IHZ3YqB zHN1IHr+r$P((gZ)$y!^)H^8k`#idhP%urpH$kBX{Owc+$`~^D1NTiL4uLClr@N zgI@{sqz{H{46p5~7-vE-I>X9)8YB)JK?I|ROBJc@i0qvO4QYrVQ8~t6V8wFPk6_I7 zGl-);v0Xr0hxmh z&sEpXhm(V)9Ur}q98S<0JJEMTR5gW$<-05T>PZ!3>#?ypROTJHF53 z6ISpNmhIhiUpN-+s`~~hJ3?DU334Q2$qGBs1;-?QC#sUz7R8u@oJ8-0D&?Spe=lM^ zBXd95xBaEv8h69s=jmRP*^yEB1I4wck6qa1VfUzZ3KTJj?S#_GsF^-#jRfIF zORKq{>!Q5UFV_0&RWVtj{RN@VeY*sV6IC7q3YmOO7YK$*JOyqn7tclu4&wBtC{uJM zr&pGA!gLQubd31zKfXRk`(Pb{)fjdW32JN(4=|q>$jm3R`39nkyyx=x?Y8c1P%2FX zrAwRWmF=0e@Pth-o}H?KqwZ#P-@-=$1t%KX(TPx~L1g;FfFK6q%8+3a$^EO9i++_~ zL0d}dH2;JEkCbtXV8froa}W?hN)&ADLKy8yrw-g{tPG5J^%Z#%(wd`u7$D2Uo5T}x zL4^byx@_9_fYuP6GTb~Oh1N&aj)8z_)_!B;YT#Rw9M)gp=P~RW;9vK{&m(qk#8u#b z4a{Q6y@Se9$hpeqIDmh*W^XsNQ$B7F?VJkh2^Lz7vi1K+AHRjG2U*d6`yoz#ojcS5 z12GIua^${Xaa@MzYZtmsYO>ek5$GUE{FUlHa92g(#RHU zpWC-|lE>MtE6RNWlnf;S8Lzfqvoc0r{Mm4;#tX9o(%DMC6|3!g)Az0Jlr4!3Np0XE z7l2YlvRAkI<>N_*N}v(rN;RdAQ{R&LR90^^B_er#1FIX9{!tBoKN_q$80p>nV@phu zN4Cmt2PfSJ4pP564Srhs2E$-QpPh516Z-|97U)nn)vikprD>mpoP{|AWb|c73~C!$ zaAMRXa1(yBZ#s2>q9?DO5qAJWK5_}f8s`ZtB9>=)KD1{^<$;gTuwB&Q z)d|XzptRxnau})xlV5jyu;#}<+QDa-2d^smq(zDHacu1dSS9d$mo6q)5jLBK0&ut=0{Jw@@lIqA@{uy7` z!UG_DtwQTIiUaaV8A=LXlv}tV%INcl`AP@SYXNdJq<}W+t3IKWz<${f;oaj=^#*eN{_CWBX-(yCynG68AU^YWo@o zyPb`tpNxGFb1aaGaaJW2C^%_`x3!oebcUcZ{ z>J>l7ec=q@g-C@~vHB2?(@JIJB(V)G(5 z*k~K=ZdXo0q`Bx+60T{^05UhwmDidBj%5rT%+_u7eauOY_TT{Le`+qQyC%9+wbfwBu;}Ej-T7qAm?GPU=QqM9bnWt- z@wo$d(Xl5@t?E$96_CUbgPiZ)sekt545v2pYNK3J+8}>x19xm1pRP`54NZ7{gyk-= zFLE(+{J~IN++GXUxqpe0I^}zg{)D>^skWJrLar*!H6z((B8XzA*r)TL73V>+@#kQs zVGV5Wp(tAZ_sDVxuMMF(vOK_tMXm#x+@T}T z&O3lKEOv4P`V}Mo!BY5ZJ8^%Y%|B^mlTOnX3la}&bz(iTp(enp z2j1`jeWf}V;Yv3mKj>cHO_x16X;x8JwxcsX$%k4{kk29fU1@=A#E_z^KK_(DArfwX z0D3yg>9$pML!O0on1B_RAl_24hi91moH_Ik_e@UsI8pkK|6HRbo~yDUy70`3OPs4q z4u7*}s>KauM@Dj|RFjWYd^c~kw2**|oUe^rK#P#f>VVoE9ms?bvWQws@*2p$YK}Kj za}{(5Ee#sgb%>^3rmR=S?{E#%lclS%Zv!_X$hV zOxdxO_!@En2@2Xw0F)S#XBwvW$I0#9Dl=zk;ot zI&qEA{OU42hOdRe2dZf|r{i6ga~*YuzIGTr1c@{0gJ#{pQV4!^e%I97(LD8L`4yb<Zgx?|$=&kLZ*gy|1h~EExn0*XyB1=JR@=nSLd4HV zr;FD>PAr44@r$ZeXW3ko1uuBuN}(QXplxeLmu6WQk3=pBuTRP22sC%olnc19vr)}d zeSheIn%iJQZ3FMMlbN9?c`i|yCRUtMTE#4GTw3sH|3>H4GdDY3iM|eYb|FJ>)!EfQ z-`b%*<77D-p@~8pH>kgIlZn0ON|cnST|EZk7CxMD8P_*;u%5;pqJL<)7K!$*qe@{p zN&Kum9(Q0D!$7)7Fo0^rX^$A0+*kXwR!ezz(k#SMdHU9#ZID+sg)~*^yMDYNO-P)T z?XEU6wt_69!qvip-*V;YOHjK~^X0;J=isBsx%|c>nd_WVjq9v*(5CyCPwZ7_P8t~; zKlQgPG)AiB2t5sm^S?NFy(GQJLKe)Bi#M#cEK|JKFqsnNAPsuV=AR@Jzc#cLI(pRx zRwCbDI6VybSVR$Gb9VW8d9zqHabCJJB_4tJ8Gk0W=kCr-YWr-gs(4nM7GWI7S8CE_ z-h0~Sj8XSPJ-w@$HG)7WwH{Y5FR^0k51>UJ&kbafvzr$kJmB;S2KnZBAr_p6f!f1~ zHS^0mN7x-7D*5YAYwzsR4)>MDzG+{l3tz?R?DlttoQ<15J>|ALkA}?6xe}Nr>6=U; z+U$+@d<)Up$M4pGE{*)@nyI6SP|bEd-rV@3F{S$k0&SP>9YInm_~to|O880QIiLh2 z8W9tSgfM{3r9wbmDV3qph#vfDdZ4RjYJhCjml51eOxR^kxaBjS*=tE@ky+(oFdGipUhHM@j9qgoNx=Y#|gdKiH9TJw}AZiBjliC zEA$D{t%4ufDWsa8Nw+A^_43Qbf6d<9~jcKww-N6q!Z$QgLR&*I5{)!j_Etpc-jON zj*5)@yN=pN>8U~NTpa)VFh?(8)hbXJHRQr4qD!9k_s>i}*zyH(4$H8SFStb2sNc2j z$n6Z)K_e14nBCdwpaYXZt%Pt_qkXM=Q$>tQ9Tge;7p;{3^SQ>}IwFmxy&{>n(HdMt zc0ugE^24z7(wno}o4a?P&Rab)YjdxBGhYyo2;BEgv7`e!_9B1fikucKJC0 z1hGI?Cph4cjNtOV@|~Nf&V{duL<1Jm>e{yM`tA)2e;EZU>u4A`r8z}cL#+j2M1lz! zKAR|z7Y$){PaHb@ICp&uwqtS6j_kYJSN%0c`ntko!Z|HT`)B^ENq;?j2jQexzcJlhc`3-dT(zkP@ z$tmIcfcvnxSkd9-tBobNI!L4>)YZgFKX5Xzf94%NCP4DXh_Q<@`2n#ich+& z67v-hbY|WXy`H~pZjf`3>1^s`v%2UWHBLDSlPE*?9ko`_W~Z(Ccu9R+5P9(FjC*9T za@CG4Z2W%qjeOGM!u0z`bvsCDaq4Lnq1{5-;}&1NFy9VEk%u%Objc2 zXM~rd;16PZDE3qm9W;45PW+fW8Ra*H1TBR4F|m@rIf27R61yA}!=fgvMNH{%JLSFd zX~I}&l9HUPZ1{ST;0f`tFnx&lyfl%7q?w7qCK{3taZ%#9T4p0gyAq(!cH^_f)!Lu^ zY}n98q_s={1ya})k-0cq=1CYm2^)N`4D>Tw2NI8X&wnpFy5eAaNL7c@*h39Q+>v_{ zhk+of<^I-kl$sTKdRQ2X}jQ z4gBSSVRMocaiA3%gmR+uoEpgZZp&y=3Q3gDE`()?NRqn*r=uK4z*0z&KuC&+eczta>;ko9e+NP2MRF==1eE=4Pj|qRDmiP5F968u10-tWcz2G){U7` zK7)DmO4=n@w*^p&Gdv9Qd6W25*4Wu2!3=pm9iXa-gqM9*awC)TMP+rX7#jTuIRf~T zRFhXaO1D0a-@>OzOfRUle9qce+Y%-^oQ>{6NAtrkq>Q|*URq{0h1v?Ty#7@x?z5jt zg@g0ImvZ9&C>3kkfxh+*Mo2PFB&1v1OqiuZ0M<4gfm3`-?YYoxK|t>T;d}aWcI#Rd zR}GQG>(NVlfeNAaqC4LMjzQwmY`u$0MtDiJRLN!a*RSFZPiCQRtMOq5uB#8VlO2mK zHk(@Cv#US^v%9`>L!%?lFY6C{^9A`|M7wLhghzS&tf)DNZ;$?ZYg8W=6joYy&;MN6 zs>St|V|xH1=_cE3FKk^-R)74a7qTTz)TRPZQ3-OUwW@jvnFy>N(QzxXh?iF)!#+8p zC3hSb>X1ck7Mc@Um^?q4-OT}bXhYI{u~bg^o#GDySj)>T0bsQ_X7Q6?5@`9cV0k$) z9RI+?g_J_$xw8rUO5D+0_tVTi!sD74Y4UTd*+c7ZViD03^3TgjB`pI|X&CrxX2W5O z<%-ZR3Df!8Ac-<&z%@zB>l-qC6VBt0GgS3wb1qVL2_eQj9@9kWqR&bTX*UdL?+v#s zBcReelo|UbrnF61VhE*_RXqp*3>l&)V6ngjW6Y)nf#cOc@gh}(BHMRWolWjiPh$R&8~%Ru}e|k~|y6z+W(D6Fpb_JH-t1^wg53bAOYWO`uEdXTt3Z3YC;@6nww8dxby2( zrBu4Qam;RteXqTlwsy5)-xYJiKepbuc3o7I1!m~^U`Bu3bstmD4miz!RNXJj=PqpK zVt?`u?!M5LlNWj@<+dbhU( z{-T!#C;P~~y|cuf2y}ZTj-q&D^Kr9z{}?&!c)y-|e1VxN0!IEjB)5gnAyM_x6M#yR z{(`u{(a@{aq%%}8WMd_V)WSL%SVO&Ej=L#C;o*C-(;o(x>u1U7#ktvDzKygO#W!VJ zV6N}#&G%0@9|i4sRvjHr$GtE3aB8}?*M`JaP@9oNd`L_Wn%}GEvd&AsweN`A zvLzk_@=sy!2F4xP3G*8HQ*C|;&I3!w3!}jHkD`LXOHMBNHNBh9#F7D2E(6gn1!#m7 z=OG!DOz`0T5w^<^#YqaBqIMIuznqf8_5VxUJIPLG|2Iu5sD{@J`!`wt82RfLZb%rC z#57;|A(r2;8Qm%(i-b43gWxV}7DfStKG#j%wobJ-1CuY$x{J>>bB%(Y<#$FCU+3UF z&)-Nx+hlt{l5!)t|JEW+9g>AcO08X_r%AQm#zam9@2AHA1*y?%W;FH#9wepc`_(nN zhF8Bo72eL=k~?mnafbEgr{#dFgs;vu1CnuEKN25TuV!^LeA=q!@&Qz z5&62*ctBjF?i?Z<5Bvv;Ow_@M%tnh$-EtEBn02ty{x)^tO9{f58u7UD9X>fiSy9h zN41#j&tVGoJFaA9V%@Mgc^?#^w6ifH<1D+#Lhly5N$Ux;Tgp2pHPPA^!clSQm9}QY zIc%+oFWzEdlSb(q#{f&^B_3WQv`Q+-FNek;;mFWnu~cU@$h0`V8l%jq)-irT zc=x%=T4jhxk{)v3-+0;BiB8R&FDaiid#$t^wc*M1Sy%JnX-e%zG{Zr5VV70?HovEZ z`H?zQKoFfeDe+Lq1I_+^|KfA?{(ARvBj?4Car7p~qbnHk4thUx$>#YMEWq5O-|<8B z%B-m?XJV_>^1eEKTyikVZs>TnttX>HV*b20b!&OD8{TJ~aBO|mks#NaS?>WYCZ9KR z#6mE3k+PM3l`gBj0MTcfu-AgC&1c`Nx!Y&Ia7yjN=Yny__2pV=8l{#xwq=nzkw0BZ zThg&Wy=YG41SI`VtD0eN3sI~LZ@NaVeW?eXe;|HniXiPNcNp%(8`K`iR;~lzPtrG+`1%4ks~0hfsOfu?!J)_d~t$Xk1}boNko=HB#yroMC>ORB>(V=A`i^D^6rfWGwNix}EV za&NPCjNJ6OE6b6CvKkx}J$fip;dS~z>6)t}brG|Xo!ME6Sf$AzcLn;U`{U{tZoLuD zLwUZ}C1#4fDR{>zjvAD+aKm^+giEK7cUpaodN<^)%BoBiIt{xd%E{GD9S-W zntzv1&FUvQ;$-`;wEucZa*?Yn{{nqQ+CY+oVmw%A>Kx&`#FP<}>0)F0azh4!0j=H5 z#f67>Q6xA*fpdX&&;CrkCZ~14wt=q&vMc(*MAL?TXr^5i&$8S>0SAW7qI}Wi=ItHs zK<0zz+F}>h)y3Pp=6TPD`v)%Qd8K&d#`DoCH#T=wEpj1;_4Yb;a zR|Y3e_J^Lo#XWoh9<9_Se$lj4Kxyv^7C&dW*_bdpI$c>E3Ov>vKvT|Sa;v~n(WL#jzI}sETN%os^D1FMF6=0IO1QUIV z-cg?Z=`%Wz@n7z@!EC3y76zS$rZB23D0~R#T{?w9J(Ja z-s>BarCXLQApQxv+KZtxe*Uq^jyEivz8zaHI&n}7b7tSX%WEUA_XenQtnW@JcPI5_ zvgf0o_v}7bpX6ZYeRlu$ZD;f5<|TIgYNw?(J#)*!H(+8hH`D_)_+sX5vSs$wu?6Hw zWNTX!vgN6=+Law66pHeGb!Yf~#_)2}s=0oa8;Y{IEg*Bgi4sb3GukPHbb5TBGUmY3 zrl;%v)w=oSGqf$I))usM?eukRckkfdYD36%M_2T0%kss?sp!Zkz58{qMI5?F1ldG{ zcvlz=Qy30295Bc+xC<#OzAqo(Aj1(O-iylXMfIC{YEE@KPuvjegL!)HkezWbvUY0k zGSpbUmr*Y($jz9>RW3(2m6|MqZBGW1kv2>c*~mOWBajA|U(Q&oU|)H{3c?t+hg^9CE0fsMjVS)Qe}qeOk2)m+yQZ| z6ju(_DYGdxvyk=i{K{2~gdZHDrs@g|*60w^=C^H{*cL#^mH9jMS*(tOQ`4GZvMy?K zWv#}f;05D9%f}!U5CJ01cup4mJz+nwo>BnG1t!Er!r)1n(C3&y{MK*RGmjHNW-L^3 zw)m}m-O14BjkY#cvnz8oP31no*&vO{evQdp4Lg%+eao7GRF%eV&5f1Df+npM`+7?S z;A~8_0uZE=X=`nha<6CIKDFXp-*lwr5ru@~?pr4^^CY75L>zvR;38J1g3JJqs4z98*=g)&r=DTUU5d49Nce`Zi z?|D_fR7AXuv0$u*LHw0!su&^=t4|nNJRKIoQ_>&xizkSs5v3PjS|Bgu!KYE1v^YOZdsBO)0yPH_83kt<24h4_VNCNst?oP?LU8No zdX5O$##-m>R?#yus5SUjun1fD1!AqrAh6_gGD%h|JKI}L=A(zxTKlciP5HCKH%8R{Udh!6L zFM7mCVp3H|2r*LAH~yi%|F8Yj`Lv&?!JBXNx2?qtR|=|Me#b2VVL5D;PiMOMniKFB za4-+ZKDrYo$PhRImzG88?1j@+e|(xqUL>k~m&*k*B(h%Wf9~_GTLb$?be~yeRj2RH zMBzWqrpBf#_&IK3%~;NFFN8v$FYjKqTtN64tl_y2ayQd0lNWX_1>)utORuiE(b6L? z$L>8$W=pXLGS*!2sFmLjUfP#F*>Bg`5$`LYkd3*ukbeKHmj@#K&?-MD?RQjUSYZL| zIeHnebVB!_gtHlsnQEo~oW8%r)c`HM{$;Ypk??EwYESgtYGU>(@sNk=C&NIi49e(D z31C~2)>&dh?W95PG|^GU8fJv{{M|;VwnIoG_al*1{5t?D6T)&y8rWZmLpMuGN5T5c zjanFZjmt-m+EgVnCn`$mxO<=q$A#`(K?KX^w0qtQO%Tq97t1G8_TwEw6begP)LcI> z?^}Exd*7SPp)(AGNGX+!N#q)(8mM$wN!0w0yK>1924~_S1QcTiBqO?BUYmi}afqLQ-JGrREde+t0h5eO8;5O#G(vtI%}J z!H8V2Hw$88V2&Ax?)4p9UYjiRKeiTvg*R0t5REc5ca|OvG!5)!K^@$D`M&F5EWK)h z0Y%%&m(Rjo|0f6N*&aYeR*mxh0K9=B(XiM`y*NM7JKrwQO>IBZ>U5G+pZn=lNg$Qo z_Eq9kJXJ%A)?A_TS@^xuwkdksNN2V7S&~8U+^sVAZS}wv*eH`Iv%I*dp%4?QK&L5Y z-cL-Nf{UUHs;QJ(oUNWS?@JjCt9KXDbnEh}OI0^kyyeUB=?KxSWIo-~RC_OK*YPSQ zILe_^$?@vI9H5<5HU~=7EZ{_>j9l(ox8ddRldr$dJ`q}${(P=p$IZbOb5984APH9z zA#A+n$PC!XhZ5azhFTHM^vG~jhDNtXBZXsBzD&vk{$+dMkmJANq;Y2wc2Wk1XCiY% zdItN9sy${1ZU!IcAA!W=3!u7m3(rIy9{o$M9EsQnmhT3hir9rPM=rv)o39h@6^|fP z#uD#fvQr{}qp+S$0DZAIT|39~rZMYeTwQOR0{Q?mXz%I=#Rza&xvTT2sf|pOK&}NcPeAr{LL$zJuud~3!Qzbkb%|ga;zB6{WZYRxq z$OdDqIlBp%|JNKRzighU8U|tY^h^d-OVS*;3KY~aYd6IY|!A9qY|J`t3F-n zB*#ANY?~iF+Vgdjn!O>3T+iM*_U9jm`*@hOxNwMZZ8NMR6pMjc-4a|(`KH^AK(L3U zYg@eW!wRO}H5N94-MiUEqD%}SuNRSEE-~;vUu^E^R-P)4Hw7yqKY7srjdfv++$8+3 z`x!%ZeP%#X#&(|Ruu9kPb>I3N#ifBq2MGB{iAFo$yHtQs;W#(7OYpf#)Zo zBfwxKR{Gbay;qQXGwbi>47oH+7}PSs71TIScelb5;OUM2Pr}btOytxV<7UFM{MyY( zej#|=H&$=8igcDSYQMFn6mlBQjQEiUF0X&YW?ex5jn}{7tvNuf%G`a8(<8qG5 z-c}gf9flJjtpkOZr;&sewFC$SnX0UVs{;R>4M4u zT3G)Cf;Faz!0pM5#GWx3H48I)mswCV4~~i!qPU90yf<87HM^n65YVdVZuoDK21}TdpKBoU}dYr2*#Qdfh36X`|808+gL-?M72x|yN}_Rj^j#zR!d1Vy#3+~5h0QSK zr8<%hmAaLGN|rxK7$Fq%?fwIjD^6Ze z6r!NM8eP-*o+&&({pF%nc&%ZP=ZJa7^cn#(l>eq#=c{i?dXuhYsA}#zILVGTn9Qox zxj63cth{~ok!SJ1)IX(X^@~4IE}0ym(oKF)(MYb;cQ;hP53k;W4L`upj=%qy&2#^e z;B~tSP`wJi-NK$NZ?r7flf#`OB6aOJ?)s$__IT-;u*+EbgF|SeFaJ zke!H$I7~shXqYAR_x?26Y*O)9Tt1A*E$`OJJD=e05@3>3sG%h{>5HygU^j31qXH+P zOZSJVH_CD5LL|A!A<45upZ+?#b&yBrCyDCFGrm{q2Ug~YHMrM9bv-h+CeA+2R}9fF zLp1V&5L zFT(McZAI@dBm33)KpxHYX+Rio9gBsItrB5D(U6!v!m+cmKxLL*6~d)vq44N-I}(577TDZwjS``ndW&07e8qnB`GE1dkV!&R`@SLNL+`u5Tnl1URXmi4 zFN8GM3s#9R3}+643RVk^8*M`k=M8BCxgR6t3O18!&UI+=IO*xk4XiekCi5Dd#nV)` zYtt^bYh%E=D*H*&1_b8YNa1WQe1q6WN#0v77E&u2pZHe#^vUMj_QyW@vs>IdwSI4< zIX(f0#Ks(m{?>oKgHu9CUi_a*=@8HYY@EFR=kA1lT!-~nme<`0uLxdy`p7Z6dOQpr z$++pd$txHWw)p^Bik@HxLo9PN5}DQXp%?bM+-3#_8WM>WjSB>lOBJNZY6B+eUB|eH zKS+rEOQLJrSnSjTHWos2U(st%B-QI;$=rS=*-Pc?$&U*2Fi}+lJJ%XLn&`795ewGn zkl>OW?biYJ(;L-F_D#-bT1!h!o)+Y#wcry!?LduU7zMlKuL{-p?CW0#U}&^)57+%9 z%ifNBbE=U?l~HL@N3d#Cmr@D`PN4czSC3F_VLx!4m2CNFYC%E$_XrV9!d)69h0q?K zdy!+W)9!h@>Np+D+iF8ahURxRHD|?+&u_|7yx;#T99R|}s1p(sUp?h2BPTHo>wl}a z|0AOSEGyf;C9lcEx&E(2Ilnah)UY(?v+&ulDDpp<>Tw6NSN2ZLGyIq?wki3grB6SP zQ&|#*EOT2JCnAKnnzP2=Pa`7HN`X!Z7Qx05u84>zE7P(0Rrgb_`)JHg^Y`R@?2_f7 z`RId!xel>!2Pi&Hm|RhTh|hRJ4~88Sb^2bqr| zD`Lg;=Rd$bRb^p~JADm9q@=}E4J-PCc*c!E4|%%Ho`KYa?@xiPqbY{t_?bBbfX8k` zJBzYUAeyNkX?UbUK;27|R;_>LN;UbsI5tn_60mw0v)c5@niV zRjly@^?5V(DDT{XLd}EAV(jnJDMeX0#S!4o6D9IGOCORPXNo4Kki6X>1BGCf1GR5z zwboPLu2_qcbfQIZlIrw-jg_do0NaIX-nBYO)+}bvluScL@<>zrDxHuJ*87S}y5LLW z=bP^41+5w;{a zC@5zAB_4Y3ZZ00;vT|CGzY51qaW?-W(te8*P}5^6E6BN$yt8&Kiw{Axesg8d-+8RK zG+z;|OviUdJU8zp(;GC}8`Ac~%x}whyMds1$xqafg#8z$u@B;4wijGFnrazWUC98AKQW3A zjud9-!4=~vBgzMgdO-We)#dN=+pC@V%eNWt)1o$EUGCr8@@VzhKV)JtJw|;^)lWaY zlp2w=2sB{xR-2GrF8(O9EyZ7GCMODSGkyw}M@)y)U=)ePyEc=*IwJb9Nz8EDFn~NH zx27tuPe;ev9M9ruJg%L3=(N)&1B;LTzGg5cBbG~`9gBq*-~%$l3VbgF!YB&S!no{F z<&{^(Ft;^UY|hvKw^b{vtqg&M1TTkGQi*!lo3r$rnoL>MQ>xLK%oF>Ggpo7l3P~7I zIZ`2_md^#lCdT}dv2^FLWHnQ4o zY^qyFelIpasRmRfbUmqkVkjzMU@k8)j`dz~x?$hpGr1^k+|E1Ks#S^3snykP0tt1e z;$_@m+cioR%p1Lp* z+AAjX$-|l7g3t2G4c}nGO1B0Xxz8C$GUz1W^x99`_bapa>!vH%Gz z^I7!C*&}z^)UtjK$3zWw+1V}gMhdi?mxb}W`=y6D=ITxXV4;dHG32Gt8_>K zJ7IAPnOnw=lx`vR;PIVplalEu;=V=GOH?VT{Sakr<62sKYmqqJNmu8C3F)m$ci+Vg zOV|2nmh%C(H=S+l z(B8Qe#V<1p71dGc(&(zyRa2`LS#fjM)=m3p@s<@0fAa$Uou%AA4qg;u^##ysOjeJc zLVV^D%jA3a`K-Q~dUc&7>f6x?zl*2hSQ^1iIuXT@2NhedwdU$5sf#MdR92)cK{JnM zJ64hCOH7A8UO6(nyq=cw3ugs=g-r68os( zYbRFe)d<^&O#TK>cx369IiH`c8vBLM_?#?pvI^dC`EPewnuVHOQVfi?P00;lgx^1H40!<#%u~1(q{zgl z@+WWPR+?E5Ottjf!1O;Ohu zxs)N$Crw)kU6;v23w_yTcUp!GF-dn<)S8l%qp)SB=UlJ>gueLDD*B7frZJ zpBfi19Ibf``zY#S?YU zs_oG}R9E)pO|_`o+Mzg&(pnZ`UQ(I2eMb*gVa~5yr#9~1B2W!LnI7V|!s~cWcriDJ zW6a#$iu;5RTEA`^o{6X2nF-%`%S#&{N=CO`AeIQ6h~sYC^@zd>%bcDG#~=QZyp}b$ zV;wL(a~qG^dB640vnBvfiI7Jv#Kxx%v623S`%NbMG8URHA^k2}hou((R>`U0(tUv3 zhmN%qXRuT^TRRaLvdTrCHWIsg%-j-WoHduW-yLQ1co;RfbP^<6Xlp9e(=P)N}*&(nX0GEZex z{dB8BN_MU8X(?&!)}L{sEpxEq`LOsE>4R$d7ynp?myhccL1Fw4@ly|zmk#e?^G8z^ z`P^xoXD_m(2A-s=!v(0)DTph=Xr8;KlU5J8gmN%yIH&BWiSW^LlcJ@o$PHI($t@f8 z(NlA)7MB-@J|;8@pt?(|hb$TF6()XO_4w@lsM`GkD>rHiU2CJkg5zRkg{~=M(?UhQ zgD}xo<#{Up=0zEQe$$2VhWrK|3RCwM3;y*PuKHI;V}|zC$M|;x+n$B#^FPTr|Mfm@ zSeO8OsFD#p-9L?>Lw|vp=wR76prWx%{Ph^JOwD94YzZ(pG|)^B5C#<9nu!*c?SGDo zg*8(+Dij7Ai}s&FEa*p1CTdvr|9qGFFi$2VG#K{(mpu$R37Ig>ja)Txq`4jNm{#0tyt zKL#GFnVtw>IREpU$VZs?VLAUt9Xi59=JQ(euW**Ypw}=XuK)TAD+gL5c`f-@5=d4c zQCP13N#dIo=o}S>>pv#4JV0EqTpa(@;jhQ^1hv7zaJ`Cw7JBOg`UK1MKL$*ELB6ms z+)#{9uY9LPgV3PZ0Eiftn+^KfN&b2}07Ui98n5q?8>U9tm|0dNEXX5a6jMNWFS<;&cRfRrxukIPZ=SIvpe+`EN5rSDqs`-yz0v)7+~RIfL{2s(3=h9Jzsk9Hc> zyxvB;Q5OIoqEVm4k#IEPRZ;9q^GR76oWz(bH?tw|N%)Fy=}%39`VN#ZW8t`=Q;^pS8ZQ8Q4A&$%t7|ff)tn&ag>83Q(@xD%OtL z@jhW&Y=x`ZgaT_8I5pd~lm#6>u;;oOI*1te|FDA_RlY>c2dE^Hp5mkhOo(W)1!*~Ey)h67{s2+UD8c{OC}G=P)Bo-qmKH`8 zpBZig>9EV}RD<4%+){=he_Wi)1im7JLNlT>lx>wuSEX-$D1z9v z06NDK%5wsxK+1IrsG`(@H9UUovn4scr2AloDxt5HIQKWoCSEw3cejk#Z!HLQg5{`; zI1*z`OcrFIcp+kD+)ZI3H>mU9urYs|GfFmzz0F>IJ2q^C+|M}t7OeEO^_}Y}X>Lcy zJ^3a%o>!>(o+zv44?fg_c6*i0O%X*BSb#dOu!4(IqL&2cqba;R#}BNWc1vV51cCO! z*Gd>zNs?24h<|diAuEesPP6=?QrO^Amh(eBR&xNL1~ubD26b@2Sw?D_Jy~!^8(6L1XdLb?ilOwI zYLFt{O(!H&_hG+eL$f5kL~-UsgBxW7L-}dy?553MkEBh&Z}g>16IxGGQN4XOwFM$w zWcsU-$rP*jiMia~VOD}q*!z-S1F$H1TnZDaaAWb4f5dpw+Y8=J>qKqxg?(EsS&VW% zbHQ$$5I#@>$%!*qW1h2m_Kg)TxxRIwdM;h=%Q7M1{MjE^mBy+>ie|8dPBFcoqfrcG=7*QvEGc7$xK@Ua9FWafAA20d{}bB#9J z&p2KVlCl(%G)(W>vk}ZE`ygIgyTCV67JgW#_Pa}sEZ-@%=uIx+6~O(1a?nBruu3oaWrUFnkFHOZefPY?gw zC4b5u*5CtP_e-LlCB@RWR2gd+mN-PGC+Ieo$Z3O8Q*eOKHR4i75LAST9DP~=W+F%3 z%Ae+NMP_hJ8~|iNeqiG47um#(SKr3%cBffRK$Hi9GVmjGR^3$(h+O2zTxt=JNR6@K zDDSASa3_<|zM{L~AvZJkkyuBeTvOucv7^~4rY_4aNZpn8=Dyx)#M^Tb9#=#Uzls0) zAS($m$QykkKkDtb;?gbhu1k;$KfGMKT=b-0yD|=+D~kgm_0?giR~^8PrVHkKx4SqY z#8>>JC!^!sx>&medCe*%{R0(UnLN8ahnZvy;vNkp$D>G0xd_9oM zi~akWDmw2#B7YHW(!be$xJBgqL!ft1Uv^;A*X{fprCjjw+x^!vp<~uDRq4r4tnht* z$X8nM>ur{e&ol4!jDyL=n#ccf(>`L;7R^In3sw&4#oj-0i3j&a4qA@$7QyrV6|BRB4vzN-Thy8)uIVr9{%vYA=(HoYD71$JV=UrTpQ-0Y2b?(+sf)x*1r`YgiY-DSMcwc7lK5oD-1^0;X zR(7x{t(YPS#Sr=W2@SYA{V135@;i9h)TCOik^$fv=iDCjfj%WJ7Vn~wQN(!Q%1WtA z+Xhl{2@?@*s-*uYa#H6yxk&*ZJ6h~3^y9MMS6p@UA=uOrC7flBz6Ml%A;+L8#?*BOhdk;ED%ST+mHrC}|P_s>s zuv4wHW2pPw?T*>ql$G8MR03n}QR_8M?(>{wdK&|un>3e3v#+IHO>fdJ1-GNQP}S{y zmTPXy{U%Bs*luZqvywYJ%w;wf^&SKX4y9~bVOF?t{Wcgl%5>x>vz>6#TEwe8zFdD8 zUN)XzemZR&^_s1|>4EO!D!9Eb;NvPY*uz=atRwos)PZZ-J6Y@iQZUF`2< zB{`o|98V($Z|pk(pOJ};U-1*OUztwQ3Pi;+^0Fw9K5GAFH)47vr99dgcTyZmEOqR2?e@5e_ zJ%&N);HZ&RbNrY=OM>S z=^_OOi{G|8q+%v)m}?wlH;)V+hWHJZhjS98(?qobUnFGk?owpl+t`PNQc~vlkHHHE zZzzBzhDy+sQgKTWA9J{Hi;CjDHij@62YU52A_{JWNaqBsj5AW%e!8=FS*z0Fdk2^D zGxGgO#%`ivzINMX;MHS}JHcWn;Vz@hL}B(9an3W4*7#qoy$sg_)_^{?yO0psGu`cq zxc9E`z_-FcDME0e8pRd1d)yd^#k(jM{l{-6{A_#jPi+Vnnd=BJ5wbt=@1iHh=?!j^ zCeY)N2k6|7GG(ts%{F_x3#~7;NNx!@R=X|Fi7CEXe_(;}iL?q3`O@YK7wc5Z7-p85 zWkX~rwa$Ijr*juAc_0mO9<6gjtfJruw|~@H0q(ieJ`mDH+$OQ%(vAz@WfKy>z$wEA zf-OLzBx#!T!5P~-wYIaQH6`uU#b3z?f}kb=#n#`~#SmcA+84$PD+&n>2+;;FB6wlT zLre6(sPnoE$i6FpFN2k)i{l*TNcmmiO{nd?(Bul|#zN^f8o~C!ji7g5qqQ)~R7{x+ z186bk>q^OYMt7TyoDj-y`>beWoE$bdq_K6(SWqE$d~7k3IoOB#$pgePKdRNJnY1(NCoXr~7_r)>yIjE3J&57a7^RB3~%Sh2Mf z-vmk(%E%v$#SHDYy9MUlKg`*q7eiV=qt3(kglC``g^^Yn4_;tdq zYLcNY5B*WW*Ci{2D3v@aOiCu+Ym_ICpdiRMu$-5WxxX(YPd8d4U4y#A#*Irk5+IA^ zW&VXbW3pDkW&(N)j-`1ks^#{0o-XZ`!uGfR4|@&J1By4D0a5r?+SrgOut%G;j42}cjZXJqq{wuid3$(f|Q}BQer=`(@p97(g8}) zxuGL7*0?wF`c^Mm)GdDg>K>YF0JrqHBw36v>O^%0dBoq6cxjg4?PPM{3gC;r49r;| z*%oJ~bH(ua!&6_@X0ZGlPP||an6`Eofq*WlR?0SaTEVn{75RkrZGtxlsVVQ0CnN-P zC{u$-_u(o7_4evrF>nyE`75fk*^Bs+QgColj=jdjQn?~u0~%`$qu3%}F5&LF-A6i= z$kYf5US0XGU9xzG#SocY6lhijhyX?k+E@W1288Wa3%=(gi0hrQd;rR5{RHCiyuO6> zL*70TV^KBO%(wIA7dbk}quqAEw^_#ugwiEYvZk)>p)nTlid8{$&rGQx8xi7}6#O2K z{cMQnM#v-ZyqL%$`Qlebv8#ge2+Ddm`qkPR)~$h`n(yejGfq2$zZn2wOeIGt5E zfalJvBmHW~0a2Q5FezkR+-Cl;T z(le4#(G1MXc7R02zrWDkZp6h$h&k(n4JLfahG%|@Xp{Iua{DI))3l?}QC>fOi@@_S z1Zo%v_3K(JMHn4^+i zLYu+0a2M?JsDp{~6pcE4G`ZZ$>41(%I|gax{--6@YCM|}stc4-7q3j2^#pJaC=G3s zZaqD{lo4+3s~9_f8KZH+;b)NJQ>j)65_Sf5g_L3xQ1wX~vv^g9bA`4mjdL;LwMN6O=yXizTO56+6jGnpgH;y?#Z5y)ljv5?CD|ZR*BQ!sl5KvY~Cj zW0v_QSsOiZ3)K=t$KaBn<%}=Kmk~o-@kY)u=4~VWUeSds#eCJ9Pdo?#qUF)BC`k>R zLEj2H!$|#E&r56Mngi8zGBtn`ik8NnybZ~SNFr%~eWtNC8&x?dc5+ozRC zz@}0)OQltx;i#+dJhuk8{;Ypa#TryVxDfLm*K@C;WXFr?*;MXKFg66N{^+o>qUEqB z7Y_VL$el2sK{l_VD9{T|_&U~~6!(F~Sgn!eN269@y2h&FgdD|yEUflT_%)u1g(U`u zPL$oW`cjgXZV-;M+a1ouGlM*4N|CvyuKh1)TMG>?4DME^B#uQGQ=#)O+CJ{}q_-9c zy<5@b{O^Z)vJGc;K0Da}Zx?41-X<^%QfZz$Xu*4-GP3yXr&)KwKYd7TPaBjopnoq2 zJCG<>L`Akp?B@IqPp6KD6`DkZA;H05Ba1;sGe&`^2UsNRXqdOSi~ z5%lr%_R5_ao6*Fxw7tKdNne->bzlZsAv3BcqYn1vz|;EX;eJ*LbF86W)~~Wr<`v-V zXm0=f`tf>(nRTEy7Ow=&cP@ui5E7qNYQLrcQTe9kA%KYEaVjY{=WBT=~H(PhO)T{KnvjG@BZ+9r4R8}`Q7$b zSoK+7JI-#O>O>zrw0GszlFMl0Z}bH!2`A4cA}4OR;lv8Bktcx`t-xGp0aTN_q+IO* zIyurNtuECHpE6Bhla*;$>KUay#T@u!dJ2TMVJ&u93uJ$&_^Yh?IL6%zH2HeCA(#?7 z2r?q`^S^zs>8q-RCIq~mVVx8I()1<4J6<;?WEwSW^?F_(HQJh*3Z0O%i+K~Jh*vO! z29t8W4iK@-`+qPBI$7`Tv1@MMATyRBN3p`!*moji&VG*ryi;p>&B`k$*zr3sG93oG zjOap<0ML?S?TBx076?B%o*$)=T>XeU^N9=3dYif!5;eFGSGjKThM+VbaOrd9Y=BE; z36f8PN&Tm$>ZNd}d|GU(!*a9tb3HUVYX%R0H83!tx1IIgB_QF$+Yh+sI6R-^-|T#R z89PIZEi4p%FXqAMN+f;7G(jlcGt@rzy=&+#p!&4vizn|Tl=6Ik&kXp<1Gk6!=ljOS zYG`z}U43NmRHazlENngUcVu;Q?J`9q_?;6^=~`3ff2}8!)Up zQ6^mxQX-)|@f&8GWX#O1PY>J21fAMeu# zz)^W|+U?w{n*^z{m5SonG(WeCq%TUvgrANkGhdiruQA*+>B_gS`FU;6F!SZ_qk*>! zp6N}M$%D4G(_wiIWUfQrD39&&KnJpZyTaDJNAF0);+}}TzzcS=47fuYNlak9z_{2B zB~xtm8oNb8i%4n7oAuXFY2Gk*N5|>}uA9;UQmioWqmNaapour~qUg{^x;hu<^^rH# z7+Cq}raM&Iqrl7FW`SjN*5i+`xxsHsmgZgBZhk`_Om68`i(}8K&K25d{;4VzMP%M) zuW-FUU?gNhtFb&cEIkyv^8N90_y#b#+XOVZHOVxd_pYqnF7Nl(A4Sgz>H!5H)u9;# zJe-j)O0aGrk3Uzzh#XI_oX;94@e3%80AGi-&e`x$e|TS z;MX6LlqgI?VY;*L)WT$>fKzAJ?H%cM!A|VUHQ{2$a;D)q`~AV7WkG$LfZ3OGpI7k5 z(#x5mE(pPJ!nw4w?c5ppdqd2ZWP@$tFU~~5{)z7%c)d=SHiq6pP*vX-`ZQ~LzQROW zDrVVrG<~@iMX!N=co>xp^#fqG#z$ZorhW;%2F@#n#@0OKR=u8c0sZw)gl^>$1qDMS z=+P>s!gQR+C@e&RN9BKxf9#N!7D?M>Uk--IL+m>Y!UNbAQaRXRre@ z|Gh!FABnoXI9-(UCJUYPtIqh?G<*+O5*-mV;1GDah&=K4ZkfaN~%*9P$Tgg%QF{LFfJcYxmK_+K0!@4tY$ z1n*gyrL3G?T*+B^d7u=0n8eW55V8+IEp*`@IE!y557<7bh0e`8!Ppd{GKBLP$P{@I z&TC&mm7BBJ{OVp0BVsZrJs))=nBxS050zO8y*$6hQsaXuaVTXevuW1l$*JfuBii3Q zek>ywiDN~<=tO-~+V}=fi6VzL5r(+-2~||0Qvg52ONS7zD-07hH=~OH2U`l@6i;OD z>rEA%dnukIeE9UGZG`K3~a6><$l$uVd!=)Mlxh2N@@DM+J zNvq@q@n#-)13toX4{r>?g(jV*vjm>X7}z39Nyn|)kX+bu`VQSep~(`Xv7l8B0R^&Z ziW(ZG?(LsMQWZ!tkd<(P^`(bXzJmhRq52B6W+$?PvBsvSWjjO=F+il==*cI`S+jaCzhLz$_iJ}S$*Q0&M>^LV9S@iQ~ zzOT6swtjYq&)+JcHfE5*U2zRMp!4ZLbNGVWvs=Ll14nO?OIDm*kBak+l(uyqya7vC zeb98^SsJzeLN2f_YKvL@jo1i)(idL6C zs#FudGLIz&KSC6eqKf}4jFbOL+JM7gTT&IxV0!1Kr#m%|;nNTqba||MwGQrKPtr=k z@$Ud+ZA%>U#k=yikyJG@y9s0JTCsw~SB60p?r~niSC5-ty6d($H@kdM2~59Md%BBi zU0swS2Y-eWl=lu0CBi-H>1*6$kXj_mt@gjU+&&OP82$jNEYmV+Nuo*4!6nzO`$L>@ zvxw=!_Ta1hyXp^Ttsd-`ZcHLFxn`j@ZvJE4l7X00%Yv6*OT2q+vL?)dI05@4t@ZNV z1nIvrDmlnpdsYkE3FPuty~_DE+KC;(G(8cvR|pGQBWx157TxqjWChJuIEIN9WZUYA zxH-3YMifv{A$n|pisLVPVR` z$!cM0Zeq;J#$#g6Wy)=AVZvoB^#A{aKC_C0gDW!YD+v{5u)T!?IorQ~Rjs_u$zN$B zb2Dq|vXZltv*|;f$cRY+7M}kzP+D-w&68xN_QnYm4<16P>o(G@8yXrysT!hYXU~;q z8yNcM_OtgyzLk%vEbHe9u5N6|GOgF>bD7&RAT;XjZ+YVPg`?VX`%6!6Z|_dJgRh@S z{e5XyZL82&sPDJidw80=8cN=v&{G~#9I`AWGJwpGEK5g7Xq|t%szk8mTRftj!Wt5$ z;iWi$(k@c^ZK@Js`i~C&*AD!kZ2WI)_<`~GA!GPdLMkTZ?8%xu5KT8+#e`mC0a_zU zT4T0+BZhoqzUdx5Ej)G>tZEh_7Z$t=7P9vh=m*ArwgHl}=tRbqx9}RX{MJMK3~MbJ zy@1Q+=L&kRuI*V^T@yyzXuAqfUDx$248IB8VU&IaqkGr!ES!%C^I^1K1@m>+^E#IA z^m6x`&-F6Km9;*ta?fMNw zH>(DVp%0aqXse=U{a@@yJ;N+BD249Gbey$(kqf-0*@Yy3WkfgmBsQ&7O2_{7Zvtel zouE71F1YS>(y?pG@#TIXUWEsObw;u#H|PqDrIDTG+RpSgyxk?gV0eMj48G+llScOQ z(%y{^Df2o_GgB)nU_@nTY^E<(w$9lc!>!czUDs3BSNFKC)nm70a8$oJ6zx<<=#TU* ze%7k0@3+zJ`VB^+i?^nquvapH3Sg6_-{kB_cpjojEjLS9V{z9Q>Tyc3jJL7|Eq$_? zXU_ExcIftah8`=2U;2&&F38#WR6_pXy?y%QVO8|-Y5JwdtF`3nyx@spUj(JyT8qTS z=<`|2?cb}GiTS(89WF7Dl$JP2l<0r@v;JU{94(A`vx}E*LM6e{sRNwJHCTbE`@Q$S zM0Mgvb@N2wwIzb=Ych;>(%y54!BW}&Q0SD9$8AHkU)ZmA`R($eWs@cL@Oj;XXBMIc z8J^rr`BvL~@`rHdMkU}vp|rMK`~fsc@Tz~^qacO#8tt+m=ifGcx`ppes@c{i?Z-@y*_Du09l%@$)ko=k8fXPZM$0c*; zR_*b<_~BT-fOk|A0aq{Xtjc5LN^SD5FJ5Agx?J^noc-W4z+q(u!bM%s-KJ_OHxJ3k zwvRokfOG$&FsuFeyHRl&_@SHgC>>pi(ZnK#JS9eb$BQ zvL$YQyVbM>>do-`Kc5N5ne{tD7AC2j;A1*5iKBn619|B_>O0T9UUsd~EZ;DWRbp{o z(sh~0r2P#a$^7m5Jt3i!Sbtvb{0HeEKFQ-A<4ma%>)Hyf?8}gT>d~Ttb?l69<~$^p zVJ~QwO`5lnZMrL|m`WQlQ+&Oi^e`Q5m1bQ1Hv7B)Ci)%L;0~lMDZul@u*?zxGvR=M zm%KZDi0&*YVCX8DiTo@f!1v_#J@}F4N8dv~6J-%C%T=@SW{L6sK!H{1A8RJ<1e6!!W&>h-5FL3^jXpNj| zcm4sLG&vya=5?Yt{UW%ZTWHh0fqA;X{?BYcsFal$AbeQ)i0vhgberz+;GdR*A)j|q-j4C)XW@pv-<{) z(m0Nx+gw1nNN5~?-Z)&~fbsUZfx^LAT_nASc%qk8<_x+nJ)afbOuolM0ZkuoH!2Jy z0rth$6r(5Lqga3ZfIv)7<0zt|>E7wqGU~xAHQ$dys@X-RbFuQxl2vHcV1<~AkgMwJ*_v*Ww}1t%`+M1-zkPw z&iYgF!F)Nd<&n$lTF0trjnhb=|4U=)J1|g}d>17U*M$DQf^@nUL5sTf`PgEkwl(dG zACa**Q%?`3Yj5>1(}W+-}=qt4d1jgL`MON7Xge7vW4D!$$uPG?*GT z-)sn;xGk$Z!1$jZkS0x)4DYm%uC~^R8f_!dfgsNlO*Q-T|?FY7bD0sF(BUzpZx*h00W+VR6kQiT`UZ%b|7{>HPPSL50Vb=mG`;#!`V%OeCLe5<^QNzHJ@7-~&fN z`}XJtaOX0INBQYf?}(vymYgM9=FEle$@ow9R2X(zso^Q*<)0=bfO>C2MSEfq#%9P4jw);C+-dv#M|}9%idYieNE& zLdj$~_2XY?avSZ8$E8$ftk2AaL%*O4%M0HzB1D=j{L{`WZ0~i_X}Wzn<}>y59bcET zFyOtEeck&83AhQp{z4wRoLfe_w(_}F&yp66`tc!4H-|kzdXkgou@@$Jh7u4Xc{M~S z*Mv{L*oj$P=yeJkn1k{A<@OzsUX~;Vsrpuwq-Ad{SG0~(fBvzpH*(EU+Sbcyf^~*V6a%hl)nD9b`UF7;5*+dbV+QjKvFY;8(+S$T{xms?*Qex|FJx3 z^|jjr@Cjy7IAlwHksYGJdb>EPr$rva&kjA8-BOW_kEkpL%@@d*)oQo+S2G zJFWIa)@StQw!~GgDc(%>58VU^*i(SeU;vk&QUzrMR`#+OL3>~bBgV_DIhYx9)Z>1| zJNc59K2fI84on8|#?%J&L0YL%so8F&lP{_0A$@&r$(M9i)bU8m@$cfW<;?aOKNeF+5pA>;_?<+ z>npRb!@7HcmZhIK51HU;&XvVgzg+{vGHlX9J zndni*LtoZ1w=#i+_c4zncw8eYJ$sb#WS13Y1YnQ-f6Rw<2EAw-$6pf9r*!s1hRHlH zZe2avy*z@{=Y!62(+QV3%V9*0SoS?2tr%UJ^R_JSo~UAtZF%}ir#e;zvi&1W_202u z{Cy8#wYnRZ1@O3G4)O)4h@9Y~vZSGIRiqiqmHlF*4?tbKM`2SP%OzfPBd2zNJjmED zEvvQzlT1ubK%@NhihU4gRwIFmR=J4|E|N%6sN7`f*9uR&9EVU*H_4NB<$C@Wg^YywMi#*4I@_RA2_gclcU9P#OWFD{yy2!Hq6|Z_ z4A1NdG%WZ)a}+gOO7Wv{@O9}tzs-x<27`A*+6RW>81@7M=G%c4!KZfxASK@XbX2gaFMY0t(#s1CP5AAKP>6x9*r1?pl-!Qs%4mI%YaHX;^*3B+X;zmxC3 zJSl}%S|K`MOf038aB6lK-4C!w0mhAb2(K3K&%4>+NYESdAAy~99jwqx$(LD;X7blS zw?RsCX}~1`iRGd$F>;;HCr+f))^Dhg42x#DT?wV*%L~%pA)AY zTwqCjt27ZQRdVj_WG5zsK9&rZ0X<&RLCbragjhbJR5z6H^me^I8&h-kldt_!{KbpOq+zo$GTf*C~ zl0-V|pER@>V2;e3;BmIAR&IPphSc)xc2Wg6i^-f@RN0V&-_rEbx(}Mqay=jg63Mzj!e?+3fiogSO&2#`ARSZLil}2G z35$$w3jv|SHi&&^u^C8V<0H5jnrDGqv=xhA3To~4NDm#hJVXvHhL0nU#yDG=bwdRx zm2ZJORZSsVfvQasepvO-nWJ$Fw*UYERg*LaBq_3;lZ--ENFO0~L0UlVbBo;9%Uf@n z7RKbWO^WD)&46$Kox$rgja+Gwjt!>&bm07{r?6=E9G|3s0(77G+MV5)p*wX7eb;`8 zx~9UhgvTE)|gu~|0bu!1I@1zvmM3ZAnI_7$t2Vg zhZ3@$515hOLaRWcW&|WzNy@P=SW_^9agrGo(XWk>OCl^eajnbrzxqA1gMENmwv_DV ziZEOhJx1JeXmX=$`IF{)T&IN0C3~a=<|Z`{lqBR||Ate+G<7H>Npd-+R}iExpmURq z$pjI5wbROeozCkCwFS;Di5;|O|L@Dp2UW0R1PEqbG` z_fElkDl-nVY$_dS8*Ez&Y4OE>*IJ1ftLE`X)OFbR=54a)#Yf!Z$SO0`~DyMD5QG{+DX z7#=UQPXY&m81l_LlMP=qI4R-NTr-ATIC%#Y(PR|E8@#EZYF~)bP1s zr?aAifbq>7fWm+lV2rwit<@9I-x}XAL6}#V)%HHj3CsxDLO5vzV>_U{@~S)Q{Lr{) zWz6XfSozY83rpZy5@*cl(J(tlTGF0#Y$~JlKP3g*tYP&1pZVI3@`b!R*75!P#<22uVB4-JALXgoySZ#+Y*Q zWY)9Wn245)sNS+UWE;ABYGpK*2s&Ws!L|)O4Ht*oYC-w#SkS?qEbNq_Cv36o@I%Q< z_iE4qxEF&0?SQs+oE^}X`R;L`*sX5NaS$(f>zy$y+3*6?avq1h1+u#iy~``-t@ptg zbJ{OFUu2OK7pnP#r40_fVbshq5*vdv$}~oKAcsoc^+;9oK?&j{JzkICi!C6oGPd$zb(U z2Cxu$5#t(tTH-eVAnY5~#VFlaNX0zU^?%j;{ z<#rz1sN9F}_tXT@;5yLZ0O|QTN%lp{ryBMg`TBMv()oelcO?nUudDj=!*u* z56B~x!)IwUX|%FvE^+4MCzy=0dbzzaF5ns)i&aVPC$QU~?`SAMVo|e8PL-C`d;V6g| znGS9Ptzq`6i~vORfzgmga$7R}FUkB4_5yb>*UEJm9#Hfp=*N6Qzzb6MeaIQ`X!R+fKuzH!d-lz8nr)JixZsOv+XJ?UbRhfAW8D%k6 zP|=1@Xv{H;CmEUrSnO1H6X=?du4Xy%RN1$-XC+ly?$GN{7_N6jnwdiLyv2T zyH4dhH-va^NV1~HfrSzmT)F&S^h_9zO0=VEUx_M*@YAl~^Ifg{;=b0N|JXe~aeVrb zCNyeiwAXJqi-gy7F(9+2Pqw(Ik=bK{EyZmT;)VRXy>06M{HOS)bAdOasDVEJ67Ej( z_e!asOI$c1mIOcrEcjM>N3i+@nfZvEtKK^A{D;+(5M+unx6IP5oMaDmuCgWL9CTV; zkit+$q`IV#;Zzw_<%uq%k)D%AFK@&=RD!`HHC!H}0wE{}YNrA`hxJ6DU|l*FHvRhJ$l}4sers zeigXCj`qlqSR4Uklnx}ZVpr^pV$NmEEB&XjfbuY@<#|gI<)wO9BBbfyB_cAatnTdoZlFw0nwst6{w!;?fVy)=vg@^|bpt z_g0*1($JlcuwI@8H1JEw(>-nNm#O?_lf@d}zcJXa-2X;5|H$ZP8}%~U{QCtlF_^7M zN%=@4OX&XTd|2qFd`ZKfZ(E2mju>})9^x!yV0!RIT0@YQ?UM~B(>5Bl`$K~J4}tVXE1nbUv0n|?pi z$P~E<=qOz3U$39ucG;H2O!_B)r9d{|I!-7o>|>DAO^ze5B3?C6=;sW%lQPXF;z?&Q zc6+d>2MAsyD0DmczpL^!0J0SNlP~I4x`CwO&!W57RlkKocZI_lfn0g5V$*JrF?O&4 zT~V1f^lu)_^G_eJl!a3FO?%+o{0p}#bMx=7)N;=lUugHPuTBxcME6_lO_xtBa*9fiA-s#LZTp-6t*Mu}3#{z)@a8Fy{4R&&Zj<0;aFl1(3#y zQOTO`ailp;o~3 z`_E1ib2jsB=Nd4|<#l5ylQ&q5m35y0>58swf3}c+|8a~ertWVe)(_+@dz=2)?n6=u zY1xle4N=VudzmwGJG63MpN{; zrMp^B5ju+4Sc9kQI2N9)YKb9`_FKux;O`|5@=DU3}v10h*0yQ|6)x%cFggPnf; zq`8^BpWl$z!WDkHYF}`X8t>Yh_$Q@CN)_X{-yUJ+G?+C|F6t)em;ANn_Q#hqferQW zyh(kg96L#WI1FaUjAq+K8h031CTiG=(k|e`dDfF5A}i+`RswIMlI72%{mU!d{(bHu zeBb39jXjpG@rv?Omvqi%-e=~?kEVF|MlDx=KxMad1ZG4F=E)3W-;N@iHA#n`z2Fw= zm*igydE8meq;-3#K!@hJTN4_$w6!}Z%xyp3B1BXBMYFjZG{8Whw(wZ%Mc>*OcMB$` zOEw}g_|cz12bZXIQ%(SyydNZtombCE@K8?-#;lFy5*6}oWq^mQRXo#OSkJf%5$IcR zZ`=1)=Uo9@3U>*46DjU|0p0SpanccBVrp7pOrUnZTPyphT<6aTiKwN29dLHd?U!T@uu;oBXWTmAay&lMuBqQeKtKsBTJQnHY8X^Q`Hd*6xa z@_6CGmx$;NWt!!!thPGuwd#K5MA)T25PSj5Ll*mD#Vw=v*(IRE=~51xsI5Nx^1B_zSJkhl^9zRC3_T5xYzEt!ar{!g-y_Oca!G zmK-RIKGo*BT;9ZG^Q#RL0g+x+5ir=wP6ay~&pzF|MsU|6l$>ZBfgh%u{*q%yP_wnB z(%hw`!{$ZuN4Et?_cPU&-w2I-;EoBjV3!3La_*shW--|9i|=p7I_$ywNi#l$CcxP5zbu^{>ZgbnBTEp*Xy1xXGm8TK{z)JB=PP7m%k7FjFG4-_cR5Nj%LC|db?P6@EjQNQ*i=R>E=iem>_c)Q;UCtC<- zK=E}cH*)mkhdS4z?9ZGNiu>zMTjynS*Dl<1|CZ|1Edu{fEy=#^Lck0=ldCW^U&3ZUDt zIUifWc%|2f>_H5{cSxVy6$~PjoC@DSo)4UNiq<3akcZ7z9_)#abv^Qn6R+h*ld$GI zzntVc&I4hhG<6j2dinh*Fn44i=yv4spDstnyPi)ZAR=L$^QqYxtXkoBZldd-8Vjb) zo$9Jes?!^891YjbOkD%U$QA((l>O-EqQSD8-H?bUHVvtW^}B?zrspO6XYR~m*N{pV z`--Yv$1TlVZ{^BYcBD1&g~Q6w!x5=)I(~TDWbK2^QyyC*heFAISK3un)k-dHZb)i< zSiQWp*j!>Pn<{#rsz>0%6Z-O1q4m%^&f6=?l*npMJw@cR-4t{A&3bPbl_4fE1`bmE zV~g^CAKU!_lB~)r>?#69V4k;rbfIl9r#k8AfjVc;!DCb>FcpztgmxTKCnBxV_r8uV zj8toJZVNc^C|ve7uHs}&N9^)xwFHFbzx+Ky=avum4ar5!nGiNol`)_X^Y&)Dt?(gC5bdJ5ECFOQVlKCiQAyi4@|;u)PQpHm3e zs}5xxsb5Dwi?PVOi+8Zit;+4XzHOm?5$HSRe99u?3Jv^*toj~Ze(xea*excf2iXmY zvp@7?O-CjL{yugr{HtTyu28w}BlTXF%kP!as~?7$R>PicYC2w-Og`Tv$-iU)gt8a< z*`Ao&Q0M!JQ`3bK9ji}?RpbT}9kHiG8}+j*OD1HrNXt+K!GhlQ%b`sLU76&HkK!Rd z8_n(wZ@pX1X{HDB2J}H9{>d0UxWc+t*$GQ+#(KQx``C46A{(y3vk9aL{xhFC)Ki01 zE%Qroo9(Nkw$CW$>^$ZO&+l{L3Sm5qZ5zgL7ExTTCm65Xb(8FIAi;731nXe#>Lp-C zF52|OT%`nmtJ&;7DL})q*A#ECe7s-TQObPy8NGB%mo1kT5uT8 zXWF-?P0hCd$-nVoXa%Udfz7tTmtvlw)YCgH#S)3b6A62&+66d8mRoc>nlSn0#Gac< zWl|w?Ti0pW*Z}y-U}Xc-vLTYE3rL%SW1T^%UG9}>2#bsbzfzk^;oO^DT@hl#^O3Eo zYO4>^_KwblM6JJYs?pr-Yy(Jqcx9YQf8u-)Ih*znV3a2b-{CkPC(3Mx!S5V~#f^V` zZw$$!xL>U*-ac$PG9a>XX3hzC7*}Bv!oR1%NnIf0E@D<1 zck26r=jjDe9YnLnQ{jOD(gD3yO_}foa@4O&#cOSMqSjMqYt?p3aT2=Ummb9bS5ZXt zj_kiMB(u*ap?+SL$gEWbvd;w<=_vy%HP=Bka@5v868gECx#+GPW^!TM3*6R4nrg7Z zT)0k767TAH7)gvWe|+ZYbnQ|0yf&)GRV!)e?@sLz)eh?kiI#8LarPOqyPx2ASktEF zg9YwZJ%S!hHi9p(C_qTwX9^~G1L1_nRFsu zO1lI1`}yt~T8_U>_{o^ki7t!AODHjKaZ(t+hcbZRwn;o&|4O`%5vMKTLm5iZ6t18X zXSznz^WfnYIN~+D!MT;iqmG?k8iKoJq@m%8;=JL}C7ZLt@h7vM?#bDaH3IVus|>VR z_$5d3KJyJeUssiNVJ3-V!LGTYjNW{Ty6>q@3b}#C>18CEb$hD|0=FZpJd{8S@ru~B z_gzZ;B%IoJ&bSOG(eve#m|XYs)MA7ycF6~5c@T6VA3t(8y8gc}AqV~p?+~fe_CsNU zi{qjr_9WihIUl8tT|7qqQzDT_ZqPeQ3!y%-A71rvlNblGUb4JM*%eZ<;hCkAIiN~SovqQ_5VfM84Tq?X@o<*zhz+U}CHJ%7CV1y9 z60ddNrPF=F#sx7}H22D{UVC2W0eIh8oie5fd^JZD4t!?4s2=wX5~NKMPfgKt{1qj- zrSZxz8_V_=mO39Qj$b}{tK&`(=7GFqmEzZQVyOS{|?LWOVx)E!d`f|Dd$5kj2k$e zkzFgD#$~29UtrnhOEl)E4cH!ks)U7$n-8n3?)hKvfkB3;f(8rjQ^+E8UVO>~7cq|g z$Gy6EGqhpRYSa!dap>4vFS$bt(XwYc{kd;pmkL})v?3A{Lt`7V9_S5-wXVu8cOEF$^IQwDh?)$bl zRQ=y0+A9{hTeLP^9hxvXlt~nNEReXpY40XOri|zBsps9#O{7yNy>b#zgQ41_ZkV; zIdCGn5FI=anM=gc;*Zz@mg7ZF6km@kXfG<>sfnMzP=XuMG52h9WEBg`xP0GL>%FTg zZQLkB&*?obZ?ZiO^>P0Q?avFD->02-PM#n!@oUkJsiX~=G- z?R)89QJ2nmma9LN`E{$f)a|(EcVDq|nf|`xc!#c!czR}Bw6>x*!8fC^HSeFwIFzZ; zp(?BK>R!tGXp{-4JiSBs8ERLCPx*#WxWcU@vul!cbaCGK(eSm4ju{R?nxrsNRp_i! zG{>R#sO*+{-jA{BGLnRcd|z(sai@G_x59)tr(pA)S+T_P;@{L^AZ+Ry_hhf_SHT2G zU+}D~_Poga3|KJ0j{KWa;6P`C5OjR5;UGY7#alz|`;POTsDM)njUmfKUep*E-TxvW zmV(~9joWgf@50c-R$Q!AV6$RdG7(v>{3nPEnVVcD_S(janr9qezXNG6;LP`}s{DWN zILD~yt2gadWy)>aCmI#x;^IBo*Qyh*%;4-`qMIUlX`+WYO8Te62hTaW=YWH>vd`e@ zar(@vubi=BGg8EZj6co>koe|*ZP25>N(xdV;jAli2K$h)fIKJml`!k(*T~v@M1RL+ zzvMj!xqZ|8#Zc5*GsUL$-u}Z+0E$IfG;ZtGzJ?Re{Kp$bS^G4LTuSs!Z9IMSJbt?1 z4%s>S+4dBZ9XMdYW-()`7B$CMwr3bN!}`{XcgZnDm;LS$#>g5x0l@nAX$PI=*#5`( z&_We5DfkA>_tfmeiTkS8o?4VNOI5?h-?OW@Y$YHOtiQq0PL+cc%F($=3L zWMpl|$|&Xiiim72AMLYnClM!1RgQ-_!}I(QSQ4f2j9^{t!01r#v{f6`cHOFzEU8u zHBd@9tCigMnT1qDUHE-2Px|(kmZlU`$vw6>Q#d5BO)>Y{TI)Tub6IG-^~7_y2Eq4> z=IETvs>P(9aYq<@=i*d;2{l#ox8Jl2T8+H(lWwu1Q?VL;Dts5;{%9&y<7t2-OD#mk zJj0M4c#g0DiSEpz*GTVvI=~z3gk4d+*tg`KlOAe;UTSB#am4bssecYW{Wn!o1*c{LOZTPl@PMkNsojfYv zwE1w&nxI6>D+tJC+4vCE3fpJKMR2k0DC^Y=)Ri}bUdWAb{^JJrd~!4Kw-ldHxQ$l+vhpa5Rm zMxP8^kR~tP(BNqr_`Fwfpsjw4g$zc8(NE-crZ9<#Y-m7HfH+g==ic}I=S6MI6_J_^|w>MZi&SCk6 zxU2j7x`H$gb5vzo5MFk$8LUD>slVC-k;2gC2+Cg6$^EKzC+#CnOKZQE*3N$}u84r3 z93S9z_O)87b;GjJse8`)#EtY06caV%74B`7i10R=eT@=!qoD=F%VJ>!A^b|rUttrS zu1EL3XUFGhenUsT9%8~@(YJaBm>PGYAV%fw)sEfj8Zd8T0!8b8hs9?*%b2OEMDCFd z3sqWdnbULz%tI z=t#b{AASqfrumc+r*Ihpj>8yfy(^Rp*3HTMJ@;@J{d=Y9aLt950$4+~j>0=&5!t&a z)59b19^VM@z9sJO@R+24pe z7}}M08-Ll_eCW#_xWLrcA#)z_xLmUCqGhFx;MwhGI$ch8n4j(nB6A$+q^jZ@5^jJ; zq6V!%gH#GCoy@dgJgj1unRbO$rlBN#NG)N=jTt{WwF<6ysWI*~?b4KUPQHLUGiyeb9bA;74xKRUntVgm50k$!r4u4cn z@Uij+AT=_(opHcMjYm4`8C<^ujY#e2jU$*Ybv~B%XH?(vi26~3LTYo3MjiA`Hp82V$5~pII9|d7mr*^?nMWs>XBsJ zj$d)P`QFuu9OeAe<-!FQphGD&-q$-J^3F}xFD2KU5mwHAv7YW!t45o>&RMursYl{k z3X;1^GFY}Hb97AgNRrG4 zkS$SVOEFD}zB124bN@a-3y`exsIv@V8surl5|qrLuQ~nspE*OJjNS8{b4ZI}GKY{T zq!uZE)}P$6MT3O0Oj}Tg=SYc_3Nk32bA{uaZ=^S^5J!*CnLI_*j&8|#bB1XVQWSbO z23d$_d!^hVWxS)}Oc<^2k+;4@xv$1RnCadq{xhUGJKo9+G%D~z?}Qj@$PtA;MVd>X zZon7^H^f-ljwm5{(j1m5>I*zt4O77eg_I&iy{4MEo=!I)(L3(Rb!Fq(3HDD=h*B_M z7cHd5dn*R?^5K!@*9}Mp7zHU;GQynUP%p^}(Cf2c2!@GPm@~FRj}R8+TZgjtAXEdA zbcO<&i+}63c26UIpi8!2b4dKPmUKc9e4+IsE&Maf2Zkc8YU3%B04}BW>KXTejP*(P z8sG>`QP$oBO5T@r^CNu0E?=K;b5@LH|BYlppv_#+bWgHyvZOokxv118ar1+c3~I1;`iQ=vy>#F(&-9qB+C4fNk}Sb7l3RKg+%W z0dSqDW30Ve6pQi>Z}WJJb9D8*UEq8uS$3EHkj+Zo8~&Ysu?X%8C$N8HJHSuX_(rZh zyu&hbRKnZLj52Hp>7|s`QCTRBRf#btKuak(a-DMjC5cZT;RH&V4L6!BdrP(B=YR4D zT(cI?9Tg@-TindVUc}T$nsyhe3naQ;OYc0XeuhPSW)-Ai+GU5Q+|Ee@yePD>3FfJ| zfuQrW^SrG8#lH*UlF%cm7QnfJ_-SK@j~9;2WZ<^0($4=eT@2QWM|rf?***ifn|K+e z?Yk_U_Hd1v{1^pBPe(;dqvYjCrz+rzri5!{6m(QiG10H}%~LDg^*zv2m2Z+Atd$@(OXY%2*?)y{Khu8g#gKwSs}7A*=&&f2TvM zV&}`-{aI&#iA{5~zC2XXm}Y4~UuZ=>^zJa4Vdo^pZFT6!f?dl}{Y-PRtcj=^3)EsM zR#D}-2bxz*9d(CuT3z(H2H1uj|C@8zROGI3ux+zBrMl7B`nK#~W;@2RhV|x$N~w#( z(;u8tm%dX2@emdVYh%>WCXY>wq?yU-T;lGd*-NaIQ*2|+PnpIp*kh_qtV8gmD)Kp)7;BFVB#RVvdx2!nis}!KO6K>pwxuJTfLBE?`B7rE z!x`12!Z+L~iG)L`|E)O>4AVW=z)O7>w|DK+!}!PLIeH==`QSLwZ^{g z31nL6i|y{gB{B*~HAoVnAk0mU(3tSsvv7{%c6Kjmeb;7phSXRX%naS&Z>D0nxt;~? zn~$P47BoWHjoNVg7@<|%tj)x}{Y${@BCy$4kS*!dC#@MfH+^;& zYxT^;1P5Fn|Ib$JFM1nunKk^{lb=%A`Z=Huzvih&-r=+2fqjn6TCvYtEKc|g*`P8Q zLs~ajGZqnoYfcSW38$AFFs|HX#S0lN$UjXa->iq$@Wq}=hEcTQ_l$DB*nWkwA8x)= ze*c^L-1H#*WmdsuuJ%?Mk=BRR#$oVOb5ncN*vlhJ_DpMLSFMiRvm!Zq0*SnU@ewr+ zT+wNWq|fvg$d9J(2A?4r$R0va@7y(l@gcMobJq#rv@A-3L>R7W+Z|5LAs08H;8yX% zpC(Q#%xM2hX6RR+XC9<(8&b_=kS4dcphS*LMImXd?NozfBY8u(af0IjW=3@FAoFGK zz6mPUMB8ZyeS1H&I#rfBv_zjtD*TL0?b^$CH^tKs$ToAg8wj_s?P$+HV7|&oun`g< zg)0-=f2qgtQr)tN@eZ39t>jdDT{dgYP_e-EiaRBXt#cfX8hhH-NT@^KYmAa8szzQf zN~15#P|?8cfdQv?Knc<_cAsmFVtwlQPkte<)DlQqlN``%LKG7Jm*5>(k{b$esp zQbl#)w)y>3*@*MkUQ(Hjg&}FSUeR@Y>SyMf4|nbnyzn%(;Vj4}bvh2*Q00{rUru6! zdau4fqJJrEqZuPxV1tG5y`ATlu`Iv$t**xew72%h;rzo>;#0iBUcP{ikp)RfnW|PV zu{!9XT5Tr-H>BKSZI|yFjt>()>J_eTEd)o*JwY<&_np|XXgIVc2$aGC?M<8he4bc` zXg&V=bZjP`EM1V!^<2dP(7TNODRVuuJnRg6rc-tPt1)cS9%Tf{4vF#tm7A8xhX)Ek zigL3*`5Nr|OT)qILt)99SNEyINkB132+GYkG+g7d~xdKqv39r#wP=9(1t^s=XV7uK?LWZAwpuIufD zpz40T?^4t1?rK=anxJ)T>Dq?V1Wx-bn31)ok8Muw?vSTtu5(w?@-#%RcG3bUxXM{| zQ;NjQpeDx0 zEylD#%4RA#`PWp;?>&3uH7hUrcRA<|b)j5d^Ed_!k*A2vTBzWI(g0rc__kNA@t*t> zN^<8FsO3>UhrOsR{t6BdG8aHGDsQ!EqOsEP&&m$S>Ha5F_e(`T!%J%pL}zvZC;qq2aJHOp_-?T)6MwHV*y!%#4L>&*iH#pZTlm06D)+j@09 zTeF6=yQrey+OL(`cPqfgr7qSau^IB|f?UeoOVM3E#qvoI4Dtt~I1||5h%WqQM|9Mh z&c*W@^kt{%0==no09u^2@bn%&QG(ei>Cv3urh+uFD$CG2@@D3hJ+qC zLfz_m$=hbm-yYoD{Jh?r8~3pI>-`HIAO3aedBShUvws&A-1d;VCyCGTI^<%gdO&wx=fn2&}Z9XcB}bT9OmBTw6Q{fpb} z>gUf^PllljAZ`a?F9Y@qx#c^xKDMWbU{Xfg0;7KqLGpnKlBD<7pI=Eu(Wh4N5ANxY2eYy4D7|Vss=#&L@m9vHI>wT9BH8=J*}- zMr-;X_;bGH);aIjIh;sE|A5bctnIX5h}K&k!JC5UPkdrWYfK#A@64(*h7>U7t$&s1<4fOGGX3M8x{3LDex73Wk>FOp#Vk;B+@2ZIg4F0ek9nB> zMMpD+lOlLLx*uHRMaL#USxV*T1WerDs;I_46e}O9C{Eg+-5>67vHCKYr9z*<46Q^s zzxFD;SZ%3ar8x9aN`X%fc@y%S|505}Aha6dY42*@XEWZx)N*Fkn{-@#t=20oDsjh} z&U~aW5*Z7UnD_vJduAU_@)adV3wm(|{RG%2zJ3Dy6A+((`~=h|pg#fg3D{4-eFFXy z2n{dJh+F#rJ3A*IAB@vaM-u}Z7`Nqo)gN}V3`lJUYNN=?2B%f1+zVx2icusc6F3MF z%v)%cS1?>??k;w!2Cg`Cq;m1MPe;7?Jb7v$#ydM%Uyt~1ZtgGldSKXs#wp8K2k$DI zOsNsPwCjta2Plg<*B_NB&c7*TN-^wW0;pCLccm zwZnZ(Gwcf(v7eTe%0(JLB*hy^g7k|D$(NmN-x+QuhK%#ggPBUr>(Y5=TXPfEy4U7{ zrF*^%@=|)Dhv#NvYrkud?Wa5ZdG^cWt>gFIfzRgV;r-m_<>a2Vw4%lJ1ns~=oDGH8 zH8Ql=E!Ev(;OeLYXL09mObzvX6>b4APWQr7*ZciXx$Mk=LF--@;uKqyEsx&W_n;^!;WtTtxry1Rv)B3&(*ha{t)C23hRdtHDMC8x|8Dx zl04_tb$^G#-GhFCpZ>gKH7yeegGe8v^KSx}kQNPx_kWF(5AMHjRk)4^#yO=&Lb}k% zW_ZQJ?s?cp?jjJF1aRXAOL%BNOa;wTlYq{TG{ih(1o178Nc`RbiQ`E^Hbx=_TGa3( zzf#AgNjjkT2)U_=Q^69+k;HfZ!b{^lp^tlqU;tVPSok_jcg=dbKs}wl$R-Zr8rBo# zN^00zXAq3VHF=J$n&oqbEz3Heo?bN-Ges$IH5I}#A7)o z61-d^oTU3$6M>5~+C!o0j*4aTia;wQkxU(JO;rK>ZSJ;V%4OqMkUah50yXYrUR>3vUa_<+F+RN z9*Lhppb7>it5o8=(yJA>whWw3IrZ-9(`CNKpahs@JeckS2nGt>lo|=Zcn2i$$D6Z#VP#u_;D$146 zu*pa|N=xGCiXfIz8GFH`j17(b4q6Cmf}c%Im{D+m7n;zXt|_Y>hTcJ~N>@{@v^A|t zE3NBNq~(ZZ;d;>wp08i-TbaE7+gVx;qVs%cx-^oOaFbAid{AkOBAs+CBu~l9+ z{?;_F<>@8GBHxvvBI`0~*^F5Zyiik|Oo1ZQl}Gj(c-F1Mz$b!-$<)4Vb(P5R^Wid5 zirr*FFYV`H;W}}uJsDF{oaoQrRy@tDs#Lil*S@J-EhAk6hLEprosArwT=;}fUJiO1 z%{mAh@l)f%dWhjO-}TmH;CeZVQG)p#G6!c=vQ)sGLy??|&>F4@q$m^a* z1rkOk_W8jFH9>!WC_?!oa@PCT&3l$EmRrHQKzB{OFib*lWeX_hFIUxckU<7zzY>TCu7(I%Gk6}h)Ywvs}>svsKvA43vgUq&F_ z6_juqZ2QK(!dBQW}HeVMcWOL_#8(n8Whr$Yk!TX1*qxJHTPSVac$LKypKT*j=UCyxsO&==%ck+gznm9TqGiJXRs zM@euNNR&ctu&exQSDX)XR^{zu?-HW#^{rEU-S0#)h*o7_82K8wI#NwRcF$r#3lt2{ zB4OYELh+5CmSg5ilV12d6T}ORi~XzfAr?rA-vQSDt@CBtKPJu_ZPqsQuD-|h@l=s& zRX0FSg9<7U{sCz=Z-%m+#t=OJnv!+6QQ^jC&Y4`0(x5XskS!5Y`*s*z{hGKyue*2m zvXII5X8C>-$Nw?2@o{@sQ^9X@VY8xp($Vq0#4mfqq5E-nr1yST*XHw547B<%emuPu zqQF$>`QW^?*i=ldzq~(RTY7ri6>bvfR#bc#rWZZ9&e<35c;j=@HBzVVwIyl!+A9>< z0D2_oU)2I{ya?`83ANGi1{tk`IAZy4!W&s;dPHM}{GiC?F>h8Cso=&-LBcVN+9%$Q@-nE;s&jhlZb z%b`fnq0|D`*G&`%wb8MZsJ|1HAJKCHb=skAt>VC+mllS%H_r-SO^=ms<*B@uk57N? zxP?{y0a2act!>7`tMhqv9kOiV%zfhy_HFhVIaSjHZbW56EmOUr^OApGG|J@saB<1<1I!v>Fx@1zO!!AXMMioed+-R_^2q>zEH&2;eY)y;H;a$daC#F z2)P>XSHdAyDrf+_j%>W`uT-?Z&j9cHEgNt5cQ+U9FFURo*19_j9+}JY8%DBx!kPR# z7d{Wq2MY}}3%Bc^sr+y)w-|U|H(izr>efQcS1eQF3+{qegap{Vv~VSIm6bPfonGh)2R`Cl zjEpKBTx;)pb8W8&KwPRgwOO=!nDFo5%ffG~%l&387=r^ctGZzw0&F9&?->bVyge~V zWq49*F|1CJ1uWvc9p-`u?#`!+7HU(PYVp7FX~eswU+|Sy1-V#=YyX=3l7X|wfIRWE zJev%LCj-FoWR{g^8X@3K7E!SLD*WwKjI0y{fuX;Z+@rgXcSOO$=0+6Bp^bD)Lr2cC zJr6AxVM>3K*q6Ivk1P!4X8EnT!I|$USI~%1al4q2K8xkvO+Cw3BE+mUjdj0<6M|*G zhm|#$0LRl_%{(3ke)DLLOXp4dN`JtwjXj>fQwiuv#{{3kZi=^`06h|+)0t5JGeKrv z-U?eyhX3d-VYJ+HIjoRUb>0F+x!<0SlG{2S~YON!%`0czd6aF?WpVEJ@OqGM`fk3 zHwTOrJnU_F{N04WI9O6y>)jfKz?z^caCU+}5F@~xkoZ~ZgQ-~VVR1T3`i$;xxUdM08G%qD+~pG$AJ+l z>FPG2ND0Ov8*1SSeie7e0T~MO!zQu4i;Er5K-5+< zWORT$Bh?^4$4peGCYvt~EQKsTb*GoLaa2T-i@iJD*q%m_&j00ZTaDk?*qgJBa4cDE z3jO_i0*ZA*_CwA{3FS>tf8B9(q-S_LE>OVwd=f)dL8_wH>?ROx(?uv&(D zfj`3Eh0aL{6i2^!i733ZUi_=Yi#6woR4 z6VH5XM#V)-QtM(b6yG(^^N3I%iYUE<^A!!JbdxX1$e+Vy*FT5(oH1d$5dq{Yc8akBh^hi) zR#RLAy;-@Wmlo@CM#ZD4)#Y$}>R=#YS&&dvR9>m!hTjvU#H0`iiu{5_r~KoMQ8LMQ z7!su-OdJfZd<&!1NqHrta;_M#3#*i=HK^RZvQYjm2zB?=iV$a#o3VZl+?eg&1(PGH zGIvW(7TIIHFAB(41jb~x9hFPFiMI_bQBu?rg*z2fVAZsiyejcQG0+j?;tpHIu0A7e z>4K7ps4CJ)ykp>jlC72~Vzz$7M9^Db7S5-Qx;LJVF_kub@I9$Y`LCo@x=%B;>nb=eT*TQk-tZV)E}-&qu?+V7$ubz}|IjoV8Y+sqgEf zKFw@QPgd}4DQ%)~-Lso0sk1)KERJ}&;4DpTPawBaSR-Z{gKxJxX5h3LL+7+U?0(9d z(f)*gObM%ku+oj89Xe-vkz^)q|$Mt#l2rRb`8X@`EF ziiq1>^4&<5roVZ{&>BccMBe9cgKzq@Nx{M^SU}d z<$}{&5?*fX z*Ejhu-Ze|I_dd7lI)6x9()!k-=39y!PFKcOqsBdp>_i-B)_qvkvuxOwhnAz-J&UYF zVra*GYS&bLkf`c2-shg+A7i`M3@$_!;Qr*Tr3@`2;C-+k;IJ+Csa?IZ#fmE?zFAaHLp3RTsVS5+2!~<7vuNjWx7U!*Ev|k$09#D%)Ml zkmt}Xc|(Fa3c;gDEgrP-F2jIJY3#;+rY4~$OOLI`bfb=S{H~n*p}a@;j6r5!=eJXtzuoouHur`>{DpUr zLi+>WIqWPh4>$J|)5S1#6LE`6ZBaYe7{xI6iAZL)ck7CClq(uqJ$m=*Y@%^*zT^sk zKOs5}FJkjF-?$xnhVyVB#}EIe9!m3&4dGOk*UL0j;P|sy5QIbz1Zipm0>H`qC~hc2 z-Y;Myi#bWD=N=q(LKW0%=N)e}ehFS_s@zGdE`nB-43S=RVTrFo8{H`0Q2CtLrOg`I zFmFK<&{X_mDBP^Tcm?VyBQ1FO_6%_7H(6n|-9!26y2&Tj)F34mZP>c7)`UCV;8iRn z0;G`yUk!EK)wBMy;@x0JG8@Ep!TD8z$$Gm88oFh^Z5KN9G+w8io+f#eNa7@S8^e`? zUcb`@evw<($;^IFY(+qFvPgm|RUr&O=dIpkB&7 zHFx^*X9D>yL$4BfYC{mfxi~d2`NvOM$p{J(8|i4v{}tT^#}LEsy0U(K9i_3TG)i4! z=BffAxHPKz3FUoVYCA1uA=toboUT92^j&D4*ZaEJl zGe=(e&TcrsFq}M7p%i#%SJQ!&35cEj8`}b7*_n#kwMy~5rjRV!4SX~0YVY1N?M5fI zy93&nYN>KJ!j#isbIkYqS8ZA<>HqACQ*kUd@0HoTikd)hudq2_@ z{FBi|zMX$Ey1$D2SS=-{y}}hXUWCq;u6i@#O#IA!D7S;B5@HkBd?76r*;sGUGT=PX zod9sI6G>BD#ThOqd#mUBlYKN z*BtVB*^z32Gp(J_u==RRKd`Q@h1R&kqOr&}GJp2GtUK%u3B2`vgWnOJXWS0Dke6Wo zVT0q>nu0U@(Nrfe1+8}0@P`WM=y`>yg%e+#-tIpZ zFY&o;9*QuWYzfU*KJ$WUL*T%j6pG2M1gNs@5f61LG2`ZsZ!Fe5O$H&o;fdq{9Da60_Ymctc)^E*5TeY5g+PyoV16L7e|A(0_`GTYVQ?PGNl7b~WVpIkR3XI)OmO9&*qHw# z3CgWra4GYQ(qi$r&iAWa6kMJP1ggY29VAW>SL1(0fO?@d9Xly|DMA~EM~(xCoO&-S zZHFP32(6}GHq4XY;bkT=l5^dNg_BZrQ||*K6_MKp&IPQf2aJDZsGd~3HpwDv|8u5a zz4zzLse9xGr!B2&^%aEAxa!}+S1_`F3wQuw_+*bZnL%p}LX3?oZ=FU3XZx;ruNdBuo4^-S0;V`d<}AnZpnXR7i3m` zcvkf`T0A$Lt|NL$|EzY%1^9GSnddOuA@qUPH&@^<`nKiaBLVW8%{aPRNhNi5*;Iy# z9~l&r4YKO^TD4T=e^t*b4%aHsDQ34*O8v?M{zUYyON8i|JDsMV`vhspMUAZdFReut zOQB6fKIcKXhRQ#z`;QuQ(KR18(3k86V}kiA(*QErQOb04+owx9m}3rj;<05@I<%V8 z^5QEPxEud}4-p(>QcjGe8+B#!hKY{#@!m;uI(k%4`ngL`mRuGn$5&BK1@dWKvK-G- zQ~qlZ7Mh!dZZ0uV|5)Jfw{60<$l_1U+ShiNY;UB7)&g=96N<=K3nW)U?O=Ia$E0Te z%bd%`uGa~q4)tnCD#+$XtBim%u)0rG=THlGT_CFbSMKs4BnxPD)Av^eGSQ*`hd60X z@vwG8!t+BfR7+F)KR#Dl@8f)%^r-=6n5(5EPPIQ~Tfq`yaU!Ibua#4Q1G;rzseh7K z>D~XCLmCWGueRGi_kQi9^T_`AtVmVKt2NmnnB&IJEwi4Kht+7sFL2oj%v+W8 z@;|x`td0kY8~JI`f3h{QtQ0i}wyPou(F1mBV@sQHT}QC1zJ=OiJ~6;7##&20&;5M6 z?fAc9$7FvC!^CTpc*+rkUWltqbIKP>CjyYwtoV+v%opvUT1fVR(5+xtw|kt&%H?@G zt^TJvEI8mW;qqP#p(7LemjE3Vma6m<243Vh=Y!CHDzbi!RjRE{u3XgNc&r|ro`%Qu zDns%4|8+El*V$xD>CUt2Yl2IPP9t^dV^riD>XhD)Hut3a3Qpatvj*tBw3h9-+j(pU z-OGOCPR<#L?ZGrdE$hPzRhO*nx8!x%i`_>saN_5a6e}=*3sWn5--n+Jy@J+e1YTf5 zXZ51+ACiCWA~Z>0koZI-7lp#wn~!s|bRQ(sS0>acR1AO5f2 zU=p0#HT>hApD28_aFax}QNkLwYOlv*4>r-KcQkqmdSPWq`}OyIT%-~!_24C?|3~0h zzVY}2GOvb12;w!cYNDuuhj9eN|G0uRxe{os-L?~6AgAArVjan=1d;NNg!zR<4T#8%NcVLogerR_wPJj?vl+Bc=+fkms% z`3$H#R+=($6$Y?LCIav}(LQ>jtQgYFwi>0OcuP+*&zqcY=~{oYI=_0Msp2o zm#R@rmA?#bSpk7Dk0AQYZz?RcT1F<1uaAz<8=wJ@$b|fYI^FbEj&p(10eWpM zJC`Nw0C9LVM3Dxw*GoX>ROdNzN%w(5CYcvB*86xa8;QCgkwyqLYuPc_IzaYXy_LTf(cpqc)-OTvPsstNvLoqI!Db zUjpy$ZF56!9s~YOx$Hj9O-HX;H{D9+v#WrFsQ0nFj{AqFLq|Hum5BA^vS|FVA11=+yogSy-`F5j+P}n9(yA+8Fl$|LlxfF?#rkU#~zi(3a{+Wc9=7*)L zz!YH&?Gy{Z=aT~`_Y3JPC_3(qWR-XMc)9;A>7*1157=OoT7pB#E#p{`VC%;kI(IX} zabQM@;YC-NnPI5nAt!%TeeR1OCv(p%JXI(?9*F%UH0*>SP`9+Ly{tjry6np zn@!v;fY0LIPfsZUKWGe11zvWHNMDYxu{lD}ShbYt*ln@=)O(Ngj zS==6s4{Qdlz|6s|s0>zwUcPyVK6-s1j8P!LQ^J86!Dui?2b;uZ?MEwbxzh*Cp$^@QMth7#M^cc%Prjg=T=o5MM0$r+=q;uW(_8u&)C>Nx3TZ91N!%a`YfEDJ8EvF{iwycOEz6rL2 zH5pA#r`tZH*lL`%q)5%Y^BO~W>uIn=7oR`uu~ON+tvHey4S!M1L(MOef4qk^<_jxB z><1(n9k}MWWEz{5^9)#*=`7Gplufrgd+e=Xclv~)(oL*)RO|PvW zbs5FP>P0Z!(*>2ZxjZkU4@#5!_)_0=5)i~+f%FOFPoR7P^%H2HK>q|r1Ahf3krcqr z$nk$pMKq+NR@weJ{eDDLkCEW@?fVA90^%Xv(vTDM=g%MQRAGBhT0Pyg5lhxBZe6V?VeR6-k<&+UC$%{+LsEDf)G`O6B(-e&> zI2a+2(=?i0?wdIUY76MC4qZ6~vs^O|3yT*%`>QW%mW`7)+FZ2uW*H15hJU(yPLim0 z++(sv9<$`e6*ArPF9u0`JH}f>Yo{qwx3fnt?VoR+7LJk*R>WE37^yiSy_A#Ut2o9G z;-@OPsAwOj`Q>VUgaqbeJ)Cws`<9LUq|t3(7Ix3HS=d~+H*Ws$1`ROZH}E>2}qL8qV$kBmyOrdY*fEnOqZ~T zu>;5HwYo|GiGVjs7{UtTPL^DiO=0Xa7IEZ@k~o)Nw_e3F@UnvLw``e^$`S_GEJ{46 z*GC$gTRvhI;_Fir40a?}@RXPsM|h?K*yZNRleXAHpjOrSfu~|>k*?M1KrnW?Q1ET7 zhG-ZTOMJL@yGu^RxMhS{6AH{`9x)f*z_P$ec4#^9+$#M|*A6XVp=wc3LlL9_%7-&? zUVW6Z&rj2B7&(My1SeBf;Ad#X=nd-<0B*|i^}zQihNsDHyYS$6Z!kTQ5U@x$ox zu0d%)NSSDHpZuIx!kfF`@F++yy>_}C9HZ;pTb`5=?Z_hSJ=MN zfddaMMR#|c==_edS1l(_j$(o3yS*B?>>Ki8M|y&Yw4Z^fRVl|e+~D6ZIVa9A{Ue$u zb2n9CLf6(lW^R#kOpx4JrlWR>ti?BK)=L3^T5+ckvd|$KZ3m@UpNi)ag0i$5%1n-W zXAHh%1eRxE${+TGeETfJMJkrgHWEk@s&nEUPNKxRMS77v6rK`@fLT^2(~5v{iHg zmYm-SM9OJrjy?O7Q&K_tJ?GJO&jXlxi+gW9@waf?_WeKWjvhpu6A&| zpOw*n21U`9LoS%?=7;LF$DT4qTkgVml->CULvua_Z%IF*6H!n3*ceyD-qM8`Pee_V z7<+l=%}Etgyt^XkCv$eT5U=N+)`PVGtyT`FfrT-CP|6%Lih=(6eQ#roH94c zB8IWkgG1_1$|=G-6u5g7IeKf2e~*7(s)J+5YYvx&*F10iEa2`5IXKWD+?=lVbD!i{ zrvlpodCBXK!X81HuSDkaGrIoW>&faRuyC>mT85!EY|0fxhrz`zBq~2U6QGv`H2BF` zX8D^Q+NI1{I+PMmUkipjV!*Uu7-o%tK zBR(p?S0_hz!)td2&fti>wU>{8v+Hgc;`?31w^0qzyfY#Y2F(7pFOT<;p<#n?8XhVR zk~2N%NpnS`ihpycdMO81nmRfBLBM{EJ(!%yT42>>RmQApTa-1bx>*L!u#uHE=0~s! zknY^U#q-kme;DN_6S))-wU%Ij$yqXTzu7NQ`ogh)p`*UIBoFzcpyhiBT=&C;DFMZU zoH$W5*JaDJoYUm#Ymv{Uf9{Xw=VKw92fOMZuA}1nKq&eh$<>sPzk1* z8VYbj_^NUwztyL-ajsdTkg4sikXHC5c_LG3Nm=+{g(#P{kWFF7*%`yO>)F}C>Shnn znvO=gg+$`EN3^RrplB`9T_ucs1YNBp?cH42aA` z$wB^8#v~r?-CZF7(w^7#mIRWAiPj+VfvJKCaImuf@4fAh>X_{c16=zB)h(#1sNyW5 z{3C-kUZqym>TkT%f+dr_$r)WBk95V+kYp_ytD5ZUVn@B*g0 zk8T73;{G`ijy+oo+`c{AW^O*#=)aG2*+2VSd?P#HhydfJ(8J&5i~z9qc#YlDOS?JZ zp?OAnCHswZZi~W1^$Byxb5>R`XW#ykHaGJ($7sxNYP83li@b6DO|(#T36bceMz()- zc(mjra1s8~&u-)`tN$)h)aCeFO@1itlrczmLT2pIVIM5Lvg89Q?d%e3CQGvO@rE1ead>d1*TA|%e-JH0DHvL-XL_D;txBy^t@oaSl7WcFj~%;0 zwclG9`a;%E$qfSA(xOakFRYKwu*L+Q?cdmWg`|ll@EP?`Ore(t?3vB6d&sM)G`IE* zDb@R+cBr0=dJb-@5%kai3(;90PG*4`5`AuP7=y2X#;B{X8ql-tC=<0Q$0hBzF~Oo6i_!O-O6 zRxD}Ea5PwF(m)~YNzCcWvh}IDzlupoH}A&xR~GL_ zEDEz9^-DkG9)=WHuzFbhS%>zHj`pI$>XJ+Ej<`InfTxgeAG+m8PkhGj8a^lGP8z?s z>02-FRP|5>N2(3Pdh11dSK>;pb4Zt|3C`v`eGW37I73JWXMWTkQcGVYesLE6b&@I9 zA=|+dp>x|7#)m7;F@_&rGs%ON$$&vdzz1q8)ZGx{j4o*Bgt~nAb37oAsSgva!=epS zdXL&y8o=Q|+PH1mx-21dacTFhRV`HtpqGBd&-zZ>$aJX+G)j3%_=XRW*uap)~XLq4dT&RtJH8tHRreM1ql z$tFaZ`1*9NReOIuh{DD>OnEC+Vy(*}?Vfx-n8*G$u!$9J)>cz9B@%GtZ0HInsGIbj z;sa#zMafg79QIY{8`>YMYnFs55*#FJw%WjJdE#2hAAQwt;Ofp%$4ZRMHn{?uCWjgt8WiAH=Vko*R{N?%A z6&&;%+|Z@z7quc1T>LF7m%TE!xbonBaA#oT!LJ`85xs1$Rcw>1Wn>xAD(>$(Jd_H* z?C>tH?!98!!*Zx69ddok<^5rd$1UXSvi0t!Z3&9cCPLS;+rvE^3Ae zNNcG%n-EDC`xNFV%a?BSB7R5v$_IIkbKAo~HbDxK+yoMXf?nSn0@kfsnni%-`i|n5 zMiPu(Tq5V!7+MGrere7y#Y`ySgXznNISM0bFi#7?rDS8fHgpR!>l}@5m8XaOQh* z5UshRFHeMkQ8`1Xfr>tGC__W&EEbh6=FrjT-U-Vun4=bveJk{;sw&QTfZqY|PzF+4!Eb>;Hw@z>oFS;Mi_s+wko{6`l zKXs_IbE69$Tpf963?v!PeTSNIaVEuXg>0L+Hu3()d1^C9Q>rC;;uxSgHrD=tDA=`rzVk@gRFvvs7k zsSIKSr$a3#vrBxGROQ``PDFchLQ@77=^{mc__SX0ZM|GZ7xw|t>sbUJM-^j`WMos+ z!8l@`E(|xkm%b2>(%nXT!N&Z*H;X#ep-5cz&v#U49>IRp zVA%f368^O)U@Q9*))6b>yWY0H)6m5MdeV8Km}B~vE}2|W3@cBSyT$Vo63k0+I_7tO z&o{q0NS@4%R)D9;^`a(s)2e7!R!uy$ZFd&~p7%*=znz%l;eiuJKNNPGq0TAk%CWWTKAo%} znZtsF*X!GD&CAg(d0)l2H0{*e9!oR@dV|P4+M@T8i?Vm(_Pc#YbCfGi&g!m;< zes;Czmljyv8DV+P(X_GtDbo=9SiQwrx9I(uMpfmuxR~>KbUd@!BpDC~xXn94%2oGP z;30(kJfwl;N_wwHda_is(i`HH_h$Qc7GFjx7v^GmGgS)rm9@5!v4GMcIQWOxEN2D$ z#%tSS{n4}Qfso(J#^6LwMdb}5}=K4AIp9dg9>jq_L4d>kYCjk6iTRX zd?^dXtpx(A_nglI2t;$*i@2_w3EzoR4)6N5pD-p_pYx1+F-L`#>sG63=D2X(P0tb$4yK#o_B}bTOv(b zl)bGt&^o--f%m6ifQm+f68Ep7*DyN)B7^(8*;L52 zQVnBB{n@wN-J?>LnGtw%71RN;6~Z+KV`6LkKktN@*e2-u_ZZx zKmdr0Y;4Sg41|jGVr+z;*Gb4nnAHD#*u@J=(lEe?)d7}t#DE2tbUKZN1F*CHpLQ=n zb;uT%5w7il<`zt~R}`1wGTU4!t0Ai$owrwZRob7p@ZCp}mL!TduJ-?->Z=2)dV;p; z?!3gMyQI5O=}zfxBqSs+f(S_G0qF+mywWY*($XL$-2(buq9=TpHN)y#gY{LL0x3P%KpCnYzYw;S6r zodn5)kXD-nCXKQoUZzGycx9gc>9_#p2PI-{ZRb}&r z?`n*Il_}#$k^ZcXgIhh46MuG?mjn6p7I#HeuTRzq=k>g{@%r-$m2gmtw%!WjV)x%S zK|bWe0$!}TXYarD^F~!f;`mI(Qr`gh$VI*OD^kDpcN+BgeU}CBfO#AQzDRsV2 zl=B&V10Il$IMU$dj+8#PksqcR&3hPz6YVVG-guSkZoBIx`$@k2n-U;F8b?%^wUgb* zF!u2W9P3TJCxHfpCLIaQey0b2VtULJ6@EDLiWYaOpT^*wz%s!C<+-p8DH0iaIVCfZ z?Xjn7q zZR!2*;5ss6Omt{{f3?V6dW4Q-?esgWFGN-a(nFt)8f}Q92Hau_SX>JJx&Ocm0dLd@ zn1CxWd|XJS!N~8utnK$+)?3qhheRTZq=2>k&DvE4r#vM^IlztU=c7(iuW#h^F~Ylc zP-L%sy}|5k@}2FV@B@7k=vS8S<9pYf)0>I03&8H;!gVOVzMq(PLSIhuh2oUTcjscu z>?aTj5$46_cy(~s14i5d((Q$JA`XDv7s~J5qnao2oS}rOL zMlDzC6T}a;Y~pwoEpdCd!t{ewy6DyZa*JD?W`6YoQbsdq>T#}P7pS>jMq&{Zjdwe` zm1Iz=6Y+i46Lm$)!HF9$?dfN@UFS6d4`Ct7i_RTv`nVPRR7~T0+qGp~o7e;o`QFCe zKq&l9ONH1bl1>jv%&I3f&f9Fhcm{YkuJ(Q`5=@8nvfgPE@jfjMil-4CzC^we3r-)S zy#*_{SxG&=(iJ08kRK>i znkm}vPQ&V%3Q}=u0T)ElA6XfFXsU%Ase~p6G9s;t;@=0eK8$-=$Uiw+G+7`WQ_(as zZ|dP5G^o5OdQm1dG4XY@Zt>JXi(Q-AP<{}Yqo2)Yp1RPW|5kn-u|z*!3D|ZZ8d1O4 zoU{|E#SVORa4)Kuqw{(YJWf;O*)MTDCFhrdW<10!M?j+`k?KTZQjG);?mv)1DOp zv5`iNOWs}TPWWWLM$re^xuHuC(q}BYB~4F)z@$O^`OVUoxz15?0*m+`{e~z^9ET`s zy}ylRBX&Y3qr3g4dxG1GP}Kqp5+C3Avo~lxhh~V&o>~QUGpq|c@jf9f8x6alGs~=Y zV0l)DGnuQ$F|EA$fIcrXh(E`#Fp8>WSz;WQ@g~_5znzm?i0J|2_Bng zH&iUU+I3kXll`%nt&@uig5CMj=S@Ct!s4@@fFvEa?IjC?ml@c}d0kg7dwI!JYK}r( zb3SjHP!?VDc1`?*nchZ!`#{5Yh5ZV;dr?-LZ&Y4YJL|(KXi9gY*S>HWF+W~* zs%N^3%kbn$>7Mp+UQjw=&-b6;+?Aq^pG-A#Yz6V_vB*g;Q<`M*vLQWSqEy071s_d= z2EVVm=z}i%oDA0-Veq_(Bk++iT=JMQ7n*Znk^z0#y=VC4dE$-KG^?dOvA%V)Id90} zcc)j)-0f%aaDZldJb1e%5`-v~a?Nuu_2`cwP7tHewSCK+4t(9w542IwKKSu*EE%Hr zB=#{G#y&DG>c|0e%D4VFDzkJ6ww06awmM{?3_(PZMRyX^R4boNZ;j%AP7K2^B zI`km1OcqaUZ!OCYFG&>GY4N-$oZ4pR=flIyujB#?&A)!FH-6+yP*Ew6J|ff{AP&I* z;$%VC0A(bqN9sN)5{@v>{~niw`2ZOR2@9g2F#q2J)43{W6cNC$U}b`CYl7|(0fKxK zMktaV2o(wFzNKJCBz!@qLA&`4bOagmB_-})< z4j@4apl6Yt5t{WDbOZlC=QknlKj$|j9wBc2zk?9s76dkis2HJ#2_P&aVCn-K6BL{Z zqCxm4hFID^F_3vNc!YQWnE-rN*e152gTw$$C;+u10r-YQjL=u5pe_W!LJNTrYETZk zMgBc*Ca8BU=qE}NJTVjW!zU0g3Op~cF%4pZUUYzhQ2<&un8wokK?cZx$1_SMhzQ^R zNk&llVx($W5O3x8G0}2xgW}U^zO;63Yp##Jr^Wr}75=D-ANLZy;ZKK?IZK{d8Waz1 zxKY`SpQ^1f3n)HlCow+&GglNrkMAeUeAc8o)pI286&3MqbY|{dv_4}Vt?(xi$@K3( zZp8_)dc{w_n{kE|^*t##y%SCtsE@i;Xwxkb!JfoMq`vLg2HxG;7;-yRju2#<29=5D zguPDR_4lnKIr&1|i8#UV)60U@i>SV)Pt$Z`?{fFvb>_)QT%6-_fgi!=42LF$ z@->VWGf-yydqK=uWWN?qI#D+|dDrqlEVbgYDm$nBiq9pGiNfWq0s>yc(v<6l!uc1b z!be!@({u-Ls2Jg8zLwl_?xrmA+I*THt0zMcq-35H4c8stZr8jiS0dUOnUYLo|48d5 z9ysD^{PhFs@Pq@iRb4P8&(j zbM@^^=kNZh0Kq8=6A%zFKC885g=&jxCvse*8-zNieK*QBYvg5HJ>+Q!CjERcdttln z%RETw5rBt*YcxQSKM;%CgW|V$dnI1E<=*u9x|a_SnY~78;C}vS{)y%At)6-hBbv)x z@9W`MWhGnEQA5K#orRVR@*O!;4dgVX9%f+`i^h&e7D#t#_+7&D7fC@j*-7#*Uhb{d zjS{Ohnst{9+c}9Wjw=LHo})U|TMyHYlvgTl{31eUfBTsQFR@ytRP$xMMyqxy+~AK7 z_NzgvD&gh>nueqXIr)*c@yCw{EG(Pg^5Ef*_uZh}Xb8di@Ts}mY}bNgV71zt_dkiK3l9`X z3y||YkjoAgNT2nDBM&`4mK-}cY96WgmPbh0473@A{2Xzmsv#^YfD;Kw&)zGiFhV1l zH%UnxMBn*Z^&QTs-}HLycv#SCaoRuVd?amcB@T z4>|R2f&nO?NZg2SGmbDp#T7xOW=&d!nnonpQNey|zDJV3o-pFQzQYJEa-T+nWsgcY zy=*4|1iu$sCKhq~3ZLgKnH%QH$-vv0w@+hb5kr~a9a+kJhJIFv_kJ?mpW`uYzO>q> zZ6nSUa#!7;6A8C?>_5>G$j2z;1j@7?rUVCWtu9j=NQqV;d(NWEmR308xA39edLdIp zT8yC)c-fZiqUHkUIF&?u(a5pDu6)6bBbr+Vgrmuf*@xLIF4-Lo^_9))3;&`jyUdC= z$e8D@#>W#fnZnPWp>-^D1%OG#f-IdBtIK=JUfz!0$YYry6p2=v@kci33!-;SspH)c z+Qsq*DQ$_x3UFvrpF6)#M$(d$83Cu}N4+v)N_ZZ`ZIkJ$&7>$>$)!H=qqWTsEAOEx z58@-&9=IWT_nxtYNqNI{W)JsvEVEa)to`#% zdZ^Qk<;G7TI$M<6bQ!=%ws_~HI>nRY*Fad}LiC;AX`2;jkVS#? zEAE|xLsqia*oEPQ@L2HshF|ivdP=aN0p8Gu^JnB_ZX?S8|epp|4(&)$N zZ#6>=M-94=u6tX3HY&|CAb;l)FC0t?dE)67coG>X%-=YJrW#WJMuTH@la_{m=mmbS zXd?Zq!lk-7Lz%p@mg|5K=ISuYno9XS^AxvtiOj0nuTvx185Sh7O_${HC{~K~!Q@2% zxCpTL{ORFY-+@lQ);i+qh)=W0vSKl|R{pPW7u$G+Pa)(tVPZF7B-!^3X!gw#kPB6P zO{XL2d$1j1_Gh&D(e`25b2?gcI+T5-@A1wRJujV5OdU7QywS(Gxw;xmcXs`n^=~X( z*G%Wyx>z)uEXBRaaJ&fxW7e9T`x8V7stB*X$4EAfICp1l(iR|UJR`7^mfZD<^qbfvBA{T^B+XWi(qnBWm-XwcSG^gJqF}g8 z%a62$*vgO|`6AgK?xXNEa3hX=IT{Gp_oCr_DISuD!O&ARJ|YpX&_ff-Y^o(UqG$$9 z#@2ou>L0I=#p$?WoJ{r%d_h|{M_f|18)z6V8)CE0aAY9GdoV!9ji*UCwO@(q)xj27 zH6C}o-X0Ljyw98!xkRC>Or7$Aj-W;fN&Lb0VfMk}>lzyj+-{d&`8Yw6Ho86)(mSj6 zEU(&SO=P#itbbvUx5tu5{4#3@wZdiX%-UB&<+V7Lmp7qy{CkBK8*iTZClZ8H9@cz) z91s`BZ<76$ACZ3xKu52YO0ouG#iP8Tu9`C zOCA?)TqD?65^j5KlvCMUc-k%kbf*<&Gjc~MQ^t96k<7(kqA?b-wM~*Tr0l;hW$deF zIPS&vd2S4fGy&t*Xt*xQlYO@G!}r?owh(i>H(glLbFU_7W?wXEVpW_daN6m}xh0wg zj}g6J3T-;+2qD*+>|+WIOkL9CD`{Hc>aQNlZ7BnJ_PK~_=x5`9*P<}eBdF=B-8MHJ zXQu)I-l^?(AD#wPuoK&xbdTxw1t2>2f+dD4pKM<*m+W7iIPu_eE%uq}w3r7*FGIdl zos?kHET#46h2e(b8BR|!O~Elvu^1(9vtG>XH$M*pwxeXr1>X(}z#U*jGYTIv=rCC( zRj8{5h+nknG`v9|UGBmNM~s@9wXIdpa z+nk+L*)b?cAeA-#PF}E!;DY6O4HSZ(@5=*P&_cVIH2dar(Y)C%h@u&xw2nyatn@Pl zZqf^GngT9D8LrL0qshGH=^Y8&jUt6*5T+F>yK#MTzMI0AbItVp?1+(oijuNAIXevJ zMSc6?SCmz;8*0rTTD%&-#qIND6u>Jk;D{kC#t&1mnNdA8!-CiVBqTp4@$^Brn+bk331&USHu`Hf>Lf;jgN7l$76f=!z)xQ)YffR~+q+iCVP9 zIXSRI{j@8h?qRQamI-}pK?PYlGbSZ@IqKmtThf-j zp?s`JiQOw>aR)12MKPnV?27h@3sfTSy4PB44!ArJ7LjX6ntPU$KM_$sd56aV_%&hA zntXlYZGd45qmrFeAekAR@2O^8EnTp@DvO(5V2?NK-s_Gj$>^6&jXE>NZR>CZpdQGu z{Hd?k-`#Fq+GNj2&~rlK$Jvz!B^YmH8Gqi$7QxaZr8wQEUMTfUa1?d4bLXAtr?q{f zlI1`z#b+Fq*1#l0-xQAfURVef8KL92iQh*}ItgBe8{icdhx4DGoBRiOO2PeBB^{|^>cX`mXnB?$AR{|?1vPyB%tLW$u?y63Xo zOe~?2nBMM*vpn+iF)`78BsOsr=Y4utQ-@;0iG;%s$!_aA+~SA_*OChgNZ`gAw0yT( zeWql>9Tp!t#x2pVww|8{DkiH`j4vq}F++7?eQ`MBemw^{2M~Xn#DeZ5U~v;wVOz!+ zrzx0R58|^*;aV?5N1uLaQMkB9ZfwUQaB-nNn)0s-<%2LgM4o#kYBnSrxdXwC@?BeN z>YeJH5-UQpH^tBSxmp~q?Yk`NFDY*jO?*_kh0$7LH;F!GNd-PXShh>@r81)M%bl|q zD@K32R4fdMM$MQii;G-QDrMA)(-~vd*{xJt7VY>H?*C2>j5_Xh@(HzAPU@xm(X-Cd zm&gaL-+kE*r=~oqe5N%ESMNp3M@^UKYOk=>MNJ!X8=Q=u*mzDSG;O^ane<jLD{D%0`!wI@PPM>8k9f@bbaCt+}Cc@Cp--33-TOGW93^59SW; z4$8_|eN|EVuS?fv&p=u3I6kqvzDj+%GpED*U!qf{`oV~kWa)@|%HPI~Q!AXFF9KWN z(QvMtA%#?%A1bg=*O<3hCNHgI;kIa1UwJbjWv((6I%mcx4@u4B%*IdP8kTr zk}QSlM?oCi>)W``xY$HI6iJAuMOq{K?S+Ap1t@CeA3@W_A zT;6bvyiVWx?z=e%qT{+u5+vyB35<@ppD=pOL9jp5!SGDyuE-LEw9%Ii@MqKJ`&tE` zkQTFTD$H1-a(qD_rxu9x+lc$l1>UulD{9xqLlSc*ILAoZc2>}MV@hIwO-KAH^#5K5 zqF{NKST;GCJ0df7_#SD=Bk%1wERS5@y7fCZ6-M_D1J)+vbA?W(pHNz}#Xzr&a9plY zhad(}QErLiF=uQ)MbTJxU@KK<(breqt7w}Gy$D~CsBT2BY;yIfKuw>6?0o6xG0+Ih zrxX@je%kvv?q*FDWI{3+1s!u$ubj&0%baNi!Lj}KuRZ4OlkeQ4@_ZKXK$YigoO*Y) zJkuF?`&Q5Wq%!BpJlV;JZV70_EZ#IQutOA&DxdgMsUBp$nJg>NK+AAZpWilipv)hl zT`4@Xcq+$BaxrWs6^Ux?5RMvFvl@lkcrSKpzD|v#DL#L|Gbvew!SFSnTI^JMXAVag zF(>L+jk$6$w0!ZwsKr?y89c=z zCwY^c9`tCN68+rs%x-#B2L|RL0s_N4I%>3^OiS&JAg?%&YYm_I4iF2k^S-~S@f1%EMW51y+XGKaEjv^rbg0N$d|;KLJbcuGcrKp{r<*Tp*BFGEg*uKq zF?C?@^65FE3%!0FUBd7PUHoRBF#-7j-_r$N6oAu*MgywJL3nb$;lgDez_?W?TMZHQ z^4^lYY+8`LWEw(7WhW-gJU7B?{6RNiBnNrik+K<^AO5rBzzhEN*1;$r|0fYv`->ru zEy2Gr7qY?6g;Lo7+%lzNHYh_!kq5|V+L$*yT{%dqx;6sonJ?K;71;|0wCi)f@M71b z433}8tOP%o_xIV4B{wd1zTX4k`@3tK+Z98Ct@|6oBC($bxQ_-uY@c7&{JI}E%&AE6 z?1T_HxewsvJW4z>4v&uO*Y@dT$Mo#$p<0W(qD_+Ic=EmN=7@M@_1Ji&`e}aUeL*{E zH{Z?M`$93r6RH#?vwp5Ng3=EBy`MSZYb9pXO}Y$HdkW(<1rDSk?xr7O9Uv?W-b1f< z^ExAkX5}qul4FJRfk^-Qy6aNI=g`aBAN*b6-# z4$5IYIT5Q8Mb?IxfQ3Tz{gs9VyOkh@7M(dV@r=}m3wj+lBx1BrLD#iy3f&87-Jf$7 zT2+BjBr;ma%y8$7*$j0C%0cyK^M&k+8uaJft0k%qb2^Jp_rj3@Q5-L;gz#>h&xz9D z8M%7*@%y?l#w~_exFb@UxpK_h1Q0&e_NBT7qJYH$CIvnT6GBDx`p7B%2Y_pfq;I=$ z{GC9&82XF82__`s9Bo1xyV5;b7Ann~8d{%}_jP5EO~XlhmO_WxvuB%Jpan06pk&VK z5hmmpoASY5M1qim-m*k~5=TAtW6xP+3kj`QIUA+iyt}5lsrvSsdNX{hxstVOPQ35E z{M|4|b*)!Ow?6&!Ms8i$>bQQ#kf;HRAW8!SDHqgtG=n}k<*JwxTF*WOG zwcz_kbs+&IKe01?q&CdjOIXl!H_~C0Zms}lYPJI#9`+I&O@Dr4N{TMhZQb;S?1@cz zuDT9d|F?RS>5sb{RA*=S>Fo`zQ8;x7w8~@&kfz)``}-`F{BI&8CgPKy!yR+JI}pB( z!+>bgEhR>nB}X(Mp^NUbDIPW&$ya3sq#S-3J8@E{x*j<;$tnFFjbr*r)1kd%9DPeo z_SMnleK54={86@fjOgnsJFf81GNrOWy>M+{jRFnVu@nw04P`uFPiRv8tqS2EU~ zlOqZ?>@wAFi{uu~%sOH&HzVHxVrs_@gazH}%+dKmZvqGQxL>cuni#%DY;8M#cl{8v zpey?1#fMnt*vs?pgIw8*1+i82nX^nL?>r&JQRiCV79x{x7HE>1hf^5r>`Qv=D8n{# zb#w-d2S3W6?!TOi^@!w3Pas&+Z$9tOqTZ>fiVsh=o7$q;X-rQg+=I~YJ~FdEG>KGxH7Sopq24tC|(kVwrFy?i+U)O(}yFkRc!~Mw1Xjp zG(%CfI@rCB@daq5A@5$scx7kQnx|&*dChbs+H|OYliDoh=6hTogdEdEt^~CXW zPL3c+C&agR+?8-Rccvqm&sJvC!&HNYFHilcTL&sB)$|yHUBs zC~KwSMD=lHXY>Mx{3A%RBHz%6G9}mENm*reI2Ez8%B9+OC;43Bd&F((g-&tvE%&v^ucDf3hI>Q zyN^R28wh$DT6Xsdw;;@t;eMzLWFnH&Zr-W5SDjhEw;20Zvn}IvV`o^U{hGibah=Z< zrS>rGV10KL&+H+X zuL{0Gb%Y40TU$mJ_bOYS>Ql6(MB+kSU4`Ymep#%Hb*X7*&n=!umb=Fu7`DZ4uZrus zJQ_=6cO|54-crM53#r2CjGN{LGjy|Loi_2mJkfvav*@< z2nmY(McssGU=IQO1Vk3Z-#_w7k?5iQ#AGS3C?z5?OrY|TiUJx;Mn;ANg#3o_I>BW6 zf8AA3ae6X0RDb}Tg$Xdhp~i)7u#vH#Kx@swZ!iE99x@z2ypF&FNeBjw0UGdBtgz;V zfwOKb2B@hx83_^)BL-`p!;PE*`azm30Qomo#sn3AP9}~DAh5tdw=7jMTr@yS7Ksr$ zrAsFB7b_DsCR0O(Cdh(9FyMuOu6)oN9AWPNl|-25wq5n~*Fs}%Zpg;(s73SmqKO^A# z3v~WB0zTe9BS7L2=Hmkr;PDus^HF5m$iVn}GR!0_Vshwu0+|^i(9J-|0<}va8$$l= zMr4HQW{^e0!wV!Waj-$LvdCQEf$n?|4S-|IfCVkeCKE&ge6z{$>eYFf;Q@j|vN>QW zpA3sz&ehq~L)*>5$_6Gozu=#7X{%bia{68TJ9bqYPYY`cPmAAAgn?i#cqXV)5g9ow zLvA5VDJvcrVCm5o?k}#%zpk-G*=IP^V09}=$R9S;j){! zLFF9)|I;{b?{4wgPx~Ou0Xf4iiYLZ*_nBto$w1_W^wY3sgCkD{FX{RYRZgy^41-Wf ze}dl#g=LGIME8XKZLH1&mH4pMuUyTid6RS8ao{;P)>?tF~S+aiI z{+c~&rgR$DMN^@o_VyUnUHp2qT^P(Ap771~GRBBf?9=m9j+OoGltniz%iB27yC(IB zoB^%$F_Zu$4l5e4VQok(FGOvrmKG72&f7twyemx4QvZi2qc4J_3R;qB?&}&3R6HOs zDsh5d{c{ICA7&Z72uzNbPa7(wt6c>j1vjw`A|fh1L`L?Fr9)HAP_=W@O=2xE9w_Wq4)U74i^ zQb39-gem?b0U8m_YrwvX`)60iC6>6 zBK~mh;z+B`3sM2v=w2~%^ym7iQo-Uhc4*DROcSwK;qrzdk->$pLYw;Qkb^R>Igqt8 zBMaeDvaEKye+-B9k<96Fp_Y-dyE@b9u$>e_gzVT)z=v;WV9R`6Zj9BM0+5X=%u9e^5})M6w{=d)xvXfGGE>lP3cZ?JthCRC%$aS zJ(aLUD;t{~jm?8t_np)auf5?}iUKD$kzceH2AvfKrHyP9UC|4DMNIWPoT0%8?k=P( z2wigdHp^!Xje{|N+LC_ZTm)9F6}pdwPXjbt*=!uCK5G=o7DbvX3cf4Sh;lBXqN*?O zcxG>k^94X_-a(s&%QKzpLkRJp<;3@3XBuubAU-UlBAN@~C#0?0M8Yi84M_Bt!m){-$`cO^;3e*VR=f^@8`$f6mA z?NnT6coznRS%u9~1Wrj#V=A(24t8s;tiEW0kwn5@GX4r`qnYALu^%`E)BD;G!_yyn z5|KPDL4`6Exx(;6q^i%0Y9{BNPC}xF(OC=$70LRs3%1q^B3Ln49#U&H&lO*Njr@^- zwUf-U#jwiEIr-X`eIg_}Q9hw9=6sZ7T2MPCv8H3PieN>DBt>}}GczT4kJEoYA~gX~ zK5c;pHSg{8XwUuAlWfx0tPA-=;T#=b(UgW!)J6!NF4Mhw`mI!{(9c%1H?a(&nLbgZ zL2d29vdPP5(lXbVw7=Wv9YTv&cxUbBRhfjid3#o{+90wqOluB*wi&(_c%k}u zG*N$II__6rjG)v}Ne%7wK0kM5bmt z&T4kK!}H8X&I>9fp+B4<)Bf{c+J6SjeR=FIl%meU$;dfeG=Dw)rN9(29ecQ?7%FN% zeRz{`Rv}528@g|9Sne(+=Ad?nE_N)$9J)~h4Y;$Flsr`ZR$$>OS-xEF{q@1%#=lR9 zad}Su`ReSG-2pzy)0nbfOB5UJDYZ&x^|rTF>DWKo8L3H>l{UT&KzNFXi}gb_`6T?N zV*R!%KM8u`vwe-^dN~+m!tSs|_1s(Eu=z{>Nb;LCgM{Z0yM_wU4r_M*gJ0%pDZ3KzQnCnK0@LCw$|@Qs$bjlRZn4I zhvLTTQn8ovp{q5Ls9!P`?Qid^f8AVR9bc#$?w^Lunk^KbQsX_Ze{K5nLqYXV$rDvn zvjyf|;SN#1h`crj2ouZCvK!1GyCZV>OiMMK+8j%|iBLX*UB3tHeW4-z>WZf)HK5P4 zT+$hca+WE|KUF=p+h^CS$4_ZlKaQ#d)UahNsG@Zk9y~#$DZc6v;UJs2;Z7=WShjqc zcz+$hLuZ6=ml~R)ys@-P1UgzjD7n~Ty_K{dI7p})uKF724tc-muU}yqw0M`B7J5#8 zy=^R1uu8zN=5F6sX*G$=E)re|PkAC~Z(3p}WpS@1svlq1aCrZ0tmXEar7UIj`)qM7 zui;_?YZ@Y<51X!HnFkkJj66k(Pu`aEe9KD3tG(jp#bbmuxt_zH@7$ zIO`oY*3AuRGJ=f!Xva-WkD@i5HrcUka?y9L2(`vs`!3_;V~P#t#argXD{Ix+z?gsM z_ibD|>@X@8`zl$R?s)!qzW{J9kP0dwYxE)8){Z))uT#Q zF}mW^4ysz>ds`-2da(ctSXn;rmN>5$TVlh4r_PI~=OSg^IJ%Fx80d_SUET=Om2b!b zuNeS0&(YdzFLT%Gc5<;+SVJ$eSYiK3kF}SXfl$yxgMz$=zKrXn*DD)m{9DrVD}UGi zK=KSd)>{ZjM}d9UK}*wPFwp13SGyP-U4poER>rr5zEVOex$^q;TamOtSUNY=8MO}y z7*5JC5)jFdF4}eATpf#(GqL5WfXiL2gI%CalaEm1lV<#!Ptf$#mwm4$J|Fibu+NpW zR?6X0Z6yvwtf)eHyqd0CdNiFu-7N*{DUqOyATXrgablYG!}zIvw*N0iJ+7xI7|+Sy zD~;Iu?M~X`lRn}zHG7LPA&I1IIU7^8%Tn>+6nOrw4=3?u_;Z*c zo%ee|Y2{b*O7739tX#+Mr^(s_Uk+D;XNwI;@shIpw{YdjA8y94n5G4k(9VoffUiFrjAYN${F=?Q?%b%@0 zF@~J7*+Zr&%7>knE8blb?QFr7~HiE z6>@xwB)Wo#;i53yZJi(cKF9ZxEZMRVf?ug=1AVNl)ZUpRKKDrM%t*6wQ9Xl~>QKA^ zn@O}Xok%8yo`-vl&w1f=ew?2b-Q}%vGS1l~W;HtZs#dTeZ1uQUt`ng6Y1%=UcHB!` zhAA@`6MB2Ujf#WPyh7vRV|LLTeMo}k;r{7{q?4L42g$4Rhw_V7#yFv;o32}1HW?H0 z=N9^A$I6z_`tS10FUD#_BdoLZm(IBzw8G5tuWl)ncWznptWVZQ;`~?eMT|8%E6X;R z=4Yg4vj#kTmKPpIeboG__rKgJk14% z00a0!1(6N!u&1O04jDMFQY|swCFurF=`_i)eIr6zETLMi4QkUjM52Ls4Xs9&$`@ ztoH7?zZge%b1*@T`HF-I$xLqGX>FS0uw|L{`>{zWocX7+bk(F{Rujw5=9y_#yV*0$ zv-Ra`Ut;Mt)ynR))(3s6nxWMV4)8%pw|$4Rb;_x;R?Bfp5+3s`mM||$T;V9WHA@ce zg7W)>_j^;b=}i+)`?Kvz!9Feh2sH>=(SUqRq47J%BCi61csU8fs9&gMwQOH&CIShWFEU`gdaf9CkKP;&sS(ZwBf4^MKwZ~1F zh)Y?fQjZp&#aaKYDVo%e6MRt{h~8A`ZvN=UGztB3wKdf!t%FTE5?{|Ul1vg2S)k*a za$Wv2ySle3>S4z+m05hH_rAxLv6=i~9llexmPC3#{N1ZXr*-AsOF6V=tTYdG{YYi7 zV~K@Hcjhe)%881+Rw>s}Vm=wT%=<91uFF zw{ts(s3bH8?jaw|Fv}HLL*7#t2DaHMcwsGkk=rtoC0A9uz7Ty1wMJ}lOigPBYclwr zL6m;&`bNq-wm)VJ@lYQb*Sxmp>m?HsyBjA87T=^P%^&;}!NF4eR^nS8saCE!&g?FA z3WB^}sD}rueQ}J(fm}5!Gw$o5o6>1H`Z%k=loOSXhvd3RUB-`LO^{E&4wBj5w2Vmh zd-ZT_JEzXZ!=MX0lvWO{aqzC0ThDov9Kd9U=JG!n@_#>{(QJgmkDZoWBh{nQ8 zQw^jKPLVdbZih{uDM8+kyBme)QivjfXbIm_j+qY7cs(O?ecJOj(7sb{G>QI$(kRp$ z4dN8O-sXajHxBP2?MGmWJ1spnRp}TD(Re9aay+d&NClnSW9uaQt zzs8xhpWGkwFO)DeNnVEdhjx?ph1>=CFR6!piChNlj|m2j3Tbemd7I>_$N((?B{ML8 zN{$1i-y@Gf19%?@7=auo6g=q8>F@F%8c*6CxjPc9J!UBPPjcJ;q4BgMQAnfyqY2$( zQv78*0W{$hNboR*({G-T2vA#r$N<$Or4VNR%M+@Sq{v2u<_!?RkOd`KSe<1R3Lkiw zrwvAkg1yeu3wu3Rm4XTvm{g&_1jf9<6wqyB3V7td8bIU`5dbzo1i=U*{QoIH;GY7- zTqp+700(DSHJ4Ci3Mi{L#T7Dwz<-=6aKPW*yx|4@KgyJdfG|`uoI(fVPjoVLB!Qy) zkAsd8TAND24$DIU18jhkY${wRehx(y>R*P_b}@x7>R;7_R#A+jAPD`}iALkUP5^v= zA~r-37#akl#4|ukyC`mP|90_tlA-|l526H(o1=Jz@)r|gS)o{fJ^ju5V%(zm@{d17 zy-)E289+F~XM#$dP!u2`@Q45wcQ{N?j7thA(%+ByC!qTJmI4+~T_-@z1Xce>B6-li@&lP$?CV0om_NOwb%G$`It=?ng%Ga{@~9ztTZR$tfHDx*wrMw3N7iLJgUr z%gmITf8Z$KBRd{0)Pjpr5CuB5$@&HZk(Zkf$V(%Dz<%%or{BP=2(SmVNa*y?Ln%sF zAOnRIB_?pRjzRvf--H>K zpMYE7FTahKTL1=q{b@)*5IEz59bQa=DO-?%_YlfISqUhiQtv3Ukl+RWRs@#bQ~sU5 zFq#`Lj1osH4_jQYAFx(_SLRKn%s~arQ(&W@G$f(`vVM@@K~b|QVTj=$&fBwm%IZIm z-5+U${*y-NKWT*iNuyLxd4Ta7WMqWC=%D=h2YX|J2KG?C{R1*GLYamsh5vn*x6_nF zsK1xW8w}V;VDsG~g%URJx&O$8z%B9@#{9lb`4%>)ZP>_+SCPq~DW{Zo@c+z3)H&rJ zbKwd5Qn1%gnPK?kf97KQkuu_+xkx|DL9QUq?{ zzgA|M1e}5ipp$?x0oCtJuyxsA zl>+Lj1D;3xt9K^@@H12dzJEgps?A{iV@89$5q_hMtcav^ygYpWzt0|4{QrISup-Q7 z?+B)ZIr;y9le|t~Fv?#*)Y~1b@@KIy0n6mnc+gvKaPB{ceMbPe z(;@wjN)=0BBKTeCy9i7Wz|$nacr8r*(c2(O=;tA@7jjY}3KP^~0!)hned4&I2TIpTzAO`UA8*Id*w-gjmu5&OY5^PKQHwzT6|9u6RR{wVf3ICfx zdGJ)l7%3A}e;^TZs52H7!v9L^j7RnF`oYTsoAG}pkjTHZBE1w;5?H_~IqVIWI~;N- zGYeG=;(rqeftMS=k3=j{Cs?Ui3mejoktj2GxAoBix6Skya zq*j?>Tt=w23zY)a?@fUb+T}|%hKRuXpFW}kVMG4i3+&ZXR3ajvMv9UIR{tMacPoO5 z0SgF;C1Heeq)^2p0-OJjtFsP^B5MCW9g@<$pzH!mcS<)%N{1jVAkxj!pdbxPtE5Qh z3P_7|cQ;5Yji9^(_&m?`d;joS;BwE*nK^UL+~50if6p=@1hJY*xAkwh0n1O*zm;dC zfbJ6puuOn~$-I-9Qw8h`S!X1tNq=q#>3Bt z07`z}-DkGpe|sMiAaV!kNYVZ?+3*0<9x&Me6THCvRRK=?!zZBN7k82F4=P-20l0Zt z+aPKL=PF$>Fu#j|m=MTYbbgrkD_rgY-Oc@zgXlh?15)~T)C1x-UGTrT-xL`ndQY?? zS};Lg_tXP`R|sI-1(%2h63`WJvbXiYz@t}zepe}ksH6w^V!%HN5knAKOrUe1%ILPf z`4tC97V~yZV}h4K&>tdp_(4p-6*8uTAOyugT>q|Hv<#>j_^Tg17~!N0eD{7OL*e0t z2RYCMq409w4piXD<>eOo?_&f!RlMBy*u{N@kB1i+WWbY4g#u6wz_RApHO>|o5dC1A#lx+AIA<@q26RMHeVy(bMy zBuR)jRkC?L1LH8uB!Zw*hPJNu-&(;U`Lb`JwhE4tX>A(rU?cjj><*4LNP%^p544gb zS31s=tel?5D1?FmY=~!#U9bPB@Pn}oiB29wu5yIzk%i8Qu7(EphZaeL&d65=??O}G z(wD#Be#1O+gp75j2qB)yNtkjVUxmC+CCCADTA9a^pjyF#o@gmM;GrqC^X_N$%JYJt zVLXh_HD{FlnNv*6{E>_3M39c4UDCm=4}|4X!n}E)jMDy{n$YRo)K36aLBUC`JrS9%nAinWY^`OGmn1|btu3(4G}}1 zaH}H0dxZw0n6~$My9iAx;R`3C)*qk{V>k)T`^w-S4b;n}4pUIX$8|nxjP?uc;o?k? zl%i@KCf6W8PT-o9-K;zHmSD~6^!xOb;)}rJKOzNlV zmbJ-cAOR_)B8C1Klp<r7&NS6Do;*q!1*}Nb6tq9EA=st>?EO`JF$U`YKBC0~_aeC}w>4C-&eZ*-#{y~f6tNs3lQ z5}n}!Po&i#h}MLDAc;5|1!)?`uaY=3vRY6ZtmR5Fa67Kl5GKZtQ+|9){38tXMgwKj1Wtzx<}J@3rd!AC&tV66Nom}?{=PO+shDK!QXvPr~(Dy(&w zW>K4IVM#(U<$XYt!{NM0jk2yz)7#qp4KMgysOPBtbZd8eqH`w4Td(%Gv!sY)XWOT? z#I&4xT`Jy3#4*K@KO;A2z)$;WO0maerjEUUn4|S^XHK*C#pX+IU`J&RvQr(S(m}nx zO-KGxgQalj{66KWKJD|SSC=8`s;5)1-zY<+Cprl*Te23ueLuscALgQ*WR3yVyVzLT z@3*iK1&sn*S9~_t(&N*d#jm`M8HzAgTneeqmK+oihwq-qh@6xWBAjg~l1a+y&T>he zTMJc$_TORtwQBY=dSX;+Gw?f<=!f0}!9>&!mIPs&sgAnl-k0B3edO0y9T{~^u=(qv z&*>ZMOUH;~mCzucD#Q1B*K!6Ndb=LYhLcfaf~T;ZQwLX{%5?syr9ao3Q)Aw~B1@TS zyPY{{S$`L2`?B^fE)`BT!Cw#1#ul&(Y1-gQn}KPkd1k5KQ5=HZ_t*AR+=yc-lhw`J zYc&9}nc>IIMZi3)8uVe6kSpFkf1$bWrOYN%&(h zn!%ysGj&B}(RF;7`Ya_e*Y(V9bg;)|`pVMa%yHkg=Pw(jRv}pBh8n4{cuQ1%qweW= z2m6Vr4I!#}$IaB#&KT*mLg8WCwszrI;bP|B=Acy0kt(`?5!mpC8mg0A z^gztOLFr8Ffh+B6jX!%xi!E$xkX?Gsvt6w=1+iZ^k!S?j&F{tv%eE6U(=W|_eEJ!SpSs5<)!y6+6` zvGA~k#1`xgC5^bJ@f=)*MZs1cLZ2-E9i_lM>-;b-T$1+(j}`+~aT+$UwzzBNVLKCB^fXRig4W80&(bHyEJ`T5(|Rve(u z<0!WjpUjRIsAZhFnQx+^9$ks4Nqnc)i#@tH$&Pt+;(4-PEZ!#my}~Boh5nCBiE!kt z*lP|0imliuvwR+dpxn7DfoMOU!>G%+u_^biAFUQ^9}%uyQI?o#*!X{G1Ap-xuC%ni zUe@kgo93b8_ZlbWvl-2P4i>dP_n%T0cW_t`I)j0EOS^{mV91G)LY#0-O%MtEmktvX zJh}{>08v>F^1Xjc(`o}LV*cm-x~&@ogn?3XtPn)RAm|I${ky5v6lfQCza(N{MtCiP z=I%mB2pm9)A0pmvfUy2CUthLCukPN4!3dQ@kQml|3=5Eq#{Z3gP=J8+&S8;thht+z(?7wurufj9#GJDsDO9sgFJde z^#2J23ZMVeja#AV);Q^|8+^R~VzKO6`bAXuKn-w3?ts0VdU_@xOfrCi5eH55(|30a zg4p{`fAZjd3}B4Xzj|=1u7MG0^YnE%K%`_|2}EZeKj@ip?n9Vw$Mh;_w-!fWc%vMI z0DiuNf``z!ppQU>AH}hO5!YArgDAH#9T;)=mtN#vxK&4CIKNZ4AP5Ic2AY52R2eRV zCHftYj1VGXSos%Ph*L7e{u@?DbPPfNq>MX@E~) zls-o6$AN#}Jz-!3ZYnqw1&H6kh}v{;2g-f$_C5>j`p*MHCOvWZS`&Xtxsw1VP;e#=D<55NZS9@Bbblkx{TcI?$0jAi#$(Vcc4Y-I{g4)jJ>JBTASd-so_jdJrD`Dhx^uHzk44 z!nnEq&rVSLCI*Sr3N8WX^nFn#+(9uW!pv`3ottKpl}h)q!lXx#e5?)8hO6-c zBj~Q@{`iL>7euuF{Kmb0WX=^P{<*5^Xs{$$V3MS2_0L?1yg|X{jqUU|Q5Q!O*0tboM9?nOAAjGvCaES(A=a*q<|(Pb($aQl3%& zG9LHiSbfzSBJWmi9Dom+Wv(F-udx`yHZjO5Un#5h6TFm;z_n>t;PV<(_LJ?$Vn2av zywwt+VCAj~}>*PNc3PoX2vvHwY~HnlK;y@|Q@vWY!TVWdP^xYJGYun)2;->Q2+l_M8ppUyw)VgIej@EI|G15kUYGqVVMN+-oZ|yu%YN^1{b*5bTF)POS zZp;4Sr_c`KdTf_xP~wLv8Z3#0GOOBZu4E7YK-J$?aequZqLPF0L{-t?<$aRuH|_`x zsMYhst480R^CQjLCOOvmYVAfx!Nt-Mz;`JfBqM}IrVx}mT#l;4oKZ9u{0)Rc4y2;3u0wi=5cQ%uE|Ev4CPgP6UhVhx6bzfSQ}$k7!KALd8hdfPH1e3{va86r1qp@EUek-hl7ks;+w6=3wMH1bW27MC zZDBi;=Jk|ot}3Z0t$V2)S!J~)W{+=0I#KrQ>0@AtDP1nNVp6py5opW@HvsbK^U{vqKFK;rN;Ac5MfIWLQG`9d*={!ZLwY7; zz$Pdzp<4BrM@rvArdZ$XP50-dD0dxqxI7){4-R*_V6*V=*3*-Y$l7L;aXVnMGVdrh z)>0%JWRL2Qg-3qCg+UZ z)FmrdS&e4?$b(hhsh^aGRx<5||;1RDBf7)W&hp zMkX9C`;aHgTT3a45+jCK&vk7_9_qkX#LHgPuIIB|n8BDqO~!s# zZZJ*umuk3Vory>0qIQjidJ~^G9GZU?depTh!h!)@8%Klh)r3~3d&p5#X?Zgg_G5Nr z%;%T(WrrXP3M+Ze(c3k)lN0de_xb70(%So$-#gF6-L6YDujqpcq9y3q1W`ex=uKdH z@buKLN~!qX&s*;?X_@FeLM~BbZZM8+GGXye7PFwiU5Vy~&wUEjnxe0)fn@*0*G0d} z_ts}-0!{);Ep~%LyJgw$b}rQ?lgF&(gPxHi|$F=o3H>QpsduyAzO&m9r z$oI*a#H7Ef$;?*Yfp6rbMen*8zH9K%#c!kecN0yD4i7v;Jm!=_YLa6Q}&sQTYVPlzX;) z^B&PgkN``g$L>M#1N=?Q51b{AYlz# zM#U=%_3yb;$Mapy1IN!*iP-jsW9G0J&b;~zK6Cq0#bdJM&I{*fbuw0GO3~|Uf7IG@ zym2wNaLoO8LX+D$+Li5|hq@Qq_Le1GOG~{MLFZ;$}0jM;LuegRB3Tt6ni5#dyrCR4R5a7e0+ME;eQF6J4%k1 zXO-}J3hECm9T>kE?axkrj#&6|5b)yt(biGpk@F?t^JgCeI6%v_g&Rxn#Wt4?Imx4n zFI(UnQRJN8qO7%Ah;ls)C#&0BOvS$?an9oZNYC`wX8&A`S^e_pf&H22pP&71Yt;&C z)+065Z4>li%#LxB)K2p)FUZunV2$sS@T94YgmObwo4I-;BX0(MRx6xL3BmaOj(oPL9fLFYg^2ze`Y{GBe1>a#{*0;W=u`5(%dg{F=?R}q zEb1IEa?dt6qpS^YcrX`t>%UOFcN%$9smvu+*47|wb?`NEaY6f2ZIyJe-Mi{X!tZ;K zJ_#UyE5m=}`C*KsVvllNQ#hgyX1n=}FHwrOQ8ypegg}0nW7sLge8FVgL@9nP+Nvlp zW+P>uPwVY67anC8vJN%+sOHLIM|mmn7c8$*q&@1BUB=)g(TfG7v#tp%-gFy`uR)LO zKBhH2koO`8Pc%fsFnd81N7F^Dy(Ywp(It*L-VkX!Jp?CYO|uS66q>BkKtPL zo*XPg=N{UqBV00rT{>Q&wsy!`(@*?vhN!KMd6vPw&{OG?p34+<}%XGGtxG*3X6GVmFDHE_@Om!W8> zXya#i7;-B6%(b&j9sgvD&TjXOYjF0KLR}Aw_2Q&W>YYSs$HiSoHCEsM9n2=2;Jt$U zKH3-ytZ%(lS-=&1hNmwY!d%QWP*L2V_rw(s>0BdXG8ZENowgf2!0My?QHVB_maU1>X>?S0Beq$PAL)^Q`r|tfy|v{< z-WJB3(QDM+*=Q4$Ph+W-9VDvLb(Jjg_0{cY;qgCdp?&X%zrl3dc7kS(a&6ItyJl}v z(TjtUS(BRuU%%|8Jb1@5xL(mO(y+1e*V|o$%be&^YSz>pszl*WCZCV&!Owg`!9Dy| zRVNm60piB@sZ2(}HX3t(wdw$4Y{POyth}LsN^J+3t+~%b4D`k4r-PPYwRvr(H9Jy< zi3m7%X|h9P*8~>X{UH>GBjT!^J2+1v!wkQzRi2lN?~5Rk%Hdj}gal4Vh-fDt8HcID z8&^IqjGu6cV1}b*yX@{nWNn;~L+-{XAHyNCkiw>m^N_!pEln|e1lg0hWJ~3z(wFZu z_iEDdn(Z6Wo6m76Qkg2u9d_!uDk$nPpQ4vA_8W-gzRiG*QxMOmR{OeMsikW-Gf_lr zM!oJ8qrp-#c&hzy@U_N+!MrO!CbcYOYWp>gjv?M7vx6i5^b4rXDy^=_i&gQ~xJgO0 zEc7dH^-RMK86&S(m5p^(PfAGB#Mj;!*|?5sj>YOgi-`{;x(#??ac)a5e&_hIV<`ur zJRk26cZF=i%$Uz{z4m356)I|r@h`H*ryeRkAFMp%#?4DXWs$-Oaa1!cKM9S4q#7AM{Y8;tubzaPc64^s%=&vE@Dr0}NnPaB-6yj4 zndxUKjjYZTFjF7>9t_2a7HhL`$A`b3xuJ1`y`UtN4BxEUDWH1HtZH{yx9z9-UZUK( zW236r=EZmD#j&*r$06Sz=CjmdiMZ|aaGn_*(!b{uIrj3W*J{UV)d70>GHITN1RvD6 z7Jg_rsR~UqbI^2!&V~9nRiUDHicAm2q*9^~hYkBDq?uPBmiZpsz6;O3k=(hdFOTn&ogq7H90{!qzN z0bK-3&JGu3j@sPdYRF&o-QVMteZExk(d3r8V`0dC?qMQek_B_b}2X&F4b#i?;qb<4mD}1IN_}UZJ(xfH z;iIat%!p$FsHoMuKdV)*8hxO2k=gKEcFW2ECMIb(m&}grnc7G8;F+uL20bgsuaTD} zy%XIShQSQub21=fnykNH^QP1UgwtvkapD(61JAzj=97;H{do7Ypgum9Nw1wS$~>9* zm|-7g>B|aj>%d^Ym|V~Ga4%cQM~8hrSu{xkY8MY8iZy0sgTzFX-jZ$g7~n=unoW;68?m4rbilWQA!i+rZ%1;6>%N^G|<7GIn2 z(w+COTyav|xNt2*WR6vN5_`u+@B3uL@8$98N%=jPxbrd zJLLNz+T8XWopM)SL(geK-WAOc@VPP8l3cbv>u88`>zt>4854N<4)&(cCghYf|MqOpC&O|<U*e~7*Rk>OX4ucKIKDz& z#kRzH*TVId$9=B*j$c-l_y)iY91o)foV<~)9(u2qcb(PuwNDd!aUs5(u2CM}AWKnz;LiLM#PIzvC_a2(hLs8~>3~j%Fy?@$ zq2J2FOo$O)2dg#&Cd1QDtPkwk_|&oMJ0 zc9kI=fJ4hIC^e=I!NR%)rNDLikW~OvzU61I%^~RkVgqDw5WTh#ARhxTIAFxA6C?l& zKI-xSf(Y<}c%k1qdq5C00T63+fCRo1>x)7l;`eAY0xufkh5=9520`Ek#S{dHx&+7% z^jl#Wg7}sS0SaUQP7aJP%Y|HE-Yc%KV#vrp7TBX2LJ!co3)GOrK|BKZA8Ygnh>0%{ z>VH@iSu5ll`hU5;=}rhhy6rH#qY46`+sZHm3W&UStSQ$BWcDB2#5oO|@cmZ+FBo9& zh8^ZWR3QLryF*)r08aIeZoB>gk^iUq+w4IK06qB@bmI91`G^T$tp#AR%L@pQ3y8OW z$b=aC3kkxwr{(|z8-OkYQF(;^gIo#$$mLy&MTAU?B=^^^1k5yvd@rpRGBMF$-ZQ)K zRt}~+?$HGUP}gtGUG7hbm;b&23K1q3%KQ9Axi*sw${iU7Ka2wtAeeNSwlVHI6#|@r z2@}r!br9nFPrvy7^~=hZDU9Mi@dic^1~I{bF#$kfaQpz4hls^cCJ(@g=QhO!^Z=m3 z(=q(fZ_kDQE?0&Ed`j6eff1imm;@>A&mW_l2?ogZxB0E&N~ZWbdJY~L0wnvK5lkP^ z?x8R^!B?PXC8{qHhmbYSL84){|>AhX1F>nXIX&HVCTrUk&O9sWaZ&X_XaF^YE`0C?d$ z@K^X2aJ)mAUoz9N!_Dk~Moh~Iso)FPK>tJG%)bHf5Ev`)OlcxQL`??s+y7C7VjqB$ z0w_W^fN6xszrm!W=Mm=lug}lzFaL*k6$bK)x7is~VPH7jVYN-g%we2&NF4k#H$WSD z&M|wS{ToO-OTgIz0PX$R^4=k|K$E=xZSwY)|HHZp^8y3qu6zq%luRJb`pRf zg1J}-fW+FZiBKIc%R}tjJPa7IC&uE93RoK5B{NZlZ^>Ib=0IR*0YwydKrJR6Ki7ZA zKj47;|LxsvE=ZUkNCMp*kRQlT-5PtWsjyfB8>|4vKnN!r768S+qrg=hSOx&#@HRao z?#A*N8^{qcBM1XnLNVZvXaR=5A(TY`3t(=U5ajPzzW-xxQIl8(?tQ1=K#q(Mfsw{C ziT0mUh0kWO0D0F>ES`7nRcJiIKvCY^6Utr0vWx;Z`@{l3(WZcXm0$@=CF*|wePMw1 zz611u^z0p=5B%Y7_=+{Md`5>mGyvbi%VnoV;I^>(GaElEC;5qMY5d*---gf@3YK5E=I{ok3kn%wv z|GUQ~LQsEz)dvV%z>WF;Y*^E2sB-JZ+q(TYeyJNm} z15)0x>hs`9o968-voPY+^4os=q+_TJH~l894fSTKWBYl)Rqs@6=O4t@%9O;lS#G&1Tk|C3THfviYeEi9N7P;%wqL&k>854~Ju4o)8j&-bv>S zuK8s%?G;>xse~57vTtYtV5V=Cr zy1Gi59eO*dwHj0TZW8TJq;&0=8N>O$(5Tef z!`k4cb=xoOXw@0m)1Pn|%A-u>K;`9EuL#s@_Mq&G(Nhyq-GXUpQGEd!YqoW*mSJF# z-$YVij7FjFKMF%G6MV6D9*jQL$_Mz)1jg}#-*$khjplZeK!8&bYPy<)P^ZF{6UJ+-&39kQ16|EYAs`S zng;{U)@O5m<(YwfRLf6(8hVSG+w>4uMO>O5Ne8h#);=qqC9ZCXEX^z3(&S(!_&fP2 zWJLG*^HvJ2lzAgJ6wHU>VNN3~9?heu@=MER5}JnPY@)x@uig-oIwqu2KNy9!KUc4{&_(}7Fioz)9SmmZD31fqAr zpOa8!OOe6x3xeM#x5m{;mh0uio?3nRuFT|Aj6B0}D6ngRdUgi3q$n=yy7+?2YJG<9 z6Nu9V+il!8B-ItL|%o*O;7R1}MVe4382JTeJqwR?@3ACvgiGXcpp z_NnSl(%@r0KQHCAQLdpr!iFAXQMq^Zn96FVV8%lpc=az4ge|1y4THrK*v98K9*^a{ znJ~6mzfpy8*L5!|f7{;w5CU}-=BYbhLvae4?0-g;ud@3~T$fU&fu(RkIL-1)J1x)r z+qD@+`BcA_NQ0WbN>vCQVde|3$1`XVV{bov4*W&D!qfQ)X%7odNy+fX$%`^X2hIA? zc{+HOYrs_tY|E-qrjwBUsTS5pxGW8A&L2qHVx2bn-SI+c8gG1v%)>XomO_}1Uq2-# zW+3g$+OnmMN_kQ$U9qj#hA;`+<#(6$1I?aKy_utNKc1;a89sb!Gk~_xfp*j9FTo#= z{N1l|EOEKG>4EW|-}b!?Q>2d+1op{TSLx;j>=Y>+v45mWlM~h(mQFjsNRjNnombg+ z6e@mxe%c4q+729Qs`$`EMhN<(q=2Zae1mK%r;0t?r`cb-nCIQE2i@9IixgWFHrccoh z;)UkjHZzYb;x~kLK9OFS3DVCJ&#@fnl8kX4d^j&T>N$}Y6!zf#j4F^;p|Ka!78Rs!iypU|t#MYLj_M@9T!lX9{-S>`TvN!qf4XdG zw`(u|MM8}3@9c{=$TbE}IW?LVfQ0rBvTPJ^^58#aU z(1!IfP&5Oq*4(T#03s~-e>NuAH?eb~Rv`M5{hYh?k)%iE!S)qa6^6r%8ZKK^(Ebyo z$Aru-j89cvYSxDp#P^(*&eKzbs+gZsCAjnx)V=Kx|6FXUqX*I+m)emg6H$E5Os@E? zomuV?>7+iPG8qRftV_JAf=5pF31OL{04!_=#zUd?Q3EQcRiq(b{Z%)tY9x^-?8ugq zT6f-a`w{JcjVo`u?JrsS5^$Z{z~`a z2o}R140XU-rwp!OiNehiO;aH8Td5g%#+KQ0-N|Mk9@X$#N)zKD|BEu@An&5%Y7H-| z9y`^ru0ScUiB|?V4cHPM0_!0YCyLZzQHU%zjo;Dk`EneGtRS6lmPkN62*zCirRGfW!=_O^>ETv~-BGtqrsR9PrapcWv zG;%1Sv-WjSLl0WJ8NG&CaPWyVc6|dc;k`vY(2Uexj=RfLxbKlxz8{myy+t-E{#_a$=vA+7+I5%)FkBvf1%Q7WMW@T|5jnPd{TUg>LU}dw}dbW!&|AKbK9u$bR)+hsN5k0?>8yZn&8!nrYk3%qs z(GcmG{yXL%WYL5aM%foX=t+wTK=+prlkeNq7luW?nQBtH_aQVx*hTurR1%rB>?wg+69;8NSl zgMC-7=u7gGg~km|!0M~!<$HLGnAbD$VpGJ%TF-Kxi2mRDmh0n-sYcJ1OXJNl^G{#e zpL)`~@13a@w9)Z)5^+0aULV1^#=hO9 z#c>G>$WO35+;Ktm=2769MD8)u#kFx5GnepVkqQ)_2ss0(WFI)%X4zt+?ve7;&nlEN z_mSFTEwpmM8Gf-Ku8IKGTC-4e^2dx8yyz)O`$fBFH7~6vWNEOPsA|T7%P5+)ZNFEE zV~1dWSH=|&&j|df&1MOko2J(3I;|;q^v(a{o-&ORuqm7=bsG|qW?p1yZjhJXkCt=P z6;2UBfk-p#R(gu%N3T#eA3FK6XS!0$2BpZGS+{?t$L`60gYsZ`!7-3j-jkT5#9aim z!sQfXv_rvMpxE|06=fx75DAoxqM~K?uFimWrgz=>W1%Zu-HhHPEYiNV^l9u?mZMe0 zZo{9|=+&y0XjYgVWpE9h>4xfAC7y4Y}S?|Bu@|ANxzab`P1>K#kDKuO#XA ze?Nt8=Crc}CAZqRy@TbOd>m~2yOr2=eZF8fmp#zJ+4mA^I>EV9{qh-sEUzfbWs%?T zv*V7PQ?u!qC7Nat+L{P=Um?)fG?2iUjOxb-$0sJvxN7x(+o_aagNRg!rIe^K2#Vk{ z$LVPwbNxC>ajre(hTzM)Us7QzuKb`n%yD(pEx5T{BQM32!4sHm#+sZ{?ecGZ`*uR9 z5}9Y@sy8O(C<@emrmQn0=!oZRt5$2v`i!eq6R@F|{I*u;2;}IVU9$A-wasuHtYPCJ z0Z%)k=I?(w(&i8P_c}Dcbzam_x%zj1_OMm5Mu)0$&wILI1fiWbWs%Rj$-HLBnM2Cf zV^zn)QTCR3iX#ito);#`&e+S8b(`j56ww?&7yFIu9NX?vyg@Npq@O^Fuj^!f`kmTb zOla!0sHPK>te1cn>Ikg3Co4bTe>R-5rFNFXp`-6)&&2O-Ju+D|y4X$~nZZ8?zTP26v-| z2zJ)iUg|!Ln7FQY-^k16*pxfkfRU#%e4lXcTbpwkuUUI3Uf!2DvuveJY{7RtDqxHiEA@ZBbKhi90CPA2Gi>{KFMPq`@l>en7w#L3+MF^3%#O>#Uv+C zCm%~}bKs^VAak6_SAMv0)|lIn!}B9$ud4#)M?wNY_eJFW30u8|at~x& zU9!I8Su5E2o0VbFrt=?XqSJqdBw_+kF-!P0#j5dG4$K!Gmv}pEK})>r^EmaNi6t9_Z zzY>U;JT%_7X=`2x6WE;(^B_N1EjX6+6g{l+KB|MIpZVtbgB5u_Xh)+DaqK|NL9Ubm zUqkIYs^xAzI$l1x{vGk&gqnQjHSa}}1mC3){gGk$J5l6SeuZ^k`d5UJgXO3>QGbTM zObvMJ5q9G&b1dYfT}+xB?iq6$^v%9IjNN-`^{xo5e(+iF!4u0b9ubdPmd(!$_jQV$ zvvhO!V2%+lnuUCPN8*eoADM_8EMGAqMOARL6fxqKS4S`>?DW_hSFg5^y|~n&tBo@G zv*XTBJ$d}Ka;g3^Z3q^GbkP>;jgvlO+xeA4VDuhF!=zq=$Kso7jO8l(E)`|vbJ&k< z(I?bxlFy0i^1b2(@m zAWqGpGE=k*)(b|wamic)RY7(AA#`C|iyy0Rmwx?ir=_LJ@MNZ8EuJ3aaC9U%gAYMfGqwsadL@3L(~xt0vHQhMIA_I|LmY z+YOJKX9q2-ee>tT_i&8de_VO5<76nDyrhF&7E!g7%=!rZ7<{BzZX_k&Sa}?N&JK3f z%Kswax3Ae^x8SX%>|^1HRQ7|fP?ty4pS3xn-U1X+7AxagR>F$ap*=?4E}r+j&(`8C zq<-pk3zga~-~1BCTA`iLmgbl*-g%KZ>EuhH(@KHJ9Knei8mMrmQlPNs~!CHQw!(>`dk7GKj+#va<-DHq8FzVKt4pr$vcIu`NYUI_XFP>K;?Yz8hEILG{Sx~nC0oaG{G6pbc?(Iw z21Bl|G&i9hDN|h!$iHeVo(@bG>y^vGj;qq&6}LHC6MSdPRS-!(szS;U)~#ST!_qHv!}o#1#-aE9Q1!0NB|z=oK2hWcUC zzISmj%gfRQM`%Xh_OEf#1ZLb?vLJ3bWHWyGT7#(@oz7t;__pj|^0_#R!EXf0kZ}1(DZMRN8y@ftHL5N=_UDNEy6y_c~w2)I#-#au9t=b z7;C@JU%GXlFoevkWJ_=4N(mr#x3m zw0ph8ATyH##KGFs`hKm`?LsYv43;q#u;C{tMrJ9`(_Gb744=J;$NYOX$U#U`e#(=624t7Uj$G20S2>4y;MDcEbq*YwJp zp{61}ZA)(|sT8**DyRBmHdo!asPvq^otz)dfBjXG6)j30yEpodx?>r)|BG15H1k&h z|6@LirmwtLSOq9)E9z+GhT5&4wo3gnTvvL{1P64+EIs~?^VxWAIswI@Y0t4=r9Fw| ze8A-n*Sd^I5%`tU>XhirFCzbxJvWKi$>L`N%XaTp$L~+CzHj(M48YO&yplb(EBp_8 zjd2w`!zX4mBTAV(>E^Gd)(SU%TRLBM>3r>OA^g^(JsYqYH?R@%M*?{r(RLg36QcmS z`CTLCFPNXRpwE`aXt1~?m(e}HxZwNJP9Q0bqbfNjF9f)5uDry)R~mqTNL z1mLYhL_;++Bm2=T`T3iZONG6$XX6u#y_hGqL*kU*C6kLjCy4SUr&Nji z(48TiXm+AwZQ&M21R2~-^a^_Uf8-@Q6IM86lia7DaYIuh7 z1V>ATnll&Xz(mZNhGVM^Psl};kIY}E(3>V@iOsfZPWb*I1p@}>zou^pnCslP7)p|(@!(OI5;(Jbb!K~q%NlQ+S2>#a% zX&5=C!UpdW&4Lprgz&Cb(7sXj6BM**#w+uoT7D4z45m~$*a}loWW%qsI=bQ;BvfOE=z~_mRQ}tRl3Qw|im2VL{kzr0fvM_-)q)9Ibak zLBjcu@*WJ9cR%wgYfGz2e@hn0-I&Q1PSv{FGu$dd6Hg3NN0EEkHykVZnqkl`+xCe0 zTiih$k(_06s>QSrQ{yiarIT)9ED8u9q~r^*F&E%?_R$1cMY4iqCJ7X?9e;YRZMt9+FXn zJ<5A6xpKWq&;RQ9mqrNY7HTCr!C+Sk&Ejf9;HDEQr6u7PJgGR}DOWNEC5u|ORBC+j zq95d}RpM!5pOqYAGAa~db6a_9&`?Tq>HTJPh+ zP6R8?bPIN0_sp7rPfv#09znv3#pSq{RcgIYAGcS>rxN=Xvj+_4=)b3xLi&ClPe7)z zazM{}hW*Fgh0qQl?CaNdw!-K$il$~dO(6}}&N(Lp zkEru*M8|7i2TaB>lq9r|4cS^IN#Dx!x}AXrx@p>a9FJc8d8xD-Fv}qYKYo?YG>?r)UD?xWU8db!f`@J^d^-UR)f?hv(v}cDI0kJTI)`}x*Z6=D+Z9Bn6Uq^V zoi%mQf3))>``_zfIZuip`K0D;?aoSP$J?Ejt<1zS3E;IwFstmiHJmm(AaSuKz_u8N zl=*zp-t67G=*60b{1$g2`P-b1h}pt3vwZhky}+mIQ>sHx_q)xTYsb62!4}Y=Q^=u1 zXt!HH-P(C33o+ST93hi5I8f7?4M(S$eZ!*b@0@oAr3w30sb%#vg9g$)R_^5Dl~v&{ ze@piEQb40=l6Nt~BovU-I1t17SPJ?dbU}W$k}AmwCfZ1T3iP~zy(PC-QGPp>YH1Vc zWWw%-0DCfei-DSE)7fmrcrd0Xe9ExEk)HH*@vc>E({C{1Hb%2HxYu@g^umcKyqU{c{lTZ(l6% zzjgPkzS2+QJc!SCtC@k1imLV(pE*>a6Rwb-KKf0s!Tev^z66HJc(Fg@^Wg{|(gZ{c zq&v?UQonM4BCY^*?kJ%7vJ8#hJZ_3t_Y9knR`zhTJpj3}M(!-<{AaI}E&->ZiKCs~ znl%nle!MTD3S2UqHz_66LH%CD>lH)r00KsWsR$f{ayg=+S%Ja3@Pavtl*b5ySSHM2 z^?%SRknGnQmT@vx6*{yVC4Ch%s(tVYDwq^lK5s*xo_{@cvxzDf^+nGg1jlm64IDj- z)20YViE=G?0#%2gi)EOr$NhA3ZYqFe&ov#-?#grb_3O$-f?SuGACQd9Px&z(fRyam zF_OB#5e-OuRTiJOpW8d!D42a47}X?CqU&2%7m`;zo-=P)5V)9ns^U?-1kU3nJB&4( zao6Qrt&LK0?WqQK&V;P^;=r}*q^rr>q#n$0E3469_-Qu6K_fHnP(c6M{0evJXwX88 z-J8qZiSX8+=K%Oh^>*l65m0j2=^ledHM$ySKR6kSo%SK6VlBm#* zxi~mIe!IhB)b7?nM>Xi!{;Ah6)hZ|$cRBlwCg1XIG@t&r(>F|&q&UB~G#T({CDj>p z29_r12F!9f37I`x7IsfHN-^Lmv%Ph8gr|DTrQbG(x-M}|hM)0luDqlIvq8B<@e1AXNuxhLYgz1Q9 z4cu-C(v#4V%GGR#vmnz*5JPtFtHR@|k4pKCd%;slcSp@7irxDa3hcgKk_r!`7;5q} zAh8bM-9@i(-JwN%>(S{3Q2pm^&{A4Nd;s5Alnxwmw~7DM@5KJv)4s5e+r*5GDfJ#9 z_JG?MIny(Z1O$4rX4|sKrXx-#vzh+$l(4ZYv2v@wi4wSDp~BS$B(!3T$ApSzuB=Xa?W-{_X28*TXH-9AOSJ7A*eVK}DC}*VD`T$2yuWpzFEz*W}3-jIbeq(X3b4vmW~D8fCZZ zV-scf-!+H=JP-pMzA~;`$3=hGHpWBH*}U7WOy+tvm)dD8Yo?Xhuc~Fs&i|$s|44<7 zFX;UX?$XU@mG4zHF-oITlKNd>mip_ri2rG!f$g$(j?ky517+-zCY7Bdmq|bD4qjmw zf&&`wh9oMEOt9cx!{Gg1d&Kykf!`u*3Y*pv=`=e%gU{lC?zN<;;kqm*{F#_c%o#M5 z;oG$$0hH?E<-{q8dA{>M2k6J^T76h9>1xdUwsqpBO;Y^ZjOyqg$5}uo1>L5smgx3> zDuef1ui~Qk*YXGiq9@CJg(eUDT)%=F{c2VT9UNk(uQ@rH6iOR-_54KhO;mfn4l~R9 zzcw*VBh_{QnDi2mt_8p16@%nF3giG!>K+fhnjaTS{~j+gy&I{-rqA8#%GloCPb+Uh z0mOzR?XKK%4OIjO!6k7+09a6MR-Y_7VNxETHlzYyetLh(8=e>Q&B>8#Kdl*U4Nbh; zMoON6GoHy%R|==?yR?2Z0hm5wW-uAf;7Q(CL=+f+Hy6B#Hef5R{9s48BFe}m{=#^T z5VIYZ3s#&dbUK18hZ$6L-Hd^0h)fMVN>r$x77osgVTv@y2m!_lQP)w*WNqMuU=SO9 z0hg zYYPy@21NH>LiMxQXW+*jU2k={*Y==sJ z@hEl9r9|5F*zk&RfWq$FR`x*p*OXl&9OAynNyGByiu5N`el@_(Q$)x>Rzi*N?m+P= zxjS>|^72f9_X(@!3*RO?kzEX&|r zCvc&g{Mea9j+Y0Bu=#}vz)gk$OiW(jsO5uzqXVBviu%o02b|1-Yp`2o$n=y*CDaFseZ z7*6IneUIdRdluCj!<9W?rzML&E+qPTxujs-ZX)xkgva*gLSJ}1AF#Hhh@e&{H(wmS zDDM!};;YKl$}38ltLbmBwT*S{ar^Z*Rj6CCIZYF%Ren8(PKN(2^x3l2P1P>)JN|?V zlHG6E^CkRhwWW)ny5lW^N-{MSCDxPJF^^sIZca3r1`~sZ8!Pk|c|z~_Ff`ZeXLg7S@}QD@Eg*x2lh2A+Loz6^2I7Do40@p;=% z4%=Jq(vG)q^Z5|FOPdTh?E<=t;_FZFi?z)}s)99j0CTG)7C>G#h{f7e5KEEiejB#R z-evWZtA_beI?(X>{&`RPv(djS0&fDR05o2F^VPMFVHkRNc z_qGt7xV>k=?Goxx;oM43AUEtbpV*%-Z;HwNguxI^v!m{x;c1H8`c$*^qA@{EKq9(h z(3;85M(bs34fxWq@%u9}N}kzPx!J8L4kap%oe-*cJw>Sipe2T<`s>N@#kKc1SW|`k z5roL*VK+~;Cg=XMu%q3bICA?5$xXsjT9WI96YcFbtn;HpBz5>XkSr#QzTo^Web)J zGRqaBZ@up-Ro)df9{vRd@V+!C(922?5EK6p-MIu)7UrV`<42XEI^R!5X4_&*oC7m5 z{>VZJYGk5#Ko`UjkRQ@Fq;MLqWE}i^uX*(e>Rj>@ITP%d|2zU>@p+cD=3rJA&>5p^ zs{?*R7w=Lkq=aSIzH2U})tC74C2BYx`!B+gdcQsONbD>*eDA)e^excaC9a{D0p{!U zCg}Yv%vhpAye5h?kNGthMqONzw&**xW8R;CP(bQN6Po`{0M$Y|FeX*SS06cK;9=a2 z>JmOJ!T?&Yr#@s&{GheRA+r=MF6Q-8Qx{w5N*sYTg8 z5}$SDZ$OMxZ}rgAhl68viH$*Ru+45?bP)0G{zmL-;V%leTr46oHNV$+(FV(R0hKjU zBl#QYc?37#GAp!-4h3#3MrU&Q2biTvF;xe01*k+prp|~0ByGE>RICm1UoQRur@zv(C& z*yA6-Ut#NS&}$QEs2K*;E2*iP3ZnpQ2mD0AJGWFq*0w(~;D5{uXLhXqt7I#*or^8H zKrFB~_d|=Cw~8&w^%yVls-@fAJrXp9mE0YHE(mkODWl9)x~V`xtyB6L^|$0O>mfa> zB^OlzjQ?7SBKK4TGGm8UzgINbE0<7eh1f^hKbGJEg74#g-+M;RfSMw=Y#j%XhAF7r zxa-v~Hr2BOOpcIdt#24@pc@{V$R~LyIS&ypFhBV1imDRMzTrLKcfR^zEW4st!_zV*Szj0R+U>M|HRoU|7&OqfkTC%0K%^RBRMYE%kIp=r` z#jOIoc*P5lmtJRyP4`aw=iv%CqC6%vnv3Sk?8>LzwBGbVwN_JeArbr48UZtr*9AKf z5x%m^e>aztQPUX#or}5^0LkgZLMv5+Z1lq$=dSQX784U`t&DWEB=HPST+~;-!0RfM742 zR*6lYcc&elvTRK@F_-hl%L(5rm!sN;N16R|OatRwpR7BE;mR|H9B!#-Zn*y%YvL?-d{#%O#Srp757lpo^jI0@Sq+nUD51J$-us!t|g zOZ?`-9c)3s+sxw36UZQK+7taSt+Kppd-k-j1Y`yi{h@{+4)rhlkM`j0-*71}=Yht4 zCwZQ^+f>N8}HG6RIqk_2ZEQxO;2whayM2kvb>g; zF0WFGzUJ3#e1C6f0wgDW(@=(y%7xJ4OuChy*8v}L$PbBV#33^e6d*Bjia=r{HP!3+ zCHKzIJh2{NSG zU@C|(rVSg$!<+n65PzceETe!|^;%vEQOpy2rP5pzDHEj44f$oqjp4qy)qBnX@8pwf zt0=OyW3iEh8vnuJgAU=4YZB)D%?z*%tq13O_&eiwW8QD2Pu>R#F~UYJbh7YuUaj6% zWu~|guuClpD6LU)(mp;kc<_~RgtnfW=sH_2_08#Nh_%&hbMFa%J14rc?H$g)L!Xw+z4{49ai} zs)@i`K67;~3ho`V(Gs;K-(PMjq;z3K1-d+{*z_#pxPIwp$KJLG{@snA3cC}0)EV&W zT!o^~Rgxg1T>Q%)tQ*y&CtW*S7`_pKmB+}Q6oytHZul&tQ7bZsw--?jhR4i#!54Eu zZ=~Bt9(#}Vhi~Bb#X+1o)*k@hz%5~X@R#)j>^Dk=286B8<<50?`;~CMNZSMX)$Z`( zp6cl0JoPfIZ;2tX#U#>VeVsIvW^UmI zWs?kV^et8snU`Q>RTzfyq$hsk3P?Aj2Gf+|7^fxa-NX7MK4auvAtnRlO@fdr1c<=m zF{6rq7Gb}FOEK<2#_8n25;lXOa99U!+n6(%xCXT462X;_4CF5DDf)apYNMnx>L2bm z5V7g#eRvE0^0-y5;U?zpd{=6@yqz4y$cZ~6t$eckGfn;_K}dI`#rmUnNmPZPLUzHG zt_3B>{C(29aYvK1s}36AW>Pwn8+(bA^Uw17WZ+*yCD)tW4#K+JSuU~FpoNG4PQMA7 z9o5+#?_Pb1CmoefymIpHlPb+}DlXizx1t$FyCp&rFz0 zK_5t7lN{M#tWNpW{8~p<=$(X-+WR|yD?dQd2J5-FUHe;I&mciNw49loU*?Tlpkos& zq=G2MMsZ_uc{>2m6DH~QOXh8RMW_KuO1i1of0@Ve(K^)KTZ2=Oa@qdCPIr4NVBQX% zo;T&S1W#wp3)Dx^A&x3pyPnv_w+YLXBHTglvx!Si-ff*1REo;&@0XN zz}E9LKvaO0vn$#{>mU3n%HB)9>FaVCkw2$(s6hFih^8QY5zsvQl>cfU|jfJyPKh*}R-vsO!)e0G9`AjzWN~SZ)?>u7gm8>&9&E#-HPkEe~ONESqQ2p6*7wt>n zC|(V4nH;WS<>6vqA@14Xb-s4re8+SKa(UCm_8sqGxK|Ul3pXg&MofcEt}>0#hv+RP z&C}LTFKdzEwP2&S$#_Ui@6>WI2hR<|%C6go27?hmwX>nBnzd5e@v$HqSZ6adw24Tt zoW}0@>OT58eW}U4%sAX^t4jE(k$G%CGrpGSec9#f1UoFVn5)Npv4{RSNgc%($d^-- zREBZR7tEJl(^#f@&KJh##~MqqepZl#=Z|I+YA}?sk5ey^p?DL-^jLLVcZWA4HT5S7 zms|*N_mP3H9Vu+Y+eK0y21_GRQlPMfgN$X2hcZ)%e*Ihde0;=ws_fC!gxyTdyP>|2 zjqb<#ng(7FkJsy|TKRLHr$EPV2W zf`1KNGkARe^`CJ#4aB8VDR^=|v5%qIOUEVxPRIMXapZa*A};rC_@)VZdJW|=xP5>3 zr*Sy3&?TK9O=kwtNeDvr%HW1+oZcO>LyZ*4qZ6aCe13352`Zau$YX?|AmP&cn_SH;b{d$kF=QAuTFT}A#rq(>xzzzzBEr846f_j;(eLFVedLn`Uj^kX8_sO|3cu0h6wn(7%=glALI$q*oG6uBu zW)GcJT7Ue7xLeS0UX3d#WwyxA>T5M2^JKMWolbN1fSfPTQG`TSYrzJ#*QlgHbuMyX zrk=>OmAo@;X^>)y&<+TZzcq`O(V_(CCeJNqHn^_=HjKWk%zA4ZFYuz77d1TmRZsUR z-neqwDR%wy6&!*Y%xSw3L;&aV@q<;RFF*ZhmuJVMvi&}-HE&jVbZ(GeI*0?aA#Yf8 z&wnI7WVru}WxC63FQp!vqPg^k-Ta!FdhX207DDzp%P~>=I0V#m-1Ty`ey+ei^)97+ z2{|vV@`%tm@kt`Rf5yQEbfO$H7TG3BfF41nh|grc*GQ4hPWAk$9g6nNvXc2e>7@48 z*%SUBCtv>03=7mC=w>+hL=!BkhlX2&`m z@(%K7#g;V}w#fizb3#8_KYe7j{n|A8Ijib+MIIrTS@VZ>O+_PaSAL`abbo6k+l}+8#0R? zkx2hr@T4fs+E}MRNRaQ!@lDr>`&?Gk?-Q};O9RpiO5{XT1WXH3%qtQ?gnSZCcZQIG zPkmBM3LU05%KRRG4#*50O3+ZJXF>=FIr+iTmv5n zZ5KcnD1sEGq`=%nvR7T2XlZf0gG|vj7-p`r;OtiDu|$Li&Q0NtLgTu4mTRRIaxH{W^nXhhiKaO69f6HzD1;I2u`Hg)LlPSCeRmFUCaxu-NYeNRjX-JuN;0{N3$HlU8) zaV2NjC0bBp)VhEfM*({VA{zmKgiU~ODnh~2?!qJ%^gT4wj0oG(B0UUxL;J)ia3x(a zvo^aY;WG3#rfuJceCAn~{gg?G<;2b2$V83$!B-;ax2Z%>FaNOoEH8VV5$Q!PlzvzsLal-p+nq|5_fl(SDLIdGA$N?+aN&%k_ z_gFYv6QvhzPIA}{e{r_s*a8(kpTGMJwNR7>V(1JHvu~N5A%LKS-XD3u7WyK7=*OVH znc$mxDsj@W#~T$^M@a0q69M?d7(d1;xgb-FL=s`=v{Og;#6f{D***9NLMCDT|M-ik zXecF%E3Y4tnE(~%d}^td{ArnZThYwl-;8nwv80e62x~w#bZLXw0;&7WaZmvEBL2wM zy>GdWd!KJ7GcWcA$xb6Mjb(BF+fW-wEVuu}GUwZ|7!(V$=|jT!UPkWX;hu1s5f?dX zMGn$r&YUwGKJFKf*;?Z7w{NA0nG~d$6PY0EsO5L1Q?S!uC*onlMtFzH+i<^y;c0~a z+e9m}??tbFC`TqvWx=?WZ(HR!3P^MtA5aTZZD7()yKt0Qkp}e#X?dhYkP*`mRKFuC zBs#hMWzN1Cy-b})g2sSkWdrTJ2in*smF5o}F@TFzQ1F|JtFxJr-8avTY|t<>!uG`N zPJp?rh+c z2`ocwUc~|Kz`pGkGsILWrrLWtc)5;dc2_R{Ms>A%<=V@YAf(M{)R> z_V}epn1uvAZ-%w-*8;h?Bz4%zKY;VU8ipzHStv}ac&XcgPuOPl{KRJ0pl)pJY&iFX zv$N4)kvJ4y9Rn>8iJ#PP8q@Y0jHvWMs-;wwv_?#lm0KHTAjgK z-LmuxXeHE{OfhW8@QDUL(^2Cl2Ak30Xh*gnIb>NHaw7`OISuy!3`f$}(*dq0jf&n51%dR&H8UpI8?Aqm| z@Ccl%_rr;fXMRt{fiX^UZ~P|&p}clENqVqqV%Ikd?`z$eN%X7(WmebWe4N2Y2|wuj(K0NE8j zvGq4Bye^YVKWamF5NxwEtwx-=v$o^J*e_E&X{LlfA*Oh1CaSE?8gOZB?U*)mn-D?C z>WWWV@mF9nK}X-;sPoyiV-gvhbfDHp6WhVr;UJxREPERO#leK%E$KHk>|@S^^@QCU zq3}$j#^9Us!GkclLcSl#pX;_j$>t=;0=K7~Z70lNJb8QVkKzaVoNdR8hnP~?=AE?- zv8qUA5ZaTs$wzU`rO-37N|D(W!x^CSZ;8L|i2tn)wuY^y0zPX2Tc7@4Go`PpofH2` z0Uu$2o)33`gI_~eVR&4xyX?C(PFKCDRzowUR%Cr%L=}w5nxWImf#KcCff0P&-%X*< zMZh|A&LHg{HdrRX_Enf1cx(bsb1mCFJjYK|&<`7_vmw0bQ2@bTqpadE?E}J+9qE!< zh+n3WG0k?SR3yMbwus-`D&5+K?>fYjMU3iccG? z;-?@crMZv9rMg2f%*CG&G$nyhsN$heU{s>QU=GRE!i>W@eH0Fo!lBc-L0PL9zRtC+ z-K0>+D-bj3RnS@Nx(GZL2&Ry}M0sF>C|Y2-lSW51us0`I*a5s5%XDwp*il1P1W`la zc7P@+!a0fmsQ*h$jXLE5f1`Bv^~-M9I_yy*Y4yoAXrX#GC<*LQAq+#>Hz;-OnB{x+ z$)6)#YC}5s1nY0YJ6+-w>lcZliw!crZ>Zeb$oly_`2k~bf`p!$4;M{(8q8)*dhYv( zPUuk{jj->35}T9$M}XQNURM-HUcG>eZ3OI z-v1?lo`haE35&6NV8)T#E#O0#QQ|>~&Kvk#S`3)Zby_q>M)gXjj`ed!X|6gjUDHO1 zBZd}Huhi9*F_Z(w`AYB7!`1b0dS`+rv~^kxXKUI38pJlHE~8KDJv)QrEe(GwA8-_! zi{JcIfr{D*9+lC;4a=MbLx%MfEK)5U63L_tKqwdydRvHKKB0K9i!Pzq2heoC>jS9q zof>VJ|KR(aNCe3`T{bHCD&6;lT98O+j@1joJjT3Bu%yl?0@Go9pvKZ~M03)q#vls^ zz(Zp8AwgpIHS18H$z#hv=+V2O#$uk2!us)jf3)(Lqec~VpQb_;1!b{n)Jqw`Mg4|2 zzJeY852pWvc@UI$8OhrmxdA+P6<`d+E&T{JnVH727aK6X3nT=z!PG;x-@yL=0qsBb ze**yR=1q(2=vTJXbprwhp=75i>FOtm2g(11CByumzdwYp|3C2b9ZUI@eZ|GO)Dh?2 zFH-#>eEIYL0ndl<)zAL}KJ@OcMT3yB@8b-`*O)CiYU2zV8%rux&=i-=Vgz zsxJT}XXXy-u)^Fvm3*kNTCW$zHBPO5{qlZqYsjd%@8F5dN^{NGOFaC@KfQ>gz>d90 zz>{^m3#dC%=%J8qs`W@q?HFL^_Ie1398^4>SUi+Psy@)|Eb`hYY`}*#s!@kJTCIPR z^bc~8jMpJ5ePh6m4BP(`p4#|<`QpnkC}{*}ti&?@q17z%>!VePWF=Ug9;%w4N{7^P z+i>}t@Fh&825OwvU#Fu|acoN*-f$=PVG%4?i+U2dN?te}ZmntIxsHBoEtG-TR-%*O_*^-AalJ>{$&;;m@^-C+{v+kyJ{t#@F9*LBuCulYJ;I0cLw)ynRRS zM#wDf8Vthfuper0!Kys|bYe#eMkl;-rqPDY=;t*JIuWkC+SOv5FbL2Sf?D-rO3(d~ zltB$B96!Og4o^kIJ_E7u?1}SW;4~NjR&W~hXx0Isio!9ll__x60$SB#N{9W{l!#0~ z(P}YY9atw|>7Q|(x<%-1qN)?pv*$iYOw_^uTsA}UtvN9)ZzMQH04{8x{)iPp3$j+1 z;c?V9Fk=j1i+k`ci8S)x(yDz*{(txS?>58e|A$QWtFw;CyAlNuf_kh@hTu!zD=8yO zIa54wK>xbErBka?WJB;twA#hWz(FH3q0ES@^vGyF43E);*TaOFK!6Z*{`i>Xt~k42 z$Rbrzlz^i2bBZKg2{J^O%?bkn+F1ZG68?XHke-U~$B)u>m>^mEW?AfxABY{W{~N3Y z5CI*qARPFAAc^!Cise@mAcEtWkI)srnSeII3VrN)ag{SQNd2ONtOOAv%$g4c7i=8V zR4U9Wys?;_L z=WR~Tp&{8vI;LoQ63R+}9RoUzM?;(?ZctX$l_8vSLqjm>*!To;2szN%?`@^;QX{YC zq^y$nUOq{=t*_rI!mF1YoG>g9+K~_jyRTlIfv11`8+It5jhbEy_aLXruzyc%|Bt09 zKu6`_P_s=8d>t!_E?}%i3nUHk4NC=BgZFP`XjCMr03Zy_Pa9~2%e}Bsg4`U>hnom) z-*+?cMLbU<1ZZ_I?e2jxh_MSS39O$QwJb|aAYQ4{^y%9Hnyf%<7tRm4rYORpHIxe6 zjhZlKOYVW?2ol|H?1-gUYMJ4xl0Q8i_BqE9K7-!J{@~1h-}5VjjAQ zn}2-!RLxN`-Zk_q{Z9YAMAe|v;^EJDH>eX_$MGi&UKSFN778M)>QrF8Q>zw?3bSr3Fusrf5kzdi2`K@|9Y+6Y15)pz!bHpw)M-m!ovyL((b+jQTkSOdQRwuzAaNm0zX`Nuf6d1khDNt#Ft1T6cQ z#;zg6`UJrgv94S2xe2}fW2~rf{5xsViKAQMb(jj@sKy%2rp9U>modGK5`MipXIb=G zBz`i#EhkdN_vf%uuM0`poEHFXBw0(GrV>WIUsnN=+~2bBH9B-mFb|4zLB&nKtG}A9tYirRXYNNp9VEr^NNh< zb(Q8>h;!77ss9qAxODxr&+Qi2+ok#k%ZX_dF#HV|M$Cc>_U?f3h0<-J-~D6v^Plg_ z=kU>-_=1^6vS%K0d$n_{{5D z4Q+A>xhM;mJq*YyNr+aiwraTe^y0E6ti)Jtg2zt(w6wG&SC7y1q1O7eWvmMwzc4CV zZ|mm^mXIfC#cN)*w^$Mu9b5I-4ym&{-pUbou^KhpYVlWQq8oDq=&nY0D;zGVi0V~v zEXp?cHRw)5SZ@Q)%zKn=CAc4A?%6uh9Zi8}<^#$B;@lXq-{?X7lEVCPl$Pfnbr=?Q zQR$i>G>68}>8V?27S?ApK|Ad`9{0WUBfEW3(wW897}fl2TjO&k6WJ7`NF{qH7v^TE z{YWG)BD+0J2Cn&*lp5<)TRyjOniI~o#|Y9f8l=Gx1mMl-J=J3}1(p9ni} z``7(u5NEA)ocRhz>cUjUiAsj{py=`#yNzcZzLz;t@SR+SxfU``z7z!i7k!m`Vp^-5%iFN@^8E;3{{#%lbkdWC-jG*>k>B2{&jHbS?R zhXF45>NL>=RsJp3n=IPRniNvU~}JmYC#yu^GzIVEi%?tPodaxc_M~2evRof&XitjFS4#5_?}L8UuZZGW|e! zGmo`+JzX6e9=NSqq%l;TGL3bfaaSIAQ3N;;8&6GFi7dk#hUH*9T)PO5(cEbX;CWl1 z!XhK^-v|F0f~za+TjUu&+v&=ttLqR=a>z9(nwtS_aq@?*9#APq)DgYJ>BO9xbeZ`t zu}O?N^P27YT+z)adO@XX&pH`stX8vNIy8V=T#Q@KB4I}>A?KP^J|ZURfhHzs;@Qhr zmB6VO_F+P|=F&1_#@z53{M9OBQJzNg*_l`dO zvXV35deep^I4;ITTccqf4)2rjqLo0hh5E>UPNyn-_L7$L^|Y8N@2w*7ox{E7IseiR zn>1m2(~9wDBMVg~iB$e58i&&>{FxlzG|Pk6Jo|X!ryAJ2{rv;^3IH%jR}l(-pse_3 zT>jp~=l@kuHzBo5EzWWw%L>t7#ynis8a586A>l_W!BDAeU@c|bML{aKKKPQlO!_44 z@$ibO7QL2TEGMy^?X{5F3uc@1c+3ozN$vH9(03xO{|}d2HCnd$=~J^X{pqct z`4xPBOXJ;k)9lf*&I@pR_mtD{C+!uJ{a5O29SdTdl?O zdJtGx_YdxsTqzyI)IDi>#ZZfJbl~sJ`Xho{E8V>iesXJIT_Uq6nj98CC zRMWcrIWAxHp;xu>Rr=H2ACQTG4*&UUQrGal|F= z>=?ddAwc}}0c#Ex;imfl_=6N!RYj-c{wY-*uR0T}el$(0i3vz5AV7$(IWv9ib^shh zC)4zot!2vJbQ}O-@kM@$B>7Q_-5Y8TLr;s3NAqWh%D%8x3*>pdWs;b5 z+VRZ?p9Em-%_&AUF^*JHi#yBWP;tE#BVd-)xdsl30c3Hc#cb;<{gRpur?&@OL5@S4PXL&nrI#wzBF^?kqw|6wu`zW$tK6FmLh` zh5Z3AY@DB>B>7pg^>H01>wMK-RTQ;bD0r3hPJB1?FS}z&sAKHdx+gs80?AvTY87fj zWgWPfxu-p2A8Ntd37s>1buq8brQ^-j=6QVoM{gU-sulj;$badf&en?)zh6~@NIPKI zjvnRA#r_!FZ>CltZU-ArlTdPyI*Zrthf_5vW)SPqxA#SW@`^Ss;TciB>N-t zJw*HN)~SBN12H`|(BuBA9(2|cw4aSB2Rad&@3ku_j=#-UBJdga_mcOy$^jpVp_@fF zviLQp{_Ck6dWyFV%vNnVJCw;OumtHXAb8V}9(;eBwv2$?ENe*-9JJ;r3hoVKTr*?&v(;NILW`0G=^P#HdtT3v`0K zS#JpBW0VG!k{auIZ1ZgL%;z$oA0X0g-3ZmXwc|Ez>GNS@=7Cq)8iijkP8!{3ekG zUMvdm^e8K0`8J-X>{Rl^bhCEFvu(uHIo~L+e>|ztcpWQunH|Fm-L-(+q5n{W=$|xT z#0zi=PPEhV$Ku5oUyzNdTaO-eT%USB!cNuJWtHfqAkWrrXuL<$Q%uO}cqONH-P16e z9Y-8EApjfMPPQh3*Rpy;Jp_vzPMSG)s>%qfB_QcW=~0y0+wN&9pe2h7Hk^_<7sE@d z1o}Fesp*LB^yVG48(W&YR=XRF3tEn+0b$FQeU~1D-46A)lMydJp4&iC2INn0pcsIb z+#SXloF>K8M}ZOFjn^g)c>*I5Gx` zVhG2x=D{-|=J6j?dGr}+bv`jw&DS=a+P-oh z%+nwNL|PaC{!fzNtL8Sj*+Ujc-9HG5?$p0Vb*Z}c_n<26yrR5>bo5*6s|5CFKn=$u z1Nt6ITJxEb^30XNk*mcGXx5r2Sm;iV|Kr~13 z+o@8bMI7XdZ5wNsIHB(y%@4k3$d0Lytu?HtEs)%rtv)W1+Vd;US~vJ*E0a%dicbUG zX3h=3c7B(2%^x3~rf_@#xG6%TVfKGc5Aq3Q7ptjDn||-#=j)C#h1o}6w^kl4p*+1@ zg*+QggY%beuBD@xyZaAWUI2=-4T6iv0s2Ncaev(+-aL`2 zXo@(4qbxW-I@h2*P=$|~Uq!jk5ccO{p0Lj5rX6d?<&pftVQ;!dQ zJn9jSNg(|6_AL2b5AB`9>>VX-tT!=WCHLp5vun$W7bi#sK{mR(1<31J+*o_tIzU%4 zx7gsc>(4#mRc!zE!n8M-<4Mc+$Kj_7)^uI#hN)dYwvyUIE#5;Ia$8who zv+vHVO&q+Qq~UkjkUvR*w*xTguS7oGv;wz zEy6lS+B$Y|V)H9;1o+to@3OjJ{=rIV?_gC~`&5O)+tq#{NMvXuR9ywACAB+mJ3aRG`zU(0tIg)U z5xU>l9cCI8B_rRuUReKMo{4Pe6AQ<^wxlz<~D_xk)ZEGiPArc>@I!d7f$($fpG5HI|4xK_*h_P6l-=}j1HB^?(! zzrES)>W1e_t~HGRE)4{+_WrZ~yR|Fi(Lj3jEZ(1lWK)!qOieI&BB>j~7~KN33B~d? z^qK8KC1~%E&HvM+@3jpUlHnSoBMH9hH(D;N4adPlTdIUFk-%K|Y%l;cH`VLUPjW#N zBA`&Wt98PR;Z@u+p3uwcQnsyO3{{9>j6?`rmSh09*dI8S05~FWm~Ia!T(FGuS%=&Q z#R(^$Ya_o~&u&XV>}(G6UC3?4%jIwuZ2T;_JowRrlqy)Zz&sS+;Sk1IG`S)!SuBT9 z$gxArGfe3^(i(qf9U4HMFtrzk{l+0?*cgEmX-Hs$C9Xc2i{Y#(hHJ{sxe&>v^Y7=J zDuSTsKAv=$Hp%=N?U}T|1{m+~Jj|38RGCxUE5{WY5sdynR8d-v7nb zIR$4Dw%t0mZQHhO+nm_u8z&Pd6Wg|J+nH!$+fH`A@2_38|9#Tc2VH&8)!nt8b+6}I z?=_i7G6=!Y4;E3;G@t1|!TA{{CaZ5NCSd=WVCir=2c36x@eP?v3xH00x2qC^vyaC9 zBr|2mEXVnwBrW%h!PWIZWeH7J^qqp@sGYrH*}(`}O{LXaXn*?%@Xyxw(&KlB z{aoye4JW|izmq!vm*IQoGX})rsI9PbsuZR zE~tR8TJGcMZMNO78G%K#5f)rz!*~DG`T{#umyt;O&In%JewkG#3)&T-RA&yI`n%*9 z?jRf9?oS@{)>WDb@%LdIdxu${OiKfgt4@}yIJ)&o=6Nqb2NSk&R&-Y`?DXEJyq^Ur z7cA>}9^F(?a6OYt>>|X_T};cW}7uA^_IB`XG`Vtf?XJY4 zJ-8m>xyYCM`}ybn{^E13A)$Tm);9muuHTaKBnNzea#Ut?Ufat!RAeVv^6gcRZ@b@% z^EcoHhBfAB^c@hMJiAg`+nSr}--o3*LT!RTuD@*nn`gIO;vdqYdEo5BU8q-8%<$&j z=F{H&-3#FBUFzxG6cqeu`+U23c|FZ6cC;M-{0yrDd~IwE?qA+N*FM*EHh!MoPJ%Y| zZLMwqUe7Nle@4K85MN6|WjpNd$)%m5Q#Y=~bOQ;2bbIX%Afw_eW85$P?S0Zq;C zZ#MvYLV_N(CYG7Y$!F-3rTBLnl$h&NkF?2uA4F04y{xwvmcpH^+=d4B^WTfLZ-AGX zuFdavkNk_r*DGZQ9v7GIJMXhIIr-7PgBPF+5iL@^XK1Fsg;i=iN2cz}@LqfPa~N`lKD>iM-6YUSyM}q0O@0dJBb_~ zwTOaO&793+aNpkVZ)(r$K=ziCpXdo^UfxwcM+8y9GpEw2*RA2B*Np3o9E`*B?{_zs zakYrO{7bsCNqqdzRnis$U-8*bB*D@afK9<(flZq@3lla^`k}fbPh5O_bkt5zfw~@t zYqRLtWcY{2x0{Mi;3l1F+}qHsd6MJp z@)Y|ty6~1CdSUe5&LYwJ>-8(5xESm%z4G{&@vro(mWpqQrO*&sD<}n7r4EVz*sI_B z{@1-Pr%V>r--Q(dk?Z(3Ei zL!)QO0ay@qO6!$ta2I*}lTX{Gfgla$W$Vx9{Py+@O2JK;Dm;LP3d+vL`5*K*#ZM^+ za|*@}_?z{Ar?|8yWAR&&w~lGOu^Hv+Bh|%Gm_9(qX)4KrIF-S~0?dIEs;+0by9zhD z2A|9?LM5_lAQ8`pX<~JkNeS(jV>MoS2~`fM7AEr-Vog*K-F%rxQ;#HnIxfCnbh%}m zK30Or_~q`ED<+KX4}K5okOH93+@w|p{Z8r!bq`bB!K9lXNbOa$geK6=$}25rBty}9 z{whneoJ*>bOUM3jABx=n+!dk*dI|76FX+Yo$7uHG&;s+Rcv_&+eAd3f1FHZ;oX?H5)4j`%d23G}J`-M=jVT#`L*GLGA zL9hkG{O(iEt_KBzYp)NoB_^r{LJ*K*yE-?T|MkkmqX>=X%Vj1A5m~gN&Ruy7Dky$$d%=^!wvIC$2iI!8l#`YzKb^-wd zl_V5$mxanLpO~hlYAC49d~Y`s7d0>T;UWphg~+lGL@f|06l|z~xd!K6$&&*@wAo!% z-Fgr)*hUt$tO7p+7i2L@3#V+xRx#Y|ZI#GHjwYtxz49y%2o zFA@|ajEKA+@)58g@y3#5et{v!o?}OL8zWP!Hka1X2TP}99-6_<>SVvvM$Q|Q1}#jJ zu(y~OH0y_k_Hj068@OQ7&ocJ6d8cOvEplW`!n|%mhHFzx8eR)ZA;9*K8kafl!GtHwE3`@T3uY=}azIa<7!Lkc2bOjeN677YTK`dTfs zD>g%8p8Qkuyacfrpgz%tqb{>cWs!%=IxCrMa==xYH2C6r62H?bKz3uNRxZT-m`Vdq zH^XBFu4AHxqcs-%3&)DEiY=^c5M2nm#0-8#AtwUZWQxEcG&%kaN4~U+i3i_kX#v)5 zg5MhsnioJ~AtOY1Gsn;+;EeC{f}ALsNTo65`GQMpphQR2pC_Coq>+A$E*PX6q!UX8 zml0`(Xc=I<+e(!T6<=apNFd~g)!0Jv880EsX)-J}#CfdFp*N{+?shz(iXY!PzrqBEkT^MAV?6_lqD{C=yQ{kiV-<`mO1 z2CX+gHPqhH*!>@e5JT6=vh=l4`0gDMj?J@H6EDHbZRlrp3h~>~_4f8)qpPhd1^&{|rb0?7}yz)mRdP9M8cP&kl-ViX<{3;SR1zBGuumM?{IKUs)>Smbj66)Tj86?`REBxYAFby zKQLe>v!%|#;!;U(Fk;YK)keZapvKIp%`l_kJ=)Ocz|%Ab=N!g9!XjEXiKSR94j0+w zZ5=MTiICF%DW1rZIF9d-PS$d30to0+rd9iSU~DHL0NM2#hKm>ZhK?=@=j@6p3U29W`t(uzSM)J8@sQ^pXqiBwLL$0ct5q0!6>XrxtsrCB zt(#4c1Zf;aJH={a>ZdEhtLn=e+nt%$7+Fd;=P)rSm{^9-m_3{~Bv9Hk0pzitN-Eh2 zcq{B{K_U11yx4oz_epsA=K+F|*3v(Fp8FoVuK1k0l8oj3-Ssj1E&8-`@`Qxt9{rd6 z!5d2`6gz;X&Z%cGQWx)zBqq+?O!&u7m)KvJ?n~TPszyH8 zmzB+Gs5-pCM12=HfVYx+0JM2jwr)YhUa(6!rPAYmF-C264P^&g@_D+WHIMh|0V6tF zGWMrAQdJ?czd2@H7~$MPwJVA&XD3Ln_RINbj=tr4Rn1JR8P269q#YW>tvco3l4n2Y z_8UeNgz<>J66)slt#~BDa^#1!TGvZQW+1csG4^8m|89TnW z&f2*U4*Uf}Sx+im|5cs=0oIRzT?CRsD>iS>AMXR`3U5uDgBeB!9-{zJ4SxdS(ZScn`LG46(0x)~C_m^wejZ$Y zm`3@CV<)aNBYX__S38-iEJ}z9_9Le_Qke;9#Q^`SNi11gHifPnKHCSq9t7?r_-~k` z-SaKNo9EHzyFmj@uv8h;>dtT>Q2w_#NwXF2oiXrv!yFs z$mBEvDEiF&V574lHy)%3A_Sv>KO5cd0T&J#k`ph^!HD*21fSLra#A0$gAf;O-q~7v zDS`ed_vZ-`xDOc3F_GpV6y7lCx-;M}iCJ{h|!~HV9cGe=L8UOH$_)OMT7+9SyxnM%@M+P`!|-E=7yf8VSFJ zWQa21hebUVqC7e#lz$_#>=-+tObl6t%QXz=UkPlFkpwiV8J=Djsk%uNsN{{9gBgTX z^8n{-kQsANBs`cqFc#uDz^w$P!5ps6V0pc>LK}>$tll}#%2!OPm4NzkFo70ylo-?E zG4sO?j-}DFn@Sx3ET7;Rt7kjOH%58174&FuuUgTDwR9;QjqQZ)O@UQK_U}Ql%S@1k znloGD?NSYq&9HI-xlE~+YVxvH$3>9Krs?Zrdn4EjH{T@;F(rm(H(xxD9{*(^^z z0rM!MAv!SnPX+i^k;_5x3r_`yc$%R#F;j@@X5wQ_=0;NiG4l_u-&Ep>3Ef*P)jJ^97ruQ5x79P6Hn5( zz_SRW5YAggV6+z`^}Jf<`efu^5^y%5q=#NYIIIwxjuS%E!JpAo=Ga!&V$@Y8HSl;K zN?NL=#`)$^!hzGu5a4a0Ccw-A%JGnYYEbE;UHtL@;Oy7TRGvO)|7_<5PdzVeu!iGd zT!8ExL0ur5ObAKlVXs9%(^1us@BV6@^1;sx$FDizBhyFxVi*F|lgC1)hsz-K51$nd z z6Yn;5DMK&s7~^?8byWy zmxt>0<7lgMZ$A?(s`n>r{UF3-1D0Mu)J?#wf)>r4861Wh?!}@v?a43}Z?I0V?kxU= znukS}@Qlp8#=`uCA4J>(8)3a3XIV8P$F)U#90XN787hawnoPOHZ(_t#gS7?59jH=y zy(8Mo0~FLh{Wx)kBF|qlIv643BxeUrh_iATs%RZ@6E8dKd?tk}VJ=cu^h!ou^ z*t{-zNBWG0WV-2TCk_nT*`}{Nw^s8EniPm`Bj{(XBc4BnL4)PKjNFU4= z(vNF|5m(LaqcL6-&huKru+L9xU#V#XZPw}>APaUAi*^-*I|3VfHXUOrJ$3S#(hOS`Ap1a{~s!mo-znKX}_Q^)e)R@KD> zk4<~A2iC;p?le&EybGQ62yugNkkVK4v+hXt%szDB(?#A=@!|j~Q_Bj)Fe<0_#PDYu zUxJ*TPPTZ(b$7ye<8j}jTFur1>Uw~%0Vz&2KiQwiuO)U#e4oQiMLTMj9fq+A{iPY?l4MhYOYbCjQ9P<~0v!%(>`zW)HAT`6S~#2pc-W0((q26@y0op_9Rd z5}OvyZ7e(G9vot6lo4s-yBVfc{u`=S3A(N6B^tXV6hSN*v}_D7!`hAqWR`ALLncii z2B}ADo;PZ5?5IVqA!Qjz{HNbCg;OS|*J)XzB;8YKuwTDQNN@=b7ss}1q!_)CkFc%tq}96l=`IM{3J)Eaw5>m(qm(G}Kw7gU1wVKqNz zN>mfC8XfmjeQ5|%M>zQo49S&(=qA&`m>Em-SgZn$Lwh5^uuTRF2;qhg*OkyBzqr>D zoc=}CNDrGyDGZm&U$Xud5YijXtD8)#eNM*}l4?O5O>{%2X;xjBGoMig6M98w&gOeU zdMTOKM??Zu6EtrmRnQ2v_C+gFDq_Q~Wz#gGaY*Oy!1DmC9u96?o-Tkxd>djN6>R8Z)>$Tq#dKeuxMU&jvdef16~>pCJFy=3uE;*gtC zP=}1rDWjawHW~4N>Q*sBHz~#2m3(ZzA2~@b6rpw?adxKoQ77FQ1v>WkO8cb$!p@-$q~SJ5HJ;IvDEM;&T3svO7A3js*>v^Hrnu{NWcGNXo7im+bDKUxq{?Lo<=?R7Wwkx6Nu91zPP zy(z?;hD2=OO07sXr!G0KT~H+kqet}?3sI6rPW=O^?3tY9q!Ae0JqMrOP$$gPO>bZyK)%I?yk_(6RNf{k+_RmZWwS0=0&(wNLpBXcr`a*5ZRw}b~qb2Wsvt0 z=KMO3LS&tPh_9$e*bG`(&M~6$y|nxO=(E*$(SO?a+L%b8{tRy&Ohp)#{i5H^1Ob3W z-*GgUnnsyDr^dAqYF@N3b{Um)y6pc3KK5m`=L1gux9hydcT6|zH@cd97yH(! zzqRWsmtLUAh0f}+B$khgli2o~Z65h`G{-hV0yEkU4rmC=tEwkz(>+r7{K{mSG zpCPX#JFo0-Im(9i8o##Pt=BX(S`L8UAE24$F#RWoiQ4GAAP0uGUo!DLezaKMdX0QR zz6>?`5@IFV=EvnWxq_(eukKno-l<9Ybk2M{utm>1*XPM*?X&RCph=A7uWt1qZe2x3 zjOlKmu1C;%YiQh9hJ^aSh35wskg?Nlbw1KoH`&gJU+1G`6sk@aER&M?BdUNtwuz5o zXG|uh@-x*wrobt~Lib&vsH}e_{?Q{=2oViE@bN8H>yFjo8a=nmH|seRm0QUuejO?; zJq>Hy_blK2S34Ia)Kdr}o%Kou}o+uEqpJ}>4aEPIYIJ}caPw@{P=-y|$ebqS_EZ@n3)n1~JybYv3 z){F69=X56Wz1wsItofT{1f$jlQZ97q6L3y3u&AZ&~E z%Zb-p$L9y4+Pg&{CKOp7R~Rkll|#F;bLNC}_9dpT$C6iuh40kl^(WiV`p-krh@E z=0`$+uoK3e+tt$ydNe2l*SzQ$IT9!cKxsKq@R@~yDtV`XgoH0jpT+Gl44o?&wxBqm z5fe<8I*Dcwy4VQQ0^k%BCN36zW6c+}!G=X1sGotV*EcH!#}K3r$M0AR`$18Mb0yq{ zji=5BAviZrwgbtqJYE}IGqMBOK@n`&KLIJYIUi&^p@jGWjClb8x2y9?A7s(*Fk~C( zBlDb({PLJbzKdAwiMrP&Gt+UB3 zqJO}}t5Acrc&$b}4@zbp55l(Fw5v72-rm^IG|- zCy>-SHa|QDH0+B@!ztmBKhNwW>0*T>TLe9vUh+(}T=Vay7bL837 zkto2B!(ZsQz=%Ce)Fs157g$uCx5dyFB$2jBAepQ}1At61FIZ>Sl`_gKL6wr93We_4 zQw6=Qh0X)F^f!(v9Y0}vng)Vv;M!`$4iGIW#Fb)z!@Dr&1Jq4ZfYsyeC3r$|7V83= zoE_AXKdcEXC5(Q$r&OVD|GJU=Zk2mXko(t$D1Yu-FmM6k7=^stjDb>OEaocmoYQHEQfGaBO=up!4fG^i!#=)+VRQ>^_?kVJ+OYnG7j9R zU}8jeYv#E}(Wqqmdrg<~`ZC)Kczxv5NCIP!2k3wdeP7QCe!X1x`d>3WiW8CD=%8HO zi4#Q+6QYgfg0=cJQa!m#8gjWxLv391g5*E^5g{ek?V*wh*y055V}ch;QBxp*dzYj} zI`nEMBkA{|6xXF*Co@mY-B|Wc`~#dtfGNHrHbj$WNf}zZ5)!;vBmqzr)gv zP!|f~78}c5YzZ3$GOMqm2KX~z0$-J~o=!|+P;k~gDJ-wt2Bu9{_1 zSG;M~F!3jgK;V#AW@itjN!caDVGpx{3E$|8`aw1NIYT&df5 zTO*nsMBnF5dM0L^J(;$L>7YvZLYgt)(Dm82wjCvJS&?pXOEs%C?>QTc{l+NO9#C#j zQFRmEZbF0Jb0mCf#P<93NMpNC1~ODaOWZ0?uELn3+ zdgt>yZ^mHuE$fPxp2%ZDb;ow6K0okAcDDV*?-Y8#->P9Vu!OyN+?3*52z9>P7NgBJ zydU$-mVK8#mBP!;jg2&Nqqy>Q22kpz;w~@t{2ORueOnVF`wgATQc|-vAG5;*@uq!` zQl}x!XnYmV(p*LiuIiK9yJZDvSDlA*r7w?p*O>mz$ZM zoWBztZF^Y{3wnT%F@Ib!SVOlHy|4T4Qq6gdZu*40-zi(s@nhnqYA(CB8@qHnpEZl= zP014u%h%bY33_9lVQ$CZ^xt{6GZWdXOTvh8F&_0py0^3_5}UwUY|%75sP^@Hh7mhC zUS>9mT-ywPIG8_KyuG*(J%F|wMHA4&Rsr|L-ycX#HLbaj(A6Agi0!}7XEWKA)3+{Gsue0*qUhwo)s zHhxh7+3Qa$Rq>~|11ShEz5rDB*GwH}qq1&S zEK;91Ha0t>^?#_31pQ-q9gNr8f9mDhZEX;5RsXbFWcz$>kB^5x7w4^k*?K&D#NO~E z^KBTBN@Qx!w0dN|;>Y-*Y>yk?9wBLfEM13pVj{!vP&+2$dmZyuf+1J#>8$M$+&Nhmf#GlXc?P44xq36nJ_4aj{ zQ4K+b%avP2bNIW<(puFv7WL!_9v3twXht`S#0*@t&!(v}N0mPuSS$?-8#lmmNLs8^ zT)k1?w9i|HKP(HsQZ73&Y3%N`x=&lDY|lze*i)X@tVnG7T>wo)i@}fhD(>xC@4vtr z*&63K_5JSe{Lhsu>>*4ub>p=b=aCMzOSPSNTjUhV85O8GNEeUA;}AcpuP8sRIRmhR zJWL#E($AFrg#RwAM222joY8wco=Bp0A@6h0*uQB$ST1UH!R7?gE}A;fI%L?MA@gtN zu-%3c&37~}kmxxe zy+K;USnR>X2RDxD(^DKF0E1DC5bVXHrCOoLt3;#sspL=g3Cul5og}sf zxaNmb38oo5UZhS%mL7@KMVdZ}9g7N#{(d7bMJ^m-@)MOiEP~Kflgw|Jqpxck2roK< zso2xHC^WoPZ4S0(r0Ky$NmD@2S6Htl~_>sfvU1QZgB0s_gl%k(LF+CpWfItHl zuu~;0ZdWeK@-e$d8%@3z#6z2i6llV3Wp0UE+@#qq1oP)+2?o00@}L-hdVJ+K!lfDM zPZ-M-Mo4-L^ygW3H>|+Mh6q)~r;T~m#7|J6*$O))V9sEajslF48&d9Y7I05P{9df+ zEKL2dL_}#2f=(n1>xC?B&yV86pCQk5kyMc#>?iGZ>WKn+Cr>A7iWb7xn7tQZmp%cd=b z3{i#Tp<2y23<2t<9QgE_Rp5)eSa)eyTTl~zleZ%U?YJvJ>m=iJ1&Jt8s4LQ)!U^$n zDx{Hj#Lc!R z9;Sjy@pEmNoiF7^*aEQb`saU!Xce%uFCvg19h;^WwEM2|4n!l zGRC_F+d&CM?U~msi91<~2t-ZH~uTdk@ zXPd&)>94Q_$?m>I!6-yrh^pr_Nmy-UE|b&ADY4;NUQY!+jWo}|Zk@jPQt0$+Ync8S z8q0B2`tq(UsRuZhTatOF^i5;Qcdp=YXqP1{tQo``Z6o=h&h!s<+t-Y_5x;crjtyW# zYjS309J#F)?gg{ECeP|*DoZhUf8MuHJfYpm1WA#9C9I0Bx)Wy{*S1j^@&%|t{!S^} zcQ<2!MumW8=wVbpzc|_*E!%?UmW{2M=NVTHYA{}z6MSIuZ-@>D9I+il)`EcX^po)R zOJ|b0h4|bdOY`*2`aJa;&zY?2qd36efRcWT{}f!RivBH)cbDG@Q$XT{Io~rA>Cdh27CVoXk3Pu5}LJc$#Fi z5Rypf$L5&ivIuEqePgJJ0_#a<@%g}LuJd{ek-UHGQgZj>KQhKQHHbVH!4udPXAhHE zY#6K_jxZU@>Q8+A*U#;}$vnBEuTtA*y{*n?*mmV@6mGc6HSe`PVK=7ydf_!W#$bTN zWb&|EZPud=Ac;E`P~_pzGgt?F2q9r5hHK`}hCK*A(h-k`#j+U=UhKP*wojjs4Hj$c zY!l{=$z1M38Ew$DEVPzR2@8i4;_Mfkky_(Gh$b&rp$tA+gf8!&qu6eV6(@Q9i(3fi z1${^}6myQ=@A`~Ox4O+KrHwF>oXq}Dgd-#9H+1J-l6I;^k z+@TiC?AoDZA|k}UZLdi*yStj(rWkOUYgQOiBV?_+3s&5JzaHv8B(5;lCZ=lSD|DjC za_Dq7kvFfKYXxZx=>xvu=Oy5Eg+u*wJ z7gSEQuY)K-@V6Kf+F|68jRI-dLVnpuI-*(HhDo3DJtKwH)Jso9&&&~uM@H_QqqhEeSwJyq|EHRrB1GNrydwdBVird zDW+xv3as>}2Fu^5uLuC<9##e6|5O(x0(8yiyf$Ha%3OtUi5ll%JULpp?~X0kpSkKJ zI4=oVL%2>KqiV$LE5s z@8kU%j;z!eWD zhL^>#_X?9E{8{MZo|^){rh!4i#v$n?GwUgDn2ovOY%zvzdu1|4GI;dOg=K0GR^%Ws za9+mxH;s7QG5%G-sTMlClJjYyL1^>RD`FXO$mXC>=W5AHG~_uI-WJ?H0HDB7?^NRJ zi4Vxr?|9~fE2uR`qlVz<_y(|lh}qBmvSiS(+ARJ>xwGmzP7Nup2#O_W9+{*3@uJAJ z>RQlM-Ym(K_h94bc6W)L>~{_Oc_iaHKZRklc)(F)tx56`@)Lh)gQi@>W5hE^Iuz*4 z2&#Z!)5E0(SklAIEKdl`06Bxsl~P_y>}+l8Yij{L30^ZoY+=yOA2E*jRvTk{WBHKs zM^=3kW(3*xW;v9+Xz7sceW>Z->(0&Nd@02eN5Zj+MmdOT10zYJ1b<_u246*jr-IRq z`bU;_RHt+XO5p52`!iH)dp{rllWFba%1D>wK3Vf>Ap>r`Ot_pgvRy$63>`3T#lUwSL{U_Qa! zne2d40WCYo>|;P1xt|ba-ltx?AX^W=ch?%Xxc(t!Sb1qWxDaZxe?A2=$?YE1mo8#9 zH6V9jdiN+`@i2rH@a(wC35~!cNVe4M3!BGIz!$?cz{eHT(naX)iTr*5 ziO>-G1(&q4;K2B|2_Vyk{$~Sr89tP{{D~ZyH?F&X_G1TXlg@duFk9u`Dy}c^A4>Hy z|9bn5@9Z=t3>c{TnJf|F56BBqJZ|9v`RF3?uaE=heUe%`!1SYCR8T$fqEx=X|KE_p zvSB8kT!;fZt5_u9IHb;lV1}=ibresdX^ZK>k*IzZ*wv7u%W!|lQFr}CoYpsePD2i` zJ3gt2E54s%`G_{>hbae5{tl_gRFd>|dDf+EPghBPRWl=eLK+?4O*ildE9$rE#qvaDkfK*MuqOL59tm~ZG%hv^5rubiYgQkFxj}E2$b=hDhA&8u_I+05u zLF;sHhH3QL9W{X}w_Hrw%FhT=%z7<~zV%zfCxJZh-O2sL=S+$bE3ns=PtIpK$}h4t zU;iye)$RHnxPuXxFnnSd_ihE5S(2XZEWCzRdE*)qK-z`gJ=*Mn_iZt1!;=EG!nUD; zXZKTV5h)l;l?je&$Q5w@FMm$(H8RTclv81~MKMNWQ_#x2t6j*qf4RoRAxlK}X+T ztV!L!0G6cjQyl90QCT}$Q2{|XHW z-H8csm*TDwKgSpLv{+ux#=_oKfL&)rA3#+CJtWEU&N@_($WX#gF+7{A}r6lxmF_+WMC>;3$5&Ty=1&MW~{N|C-ne*>yW%D)C zXMX{qYU6mN)b#rP8pXaeb-#fyvVZlg*YohklhOBt+t|T_XR=g#CAHjwPz=7b;V;(v z*xpylaQ$~Zu_LL?M|=s-5&YxL<6kN7eL8)TDx1s%cbL&Vvj^)39FT<13aWf zs3o5j_`Dx}Nov8S!R_}Al@gIe`~ji)Yt$0}(=((B$L~8}p|OjljD5tNBQmae3r6#T z;|moRgm?$1b|VZa9tfk!TYlvWAZg|;`xnMb#BBx?+684=_fmsQy-86%z!*S2_=>>O zz?|b-QKaE1Zw;0`&BQ?>UROl?v9e2%25h$y*wZ}Y(KnFRN#wjxxQFjc(G9x|?kp6n zf~VNexMN7KFD)(*L9vaUgYtXFu@Pn{IPyce+IRIfNkl+u9>EJFu9Er^P>cYor}Vn? zM@`B})C?_cdC`j8)syfgkMpHk$zexVvv1i`IiK^jT1j_LR|>@NNrL7;{fGjzLe7ZO z*x;EMQ4yY^El@oD215$Tu871j+?@>SAFv^1Gjkqzpfl`8WAt7@qb!O2h=>V9VT4dT zCOU|jl5sJ0nJ18Nj1+G!Kq=!_-SmaHxR5ekxMX~MHnvR_UkU-}4#z~Sy@~c9PJozx zFg61;sfs^xVFPxOnN`#+baRYDIvdp$Qdki6btIpVav@aIy*|13ndJqE{3|3n!Az57 z^0J*=yz+jG6>zw4WS0t}3KR;pH8afm?+FP}ER23~l4x>Tt*kzBfMGcZjTYK40r=Y0 zMB>V?T0uuJ{m~2tzYvkJQKkk4^t9|`%)&u#Ygk`fMI~qfrQl`ONUk9G&{KRRXqrEU z;UpNUaQL=pem`2}d=6L$J@!UGN0^Wsn$Fcd+I>+8*jQ{^3wX-Jb>kMC?AgqLw13~cFWTNlwkiV@-{=H0ZvIx76&dmrwy4RnN|Uo~ zuR~EI4337%S`tws79}W)Ksz)p1D8#_oi>XlmApOJhwa%fQ`O4Ja_fZ_32^#+HuV1- z735Y?=n7E;D7JlXf4_b{13oV~ftDQ*%=UhdefBe#{Kb^C20hO4^#iTo;GHU z6;VNV)YGw#mw1ETawzg^E*}2v3lOTXwpfV*b-SxBUQ#^|X%Zk+f10+)ZD}B3=U=9< znbep(i(8oedMammFvL5VqwE;V#al~hBSNap^Y)3H&CAzp9IxP(OE77QPY5D=fMKox$HV7I@|TX{Q2+t{{k+g8W6ophXZtUoq8wr$(C?WAMd$ zUn&0E(4${r5n0?&1KA|Qj2*zXCx0yVCust_u_^X9v)2ZpZ`l#V)K{3($z{ZYVrOU% z;-Jsqx&0yF-liZg(;>HoY)sCovp%U4%hveUF*z6tKKIZ|&Tl@Hnv+rD| zBLr75dTte{z?h>8M|4K($jEEal~X4mX(~)ZzsVM-tL9wxB~gF8V|VDBFw%js0xt2q z$xVuy^LXRsW~ANP@{zUVV|5Bdvm?^CI%&5lr$~^Y{z53FZr)XD^$p|X3P^Y8x?j22 zM0v%we8kEo^AIL8X$zTq1r}J;(yYFDB(~CLZk|(Ux@U97 z8nb1(f4Fv}Y}8fyN+YeWaoPAX(`1+{_nOz)_O-*mnaisA) zmD)A1r+wUtriU0i%OaPfzrqTFK=KE6-F0CRU(w*%YqXVt)5-QvH6i6!#?pt1R972Y zsZ*AtxEo}UrUG%EKo-7EJo^f=E!&z+&N+5sd(m6E2Q{t+&Atp>AJMj`9Fg?1PpL=W;5{A{DSPRd{~7A#V)<{- z0m96ZA}2?S4ZwK-ZQfJb@bQH7;k*CxVN^@%li4ql_fi&z5CP~xXE$+Id!}jiEHcyoZ*Jxb&`=bUA(z6EHYB`w77wY;cM%(%sMt9?ugPh@MVdufs3;qhK zgCtX^)CO=y8>dGNqrMbRc^Dg-B{)YcDQe2`SaUJ&zM5~lW3brF>M6E*;PS!3Z>F&4 z-Xs4D0BpsLH|*lc2j-H2EO}t8y8-v86Bl&cgRxzj%x~o4=JNsTh18&~;{VC=gHXww z@AY__$9AHGQx%sWf()=gejj(2y4DmX&J;IhJLO}pjTlm>OP2}s2p|2&nVIAV0rMGj zaSNZRhTFqlj4A)nCpN%*iEkmd0`1LOY!!++1Q4zq1**(V|1pW@$LftjL5*une!0_xOJdFq}vjd=RCSh3GkChfsl?QizzNH}}z) z3xX7(L&NYSL$WpolyRsBDBhY!5{BVsLh*c{nHyIoRiW;ZOb)7fttb0d;H5ys6;BRE z0GuVHnNfeU!NfVkaRvn<=ql>}i$c9R2b&5Y%Is}1q)<T~LeCfbnV#V*`a=V+yJy$m z8LGa_2ZgH}T?8vP#4xQ)d3=og9sDowoNFHNPVY|R_OKFJCMHdn#n*ST3 zmqH#bnAJPD%Po!R>fnf-OJob+soddA-JrLSMJ?eg#fIFVV&C??T>4E%Q`#Qgj2uF`Pzv9SM>Uj7z~gt677E6l0aRjoS$ z46U4fgkuo8yXu9jgcyL|V=>=tw}?DKn%Bl9iNtO9@j+ryD|eGIV$Z3ZIU+_*$w#@- z4guG~PBZaFXCc(7QrQmhdr;WWhcrxG(Ca`-K}a3D0|PRc+PzUOn$)IuCBN=8UU(+( zm(R2lZTVl|$k9D`S#fcD82nIbEYXQtxj8YIhtxEg&q<|^6$1c5hDDj?YRae%uMdIO zlY==gRb{Jv@#OcwF-plhl`5H47^(W8kfTc6Ng+*5Vg zB+E$EZ$V)szN=g2p`5bxHk+WON+EYiC`X z%^^*b$JpTR?&E*~RsuWf*!a6q-G~eYk-5iSgsAo*``RoXK~5{lF`H9Fxx8l|8fdRn zX>a=@1yIoSVYyp2<=VQ34hj$Wcbkce%S0CG&4u_Z>?7^7tkXZ4pH+<2X zFz$8l6-|PX`}oHe97OEa9hBvR;rJn?^@*YZl0TtZ#V3ifbJ>INjsh0A)?PVDj74{q zzaX6CW(0J2joyn!JQQ*XIAa|tPCEuVizCdrsN>rkDPCFSfg=a&HQs@vu*M1PuNKSbG+ohX=Ct5wle z)11x@{!YEesl)!~4LAGTzgPZ)dh;!yG6DOp=9W3nx|iATomPmXxftgg=>0RlK{e9o zZ;mex2RLA6D2#Q_&QGfxaqq}P$9{K+6kh(@Qx55?-<-;yj@LEKFL_3r(RP1$SSHkR zi&g@t5TxIwQpaAPlPME@z3JYE@gusay8FoVNrnsrw9}G~qzK6JX?S^Ut@>wtG zNoAtys5{P3O0{`bxV>*n6Y><4lmW!e6CbiKo-k*hRt_C35bC*GWV|chb9;P25|Wpt z%r!#%2Uo-OA6yOj|I0R*IsWg3%1^fO*XF-1Yd3H<5kf;;g0;_lx0`;}>z!joHIK0% z>2|)cTm})IH&|)wSXzT+Yh9}p^l;ksqNWuYr?yElgM3G=Mpvn+6q!}E`a9XK2z7$~ zd>Dm2OV{jvgLTH0%v&vwPJ`sY!Alk!e~1gfh(!OSVE)8Z}6n#3J=@5)n!8 z@*!%tmATzW8W6B_IH$F=Rk}F6MBsv4eM#`T_!S&4dl@1KCm^&X==c^*z&h8pOlyD) z^yU&-ZZ)b1)Y&SYm$Cz! zV987%y+9Z);6nJp+(0|{i=|!2Qy{w=V)bp|U*4wRJi|aj#u~LSAxI=;vs?~z-OxZ~ zB*jR|{Xbwu1Yb6=N(Eo2KxGh0oJBx?i8N0o8j0{qEzEx4K_p3YEi861c)F-!9n`#k zB4 z=F%u(9^5`~iU3KEC8=Cm93QWy8lhH@pfxV#&BD*rsN*52MxK(jEQ`AuuPZPLWjms; z(9*^z%Q6HOZt7m=#Q~TG9S$J4uea7ApA&-JRhT49#i5K)>X->cT|gcQ=U@>l-x;lY z&MZm=)EtdS9o(1IZ;;`OZTR$M;VtZ4i3`FU!c&p-5W+7orW_^xUWZA(Y8aD9eNvjT z!C{Y=UAdY^25)MSYEx<@;L1p|QDBx8xh}GO%oOn~5?uuEg{Ib>fC(UU%*`{yvi7S9 z!kqB1y`HaDAD5N}W~di(FOVM=h-P>dUH$hJM|JD@D5nEvh`6~pfow2EF>zG2;S-kv z5S*K1fM4RU#6<&1pALZs7^bTz^j}Xgv*19zPTz}tozGRXwPOZYL{rE={R<~i4|)`Z(J$X}03YW&fche`JOsesIOgxy>+2oB=K&_v z8!foDu1K@5a;{xUI7tG??<~Uv#)tq(ucUdtJY|5As-*WspuC4sUKOQkFJmtJS+`z|cps1{z=0q8wFdj~P&MufDyxg@GgdE6*h4Y$Q9*Y1dw@0R)KX=9eY5 z!wm6dE|@aN2n+zOnl%k#%VYalx=w`DN(s;=v@k&XW8LJakK`sfG$%78z%9aQIs%dy zGAGLMHZnhmeEADb?hSt69$JETC}%XCnxbqK{^8%sg=f$nC6<|sk1aI(DXhd4rI$x% zJ(apj1?Oym$y&#DN7WhhFwS8ro^nrxW#iC4%Mq1Vnl?Z+ID_#%aIPl^4rQ+G6xwA% zSI~2Li#)Z58hJ#qlZ8&@>&w}yFUWezYOh$9)27h-uzq%7H|W{Ca+lgI^%fcJC6e4< zew%5j1AfIZmn!}fo=nhgP?J{p)4!Df$p@jxo zhD-{VeZ~M?gq{0Z?nyz}YIO>|A_A}4LzUa#?P(Znzb|BNkEsl$d;;cTnB+g>{~T4A zxLnosr+sx_OAyk+9@pXFruPzlW{# zW+`VLs)SOW>8H*8INL05SbL}ITYgx8_SuHkB*_8b-jPQYjmG_TJM2Ad#@K{C!Yo@* zNxZC_eYZZ%aVeM*priO#XVkHgnf`mGvrOu3OUp@st(D}FX+MLY26_mQ@1_1GqA{@y z;JxRYojj%0sV8pVsQlElsi|hN!MN@q*0v05@ ze3HSUo#4xbglX}7KuU&tYKd+^by3htJH`qakmBQ2bi=|=#Y*;r6N za;Jun#dCK%zZko6sDcj94XL>e|63(?sOl8(>tF$6SQvF}6Ij=C+>Ij~@4yzcG(FgI%W4YYA-Y0hc(~UAev;GvzlxAuhNQD z&b>FRPj=521>B_RLKgJ{CF_KSjcOZih5+XMOh?3&KJS$K{JJNoP?LQu%*(~{7N{0L zX9uHmlgcgS6f;!w-J{;~@pX!&#S=?|gR`89J!ylOG6!V%4dvb$ahsj|TrwbZVtGZ( zvof)zL9))nVW$y9oHjMv-N!99{@=n4z&mAqQ<>>-GG(=s;(Vg_PPbj)S2!QLK=|X( z`w+oWENK(IbyxL(#?xu@!(S^MYTq-%=sJpkmDFL@F&CfSQOmgn7wQj6E`bs~`Y}_& zlbueSsxF1~1t#PX9UsB1pmU1f6Ks@MAlxs2kkfV_Pa5CsPB%1+pQ2W$@zc~qpZaK- zN#Yd#LEDGWxL58sXrEAdiqbULe{&7C|Ku8EAV2v=JOw!J4>0U;x@@*jsuDnU#+BjwD{Tt{B|+@G2Tgt4(+*>-fE zbzdOxra-X%;N!RmR_oye5T+fmD)apDGx~T0TMaJ^0~uV*i4s=c{4*JvUr_FhdAR}s zL$Y?WS^FeMfeU)BhN#Z)zWqFoQo&=pHiIGw&hYU4FD7*|ApgXm?&GfTg8Nua{HO^7 z>{>)?)muz}R*i`Tf=Zn>k?LTb=8;@9236s(t+4)1jSLbC1CQnr0|WmGlJsf;7zo&CBK~gLCjii|>>H7-~Fusk7FFhMGLenBQ3F=W}S>~>zSu+XJk{sro zZcv0qAd-Ay5*(pJgbHF2ki_tRL>biSqjLpnSkbzTJ0{O5CT;4VdJ|H2Gt`^aQW_Js zupOjAIpw(s%hx0#7=8xDgHrv?gQ;EIxnlIIpM#Q#278jFP9iYhSdzG)!OArN!0nu6 zSojy(mz*EvykDrW!Agn*IWzKvs9#v~7)ezq*aewXiOy3S0dslbrolJRG`V!AHpK`E z170$(Q}owgXN+SQU4O07`@%dE|C#qF0!?pYy<@fzBg|moJ_`>`OeR`{Q(}F9LUHIi%t@A%@JbnR=Feut&uDhyP@d6k zil$?X0!1OgjRxgHl4pr0?+G@sx^m?xOr(X9YLSy}IYTZQ7qV|cfaQD8Cy285YvM-$ z4eNW~51%4b-ZLBw#0!`jSkd4%LF~gwMXwc}2TcDhR%FZPC1Px+Q~0F~z;X&8uYwD* zaS3NHxT6v>n5#FADyBrRC?NN{r}~GlZ5=l~E8cikJAKBfMr&D0wCbEC8w06}|9crG zmwB?ntLv+%c;UvCOSiJ$u%ZaG_`v1|9W2gXS(b8f$}?lVMEck`cbBVlAy#ZFUlAOq(ji2EB2Eg~9O_O75ksxX8~{Y=5yTp_ zxbGLTzW0Fp6q3uUs$cK%55gWP0c))pdV_TOs^u z&JRUT;a*jTlTUoYBa9amM2>ZfG}R~{BDugLD3*q_n-Tk}gSX#F3O_~#g0@W@zoOL$ zx9C$risoBGFN8!CHv9q4zKk_S*z}NKRSBs{`YKf6!`yp_WtB2ZHHR zcA^={Qw6(g;|!Als0v4k^yI2L6QrFb;FC|cdPeunu_M!%Lso)uE zRf_D)Lw=*DZDiM-2)p@)fMoFsn$Ree?4nn$>|LXsALK6tTs%o`rH)5DC6Z$A^%~Db zH*4>MW^^db2RP*p!&0K+XN&Q+3(7H`22 z?qg}FNpg?7iYLxtVpBQmWCUhLiG$sFQ}$;l85dcvpW^gmT_#n_nrJGyqdpngNmSd^ zxut`zx|_iQm^S8;(HW#>Fchs!V5c~&74QUsU4A=1jbokYlhO%746VV-`NF6l8!$GBup|0>D7{^5Uo%++cI81-%|R*9irt#z#+BGSqIj*F=Sj=Zzr4D%=DcWZ1J0^sgQ;Q1Xd zc$^b@$&;;u8EJ`1Dm~}1Kl)3YYf-)oPg zzo)H(zpnbjc;&Ft2+KuzARhHv2=V#}g0|E&U^kd8VQQe@>8U(3I1EdRyl}VskgA-D zI>)*(nL_6@61Pj_TW;(Ox@H}v-4G}``}GIqJqpMa-$b0{RypO7C}`?{Rab-p+4->m zKT?zJiWz(8#BPx~1yIFuMRl_4=aovX^fPs#%>isLu7he<4<;I#lv1>lu;XNF48tG< z4f(ne)CVQUj)2mm(qC>in>>1B95Y_Y5jyThdeaxL2N0nSHTGiysH??Fg^5BP9erGv z^STaTZNu^V)6Y2K=ows0sYJds5o;8HfBrPngYqH)U2{t7f7;y6A}3V8ggIm?=uq*ioRjV z*SMx^1w}BYT_T5`RF&KTw~r$mJtZmcFsdw+x!D%?Q=w(h6bV@bRy7Fxb9yxVjvbua z48QDRJid-M09~5`zRZ8K?>g)SeLbn$KlUz5@+TJT1wVkmdR);lc1mpkv30p8SnX5a zAeb|A38VoOgfHAY$&zCf?F#41P#rVxOTWyu3j}#T4j&8zIQGJ#tYx`?^^7_YF1T$> znJp|uE#<;sssRRz<6hY_128uyP}>)KWpdfQUQO(=U4m;Cj$fOpn8zLKuZ@4cP{QP- z<$Yd(*lb0F7iLl(CJ)#E-+1yD;yP~9f1FS7x?2CpcMplbz6|L%r*ACsAS`&Vw(np( z*GTzhY}v~^ddOkjTK9)F8RsvnIqVM-IyvXnG4Lg=oXZEH?X z_I>#NneHH={l+_Hz2h#CaMF;l3gmK$8nlIYqlrtIzdE-oMHW#5%Y zPgfKt{V_sJ3GM=d(eSeY9d!X3S_{@4vMANmg&)@&R_g>2hcDHqlsfj$s)(#859%Cu zI)y2;7LxASq81$k2)7ervK=ldCGmNRPgX!hJ3X|2_gO{gMR(-&vJVsCegAmuM{h3oc`4 z^RYWaRmr$)XJWUe?b3eFVJ3T4aeoVs){|L28qlCB1N||bJO1X_>ws*Nni`=Mc}}n{ zw+>&v_o3i5N1Z?))Arx7V5oD5P~}-HA5^>ONQSaavRp52!YBWc z>NZnoba|V+7O;zW&FBFg!|pc!u1n_mG1x@B>qe>=nd{uF<=1TrC`g4{OO0WeF1S{m z`#t0wuXm~doEECjOX96*Jjxq;l-qxwC-X{&D&r0)qgvGFoymWb4)rG)!=u;EE7=e$ zbqB4_*`D1~Ka%Q`>B`JD!*Fg5zQy$82OKfd?A(d8@cpgA4DdQ_jKw-j8ZV(eEK>UN zS8qq^IZ}=<-_$#qd{>^=SZ+tl&XI203dyx?x{Fo^+yYlw1-RafuIv72!d8OMj616| zEf~zp8J1g|{HHDWQbK#*jP*j*N|3d^%+f+?Rv-M#Fs6+o0U9|g^ghBZFORQyd+2+$ z@Own}Kq4Aevv)5(kBZrIx1cKqL|w+{Da+@bDEPx-F2tieg)|g|(SgC59TA$0WOfwG zi=6;~P7CSsgo&sM?nw~)?H$^8b;Ob4mZHbBBX#LYH{h!RdPAMwiVGsk5$+3{O3e{z1HAa)bcZkW zk*4qGF1pW|yUquLuh?*YXp4^X+?KO!bnh+WEXW5=r2&-TDpdzMOZZ(+3i>aiDfNjH z8PV@SgD7KKybP2@wdL&a_lb{8^VY`MO0)9NfynUAOz*)Q_>*e5L(!n|#y7}c*-o|; zM;~xB5LTv?+h7_}P$o{!l)Wf?JOB$9%m4ksTGG{t#p`hNovGP1!6QOp93p|ngW}Sd zkTk@4@<4qcx}IDI0g;MZ_P@VY5y$9|l5gm6D-0w83EF#b#yo#hs~gq7u2RzWkj$-= z8uvOz6C&`t>$~f%umnL=#5TDv%7wEWDJX?&_ok;#=v{zn1k^8E5@4J4F|*f>8%KHP zsL5Ls08?2o?;Ixu8oCFK8%?fcIx!zwEBTN8K{DATnK^F?$bA*CMI$CZQ^dB|KA zv?fHR4ikP1RjMqqY)a&1nGr4Kjdh7KgEvZ&ZjnozCKWo$DJDAb?|!yk7=D4W2xs79 zA&x2zCk=!;#&^b93d5xDhNJJUfK>5KzHZx3IQuD#VgyWE^h(2jOK~ ztbzLp6=&WCp@A=)s@3woi!DQDjfMJM+n54%3PQaBL((jSFVccE689$gN?fi%nCNmo z&OA_3VK&bEKK&yoge_wRg|sb-m=cv&97ZAMI)i%_tWD6Z}Q8!MYQhT6sAg)h5MZlPyGJiDmI0_Kpu-Zs@iw z-}QTCAGG(Qqj&{|UxPCRL)FY0BBQ)c`@Q-Mb_<>1pE<;;5NhGIc?yeHkK8Ov2JAh4JQ`N z7b+oUpfxiyIOwEVJSbq#9~fFpNsmkPJH~6C3?6kfQLh|lf)0Hm3lpRm^B7M;-CKvC@-IwyB#0{+A2$9Z#|bS# z9bgS(`wOBuy)(_e5V~>7b*hK80nEHosXq7qgVo_*{z2r0dJNy9)i8TM4^Ex!=`mlF zjkSa#J{BQp0$lblSt^!R!)*S#9B^L>=3i*bL2WU@33;2QAy|Ouz7IH^<)e|c%^*fH zq_()C-EkF9g1_(FFzhn7{q?{J`?GFj0swJl(z>G@(Ic!>bD|jG`-OPBP+30gW5$8BCvP)IrkPJ^K5xS*xnYG>?2!{6IuvRz&RX+55OxFpO!DU1T{^ zZs${r{ptDyq2ic-l5vF4KNT{nzl@-5#L+NP1b<7YgeVf7G#j?462r+k{8_mPRsop! z@5FJib5wU>HEVb+VCBngc-Yy5AWocN9)pHqqoVR+y&O*1cHD}U6Y1o$q@a%bVy;O2 z6zN&$*DOw?kP#ExWv|DB)JpfP7nu*Nb6`*M3Z2?SOvTQlc_U1_V}@u!TE9j`V{na$ z4#DI^`ypW`=`_H=ECy%YcDgy&kVl0Rbzy{n{MsRzxDyj>VT;7l%X6 zzZBmRYxSGw|9E%Yie{umt8d*By>66Gz@N_!pV^)b^uN9iY6uO!9%>K)falZGw^#6w ztEGyRp3d)&!*IWJA@K^qo{t%~L!I#*-;bAAM1`}Rg9*W|ckd#lYU`I!L4Z&97w47) zlF*KR*ISA(8x0YRj<8re3@zSOaafqMf;(l82J=79uAFNFG`!U=68zuCZq(hquEYSNzvOC}wx9 z4)&f?brudnF~*^LT-o5!6M&@qMsqj~TsKDm8Eh4y)1f5bo_*oQ90tG*@=@KtncbhOf<-_j zn|j-BG|UDyM>E4um=x2ANHOk#VO163&p-4c&%7tZynp0i%eRXy4Y-pBv&`?(&O}fC zjeE<{hB0Uoc`P6N;3Z;AY08I$5{zulRxM&CJOsbRTUV*m$IVLL-wfgsVOhNs6s6zS zwcSxPC_BKOtyotQ0=4i`G25=HtunNiy)RPI>YUp;+v=u^9oQ4Wlq6N>;OcUl4E}tH zzS4GC)=ex~VufzlMV6;(&pn z>?dJM{-s0}GW_-%+*S~isVA-1Hf8$!-LQ-ByHIPt4X|AEo{oA z$}X9;EUJkXRBUz%C}!h&=T?n8C-<1>H(6gCzgzpVhBmu-^*f`db3*nDEvR|g;N7&d zv}oBF8mNROnAu=Tru;3fqmC=*^bU41{Pn{u+wbI8oL0x?$raW4(L)~i#@<#3-CX(I z7L!%30}L?01B30>^K3!)@(f(2blZ}x)0P9FHVb~{v6o>Nrw?|C8gZl5w(;AhSzwzS*3En9_)C zqUKlB^ASMBzoqu8AGj7gH_f4L7_nV4uRnHv0K%1xwXUKg?HY!srt*CoV_MZV2t))K zfgiHLyv9Gj)t?q|n4Q^;ZL9~43$hM1reb~Yrf_^5HKTma5sv=&5hDy`U!S2bLXyBm z)=akJzs1|WtmuPDo9d}EZ*Y8LXxfuQ+AQCZu3EV024x$Z7oBO++N&(B(l0GyN%EF^ z0E*Rmus1afVyYN1XN;DAzM+<*p$NE)%*vnSEadOX=yY{$X;qbWp}*X>_CgwIeoByKj$rfr5@`ZPlAT zV15~K9hy6W&@xL{yIOtoaW-X=)O1nR4xq+$jf9`WeM%kxE!JH~1?Zk12e+jYF!C1t z0RODtv@j5Hi;iLx?G#EGo=v!r${CJpsg(^6!h~IbTAD2ex{r)v$LxAw4uBJUPc(!J zZl(4SE~Sqg!FzsJRzy&OE9|?9PgR{wip;eosrd) z`RMNhq|3aCN?=6IruX*{_O}MXCPU}Okr$@2Q^b~8H}NK&e09OIdV46yfR>-is68^B zaI#(C2`#vT7s$mAV&C3vc~n1OcZ30|JSHm=;VI1(#bDxc}sf;(4+=(Q3{zwZKYhiu-t%dPc#to&~Gvdp*%cLLUYT!#Ci`oG~ybgMM$%+u~EfdfAWZiMJBH<4S z!a0#vGvZ5Y#uq$LyL5#Mhz<29sTjzCghNk?01Q=2hF=NwU2!UI8#&9lB7CkVuAd7s zdZ|}|=&20rUyt?)BDM-pHR+IuaVgU99RwNL@aU&(m?&N~+ zc|br+F%mXZ56y0&^F7T(;Vp?ODQ_n(na07&6U^+=Ynp2P@ag$DKfdOpn37I6(g8;> zz)!`xdEBinLls;D1fE_lx7FS0Y(HU{IL}Avt~OB~Ts-bRl!5Mkp{M;r2y#gH6EK^} zC)r}ivZd(F4>r`RoAQN%$F$N-5T73K+n)9KF)kYdqJ7Bg4ifH#m+ACzwha&Kr2Hue z63#I8T_?2O?E~x?>(qoEj|nB+iJDWZI3c7FwQk>{#?H{0^J15$!V}|VyWQv?3|S0jP@|QXwB*R9P`ac^xZBe zURDvS+|n+$pgPNe^)mGM`W}Vb^$_<4s^&3wts$A=*+=-6NQBC0vkJ;_;ZRF&M`#XP z#{ITiT)9dQP>=9^VFYT7Y6BhCz4sMExq$l2U|MZVNeTSznX%sea(yr$@t3AzJ9qD`-`3scbU;^B3F>j zNT0txsO`k5TT0zXc82p#mNszFkgk!tpdfLALaL%=`0mOE3)Ite$#ye3|Z14oU z;l^IO`Febw68rt~;qaL+n|8GF{pwsq{pG4xWk~}{n0?Zp!ijylJ%4X6Yp#k-N0{e5 zco%Q4qMm}NBJe|`nbD#m?Dj^ZX;!QYmi7SXwuuyFYAPOf2GiK*m)^lt&@kGR-$@^A z=yP}gWG;hj4u`s17<;~N_6`EIIEaRY9sKw44m%G9h+Sl@xK&e1yG&Lgt`R(KTV5B?FQ+S_ z91flD9}vt+QZ#*$qA>C#LbeloLLsrK@c{8aMcY0l1_jZ*Q~qXr2}2mM`2P7Ebwrw+kO;TK01l zUh-%eZY801j}1D~ZFIM=*v*v}BP)YK_4pUWe2^HQTz{}FieHJ8pP<%&vsK*3iB)88 zQAfbilHm^!X{wRQlQtcY^J^Vwb-KeA#ZnJ>ICxXtn|L(o0hEx{?-a~o5gVrDt!=PvN@n*S8N(hp&lIUmUdkx#$>ynjF|yYFFr3rSqF$fg`IM9_y|+aTU&wgRcUv~ zUS0Kj&d@_nO%ZG%n+fqPAu8)3k~|4@*Em_>=c(NI(`qyO8h&AcDE^Oba3c=4TcpVfw*y-Gld%B4~KjunQ zc=>mICPNbsid2+|7>^GUA|)rFPeVt`~_O zy|yx$zN&#n+Q=?H?vy3rAlp4cxrf6GmQC$1NzQLbX-9`Twe#XJ^Uo7`2e3k6O7l8g6NA~Uqcm1Up z73DmLRyANp>b(1l=p5=7#YY&(C<`C}!PO@B)v#IOA(Tuu;UmwoBoV=B`sgqU<4Y&&e?;8h0~^9?DwXF3Ig=9~ecB-c7Z{VujBQe3 zJ2l|X4OX0y5R?RPM5yF23<4ao&D3ijUU0R0kgOs2ZxIN{1_1}hT!_ZTS&$&pj<7wP z2|n*$@Knfx{6OlH@n2*b3^V|3>{5;hAX|SV88NdkO!{Ih&Jm!z)LE5)2>f=saxOBq zT&4lP)I9=-!%T*IM+0x!~1W_2yK$)-VP{1QGIO znGd2xkktI(9Ax82aNj6PKe_Tgvs;@va&ob}O0kUoAG zjYTA}n1M0L1m>n?_yKd7(CY;(cvR31v+m@WA?+;nfNw|0UUG`D{IsHMt}92%emXY_ zaDktwe43u5RFHn#Tqd|<(j;MSF%kg=wh{|xuX)Ebn2u1UbQ+89ePe_~4F?Ir)beERpW%drUT#b6X>Ig6sU^>eO7-Qv zCJ+nIaZObWT%D_?zt_f8oU5yrD!-bomBt0lIB?^nD~U))wX{S+q2ng-%T#avlGU*_ z`C+%3c5rW$D*pkrQB{d28FwZJ)vm!!dEO$%a{@Nd#H{|TiwJd_(&|PQ<1o}iu&?W| zQCLf8*feb9W3{i^mIYPBlhL-ME@-hP>obu?BCXoC|*6 zAAT+{?)ZMcecrr0ZeX&FYoEo;f3+D{Nym1V+rO6<1S-n{gm{KHe~oWW@ZpHR z4x=WIUc6mwwuFKWJ@rh(-D(R}0~=NgkNjai=l<6}9j+S#abvbenXQoVVm{?9do%iE zu(4=lDY|${BN^|2Lkup1R;G$vE(xB z&InhzdEt#l^9qCgc*6R3mCtbvf6vnMaK7D{Q_`Z*%GPWJt#dn#evF<9m1eUV~(+;18bqB+4NlUeM!DnxO6;@0nh1{*JCil!?mHLO z8wZ@6Sz>};wKK>4JCUIep*~p^ygz2;KP zYb<23F)O+Zo*ADlAD`kOY$5h>@8fZtYX7C(BekK3pz0g9I}je!2-c%Xsd5f-EqbI; zSwUHUc(}mkzQ1lVP|!B`y3kcv3m<AtdXJdTDEQJl*>Xopd>72y>dwlaSwbSgC#muA(D<6156-PRd&IrJjHg3b3>BE+L z2X?gbR3kPLW;LnKQSJc8r=MiH8GJy0*XC-mV+(bZw;kE%KBTvnXWl!d+n1sz zcA9$IF_uY*YP&U!J@nLf7nUl2HnZ7c+q3~$P7S2@0;b!#Q#nDE z_Lt)=#7p%L+U?Ix9X-JIF#_S+dV>?Xk49{^du9k5NSz%hZ;^WG89Rhtz(h@0zefbt zV|)_dSJ%9B^}08I1n!QGCN>W|U&ScJyT1v&z143#&ixLwFzx2*-N*9k>4<$R2V%kB z_kl?MPEmiz|o+SH7i)KdfXP(6ojDDQRS^x0Z!E`?)C% z9mRVRXa9OpOT?{vg@vGJV-Q=Ds}CM4Fo8hi{t1EA^4`-{L54h0G4wlZxrZ|-PAmD}r$3ohGrc8UP*+Vs}M|8Vt} z(QO6GwlEqqGsPG)GutsUW6TsYGoxZ=W_HZXj4{hhF;h%3GxO6v`+IlXbBDCXlGY!o zyQ{kAtgfy(+KEQtIJsw!I}?8x z8kJsURY+LjrkZ@X7~qf2(@$9Ce}e|DyQ$(cB$qSu1c5{u%W>g9!3P}gad0wv^)T8& z4Xp(Du8MskhbF%bnVxd=y6GJqWbN~#P27Kc#(DaFk;#tdqcgluW?ny_;s}_Gu4j&R z+9m93fT!`6NKuMrW$IHU>e@>tjCPvWI$I_YUJggIA++V(%{gM9ZR)}xh7w$$gKpX6 zR{hRFl@*|F@yTHf7`d)upZ#-@FG+sy)?@ z1-I(IR@bu*Q&b|o@?KU%^M*VgkrS&-01EZH!=2e8q#2{}M=10OmXDlcAa|Lr^M@M@ zriH>yGL$R1s3Ux;BHLz1e~0BM9na0ZV( zeO_;CxxQ{GO;>L6%ax|l{BZ3rOeO;x1ylDmn?)h<9QG*ZX)P+6+GxEBotP^513;Xb zf6mY9Q}Id<`rL2=WO4VoO5^J2?!TI1YPas$Bgls&NMXg$NMZxJo4&b7rUQ?0xW$iLM89ONvz5umm0mOcU zV0hLF5?G-)-2OGo6iM3ZU(?Yltg;tA14KwT`3!+#7hMh_M(O&bk?;>?Ta5%98#Kck zSLktcv0cTjRuybeML2WknmX9LL6K&vp66eeyBA-O4LN_nxOh>;xf|dg$Y6jH3pZ4A zxXzJPhk6Ew7EWq#IW}}!H~5;jb_2KsK@BOqU@d+H2FPit?$X9zrp#gMBhJ~;ix(XE? z&^FIq`?c-%gh&#N2oNLM5Z zv`eZjnS_mM__O@|GY)A#p; zG*o&FK4#5_%g!E4_B*>xb??X{CK4e^HIklsYZmcf#%r}79OetZzdWxm3kQ529y*FL zdmn$^FKmB2ZiA8dOFUpSe_I&v+^hNNb#qu})ayIiw(Vzk2@b#YyYSn^yo zi~GGSq_Y_HfpfNaNVj&LP+!EJKqZbz#Jn5QZDDXr)JHffuU}m9 zy&?GQ@^PO!xdevVU@y=gUkXcK)>MsBhyfSIT5la3ihHVjH_HKkj5bA&^ZM4f*JeF# z=68gxDFS=l+pas#}1%2So`9{vTljQG280Djjx&z9qBU`l4I;8j16NSc z-xF!dvaVQ357Be&N0(TsJku9o)=+999(wducCE-CLnYYX#OPgBa^6Q( zhRE1v?Z`$@)@X!yqchHMCjOS42$4ySoRf`+iSq+!c|nlJbN1Jy3{TCrpr=qL*94q} z0*^>@;C?gW@B0oTq36ZyK@sa!RB%FO9jOwn(}E9NH^utc(JgrA%_j%wtW9~ES)yk? ze6*QKuR~P0q$P6lJXWOGSU98-lD^3#HzZbN**R7o;2-~xW15gb0g0}0WFOT>nv<=} z$NU8-Y1C8UBSb3%|J*??-u#kTGkWRPY`oHXu3j%tHOhU`0RE{WlD47OhEkBjs9F>k z%x^-{rmneGWe<2g!I7*GQWJ*@Q@Y`JNKE0g6V5nqrj9?h;R{bEe>_vG2O(G^l_qV~ zzo+3$+F*fNjv+(7W!k1tQjUiJq2!gs&cJ0265u$O=l;k;fq3u^aayyZb0O~C4T9HW zhY&u)U{7IyB-@~ichu$+74HzJiJ~8KQe%!q`)$rxEBmVz0Zf5)2ICA4g_m^%5MA8!g@RlCD_O?O3MM=vG=0xn4n~xz1%qGX-h)fkLxMXb%^u6tJNUTfh!C6Ol!|P z%jWn_g-kPLNO1}wsr{1WT3+$BTxhnrSTR||=o|Alqk$o`-f^#_Ue?Zm?;D7O)BZz` zwZ(Qk-0$N1wp3&_U@7a34t;2cU+5<8mKzrV?ruW%=+8<^8y zhLM}E<7XCe_Ly<{DF>^rcQ+AlR9!L`UzD@QYZ)_h%WcdOBjWw(s*95jr~>f1}SW^_nTt3{NU)`~Kf`t+ZGE*C&3q`mI07!ASsyJ?$~km(uajHn9g|WF2B|BDTURYw{>%@~)kY%BP12d(rmI z1L{*7mUfKc`2&P(!=DMx#`vo$??(BRVdiFhMf~3b%7DdndOaRlx?|5#3S47N`o3Nr zQo?E#vk!&!Svz+zm9Gtxwa)Lo4`unJKy2{zn-;ht06+OM`JLD_xnw=M@Z+0HZAnE( zXuPb7un^C)@I^e#QMzgY0}jN0vvbp<3K&QM?Eept28XJFDE||xc6dmJhJ}LGvA{xZ zM6$r3luC#d{OSviRR3uCJIbHrH8&3mN*l6ie6qPuEE#SODY0rTStDmklT<4#kVnQ4 zOQPcLr;tobd2MnZOClBF(KA5Ir;9zIV`)(nY$+*`scE!2Isw?vA>P3v+oy^dRzK)H zX~_hp6HrbhAbx-=Kw}$FdQ?Z*&Xw!dOCiQ$eo&rznkP;Q$Ih6a16eEo${`eR&5bxn zoXtRV;2RW9z3(jjvP@*ARk4$t{#Qt0s|(gQD8<2KWOAb)aj>>WLN3v0$56jWVqzQg zQLV?9FN1^~o(H^iwrg_Wp@|%y*?zgTmkhhG(M6W$Bxg{FmYT=;LN|*a>n=+QtEMJX z+8u2*EEkJRM<$lQPVx1~CIs3`0Iq`4=2z^G(1#YtF@CB9T_6Krh4u0mIW)u?xcj>r zDw!qsM4~{5qa=wFa<0a&_>f(Enl`j9aIj)Qx=K>Q|J(r6sd+pGF0uv`OdVk)qH^Qz zD6}Z3QGqShf^--ccKu!`ov>VN{8;Q15sOjqT+mlQ0y%p+Hdii*mg2lQUD6u5FSBL_ z11-p3WC|*n zS_p`ED2f4MVV&ym zvGK$UDQ3E0FM|9mur8KH+!JwuDk(-^a)DodOX;TAv`bm12-ebUNp@l4I*SM>Xb(YL zi!>cor4FkVz!Ek87(+U0&awKY&@{l zh(!lrg)Fh;_d>IihNml^!uG}?Vm*c&mg4gG*8V4KI0Zhl2eu}OJgTE!sb20vsS!f! zcm}hYK=G$wxTZAwAe+!1MC4o+PKPKvT1M7>mmj8`@@2^H!Q_V#Y&&y!#oj_wC$h%)7!o1Bsi=4d0Hm*8crhZ}%NhEUF`F{x)<3b%9x)S4zTEYWq6pjK*Q!r^DZLtdH3|oPK zAyMs@Ara3@o16@sifeG#I^g;3{PbJj=jkmE>Ojo%=R{fG=VjY}!qqdMS2LISeSSu5 z(A~G`V352w&<6OoI>gZT@pha4WTL*!B?|DP@5BO7H$y1DLC8J@HnX>rL$oc7z_`J;A{>YV{~9K& z??SntuxSyR0~RdFA`i;uJviAshjkBx&0r^uJ<_8?&QI~OjvM`n9OIV1Uh5Q1^AcVn}zU` zQcVZ@B9m}~d1)8Z*r8c38;=te?%*Je{ABUVPI zrX8GI=FbuVB)(uH|!>N*Q@tPvTmJecmwEwp_;|C z?(NogQ|ZH-)Z~_wy^Byg+J_=CoR^SCDKidbBNT&)C^lj@5WM&To)c-D37=nD54Q;u zH!_;{l)Tr)4S(%BK@H`3tMMo&;b8&vmUibN&g`^DPy4ZDu20(c2}u{+-=w6sS~0TP zf|hRT<3>pWraH8Mh9k8G?u5sEdHU|z))O>Z@l$TZ!|*ZbLlyWubwhdpFrNAb)@FIUzgl7&h*$lNKSzX~>W%J?o6IfO?ajv4H*+)wk4HHb zoUu$(z4e7Ind(C+Jnqk0x%))CTz4$O=16OIELQl#&MyUbxMvSDRYP%MRO7R|9!^ex zXVEB`aX*YTkI0D`LG3fYSDQV+uAeXA-|uQm2?2a#5}7OjT;kIZ7Sj3{wsIIT#Rlh+ z8~Z@Xpu?{t3S~+(WsgG++_r&wuV-fakKg4ahY`bjUCoAQG`DDcEF!rm$TMZxjt2z`MkZ3p8h@ zSY$cF%okq(pCGpngW+757!F9l|7D0RPa* z;sk%kA@IyeBEqr=PR;QbHrf!lOU#HbkB^M>6XHJlhpC&T-R(?~*S`*Od+dRpX#(PC3W45VZw|${cnAkm3j~*vgeD)t!z*4UR5_QR_+4JOgE24;n2ly2pFJEVja)Yj) z1UJRJ9&~H>kd;TXdt;}%z9VdG`?aNC@r-vXU3`FiA=qED>q6TP1>-s0;tWj7`?<*T zW3DP2PXvHxu#f-79(-*-Y0uXpKxNkeYa*`rI13(;yF{Axt!99Tr+vsvq-wlWxpa6M zA*mriwFhDzq&pahO1vO19nv!00*mxIE-r#-MpmKx$JiIe@;|KYk~Ex$Kf<$S$- zW0)35!v%?+*gZ`2u8uv#ntWESu#tC25lL5gK}l>V`__tpt!fSU0XoR(v{#KQ`tjEm z7WYt8AL+$_o_R^dTDn?Q<8~{ zQFc%R?=7zsxIsmnK6RdK!`=y;xg4(+c;*wCM?G7TpZ7{jobUopV^=*{Oko@79FO z;EDHc0AJG=m-#W)r=)ssi--2On(b)lt60wiOxDXU#+JV&ttRm>XR5&^#@C6h zKSgQ0M6Ex{nL|unj8>#r99k7lmmO5T>BKsI$uX!Mx6>#8}sxI4c?8)AkNz>bsljX~H^<14MM9 zXE+4<$+Bw}Pu^CQ&r6NeT;yVZFP+XuJ*_FpLlN1UTerk8Wvg1i7kOEu5D!!GY_1?e zbB@~w{$#NFI@oH5+*^oSB$308E$T6@f~^l{rmQiFNO;N#a_8u4ingGDZVI1rwJFGG zsYmtA0E?6g&K65-14m*Ce;crG1AhNzorlpGQD*~?AO39)yP)N^NS?SNWamn42Pr+zW8ToInnNWm4O_MO`xzO`K2?yLX|>oQlnV&P%c~bgtk>-qvyOL zwj(k2=ICrX`au%@g}%9dw9R^;{DhvZCAz(?;Q%_3AGBj)yssRqu1c(G%@>(zMy1GX9qE1)yCN6)mGxKfE{^tYV&=3Hm0B(=d)d(P-y~$NvjPlIU)dCv6B?E_ zd-sKZdIRy$Fr^gSX{z9Gs%WP8?`%98-;S-po6qVMub~YvFoG)HjDtH&Y0JM8B&~5K z&ZM$N39O&%SkXj@v>18YzslooJ=kLTWpXQDf*@2nzo-9Vxh-g&17)r!7i$+2Mw-?p zv&Q@+fVkSQ#)7Trbp~+hTj7?U$>M#fQnu zuXk@A!2CRC8fQYN)fi!-tieh?D&^0-plzX$RbNZIHzuP@2m>JM_uG=)7JHv*r$zvR9;|Hj?+0<07Md@JLC z7yj}a3fQ}wtq6D?)ciZBMlApNvJHqgH>`MTT%t$75;QIB4@KyKvo28z&Jf&6me7># zZk5X@NQv|@hU7r^|3ZE#vs?0y8i7XPOR+*T2UbD_)D?t`ya@eN@Q=4de%;Er-U=ui zbm6=EfG?HbL@+qJX3nYCGkcO*cz6uSeeBpY``+YvQzCr~Qj~sXA1(U$B4O!Y`Yl!BYv))JLYXw3VVv4D zQT#Ckd@q0sAzcx38vL{aheevs@&r8tF7YOhGEt8&nnY0?ou#axnADy`A~~tSJp=C8 zoIB3wFIi#%PSBsWT`!cZ%|nmm^U2ccYt)K6pP@FCpMq_VM9oNvqL90BW44J8!Q+#Cm)YX6mfGAyVJy#%X>!4F z2ndD{KGFE3*kC*1kw6s-nk5ZFL#)DpRt<*#E>#n(*Y9qTX_j};())V90OoJcFYoJX zv~7W9K6YI(=LL|66@{gus1>}$y9rTXt<383ZwcZ?L@#UfQBC{as^W)uQX5fO!Ta5^ z7ihr@2(^^$N&n=6{_|mfF@Yz}=WhZ)3rgqzdUe3v=+^6VCOpp660E#f!l3}ax0V^a z`PBQPRrtu@#8RI%6gaA>(usZgd?GDIuu7COVL7C zFOF?_`MWRJ+sOcKb{MKlZVBrhpo=kiMR24sNyvogrL(p=(GqqzSB-9$cF?!0u6uga zwApVt(oE{)l36h~!R@`NlDv)Z(zrW7avi#l+B0) z!3HEA_0vB}RhYyrxUwbhpMr3Q;}`1IMP3wRjeVv4OzD6hrQk?96uS3>gQ`#xi3W)V z*>DTx{i`YIWu2Xn=fC>=_&|;5^|-`}7kjE{m{Oiym)fC&BFw|`PcPdfeePX2!Z~k> zOa<0DZg{wOg7gVr1gXMAnz^sZK+d4#*zUNen?{lve?*zB$l}0pDkj}#{T~_7=vo1FlzoIPSkGe&9+P4MWTj?qN!e!6!02ZP?EE~BImd8|r0LT)N6 ztZ;C*64l8AM4wy!Gm_oo0c3ENkjzb1Phj~epF=I(c^s}J77 zlxG~vb2hJ>0|q^zf*fTrH(5dAO)*7d!+x)7GfCn8eXJe<6_*El5~)7%@wZPd%qUBp zdky5Ra=BDZQidT9KF0JNfBwCtUBecCQ@~XGZdi0w*w}5=4e5C8siKoDk5fk(dv^x}U>yk@y1YNJ!AQraa(&15 zb@(e!|N8Va^O@jF_6j8+h*WV2zglE*AuA&jAh|Zv&kVzk9`J?zHS-{v5;NAA4o*?N z*_&#u8u149C$-td z3W=KP)YIFLauX(Xb5Q7h@=3UCi>T&N%}zlcdZjWC9_+nA!W>I80TpdETK(K;{Lifb zmqhN}XRk;GXHN#;jj29+nS%~!6n0F?8>nI@ybcbF)rY`6oRzAzt7 z%uqN>M}Yxri%@yB{Xr&hC714v?Gdx+KLS_B+yQUN;}Qq1Y1|i7A!r9>L-xJ!TO3)o z|B?(trejVQz21h6<(57j$FT#Xr2tbNWt*=K-#Zagmc>_DP)R?!@5(Sb)x%?uC6%Ocmo z^!DVnzE*A@_haoH=%4Z-e-xH_?nE~28w-mhVQiYCKumPjWi0AH z?cCF3Zy%$Jf$@v2)^8uXr`h<@O**{HQZ;t;0Q=~9Pf7oqIk$~Z3yaQUKof9z5wM+W zzP_XV!PH46V0gE)=Zrf8$pkJHNsA9B2T~C;gDjDV0{O|4O*fNIE4YtGaiq^?`QtYm ze@hwhn;>h{!&qIw17cc}Nf#f5%A9A5jFZ~Jjpy?0crn#pI)wwc)zt4W~l%+G~DTP=nvFHfo!Z)ShHD#1^cctRvGg|OnIvhjN z3~(%FdXnhSDs2VQs*bP$Sh^>=|ul9pg;OyfUy+k!|y|0=1b)1MDEUBw+lLX zp6T@*6y%OJCMn0;JYkUHXE?1(owdHUaFP#WL#GYaObDemuD1$8rm)C}&Npr7_B0SK zAGkuMaLUj;Tmwumw_1lA>|B1sL=jC75*T}|40~jPJ+6IfDhh2U| z3ATb^M)oiGNHAHmk3_h$acdUSH(wP0@OR&)3TLjqI-C6dZ92m_&8#ptpj+Rxs639(N1#Eu-3WO z@W%V=#oxq?40DM@M9ZS?#yTsas3bEo0(LQ5J`ALV0}0s3ll;w{gw2ziwuGuKf9(yX zi6#okhQcrVzcvJEL#NdD*Jhtd;kXs`jyTUnX1&wMX&|gOZBU0WIAG63*Rb4SvoL2d z+$3Nnu2ppsf)e^ArF-Mg^i;kCF^iaQK!}bSB!trvg~ajlBdTN~5ldeZea4(_F(uUU zi;PZq-4QK`)(}4E*Sn;-;J4|Dx5%7M>WR)M62BO0RJ_7vnRM>`j}wFUzsSa*sR7)) z|BJL6q#D=~h<=s2e8=(4R150*ZiEm~P=#x~kd`rfI>oO`R@---2L<36Zh72W5;!|;1v-A)d$`f{Y@1Pz9VUdx#R+WOxo_D#-smysNxt8q3OKHNKUr#6Z&^PBb?BBbR83qz5j-{sT0Z|2P&z=| zt`aPNu@Rt59pnmmivh1nRxD~2$&f@<#h4hWbk$#Glmq>&!BVK>7$d>1hKnD0lsF9BJ(PUHKNzYjZbKEGh;n=K#s~-# z;(e=Sp&Vd|_{#>G+|gps8>}mqM(s;717Dd=PkgcAM(EZk^!TW88W+y+MFp={(nmnZ@RG>Bo%;@>wlYb@`TMPD|*;t03wr~+_hxdUoqBVCCD&C zrBe_Dwr>)F$tvwMxucQZ=j<@s%9S_s=cEi)`eLceCgm<5z{)0TsKK?SY{KatB@!x^ zAFm|Ss>{Lzal5q56g%C~!>>&+^2y!E-%j|O;dXD>R_6=AZZm~C-pH*puLiIIxKv}( z@PA74J5<_rFk0GC_9q_Y zxZkHvl#s-jFDY-p*X@jHC3D=2EYx5Z4%I#fl|=wsK36q@>IWO18v>k_jVvB1#}>#{ z@MVGfdqw}3K3vMW`epvj-#ec%tsb<_}DPAr?mjP3z_&@T~h z(!pX#^COwxC&+@de={3Me6)DkP}~Qh-9xb!RCsh0W|K3@!t#drCI=Doc=cjsW#R@Y zDH(oZBGQzyAwaR~Be@WO50LLT%;k#$VBhiYESGj%ZkY^gpBsw--`Dhe^3$p8T(k$x zP5Gq(6GEtam^fQTW;8F^|7V!lv~Z}>Gx`}Y0XFL*=-`P8`#%#^$-Cm8ubAJhQ4|SJ z_93vX&k0Oqfe(^fy{*&I%;fbuN0ye;(^i}Y)oE28o}3GZzpIv?t+=~d@o#>AM{(zN z^zO2yDdC!`6^a`9^f9_mKHjZ30cgG2l?vnaOOz)rQ3IK$h>m`iWyC!1YriZy+u-VJ(VgG4Q}WCKD&pSwCBVsv3c+W7;Qk=RwYm{hfk#Zp z4CXb#09v^usOs1v5-F0LKo)gCgk}MPu$!eAq3kg@+(-IVP<@uMI}0E~ggT&tg2N35 z;GrMU1M*Y@p++ak-KN-@;8DpeaCg47lkq-f48581hapJK-o+wzf--1$P|NqEu(0-z zk{$2dvwaPi16G$0JGnheK=*Uq?}fiF8$Xu5 z&>esrXsWu*pFNrr2SrhjP=-YDff_@^32p>0F}QJ5`$HEII+U5)sQ$0VqKZdBKW+u5;(MlDG9Sn?x4_jFt|Y=T^aE z=y#?^-Wa`7 zA7t4&KET``uAQw6{x^ZIY66!!KW}X7LxWzc%`jE?wHR}g@)H}SjS+~pLE;^Z?sqtv z|9E~ox&z(_O@0Pz-j8g)xok-z$W+rl`L)4c@0)0Ct)pg(X~E8?KtPLU*?jj5U)9V4 zFbKu^<|`GdcZRJ}vAip->iG`By2Fu8uzz+$RANb)*mj7Fy2mo2geQu2ev=vjC&phE zCCt~RJ{>q98!?7m8GDa?Win)#4{N^D?M>u1tjfUlrjnn}Y9^;DX0jIbp&B+kJx2S@ z;!$bC=xg^_v|i}xz}wx2wY}5;CAYVSxK`a@nwAf!AdgPRV5Y``;s%?i>K4p@2pHG@ zCScpPyCT@3U;+kem{8*swkQpP*JOZS-z;gJUCxMcD4-@g5&wKu1btr*$I*QyblN{yo?*`T(Y<~q%(CpX#WlLbh>K-f zI@s{yaxOfzS!si|v;K6ZWfa=$paic=>nQPgm%~+0rB_ACHwq zj32rIILdC6B*GL7feG_$@?ks1lI!_aEOi)aU{-pO1rCL6HPPvdnyFt?QksQK1~+KDa#8gA+pPp&T)y_Z*VE?V?Q;bCbUNKMbBHraiSSL7_p&5L;Po*$d;d(BwIA>)Onz1{8_ z)-EP`PN^GS4#G#-x-T)AbbW_rA5X0$<+jon?*&!^F5`l=>nO-H9bNZt_v?0R zt-^zQjMf5PmR_cFhc-uB5t$aviTdmu!H|u1M!X%`VQO~mR-0#O`NFKoT>#LbeFT_#vS9R(?$r|*nekdTb(B*Cr0&KDnw08aQ+vP{enlfKH*&(erSRLDlqA*tY7 zIUt81>%gvoGbE^w)Je^jDb3R3NrQz@d?da}3k7~n&V!Xu#x(ev%v``2=8jOfiWOl& z8QO~?Qxp$9gKRtVuR@m76gDeSr62h<;df9Lv~A=WV%{n$w6bDQ+0YjK52rkIS|l?W zZ5HvU7KUmvb6D*%VC_HauUK5_yjTRxVbFM?9KUx=WPr>KXauWN9_k$5mkJUMjMJ5- z7})q=luyrxvTlszGx9@xGe#nj(=*!KJEkWn+eFzXjQSN%*a}MzJ7j`(@ zS%2$ZH*#hJOT3kd-Fdz?^649lDrXPoXQz9&f4sQ+JRM#<3Uiljek_~<_WU*gYdO7u zHv!?k&lMtJA-}N=+%`E`<7t@dbj?m)z)SfH#l~_JFsrtlpCM@e(UExn3li3 zL(L-Grgi(#KzN90vz-TM-R6>Nu_r@`oY-WE=?AIEM1?Act$F>4sTeD?VAB1BXn+df9iiNqAC~pv2{UQiA9MG{ zETmP>lbA~ivf3y0ptk0UXr!hq4dsLnkd?$v;F85po#SKxRvZChNzXz!3wDtXR4g{1 z3N!5eR5{h1%=FAx%_Pki&oapw+(D~NW+h4($79>wT@u=v)$HHs=Ow|S7KpCZcJD2% zFS}$F1f5nPTSfrFs^XO~f9SY-3|<{70!$4mix!T;ZGx$CHLj{LJr_kN3KS=Gicoh4 zHkIT;6xgFTtKY9HFbW9E-z&?Rn{65++i`NKYrv7o-=N}HLydWzpyA_xsSp_iRIqN} zM&VHyUWRK1e(5l6X)>4^bP({9OyE;kA`{1kmj95JjEw?(hs7ja6UZJ{m>m+qG|OfS zmwJol)k}1gRil#wi6UZ)bXfmWYA6l-PQ?;?sbB?b3V96va;67t-jeRk)d#!bm1S^;_IYG zu+s(|<+L|frvK+1C0JvkjL)Ew`n~cwRHX|G&N<-=KKjX;E%;i9bj3GC$TM#t?;&p@ z-=`w$wbRG<(EdHL$6lAf{)KdU?_lTln@*` zjky=`VrR05C{Hv1zNC#qRjO2QD8F7njU@*0dt3+Zs=4a=h#G-vJfCgNm(j~Olg`Llh97@obW`CkPt#2neexJKHDy_ zn0}11A^lJibX6||%dV9GtQ;n-_?V4zx?pyUrZaWNds*o@@qcJAVgPQr0DBIAm6W37 zmC(+Tn{_0L`OinMlcTeiLP|X|Y>(bb)ibW_{`zz^yDyh4Fw@71^>5jl&I~+`b+>qD z&rokS?>+v)B^oD!tfD^9d$vTeE-+GfO2v=e*Xc`p#3~K_42`oN9Mgs_5v+;wn)U{`tB?HdbZb! z$DXQiXN%Ul^?G)bmlw-JfH@$yR9Vo9BbpWHddVEr>2Y>vZlh~Y=(^NTt>3F}S9vf2 zW#9RE#y;GzSMhFDy-sqTc5a*@)loK(3_T2Bvty$TjBO5Og6NN??3ZtZNzF@>RG#5Y z52DY3qQU^vggGkN0cuf1?s~4V}xROC>$OfdpB@+v%L=7m(&Dz-_U)3px*HRR?)K9u69&$EBB=nBV70G(>aiOH+Gj9#akMgIKp0K}{DC zp`+)oqoAwK&GY7YXU>|Jm$mWZYn724E;p&O9peb9JV2GnXZ!tMjg#tC8yr^L59Fn` zEuj^&%_FRy7)zs8vh_-&Y@*wq@2lIf9ct2*mZ}Nn)67!NYCLWnEtGmyNHA4aUhJ*( z;WS7xT%UJlfz1m#A4?wK6`D*S$}1-}Wl{ve>YO$=kb72u%&`?VbyiKf37Qkmx!oz@ z7ii2E(I&xDhgXh5S{C9aPkt6MCAd2}o>9b+)Qh^@heVt~w1NU7&`)}n_k-C9i^$ux z-RUp60F&rZ?x1CWwJ&7Yo#62g>xAaA4dLS8iW6DyvEwiL^2TH@>`^UN#^_0eIg2J=#o~(+C}jhYEIe;` zvdgJey??(1E5XlsJ}$UT?Y)+$Vx`uNuFYrv9K8VOQsFxh4V<|z!XHoHcNkbkt24pD zcq@G=v`EgY(b>5g(TGQ@eYEB!Ad}{GGe7-)UU-i}lY(oahHc1<0Ls|qwH=>T;Ugd0 zt3d=-)gT5XefkQA)&%_Q``dn8yivNxD~~8`jdQerOowtubVQ{Ba`%LJ3`PRwA?d}e z`n_P?`9V%sCwQT0Gn}`+Jwv6S`BeVbF42bmW0xxo6o3@=!8HfP7bqgVG30x=I9Fg_ z{&^S)b-jr4<(LmWfrptC3~g@@4ioIxltdDm@4kVvd*#T#eG}wDTE=y(E@b9%I=Y-< zRo>h-X}awCrg^G5ytfL-MXl*u^ZUn;TnMUY?~feb^MjCx zMuvt->3F#AIt+YCSEDvte`ItkLPABA)1W#;X*5Jk$tl0#JqurEA`I*TC-F`LL()(7 zbn^^_qXAAR`Mf<83!ZoSam6X1we_d-ilXg9}_Ke_f>hHSoT@Geui_l&_ z?epWy96?6we+?#o6igAh{+B4Nfl7ZAxI?=S8MeT2h8Pd~N74ZkI{5W-HCr^_=&=Qq zzm!8>SC`8Y$Hw0%Sy?y+%?b+z(&YFfdTT&9{8lBHxNw5HakD>Za3ZnLle%z1vmYlD z%6U0%hkZiIt678>-|uhz76sLhAEGv&etPI_1C*{wp#Oh_y=7D!OY=C4yA#}97l*|O z1oz;2PZB-Q9!zx%WO_e(#re&YnGIrlz~Ad#X#itGXJIpLhsD z%=-6gf53(Nm+GKuOG4yp)52TQE&3s>ZANYASA1qthtFs&>G??*<82f-3`yfndb&+R zvH%6&%d7K~pPC?xF8q{BNl`fxbn#nauKoqAJ+V&1nKAAE!#BAD)-4y3MB|n;QzPc# zR$s7uv!KECm$KGlT^uSMj<5jtvX?q9hE2G-79h|GB#9q7O@^8C(F0yJ`ZZ&F zY71>bo>pV<#Tzg0ZW&xZi^y zsmtY+vT+wllFu#~^o$G(}M^RCl+8EAEqE!;H z-#R8S@9X;;P<>&YFT(@xY9nhkxq#b1&n=o2Vw6hjPp*#r#!E9GR7)jTtL&B0_jP{ zUlM0;K0G^UEFvV{4OB6~->d2m0bPx=3h>s15Fs0?Zvi!)T5ThsssXwt&w8xNX-zG? z>){Kv0(PL?S9A_o2LtbjNW6(7pIfhIzN6= z38GZKe%he0iG=0g0yrbUB;2(EldM$QTnHG$$J$SZm{hAP{VUHY@tY zL$%m8DD3TrojF5@?OLC=WE2gsm9)6sseGZgnn=B);93okVrIM+h_`|k4B(uh@(%_^ z+Ml}AFf;^y-rIdfIC*Wc4=@n%40kqisk1}*edp)R@34ac1v~ij?Nligz-k?3JUCqV-DAPN)3Jb@Pu8&Jrb8zMEC=qC->2%|K_aXuX>}OKsRf z@${)vBS|=Op50nbHtYHiL&2yZ#a9bO%k+XQmEu)Pi`%iM{5Q$_VUkAG3CXM9^EYv> zXKsL6P&N4Rw3#qvZ7*9yX(1Kd{Y;Jx2G0Dm@bv!`(xU$e>Cg`s06qtXs44q1iI7T4 z1Y6x>mK9rhNutSrxXQ+Y_|g}6tVh}#(xi`2uCFr26fYd#xvlcBKVOPOQ!LO4II)V4Zk30-X8*%)$9iYN}Xqly|QSjy~l{#+Z@%rWFv~376r}-500R` zce^c2=g0i8ZQdpvgea~sD>Rl%KZJA_qz}P=% zn1rC%IKdMQ%={ouHlF{p_FJjxtA?#fnvKDMP4P38T|c8ceQ~Cth%$Fp)83XzgNaf@ zToW^eeCsPkpddo7l^0zL3|2xh27)vehA1hcu=146oX&HN>`A%)TI;e&W#yW{?JrBu zeEr{+E3dYmZOt}IzYnQ$HBh`XWGOcPY%h(^5 zY8`f9goSmqxmU$#R92s5&W)ro6cXA?RED>4hOTGD z(;2_wR%!uetUuYrFw0a<7uiAunN1Bb5T+XxtyAv=%zal2)hm#WKT1YKYLL&UhzIDj zQ0g=)7tIb+s_-x-6NcIytEI~qD1-haHZ0$21_d{?7Lup%Gw>!56(B153rb_3J~OV4sTPzn;=?r})-1tFKo$v5gTE|{(Ajgt2t0$Z-iqG|RmQ~H{415eo4 z8aN!p49Xl_WbC_4D)Z2LEJ3i7-*Z0Cz|7lsnI-?MgtO6+(fUyhfw$L+AU}ozRihZx zxT%cr&WwTgyUC)58;i!f3j z&+EU-sI!?7DO<9>4z6VB!ZP`19sGt{5x&h)pDRApuubT-_h{b z_V6>VqwfGmrDY}Vtg`muT$eWFrsK^U`6uPd3^54w$Uda%>Y>sK3u4(90S}NPK zJf$fsx!Ow)E#|0U~@?cdn)Mib&0> zJPr&EL{0sQb9XnkvzYcX=-H+5y9}oEV`8J>)bANB>H-I0zH5SqAk+a~quk!(&A7*I z5-gHfF|Hr5hula{J4Es;0{Dx58IO&O?r=Nb1l%7{z8rtzham)Ap^e-_bNS(hv({IO zPAssa2}0Yz6!;HIzL;nmP;xHIQWM_vShXjT^!3wIOh7Iy1(LkUTrBXwAde?nE;3AN znlQ1jGP2>|WgKb~INI(d`~5=h7+N$Y5+!xk`u6&q;yI-i5-uD!kcWtF5af5bf?i8& z!H`KV`ox>5;am>tmUtZtqb*A2*p|2aTiLD4R))y|2Cu2`jobxn2wVt&+9YE|#wEMl zu?__uejnuXl&BMMeVlM@TC@6^waT! znOZ-{2fBf`?Y+)!z^oy?QmwttC639qm|uWO#CTsS+XrUDA6iCo6o7bU!Rc}cB?r)kB zm~fg?tw4N`KNJ}Ky37cbtg&k^QB^Ca2rs2&sG5x z?FfGnYI`=4!W{gq-{%93@PLq@TA5MC4=eAB@6v;G?<?&Pr*Bq1R@Q%TexaKS_%}9QPTK|8nJRg144sx zlxvfv;cEl433cLpF$CT|Qmc1U(Dk0P(ilx`_``%<{|b_|3GdgjG&LHE&{F32A$X@D zLOTYP>s_5oDMxK(teUttPdH=z6+IPPJ#68-TE}1N?QWJtT^>b=CO?M&djQu8q8o~o z>-I*lcsO$os@%ktSs5%&knwNOd7suybIFj~_7Ep4gY^>6y9Z@hmf-#p;L8ZUJnk;l zHI!3X*Pnq1=>x7rlITQCiQaVAJNNlt-bX+wN!AZ{0x>yUJvV^1j+2^Q{+yVw1)9mg zHr5czYH-jL4A<6p{WG`~K8|Pl0_)GE-YCad*)K(I``)IERy*IKSipUB^cWw39Q-bD zYsQJ$5BKL(T}SGuiacVBw1~|_G0-!(_jNjH)5(_X%+9G5zVu<$wmwDP6eX=if)O~FxoY*w5f$ag z6Hn5w97nJFGtY%=W3L* zT5J6^mJt@pWyLexwpcmE$>KKlw!>Wh4p>?`DoJ;Gx|;(% zp^J5LvVcHYYV)o{Ri)0$S0rBe0hz6`FHS5ANdAYzBwZ@B4LG{8jpK;O5qX+Q^TU&> z(?<<|9@3&E^Jf-%%S&9!`|llHdzc-j6|E9b_PU*!a^u7DJ@+$#$~65yDXBnga|dh> zbUEU#%9)=kze~9CnfV>I`6-#Q{Q5C$TV>eh86x~Qm%v1sde34{+C8tS`%4+wM2g;$ ze<(3JXxqnFx0T7^CkJnN1kV>?#nyz|2kBjY$YuJ2;yAx(a^yQ+0^tp{x&AKeKBtSb z2`1()Jw?1^I~G|mV+N`K5s@t@vmRev!@TDRwWca?VG6zO`RS5^nkM+-e0)QcuAz7Z zR}*>0?#6Zl+z2FjA-uK|EyZokbrYa3DErnB_>^D;G2a%%tRFzp&cr>}7%66&geyh# z*~OEiPPd`>(&!EGON=wvV6mo1vN&;|bRmqzV8!213e1%T_^ji=2q_5~hWK7bush)% zye(Tr#5FfFf7Yeaq>8^Hgm7FMKB%a_RUwqr{(9tqb`1-Btgs28vzC;AA+#;41+(!B z;`AdCdujK^)^V$g>Gqo|%XORiVIh4gq?4Ddn-WlgUR-QKznz_ghC#6k?D>M%e0;(S zCAY>VcJa{bodx|@;7>T{5{a13TM17ggkcXcsw>Nf(4$Mnfh!W5JH4WJOf~6e2!5zf z(90>)Y%J9q&DoVJi6!f_$tAY8b&nv-g)*vi67YG?&C=Y zav=fwv&Jlit?V%qMS4He3wWOjFi?vLAN--vyWNhSga53pYP;qD(oEG)afGsr6+fBjehUuMbVA!sc=9pWz^K5#_8PKG zBc+y0mYvJ6b71hHZjF!~z1Gor(fHnDob)cobc>S~`GpLqNgwU{$ z!5M4COz0V^%T_JybGdd)IvbNJYXMx1?{^rxb#TTglm@B+fmN@JsZ^O-%W&U@?)sdo zoy92Ph|rcB2RQ#c`BL>~b1w0wVkzt^YAotaFr0)KT3{1tz^kX=DDa-`kW^yDKvEhu zO?VsnmWEQ*Rg$&MPV3TP@ntsPW;BeNFf^q^4gAs_jC&EiRss#`gZ?oiK7m;`KFkLB z8~`SEywRpSZ_OlgjIjhnFD3+qIn3{WU-`$E{~vpzsTr9$ixxcfgOL{O%fYMw#m@fE zbAcvUPUZl7Fs2{*e-(jS<(TQ9*t!2JL?X}JP6o;TZ!|!v9WxM$o$o(@s~vMBDkKN^ zA7{M}04A8zhnW_N<3HP_DaD5w5&Z*7fkjLUR`@^#1PC1v5`F3qo=I4~4=>W-?!Jw+9I=_!}w=I`~lzumZ*Pzp+490Bn(b zoMXQ=jZXu{wFQVmasLm2BwN5WD%dy}miFIXwRr<*p}7CoKB*6&3mV*`hD8U44FIq} zasN9O0!>Z<0ADCbo`1%I7F-+$KnGI<0*Ik_IGa9ts{;>CI3lA3cSZnspm_dk9~{98 zhu-u#5)cOcQS1W=TJTvkfE5b(KP0qb0Q69hz<)f{{;iM+3dsH6$f3sr{NX+z|3qi} zQ{^Y{Kq`O|3i!XTLJbB$AwYf{)BlePmr zpaNrBGSNWs@qxSbFo-{Py#7zL$C$pgD={$fwWBk?BZdTI%K3EDF-(FH|*rE!GuB677@6b*l=gB zMkbBHvDr%7MnQz~D!6gnIgj0cztLIkq8M6>G=q|#7*W^hgk`?4!NCUOYU}J#Ad!4Z zbf(whq;@k+RQ-Ym=Uzcr|4U^BRflQb#Ymja`EU|}jm)4Urqejg?q4M32 zi6oG8y|tSWYm6n|Y&V^xVtzJ9fj$piO9Oo##s%W4(w$t%T(`Igz1}@C8M+b)ry!(J zbl07krt#aB{p~JI{)U+qApRFa9jsPedJSku1~qoz3qxLVDQcXh&MERhRvs2-{eH!t z3{Kg|Ro||m!0+mlKW_N(AhVQqKV|*ilu%2ibTYSw#pC3IMbpdwHrqZ@Vp6IKHa1Lt z*;LOp_`Gh*1i0OdN%VmL#D`$zXe(9bQC)-}IS6r^?WI5TFzCRbLBops+91#fJRX8V zX9OS37NKk&WG3Ur{Uyx>dsmq8KepAfzC%|!g)(*{$Sx*e4jHE#QLRkpYV5-9ZBp`) zGhFNvtS2%hPgXd=o`un47M?&gX?%T>ZKBUi&jH4 z8S~XHcvkg`8w(yLW%Bo?N!MFZo!n0#V%^U>>_{f;!zMvP6>zNVG_mTuS!q-_kgqg^ zjF)81xFu;;;n0D{mxM(qyC_30W@rphETT-XWcgfj4u9bEbCbiEGp%_`GAonWdQztB zOb*SAP;j@9)uvVC-FRhDjJ2p$f3S!N)L?Rb3NuNh%)<7^|88YL#f7u!viS`LWKP&P zGj7BMhiadTuZ?H(f5 z*19c4@#k^fTO=vC2J@GwcL_!fCVtOYRMf-|bw3L2Ga`2gDYWGHXVE|ceB`-6%Ihw; zuhB?0Q-oIy^n9$2Q~oG!6|?f6Knq9xMbpo=^NK$Np^-5L6IcwN#ZlRJsl(tDJhM{r z%LiC(HN#yA^iR*=^r`YZZ4zH@H2Lp_K#;-gwsy2p zybGZhzZXKQPBioV7_aq~`X$C1c|Lz+5Zo7iOiE@B4)f2$yi@r!g6?%soLA$1iS+HEX zylr-aVlanoLvFt-=l)$3o&;$xh*iMW6-J;1Y97&*UMIJ=>FF5;wE8qP@9*@i|JqRp zNg@QtMG*-?+{hrp-+Uwi#RCHuXq>yDkLXJUWjkHk@%$?rj|OEy^4u0N$+`>9jS6PJ ze=ei`)B~5+_o{)VGe1+WTI^<1ml_rC`s~Pm(v9Ot@J#z7L}?A8><3ZL(8#D`6$r>L zvM5(9TlAEXCI|*fA7eOMfG8C=exj|YhFcd*^C183UHxWV(7EVj{fnlK>iUVr0trZT zeaE(Q_9ou8gw3f@%{0{DeCnHq=s&t>Pb;QG(yc&lf}Ys-n^A^Mh_-dSua$&WEL{5b z89VZvTqejdu~0o;W(XAh_ic9JH1W#V~A$f2|m*@E=zG){z zKT3p1{1qnOK?%LK^sxC;i?!fNu%P%I8|s)G8*};^tcu2KcRLBjFAgC}V<^l{R>GOq zL>F}|O~`@tLn)u8vk_O;>4ShmG72oTgb+DgiA00KiC1!clSvRib~$-W2H`>D5nqEy zyGcz$;8(F-H40s0DW!^N*hPtBDKo>4#TlvJw} zv46Q%VxSYf0*L7M4Rkz*{1(_lC8srMQ#s@Il}D%JxDwlw86TkC6KwTE+dpSL2l|Bk z=?H8MDmq?Uuu25^2J$~ZH^>RdyFqbVOkqdt22)!H@`qyCq;+PI@MZ98Jfc^4hN!5TBj?Xg*{$RjI; zRk6zXBLnS|rrBv%(XfTw7wbhZi9SB%B4gwn39TMb)~j@y7$SVG87|J7ZnKA{txiJLnybJkj9_+m0*iAYNXLuQv>$>Z!%3kq>beM+TKASQV zb-O~_(I&>&N@gvbwKt)@vy{;MwvXI)B-|oIM7t(LxuwqPxEG#jG9Dm{W7#1>PK(Z` z?o?F5l{|I=bT?7};^n_Tt-Y&Kcy z_u!=$4i46$LzknMLdhut#Dot#9}| zVSA^vVAWBsc@N4UBNlmayLp!V%p+Wiax^ynB%ggST*&sg`50b4GNW{Xt7-V+{P&_R zuDH|x(e!ZvPm&lg)J@PBuHcb9I0+v|Y0O{!o z`V9`(1-%qo0$poQJ;B9MJHUmg3z4XWI!nSlgfsoLd;VI3)+gan=oR7G+(;K&xPPXa?2htuy8HjLE9b`)!A&N-L? zld9R?yYP==?HoP(ZDnhyEafe(&77`ymg{^|wxG=b1(65ium=^o=5+2!?f9~h0Pb%swwy^F+Qa$tSS{9@Qv<52?a9P1meW|4x5@~?yYa~O(&|{_b8jEwgxt{ zyUeinqe6X3k!5#@n^|QrXdbbS7)UFPAZ^hP##ssW!12;Zae^lDVt^|tn`am=q{>BX z8;e1zE8A+hs^R^}4}Iy=yi96Ii6g8B#!Ic*M&{4^|zT~vPW&VwIOw8*d4aRh# z2Bg<-*Bs`PGn~?Egy`QqV7w~@>u&H$2f8hIM_<(X)tl#3d@tE>pASlKaA?=d)CYCA zn&3Cjy0Gu5lsz$nYsyH(yj2YPR0LS~aNZ-4{fhN?#K{-EhW5J+?3Oie2FOxsgC zkmlQrD)o>X7&GQ5iF&{7b$x1af^Xp!efKm2} z4>39VrjjynDHLHqj!uzT6%4Z zS*8i7Q)!a`Q$4pN4hRt37i`keiwf=SY0D_)@MC5`n7}o{ve-3}rLUz({S*RE=%toB z8NU!XNau8M!ph*yS{1Q꽔wyTNP}cXu;x|DVH2q4|%O~VzPt)f$(GJ>7;Uyqv zy_}GVJ({Jaz7dC3l8K1xAu5i>5OvU+?bxmfLDwkGDVxwOu6_Gl^~j|8nxd!LGHr+h zNG_om4lD@wdX!lg9nW=DI8S>pgF&3lBKkw35^{ewdL8}cc8(`9oKEmG--3I2M3gGS z8rxyT?A+4Z2}Z;LHc3;vPy+Ne0!_F-wI`{hbAread^!Y_E#oxIYWG1tQ;MHNfW5pA z7i5!cQr9s71YCL=yb8fCGNa|s-0;7j?Z`F%0`$dUq59G6><;D26lo|dLJ5L>vm2Cu zj#bc#x}I6;ruVq!8*=!c2W=zFOm9YguJ`7Pr)m}CW zhDq4DCV4j6MV+#8jBA;_r+=`AGJK3xBkUyN9#Q>0*q*7+R~m2;`&ZPYMn7!fi7fM> zXYvV@ioMl~eU_q3Z(IbCdp}Y0y1Te!C!lWr;1c;I1@bs4fuJ>l%jAO=Seb_=MnT_s zLV)Q@Zs7@J#=}pXRVTMT%-A*A?RiP{u7VBo_CugCQr^kooA4NgFpj~h|I?Kp-h1Az~(9Dedn{i{a>%@3)faAzYj? zb2@%SQGp4i-FYdbXUX0`U6>qI67QeW(bR5ak&+49L^Bf(hw4S-tta(2-mUE-$o#}X z1-e{?D^yNvN*yIdlc=!)IbuN)69tKEPl=21=MUd5yvnYepJ1`%6qsKu)Mtu) zqXX1dwj7N=G~F#t?2$D7%pGZt{;p$_F&g-(Z{OOG`F8(P3q~s$nNA&_f+KJEj$5=~y9wzZ&c*BM%WvN!C3*=KOkoe7ZBXr_MJrB5_IQ=q-EsXwNs( z_Ec(9H+I!~;#rug#=EbY3W{^{7_9DEP=dz#wKGUZ)~TJ@{@$+U^LX*#IHBkm5MJOW zc7oa2M(oT*O3(~Nl3+zK<#DrP38Xu)ydX7b6EQ?Nemr^_dOqpC{M-t4Co+Mzc^IA) zHFDCgS@sH^9RQ)1MZX}hRekC3_wne+1x~orVa&ER=NjYMn_~FCV4C;AdLaqtkte2jvdM`Zu6bs^AtjRXoco zy8D&B$yJA!#>-H}%YbGmZsM9Y+P$70XatT8D6l=qlg?q%S3{#mPU35~O&*(2++I%O zk8GTvIh>I>yrIl|gyciz*Vx)4(*;R5CpHA1-%iMgM5@Q9x?iD+?KpJcV|hFw6_@dN z)Bb2~URFz-LLAV)k5SBMG9C+v9(sgU?UZDj>ui_UDXjoi)qJJfHvDNF z-Y?tXog&bx8~O%%>zvW6Xwf|eY(0X`uvDg_Y465aIMK<=-x5e;EB003G%?)pJw>i? zPj^{7eEzO{j@b}X$o%$05nlBQOUfm)uy|*0N+d_<{mI$aZP2A)ktMrW-QLk`sJ zGKu(c@zg}JA7>iLb??ZoejC!*KDjLvvB3*7>BbaJR&gHKoA+X7Ii|dzFVx zL^Z`Of$m@ue0_R$GywgEJIP=26`fS%KRr)Idwzo%E{Z`^E0gnoaca*%BeQ-0ng@^b zfSwu+3eaTTe1=ycrZj9$e-;j8q0tr;XD_UYPeA72uM58KuSivEB1=EOlXfN%_}-9d zZ;rSJvJQP8yNBAq_qY{}@+VQR`ZDOa_a{I$_Jdxor=0{0n*uYTg}GiH_Yc61234sa zUJ`r)a=pTDg46CNT%&b(Cq;%&oC(EPv}c;)EO1)5)%;8#u}Mchmd5=o9^ZW8)q z#pTY)!iJ#l)MDfVVpf(L-ztNC>}%#=rRB&foOW(+mgTqDcHm+3$v=g)UDFb|KMJE| zCDikgU50Lr%{YR*r!}fC+-c}e3rD)wXbdEPN5N{(J(u1h((bcOv8gpFR9fK-eAm3M zrB>FU2`6j-yq})e{rR)T95MH5;p_=Roi2 z#M%j(T^G?gEfK?$KdtRrbLJ8-TK{qkf*fj=dH8Q*FFF-~0)7rrbbp>c zxXYq;&l90xnKG~|(!DLjxS|A=*312d0EWc@u%xA2RAj(E2$e>YymB_KqI^vMU6L{8loSJZCFd?~jJO>p{_J zu?RCzfFTDhh`VC!d-{!}7TaThWfAAMvFB-^ z4v&wqBXX(V_&bjOBNLp;Lw~>`8GJ4&Nl36W0$RT@FR|37G;ye@6IX1%GcPIKrg&yZ zk~5NGzcnw3rIz$6_$_5(H|6ARv}cJI{$N{B7(C;ZXeJC|=?ZN|z}vw>mT5m8G#q~H zJ@iGJh-dBHYlhO?w$TfS;F@f6B1Dx-KJU4{5RSw;i&8ST~ zXseOGoq*@v?ak;9JCL(KwlGK=<1=aB2;wfIsQ`tKzQPO*@q{1gVbkOJ$FlDD;p>md z{z}D72ULKx-w;1EWsiBQ3o@bD!O=I8<0R~QGRwSsp{8?2*M5SpbJ{y`9b+=fR;9e5 z#a}PpwFSfRE(MSE+athNNCpj)tsD1LhNfl!(}gRz^*&uMqKi#^Wc$X!hjuALK+MAx zq;OC8BYw`Ns$bZ|6>LZSWTWFtS~b3FYpBQTDjld=#zM#H0#n%g3r7?{%r!OV#0$r9 z3l*8fufGW-=j)HWzU7OY_2BtX(hs+O5OG%Ua&ICmLr<7mJ4sWpYFT@(deE=fp^1Nn zrz~Z}o7(T9MaragxJOrY(VjY<({@dzW)>nbn^KGQ9}ywHK7m>~I!Ul<={nhxRRkAl0CK??J3jP-z8jlkPW#pNOUxexi2qq{UAe~ba->U5zUhuZpm#RJV$KL^W9|1fa5%(u0ay9t2TIsAEM>=mso?SJUzz%xI={CC==3XpzB>>8o2F_B%=SxtMWyUT^2mSK~4C@RsJ)L|FGV5xu!9Wv2U zugG$`l#+^Pch%xp53Ttl&ziOC_g1?5E`vp)XCp)8j4QJ9B|J~(sy8wbF%d~#skNMk zOLpP<8dMy=49I#uM`K;^vl)ndNCJ7Kp_eXLnnimt&n*Xqwna?nQ}`wuaV(WnVJL~a z?)RFT4X5?A3n~15goP3*-NiG2Fxi)Y-X2oWQBo~+Q^}zA;z+PCnG&g%Y-i$G5+Zfr z-fpk6aJuyMHy;kg9tK{V;w?Ai=W+Q5B+#|ghG$qPxbwnxjGa{5YY(L4&k?nYcxQ(k z_Zm2H5HC`9xw{GUWEpZrohHe7i*IYZzr64EbVQUX3HAJ#M@7`evm;+m+Hr8#R{#=Qy{jspgx}g7 zI}`7>aD}=1>B^;tbwH05DmfLjQ$Ij4p{#ZXHx0Wur3>1RzZ!%Ml}N3(Y$cz}pkpnJY zy8Ozb?(ezie=>uYX$=)=Jxj`>PWKDW&J%vspJlz`8*)Gfy@3)g8o~{hDNlRbOWYSA z1tY?lUtV1w#zEx`H_x3{RKyk`HnUPSvpt~I84;gkDc91tym>x4<`?jRUq({>)ctmH zD5zuNpm+!w@Pgib_DqmSX;TRt|KM2P@U9X=-=CTsaE;G(vA=F@1cZ!4E8Afvp z$tXlgBd`={f@EyI8cJ2dJ7|gPKm&EozgSixcDyPqFVse~4*I!76;?@bAyqj#Ce0Ri zM0s9jOK{1#7Bq;QpT5*Of^zOrOUUx)vErEXpD7nyHbt_&fDTtge)>}#7ndl#r%Obi z9_uK2=*~s7DEK`e)Gufp!FKe3aciA&9dCZ{C;&_(K$pLt!U|#U1pJ~d048H`Ymece zV?ms=<#4!t5nTWChbpw&zu)?pw@)$Nt?0dpj@g)lxA2WI!IHnH&R?dRSZy&UNS|AY z{a1AQPAGGd>8zFXF`0~LqP!jwhz<%mAV*jN&Q~;l`okYfR|I{!BIQL@<=`_c#a+KrlO~Zcp=~pcB2F0rWPZr!h{4^P`=pKcGCpg zVa`tFnO7A^qlIm2Y+qrD^FBB>!1QJtbfJq5Ix+FLGfFv!ZPeB{GB@I@ALbl$Qm^|G-7f~{F_q=`eH&P-y9Odi+bp~{_Q}!Jcb&CozW;C8w=r?|GPfX90z1Ws0 zEyv&HIfUDPl}kvCiCr9`tW+?n|MUIAZ(|(yskyxRH=Cm2vBQTvHARo|JKyh0Fm&bw z)&7Zlcs39^;{MhOyccWF?!bLAB>R2ed3dq%Q1^%RZS&;qmc%Lnly;s3NgZ4YzxA2e zE&=4xnUXKIT8yn;)$S+~a{r|yd`p?w;VX`1bL!RmjyyUGB9&D&Pk|G4Y-35qTb211 z-S~3n-Pzz|0L&dP@kh4FvX190(z$C-&^TI*|1)Aene|tFi$^ocA*qAUAPXgZ46oJs1lgO|M7T}fWU z`B64c_dj9|^@U8Q8s7JA>UK|P=15*G(JQRjSv2S3tJe;vLR_`AfIHA$coY$lyh`vQE-5|td{L8oJ2@1;?dOg&vboV+;ya=!maLPTrd_ML|V``l`?7F(lPlPB)qV=(^N#OGyff&@XwH5hFL#Qdf!T-Pn4RS z!hJ2zc@hkJVQ{aIc=xEC*!h#AI;eX~2HLuTxz?PGOf#DTfpX5s6!xcpvkYn9t#M8L z{WIK_+lt3)(p*HYy^RJEYsMFr(n8e%KZiY`E}Z1A$u0MBH+~YHeJL&1m2Z#~o}fT4 z9`Dr~9fXQvpm*7sZ9lieI`GArE@yU6=&!drzA?E*nx)a|HPLw=7tu+QVyboUj&mHc z)s_#p?NG1>Evwb0or7*GZ!oQ%I4AjUdp0V(eSfV+5XWX5PW};oxld5@+8xm=rGD-n4b~U_k(WFl2Zy~D;YSbKi#OLX_!k_)Pul7f0lb?Jxjno-=vpre(9xTQcP16u#QAGbR3DPP%$?)qnlqy``c?&^sIjKr;N= zdNDV`OA^!l+s7=|Lk@`!v%XGb=MBvRh#g}A%eT40M$Q1Hrx$W>vMAg4JSDV*+lFQX zk^3Rz#5Y`^SJDUXK&fd?$oX5CY!=_IV7HZ2K&>+#x5F-I?992)>S-GJZ2qZ9xLKWF z<~a|y>4{aCPl97~+XH+xWS!UrYN9HgwC9F`ljKd?ArtB?_{);nTjxc}x+&3S<~+E1 zPk)}jLfS86dm`05ickPJ?^n;!qnPqMCbZGWt$as~dPZ-Gjd`B`dN8r_XaGFo9^V!Q zoFwT|W0zdyTEPB*Uaf03?Ej7V=Je+YeAcnx@1sx{5P`1j`fU*Rp^4K0B#fPUak?=6 z;3HN&)F!f}HLwk@cN-_XH^qP}Qjw#Sop31d2E}dZWqnn!`b2c4y2}3Zu_)*1zS>Hp zcN+}88L~}G$L$nuuJZlD@e! z0`gZ0G-Ll@GZ87Z-)VN;T_;qYsWya>sMrZjne)cn7JgM&Q&_7A181KdYi z7?v{|KX3S}WSOD5$I_gNoZskOyQew{eyG3HCxERN-JIPdyZR7Yb3c{OzlN|JKIZ9< zJp0BFsm^N|%ptU66FD!wi36Hl0l=2XkHzk7CMYb={z+Z^VJ`eoO%jAiM7-V zFTUuSzUj?hYq30*%vYlxIrVgWwvk|ur$XoB+_PG9Xx`3J zC%8viWrQ%`H_3_ZWGH}8JJjlKbti>=IgbWk4&5_+N@$AUHgb%2A42q;oi zq&Ex5RuYijK~cdNB^0Fu2p~%D5UI%$5Rk604Tw}}K}zVoNEc}Wfk5aT0)!e`4E)*O z!GD&MJO}H#)_CT)=a_5mU!pvQI-Xi;5Te)bQm&^&8+s&*ReDm36Y6Rz-x>_OY9e_1 zHRu596!Tp;Sfup8om-Bc`H%lNn0f zVOW{&YNBZY#O9n)qUTk~(rkvC#Y>RtFEAC6%?T%?gXwt5({b@2Q`6vyYK-^oQSly# z7I+Q)D82B;T^k52q-W(>{C%kZ@X!BzjMczz!&=zy z1n<&+(+~C`jPb6R-5$5&>{}2Y=Lz9sJpq?C`#&1j?@Fkm^Q&n18;A@Jh2c0S(n$nCo`8eb1W zu!ho%!ysh4v3XCoYg4kyig6Q4Ws}*^?lqIGDe1Kj+L#2d?#&~QEl$`Cqp>+;x=#EM zZ39*Ahr)h*jxNE==KUvV**OS@r3ArveY{^%)G@|?LdXn;BB6PJY;?_NwNwVp1WJ3S zn0`Gzx*Wd+EGOKGzl1p%hM^3e%M2Q5Qa{6G)e;UGvX=Y$OmxWkKMLJdONEG804hSoa_n@yZx(E^>mu=pG2{P!1y{^j25&mTEXW zDEl+y8QcRriU*!xj0Bewv_+xVZ&o(WjtFRJwr@j_y+ZH1+ygV5<*!m?-& zsEDeNUU9?p3GG}}yAfv8u0X)W_g}AF-I*r&O=C0SJ}hu3>wyY_xe)lR5WZC=sdFN>L`%bSWO05M{gm?hDzO(Ku61(*;`6?LA~ z&!M5Y>X6;dfFX2wPNO|30U>Gz+N4RLhQ7Ti$f4P}$Kb=?Fe5cLqG;gF0O-__rjKk& z#SDeA$@~W`UfC4E;8Bu8YaTCNnqlw~hDr&T@3CgmTuIhS*Tc>Hk0Hfx3spnJ)FqTo zF9O7^%uz*qx=-8xK^D@Lde;mLSLR87ip!*FkUW&QyUhFztCydP(t zbjxxzAwrZnUwlC{CD_n|U$=VS+SSeLCKwg!10?q-PTac2E2Ir z(^!LnmT@JXmAOE3t2GJjx*f$@^?@~UAlRuqG}=9y?#i@KhM0L7bJsOHr@AJ>)aSze zL#MwNldaQA_TApljahF3=5)t5-9F4O*`KYrvl4UK9qw8In^G=VYd&kOCKT?n{$KG0 zrU8CzXYX(~v$Q_DHAft*V5?_sCms1-P5$D8%pjL95CSIbfiyUD?cJmUz{kjJ(c@3< z{T^-9;?^Qbw9FVa$bRdFds~5YqDBk5h9yWZ!kQXw;}Y{ZX3=W)e7DhLI@6dqjAoPw zq&})>)4`{IAQ?vt)7O&Iy1lIt+#Pc9z{q!d&$raE-xA5VQ>3SOpKFh7miS#_$ zZBi8Wa5MhxU%Py#;}FmaEZ8it@1BTRXWl@dXXs-7+d%2x;>M6P)6TQP!*2O_9?TBG zPoq|McSxq``C&I(JORVk)GMwCnKrS_d6_^|yKTz<^KqsY*ym^rq@0zS;@hdIf|cYB5}UqvD@M{qTdlq0*Qy zi~XxTKNLnyed^srpw!nrjwVy$9-?CSOT2Lrn2|}LnO@RZ?>La?mj0NUjFHa{hsDz& zTHb4xT+`8C9mQLVfGQ7-SPjcV3H87g2;zLANU&3%RA4;BV5UrAY7fE^5&YIG_RcWaKw@>aWcztg z=Pi7_F{hK23qHVrdEI)}EiiC0&OH6InW5rO?XfHW$ynG6eOv=0=@rV#)a@B9sfeEZ ztJHQ4+0^q3*!U<^a`|0r|9==raU%$5EEPX!eK^)t*2MQW`(&42&Qo(Ej=}u~d*@9h z*6{g@bPVhvNBuDy=%FgrPH;e$M1i$mQsNVzyPgte=%Lcz&Zi_`Hz$}9wFg=+ zpXImG7#JBZJH2A=&-2Naau8Pf(p5E zGeF)<7(v4VGDOZYgS6~yzp;`aWS;fQufhiFp?T;|B z`}L=TZE7k#p4vd0xX#lGR>2MfwXm+83u*0!7}*vfkN&Ufy|u4PL{{V$?7Nkt?6w8d zx-R=(l``$;KeUWdo=8(URHrPM+ol}jjX^83zUh`?miEdz!A`SIqEP^7#dmwSS+}g+ zv!6M!TR;>FUh#Ji@JVC-19 zX0LAm^_}mRHi`M@k7rXkUh~J-PFqqJX0Pp31JG(3@kIM|io+mPru{2!fxFRfm?>U? z*2-sYWx&2z9JvZeX-3d_%8h`0OEcG1>vX5l(iu+)ro_NLm5Pdn^2wxo8ieNyB}?31 z&&z{Vzr$i2OM!^ubL8iUSrOh~mmCgh6p)4|8WjSjVYs&pj{HN(^|%Kmpqx(cJAbf2ej-;Rsi zBVVi9Z%r$leOH7{$^E7pgRFCxkleOroZzkLk z!61I&Ax^7at;H7aM2S93C80zV8#eh$=HN~5{;`GQpPoo-)FNRot#5mK)5lQ zcE8iupK*yAwdx#H_7df|7DoJRKfeBcvovdo%_G2Jx3hLZ&#woVo$&dNDqJekm`&&x zh4a_H=Gn0I`*tL8ux)I9{HuCPmwKV6USoicYT`j#uB9;lcu~W{PQ+N(?j+D`V>T_| zqiZ}3lR;6NDqvaUIGX$WC0Z+O>%sKaEmThs#!>-K2wDB|P@Ok?R!=aj4ct7x(nPyR zw1cC)x2dY}+4m^+^v)|tbC8BJM87)Jq#QR&9v|2^SoZBw6?eLo=<0ik-jao%{=wBZ zar&zqGB#gMuupe74$lRsZ)6}El$R;N!|p2mKfhvtUK-Ey(@?X1STJ-8r2R+HiM_wG zR*7R};e5~8V4V4kW!x@`2mUa|wF%L#)M2C-@CC-5@UO|k1ggg1E4}?9^DwA~a`DeE zHNRQlHG98VRM7L(;;LYe7*u1J2MOM?cp<$|EZ>f?yyy5a!49yuVuYUdh_6HV;VmSj z#vq`rSQXsYQrV>)f5)g~T|i^}@lY?zLGyOE?KPBL^*r~aEu+q4o{@V$%8@a#w|YjG z%8gg`U?!IZ7q~V%wJ=oARL+k3paLw|a=&mju%Chhp6(0Hga>#ua|I%c*QuM$D!`Sk ziS=hPF8LgDz(X}>Mopw08`t05)IE+Cm#(YC>MV`O9N%7+(~Sc@?qpT7$`WUHmv<=# zaGR9JE)bZhwOF-I$;SSHway2av!jmE@kUerDx0)|-v#OM!Vb=4)5!Ik>h7`|!~ z+9p9=6173>_f|gx8`14D}uPr2{pKcUJjYipm8*f-apiv zm}fq^BC>E>!aT73KbG?uKd_z8RqVSgg6hwLpEW#iF|(X=!W&V*P35ifntLc@|AA7m z##O-gY)01ZGCnNRgsJVm;O)ZgS?Ej|==Spr$?&Dp^G5B@O!x|{M76D1waw;AL(#n^ zohkOAE1gH8v2R%D;$U^_jcP0cjZ!LeOT{5 z%`YpmC8M}XWwc+*b$-{tabOL3HyJ6f&BG)-gj_o}_Z>rvAnz8=fjSbRxsyaX#v~`YMH=Ae1V(3{6%wZ90w}V<-;x_kmoA^;AViP+vthf#SDAHvq*Y7fT zzPPQgMkH>iK>ghf<(R}B?uEy@J|k_pW61|X`Ks1Zg6|)BT%dnsK00d)Do&D{F0C3n zS8v6!5yD_U^VR=iZ0DuGlPrDuYX^kxt&T9($AdbTYWNjjyCEPJq@aqe&U&9u&5c)_ zUO#eF=v|+h2xMJYE}KgUoB-B3yd}R!2fGOTKJm+Shh2-%hV3Oetv3 za1yuhGwY%%-hJy{P?biBDuF8XkEv=yMI+v+bjvLx$0}aY9k?6w!sX5fSF? z)eF-F|D2G%nZ*XO4Ag(osl33R9lJ8l=};SnNU-+{C%j8OVT+T@Cfx9M_^Q^PW$Ym( z+P{`C86;n9%xaGyW;kspjHK`MLHfA%i!jVLbr3Skh< zi~DzrX$@i+t4?2t#iG$)2XIaw(50CM}^3X9{p&)P+&#<(NGM=WpyIS z9QV)+BfZE8`OaG_(75j~o#}Qp?%f=hqbYw+*4$qUny-tG@3ed2d;O%3L=`7;=G8l& z?DnF?OH|WZqOi^TOq=2cGcC+V7b-tEw^(48&Mr3I(HB`5>CZ`vly&F!vqPLQ5MjCK zFt?-i-&UrD9|n`&Cj;U3#WG(+Q>81LR3Z|$?`SOQ7n$YiAGSTj<~-Tj6iw-rsO`?n za2xd|f=wPw2~c;Q>CXP&i=i@|NzfuOW982- zBdn!ITeQbm>W7@JBL7Km1*L>Xc`z>6=Ra*>^><(^xlrl+vMUhO$#23eunodFG)GGp z*l1v^gq%MDFC5Nd2eg`bFoxmQ%7wwwNgwY9b}0^{87b`3ZC|i1lXoV=>V3Hz-CR~H zuNi;#{wX=eN&Q}B|Hxfw)7UWXbwy5%AYuN_WCXS3Uj)4eTk0&hXu%&DZYs0BciMdO zuGrvKa^>F~FJEt|ceW{Vr{8zg{9~GFe7A8KiB%8R0SAW)NJh+bqwyjvUuxI9+5uPF ze-op?&asht{Cxf4&c z;c*$9LbC6Tc&{GcU^B8H*p$o~Y_gELqfivx9U# z2XzwZ9%I&zxc+MDK_i2IUoteh<&qK?;SaQD=ngS%(GVMZEV_U_T)0Wx%F>8Uw3q$r zgS-8%gFMDuIXd!p?|!Le2i)<*<-iVAk>Iy_>qE-;WDEOx;G@5q zWOmGGn{-le@>i!#<1dKte6Nx#PBtib*xsSG)f0S*o*96Gh0nUx)n zH(p^$e4TyJ5ZV0C^`0GeC$nw-%e-gTDF)hOPjSPGdq>fpzTUSS-^p>V z%*mudsjvFCK_{s>V1i!fhE`AU7(;-KrGILN7uIryMvtVmT~*@mlCgCoTFzR;v@1Pt zec9XUm=r~n_4-`LtzcDg6F;E8J`GeiFc9lKBkEW&9lv>FcCeK}qxYg#k$jX(j%NAb z(9vR5cPZfq;8M7cPzPtU@>Qoygo}-HEO;$vGYaiSss=a&-?w@2BRbdj>vW6!s5XJI zZbuvYLZI-^ygE|g7)6KtqBOJ%xZ_pLxynFtE)7g#Fo_i30nxi#UmZRIbll&#U+{ww z{obXN;av+E%U5}d;S$x^<|UbBfY)9%#3tuWbp(iV?1(klRE!j!W17>WU*j4SC4BO` zdyX#30`hKnpEq)i`#oa81I9B=T7^L;OJi5etjzq?v&q3I_bUtb%6J*C%ank>HyedB zN5^2lX}w zxfY~zD^i4^+-S`Ob)8bV4hU7r`z^$d&RFHL%X5_1r#!dA}vV#3e`B0ejZ5}vHz zoQnu6a2IlI2S+Ci{ z_l2P@;pV`2bP2z+i`i=lRyE`6)H7s?+$Zn$;xPe=fZYxDj;s4Jop=PU!1waj{G-4~ zsU5aPEq$+$L+22!QczZm4)_VYU@{NIOW_O*a&s_c>d87VZnt4+Y|W2b@HCJ5Mz0pz z9{ENiuHy56Z9zomaNzG3C45!wqx<)wmh_-jsv93IN|_I|!6Q8OmO+ab(mHy4+1xTl zpT_OTH{RRr4$GKk-h3qxmZjfpmiMRW8bvN8!pr??@q8g z-f&2gHub3^?b@L8rUK#O+N&SS{^q^J@9{7PJWFSZf1(!OYx`Qrdj)uc^WY*+vgo^ ziyOTN`excF1l$tY8ll9nl2sK?taA|AVDcAxeXZMeGEB8ZAl;dr+X_q+HzaiBVrfG~ zr2x1}r!g&U|JhCDpuBC?w6@E>e3g%X$gi-tQCN4?+*RGL`s|tXj~f z*b5F)IR_&BD*>5HmefBLhxO-;GL5eyxeVY-3J6CZ1lP~^9G>- z8+PR%;+9ei-?x?W9BW`=Vk!vEMrPq86HZF8mMcI*>lz6+gRoE(}JTx6K1)H8c zq#&hWn9c;wySGyil+kFLr*iB5wXTd>&~E5|0m6uqvC#2q4O@Aqx{ znUE7+KiQ4Xp#^F;==n^pG%GFeDlBU?D&_E;1GE+b&&sv}Cu<@6)-xB0^m(X1+XFDimc3~h2C7e$Q<&w(Ki3XWKA^Mg z-ow`Wzvsm7?jyOmw}l2*u;Bg|4ROSTvm}Jd#Nu5??jjqBo1iDD>E>o?uTKE@|6u+?IaX_M@a0S2*+OF7Xg^lO<}KJP~m#Q`Ue@WOw6 zqV5M1UhoR+S-m-asJz^=?OMax+oF$QoR$TM(zm{twk59?I=rnI&u8X^b z9pAWT9;H%T%I33E>(-K5K``IHBCM0zopJlIll$#~VoU43)tsy`aH;&epT$^NzmuH^ zAiaHWf9Ui~qG3`daUv`R5U-l@Pb+a_CRVls}>y=Oe7);cg zVvo-RUqTxvCOkMuyq~mHpA}UGEx!cTl45F2qLC#x6;{;KpW}}ITBMdpIMOUzkBB}z z!E+UavT(RBY?=@q9TXfq$u6?Pl3B8&g}3Adw;dno(0Xn$ysH0Arr4o|&*r4nEozWNEG zlz`}QSMJtAj2Pk-$aF~%lEwR5G2&eAIG)O;9~NERsvWgTR(9^1+J{3LnUT3KZjQG5 zk6ok`;hR#qqYJ%wzRfa^3D;*;MQ^R<P$&r*250)f#DlMUn!isZ7co2N0 zB(*KdHwLkeb(?iTgiId;2KcMh!`LQxKLrJQB-A0HC6w>?o)~p{t<67KS(U#IUTb&0ch_556+&_P0CW7f_wnXZK)Y&5Bm%xHzfS%* zrEdo(32LS4UkQgR9PC!F3P!8@e$YW0WyZQY%w)tqp3F&HW)R$0|Yh<5&crBGW_@&uL5YT7Cf7N6(2{}-CXPGzv)#5Y!GF`y@3Ld;CBazvZ2J zDNCJ{jBK|Oyz{;PlVx;)p4o*WO;~0>uUni-SQEG6Fk(du*G{P*oL)g4B8^7Q;ZNp3 zhz`}Gj|e+Hm%9o&G^zLKgoDl?teE9ih^^3q2TT9Yk)vzKs=z1Fxrw%Sd7j4W*&V&? z5X1vl4Zs5d_P}RnDhB_M| zD&i0AhDd7R^+y*i2cgY0WZk6 zd(@9Aq!)1WBrBGAO)1NNjdf@NTmGy#>tI4n+ht97*L2l9{{nt62INUQ8LkET4E4Mm zXo*3#@yU5bT15l0CHIzhV_#(xY)JQbd)q$TCA^7#0Bc7BoCt%Q~#OG>}t%$Gi8*o*d1SVCtnpEDN#2^P8NFc=8~PlF%~_ z0s4#-0OC+F==^L&a~1IO23Xkwa6+yHTD~6ndhy&gn9beDNmWym@L@^=k?=9eGlt z+Hjo>Nw^N?H|`f1QR$p|f}DJ~QYozCvak=xoosy>_6<8APGnWKE33uvY~Mn(_V_a5 z=H(k=Phgl8-^-N;e^llqrymK;jR3{!?K;>c%d?2wGk3pE3B2Xud1TtLL|}}YUe{at zNQ*>rQ<@Cx32e-NX%J+!)YM49HIgoZt3)-|T8`8Nk4TD?zkgY_M8&A%d~b^ysAbti zU_Fx@HqI(wqv#w8E)^ohVuVU1NKHTKwcA14w9-Z7)-P+Uswlm2h^5{qAtDp>ecq(e zO^OC-y6>{S&p)H;EJ)+GQ>lQS4`Q@2{=eT-CdQ8msY>4BWro=Lb7Y;Vj;;R*YfarX z@gb|m*1^brc%c(-O^vCCTjxoqK6L{)a-t6hGI3h9A?&{6)DvT$vSFdsv{_mF)Dq%5 z8TtL~aw^y6Tx5RGV;^vY4h?zLgb$hiIg&Tj151UiH3@Vlh1Deh$>cwo0WoW_0(Bu_ z zEJJn6d(30pNS6up*d^qXCE+n1WZxT$N4_^m{vB-|fE?*})jhS;IU!?)w zmDn96A!Jcrz7mIBM)9m%S0uSMz=})V-RC>VUvBIeZxMlAt*t-t8HD0_5$4OlvS$&f?YM`w& zH92>vCR6>3xGcBU)}4Y*s&E9;oz0!5CO&NXv40~MuprgcWYZzSzDog^B-XsU2!}=4 zdjghj74Z?8dz9M}U-5&4Z-sAK0xdP!@FGTable of contents

    diff --git a/intro-MLEs.html b/intro-MLEs.html index 7b18107a8..828b10ef8 100644 --- a/intro-MLEs.html +++ b/intro-MLEs.html @@ -2082,7 +2082,7 @@
    diff --git a/intro-to-survival-analysis.html b/intro-to-survival-analysis.html index 3ce1203d8..57348c59b 100644 --- a/intro-to-survival-analysis.html +++ b/intro-to-survival-analysis.html @@ -458,7 +458,7 @@
    Published
    -

    Last modified: 2024-05-27: 11:49:27 (AM)

    +

    Last modified: 2024-05-27: 12:56:57 (PM)

    @@ -638,8 +638,7 @@

    The survival function \(S(t)\) is the probability that the event time is later than \(t\). If the event in a clinical trial is death, then \(S(t)\) is the expected fraction of the original population at time 0 who have survived up to time \(t\) and are still alive at time \(t\); that is:

    -

    If \(X_t\) represents survival status at time \(t\), with \(X_t = 1\) denoting alive at time \(t\) and \(X_t = 0\) denoting deceased at time \(t\), then:

    -

    \[S(t) = \Pr(X_t=1) = \mathbb{E}[X_t]\]

    +

    \[S(t) \stackrel{\text{def}}{=}\Pr(T > t) \tag{5.1}\]


    @@ -662,6 +661,20 @@
    +
    +
    +

    Theorem 5.1 If \(A_t\) represents survival status at time \(t\), with \(A_t = 1\) denoting alive at time \(t\) and \(A_t = 0\) denoting deceased at time \(t\), then:

    +

    \[S(t) = \Pr(A_t=1) = \mathbb{E}[A_t]\]

    +
    +
    +
    +

    Theorem 5.2 If \(T\) is a nonnegative random variable, then:

    +

    \[\mathbb{E}[T] = \int_{t=0}^{\infty} S(t)dt\]

    +
    +
    +

    5.3.4 The Hazard Function

    Another important quantity is the hazard function:

    @@ -672,7 +685,7 @@
    -

    The hazard function has an important relationship to the density and survival functions, which we can use to derive the hazard function for a given probability distribution (Theorem 5.1).

    +

    The hazard function has an important relationship to the density and survival functions, which we can use to derive the hazard function for a given probability distribution (Theorem 5.3).

    Lemma 5.1 (Joint probability of a variable with itself) \[p(T=t, T\ge t) = p(T=t)\]

    @@ -682,7 +695,7 @@

    -

    Theorem 5.1 \[h(t)=\frac{f(t)}{S(t)}\]

    +

    Theorem 5.3 \[h(t)=\frac{f(t)}{S(t)}\]


    @@ -723,7 +736,7 @@

    We can also view the hazard function as the derivative of the negative of the logarithm of the survival function:

    -

    Theorem 5.2 (transform survival to hazard) \[h(t) = \frac{\partial}{\partial t}\left\{-\text{log}\left\{S(t)\right\}\right\}\]

    +

    Theorem 5.4 (transform survival to hazard) \[h(t) = \frac{\partial}{\partial t}\left\{-\text{log}\left\{S(t)\right\}\right\}\]


    @@ -740,13 +753,13 @@

    5.3.5 The Cumulative Hazard Function

    -

    Since \(h(t) = \frac{\partial}{\partial t}\left\{-\text{log}\left\{S(t)\right\}\right\}\) (see Theorem 5.2), we also have:

    +

    Since \(h(t) = \frac{\partial}{\partial t}\left\{-\text{log}\left\{S(t)\right\}\right\}\) (see Theorem 5.4), we also have:

    -

    Corollary 5.1 \[S(t) = \text{exp}\left\{-\int_{u=0}^t h(u)du\right\} \tag{5.1}\]

    +

    Corollary 5.1 \[S(t) = \text{exp}\left\{-\int_{u=0}^t h(u)du\right\} \tag{5.2}\]


    -

    The integral in Equation 5.1 is important enough to have its own name: cumulative hazard.

    +

    The integral in Equation 5.2 is important enough to have its own name: cumulative hazard.

    Definition 5.3 (cumulative hazard) The cumulative hazard function \(H(t)\) is defined as:

    @@ -1104,10 +1117,10 @@ \]


    -

    Theorem 5.3 Let \(T=\sum t_i\) and \(U=\sum u_j\). Then:

    +

    Theorem 5.5 Let \(T=\sum t_i\) and \(U=\sum u_j\). Then:

    \[ -\ell(\lambda) = \frac{m}{T+U} -\tag{5.2}\]

    +\hat{\lambda}_{ML} = \frac{m}{T+U} +\tag{5.3}\]


    @@ -1266,7 +1279,7 @@ 5.6.5 Exponential model
      -
    • We can compute the hazard rate, assuming an exponential model: number of relapses divided by the sum of the exit times (Equation 5.2).
    • +
    • We can compute the hazard rate, assuming an exponential model: number of relapses divided by the sum of the exit times (Equation 5.3).

    \[\hat\lambda = \frac{\sum_{i=1}^nD_i}{\sum_{i=1}^nY_i}\]

    @@ -1321,11 +1334,12 @@

    Definition 5.4 (Kaplan-Meier Product-Limit Estimator of Survival Function) If the event times are \(t_i\) with events per time of \(d_i\) (\(1\le i \le k\)), then the Kaplan-Meier Product-Limit Estimator of the survival function is:

    -

    \[\hat S(t) = \prod_{t_i < t} \left[\frac{1-d_i}{Y_i}\right] \tag{5.3}\]

    +

    \[\hat S(t) = \prod_{t_i < t} \left[\frac{1-d_i}{Y_i}\right] \tag{5.4}\]

    where \(Y_i\) is the set of observations whose time (event or censored) is \(\ge t_i\), the group at risk at time \(t_i\).


    -

    If there are no censored data, and there are \(n\) data points, then just after (say) the third event time

    +
    +

    Theorem 5.6 (Kaplan-Meier Estimate with No Censored Observations) If there are no censored data, and there are \(n\) data points, then just after (say) the third event time

    \[ \begin{aligned} \hat S(t) @@ -1337,6 +1351,7 @@ \end{aligned} \]

    where \(\hat F(t)\) is the usual empirical CDF estimate.

    +

    5.7.3 Kaplan-Meier curve for drug6mp data

    Here is the Kaplan-Meier estimated survival curve for the patients who received 6-MP in the drug6mp dataset (we will see code to produce figures like this one shortly):

    @@ -2015,11 +2030,11 @@

    \[\hat S(t) = \prod_{t_i < t}\left[1-\frac{d_i}{Y_i}\right]\] where \(Y_i\) is the group at risk at time \(t_i\).

    The estimated variance of \(\hat S(t)\) is:

    -

    Theorem 5.4 (Greenwood’s estimator for variance of Kaplan-Meier survival estimator) \[ +

    Theorem 5.7 (Greenwood’s estimator for variance of Kaplan-Meier survival estimator) \[ \widehat{\text{Var}}\left(\hat S(t)\right) = \hat S(t)^2\sum_{t_i <t}\frac{d_i}{Y_i(Y_i-d_i)} -\tag{5.4}\]

    +\tag{5.5}\]

    -

    We can use Equation 5.4 for confidence intervals for a survival function or a difference of survival functions.

    +

    We can use Equation 5.5 for confidence intervals for a survival function or a difference of survival functions.


    Kaplan-Meier survival curves
    @@ -2164,11 +2179,11 @@

    The point hazard at time \(t_i\) can be estimated by \(d_i/Y_i\), which leads to the Nelson-Aalen estimator of the cumulative hazard:

    -

    \[\hat H_{NA}(t) \stackrel{\text{def}}{=}\sum_{t_i < t}\frac{d_i}{Y_i} \tag{5.5}\]

    +

    \[\hat H_{NA}(t) \stackrel{\text{def}}{=}\sum_{t_i < t}\frac{d_i}{Y_i} \tag{5.6}\]


    -

    Theorem 5.5 (Variance of Nelson-Aalen estimator)  

    +

    Theorem 5.8 (Variance of Nelson-Aalen estimator)  

    The variance of this estimator is approximately:

    @@ -2178,7 +2193,7 @@ &= \sum_{t_i <t}\frac{(d_i/Y_i)(1-d_i/Y_i)}{Y_i}\\ &\approx \sum_{t_i <t}\frac{d_i}{Y_i^2} \end{aligned} -\tag{5.6}\]

    +\tag{5.7}\]


    Since \(S(t)=\text{exp}\left\{-H(t)\right\}\), the Nelson-Aalen cumulative hazard estimate can be converted into an alternate estimate of the survival function:

    @@ -3076,1698 +3091,1729 @@ the expected fraction of the original population at time 0 who have survived up to time $t$ and are still alive at time $t$; that is: :::: -If $X_t$ represents survival status at time $t$, with $X_t = 1$ denoting alive at time $t$ and $X_t = 0$ denoting deceased at time $t$, then: +$$S(t) \eqdef \Pr(T > t)$${#eq-def-surv} -$$S(t) = \Pr(X_t=1) = \Expp[X_t]$$ +::: -::: +--- ---- - -:::{#exm-exp-survfn} -##### exponential distribution - -Since $S(t) = 1 - F(t)$, the survival function of the exponential -distribution family of models is: - -$$ -P(T> t) = \left\{ {{\text{e}^{-\lambda t}, t\ge0} \atop {1, t \le 0}}\right. -$$ where $\lambda > 0$. +:::{#exm-exp-survfn} +##### exponential distribution + +Since $S(t) = 1 - F(t)$, the survival function of the exponential +distribution family of models is: + +$$ +P(T> t) = \left\{ {{\text{e}^{-\lambda t}, t\ge0} \atop {1, t \le 0}}\right. +$$ where $\lambda > 0$. + +@fig-exp-survfuns shows some examples of exponential survival functions. -@fig-exp-survfuns shows some examples of exponential survival functions. +::: -::: +--- ---- - -```{r, echo = FALSE} -#| fig-cap: "Exponential Survival Functions" -#| label: fig-exp-survfuns -library(ggplot2) -ggplot() + - geom_function( - aes(col = "0.5"), - fun = \(x) pexp(x, lower = FALSE, rate = 0.5)) + - geom_function( - aes(col = "p = 1"), - fun = \(x) pexp(x, lower = FALSE, rate = 1)) + - geom_function( - aes(col = "p = 1.5"), - fun = \(x) pexp(x, lower = FALSE, rate = 1.5)) + - geom_function( - aes(col = "p = 5"), - fun = \(x) pexp(x, lower = FALSE, rate = 5)) + - theme_bw() + - ylab("S(t)") + - guides(col = guide_legend(title = expr(lambda))) + - xlab("Time (t)") + - xlim(0, 2.5) + - theme( - axis.title.x = - element_text( - angle = 0, - vjust = 1, - hjust = 1), - axis.title.y = - element_text( - angle = 0, - vjust = 1, - hjust = 1)) -``` +```{r, echo = FALSE} +#| fig-cap: "Exponential Survival Functions" +#| label: fig-exp-survfuns +library(ggplot2) +ggplot() + + geom_function( + aes(col = "0.5"), + fun = \(x) pexp(x, lower = FALSE, rate = 0.5)) + + geom_function( + aes(col = "p = 1"), + fun = \(x) pexp(x, lower = FALSE, rate = 1)) + + geom_function( + aes(col = "p = 1.5"), + fun = \(x) pexp(x, lower = FALSE, rate = 1.5)) + + geom_function( + aes(col = "p = 5"), + fun = \(x) pexp(x, lower = FALSE, rate = 5)) + + theme_bw() + + ylab("S(t)") + + guides(col = guide_legend(title = expr(lambda))) + + xlab("Time (t)") + + xlim(0, 2.5) + + theme( + axis.title.x = + element_text( + angle = 0, + vjust = 1, + hjust = 1), + axis.title.y = + element_text( + angle = 0, + vjust = 1, + hjust = 1)) +``` + +--- -### The Hazard Function +:::{#thm-surv-fn-as-mean-status} -Another important quantity is the **hazard function**: +If $A_t$ represents survival status at time $t$, with $A_t = 1$ denoting alive at time $t$ and $A_t = 0$ denoting deceased at time $t$, then: -:::{#def-hazard} +$$S(t) = \Pr(A_t=1) = \Expp[A_t]$$ -{{< include _def-hazard.qmd >}} +::: -::: +--- ---- +:::{#thm-surv-and-mean} -::: notes -The hazard function has an important relationship to the density and survival functions, -which we can use to derive the hazard function for a given probability distribution (@thm-hazard1). -::: - -:::::{#lem-joint-prob-same-var} - -#### Joint probability of a variable with itself - -$$p(T=t, T\ge t) = p(T=t)$$ - -::::::{.proof} -Recall from Epi 202: -if $A$ and $B$ are statistical events and $A\subseteq B$, then $p(A, B) = p(A)$. -In particular, $\{T=t\} \subseteq \{T\geq t\}$, so $p(T=t, T\ge t) = p(T=t)$. -:::::: -::::: +If $T$ is a nonnegative random variable, then: + +$$\Expp[T] = \int_{t=0}^{\infty} S(t)dt$$ + +::: + +--- + +:::{.proof} + +See <https://statproofbook.github.io/P/mean-nnrvar.html> or + +::: + +### The Hazard Function + +Another important quantity is the **hazard function**: ---- +:::{#def-hazard} -:::{#thm-hazard1} +{{< include _def-hazard.qmd >}} -$$h(t)=\frac{f(t)}{S(t)}$$ -::: - ---- - -::::{.proof} - -$$ -\begin{aligned} -h(t) &=p(T=t|T\ge t)\\ -&=\frac{p(T=t, T\ge t)}{p(T \ge t)}\\ -&=\frac{p(T=t)}{p(T \ge t)}\\ -&=\frac{f(t)}{S(t)} -\end{aligned} -$$ - -:::: - ---- - -:::{#exm-exp-haz} -##### exponential distribution - -The hazard function of the exponential distribution family of models is: - -$$ -\begin{aligned} -P(T=t|T \ge t) -&= \frac{f(t)}{S(t)}\\ -&= \frac{\mathbb{1}_{t \ge 0}\cdot \lambda \text{e}^{-\lambda t}}{\text{e}^{-\lambda t}}\\ -&=\mathbb{1}_{t \ge 0}\cdot \lambda -\end{aligned} -$$ -@fig-exp-hazard shows some examples of exponential hazard functions. - -::: - ---- - -```{r, echo = FALSE} -#| fig-cap: "Examples of hazard functions for exponential distributions" -#| label: fig-exp-hazard -library(ggplot2) -ggplot() + - geom_hline( - aes(col = "0.5",yintercept = 0.5)) + - geom_hline( - aes(col = "p = 1", yintercept = 1)) + - geom_hline( - aes(col = "p = 1.5", yintercept = 1.5)) + - geom_hline( - aes(col = "p = 5", yintercept = 5)) + - theme_bw() + - ylab("h(t)") + - ylim(0,5) + - guides(col = guide_legend(title = expr(lambda))) + - xlab("Time (t)") + - xlim(0, 2.5) + - theme( - axis.title.x = - element_text( - angle = 0, - vjust = 1, - hjust = 1), - axis.title.y = - element_text( - angle = 0, - vjust = 1, - hjust = 1)) -``` - ---- - -We can also view the hazard function as the derivative of the negative of the logarithm of the survival function: - -:::{#thm-h-logS} - -#### transform survival to hazard - -$$h(t) = \deriv{t}\cb{-\log{S(t)}}$$ -::: - ---- - -::::{.proof} -$$ -\begin{aligned} -h(t) -&= \frac{f(t)}{S(t)}\\ -&= \frac{-S'(t)}{S(t)}\\ -&= -\frac{S'(t)}{S(t)}\\ -&=-\deriv{t}\log{S(t)}\\ -&=\deriv{t}\cb{-\log{S(t)}} -\end{aligned} -$$ -:::: +::: + +--- + +::: notes +The hazard function has an important relationship to the density and survival functions, +which we can use to derive the hazard function for a given probability distribution (@thm-hazard1). +::: + +:::::{#lem-joint-prob-same-var} + +#### Joint probability of a variable with itself + +$$p(T=t, T\ge t) = p(T=t)$$ + +::::::{.proof} +Recall from Epi 202: +if $A$ and $B$ are statistical events and $A\subseteq B$, then $p(A, B) = p(A)$. +In particular, $\{T=t\} \subseteq \{T\geq t\}$, so $p(T=t, T\ge t) = p(T=t)$. +:::::: +::::: + +--- + +:::{#thm-hazard1} + +$$h(t)=\frac{f(t)}{S(t)}$$ +::: + +--- + +::::{.proof} + +$$ +\begin{aligned} +h(t) &=p(T=t|T\ge t)\\ +&=\frac{p(T=t, T\ge t)}{p(T \ge t)}\\ +&=\frac{p(T=t)}{p(T \ge t)}\\ +&=\frac{f(t)}{S(t)} +\end{aligned} +$$ + +:::: + +--- + +:::{#exm-exp-haz} +##### exponential distribution + +The hazard function of the exponential distribution family of models is: + +$$ +\begin{aligned} +P(T=t|T \ge t) +&= \frac{f(t)}{S(t)}\\ +&= \frac{\mathbb{1}_{t \ge 0}\cdot \lambda \text{e}^{-\lambda t}}{\text{e}^{-\lambda t}}\\ +&=\mathbb{1}_{t \ge 0}\cdot \lambda +\end{aligned} +$$ +@fig-exp-hazard shows some examples of exponential hazard functions. + +::: + +--- + +```{r, echo = FALSE} +#| fig-cap: "Examples of hazard functions for exponential distributions" +#| label: fig-exp-hazard +library(ggplot2) +ggplot() + + geom_hline( + aes(col = "0.5",yintercept = 0.5)) + + geom_hline( + aes(col = "p = 1", yintercept = 1)) + + geom_hline( + aes(col = "p = 1.5", yintercept = 1.5)) + + geom_hline( + aes(col = "p = 5", yintercept = 5)) + + theme_bw() + + ylab("h(t)") + + ylim(0,5) + + guides(col = guide_legend(title = expr(lambda))) + + xlab("Time (t)") + + xlim(0, 2.5) + + theme( + axis.title.x = + element_text( + angle = 0, + vjust = 1, + hjust = 1), + axis.title.y = + element_text( + angle = 0, + vjust = 1, + hjust = 1)) +``` -### The Cumulative Hazard Function +--- -Since $h(t) = \deriv{t}\cb{-\log{S(t)}}$ (see @thm-h-logS), we also have: +We can also view the hazard function as the derivative of the negative of the logarithm of the survival function: -:::{#cor-surv-int-haz} -$$S(t) = \exp{-\int_{u=0}^t h(u)du}$${#eq-surv-int-haz} -::: +:::{#thm-h-logS} + +#### transform survival to hazard ---- - -::: notes -The integral in @eq-surv-int-haz is important enough to have its own name: **cumulative hazard**. -::: - -:::{#def-cumhaz} - -##### cumulative hazard - -The **cumulative hazard function** $H(t)$ is defined as: - -$$H(t) \eqdef \int_{u=0}^t h(u) du$$ - -::: - -As we will see below, $H(t)$ is tractable to estimate, and we can then -derive an estimate of the hazard function using an approximate derivative -of the estimated cumulative hazard. +$$h(t) = \deriv{t}\cb{-\log{S(t)}}$$ +::: + +--- + +::::{.proof} +$$ +\begin{aligned} +h(t) +&= \frac{f(t)}{S(t)}\\ +&= \frac{-S'(t)}{S(t)}\\ +&= -\frac{S'(t)}{S(t)}\\ +&=-\deriv{t}\log{S(t)}\\ +&=\deriv{t}\cb{-\log{S(t)}} +\end{aligned} +$$ +:::: + +### The Cumulative Hazard Function ---- +Since $h(t) = \deriv{t}\cb{-\log{S(t)}}$ (see @thm-h-logS), we also have: -:::{#exm-exp-cumhaz} - -The cumulative hazard function of the exponential distribution family of -models is: - -$$ -H(t) = \mathbb{1}_{t \ge 0}\cdot \lambda t -$$ - -@fig-cuhaz-exp shows some examples of exponential cumulative hazard functions. - -::: - ---- - -```{r, echo = FALSE} -#| fig-cap: "Examples of exponential cumulative hazard functions" -#| label: fig-cuhaz-exp -library(ggplot2) -ggplot() + - geom_abline( - aes(col = "0.5",intercept = 0, slope = 0.5)) + - geom_abline( - aes(col = "p = 1", intercept = 0, slope = 1)) + - geom_abline( - aes(col = "p = 1.5", intercept = 0, slope = 1.5)) + - geom_abline( - aes(col = "p = 5", intercept = 0, slope = 5)) + - theme_bw() + - ylab("H(t)") + - ylim(0,5) + - guides(col = guide_legend(title = expr(lambda))) + - xlab("Time (t)") + - xlim(0, 2.5) + - theme( - axis.title.x = - element_text( - angle = 0, - vjust = 1, - hjust = 1), - axis.title.y = - element_text( - angle = 0, - vjust = 1, - hjust = 1)) -``` - -### Some Key Mathematical Relationships among Survival Concepts - -#### Diagram: - -$$ -h(t) \xrightarrow[]{\int_{u=0}^t h(u)du} H(t) -\xrightarrow[]{\exp{-H(t)}} S(t) -\xrightarrow[]{1-S(t)} F(t) -$$ - -$$ -h(t) \xleftarrow[\deriv{t}H(t)]{} H(t) -\xleftarrow[-\log{S(t)}]{} S(t) -\xleftarrow[1-F(t)]{} F(t) -$$ - - ---- - -#### Identities: - -$$ -\begin{aligned} -S(t) &= 1 - F(t)\\ -&= \text{exp}\left\{-H(t)\right\}\\ -S'(t) &= -f(t)\\ -H(t) &= -\text{log}\left\{S(t)\right\}\\ -H'(t) &= h(t)\\ -h(t) &= \frac{f(t)}{S(t)}\\ - &= -\deriv{t}\log{S(t)} \\ -f(t) &= h(t)\cdot S(t)\\ -\end{aligned} -$$ - ---- +:::{#cor-surv-int-haz} +$$S(t) = \exp{-\int_{u=0}^t h(u)du}$${#eq-surv-int-haz} +::: + +--- + +::: notes +The integral in @eq-surv-int-haz is important enough to have its own name: **cumulative hazard**. +::: + +:::{#def-cumhaz} + +##### cumulative hazard + +The **cumulative hazard function** $H(t)$ is defined as: + +$$H(t) \eqdef \int_{u=0}^t h(u) du$$ + +::: + +As we will see below, $H(t)$ is tractable to estimate, and we can then +derive an estimate of the hazard function using an approximate derivative +of the estimated cumulative hazard. + +--- + +:::{#exm-exp-cumhaz} + +The cumulative hazard function of the exponential distribution family of +models is: + +$$ +H(t) = \mathbb{1}_{t \ge 0}\cdot \lambda t +$$ + +@fig-cuhaz-exp shows some examples of exponential cumulative hazard functions. + +::: + +--- + +```{r, echo = FALSE} +#| fig-cap: "Examples of exponential cumulative hazard functions" +#| label: fig-cuhaz-exp +library(ggplot2) +ggplot() + + geom_abline( + aes(col = "0.5",intercept = 0, slope = 0.5)) + + geom_abline( + aes(col = "p = 1", intercept = 0, slope = 1)) + + geom_abline( + aes(col = "p = 1.5", intercept = 0, slope = 1.5)) + + geom_abline( + aes(col = "p = 5", intercept = 0, slope = 5)) + + theme_bw() + + ylab("H(t)") + + ylim(0,5) + + guides(col = guide_legend(title = expr(lambda))) + + xlab("Time (t)") + + xlim(0, 2.5) + + theme( + axis.title.x = + element_text( + angle = 0, + vjust = 1, + hjust = 1), + axis.title.y = + element_text( + angle = 0, + vjust = 1, + hjust = 1)) +``` + +### Some Key Mathematical Relationships among Survival Concepts + +#### Diagram: + +$$ +h(t) \xrightarrow[]{\int_{u=0}^t h(u)du} H(t) +\xrightarrow[]{\exp{-H(t)}} S(t) +\xrightarrow[]{1-S(t)} F(t) +$$ -Some proofs (others left as exercises): - -$$ -\begin{aligned} -S'(t) &= \deriv{t}(1-F(t))\\ -&= -F'(t)\\ -&= -f(t)\\ -\end{aligned} -$$ - ---- - -$$ -\begin{aligned} -\deriv{t}\log{S(t)} -&= \frac{S'(t)}{S(t)}\\ -&= -\frac{f(t)}{S(t)}\\ -&= -h(t)\\ -\end{aligned} -$$ - ---- - -$$ -\begin{aligned} -H(t) -&\eqdef \int_{u=0}^t h(u) du\\ -&= \int_0^t -\deriv{u}\text{log}\left\{S(u)\right\} du\\ -&= \left[-\text{log}\left\{S(u)\right\}\right]_{u=0}^{u=t}\\ -&= \left[\text{log}\left\{S(u)\right\}\right]_{u=t}^{u=0}\\ -&= \text{log}\left\{S(0)\right\} - \text{log}\left\{S(t)\right\}\\ -&= \text{log}\left\{1\right\} - \text{log}\left\{S(t)\right\}\\ -&= 0 - \text{log}\left\{S(t)\right\}\\ -&=-\text{log}\left\{S(t)\right\} -\end{aligned} -$$ - ---- - -Corollary: - -$$S(t) = \text{exp}\left\{-H(t)\right\}$$ - ---- - -#### Example: Time to death the US in 2004 +$$ +h(t) \xleftarrow[\deriv{t}H(t)]{} H(t) +\xleftarrow[-\log{S(t)}]{} S(t) +\xleftarrow[1-F(t)]{} F(t) +$$ + + +--- + +#### Identities: + +$$ +\begin{aligned} +S(t) &= 1 - F(t)\\ +&= \text{exp}\left\{-H(t)\right\}\\ +S'(t) &= -f(t)\\ +H(t) &= -\text{log}\left\{S(t)\right\}\\ +H'(t) &= h(t)\\ +h(t) &= \frac{f(t)}{S(t)}\\ + &= -\deriv{t}\log{S(t)} \\ +f(t) &= h(t)\cdot S(t)\\ +\end{aligned} +$$ + +--- + +Some proofs (others left as exercises): + +$$ +\begin{aligned} +S'(t) &= \deriv{t}(1-F(t))\\ +&= -F'(t)\\ +&= -f(t)\\ +\end{aligned} +$$ + +--- + +$$ +\begin{aligned} +\deriv{t}\log{S(t)} +&= \frac{S'(t)}{S(t)}\\ +&= -\frac{f(t)}{S(t)}\\ +&= -h(t)\\ +\end{aligned} +$$ -The first day is the most dangerous: +--- -```{r, echo = FALSE} -#| fig-cap: "Daily Hazard Rates in 2004 for US Females" -#| fig-pos: "H" -#| fig-height: 6 - -# download `survexp.rda` from: -# paste0( -# "https://github.com/therneau/survival/raw/", -# "f3ac93704949ff26e07720b56f2b18ffa8066470/", -# "data/survexp.rda") - -#(newer versions of `survival` don't have the first-year breakdown; see: -# https://cran.r-project.org/web/packages/survival/news.html) +$$ +\begin{aligned} +H(t) +&\eqdef \int_{u=0}^t h(u) du\\ +&= \int_0^t -\deriv{u}\text{log}\left\{S(u)\right\} du\\ +&= \left[-\text{log}\left\{S(u)\right\}\right]_{u=0}^{u=t}\\ +&= \left[\text{log}\left\{S(u)\right\}\right]_{u=t}^{u=0}\\ +&= \text{log}\left\{S(0)\right\} - \text{log}\left\{S(t)\right\}\\ +&= \text{log}\left\{1\right\} - \text{log}\left\{S(t)\right\}\\ +&= 0 - \text{log}\left\{S(t)\right\}\\ +&=-\text{log}\left\{S(t)\right\} +\end{aligned} +$$ -fs::path( - here::here(), - "data", - "survexp.rda") |> - load() -s1 <- survexp.us[,"female","2004"] -age1 <- c( - 0.5/365.25, - 4/365.25, - 17.5/365.25, - 196.6/365.25, - 1:109+0.5) -s2 <- 365.25*s1[5:113] -s2 <- c(s1[1], 6*s1[2], 22*s1[3], 337.25*s1[4], s2) -cols <- rep(1,113) -cols[1] <- 2 -cols[2] <- 3 -cols[3] <- 4 - -plot(age1,s1,type="b",lwd=2,xlab="Age",ylab="Daily Hazard Rate",col=cols) - -text(10,.003,"First Day",col=2) -text(18,.00030,"Rest of First Week",col=3) -text(18,.00015,"Rest of First month",col=4) -``` +--- + +Corollary: + +$$S(t) = \text{exp}\left\{-H(t)\right\}$$ + +--- + +#### Example: Time to death the US in 2004 + +The first day is the most dangerous: + +```{r, echo = FALSE} +#| fig-cap: "Daily Hazard Rates in 2004 for US Females" +#| fig-pos: "H" +#| fig-height: 6 + +# download `survexp.rda` from: +# paste0( +# "https://github.com/therneau/survival/raw/", +# "f3ac93704949ff26e07720b56f2b18ffa8066470/", +# "data/survexp.rda") + +#(newer versions of `survival` don't have the first-year breakdown; see: +# https://cran.r-project.org/web/packages/survival/news.html) ---- - -Exercise: hypothesize why these curves differ where they do? - -```{r,echo = FALSE} -#| fig-cap: "Daily Hazard Rates in 2004 for US Males and Females 1-40" -#| fig-pos: "H" -yrs=1:40 -s1 <- survexp.us[5:113,"male","2004"] -s2 <- survexp.us[5:113,"female","2004"] - -age1 <- 1:109 - -plot(age1[yrs],s1[yrs],type="l",lwd=2,xlab="Age",ylab="Daily Hazard Rate") -lines(age1[yrs],s2[yrs],col=2,lwd=2) -legend(5,5e-6,c("Males","Females"),col=1:2,lwd=2) - -``` +fs::path( + here::here(), + "data", + "survexp.rda") |> + load() +s1 <- survexp.us[,"female","2004"] +age1 <- c( + 0.5/365.25, + 4/365.25, + 17.5/365.25, + 196.6/365.25, + 1:109+0.5) +s2 <- 365.25*s1[5:113] +s2 <- c(s1[1], 6*s1[2], 22*s1[3], 337.25*s1[4], s2) +cols <- rep(1,113) +cols[1] <- 2 +cols[2] <- 3 +cols[3] <- 4 ---- +plot(age1,s1,type="b",lwd=2,xlab="Age",ylab="Daily Hazard Rate",col=cols) -Exercise: compare and contrast this curve with the corresponding hazard -curve. - -```{r, echo = FALSE} -#| fig-cap: "Survival Curve in 2004 for US Females" -#| fig-pos: "H" +text(10,.003,"First Day",col=2) +text(18,.00030,"Rest of First Week",col=3) +text(18,.00015,"Rest of First month",col=4) +``` + +--- -s1 <- survexp.us[,"female","2004"] +Exercise: hypothesize why these curves differ where they do? -s2 <- 365.25*s1[5:113] -s2 <- c(s1[1], 6*s1[2], 21*s1[3], 337.25*s1[4], s2) -cs2 <- cumsum(s2) -age2 <- c(1/365.25, 7/365.25, 28/365.25, 1:110) -plot(age2,exp(-cs2),type="l",lwd=2,xlab="Age",ylab="Survival") - -``` - ---- - -### Likelihood with censoring - -If an event time $T$ is observed exactly as $T=t$, then the likelihood -of that observation is just its probability density function: +```{r,echo = FALSE} +#| fig-cap: "Daily Hazard Rates in 2004 for US Males and Females 1-40" +#| fig-pos: "H" +yrs=1:40 +s1 <- survexp.us[5:113,"male","2004"] +s2 <- survexp.us[5:113,"female","2004"] + +age1 <- 1:109 + +plot(age1[yrs],s1[yrs],type="l",lwd=2,xlab="Age",ylab="Daily Hazard Rate") +lines(age1[yrs],s2[yrs],col=2,lwd=2) +legend(5,5e-6,c("Males","Females"),col=1:2,lwd=2) + +``` -$$ -\begin{aligned} -\mathcal L(t) -&= p(T=t)\\ -&\eqdef f_T(t)\\ -&= h_T(t)S_T(t)\\ -\ell(t) -&\eqdef \text{log}\left\{\mathcal L(t)\right\}\\ -&= \text{log}\left\{h_T(t)S_T(t)\right\}\\ -&= \text{log}\left\{h_T(t)\right\} + \text{log}\left\{S_T(t)\right\}\\ -&= \text{log}\left\{h_T(t)\right\} - H_T(t)\\ -\end{aligned} -$$ - ---- - -If instead the event time $T$ is censored and only known to be after -time $y$, then the likelihood of that censored observation is instead -the survival function evaluated at the censoring time: - -$$ -\begin{aligned} -\mathcal L(y) -&=p_T(T>y)\\ -&\eqdef S_T(y)\\ -\ell(y) -&\eqdef \text{log}\left\{\mathcal L(y)\right\}\\ -&=\text{log}\left\{S(y)\right\}\\ -&=-H(y)\\ -\end{aligned} -$$ - ---- - -::: notes -What's written above is incomplete. We also observed whether or not the -observation was censored. Let $C$ denote the time when censoring would -occur (if the event did not occur first); let $f_C(y)$ and $S_C(y)$ be -the corresponding density and survival functions for the censoring -event. - -Let $Y$ denote the time when observation ended (either by censoring or -by the event of interest occurring), and let $D$ be an indicator -variable for the event occurring at $Y$ (so $D=0$ represents a censored -observation and $D=1$ represents an uncensored observation). In other -words, let $Y \eqdef \min(T,C)$ and -$D \eqdef \mathbb 1{\{T<=C\}}$. - -Then the complete likelihood of the observed data $(Y,D)$ is: -::: - -$$ -\begin{aligned} -\mathcal L(y,d) -&= p(Y=y, D=d)\\ -&= \left[p(T=y,C> y)\right]^d \cdot -\left[p(T>y,C=y)\right]^{1-d}\\ -\end{aligned} -$$ +--- + +Exercise: compare and contrast this curve with the corresponding hazard +curve. + +```{r, echo = FALSE} +#| fig-cap: "Survival Curve in 2004 for US Females" +#| fig-pos: "H" + +s1 <- survexp.us[,"female","2004"] + +s2 <- 365.25*s1[5:113] +s2 <- c(s1[1], 6*s1[2], 21*s1[3], 337.25*s1[4], s2) +cs2 <- cumsum(s2) +age2 <- c(1/365.25, 7/365.25, 28/365.25, 1:110) +plot(age2,exp(-cs2),type="l",lwd=2,xlab="Age",ylab="Survival") + +``` + +--- + +### Likelihood with censoring + +If an event time $T$ is observed exactly as $T=t$, then the likelihood +of that observation is just its probability density function: + +$$ +\begin{aligned} +\mathcal L(t) +&= p(T=t)\\ +&\eqdef f_T(t)\\ +&= h_T(t)S_T(t)\\ +\ell(t) +&\eqdef \text{log}\left\{\mathcal L(t)\right\}\\ +&= \text{log}\left\{h_T(t)S_T(t)\right\}\\ +&= \text{log}\left\{h_T(t)\right\} + \text{log}\left\{S_T(t)\right\}\\ +&= \text{log}\left\{h_T(t)\right\} - H_T(t)\\ +\end{aligned} +$$ + +--- + +If instead the event time $T$ is censored and only known to be after +time $y$, then the likelihood of that censored observation is instead +the survival function evaluated at the censoring time: + +$$ +\begin{aligned} +\mathcal L(y) +&=p_T(T>y)\\ +&\eqdef S_T(y)\\ +\ell(y) +&\eqdef \text{log}\left\{\mathcal L(y)\right\}\\ +&=\text{log}\left\{S(y)\right\}\\ +&=-H(y)\\ +\end{aligned} +$$ + +--- ---- - -::: notes -Typically, survival analyses assume that $C$ and $T$ are mutually -independent; this assumption is called "non-informative" censoring. - -Then the joint likelihood $p(Y,D)$ factors into the product -$p(Y), p(D)$, and the likelihood reduces to: -::: - -$$ -\begin{aligned} -\mathcal L(y,d) -&= \left[p(T=y,C> y)\right]^d\cdot -\left[p(T>y,C=y)\right]^{1-d}\\ -&= \left[p(T=y)p(C> y)\right]^d\cdot -\left[p(T>y)p(C=y)\right]^{1-d}\\ -&= \left[f_T(y)S_C(y)\right]^d\cdot -\left[S(y)f_C(y)\right]^{1-d}\\ -&= \left[f_T(y)^d S_C(y)^d\right]\cdot -\left[S_T(y)^{1-d}f_C(y)^{1-d}\right]\\ -&= \left(f_T(y)^d \cdot S_T(y)^{1-d}\right)\cdot -\left(f_C(y)^{1-d} \cdot S_C(y)^{d}\right) +::: notes +What's written above is incomplete. We also observed whether or not the +observation was censored. Let $C$ denote the time when censoring would +occur (if the event did not occur first); let $f_C(y)$ and $S_C(y)$ be +the corresponding density and survival functions for the censoring +event. + +Let $Y$ denote the time when observation ended (either by censoring or +by the event of interest occurring), and let $D$ be an indicator +variable for the event occurring at $Y$ (so $D=0$ represents a censored +observation and $D=1$ represents an uncensored observation). In other +words, let $Y \eqdef \min(T,C)$ and +$D \eqdef \mathbb 1{\{T<=C\}}$. + +Then the complete likelihood of the observed data $(Y,D)$ is: +::: + +$$ +\begin{aligned} +\mathcal L(y,d) +&= p(Y=y, D=d)\\ +&= \left[p(T=y,C> y)\right]^d \cdot +\left[p(T>y,C=y)\right]^{1-d}\\ \end{aligned} $$ --- ::: notes -The corresponding log-likelihood is: -::: +Typically, survival analyses assume that $C$ and $T$ are mutually +independent; this assumption is called "non-informative" censoring. -$$ -\begin{aligned} -\ell(y,d) -&= \text{log}\left\{\mathcal L(y,d) \right\}\\ -&= \text{log}\left\{ -\left(f_T(y)^d \cdot S_T(y)^{1-d}\right)\cdot -\left(f_C(y)^{1-d} \cdot S_C(y)^{d}\right) -\right\}\\ -&= \text{log}\left\{ -f_T(y)^d \cdot S_T(y)^{1-d} -\right\} -+ -\text{log}\left\{ -f_C(y)^{1-d} \cdot S_C(y)^{d} -\right\}\\ -\end{aligned} -$$ Let - -- $\theta_T$ represent the parameters of $p_T(t)$, -- $\theta_C$ represent the parameters of $p_C(c)$, -- $\theta = (\theta_T, \theta_C)$ be the combined vector of all - parameters. - ---- - -::: notes -The corresponding score function is: -::: - -$$ -\begin{aligned} -\ell'(y,d) -&= \deriv{\theta} -\left[ -\text{log}\left\{ +Then the joint likelihood $p(Y,D)$ factors into the product +$p(Y), p(D)$, and the likelihood reduces to: +::: + +$$ +\begin{aligned} +\mathcal L(y,d) +&= \left[p(T=y,C> y)\right]^d\cdot +\left[p(T>y,C=y)\right]^{1-d}\\ +&= \left[p(T=y)p(C> y)\right]^d\cdot +\left[p(T>y)p(C=y)\right]^{1-d}\\ +&= \left[f_T(y)S_C(y)\right]^d\cdot +\left[S(y)f_C(y)\right]^{1-d}\\ +&= \left[f_T(y)^d S_C(y)^d\right]\cdot +\left[S_T(y)^{1-d}f_C(y)^{1-d}\right]\\ +&= \left(f_T(y)^d \cdot S_T(y)^{1-d}\right)\cdot +\left(f_C(y)^{1-d} \cdot S_C(y)^{d}\right) +\end{aligned} +$$ + +--- + +::: notes +The corresponding log-likelihood is: +::: + +$$ +\begin{aligned} +\ell(y,d) +&= \text{log}\left\{\mathcal L(y,d) \right\}\\ +&= \text{log}\left\{ +\left(f_T(y)^d \cdot S_T(y)^{1-d}\right)\cdot +\left(f_C(y)^{1-d} \cdot S_C(y)^{d}\right) +\right\}\\ +&= \text{log}\left\{ f_T(y)^d \cdot S_T(y)^{1-d} \right\} + \text{log}\left\{ f_C(y)^{1-d} \cdot S_C(y)^{d} -\right\} -\right]\\ -&= -\left( -\deriv{\theta} -\text{log}\left\{ -f_T(y)^d \cdot S_T(y)^{1-d} -\right\} -\right) -+ -\left( -\deriv{\theta} -\text{log}\left\{ -f_C(y)^{1-d} \cdot S_C(y)^{d} -\right\} -\right)\\ -\end{aligned} -$$ - ---- - -::: notes -As long as $\theta_C$ and $\theta_T$ don't share any parameters, then if -censoring is non-informative, the partial derivative with respect to -$\theta_T$ is: -::: - -$$ -\begin{aligned} -\ell'_{\theta_T}(y,d) -&\eqdef \deriv{\theta_T}\ell(y,d)\\ -&= -\left( -\deriv{\theta_T} -\text{log}\left\{ -f_T(y)^d \cdot S_T(y)^{1-d} -\right\} -\right) -+ -\left( -\deriv{\theta_T} -\text{log}\left\{ -f_C(y)^{1-d} \cdot S_C(y)^{d} -\right\} -\right)\\ -&= -\left( -\deriv{\theta_T} -\text{log}\left\{ -f_T(y)^d \cdot S_T(y)^{1-d} -\right\} -\right) + 0\\ -&= -\deriv{\theta_T} -\text{log}\left\{ -f_T(y)^d \cdot S_T(y)^{1-d} -\right\}\\ -\end{aligned} -$$ - ---- - -::: notes -Thus, the MLE for $\theta_T$ won't depend on $\theta_C$, and we can -ignore the distribution of $C$ when estimating the parameters of -$f_T(t)=p(T=t)$. -::: - -Then: - -$$ -\begin{aligned} -\mathcal L(y,d) -&= f_T(y)^d \cdot S_T(y)^{1-d}\\ -&= \left(h_T(y)^d S_T(y)^d\right) \cdot S_T(y)^{1-d}\\ -&= h_T(y)^d \cdot S_T(y)^d \cdot S_T(y)^{1-d}\\ -&= h_T(y)^d \cdot S_T(y)\\ -&= S_T(y) \cdot h_T(y)^d \\ -\end{aligned} -$$ - -::: notes -That is, if the event occurred at time $y$ (i.e., if $d=1$), then the -likelihood of $(Y,D) = (y,d)$ is equal to the hazard function at $y$ -times the survival function at $y$. Otherwise, the likelihood is equal -to just the survival function at $y$. -::: +\right\}\\ +\end{aligned} +$$ Let + +- $\theta_T$ represent the parameters of $p_T(t)$, +- $\theta_C$ represent the parameters of $p_C(c)$, +- $\theta = (\theta_T, \theta_C)$ be the combined vector of all + parameters. + +--- + +::: notes +The corresponding score function is: +::: + +$$ +\begin{aligned} +\ell'(y,d) +&= \deriv{\theta} +\left[ +\text{log}\left\{ +f_T(y)^d \cdot S_T(y)^{1-d} +\right\} ++ +\text{log}\left\{ +f_C(y)^{1-d} \cdot S_C(y)^{d} +\right\} +\right]\\ +&= +\left( +\deriv{\theta} +\text{log}\left\{ +f_T(y)^d \cdot S_T(y)^{1-d} +\right\} +\right) ++ +\left( +\deriv{\theta} +\text{log}\left\{ +f_C(y)^{1-d} \cdot S_C(y)^{d} +\right\} +\right)\\ +\end{aligned} +$$ + +--- + +::: notes +As long as $\theta_C$ and $\theta_T$ don't share any parameters, then if +censoring is non-informative, the partial derivative with respect to +$\theta_T$ is: +::: + +$$ +\begin{aligned} +\ell'_{\theta_T}(y,d) +&\eqdef \deriv{\theta_T}\ell(y,d)\\ +&= +\left( +\deriv{\theta_T} +\text{log}\left\{ +f_T(y)^d \cdot S_T(y)^{1-d} +\right\} +\right) ++ +\left( +\deriv{\theta_T} +\text{log}\left\{ +f_C(y)^{1-d} \cdot S_C(y)^{d} +\right\} +\right)\\ +&= +\left( +\deriv{\theta_T} +\text{log}\left\{ +f_T(y)^d \cdot S_T(y)^{1-d} +\right\} +\right) + 0\\ +&= +\deriv{\theta_T} +\text{log}\left\{ +f_T(y)^d \cdot S_T(y)^{1-d} +\right\}\\ +\end{aligned} +$$ + +--- ---- - -::: notes -The corresponding log-likelihood is: +::: notes +Thus, the MLE for $\theta_T$ won't depend on $\theta_C$, and we can +ignore the distribution of $C$ when estimating the parameters of +$f_T(t)=p(T=t)$. ::: -$$ -\begin{aligned} -\ell(y,d) -&=\text{log}\left\{\mathcal L(y,d)\right\}\\ -&= \text{log}\left\{S_T(y) \cdot h_T(y)^d\right\}\\ -&= \text{log}\left\{S_T(y)\right\} + \text{log}\left\{h_T(y)^d\right\}\\ -&= \text{log}\left\{S_T(y)\right\} + d\cdot \text{log}\left\{h_T(y)\right\}\\ -&= -H_T(y) + d\cdot \text{log}\left\{h_T(y)\right\}\\ -\end{aligned} -$$ - -::: notes -In other words, the log-likelihood contribution from a single -observation $(Y,D) = (y,d)$ is equal to the negative cumulative hazard -at $y$, plus the log of the hazard at $y$ if the event occurred at time -$y$. -::: - -## Parametric Models for Time-to-Event Outcomes +Then: + +$$ +\begin{aligned} +\mathcal L(y,d) +&= f_T(y)^d \cdot S_T(y)^{1-d}\\ +&= \left(h_T(y)^d S_T(y)^d\right) \cdot S_T(y)^{1-d}\\ +&= h_T(y)^d \cdot S_T(y)^d \cdot S_T(y)^{1-d}\\ +&= h_T(y)^d \cdot S_T(y)\\ +&= S_T(y) \cdot h_T(y)^d \\ +\end{aligned} +$$ + +::: notes +That is, if the event occurred at time $y$ (i.e., if $d=1$), then the +likelihood of $(Y,D) = (y,d)$ is equal to the hazard function at $y$ +times the survival function at $y$. Otherwise, the likelihood is equal +to just the survival function at $y$. +::: -### Exponential Distribution +--- -- The exponential distribution is the base distribution for survival - analysis. -- The distribution has a constant hazard $\lambda$ -- The mean survival time is $\lambda^{-1}$ - ---- - -#### Mathematical details of exponential distribution - -$$ -\begin{aligned} -f(t) &= \lambda \text{e}^{-\lambda t}\\ -E(t) &= \lambda^{-1}\\ -Var(t) &= \lambda^{-2}\\ -F(t) &= 1-\text{e}^{-\lambda x}\\ -S(t)&= \text{e}^{-\lambda x}\\ -\ln(S(t))&=-\lambda x\\ -h(t) &= -\frac{f(t)}{S(t)} = -\frac{\lambda \text{e}^{-\lambda t}}{\text{e}^{-\lambda t}}=\lambda -\end{aligned} -$$ - ---- - -#### Estimating $\lambda$ {.smaller} - -- Suppose we have $m$ exponential survival times of - $t_1, t_2,\ldots,t_m$ and $k$ right-censored values at - $u_1,u_2,\ldots,u_k$. - -- A survival time of $t_i=10$ means that subject $i$ died at time 10. - A right-censored time $u_i=10$ means that at time 10, subject $i$ - was still alive and that we have no further follow-up. +::: notes +The corresponding log-likelihood is: +::: + +$$ +\begin{aligned} +\ell(y,d) +&=\text{log}\left\{\mathcal L(y,d)\right\}\\ +&= \text{log}\left\{S_T(y) \cdot h_T(y)^d\right\}\\ +&= \text{log}\left\{S_T(y)\right\} + \text{log}\left\{h_T(y)^d\right\}\\ +&= \text{log}\left\{S_T(y)\right\} + d\cdot \text{log}\left\{h_T(y)\right\}\\ +&= -H_T(y) + d\cdot \text{log}\left\{h_T(y)\right\}\\ +\end{aligned} +$$ + +::: notes +In other words, the log-likelihood contribution from a single +observation $(Y,D) = (y,d)$ is equal to the negative cumulative hazard +at $y$, plus the log of the hazard at $y$ if the event occurred at time +$y$. +::: + +## Parametric Models for Time-to-Event Outcomes + +### Exponential Distribution + +- The exponential distribution is the base distribution for survival + analysis. +- The distribution has a constant hazard $\lambda$ +- The mean survival time is $\lambda^{-1}$ + +--- -- For the moment we will assume that the survival distribution is - exponential and that all the subjects have the same parameter - $\lambda$. - -We have $m$ exponential survival times of $t_1, t_2,\ldots,t_m$ and $k$ -right-censored values at $u_1,u_2,\ldots,u_k$. The log-likelihood of an -observed survival time $t_i$ is $$ -\text{log}\left\{\lambda \text{e}^{-\lambda t_i}\right\} = -\text{log}\left\{\lambda\right\}-\lambda t_i -$$ and the likelihood of a censored value is the probability of that -outcome (survival greater than $u_j$) so the log-likelihood is - +#### Mathematical details of exponential distribution + +$$ +\begin{aligned} +f(t) &= \lambda \text{e}^{-\lambda t}\\ +E(t) &= \lambda^{-1}\\ +Var(t) &= \lambda^{-2}\\ +F(t) &= 1-\text{e}^{-\lambda x}\\ +S(t)&= \text{e}^{-\lambda x}\\ +\ln(S(t))&=-\lambda x\\ +h(t) &= -\frac{f(t)}{S(t)} = -\frac{\lambda \text{e}^{-\lambda t}}{\text{e}^{-\lambda t}}=\lambda +\end{aligned} $$ -\ba -\ell_j(\lambda) &= \text{log}\left\{\lambda \text{e}^{u_j}\right\} -\\ &= -\lambda u_j -\ea -$$ - ---- - -:::{#thm-mle-exp} -Let $T=\sum t_i$ and $U=\sum u_j$. Then: - -$$ -\ell(\lambda) = \frac{m}{T+U} -$$ {#eq-mle-exp} -::: - ---- - -::: proof - -$$ -\begin{aligned} -\ell(\lambda) &= \sum_{i=1}^m( \ln \lambda-\lambda t_i) + \sum_{j=1}^k (-\lambda u_j)\\ -&= m \ln \lambda -(T+U)\lambda\\ -\ell'(\lambda) -&=m\lambda^{-1} -(T+U)\\ -\hat{\lambda} &= \frac{m}{T+U} -\ea -$$ -::: - ---- - -$$ -\ba -\ell''&=-m/\lambda^2\\ -&< 0\\ -\hat E[T] &= \hat\lambda^{-1}\\ -&= \frac{T+U}{m} -\end{aligned} -$$ + +--- + +#### Estimating $\lambda$ {.smaller} + +- Suppose we have $m$ exponential survival times of + $t_1, t_2,\ldots,t_m$ and $k$ right-censored values at + $u_1,u_2,\ldots,u_k$. + +- A survival time of $t_i=10$ means that subject $i$ died at time 10. + A right-censored time $u_i=10$ means that at time 10, subject $i$ + was still alive and that we have no further follow-up. + +- For the moment we will assume that the survival distribution is + exponential and that all the subjects have the same parameter + $\lambda$. + +We have $m$ exponential survival times of $t_1, t_2,\ldots,t_m$ and $k$ +right-censored values at $u_1,u_2,\ldots,u_k$. The log-likelihood of an +observed survival time $t_i$ is $$ +\text{log}\left\{\lambda \text{e}^{-\lambda t_i}\right\} = +\text{log}\left\{\lambda\right\}-\lambda t_i +$$ and the likelihood of a censored value is the probability of that +outcome (survival greater than $u_j$) so the log-likelihood is + +$$ +\ba +\ell_j(\lambda) &= \text{log}\left\{\lambda \text{e}^{u_j}\right\} +\\ &= -\lambda u_j +\ea +$$ + +--- + +:::{#thm-mle-exp} +Let $T=\sum t_i$ and $U=\sum u_j$. Then: + +$$ +\hat{\lambda}_{ML} = \frac{m}{T+U} +$$ {#eq-mle-exp} +::: --- -#### Fisher Information and Standard Error +::: proof $$ \begin{aligned} -E[-\ell''] -& = m/\lambda^2\\ -\text{Var}\left(\hat\lambda\right) -&\approx \left(E[-\ell'']\right)^{-1}\\ -&=\lambda^2/m\\ -\text{SE}\left(\hat\lambda\right) -&= \sqrt{\text{Var}\left(\hat\lambda\right)}\\ -&\approx \lambda/\sqrt{m} -\end{aligned} -$$ +\ell(\lambda) &= \sum_{i=1}^m( \ln \lambda-\lambda t_i) + \sum_{j=1}^k (-\lambda u_j)\\ +&= m \ln \lambda -(T+U)\lambda\\ +\ell'(\lambda) +&=m\lambda^{-1} -(T+U)\\ +\hat{\lambda} &= \frac{m}{T+U} +\ea +$$ +::: + +--- -::: notes -$\hat\lambda$ depends on the censoring times of the censored -observations, but $\text{Var}\left(\hat\lambda\right)$ only depends on -the number of uncensored observations, $m$, and not on the number of -censored observations ($k$). -::: - ---- +$$ +\ba +\ell''&=-m/\lambda^2\\ +&< 0\\ +\hat E[T] &= \hat\lambda^{-1}\\ +&= \frac{T+U}{m} +\end{aligned} +$$ -### Other Parametric Survival Distributions +--- -- Any density on $[0,\infty)$ can be a survival distribution, but the - most useful ones are all skew right. -- The most frequently used generalization of the exponential is the [Weibull](probability.qmd#sec-weibull). -- Other common choices are the gamma, log-normal, log-logistic, - Gompertz, inverse Gaussian, and Pareto. -- Most of what we do going forward is non-parametric or - semi-parametric, but sometimes these parametric distributions - provide a useful approach. - -## Nonparametric Survival Analysis - -### Basic ideas - -- Mostly, we work without a parametric model. +#### Fisher Information and Standard Error + +$$ +\begin{aligned} +E[-\ell''] +& = m/\lambda^2\\ +\text{Var}\left(\hat\lambda\right) +&\approx \left(E[-\ell'']\right)^{-1}\\ +&=\lambda^2/m\\ +\text{SE}\left(\hat\lambda\right) +&= \sqrt{\text{Var}\left(\hat\lambda\right)}\\ +&\approx \lambda/\sqrt{m} +\end{aligned} +$$ -- The first task is to estimate a survival function from data listing - survival times, and censoring times for censored data. - -- For example one patient may have relapsed at 10 months. Another - might have been followed for 32 months without a relapse having - occurred (censored). +::: notes +$\hat\lambda$ depends on the censoring times of the censored +observations, but $\text{Var}\left(\hat\lambda\right)$ only depends on +the number of uncensored observations, $m$, and not on the number of +censored observations ($k$). +::: -- The minimum information we need for each patient is a time and a - censoring variable which is 1 if the event occurred at the indicated - time and 0 if this is a censoring time. +--- + +### Other Parametric Survival Distributions -## Example: clinical trial for pediatric acute leukemia - -### Overview of study {.smaller} - -This is from a clinical trial in 1963 for 6-MP treatment vs. placebo for -Acute Leukemia in 42 children. - -- Pairs of children: +- Any density on $[0,\infty)$ can be a survival distribution, but the + most useful ones are all skew right. +- The most frequently used generalization of the exponential is the [Weibull](probability.qmd#sec-weibull). +- Other common choices are the gamma, log-normal, log-logistic, + Gompertz, inverse Gaussian, and Pareto. +- Most of what we do going forward is non-parametric or + semi-parametric, but sometimes these parametric distributions + provide a useful approach. - - matched by remission status at the time of treatment (`remstat`: - `1` = partial, `2` = complete) - - randomized to 6-MP (exit times in `t2`) or placebo (exit times - in `t1`) - -- Followed until relapse or end of study. - -- All of the placebo group relapsed, but some of the 6-MP group were - censored (which means they were still in remission); indicated by - `relapse` variable (`0` = censored, `1` = relapse). - -- 6-MP = 6-Mercaptopurine (Purinethol) is an anti-cancer - ("antineoplastic" or "cytotoxic") chemotherapy drug used currently - for Acute lymphoblastic leukemia (ALL). It is classified as an - antimetabolite. - -### Study design {.smaller} - -- Clinical trial in 1963 for 6-MP treatment vs. placebo for Acute Leukemia -in 42 children. -- Pairs of children: - - matched by remission status at the time of treatment (`remstat`) - - `remstat` = 1: partial - - `remstat` = 2: complete - - randomized to 6-MP (exit time: `t2`) or placebo (`t1`). -- Followed until relapse or end of study. - - All of the placebo group relapsed, - - Some of the 6-MP group were censored. - ---- +## Nonparametric Survival Analysis + +### Basic ideas + +- Mostly, we work without a parametric model. + +- The first task is to estimate a survival function from data listing + survival times, and censoring times for censored data. + +- For example one patient may have relapsed at 10 months. Another + might have been followed for 32 months without a relapse having + occurred (censored). + +- The minimum information we need for each patient is a time and a + censoring variable which is 1 if the event occurred at the indicated + time and 0 if this is a censoring time. + +## Example: clinical trial for pediatric acute leukemia + +### Overview of study {.smaller} + +This is from a clinical trial in 1963 for 6-MP treatment vs. placebo for +Acute Leukemia in 42 children. + +- Pairs of children: + + - matched by remission status at the time of treatment (`remstat`: + `1` = partial, `2` = complete) + - randomized to 6-MP (exit times in `t2`) or placebo (exit times + in `t1`) -```{r} -#| tbl-cap: "`drug6mp` pediatric acute leukemia data" -#| label: tbl-drug6mp -library(KMsurv) -data(drug6mp) -drug6mp = drug6mp |> as_tibble() |> print() -``` - -### Data documentation for `drug6mp` - -```{r, printr.help.sections = c("description", "format")} -#| fig-cap: Data documentation for `drug6mp` -#| label: fig-drug6mp-helpdoc -# library(printr) # inserts help-file output into markdown output -library(KMsurv) -?drug6mp -``` - -### Descriptive Statistics {.smaller} - -```{r} -#| tbl-cap: "Summary statistics for `drug6mp` data" -#| label: tbl-drug6mp-summary -summary(drug6mp) -``` - -::: notes - -- The average time in each group is not useful. Some of the 6-MP - patients have not relapsed at the time recorded, while all of the - placebo patients have relapsed. -- The median time is not really useful either because so many of the - 6-MP patients have not relapsed (12/21). -- Both are biased down in the 6-MP group. Remember that lower times - are worse since they indicate sooner recurrence. -::: - -### Exponential model - -::: notes -- We *can* compute the hazard rate, assuming an exponential model: -number of relapses divided by the sum of the exit times (@eq-mle-exp). -::: +- Followed until relapse or end of study. + +- All of the placebo group relapsed, but some of the 6-MP group were + censored (which means they were still in remission); indicated by + `relapse` variable (`0` = censored, `1` = relapse). + +- 6-MP = 6-Mercaptopurine (Purinethol) is an anti-cancer + ("antineoplastic" or "cytotoxic") chemotherapy drug used currently + for Acute lymphoblastic leukemia (ALL). It is classified as an + antimetabolite. + +### Study design {.smaller} + +- Clinical trial in 1963 for 6-MP treatment vs. placebo for Acute Leukemia +in 42 children. +- Pairs of children: + - matched by remission status at the time of treatment (`remstat`) + - `remstat` = 1: partial + - `remstat` = 2: complete + - randomized to 6-MP (exit time: `t2`) or placebo (`t1`). +- Followed until relapse or end of study. + - All of the placebo group relapsed, + - Some of the 6-MP group were censored. + +--- + +```{r} +#| tbl-cap: "`drug6mp` pediatric acute leukemia data" +#| label: tbl-drug6mp +library(KMsurv) +data(drug6mp) +drug6mp = drug6mp |> as_tibble() |> print() +``` + +### Data documentation for `drug6mp` + +```{r, printr.help.sections = c("description", "format")} +#| fig-cap: Data documentation for `drug6mp` +#| label: fig-drug6mp-helpdoc +# library(printr) # inserts help-file output into markdown output +library(KMsurv) +?drug6mp +``` + +### Descriptive Statistics {.smaller} -$$\hat\lambda = \frac{\sumin D_i}{\sumin Y_i}$$ - -::: notes -- For the placebo, that is just the reciprocal of the mean time: -::: -$$ -\ba -\hat \lambda_{\text{placebo}} -&= \frac{\sumin D_i}{\sumin Y_i} -\\ &= \frac{\sumin 1}{\sumin Y_i} -\\ &= \frac{n}{\sumin Y_i} -\\ &= \frac{1}{\bar{Y}} -\\ &= \frac{1}{`r drug6mp |> pull(t1) |> mean()`} -\\ &= `r 1/(drug6mp |> pull(t1) |> mean())` -\ea -$$ - ---- +```{r} +#| tbl-cap: "Summary statistics for `drug6mp` data" +#| label: tbl-drug6mp-summary +summary(drug6mp) +``` + +::: notes + +- The average time in each group is not useful. Some of the 6-MP + patients have not relapsed at the time recorded, while all of the + placebo patients have relapsed. +- The median time is not really useful either because so many of the + 6-MP patients have not relapsed (12/21). +- Both are biased down in the 6-MP group. Remember that lower times + are worse since they indicate sooner recurrence. +::: -- For the 6-MP group, $\hat\lambda = 9/359 = 0.025$ +### Exponential model -$$ -\ba -\hat \lambda_{\text{6-MP}} -&= \frac{\sumin D_i}{\sumin Y_i} -\\ &= \frac{9}{359} -\\ &= `r 9/359` -\ea -$$ - -- The estimated hazard in the placebo group is 4.6 times as - large as in the 6-MP group (assuming the hazard is constant over time). - - -## The Kaplan-Meier Product Limit Estimator - -### Estimating survival in datasets without censoring - -::: notes -In the `drug6mp` dataset, the estimated survival function for the placebo patients is easy to compute. -For any time $t$ in months, $S(t)$ is the fraction of patients with times greater than $t$: -::: +::: notes +- We *can* compute the hazard rate, assuming an exponential model: +number of relapses divided by the sum of the exit times (@eq-mle-exp). +::: + +$$\hat\lambda = \frac{\sumin D_i}{\sumin Y_i}$$ + +::: notes +- For the placebo, that is just the reciprocal of the mean time: +::: +$$ +\ba +\hat \lambda_{\text{placebo}} +&= \frac{\sumin D_i}{\sumin Y_i} +\\ &= \frac{\sumin 1}{\sumin Y_i} +\\ &= \frac{n}{\sumin Y_i} +\\ &= \frac{1}{\bar{Y}} +\\ &= \frac{1}{`r drug6mp |> pull(t1) |> mean()`} +\\ &= `r 1/(drug6mp |> pull(t1) |> mean())` +\ea +$$ -```{r} -``` - - -### Estimating survival in datasets with censoring - -- For the 6-MP patients, we cannot ignore the censored data because we - know that the time to relapse is greater than the censoring time. - -- For any time $t$ in months, we know that 6-MP patients with times - greater than $t$ have not relapsed, and those with relapse time less - than $t$ have relapsed, but we don't know if patients with censored - time less than $t$ have relapsed or not. +--- + +- For the 6-MP group, $\hat\lambda = 9/359 = 0.025$ + +$$ +\ba +\hat \lambda_{\text{6-MP}} +&= \frac{\sumin D_i}{\sumin Y_i} +\\ &= \frac{9}{359} +\\ &= `r 9/359` +\ea +$$ + +- The estimated hazard in the placebo group is 4.6 times as + large as in the 6-MP group (assuming the hazard is constant over time). -- The procedure we usually use is the Kaplan-Meier product-limit - estimator of the survival function. + +## The Kaplan-Meier Product Limit Estimator -- The Kaplan-Meier estimator is a step function (like the empirical - cdf), which changes value only at the event times, not at the - censoring times. - -- At each event time $t$, we compute the at-risk group size $Y$, which - is all those observations whose event time or censoring time is at - least $t$. - -- If $d$ of the observations have an event time (not a censoring time) - of $t$, then the group of survivors immediately following time $t$ - is reduced by the fraction $$\frac{Y-d}{Y}=1-\frac{d}{Y}$$ +### Estimating survival in datasets without censoring + +::: notes +In the `drug6mp` dataset, the estimated survival function for the placebo patients is easy to compute. +For any time $t$ in months, $S(t)$ is the fraction of patients with times greater than $t$: +::: + +```{r} +``` ---- - -:::{#def-KM-estimator} - -#### Kaplan-Meier Product-Limit Estimator of Survival Function + +### Estimating survival in datasets with censoring + +- For the 6-MP patients, we cannot ignore the censored data because we + know that the time to relapse is greater than the censoring time. -If the event times are $t_i$ with events per time of $d_i$ ($1\le i \le k$), -then the **Kaplan-Meier Product-Limit Estimator** -of the [survival function](@def-surv-fn) is: - -$$\hat S(t) = \prod_{t_i < t} \sb{\frac{1-d_i}{Y_i}}$${#eq-km-surv-est} - -where $Y_i$ is the set of observations whose time (event or censored) is -$\ge t_i$, the group at risk at time $t_i$. - -::: - ---- - -If there are no censored data, and there are $n$ data points, then just -after (say) the third event time +- For any time $t$ in months, we know that 6-MP patients with times + greater than $t$ have not relapsed, and those with relapse time less + than $t$ have relapsed, but we don't know if patients with censored + time less than $t$ have relapsed or not. + +- The procedure we usually use is the Kaplan-Meier product-limit + estimator of the survival function. + +- The Kaplan-Meier estimator is a step function (like the empirical + cdf), which changes value only at the event times, not at the + censoring times. + +- At each event time $t$, we compute the at-risk group size $Y$, which + is all those observations whose event time or censoring time is at + least $t$. -$$ -\begin{aligned} -\hat S(t) -&= \prod_{t_i < t}\sb{1-\frac{d_i}{Y_i}} -\\ &= \sb{\frac{n-d_1}{n}} \sb{\frac{n-d_1-d_2}{n-d_1}} \sb{\frac{n-d_1-d_2-d_3}{n-d_1-d_2}} -\\ &= \frac{n-d_1-d_2-d_3}{n} -\\ &=1-\frac{d_1+d_2+d_3}{n} -\\ &=1-\hat F(t) -\end{aligned} -$$ - -where $\hat F(t)$ is the usual empirical CDF estimate. - -### Kaplan-Meier curve for `drug6mp` data - -Here is the Kaplan-Meier estimated survival curve for the patients who -received 6-MP in the `drug6mp` dataset (we will see code to produce -figures like this one shortly): +- If $d$ of the observations have an event time (not a censoring time) + of $t$, then the group of survivors immediately following time $t$ + is reduced by the fraction $$\frac{Y-d}{Y}=1-\frac{d}{Y}$$ + +--- + +:::{#def-KM-estimator} + +#### Kaplan-Meier Product-Limit Estimator of Survival Function + +If the event times are $t_i$ with events per time of $d_i$ ($1\le i \le k$), +then the **Kaplan-Meier Product-Limit Estimator** +of the [survival function](@def-surv-fn) is: + +$$\hat S(t) = \prod_{t_i < t} \sb{\frac{1-d_i}{Y_i}}$${#eq-km-surv-est} + +where $Y_i$ is the set of observations whose time (event or censored) is +$\ge t_i$, the group at risk at time $t_i$. -```{r} -#| fig-cap: "Kaplan-Meier Survival Curve for 6-MP Patients" -#| label: fig-KM-mp6 -# | echo: false +::: + +--- + +:::{#thm-KM-est-no-cens} +#### Kaplan-Meier Estimate with No Censored Observations -require(KMsurv) -data(drug6mp) -library(dplyr) -library(survival) - -drug6mp_km_model1 = - drug6mp |> - mutate(surv = Surv(t2, relapse)) |> - survfit(formula = surv ~ 1, data = _) - -library(ggfortify) -drug6mp_km_model1 |> - autoplot( - mark.time = TRUE, - conf.int = FALSE) + - expand_limits(y = 0) + - xlab('Time since diagnosis (months)') + - ylab("KM Survival Curve") - -``` - -### Kaplan-Meier calculations {.smaller} - -Let's compute these estimates and build the chart by hand: - -```{r} -library(KMsurv) -library(dplyr) -data(drug6mp) - -drug6mp.v2 = - drug6mp |> - as_tibble() |> - mutate( - remstat = remstat |> - case_match( - 1 ~ "partial", - 2 ~ "complete" - ), - # renaming to "outcome" while relabeling is just a style choice: - outcome = relapse |> - case_match( - 0 ~ "censored", - 1 ~ "relapsed" - ) - ) - -km.6mp = - drug6mp.v2 |> - summarize( - .by = t2, - Relapses = sum(outcome == "relapsed"), - Censored = sum(outcome == "censored")) |> - # here we add a start time row, so the graph starts at time 0: - bind_rows( - tibble( - t2 = 0, - Relapses = 0, - Censored = 0) - ) |> - # sort in time order: - arrange(t2) |> - mutate( - Exiting = Relapses + Censored, - `Study Size` = sum(Exiting), - Exited = cumsum(Exiting) |> dplyr::lag(default = 0), - `At Risk` = `Study Size` - Exited, - Hazard = Relapses / `At Risk`, - `KM Factor` = 1 - Hazard, - `Cumulative Hazard` = cumsum(`Hazard`), - `KM Survival Curve` = cumprod(`KM Factor`) - ) - -library(pander) -pander(km.6mp) -``` - ---- - -#### Summary - -For the 6-MP patients at time 6 months, there are 21 patients at risk. -At $t=6$ there are 3 relapses and 1 censored observations. - -The Kaplan-Meier factor is $(21-3)/21 = 0.857$. The number at risk for -the next time ($t=7$) is $21-3-1=17$. - -At time 7 months, there are 17 patients at risk. At $t=7$ there is 1 -relapse and 0 censored observations. The Kaplan-Meier factor is -$(17-1)/17 = 0.941$. The Kaplan Meier estimate is -$0.857\times0.941=0.807$. The number at risk for the next time ($t=9$) -is $17-1=16$. - ---- - -Now, let's graph this estimated survival curve using `ggplot()`: - -```{r "estimated survival curve"} -#| label: fig-km-by-hand -#| fig-cap: "KM curve for 6MP patients, calculated by hand" -library(ggplot2) -conflicts_prefer(dplyr::filter) -km.6mp |> - ggplot(aes(x = t2, y = `KM Survival Curve`)) + - geom_step() + - geom_point(data = km.6mp |> filter(Censored > 0), shape = 3) + - expand_limits(y = c(0,1), x = 0) + - xlab('Time since diagnosis (months)') + - ylab("KM Survival Curve") + - scale_y_continuous(labels = scales::percent) -``` +If there are no censored data, and there are $n$ data points, then just +after (say) the third event time + +$$ +\begin{aligned} +\hat S(t) +&= \prod_{t_i < t}\sb{1-\frac{d_i}{Y_i}} +\\ &= \sb{\frac{n-d_1}{n}} \sb{\frac{n-d_1-d_2}{n-d_1}} \sb{\frac{n-d_1-d_2-d_3}{n-d_1-d_2}} +\\ &= \frac{n-d_1-d_2-d_3}{n} +\\ &=1-\frac{d_1+d_2+d_3}{n} +\\ &=1-\hat F(t) +\end{aligned} +$$ + +where $\hat F(t)$ is the usual empirical CDF estimate. + +::: + +### Kaplan-Meier curve for `drug6mp` data + +Here is the Kaplan-Meier estimated survival curve for the patients who +received 6-MP in the `drug6mp` dataset (we will see code to produce +figures like this one shortly): + +```{r} +#| fig-cap: "Kaplan-Meier Survival Curve for 6-MP Patients" +#| label: fig-KM-mp6 +# | echo: false + +require(KMsurv) +data(drug6mp) +library(dplyr) +library(survival) + +drug6mp_km_model1 = + drug6mp |> + mutate(surv = Surv(t2, relapse)) |> + survfit(formula = surv ~ 1, data = _) + +library(ggfortify) +drug6mp_km_model1 |> + autoplot( + mark.time = TRUE, + conf.int = FALSE) + + expand_limits(y = 0) + + xlab('Time since diagnosis (months)') + + ylab("KM Survival Curve") + +``` + +### Kaplan-Meier calculations {.smaller} + +Let's compute these estimates and build the chart by hand: + +```{r} +library(KMsurv) +library(dplyr) +data(drug6mp) + +drug6mp.v2 = + drug6mp |> + as_tibble() |> + mutate( + remstat = remstat |> + case_match( + 1 ~ "partial", + 2 ~ "complete" + ), + # renaming to "outcome" while relabeling is just a style choice: + outcome = relapse |> + case_match( + 0 ~ "censored", + 1 ~ "relapsed" + ) + ) + +km.6mp = + drug6mp.v2 |> + summarize( + .by = t2, + Relapses = sum(outcome == "relapsed"), + Censored = sum(outcome == "censored")) |> + # here we add a start time row, so the graph starts at time 0: + bind_rows( + tibble( + t2 = 0, + Relapses = 0, + Censored = 0) + ) |> + # sort in time order: + arrange(t2) |> + mutate( + Exiting = Relapses + Censored, + `Study Size` = sum(Exiting), + Exited = cumsum(Exiting) |> dplyr::lag(default = 0), + `At Risk` = `Study Size` - Exited, + Hazard = Relapses / `At Risk`, + `KM Factor` = 1 - Hazard, + `Cumulative Hazard` = cumsum(`Hazard`), + `KM Survival Curve` = cumprod(`KM Factor`) + ) + +library(pander) +pander(km.6mp) +``` + +--- + +#### Summary -## Using the `survival` package in R - -We don't have to do these calculations by hand every time; the -`survival` package and several others have functions available to -automate many of these tasks (full list: -<https://cran.r-project.org/web/views/Survival.html>). - -### The `Surv` function - -To use the `survival` package, the first step is telling R how to -combine the exit time and exit reason (censoring versus event) columns. -The `Surv()` function accomplishes this task. - -#### Example: `Surv()` with `drug6mp` data - -```{r} -#| code-fold: show -#| code-line-numbers: "5-7" -library(survival) -drug6mp.v3 = - drug6mp.v2 |> - mutate( - surv2 = Surv( - time = t2, - event = (outcome == "relapsed"))) - -print(drug6mp.v3) - -``` - -The output of `Surv()` is a vector of objects with class `Surv`. When we -print this vector: - -- observations where the event was observed are printed as the event - time (for example, `surv2 = 10` on line 1) +For the 6-MP patients at time 6 months, there are 21 patients at risk. +At $t=6$ there are 3 relapses and 1 censored observations. + +The Kaplan-Meier factor is $(21-3)/21 = 0.857$. The number at risk for +the next time ($t=7$) is $21-3-1=17$. + +At time 7 months, there are 17 patients at risk. At $t=7$ there is 1 +relapse and 0 censored observations. The Kaplan-Meier factor is +$(17-1)/17 = 0.941$. The Kaplan Meier estimate is +$0.857\times0.941=0.807$. The number at risk for the next time ($t=9$) +is $17-1=16$. + +--- + +Now, let's graph this estimated survival curve using `ggplot()`: + +```{r "estimated survival curve"} +#| label: fig-km-by-hand +#| fig-cap: "KM curve for 6MP patients, calculated by hand" +library(ggplot2) +conflicts_prefer(dplyr::filter) +km.6mp |> + ggplot(aes(x = t2, y = `KM Survival Curve`)) + + geom_step() + + geom_point(data = km.6mp |> filter(Censored > 0), shape = 3) + + expand_limits(y = c(0,1), x = 0) + + xlab('Time since diagnosis (months)') + + ylab("KM Survival Curve") + + scale_y_continuous(labels = scales::percent) +``` + +## Using the `survival` package in R + +We don't have to do these calculations by hand every time; the +`survival` package and several others have functions available to +automate many of these tasks (full list: +<https://cran.r-project.org/web/views/Survival.html>). -- observations where the event was right-censored are printed as the - censoring time with a plus sign (`+`; for example, `surv2 = 32+` on - line 3). - -### The `survfit` function +### The `Surv` function + +To use the `survival` package, the first step is telling R how to +combine the exit time and exit reason (censoring versus event) columns. +The `Surv()` function accomplishes this task. -Once we have constructed our `Surv` variable, we can calculate the -Kaplan-Meier estimate of the survival curve using the `survfit()` -function. - -::: callout-note -The documentation for `?survfit` isn't too helpful; the -`survfit.formula` documentation is better. - -```{r, printr.help.sections = c("description", "usage")} -#| include: false -?survfit.formula -``` -::: - ---- - -#### Example: `survfit()` with `drug6mp` data - -Here we use `survfit()` to create a `survfit` object, which contains the -Kaplan-Meier estimate: - -```{r} -#| code-fold: show -drug6mp.km_model = survfit( - formula = surv2 ~ 1, - data = drug6mp.v3) -``` - -`print.survfit()` just gives some summary statistics: - -```{r} -#| code-fold: show -print(drug6mp.km_model) -``` +#### Example: `Surv()` with `drug6mp` data + +```{r} +#| code-fold: show +#| code-line-numbers: "5-7" +library(survival) +drug6mp.v3 = + drug6mp.v2 |> + mutate( + surv2 = Surv( + time = t2, + event = (outcome == "relapsed"))) + +print(drug6mp.v3) + +``` + +The output of `Surv()` is a vector of objects with class `Surv`. When we +print this vector: + +- observations where the event was observed are printed as the event + time (for example, `surv2 = 10` on line 1) + +- observations where the event was right-censored are printed as the + censoring time with a plus sign (`+`; for example, `surv2 = 32+` on + line 3). + +### The `survfit` function + +Once we have constructed our `Surv` variable, we can calculate the +Kaplan-Meier estimate of the survival curve using the `survfit()` +function. + +::: callout-note +The documentation for `?survfit` isn't too helpful; the +`survfit.formula` documentation is better. -`summary.survfit()` shows us the underlying Kaplan-Meier table: - -```{r} -#| code-fold: show -summary(drug6mp.km_model) -``` - ---- - -We can specify which time points we want using the `times` argument: +```{r, printr.help.sections = c("description", "usage")} +#| include: false +?survfit.formula +``` +::: + +--- + +#### Example: `survfit()` with `drug6mp` data + +Here we use `survfit()` to create a `survfit` object, which contains the +Kaplan-Meier estimate: ```{r} #| code-fold: show -summary( - drug6mp.km_model, - times = c(0, drug6mp.v3$t2)) - -``` - ---- - -```{r, printr.help.sections = c("description", "usage", "arguments")} -#| code-fold: show -?summary.survfit -``` - -### Plotting estimated survival functions - -We can plot `survfit` objects with `plot()`, `autoplot()`, or -`ggsurvplot()`: - -```{r} -#| code-fold: show -#| fig-cap: "Kaplan-Meier Survival Curve for 6-MP Patients" - -library(ggfortify) -autoplot(drug6mp.km_model) +drug6mp.km_model = survfit( + formula = surv2 ~ 1, + data = drug6mp.v3) +``` + +`print.survfit()` just gives some summary statistics: + +```{r} +#| code-fold: show +print(drug6mp.km_model) +``` + +`summary.survfit()` shows us the underlying Kaplan-Meier table: + +```{r} +#| code-fold: show +summary(drug6mp.km_model) +``` + +--- + +We can specify which time points we want using the `times` argument: -# not shown: -# plot(drug6mp.km_model) - -# library(survminer) -# ggsurvplot(drug6mp.km_model) - -``` +```{r} +#| code-fold: show +summary( + drug6mp.km_model, + times = c(0, drug6mp.v3$t2)) ---- +``` -#### quantiles of survival curve +--- -We can extract quantiles with `quantile()`: - -```{r} -#| code-line-numbers: "2" -drug6mp.km_model |> - quantile(p = c(.25, .5)) |> - as_tibble() |> - mutate(p = c(.25, .5)) |> - relocate(p, .before = everything()) -``` - -### Two-sample tests - -#### The `survdiff` function - -```{r, printr.help.sections = c("description", "usage")} -?survdiff -``` - -#### Example: `survdiff()` with `drug6mp` data - -Now we are going to compare the placebo and 6-MP data. We need to -reshape the data to make it usable with the standard `survival` -workflow: +```{r, printr.help.sections = c("description", "usage", "arguments")} +#| code-fold: show +?summary.survfit +``` + +### Plotting estimated survival functions + +We can plot `survfit` objects with `plot()`, `autoplot()`, or +`ggsurvplot()`: + +```{r} +#| code-fold: show +#| fig-cap: "Kaplan-Meier Survival Curve for 6-MP Patients" + +library(ggfortify) +autoplot(drug6mp.km_model) + +# not shown: +# plot(drug6mp.km_model) + +# library(survminer) +# ggsurvplot(drug6mp.km_model) + +``` -```{r} -library(survival) -library(tidyr) -drug6mp.v4 = - drug6mp.v3 |> - select(pair, remstat, t1, t2, outcome) |> - # here we are going to change the data from a wide format to long: - pivot_longer( - cols = c(t1, t2), - names_to = "treatment", - values_to = "exit_time") |> - mutate( - treatment = treatment |> - case_match( - "t1" ~ "placebo", - "t2" ~ "6-MP" - ), - outcome = if_else( - treatment == "placebo", - "relapsed", - outcome - ), - surv = Surv( - time = exit_time, - event = (outcome == "relapsed")) - ) -``` - ---- - -Using this long data format, we can fit a Kaplan-Meier curve for each -treatment group simultaneously: - -```{r} -drug6mp.km_model2 = - survfit( - formula = surv ~ treatment, - data = drug6mp.v4) -``` - ---- - -We can plot the curves in the same graph: - -```{r} -drug6mp.km_model2 |> autoplot() -``` - ---- - -We can also perform something like a t-test, where the null hypothesis -is that the curves are the same: - -```{r} -survdiff( - formula = surv ~ treatment, - data = drug6mp.v4) -``` - -By default, `survdiff()` ignores any pairing, -but we can use `strata()` to perform something similar to a paired t-test: - -```{r} -survdiff( - formula = surv ~ treatment + strata(pair), - data = drug6mp.v4) +--- + +#### quantiles of survival curve + +We can extract quantiles with `quantile()`: + +```{r} +#| code-line-numbers: "2" +drug6mp.km_model |> + quantile(p = c(.25, .5)) |> + as_tibble() |> + mutate(p = c(.25, .5)) |> + relocate(p, .before = everything()) +``` + +### Two-sample tests + +#### The `survdiff` function + +```{r, printr.help.sections = c("description", "usage")} +?survdiff +``` + +#### Example: `survdiff()` with `drug6mp` data + +Now we are going to compare the placebo and 6-MP data. We need to +reshape the data to make it usable with the standard `survival` +workflow: + +```{r} +library(survival) +library(tidyr) +drug6mp.v4 = + drug6mp.v3 |> + select(pair, remstat, t1, t2, outcome) |> + # here we are going to change the data from a wide format to long: + pivot_longer( + cols = c(t1, t2), + names_to = "treatment", + values_to = "exit_time") |> + mutate( + treatment = treatment |> + case_match( + "t1" ~ "placebo", + "t2" ~ "6-MP" + ), + outcome = if_else( + treatment == "placebo", + "relapsed", + outcome + ), + surv = Surv( + time = exit_time, + event = (outcome == "relapsed")) + ) +``` + +--- + +Using this long data format, we can fit a Kaplan-Meier curve for each +treatment group simultaneously: + +```{r} +drug6mp.km_model2 = + survfit( + formula = surv ~ treatment, + data = drug6mp.v4) +``` + +--- -``` +We can plot the curves in the same graph: -Interestingly, accounting for pairing reduces the significant of the -difference. - -## Example: Bone Marrow Transplant Data - -@copelan1991treatment +```{r} +drug6mp.km_model2 |> autoplot() +``` + --- -![Recovery process from a bone marrow transplant (Fig. 1.1 from @klein2003survival)](images/bone marrow multi-stage model.png){#fig-bmt-mst} - ---- - -### Study design - -##### Treatment {.unnumbered} - -- **allogeneic** (from a donor) **bone marrow transplant therapy** - -##### Inclusion criteria {.unnumbered} - -- **acute myeloid leukemia (AML)** -- **acute lymphoblastic leukemia (ALL).** - -##### Possible intermediate events {.unnumbered} - -- **graft vs. host disease (GVHD)**: an immunological rejection - response to the transplant -- **platelet recovery**: a return of platelet count to normal levels. +We can also perform something like a t-test, where the null hypothesis +is that the curves are the same: + +```{r} +survdiff( + formula = surv ~ treatment, + data = drug6mp.v4) +``` + +By default, `survdiff()` ignores any pairing, +but we can use `strata()` to perform something similar to a paired t-test: + +```{r} +survdiff( + formula = surv ~ treatment + strata(pair), + data = drug6mp.v4) -One or the other, both in either order, or neither may occur. +``` -##### End point events - -- relapse of the disease -- death +Interestingly, accounting for pairing reduces the significant of the +difference. + +## Example: Bone Marrow Transplant Data -Any or all of these events may be censored. - -### `KMsurv::bmt` data in R - -```{r} -library(KMsurv) -?bmt -``` +@copelan1991treatment +--- + +![Recovery process from a bone marrow transplant (Fig. 1.1 from @klein2003survival)](images/bone marrow multi-stage model.png){#fig-bmt-mst} + +--- + +### Study design + +##### Treatment {.unnumbered} -### Analysis plan +- **allogeneic** (from a donor) **bone marrow transplant therapy** -- We concentrate for now on disease-free survival (`t2` and `d3`) for - the three risk groups, ALL, AML Low Risk, and AML High Risk. -- We will construct the Kaplan-Meier survival curves, compare them, - and test for differences. -- We will construct the cumulative hazard curves and compare them. -- We will estimate the hazard functions, interpret, and compare them. +##### Inclusion criteria {.unnumbered} + +- **acute myeloid leukemia (AML)** +- **acute lymphoblastic leukemia (ALL).** + +##### Possible intermediate events {.unnumbered} -### Survival Function Estimate and Variance - -$$\hat S(t) = \prod_{t_i < t}\left[1-\frac{d_i}{Y_i}\right]$$ where -$Y_i$ is the group at risk at time $t_i$. - -The estimated variance of $\hat S(t)$ is: - -:::{#thm-greenwood} -#### Greenwood's estimator for variance of Kaplan-Meier survival estimator - -$$ -\varhf{\hat S(t)} = \hat S(t)^2\sum_{t_i <t}\frac{d_i}{Y_i(Y_i-d_i)} -$${#eq-var-est-surv} -::: +- **graft vs. host disease (GVHD)**: an immunological rejection + response to the transplant +- **platelet recovery**: a return of platelet count to normal levels. + +One or the other, both in either order, or neither may occur. + +##### End point events + +- relapse of the disease +- death + +Any or all of these events may be censored. + +### `KMsurv::bmt` data in R - -We can use @eq-var-est-surv for confidence intervals for a survival function or a -difference of survival functions. - ---- - -##### Kaplan-Meier survival curves - -```{r} -#| code-summary: "code to preprocess and model `bmt` data" -library(KMsurv) -library(survival) -data(bmt) +```{r} +library(KMsurv) +?bmt +``` + +### Analysis plan + +- We concentrate for now on disease-free survival (`t2` and `d3`) for + the three risk groups, ALL, AML Low Risk, and AML High Risk. +- We will construct the Kaplan-Meier survival curves, compare them, + and test for differences. +- We will construct the cumulative hazard curves and compare them. +- We will estimate the hazard functions, interpret, and compare them. -bmt = - bmt |> - as_tibble() |> - mutate( - group = - group |> - factor( - labels = c("ALL","Low Risk AML","High Risk AML")), - surv = Surv(t2,d3)) +### Survival Function Estimate and Variance + +$$\hat S(t) = \prod_{t_i < t}\left[1-\frac{d_i}{Y_i}\right]$$ where +$Y_i$ is the group at risk at time $t_i$. + +The estimated variance of $\hat S(t)$ is: + +:::{#thm-greenwood} +#### Greenwood's estimator for variance of Kaplan-Meier survival estimator -km_model1 = survfit( - formula = surv ~ group, - data = bmt) -``` +$$ +\varhf{\hat S(t)} = \hat S(t)^2\sum_{t_i <t}\frac{d_i}{Y_i(Y_i-d_i)} +$${#eq-var-est-surv} +::: -```{r "KM survival curves for bmt data"} -#| fig-cap: "Disease-Free Survival by Disease Group" - -library(ggfortify) -autoplot( - km_model1, - conf.int = TRUE, - ylab = "Pr(disease-free survival)", - xlab = "Time since transplant (days)") + - theme_bw() + - theme(legend.position="bottom") - -``` - ---- + +We can use @eq-var-est-surv for confidence intervals for a survival function or a +difference of survival functions. + +--- + +##### Kaplan-Meier survival curves + +```{r} +#| code-summary: "code to preprocess and model `bmt` data" +library(KMsurv) +library(survival) +data(bmt) -### Understanding Greenwood's formula (optional) - -::: notes -To see where Greenwood's formula comes from, let $x_i = Y_i - d_i$. We -approximate the solution treating each time as independent, with $Y_i$ -fixed and ignore randomness in times of failure and we treat $x_i$ as -independent binomials $\text{Bin}(Y_i,p_i)$. Letting $S(t)$ be the -"true" survival function -::: +bmt = + bmt |> + as_tibble() |> + mutate( + group = + group |> + factor( + labels = c("ALL","Low Risk AML","High Risk AML")), + surv = Surv(t2,d3)) -$$ -\begin{aligned} -\hat S(t) &=\prod_{t_i<t}x_i/Y_i\\ -S(t)&=\prod_{t_i<t}p_i -\end{aligned} -$$ - -$$ -\begin{aligned} -\frac{\hat S(t)}{S(t)} - &= \prod_{t_i<t} \frac{x_i}. {p_iY_i} -\\ &= \prod_{t_i<t} \frac{\hat p_i}{p_i} -\\ &= \prod_{t_i<t} \paren{1+\frac{\hat p_i-p_i}{p_i}} -\\ &\approx 1+\sum_{t_i<t} \frac{\hat p_i-p_i}{p_i} -\end{aligned} -$$ +km_model1 = survfit( + formula = surv ~ group, + data = bmt) +``` + +```{r "KM survival curves for bmt data"} +#| fig-cap: "Disease-Free Survival by Disease Group" + +library(ggfortify) +autoplot( + km_model1, + conf.int = TRUE, + ylab = "Pr(disease-free survival)", + xlab = "Time since transplant (days)") + + theme_bw() + + theme(legend.position="bottom") ---- +``` -$$ -\begin{aligned} -\text{Var}\left(\frac{\hat S(t)}{S(t)}\right) -&\approx \text{Var}\left(1+\sum_{t_i<t} \frac{\hat p_i-p_i}{p_i}\right) -\\ &=\sum_{t_i<t} \frac{1}{p_i^2}\frac{p_i(1-p_i)}{Y_i} -\\ &= \sum_{t_i<t} \frac{(1-p_i)}{p_iY_i} -\\ &\approx\sum_{t_i<t} \frac{(1-x_i/Y_i)}{x_i} -\\ &=\sum_{t_i<t} \frac{Y_i-x_i}{x_iY_i} -\\ &=\sum_{t_i<t} \frac{d_i}{Y_i(Y_i-d_i)} -\\ \tf \text{Var}\left(\hat S(t)\right) -&\approx \hat S(t)^2\sum_{t_i<t} \frac{d_i}{Y_i(Y_i-d_i)} -\end{aligned} +--- + +### Understanding Greenwood's formula (optional) + +::: notes +To see where Greenwood's formula comes from, let $x_i = Y_i - d_i$. We +approximate the solution treating each time as independent, with $Y_i$ +fixed and ignore randomness in times of failure and we treat $x_i$ as +independent binomials $\text{Bin}(Y_i,p_i)$. Letting $S(t)$ be the +"true" survival function +::: + $$ - -### Test for differences among the disease groups - -Here we compute a chi-square test for assocation between disease group -(`group`) and disease-free survival: +\begin{aligned} +\hat S(t) &=\prod_{t_i<t}x_i/Y_i\\ +S(t)&=\prod_{t_i<t}p_i +\end{aligned} +$$ -```{r} -survdiff(surv ~ group, data = bmt) -``` - -### Cumulative Hazard - +$$ +\begin{aligned} +\frac{\hat S(t)}{S(t)} + &= \prod_{t_i<t} \frac{x_i}. {p_iY_i} +\\ &= \prod_{t_i<t} \frac{\hat p_i}{p_i} +\\ &= \prod_{t_i<t} \paren{1+\frac{\hat p_i-p_i}{p_i}} +\\ &\approx 1+\sum_{t_i<t} \frac{\hat p_i-p_i}{p_i} +\end{aligned} $$ -\begin{aligned} -h(t) -&\eqdef P(T=t|T\ge t)\\ -&= \frac{p(T=t)}{P(T\ge t)}\\ -&= -\deriv{t}\text{log}\left\{S(t)\right\} -\end{aligned} -$$ - -The **cumulative hazard** (or **integrated hazard**) function is - -$$H(t)\eqdef \int_0^t h(t) dt$$ Since -$h(t) = -\deriv{t}\text{log}\left\{S(t)\right\}$ as shown above, we -have: - -$$ -H(t)=-\text{log}\left\{S\right\}(t) -$$ - ---- - -So we can estimate $H(t)$ as: + +--- + +$$ +\begin{aligned} +\text{Var}\left(\frac{\hat S(t)}{S(t)}\right) +&\approx \text{Var}\left(1+\sum_{t_i<t} \frac{\hat p_i-p_i}{p_i}\right) +\\ &=\sum_{t_i<t} \frac{1}{p_i^2}\frac{p_i(1-p_i)}{Y_i} +\\ &= \sum_{t_i<t} \frac{(1-p_i)}{p_iY_i} +\\ &\approx\sum_{t_i<t} \frac{(1-x_i/Y_i)}{x_i} +\\ &=\sum_{t_i<t} \frac{Y_i-x_i}{x_iY_i} +\\ &=\sum_{t_i<t} \frac{d_i}{Y_i(Y_i-d_i)} +\\ \tf \text{Var}\left(\hat S(t)\right) +&\approx \hat S(t)^2\sum_{t_i<t} \frac{d_i}{Y_i(Y_i-d_i)} +\end{aligned} +$$ + +### Test for differences among the disease groups + +Here we compute a chi-square test for assocation between disease group +(`group`) and disease-free survival: -$$ -\begin{aligned} -\hat H(t) -&= -\text{log}\left\{\hat S(t)\right\}\\ -&= -\text{log}\left\{\prod_{t_i < t}\left[1-\frac{d_i}{Y_i}\right]\right\}\\ -&= -\sum_{t_i < t}\text{log}\left\{1-\frac{d_i}{Y_i}\right\}\\ -\end{aligned} -$$ - -This is the **Kaplan-Meier (product-limit) estimate of cumulative -hazard**. - ---- - -#### Example: Cumulative Hazard Curves for Bone-Marrow Transplant (`bmt`) data - -```{r} -#| fig-cap: "Disease-Free Cumulative Hazard by Disease Group" -#| label: fig-cuhaz-bmt - -autoplot( - fun = "cumhaz", - km_model1, - conf.int = FALSE, - ylab = "Cumulative hazard (disease-free survival)", - xlab = "Time since transplant (days)") + - theme_bw() + - theme(legend.position="bottom") -``` - -## Nelson-Aalen Estimates of Cumulative Hazard and Survival - ---- - -:::{#def-na-cuhaz-est} -#### Nelson-Aalen Cumulative Hazard Estimator -:::: notes -The point hazard at time $t_i$ can be estimated by $d_i/Y_i$, which -leads to the **Nelson-Aalen estimator of the cumulative hazard**: -:::: -$$\hat H_{NA}(t) \eqdef \sum_{t_i < t}\frac{d_i}{Y_i}$${#eq-NA-cuhaz-est} - -::: - ---- - -:::{#thm-var-NA-est} - -#### Variance of Nelson-Aalen estimator - -:::: notes -The variance of this estimator is approximately: -:::: - -$$ -\begin{aligned} -\hat{\text{Var}}\left(\hat H_{NA} (t)\right) -&= \sum_{t_i <t}\frac{(d_i/Y_i)(1-d_i/Y_i)}{Y_i}\\ -&\approx \sum_{t_i <t}\frac{d_i}{Y_i^2} -\end{aligned} -$${#eq-var-NA-cuhaz-est} - -::: - ---- - -Since $S(t)=\text{exp}\left\{-H(t)\right\}$, the Nelson-Aalen cumulative -hazard estimate can be converted into an alternate estimate of the -survival function: - -$$ -\begin{aligned} -\hat S_{NA}(t) -&= \text{exp}\left\{-\hat H_{NA}(t)\right\}\\ -&= \text{exp}\left\{-\sum_{t_i < t}\frac{d_i}{Y_i}\right\}\\ -&= \prod_{t_i < t}\text{exp}\left\{-\frac{d_i}{Y_i}\right\}\\ -\end{aligned} -$$ +```{r} +survdiff(surv ~ group, data = bmt) +``` + +### Cumulative Hazard + +$$ +\begin{aligned} +h(t) +&\eqdef P(T=t|T\ge t)\\ +&= \frac{p(T=t)}{P(T\ge t)}\\ +&= -\deriv{t}\text{log}\left\{S(t)\right\} +\end{aligned} +$$ + +The **cumulative hazard** (or **integrated hazard**) function is + +$$H(t)\eqdef \int_0^t h(t) dt$$ Since +$h(t) = -\deriv{t}\text{log}\left\{S(t)\right\}$ as shown above, we +have: + +$$ +H(t)=-\text{log}\left\{S\right\}(t) +$$ + +--- + +So we can estimate $H(t)$ as: + +$$ +\begin{aligned} +\hat H(t) +&= -\text{log}\left\{\hat S(t)\right\}\\ +&= -\text{log}\left\{\prod_{t_i < t}\left[1-\frac{d_i}{Y_i}\right]\right\}\\ +&= -\sum_{t_i < t}\text{log}\left\{1-\frac{d_i}{Y_i}\right\}\\ +\end{aligned} +$$ + +This is the **Kaplan-Meier (product-limit) estimate of cumulative +hazard**. + +--- + +#### Example: Cumulative Hazard Curves for Bone-Marrow Transplant (`bmt`) data + +```{r} +#| fig-cap: "Disease-Free Cumulative Hazard by Disease Group" +#| label: fig-cuhaz-bmt + +autoplot( + fun = "cumhaz", + km_model1, + conf.int = FALSE, + ylab = "Cumulative hazard (disease-free survival)", + xlab = "Time since transplant (days)") + + theme_bw() + + theme(legend.position="bottom") +``` + +## Nelson-Aalen Estimates of Cumulative Hazard and Survival + +--- + +:::{#def-na-cuhaz-est} +#### Nelson-Aalen Cumulative Hazard Estimator +:::: notes +The point hazard at time $t_i$ can be estimated by $d_i/Y_i$, which +leads to the **Nelson-Aalen estimator of the cumulative hazard**: +:::: +$$\hat H_{NA}(t) \eqdef \sum_{t_i < t}\frac{d_i}{Y_i}$${#eq-NA-cuhaz-est} + +::: + +--- + +:::{#thm-var-NA-est} ---- +#### Variance of Nelson-Aalen estimator -Compare these with the corresponding Kaplan-Meier estimates: - -$$ -\begin{aligned} -\hat H_{KM}(t) &= -\sum_{t_i < t}\text{log}\left\{1-\frac{d_i}{Y_i}\right\}\\ -\hat S_{KM}(t) &= \prod_{t_i < t}\left[1-\frac{d_i}{Y_i}\right] -\end{aligned} -$$ - -::: notes -The product limit estimate and the Nelson-Aalen estimate often do not -differ by much. The latter is considered more accurate in small samples -and also directly estimates the cumulative hazard. -The `"fleming-harrington"` method for `survfit()` reduces to Nelson-Aalen -when the data are unweighted. -We can also estimate the cumulative hazard -as the negative log of the KM survival function estimate. -::: - -### Application to `bmt` dataset - -```{r} -na_fit = survfit( - formula = surv ~ group, - type = "fleming-harrington", - data = bmt) +:::: notes +The variance of this estimator is approximately: +:::: + +$$ +\begin{aligned} +\hat{\text{Var}}\left(\hat H_{NA} (t)\right) +&= \sum_{t_i <t}\frac{(d_i/Y_i)(1-d_i/Y_i)}{Y_i}\\ +&\approx \sum_{t_i <t}\frac{d_i}{Y_i^2} +\end{aligned} +$${#eq-var-NA-cuhaz-est} + +::: + +--- + +Since $S(t)=\text{exp}\left\{-H(t)\right\}$, the Nelson-Aalen cumulative +hazard estimate can be converted into an alternate estimate of the +survival function: + +$$ +\begin{aligned} +\hat S_{NA}(t) +&= \text{exp}\left\{-\hat H_{NA}(t)\right\}\\ +&= \text{exp}\left\{-\sum_{t_i < t}\frac{d_i}{Y_i}\right\}\\ +&= \prod_{t_i < t}\text{exp}\left\{-\frac{d_i}{Y_i}\right\}\\ +\end{aligned} +$$ -km_fit = survfit( - formula = surv ~ group, - type = "kaplan-meier", - data = bmt) - -km_and_na = - bind_rows( - .id = "model", - "Kaplan-Meier" = km_fit |> fortify(surv.connect = TRUE), - "Nelson-Aalen" = na_fit |> fortify(surv.connect = TRUE) - ) |> - as_tibble() - -``` - -```{r} -#| fig-cap: "Kaplan-Meier and Nelson-Aalen Survival Function Estimates, stratified by disease group" - -km_and_na |> - ggplot(aes(x = time, y = surv, col = model)) + - geom_step() + - facet_grid(. ~ strata) + - theme_bw() + - ylab("S(t) = P(T>=t)") + - xlab("Survival time (t, days)") + - theme(legend.position = "bottom") - -``` +--- + +Compare these with the corresponding Kaplan-Meier estimates: + +$$ +\begin{aligned} +\hat H_{KM}(t) &= -\sum_{t_i < t}\text{log}\left\{1-\frac{d_i}{Y_i}\right\}\\ +\hat S_{KM}(t) &= \prod_{t_i < t}\left[1-\frac{d_i}{Y_i}\right] +\end{aligned} +$$ + +::: notes +The product limit estimate and the Nelson-Aalen estimate often do not +differ by much. The latter is considered more accurate in small samples +and also directly estimates the cumulative hazard. +The `"fleming-harrington"` method for `survfit()` reduces to Nelson-Aalen +when the data are unweighted. +We can also estimate the cumulative hazard +as the negative log of the KM survival function estimate. +::: + +### Application to `bmt` dataset + +```{r} +na_fit = survfit( + formula = surv ~ group, + type = "fleming-harrington", + data = bmt) -The Kaplan-Meier and Nelson-Aalen survival estimates are very similar -for this dataset. +km_fit = survfit( + formula = surv ~ group, + type = "kaplan-meier", + data = bmt) + +km_and_na = + bind_rows( + .id = "model", + "Kaplan-Meier" = km_fit |> fortify(surv.connect = TRUE), + "Nelson-Aalen" = na_fit |> fortify(surv.connect = TRUE) + ) |> + as_tibble() + +``` + +```{r} +#| fig-cap: "Kaplan-Meier and Nelson-Aalen Survival Function Estimates, stratified by disease group" + +km_and_na |> + ggplot(aes(x = time, y = surv, col = model)) + + geom_step() + + facet_grid(. ~ strata) + + theme_bw() + + ylab("S(t) = P(T>=t)") + + xlab("Survival time (t, days)") + + theme(legend.position = "bottom") + +``` + +The Kaplan-Meier and Nelson-Aalen survival estimates are very similar +for this dataset. diff --git a/logistic-regression.html b/logistic-regression.html index 15cfaa2be..8f50aaaf7 100644 --- a/logistic-regression.html +++ b/logistic-regression.html @@ -3703,8 +3703,8 @@

    <
    ggplotly(HL_plot)
    -
    - +
    +

    @@ -3855,8 +3855,8 @@

    wcgs_response_resid_plot |> ggplotly()
    -
    - +
    +

    We can see a slight fan-shape here: observations on the right have larger variance (as expected since \(var(\bar y) = \pi(1-\pi)/n\) is maximized when \(\pi = 0.5\)).

    @@ -3992,8 +3992,8 @@

    Re
    wcgs_resid_plot1 |> ggplotly()
    -
    - +
    +

    diff --git a/search.json b/search.json index 1b0abc1f5..d6a7c9f5e 100644 --- a/search.json +++ b/search.json @@ -193,7 +193,7 @@ "href": "Linear-models-overview.html#model-selection-1", "title": "\n2  Linear (Gaussian) Models\n", "section": "\n2.9 Model selection", - "text": "2.9 Model selection\n(adapted from Dobson and Barnett (2018) §6.3.3; for more information on prediction, see James et al. (2013) and Harrell (2015)).\n\nIf we have a lot of covariates in our dataset, we might want to choose a small subset to use in our model.\nThere are a few possible metrics to consider for choosing a “best” model.\n\n\n2.9.1 Mean squared error\nWe might want to minimize the mean squared error, \\(\\text E[(y-\\hat y)^2]\\), for new observations that weren’t in our data set when we fit the model.\nUnfortunately, \\[\\frac{1}{n}\\sum_{i=1}^n (y_i-\\hat y_i)^2\\] gives a biased estimate of \\(\\text E[(y-\\hat y)^2]\\) for new data. If we want an unbiased estimate, we will have to be clever.\n\nCross-validation\n\nShow R codedata(\"carbohydrate\", package = \"dobson\")\nlibrary(cvTools)\nfull_model <- lm(carbohydrate ~ ., data = carbohydrate)\ncv_full = \n full_model |> cvFit(\n data = carbohydrate, K = 5, R = 10,\n y = carbohydrate$carbohydrate)\n\nreduced_model = update(full_model, \n formula = ~ . - age)\n\ncv_reduced = \n reduced_model |> cvFit(\n data = carbohydrate, K = 5, R = 10,\n y = carbohydrate$carbohydrate)\n\n\n\n\nShow R coderesults_reduced = \n tibble(\n model = \"wgt+protein\",\n errs = cv_reduced$reps[])\nresults_full = \n tibble(model = \"wgt+age+protein\",\n errs = cv_full$reps[])\n\ncv_results = \n bind_rows(results_reduced, results_full)\n\ncv_results |> \n ggplot(aes(y = model, x = errs)) +\n geom_boxplot()\n\n\n\n\n\n\n\n\ncomparing metrics\n\nShow R code\ncompare_results = tribble(\n ~ model, ~ cvRMSE, ~ r.squared, ~adj.r.squared, ~ trainRMSE, ~loglik,\n \"full\", cv_full$cv, summary(full_model)$r.squared, summary(full_model)$adj.r.squared, sigma(full_model), logLik(full_model) |> as.numeric(),\n \"reduced\", cv_reduced$cv, summary(reduced_model)$r.squared, summary(reduced_model)$adj.r.squared, sigma(reduced_model), logLik(reduced_model) |> as.numeric())\n\ncompare_results\n\n\n\nmodel\ncvRMSE\nr.squared\nadj.r.squared\ntrainRMSE\nloglik\n\n\n\nfull\n6.900\n0.4805\n0.3831\n5.956\n-61.84\n\n\nreduced\n6.581\n0.4454\n0.3802\n5.971\n-62.49\n\n\n\n\n\n\n\nShow R codeanova(full_model, reduced_model)\n\n\n\nRes.Df\nRSS\nDf\nSum of Sq\nF\nPr(>F)\n\n\n\n16\n567.7\nNA\nNA\nNA\nNA\n\n\n17\n606.0\n-1\n-38.36\n1.081\n0.3139\n\n\n\n\n\nstepwise regression\n\nShow R codelibrary(olsrr)\nolsrr:::ols_step_both_aic(full_model)\n#> \n#> \n#> Stepwise Summary \n#> -------------------------------------------------------------------------\n#> Step Variable AIC SBC SBIC R2 Adj. R2 \n#> -------------------------------------------------------------------------\n#> 0 Base Model 140.773 142.764 83.068 0.00000 0.00000 \n#> 1 protein (+) 137.950 140.937 80.438 0.21427 0.17061 \n#> 2 weight (+) 132.981 136.964 77.191 0.44544 0.38020 \n#> -------------------------------------------------------------------------\n#> \n#> Final Model Output \n#> ------------------\n#> \n#> Model Summary \n#> ---------------------------------------------------------------\n#> R 0.667 RMSE 5.505 \n#> R-Squared 0.445 MSE 35.648 \n#> Adj. R-Squared 0.380 Coef. Var 15.879 \n#> Pred R-Squared 0.236 AIC 132.981 \n#> MAE 4.593 SBC 136.964 \n#> ---------------------------------------------------------------\n#> RMSE: Root Mean Square Error \n#> MSE: Mean Square Error \n#> MAE: Mean Absolute Error \n#> AIC: Akaike Information Criteria \n#> SBC: Schwarz Bayesian Criteria \n#> \n#> ANOVA \n#> -------------------------------------------------------------------\n#> Sum of \n#> Squares DF Mean Square F Sig. \n#> -------------------------------------------------------------------\n#> Regression 486.778 2 243.389 6.827 0.0067 \n#> Residual 606.022 17 35.648 \n#> Total 1092.800 19 \n#> -------------------------------------------------------------------\n#> \n#> Parameter Estimates \n#> ----------------------------------------------------------------------------------------\n#> model Beta Std. Error Std. Beta t Sig lower upper \n#> ----------------------------------------------------------------------------------------\n#> (Intercept) 33.130 12.572 2.635 0.017 6.607 59.654 \n#> protein 1.824 0.623 0.534 2.927 0.009 0.509 3.139 \n#> weight -0.222 0.083 -0.486 -2.662 0.016 -0.397 -0.046 \n#> ----------------------------------------------------------------------------------------\n\n\nLasso\n\\[\\arg min_{\\theta} \\ell(\\theta) + \\lambda \\sum_{j=1}^p|\\beta_j|\\]\n\nShow R codelibrary(glmnet)\ny = carbohydrate$carbohydrate\nx = carbohydrate |> \n select(age, weight, protein) |> \n as.matrix()\nfit = glmnet(x,y)\n\n\n\n\nShow R codeautoplot(fit, xvar = 'lambda')\n\n\n\nFigure 2.19: Lasso selection\n\n\n\n\n\n\n\n\n\nShow R codecvfit = cv.glmnet(x,y)\nplot(cvfit)\n\n\n\n\n\n\n\n\n\nShow R codecoef(cvfit, s = \"lambda.1se\")\n#> 4 x 1 sparse Matrix of class \"dgCMatrix\"\n#> s1\n#> (Intercept) 34.2044\n#> age . \n#> weight -0.0926\n#> protein 0.8582", + "text": "2.9 Model selection\n(adapted from Dobson and Barnett (2018) §6.3.3; for more information on prediction, see James et al. (2013) and Harrell (2015)).\n\nIf we have a lot of covariates in our dataset, we might want to choose a small subset to use in our model.\nThere are a few possible metrics to consider for choosing a “best” model.\n\n\n2.9.1 Mean squared error\nWe might want to minimize the mean squared error, \\(\\text E[(y-\\hat y)^2]\\), for new observations that weren’t in our data set when we fit the model.\nUnfortunately, \\[\\frac{1}{n}\\sum_{i=1}^n (y_i-\\hat y_i)^2\\] gives a biased estimate of \\(\\text E[(y-\\hat y)^2]\\) for new data. If we want an unbiased estimate, we will have to be clever.\n\nCross-validation\n\nShow R codedata(\"carbohydrate\", package = \"dobson\")\nlibrary(cvTools)\nfull_model <- lm(carbohydrate ~ ., data = carbohydrate)\ncv_full = \n full_model |> cvFit(\n data = carbohydrate, K = 5, R = 10,\n y = carbohydrate$carbohydrate)\n\nreduced_model = update(full_model, \n formula = ~ . - age)\n\ncv_reduced = \n reduced_model |> cvFit(\n data = carbohydrate, K = 5, R = 10,\n y = carbohydrate$carbohydrate)\n\n\n\n\nShow R coderesults_reduced = \n tibble(\n model = \"wgt+protein\",\n errs = cv_reduced$reps[])\nresults_full = \n tibble(model = \"wgt+age+protein\",\n errs = cv_full$reps[])\n\ncv_results = \n bind_rows(results_reduced, results_full)\n\ncv_results |> \n ggplot(aes(y = model, x = errs)) +\n geom_boxplot()\n\n\n\n\n\n\n\n\ncomparing metrics\n\nShow R code\ncompare_results = tribble(\n ~ model, ~ cvRMSE, ~ r.squared, ~adj.r.squared, ~ trainRMSE, ~loglik,\n \"full\", cv_full$cv, summary(full_model)$r.squared, summary(full_model)$adj.r.squared, sigma(full_model), logLik(full_model) |> as.numeric(),\n \"reduced\", cv_reduced$cv, summary(reduced_model)$r.squared, summary(reduced_model)$adj.r.squared, sigma(reduced_model), logLik(reduced_model) |> as.numeric())\n\ncompare_results\n\n\n\nmodel\ncvRMSE\nr.squared\nadj.r.squared\ntrainRMSE\nloglik\n\n\n\nfull\n7.071\n0.4805\n0.3831\n5.956\n-61.84\n\n\nreduced\n6.767\n0.4454\n0.3802\n5.971\n-62.49\n\n\n\n\n\n\n\nShow R codeanova(full_model, reduced_model)\n\n\n\nRes.Df\nRSS\nDf\nSum of Sq\nF\nPr(>F)\n\n\n\n16\n567.7\nNA\nNA\nNA\nNA\n\n\n17\n606.0\n-1\n-38.36\n1.081\n0.3139\n\n\n\n\n\nstepwise regression\n\nShow R codelibrary(olsrr)\nolsrr:::ols_step_both_aic(full_model)\n#> \n#> \n#> Stepwise Summary \n#> -------------------------------------------------------------------------\n#> Step Variable AIC SBC SBIC R2 Adj. R2 \n#> -------------------------------------------------------------------------\n#> 0 Base Model 140.773 142.764 83.068 0.00000 0.00000 \n#> 1 protein (+) 137.950 140.937 80.438 0.21427 0.17061 \n#> 2 weight (+) 132.981 136.964 77.191 0.44544 0.38020 \n#> -------------------------------------------------------------------------\n#> \n#> Final Model Output \n#> ------------------\n#> \n#> Model Summary \n#> ---------------------------------------------------------------\n#> R 0.667 RMSE 5.505 \n#> R-Squared 0.445 MSE 35.648 \n#> Adj. R-Squared 0.380 Coef. Var 15.879 \n#> Pred R-Squared 0.236 AIC 132.981 \n#> MAE 4.593 SBC 136.964 \n#> ---------------------------------------------------------------\n#> RMSE: Root Mean Square Error \n#> MSE: Mean Square Error \n#> MAE: Mean Absolute Error \n#> AIC: Akaike Information Criteria \n#> SBC: Schwarz Bayesian Criteria \n#> \n#> ANOVA \n#> -------------------------------------------------------------------\n#> Sum of \n#> Squares DF Mean Square F Sig. \n#> -------------------------------------------------------------------\n#> Regression 486.778 2 243.389 6.827 0.0067 \n#> Residual 606.022 17 35.648 \n#> Total 1092.800 19 \n#> -------------------------------------------------------------------\n#> \n#> Parameter Estimates \n#> ----------------------------------------------------------------------------------------\n#> model Beta Std. Error Std. Beta t Sig lower upper \n#> ----------------------------------------------------------------------------------------\n#> (Intercept) 33.130 12.572 2.635 0.017 6.607 59.654 \n#> protein 1.824 0.623 0.534 2.927 0.009 0.509 3.139 \n#> weight -0.222 0.083 -0.486 -2.662 0.016 -0.397 -0.046 \n#> ----------------------------------------------------------------------------------------\n\n\nLasso\n\\[\\arg min_{\\theta} \\ell(\\theta) + \\lambda \\sum_{j=1}^p|\\beta_j|\\]\n\nShow R codelibrary(glmnet)\ny = carbohydrate$carbohydrate\nx = carbohydrate |> \n select(age, weight, protein) |> \n as.matrix()\nfit = glmnet(x,y)\n\n\n\n\nShow R codeautoplot(fit, xvar = 'lambda')\n\n\n\nFigure 2.19: Lasso selection\n\n\n\n\n\n\n\n\n\nShow R codecvfit = cv.glmnet(x,y)\nplot(cvfit)\n\n\n\n\n\n\n\n\n\nShow R codecoef(cvfit, s = \"lambda.1se\")\n#> 4 x 1 sparse Matrix of class \"dgCMatrix\"\n#> s1\n#> (Intercept) 34.2044\n#> age . \n#> weight -0.0926\n#> protein 0.8582", "crumbs": [ "Generalized Linear Models", "2  Linear (Gaussian) Models" @@ -533,7 +533,7 @@ "href": "intro-to-survival-analysis.html#distribution-functions-for-time-to-event-variables", "title": "\n5  Introduction to Survival Analysis\n", "section": "\n5.3 Distribution functions for time-to-event variables", - "text": "5.3 Distribution functions for time-to-event variables\n\n5.3.1 The Probability Density Function (PDF)\nFor a time-to-event variable \\(T\\) with a continuous distribution, the probability density function is defined as usual (see Section B.4.1).\n\nIn most time-to-event models, this density is assumed to be 0 for all \\(t<0\\); that is, \\(f(t) = 0, \\forall t<0\\). In other words, the support of \\(T\\) is typically \\([0,\\infty)\\).\n\n\n\nExample 5.1 (exponential distribution) Recall from Epi 202: the pdf of the exponential distribution family of models is:\n\\[p(T=t) = \\mathbb{1}_{t \\ge 0} \\cdot \\lambda \\text{e}^{-\\lambda t}\\]\nwhere \\(\\lambda > 0\\).\n\nHere are some examples of exponential pdfs:\n\n\n\n\n\n\n\n\n\n\n5.3.2 The Cumulative Distribution Function (CDF)\nThe cumulative distribution function is defined as:\n\\[\n\\begin{aligned}\nF(t) &\\stackrel{\\text{def}}{=}\\Pr(T \\le t)\\\\\n&=\\int_{u=-\\infty}^t f(u) du\n\\end{aligned}\n\\]\n\nExample 5.2 (exponential distribution) Recall from Epi 202: the cdf of the exponential distribution family of models is:\n\\[\nP(T\\le t) = \\mathbb{1}_{t \\ge 0} \\cdot (1- \\text{e}^{-\\lambda t})\n\\] where \\(\\lambda > 0\\).\n\nHere are some examples of exponential cdfs:\n\n\n\n\n\n\n\n\n\n5.3.3 The Survival Function\nFor survival data, a more important quantity is the survival function:\n\\[\n\\begin{aligned}\nS(t) &\\stackrel{\\text{def}}{=}\\Pr(T > t)\\\\\n&=\\int_{u=t}^\\infty p(u) du\\\\\n&=1-F(t)\\\\\n\\end{aligned}\n\\]\n\n\nDefinition 5.1 (Survival function)  \n\nThe survival function \\(S(t)\\) is the probability that the event time is later than \\(t\\). If the event in a clinical trial is death, then \\(S(t)\\) is the expected fraction of the original population at time 0 who have survived up to time \\(t\\) and are still alive at time \\(t\\); that is:\n\nIf \\(X_t\\) represents survival status at time \\(t\\), with \\(X_t = 1\\) denoting alive at time \\(t\\) and \\(X_t = 0\\) denoting deceased at time \\(t\\), then:\n\\[S(t) = \\Pr(X_t=1) = \\mathbb{E}[X_t]\\]\n\n\n\nExample 5.3 (exponential distribution) Since \\(S(t) = 1 - F(t)\\), the survival function of the exponential distribution family of models is:\n\\[\nP(T> t) = \\left\\{ {{\\text{e}^{-\\lambda t}, t\\ge0} \\atop {1, t \\le 0}}\\right.\n\\] where \\(\\lambda > 0\\).\nFigure 5.1 shows some examples of exponential survival functions.\n\n\n\n\n\n\nFigure 5.1: Exponential Survival Functions\n\n\n\n\n\n\n\n\n5.3.4 The Hazard Function\nAnother important quantity is the hazard function:\n\nDefinition 5.2 (Hazard function) The hazard function for a random variable \\(T\\) at value \\(t\\) is the conditional density of \\(T\\) at \\(t\\), given \\(T\\ge t\\); that is:\n\\[h(t) \\stackrel{\\text{def}}{=}p(T=t|T\\ge t)\\]\nIf \\(T\\) represents the time at which an event occurs, then \\(h(t)\\) is the probability that the event occurs at time \\(t\\), given that it has not occurred prior to time \\(t\\).\n\n\n\nThe hazard function has an important relationship to the density and survival functions, which we can use to derive the hazard function for a given probability distribution (Theorem 5.1).\n\n\nLemma 5.1 (Joint probability of a variable with itself) \\[p(T=t, T\\ge t) = p(T=t)\\]\n\nProof. Recall from Epi 202: if \\(A\\) and \\(B\\) are statistical events and \\(A\\subseteq B\\), then \\(p(A, B) = p(A)\\). In particular, \\(\\{T=t\\} \\subseteq \\{T\\geq t\\}\\), so \\(p(T=t, T\\ge t) = p(T=t)\\).\n\n\n\n\nTheorem 5.1 \\[h(t)=\\frac{f(t)}{S(t)}\\]\n\n\n\nProof. \\[\n\\begin{aligned}\nh(t) &=p(T=t|T\\ge t)\\\\\n&=\\frac{p(T=t, T\\ge t)}{p(T \\ge t)}\\\\\n&=\\frac{p(T=t)}{p(T \\ge t)}\\\\\n&=\\frac{f(t)}{S(t)}\n\\end{aligned}\n\\]\n\n\n\nExample 5.4 (exponential distribution) The hazard function of the exponential distribution family of models is:\n\\[\n\\begin{aligned}\nP(T=t|T \\ge t)\n&= \\frac{f(t)}{S(t)}\\\\\n&= \\frac{\\mathbb{1}_{t \\ge 0}\\cdot \\lambda \\text{e}^{-\\lambda t}}{\\text{e}^{-\\lambda t}}\\\\\n&=\\mathbb{1}_{t \\ge 0}\\cdot \\lambda\n\\end{aligned}\n\\] Figure 5.2 shows some examples of exponential hazard functions.\n\n\n\n\n\n\nFigure 5.2: Examples of hazard functions for exponential distributions\n\n\n\n\n\n\n\n\nWe can also view the hazard function as the derivative of the negative of the logarithm of the survival function:\n\nTheorem 5.2 (transform survival to hazard) \\[h(t) = \\frac{\\partial}{\\partial t}\\left\\{-\\text{log}\\left\\{S(t)\\right\\}\\right\\}\\]\n\n\n\nProof. \\[\n\\begin{aligned}\nh(t)\n&= \\frac{f(t)}{S(t)}\\\\\n&= \\frac{-S'(t)}{S(t)}\\\\\n&= -\\frac{S'(t)}{S(t)}\\\\\n&=-\\frac{\\partial}{\\partial t}\\text{log}\\left\\{S(t)\\right\\}\\\\\n&=\\frac{\\partial}{\\partial t}\\left\\{-\\text{log}\\left\\{S(t)\\right\\}\\right\\}\n\\end{aligned}\n\\]\n\n\n5.3.5 The Cumulative Hazard Function\nSince \\(h(t) = \\frac{\\partial}{\\partial t}\\left\\{-\\text{log}\\left\\{S(t)\\right\\}\\right\\}\\) (see Theorem 5.2), we also have:\n\nCorollary 5.1 \\[S(t) = \\text{exp}\\left\\{-\\int_{u=0}^t h(u)du\\right\\} \\tag{5.1}\\]\n\n\n\nThe integral in Equation 5.1 is important enough to have its own name: cumulative hazard.\n\n\nDefinition 5.3 (cumulative hazard) The cumulative hazard function \\(H(t)\\) is defined as:\n\\[H(t) \\stackrel{\\text{def}}{=}\\int_{u=0}^t h(u) du\\]\n\nAs we will see below, \\(H(t)\\) is tractable to estimate, and we can then derive an estimate of the hazard function using an approximate derivative of the estimated cumulative hazard.\n\n\nExample 5.5 The cumulative hazard function of the exponential distribution family of models is:\n\\[\nH(t) = \\mathbb{1}_{t \\ge 0}\\cdot \\lambda t\n\\]\nFigure 5.3 shows some examples of exponential cumulative hazard functions.\n\n\n\n\n\n\nFigure 5.3: Examples of exponential cumulative hazard functions\n\n\n\n\n\n\n\n\n5.3.6 Some Key Mathematical Relationships among Survival Concepts\nDiagram:\n\\[\nh(t) \\xrightarrow[]{\\int_{u=0}^t h(u)du} H(t)\n\\xrightarrow[]{\\text{exp}\\left\\{-H(t)\\right\\}} S(t)\n\\xrightarrow[]{1-S(t)} F(t)\n\\]\n\\[\nh(t) \\xleftarrow[\\frac{\\partial}{\\partial t}H(t)]{} H(t)\n\\xleftarrow[-\\text{log}\\left\\{S(t)\\right\\}]{} S(t)\n\\xleftarrow[1-F(t)]{} F(t)\n\\]\nIdentities:\n\\[\n\\begin{aligned}\nS(t) &= 1 - F(t)\\\\\n&= \\text{exp}\\left\\{-H(t)\\right\\}\\\\\nS'(t) &= -f(t)\\\\\nH(t) &= -\\text{log}\\left\\{S(t)\\right\\}\\\\\nH'(t) &= h(t)\\\\\nh(t) &= \\frac{f(t)}{S(t)}\\\\\n&= -\\frac{\\partial}{\\partial t}\\text{log}\\left\\{S(t)\\right\\} \\\\\nf(t) &= h(t)\\cdot S(t)\\\\\n\\end{aligned}\n\\]\n\nSome proofs (others left as exercises):\n\\[\n\\begin{aligned}\nS'(t) &= \\frac{\\partial}{\\partial t}(1-F(t))\\\\\n&= -F'(t)\\\\\n&= -f(t)\\\\\n\\end{aligned}\n\\]\n\n\\[\n\\begin{aligned}\n\\frac{\\partial}{\\partial t}\\text{log}\\left\\{S(t)\\right\\}\n&= \\frac{S'(t)}{S(t)}\\\\\n&= -\\frac{f(t)}{S(t)}\\\\\n&= -h(t)\\\\\n\\end{aligned}\n\\]\n\n\\[\n\\begin{aligned}\nH(t)\n&\\stackrel{\\text{def}}{=}\\int_{u=0}^t h(u) du\\\\\n&= \\int_0^t -\\frac{\\partial}{\\partial u}\\text{log}\\left\\{S(u)\\right\\} du\\\\\n&= \\left[-\\text{log}\\left\\{S(u)\\right\\}\\right]_{u=0}^{u=t}\\\\\n&= \\left[\\text{log}\\left\\{S(u)\\right\\}\\right]_{u=t}^{u=0}\\\\\n&= \\text{log}\\left\\{S(0)\\right\\} - \\text{log}\\left\\{S(t)\\right\\}\\\\\n&= \\text{log}\\left\\{1\\right\\} - \\text{log}\\left\\{S(t)\\right\\}\\\\\n&= 0 - \\text{log}\\left\\{S(t)\\right\\}\\\\\n&=-\\text{log}\\left\\{S(t)\\right\\}\n\\end{aligned}\n\\]\n\nCorollary:\n\\[S(t) = \\text{exp}\\left\\{-H(t)\\right\\}\\]\nExample: Time to death the US in 2004\nThe first day is the most dangerous:\n\n\n\nDaily Hazard Rates in 2004 for US Females\n\n\n\n\n\nExercise: hypothesize why these curves differ where they do?\n\n\n\nDaily Hazard Rates in 2004 for US Males and Females 1-40\n\n\n\n\n\nExercise: compare and contrast this curve with the corresponding hazard curve.\n\n\n\nSurvival Curve in 2004 for US Females\n\n\n\n\n\n5.3.7 Likelihood with censoring\nIf an event time \\(T\\) is observed exactly as \\(T=t\\), then the likelihood of that observation is just its probability density function:\n\\[\n\\begin{aligned}\n\\mathcal L(t)\n&= p(T=t)\\\\\n&\\stackrel{\\text{def}}{=}f_T(t)\\\\\n&= h_T(t)S_T(t)\\\\\n\\ell(t)\n&\\stackrel{\\text{def}}{=}\\text{log}\\left\\{\\mathcal L(t)\\right\\}\\\\\n&= \\text{log}\\left\\{h_T(t)S_T(t)\\right\\}\\\\\n&= \\text{log}\\left\\{h_T(t)\\right\\} + \\text{log}\\left\\{S_T(t)\\right\\}\\\\\n&= \\text{log}\\left\\{h_T(t)\\right\\} - H_T(t)\\\\\n\\end{aligned}\n\\]\n\nIf instead the event time \\(T\\) is censored and only known to be after time \\(y\\), then the likelihood of that censored observation is instead the survival function evaluated at the censoring time:\n\\[\n\\begin{aligned}\n\\mathcal L(y)\n&=p_T(T>y)\\\\\n&\\stackrel{\\text{def}}{=}S_T(y)\\\\\n\\ell(y)\n&\\stackrel{\\text{def}}{=}\\text{log}\\left\\{\\mathcal L(y)\\right\\}\\\\\n&=\\text{log}\\left\\{S(y)\\right\\}\\\\\n&=-H(y)\\\\\n\\end{aligned}\n\\]\n\n\nWhat’s written above is incomplete. We also observed whether or not the observation was censored. Let \\(C\\) denote the time when censoring would occur (if the event did not occur first); let \\(f_C(y)\\) and \\(S_C(y)\\) be the corresponding density and survival functions for the censoring event.\nLet \\(Y\\) denote the time when observation ended (either by censoring or by the event of interest occurring), and let \\(D\\) be an indicator variable for the event occurring at \\(Y\\) (so \\(D=0\\) represents a censored observation and \\(D=1\\) represents an uncensored observation). In other words, let \\(Y \\stackrel{\\text{def}}{=}\\min(T,C)\\) and \\(D \\stackrel{\\text{def}}{=}\\mathbb 1{\\{T<=C\\}}\\).\nThen the complete likelihood of the observed data \\((Y,D)\\) is:\n\n\\[\n\\begin{aligned}\n\\mathcal L(y,d)\n&= p(Y=y, D=d)\\\\\n&= \\left[p(T=y,C> y)\\right]^d \\cdot\n\\left[p(T>y,C=y)\\right]^{1-d}\\\\\n\\end{aligned}\n\\]\n\n\nTypically, survival analyses assume that \\(C\\) and \\(T\\) are mutually independent; this assumption is called “non-informative” censoring.\nThen the joint likelihood \\(p(Y,D)\\) factors into the product \\(p(Y), p(D)\\), and the likelihood reduces to:\n\n\\[\n\\begin{aligned}\n\\mathcal L(y,d)\n&= \\left[p(T=y,C> y)\\right]^d\\cdot\n\\left[p(T>y,C=y)\\right]^{1-d}\\\\\n&= \\left[p(T=y)p(C> y)\\right]^d\\cdot\n\\left[p(T>y)p(C=y)\\right]^{1-d}\\\\\n&= \\left[f_T(y)S_C(y)\\right]^d\\cdot\n\\left[S(y)f_C(y)\\right]^{1-d}\\\\\n&= \\left[f_T(y)^d S_C(y)^d\\right]\\cdot\n\\left[S_T(y)^{1-d}f_C(y)^{1-d}\\right]\\\\\n&= \\left(f_T(y)^d \\cdot S_T(y)^{1-d}\\right)\\cdot\n\\left(f_C(y)^{1-d} \\cdot S_C(y)^{d}\\right)\n\\end{aligned}\n\\]\n\n\nThe corresponding log-likelihood is:\n\n\\[\n\\begin{aligned}\n\\ell(y,d)\n&= \\text{log}\\left\\{\\mathcal L(y,d) \\right\\}\\\\\n&= \\text{log}\\left\\{\n\\left(f_T(y)^d \\cdot S_T(y)^{1-d}\\right)\\cdot\n\\left(f_C(y)^{1-d} \\cdot S_C(y)^{d}\\right)\n\\right\\}\\\\\n&= \\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\n+\n\\text{log}\\left\\{\nf_C(y)^{1-d} \\cdot S_C(y)^{d}\n\\right\\}\\\\\n\\end{aligned}\n\\] Let\n\n\n\\(\\theta_T\\) represent the parameters of \\(p_T(t)\\),\n\n\\(\\theta_C\\) represent the parameters of \\(p_C(c)\\),\n\n\\(\\theta = (\\theta_T, \\theta_C)\\) be the combined vector of all parameters.\n\n\n\nThe corresponding score function is:\n\n\\[\n\\begin{aligned}\n\\ell'(y,d)\n&= \\frac{\\partial}{\\partial \\theta}\n\\left[\n\\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\n+\n\\text{log}\\left\\{\nf_C(y)^{1-d} \\cdot S_C(y)^{d}\n\\right\\}\n\\right]\\\\\n&=\n\\left(\n\\frac{\\partial}{\\partial \\theta}\n\\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\n\\right)\n+\n\\left(\n\\frac{\\partial}{\\partial \\theta}\n\\text{log}\\left\\{\nf_C(y)^{1-d} \\cdot S_C(y)^{d}\n\\right\\}\n\\right)\\\\\n\\end{aligned}\n\\]\n\n\nAs long as \\(\\theta_C\\) and \\(\\theta_T\\) don’t share any parameters, then if censoring is non-informative, the partial derivative with respect to \\(\\theta_T\\) is:\n\n\\[\n\\begin{aligned}\n\\ell'_{\\theta_T}(y,d)\n&\\stackrel{\\text{def}}{=}\\frac{\\partial}{\\partial \\theta_T}\\ell(y,d)\\\\\n&=\n\\left(\n\\frac{\\partial}{\\partial \\theta_T}\n\\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\n\\right)\n+\n\\left(\n\\frac{\\partial}{\\partial \\theta_T}\n\\text{log}\\left\\{\nf_C(y)^{1-d} \\cdot S_C(y)^{d}\n\\right\\}\n\\right)\\\\\n&=\n\\left(\n\\frac{\\partial}{\\partial \\theta_T}\n\\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\n\\right) + 0\\\\\n&=\n\\frac{\\partial}{\\partial \\theta_T}\n\\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\\\\\n\\end{aligned}\n\\]\n\n\nThus, the MLE for \\(\\theta_T\\) won’t depend on \\(\\theta_C\\), and we can ignore the distribution of \\(C\\) when estimating the parameters of \\(f_T(t)=p(T=t)\\).\n\nThen:\n\\[\n\\begin{aligned}\n\\mathcal L(y,d)\n&= f_T(y)^d \\cdot S_T(y)^{1-d}\\\\\n&= \\left(h_T(y)^d S_T(y)^d\\right) \\cdot S_T(y)^{1-d}\\\\\n&= h_T(y)^d \\cdot S_T(y)^d \\cdot S_T(y)^{1-d}\\\\\n&= h_T(y)^d \\cdot S_T(y)\\\\\n&= S_T(y) \\cdot h_T(y)^d \\\\\n\\end{aligned}\n\\]\n\nThat is, if the event occurred at time \\(y\\) (i.e., if \\(d=1\\)), then the likelihood of \\((Y,D) = (y,d)\\) is equal to the hazard function at \\(y\\) times the survival function at \\(y\\). Otherwise, the likelihood is equal to just the survival function at \\(y\\).\n\n\n\nThe corresponding log-likelihood is:\n\n\\[\n\\begin{aligned}\n\\ell(y,d)\n&=\\text{log}\\left\\{\\mathcal L(y,d)\\right\\}\\\\\n&= \\text{log}\\left\\{S_T(y) \\cdot h_T(y)^d\\right\\}\\\\\n&= \\text{log}\\left\\{S_T(y)\\right\\} + \\text{log}\\left\\{h_T(y)^d\\right\\}\\\\\n&= \\text{log}\\left\\{S_T(y)\\right\\} + d\\cdot \\text{log}\\left\\{h_T(y)\\right\\}\\\\\n&= -H_T(y) + d\\cdot \\text{log}\\left\\{h_T(y)\\right\\}\\\\\n\\end{aligned}\n\\]\n\nIn other words, the log-likelihood contribution from a single observation \\((Y,D) = (y,d)\\) is equal to the negative cumulative hazard at \\(y\\), plus the log of the hazard at \\(y\\) if the event occurred at time \\(y\\).", + "text": "5.3 Distribution functions for time-to-event variables\n\n5.3.1 The Probability Density Function (PDF)\nFor a time-to-event variable \\(T\\) with a continuous distribution, the probability density function is defined as usual (see Section B.4.1).\n\nIn most time-to-event models, this density is assumed to be 0 for all \\(t<0\\); that is, \\(f(t) = 0, \\forall t<0\\). In other words, the support of \\(T\\) is typically \\([0,\\infty)\\).\n\n\n\nExample 5.1 (exponential distribution) Recall from Epi 202: the pdf of the exponential distribution family of models is:\n\\[p(T=t) = \\mathbb{1}_{t \\ge 0} \\cdot \\lambda \\text{e}^{-\\lambda t}\\]\nwhere \\(\\lambda > 0\\).\n\nHere are some examples of exponential pdfs:\n\n\n\n\n\n\n\n\n\n\n5.3.2 The Cumulative Distribution Function (CDF)\nThe cumulative distribution function is defined as:\n\\[\n\\begin{aligned}\nF(t) &\\stackrel{\\text{def}}{=}\\Pr(T \\le t)\\\\\n&=\\int_{u=-\\infty}^t f(u) du\n\\end{aligned}\n\\]\n\nExample 5.2 (exponential distribution) Recall from Epi 202: the cdf of the exponential distribution family of models is:\n\\[\nP(T\\le t) = \\mathbb{1}_{t \\ge 0} \\cdot (1- \\text{e}^{-\\lambda t})\n\\] where \\(\\lambda > 0\\).\n\nHere are some examples of exponential cdfs:\n\n\n\n\n\n\n\n\n\n5.3.3 The Survival Function\nFor survival data, a more important quantity is the survival function:\n\\[\n\\begin{aligned}\nS(t) &\\stackrel{\\text{def}}{=}\\Pr(T > t)\\\\\n&=\\int_{u=t}^\\infty p(u) du\\\\\n&=1-F(t)\\\\\n\\end{aligned}\n\\]\n\n\nDefinition 5.1 (Survival function)  \n\nThe survival function \\(S(t)\\) is the probability that the event time is later than \\(t\\). If the event in a clinical trial is death, then \\(S(t)\\) is the expected fraction of the original population at time 0 who have survived up to time \\(t\\) and are still alive at time \\(t\\); that is:\n\n\\[S(t) \\stackrel{\\text{def}}{=}\\Pr(T > t) \\tag{5.1}\\]\n\n\n\nExample 5.3 (exponential distribution) Since \\(S(t) = 1 - F(t)\\), the survival function of the exponential distribution family of models is:\n\\[\nP(T> t) = \\left\\{ {{\\text{e}^{-\\lambda t}, t\\ge0} \\atop {1, t \\le 0}}\\right.\n\\] where \\(\\lambda > 0\\).\nFigure 5.1 shows some examples of exponential survival functions.\n\n\n\n\n\n\nFigure 5.1: Exponential Survival Functions\n\n\n\n\n\n\n\n\n\nTheorem 5.1 If \\(A_t\\) represents survival status at time \\(t\\), with \\(A_t = 1\\) denoting alive at time \\(t\\) and \\(A_t = 0\\) denoting deceased at time \\(t\\), then:\n\\[S(t) = \\Pr(A_t=1) = \\mathbb{E}[A_t]\\]\n\n\n\nTheorem 5.2 If \\(T\\) is a nonnegative random variable, then:\n\\[\\mathbb{E}[T] = \\int_{t=0}^{\\infty} S(t)dt\\]\n\n\n\nProof. See https://statproofbook.github.io/P/mean-nnrvar.html or\n\n\n5.3.4 The Hazard Function\nAnother important quantity is the hazard function:\n\nDefinition 5.2 (Hazard function) The hazard function for a random variable \\(T\\) at value \\(t\\) is the conditional density of \\(T\\) at \\(t\\), given \\(T\\ge t\\); that is:\n\\[h(t) \\stackrel{\\text{def}}{=}p(T=t|T\\ge t)\\]\nIf \\(T\\) represents the time at which an event occurs, then \\(h(t)\\) is the probability that the event occurs at time \\(t\\), given that it has not occurred prior to time \\(t\\).\n\n\n\nThe hazard function has an important relationship to the density and survival functions, which we can use to derive the hazard function for a given probability distribution (Theorem 5.3).\n\n\nLemma 5.1 (Joint probability of a variable with itself) \\[p(T=t, T\\ge t) = p(T=t)\\]\n\nProof. Recall from Epi 202: if \\(A\\) and \\(B\\) are statistical events and \\(A\\subseteq B\\), then \\(p(A, B) = p(A)\\). In particular, \\(\\{T=t\\} \\subseteq \\{T\\geq t\\}\\), so \\(p(T=t, T\\ge t) = p(T=t)\\).\n\n\n\n\nTheorem 5.3 \\[h(t)=\\frac{f(t)}{S(t)}\\]\n\n\n\nProof. \\[\n\\begin{aligned}\nh(t) &=p(T=t|T\\ge t)\\\\\n&=\\frac{p(T=t, T\\ge t)}{p(T \\ge t)}\\\\\n&=\\frac{p(T=t)}{p(T \\ge t)}\\\\\n&=\\frac{f(t)}{S(t)}\n\\end{aligned}\n\\]\n\n\n\nExample 5.4 (exponential distribution) The hazard function of the exponential distribution family of models is:\n\\[\n\\begin{aligned}\nP(T=t|T \\ge t)\n&= \\frac{f(t)}{S(t)}\\\\\n&= \\frac{\\mathbb{1}_{t \\ge 0}\\cdot \\lambda \\text{e}^{-\\lambda t}}{\\text{e}^{-\\lambda t}}\\\\\n&=\\mathbb{1}_{t \\ge 0}\\cdot \\lambda\n\\end{aligned}\n\\] Figure 5.2 shows some examples of exponential hazard functions.\n\n\n\n\n\n\nFigure 5.2: Examples of hazard functions for exponential distributions\n\n\n\n\n\n\n\n\nWe can also view the hazard function as the derivative of the negative of the logarithm of the survival function:\n\nTheorem 5.4 (transform survival to hazard) \\[h(t) = \\frac{\\partial}{\\partial t}\\left\\{-\\text{log}\\left\\{S(t)\\right\\}\\right\\}\\]\n\n\n\nProof. \\[\n\\begin{aligned}\nh(t)\n&= \\frac{f(t)}{S(t)}\\\\\n&= \\frac{-S'(t)}{S(t)}\\\\\n&= -\\frac{S'(t)}{S(t)}\\\\\n&=-\\frac{\\partial}{\\partial t}\\text{log}\\left\\{S(t)\\right\\}\\\\\n&=\\frac{\\partial}{\\partial t}\\left\\{-\\text{log}\\left\\{S(t)\\right\\}\\right\\}\n\\end{aligned}\n\\]\n\n\n5.3.5 The Cumulative Hazard Function\nSince \\(h(t) = \\frac{\\partial}{\\partial t}\\left\\{-\\text{log}\\left\\{S(t)\\right\\}\\right\\}\\) (see Theorem 5.4), we also have:\n\nCorollary 5.1 \\[S(t) = \\text{exp}\\left\\{-\\int_{u=0}^t h(u)du\\right\\} \\tag{5.2}\\]\n\n\n\nThe integral in Equation 5.2 is important enough to have its own name: cumulative hazard.\n\n\nDefinition 5.3 (cumulative hazard) The cumulative hazard function \\(H(t)\\) is defined as:\n\\[H(t) \\stackrel{\\text{def}}{=}\\int_{u=0}^t h(u) du\\]\n\nAs we will see below, \\(H(t)\\) is tractable to estimate, and we can then derive an estimate of the hazard function using an approximate derivative of the estimated cumulative hazard.\n\n\nExample 5.5 The cumulative hazard function of the exponential distribution family of models is:\n\\[\nH(t) = \\mathbb{1}_{t \\ge 0}\\cdot \\lambda t\n\\]\nFigure 5.3 shows some examples of exponential cumulative hazard functions.\n\n\n\n\n\n\nFigure 5.3: Examples of exponential cumulative hazard functions\n\n\n\n\n\n\n\n\n5.3.6 Some Key Mathematical Relationships among Survival Concepts\nDiagram:\n\\[\nh(t) \\xrightarrow[]{\\int_{u=0}^t h(u)du} H(t)\n\\xrightarrow[]{\\text{exp}\\left\\{-H(t)\\right\\}} S(t)\n\\xrightarrow[]{1-S(t)} F(t)\n\\]\n\\[\nh(t) \\xleftarrow[\\frac{\\partial}{\\partial t}H(t)]{} H(t)\n\\xleftarrow[-\\text{log}\\left\\{S(t)\\right\\}]{} S(t)\n\\xleftarrow[1-F(t)]{} F(t)\n\\]\nIdentities:\n\\[\n\\begin{aligned}\nS(t) &= 1 - F(t)\\\\\n&= \\text{exp}\\left\\{-H(t)\\right\\}\\\\\nS'(t) &= -f(t)\\\\\nH(t) &= -\\text{log}\\left\\{S(t)\\right\\}\\\\\nH'(t) &= h(t)\\\\\nh(t) &= \\frac{f(t)}{S(t)}\\\\\n&= -\\frac{\\partial}{\\partial t}\\text{log}\\left\\{S(t)\\right\\} \\\\\nf(t) &= h(t)\\cdot S(t)\\\\\n\\end{aligned}\n\\]\n\nSome proofs (others left as exercises):\n\\[\n\\begin{aligned}\nS'(t) &= \\frac{\\partial}{\\partial t}(1-F(t))\\\\\n&= -F'(t)\\\\\n&= -f(t)\\\\\n\\end{aligned}\n\\]\n\n\\[\n\\begin{aligned}\n\\frac{\\partial}{\\partial t}\\text{log}\\left\\{S(t)\\right\\}\n&= \\frac{S'(t)}{S(t)}\\\\\n&= -\\frac{f(t)}{S(t)}\\\\\n&= -h(t)\\\\\n\\end{aligned}\n\\]\n\n\\[\n\\begin{aligned}\nH(t)\n&\\stackrel{\\text{def}}{=}\\int_{u=0}^t h(u) du\\\\\n&= \\int_0^t -\\frac{\\partial}{\\partial u}\\text{log}\\left\\{S(u)\\right\\} du\\\\\n&= \\left[-\\text{log}\\left\\{S(u)\\right\\}\\right]_{u=0}^{u=t}\\\\\n&= \\left[\\text{log}\\left\\{S(u)\\right\\}\\right]_{u=t}^{u=0}\\\\\n&= \\text{log}\\left\\{S(0)\\right\\} - \\text{log}\\left\\{S(t)\\right\\}\\\\\n&= \\text{log}\\left\\{1\\right\\} - \\text{log}\\left\\{S(t)\\right\\}\\\\\n&= 0 - \\text{log}\\left\\{S(t)\\right\\}\\\\\n&=-\\text{log}\\left\\{S(t)\\right\\}\n\\end{aligned}\n\\]\n\nCorollary:\n\\[S(t) = \\text{exp}\\left\\{-H(t)\\right\\}\\]\nExample: Time to death the US in 2004\nThe first day is the most dangerous:\n\n\n\nDaily Hazard Rates in 2004 for US Females\n\n\n\n\n\nExercise: hypothesize why these curves differ where they do?\n\n\n\nDaily Hazard Rates in 2004 for US Males and Females 1-40\n\n\n\n\n\nExercise: compare and contrast this curve with the corresponding hazard curve.\n\n\n\nSurvival Curve in 2004 for US Females\n\n\n\n\n\n5.3.7 Likelihood with censoring\nIf an event time \\(T\\) is observed exactly as \\(T=t\\), then the likelihood of that observation is just its probability density function:\n\\[\n\\begin{aligned}\n\\mathcal L(t)\n&= p(T=t)\\\\\n&\\stackrel{\\text{def}}{=}f_T(t)\\\\\n&= h_T(t)S_T(t)\\\\\n\\ell(t)\n&\\stackrel{\\text{def}}{=}\\text{log}\\left\\{\\mathcal L(t)\\right\\}\\\\\n&= \\text{log}\\left\\{h_T(t)S_T(t)\\right\\}\\\\\n&= \\text{log}\\left\\{h_T(t)\\right\\} + \\text{log}\\left\\{S_T(t)\\right\\}\\\\\n&= \\text{log}\\left\\{h_T(t)\\right\\} - H_T(t)\\\\\n\\end{aligned}\n\\]\n\nIf instead the event time \\(T\\) is censored and only known to be after time \\(y\\), then the likelihood of that censored observation is instead the survival function evaluated at the censoring time:\n\\[\n\\begin{aligned}\n\\mathcal L(y)\n&=p_T(T>y)\\\\\n&\\stackrel{\\text{def}}{=}S_T(y)\\\\\n\\ell(y)\n&\\stackrel{\\text{def}}{=}\\text{log}\\left\\{\\mathcal L(y)\\right\\}\\\\\n&=\\text{log}\\left\\{S(y)\\right\\}\\\\\n&=-H(y)\\\\\n\\end{aligned}\n\\]\n\n\nWhat’s written above is incomplete. We also observed whether or not the observation was censored. Let \\(C\\) denote the time when censoring would occur (if the event did not occur first); let \\(f_C(y)\\) and \\(S_C(y)\\) be the corresponding density and survival functions for the censoring event.\nLet \\(Y\\) denote the time when observation ended (either by censoring or by the event of interest occurring), and let \\(D\\) be an indicator variable for the event occurring at \\(Y\\) (so \\(D=0\\) represents a censored observation and \\(D=1\\) represents an uncensored observation). In other words, let \\(Y \\stackrel{\\text{def}}{=}\\min(T,C)\\) and \\(D \\stackrel{\\text{def}}{=}\\mathbb 1{\\{T<=C\\}}\\).\nThen the complete likelihood of the observed data \\((Y,D)\\) is:\n\n\\[\n\\begin{aligned}\n\\mathcal L(y,d)\n&= p(Y=y, D=d)\\\\\n&= \\left[p(T=y,C> y)\\right]^d \\cdot\n\\left[p(T>y,C=y)\\right]^{1-d}\\\\\n\\end{aligned}\n\\]\n\n\nTypically, survival analyses assume that \\(C\\) and \\(T\\) are mutually independent; this assumption is called “non-informative” censoring.\nThen the joint likelihood \\(p(Y,D)\\) factors into the product \\(p(Y), p(D)\\), and the likelihood reduces to:\n\n\\[\n\\begin{aligned}\n\\mathcal L(y,d)\n&= \\left[p(T=y,C> y)\\right]^d\\cdot\n\\left[p(T>y,C=y)\\right]^{1-d}\\\\\n&= \\left[p(T=y)p(C> y)\\right]^d\\cdot\n\\left[p(T>y)p(C=y)\\right]^{1-d}\\\\\n&= \\left[f_T(y)S_C(y)\\right]^d\\cdot\n\\left[S(y)f_C(y)\\right]^{1-d}\\\\\n&= \\left[f_T(y)^d S_C(y)^d\\right]\\cdot\n\\left[S_T(y)^{1-d}f_C(y)^{1-d}\\right]\\\\\n&= \\left(f_T(y)^d \\cdot S_T(y)^{1-d}\\right)\\cdot\n\\left(f_C(y)^{1-d} \\cdot S_C(y)^{d}\\right)\n\\end{aligned}\n\\]\n\n\nThe corresponding log-likelihood is:\n\n\\[\n\\begin{aligned}\n\\ell(y,d)\n&= \\text{log}\\left\\{\\mathcal L(y,d) \\right\\}\\\\\n&= \\text{log}\\left\\{\n\\left(f_T(y)^d \\cdot S_T(y)^{1-d}\\right)\\cdot\n\\left(f_C(y)^{1-d} \\cdot S_C(y)^{d}\\right)\n\\right\\}\\\\\n&= \\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\n+\n\\text{log}\\left\\{\nf_C(y)^{1-d} \\cdot S_C(y)^{d}\n\\right\\}\\\\\n\\end{aligned}\n\\] Let\n\n\n\\(\\theta_T\\) represent the parameters of \\(p_T(t)\\),\n\n\\(\\theta_C\\) represent the parameters of \\(p_C(c)\\),\n\n\\(\\theta = (\\theta_T, \\theta_C)\\) be the combined vector of all parameters.\n\n\n\nThe corresponding score function is:\n\n\\[\n\\begin{aligned}\n\\ell'(y,d)\n&= \\frac{\\partial}{\\partial \\theta}\n\\left[\n\\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\n+\n\\text{log}\\left\\{\nf_C(y)^{1-d} \\cdot S_C(y)^{d}\n\\right\\}\n\\right]\\\\\n&=\n\\left(\n\\frac{\\partial}{\\partial \\theta}\n\\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\n\\right)\n+\n\\left(\n\\frac{\\partial}{\\partial \\theta}\n\\text{log}\\left\\{\nf_C(y)^{1-d} \\cdot S_C(y)^{d}\n\\right\\}\n\\right)\\\\\n\\end{aligned}\n\\]\n\n\nAs long as \\(\\theta_C\\) and \\(\\theta_T\\) don’t share any parameters, then if censoring is non-informative, the partial derivative with respect to \\(\\theta_T\\) is:\n\n\\[\n\\begin{aligned}\n\\ell'_{\\theta_T}(y,d)\n&\\stackrel{\\text{def}}{=}\\frac{\\partial}{\\partial \\theta_T}\\ell(y,d)\\\\\n&=\n\\left(\n\\frac{\\partial}{\\partial \\theta_T}\n\\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\n\\right)\n+\n\\left(\n\\frac{\\partial}{\\partial \\theta_T}\n\\text{log}\\left\\{\nf_C(y)^{1-d} \\cdot S_C(y)^{d}\n\\right\\}\n\\right)\\\\\n&=\n\\left(\n\\frac{\\partial}{\\partial \\theta_T}\n\\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\n\\right) + 0\\\\\n&=\n\\frac{\\partial}{\\partial \\theta_T}\n\\text{log}\\left\\{\nf_T(y)^d \\cdot S_T(y)^{1-d}\n\\right\\}\\\\\n\\end{aligned}\n\\]\n\n\nThus, the MLE for \\(\\theta_T\\) won’t depend on \\(\\theta_C\\), and we can ignore the distribution of \\(C\\) when estimating the parameters of \\(f_T(t)=p(T=t)\\).\n\nThen:\n\\[\n\\begin{aligned}\n\\mathcal L(y,d)\n&= f_T(y)^d \\cdot S_T(y)^{1-d}\\\\\n&= \\left(h_T(y)^d S_T(y)^d\\right) \\cdot S_T(y)^{1-d}\\\\\n&= h_T(y)^d \\cdot S_T(y)^d \\cdot S_T(y)^{1-d}\\\\\n&= h_T(y)^d \\cdot S_T(y)\\\\\n&= S_T(y) \\cdot h_T(y)^d \\\\\n\\end{aligned}\n\\]\n\nThat is, if the event occurred at time \\(y\\) (i.e., if \\(d=1\\)), then the likelihood of \\((Y,D) = (y,d)\\) is equal to the hazard function at \\(y\\) times the survival function at \\(y\\). Otherwise, the likelihood is equal to just the survival function at \\(y\\).\n\n\n\nThe corresponding log-likelihood is:\n\n\\[\n\\begin{aligned}\n\\ell(y,d)\n&=\\text{log}\\left\\{\\mathcal L(y,d)\\right\\}\\\\\n&= \\text{log}\\left\\{S_T(y) \\cdot h_T(y)^d\\right\\}\\\\\n&= \\text{log}\\left\\{S_T(y)\\right\\} + \\text{log}\\left\\{h_T(y)^d\\right\\}\\\\\n&= \\text{log}\\left\\{S_T(y)\\right\\} + d\\cdot \\text{log}\\left\\{h_T(y)\\right\\}\\\\\n&= -H_T(y) + d\\cdot \\text{log}\\left\\{h_T(y)\\right\\}\\\\\n\\end{aligned}\n\\]\n\nIn other words, the log-likelihood contribution from a single observation \\((Y,D) = (y,d)\\) is equal to the negative cumulative hazard at \\(y\\), plus the log of the hazard at \\(y\\) if the event occurred at time \\(y\\).", "crumbs": [ "Time to Event Models", "5  Introduction to Survival Analysis" @@ -544,7 +544,7 @@ "href": "intro-to-survival-analysis.html#parametric-models-for-time-to-event-outcomes", "title": "\n5  Introduction to Survival Analysis\n", "section": "\n5.4 Parametric Models for Time-to-Event Outcomes", - "text": "5.4 Parametric Models for Time-to-Event Outcomes\n\n5.4.1 Exponential Distribution\n\nThe exponential distribution is the base distribution for survival analysis.\nThe distribution has a constant hazard \\(\\lambda\\)\n\nThe mean survival time is \\(\\lambda^{-1}\\)\n\n\n\nMathematical details of exponential distribution\n\\[\n\\begin{aligned}\nf(t) &= \\lambda \\text{e}^{-\\lambda t}\\\\\nE(t) &= \\lambda^{-1}\\\\\nVar(t) &= \\lambda^{-2}\\\\\nF(t) &= 1-\\text{e}^{-\\lambda x}\\\\\nS(t)&= \\text{e}^{-\\lambda x}\\\\\n\\ln(S(t))&=-\\lambda x\\\\\nh(t) &= -\\frac{f(t)}{S(t)} = -\\frac{\\lambda \\text{e}^{-\\lambda t}}{\\text{e}^{-\\lambda t}}=\\lambda\n\\end{aligned}\n\\]\nEstimating \\(\\lambda\\)\n\n\nSuppose we have \\(m\\) exponential survival times of \\(t_1, t_2,\\ldots,t_m\\) and \\(k\\) right-censored values at \\(u_1,u_2,\\ldots,u_k\\).\nA survival time of \\(t_i=10\\) means that subject \\(i\\) died at time 10. A right-censored time \\(u_i=10\\) means that at time 10, subject \\(i\\) was still alive and that we have no further follow-up.\nFor the moment we will assume that the survival distribution is exponential and that all the subjects have the same parameter \\(\\lambda\\).\n\nWe have \\(m\\) exponential survival times of \\(t_1, t_2,\\ldots,t_m\\) and \\(k\\) right-censored values at \\(u_1,u_2,\\ldots,u_k\\). The log-likelihood of an observed survival time \\(t_i\\) is \\[\n\\text{log}\\left\\{\\lambda \\text{e}^{-\\lambda t_i}\\right\\} =\n\\text{log}\\left\\{\\lambda\\right\\}-\\lambda t_i\n\\] and the likelihood of a censored value is the probability of that outcome (survival greater than \\(u_j\\)) so the log-likelihood is\n\\[\n\\begin{aligned}\n\\ell_j(\\lambda) &= \\text{log}\\left\\{\\lambda \\text{e}^{u_j}\\right\\}\n\\\\ &= -\\lambda u_j\n\\end{aligned}\n\\]\n\n\nTheorem 5.3 Let \\(T=\\sum t_i\\) and \\(U=\\sum u_j\\). Then:\n\\[\n\\ell(\\lambda) = \\frac{m}{T+U}\n\\tag{5.2}\\]\n\n\n\nProof. \\[\n\\begin{aligned}\n\\ell(\\lambda) &= \\sum_{i=1}^m( \\ln \\lambda-\\lambda t_i) + \\sum_{j=1}^k (-\\lambda u_j)\\\\\n&= m \\ln \\lambda -(T+U)\\lambda\\\\\n\\ell'(\\lambda)\n&=m\\lambda^{-1} -(T+U)\\\\\n\\hat{\\lambda} &= \\frac{m}{T+U}\n\\end{aligned}\n\\]\n\n\n\\[\n\\begin{aligned}\n\\ell''&=-m/\\lambda^2\\\\\n&< 0\\\\\n\\hat E[T] &= \\hat\\lambda^{-1}\\\\\n&= \\frac{T+U}{m}\n\\end{aligned}\n\\]\nFisher Information and Standard Error\n\\[\n\\begin{aligned}\nE[-\\ell'']\n& = m/\\lambda^2\\\\\n\\text{Var}\\left(\\hat\\lambda\\right)\n&\\approx \\left(E[-\\ell'']\\right)^{-1}\\\\\n&=\\lambda^2/m\\\\\n\\text{SE}\\left(\\hat\\lambda\\right)\n&= \\sqrt{\\text{Var}\\left(\\hat\\lambda\\right)}\\\\\n&\\approx \\lambda/\\sqrt{m}\n\\end{aligned}\n\\]\n\n\\(\\hat\\lambda\\) depends on the censoring times of the censored observations, but \\(\\text{Var}\\left(\\hat\\lambda\\right)\\) only depends on the number of uncensored observations, \\(m\\), and not on the number of censored observations (\\(k\\)).\n\n\n5.4.2 Other Parametric Survival Distributions\n\nAny density on \\([0,\\infty)\\) can be a survival distribution, but the most useful ones are all skew right.\nThe most frequently used generalization of the exponential is the Weibull.\nOther common choices are the gamma, log-normal, log-logistic, Gompertz, inverse Gaussian, and Pareto.\nMost of what we do going forward is non-parametric or semi-parametric, but sometimes these parametric distributions provide a useful approach.", + "text": "5.4 Parametric Models for Time-to-Event Outcomes\n\n5.4.1 Exponential Distribution\n\nThe exponential distribution is the base distribution for survival analysis.\nThe distribution has a constant hazard \\(\\lambda\\)\n\nThe mean survival time is \\(\\lambda^{-1}\\)\n\n\n\nMathematical details of exponential distribution\n\\[\n\\begin{aligned}\nf(t) &= \\lambda \\text{e}^{-\\lambda t}\\\\\nE(t) &= \\lambda^{-1}\\\\\nVar(t) &= \\lambda^{-2}\\\\\nF(t) &= 1-\\text{e}^{-\\lambda x}\\\\\nS(t)&= \\text{e}^{-\\lambda x}\\\\\n\\ln(S(t))&=-\\lambda x\\\\\nh(t) &= -\\frac{f(t)}{S(t)} = -\\frac{\\lambda \\text{e}^{-\\lambda t}}{\\text{e}^{-\\lambda t}}=\\lambda\n\\end{aligned}\n\\]\nEstimating \\(\\lambda\\)\n\n\nSuppose we have \\(m\\) exponential survival times of \\(t_1, t_2,\\ldots,t_m\\) and \\(k\\) right-censored values at \\(u_1,u_2,\\ldots,u_k\\).\nA survival time of \\(t_i=10\\) means that subject \\(i\\) died at time 10. A right-censored time \\(u_i=10\\) means that at time 10, subject \\(i\\) was still alive and that we have no further follow-up.\nFor the moment we will assume that the survival distribution is exponential and that all the subjects have the same parameter \\(\\lambda\\).\n\nWe have \\(m\\) exponential survival times of \\(t_1, t_2,\\ldots,t_m\\) and \\(k\\) right-censored values at \\(u_1,u_2,\\ldots,u_k\\). The log-likelihood of an observed survival time \\(t_i\\) is \\[\n\\text{log}\\left\\{\\lambda \\text{e}^{-\\lambda t_i}\\right\\} =\n\\text{log}\\left\\{\\lambda\\right\\}-\\lambda t_i\n\\] and the likelihood of a censored value is the probability of that outcome (survival greater than \\(u_j\\)) so the log-likelihood is\n\\[\n\\begin{aligned}\n\\ell_j(\\lambda) &= \\text{log}\\left\\{\\lambda \\text{e}^{u_j}\\right\\}\n\\\\ &= -\\lambda u_j\n\\end{aligned}\n\\]\n\n\nTheorem 5.5 Let \\(T=\\sum t_i\\) and \\(U=\\sum u_j\\). Then:\n\\[\n\\hat{\\lambda}_{ML} = \\frac{m}{T+U}\n\\tag{5.3}\\]\n\n\n\nProof. \\[\n\\begin{aligned}\n\\ell(\\lambda) &= \\sum_{i=1}^m( \\ln \\lambda-\\lambda t_i) + \\sum_{j=1}^k (-\\lambda u_j)\\\\\n&= m \\ln \\lambda -(T+U)\\lambda\\\\\n\\ell'(\\lambda)\n&=m\\lambda^{-1} -(T+U)\\\\\n\\hat{\\lambda} &= \\frac{m}{T+U}\n\\end{aligned}\n\\]\n\n\n\\[\n\\begin{aligned}\n\\ell''&=-m/\\lambda^2\\\\\n&< 0\\\\\n\\hat E[T] &= \\hat\\lambda^{-1}\\\\\n&= \\frac{T+U}{m}\n\\end{aligned}\n\\]\nFisher Information and Standard Error\n\\[\n\\begin{aligned}\nE[-\\ell'']\n& = m/\\lambda^2\\\\\n\\text{Var}\\left(\\hat\\lambda\\right)\n&\\approx \\left(E[-\\ell'']\\right)^{-1}\\\\\n&=\\lambda^2/m\\\\\n\\text{SE}\\left(\\hat\\lambda\\right)\n&= \\sqrt{\\text{Var}\\left(\\hat\\lambda\\right)}\\\\\n&\\approx \\lambda/\\sqrt{m}\n\\end{aligned}\n\\]\n\n\\(\\hat\\lambda\\) depends on the censoring times of the censored observations, but \\(\\text{Var}\\left(\\hat\\lambda\\right)\\) only depends on the number of uncensored observations, \\(m\\), and not on the number of censored observations (\\(k\\)).\n\n\n5.4.2 Other Parametric Survival Distributions\n\nAny density on \\([0,\\infty)\\) can be a survival distribution, but the most useful ones are all skew right.\nThe most frequently used generalization of the exponential is the Weibull.\nOther common choices are the gamma, log-normal, log-logistic, Gompertz, inverse Gaussian, and Pareto.\nMost of what we do going forward is non-parametric or semi-parametric, but sometimes these parametric distributions provide a useful approach.", "crumbs": [ "Time to Event Models", "5  Introduction to Survival Analysis" @@ -566,7 +566,7 @@ "href": "intro-to-survival-analysis.html#example-clinical-trial-for-pediatric-acute-leukemia", "title": "\n5  Introduction to Survival Analysis\n", "section": "\n5.6 Example: clinical trial for pediatric acute leukemia", - "text": "5.6 Example: clinical trial for pediatric acute leukemia\n\n5.6.1 Overview of study\nThis is from a clinical trial in 1963 for 6-MP treatment vs. placebo for Acute Leukemia in 42 children.\n\n\nPairs of children:\n\nmatched by remission status at the time of treatment (remstat: 1 = partial, 2 = complete)\nrandomized to 6-MP (exit times in t2) or placebo (exit times in t1)\n\n\nFollowed until relapse or end of study.\nAll of the placebo group relapsed, but some of the 6-MP group were censored (which means they were still in remission); indicated by relapse variable (0 = censored, 1 = relapse).\n6-MP = 6-Mercaptopurine (Purinethol) is an anti-cancer (“antineoplastic” or “cytotoxic”) chemotherapy drug used currently for Acute lymphoblastic leukemia (ALL). It is classified as an antimetabolite.\n\n5.6.2 Study design\n\nClinical trial in 1963 for 6-MP treatment vs. placebo for Acute Leukemia in 42 children.\nPairs of children:\n\nmatched by remission status at the time of treatment (remstat)\n\n\nremstat = 1: partial\n\nremstat = 2: complete\n\n\nrandomized to 6-MP (exit time: t2) or placebo (t1).\n\n\nFollowed until relapse or end of study.\n\nAll of the placebo group relapsed,\nSome of the 6-MP group were censored.\n\n\n\n\n\n\nTable 5.1: drug6mp pediatric acute leukemia data\n\nShow R codelibrary(KMsurv)\ndata(drug6mp)\ndrug6mp = drug6mp |> as_tibble() |> print()\n#> # A tibble: 21 × 5\n#> pair remstat t1 t2 relapse\n#> <int> <int> <int> <int> <int>\n#> 1 1 1 1 10 1\n#> 2 2 2 22 7 1\n#> 3 3 2 3 32 0\n#> 4 4 2 12 23 1\n#> 5 5 2 8 22 1\n#> 6 6 1 17 6 1\n#> 7 7 2 2 16 1\n#> 8 8 2 11 34 0\n#> 9 9 2 8 32 0\n#> 10 10 2 12 25 0\n#> # ℹ 11 more rows\n\n\n\n\n\n5.6.3 Data documentation for drug6mp\n\n\nShow R code# library(printr) # inserts help-file output into markdown output\nlibrary(KMsurv)\n?drug6mp\n\n\n\n5.6.4 Descriptive Statistics\n\n\nTable 5.2: Summary statistics for drug6mp data\n\nShow R codesummary(drug6mp)\n#> pair remstat t1 t2 relapse \n#> Min. : 1 Min. :1.00 Min. : 1.00 Min. : 6.0 Min. :0.000 \n#> 1st Qu.: 6 1st Qu.:2.00 1st Qu.: 4.00 1st Qu.: 9.0 1st Qu.:0.000 \n#> Median :11 Median :2.00 Median : 8.00 Median :16.0 Median :0.000 \n#> Mean :11 Mean :1.76 Mean : 8.67 Mean :17.1 Mean :0.429 \n#> 3rd Qu.:16 3rd Qu.:2.00 3rd Qu.:12.00 3rd Qu.:23.0 3rd Qu.:1.000 \n#> Max. :21 Max. :2.00 Max. :23.00 Max. :35.0 Max. :1.000\n\n\n\n\n\n\nThe average time in each group is not useful. Some of the 6-MP patients have not relapsed at the time recorded, while all of the placebo patients have relapsed.\nThe median time is not really useful either because so many of the 6-MP patients have not relapsed (12/21).\nBoth are biased down in the 6-MP group. Remember that lower times are worse since they indicate sooner recurrence.\n\n\n\n5.6.5 Exponential model\n\n\nWe can compute the hazard rate, assuming an exponential model: number of relapses divided by the sum of the exit times (Equation 5.2).\n\n\n\\[\\hat\\lambda = \\frac{\\sum_{i=1}^nD_i}{\\sum_{i=1}^nY_i}\\]\n\n\nFor the placebo, that is just the reciprocal of the mean time:\n\n\n\\[\n\\begin{aligned}\n\\hat \\lambda_{\\text{placebo}}\n&= \\frac{\\sum_{i=1}^nD_i}{\\sum_{i=1}^nY_i}\n\\\\ &= \\frac{\\sum_{i=1}^n1}{\\sum_{i=1}^nY_i}\n\\\\ &= \\frac{n}{\\sum_{i=1}^nY_i}\n\\\\ &= \\frac{1}{\\bar{Y}}\n\\\\ &= \\frac{1}{8.6667}\n\\\\ &= 0.1154\n\\end{aligned}\n\\]\n\n\nFor the 6-MP group, \\(\\hat\\lambda = 9/359 = 0.025\\)\n\n\n\\[\n\\begin{aligned}\n\\hat \\lambda_{\\text{6-MP}}\n&= \\frac{\\sum_{i=1}^nD_i}{\\sum_{i=1}^nY_i}\n\\\\ &= \\frac{9}{359}\n\\\\ &= 0.0251\n\\end{aligned}\n\\]\n\nThe estimated hazard in the placebo group is 4.6 times as large as in the 6-MP group (assuming the hazard is constant over time).", + "text": "5.6 Example: clinical trial for pediatric acute leukemia\n\n5.6.1 Overview of study\nThis is from a clinical trial in 1963 for 6-MP treatment vs. placebo for Acute Leukemia in 42 children.\n\n\nPairs of children:\n\nmatched by remission status at the time of treatment (remstat: 1 = partial, 2 = complete)\nrandomized to 6-MP (exit times in t2) or placebo (exit times in t1)\n\n\nFollowed until relapse or end of study.\nAll of the placebo group relapsed, but some of the 6-MP group were censored (which means they were still in remission); indicated by relapse variable (0 = censored, 1 = relapse).\n6-MP = 6-Mercaptopurine (Purinethol) is an anti-cancer (“antineoplastic” or “cytotoxic”) chemotherapy drug used currently for Acute lymphoblastic leukemia (ALL). It is classified as an antimetabolite.\n\n5.6.2 Study design\n\nClinical trial in 1963 for 6-MP treatment vs. placebo for Acute Leukemia in 42 children.\nPairs of children:\n\nmatched by remission status at the time of treatment (remstat)\n\n\nremstat = 1: partial\n\nremstat = 2: complete\n\n\nrandomized to 6-MP (exit time: t2) or placebo (t1).\n\n\nFollowed until relapse or end of study.\n\nAll of the placebo group relapsed,\nSome of the 6-MP group were censored.\n\n\n\n\n\n\nTable 5.1: drug6mp pediatric acute leukemia data\n\nShow R codelibrary(KMsurv)\ndata(drug6mp)\ndrug6mp = drug6mp |> as_tibble() |> print()\n#> # A tibble: 21 × 5\n#> pair remstat t1 t2 relapse\n#> <int> <int> <int> <int> <int>\n#> 1 1 1 1 10 1\n#> 2 2 2 22 7 1\n#> 3 3 2 3 32 0\n#> 4 4 2 12 23 1\n#> 5 5 2 8 22 1\n#> 6 6 1 17 6 1\n#> 7 7 2 2 16 1\n#> 8 8 2 11 34 0\n#> 9 9 2 8 32 0\n#> 10 10 2 12 25 0\n#> # ℹ 11 more rows\n\n\n\n\n\n5.6.3 Data documentation for drug6mp\n\n\nShow R code# library(printr) # inserts help-file output into markdown output\nlibrary(KMsurv)\n?drug6mp\n\n\n\n5.6.4 Descriptive Statistics\n\n\nTable 5.2: Summary statistics for drug6mp data\n\nShow R codesummary(drug6mp)\n#> pair remstat t1 t2 relapse \n#> Min. : 1 Min. :1.00 Min. : 1.00 Min. : 6.0 Min. :0.000 \n#> 1st Qu.: 6 1st Qu.:2.00 1st Qu.: 4.00 1st Qu.: 9.0 1st Qu.:0.000 \n#> Median :11 Median :2.00 Median : 8.00 Median :16.0 Median :0.000 \n#> Mean :11 Mean :1.76 Mean : 8.67 Mean :17.1 Mean :0.429 \n#> 3rd Qu.:16 3rd Qu.:2.00 3rd Qu.:12.00 3rd Qu.:23.0 3rd Qu.:1.000 \n#> Max. :21 Max. :2.00 Max. :23.00 Max. :35.0 Max. :1.000\n\n\n\n\n\n\nThe average time in each group is not useful. Some of the 6-MP patients have not relapsed at the time recorded, while all of the placebo patients have relapsed.\nThe median time is not really useful either because so many of the 6-MP patients have not relapsed (12/21).\nBoth are biased down in the 6-MP group. Remember that lower times are worse since they indicate sooner recurrence.\n\n\n\n5.6.5 Exponential model\n\n\nWe can compute the hazard rate, assuming an exponential model: number of relapses divided by the sum of the exit times (Equation 5.3).\n\n\n\\[\\hat\\lambda = \\frac{\\sum_{i=1}^nD_i}{\\sum_{i=1}^nY_i}\\]\n\n\nFor the placebo, that is just the reciprocal of the mean time:\n\n\n\\[\n\\begin{aligned}\n\\hat \\lambda_{\\text{placebo}}\n&= \\frac{\\sum_{i=1}^nD_i}{\\sum_{i=1}^nY_i}\n\\\\ &= \\frac{\\sum_{i=1}^n1}{\\sum_{i=1}^nY_i}\n\\\\ &= \\frac{n}{\\sum_{i=1}^nY_i}\n\\\\ &= \\frac{1}{\\bar{Y}}\n\\\\ &= \\frac{1}{8.6667}\n\\\\ &= 0.1154\n\\end{aligned}\n\\]\n\n\nFor the 6-MP group, \\(\\hat\\lambda = 9/359 = 0.025\\)\n\n\n\\[\n\\begin{aligned}\n\\hat \\lambda_{\\text{6-MP}}\n&= \\frac{\\sum_{i=1}^nD_i}{\\sum_{i=1}^nY_i}\n\\\\ &= \\frac{9}{359}\n\\\\ &= 0.0251\n\\end{aligned}\n\\]\n\nThe estimated hazard in the placebo group is 4.6 times as large as in the 6-MP group (assuming the hazard is constant over time).", "crumbs": [ "Time to Event Models", "5  Introduction to Survival Analysis" @@ -577,7 +577,7 @@ "href": "intro-to-survival-analysis.html#the-kaplan-meier-product-limit-estimator", "title": "\n5  Introduction to Survival Analysis\n", "section": "\n5.7 The Kaplan-Meier Product Limit Estimator", - "text": "5.7 The Kaplan-Meier Product Limit Estimator\n\n5.7.1 Estimating survival in datasets without censoring\n\nIn the drug6mp dataset, the estimated survival function for the placebo patients is easy to compute. For any time \\(t\\) in months, \\(S(t)\\) is the fraction of patients with times greater than \\(t\\):\n\n\n5.7.2 Estimating survival in datasets with censoring\n\nFor the 6-MP patients, we cannot ignore the censored data because we know that the time to relapse is greater than the censoring time.\nFor any time \\(t\\) in months, we know that 6-MP patients with times greater than \\(t\\) have not relapsed, and those with relapse time less than \\(t\\) have relapsed, but we don’t know if patients with censored time less than \\(t\\) have relapsed or not.\nThe procedure we usually use is the Kaplan-Meier product-limit estimator of the survival function.\nThe Kaplan-Meier estimator is a step function (like the empirical cdf), which changes value only at the event times, not at the censoring times.\nAt each event time \\(t\\), we compute the at-risk group size \\(Y\\), which is all those observations whose event time or censoring time is at least \\(t\\).\nIf \\(d\\) of the observations have an event time (not a censoring time) of \\(t\\), then the group of survivors immediately following time \\(t\\) is reduced by the fraction \\[\\frac{Y-d}{Y}=1-\\frac{d}{Y}\\]\n\n\n\nDefinition 5.4 (Kaplan-Meier Product-Limit Estimator of Survival Function) If the event times are \\(t_i\\) with events per time of \\(d_i\\) (\\(1\\le i \\le k\\)), then the Kaplan-Meier Product-Limit Estimator of the survival function is:\n\\[\\hat S(t) = \\prod_{t_i < t} \\left[\\frac{1-d_i}{Y_i}\\right] \\tag{5.3}\\]\nwhere \\(Y_i\\) is the set of observations whose time (event or censored) is \\(\\ge t_i\\), the group at risk at time \\(t_i\\).\n\n\nIf there are no censored data, and there are \\(n\\) data points, then just after (say) the third event time\n\\[\n\\begin{aligned}\n\\hat S(t)\n&= \\prod_{t_i < t}\\left[1-\\frac{d_i}{Y_i}\\right]\n\\\\ &= \\left[\\frac{n-d_1}{n}\\right] \\left[\\frac{n-d_1-d_2}{n-d_1}\\right] \\left[\\frac{n-d_1-d_2-d_3}{n-d_1-d_2}\\right]\n\\\\ &= \\frac{n-d_1-d_2-d_3}{n}\n\\\\ &=1-\\frac{d_1+d_2+d_3}{n}\n\\\\ &=1-\\hat F(t)\n\\end{aligned}\n\\]\nwhere \\(\\hat F(t)\\) is the usual empirical CDF estimate.\n\n5.7.3 Kaplan-Meier curve for drug6mp data\nHere is the Kaplan-Meier estimated survival curve for the patients who received 6-MP in the drug6mp dataset (we will see code to produce figures like this one shortly):\n\nShow R code# | echo: false\n\nrequire(KMsurv)\ndata(drug6mp)\nlibrary(dplyr)\nlibrary(survival)\n\ndrug6mp_km_model1 = \n drug6mp |> \n mutate(surv = Surv(t2, relapse)) |> \n survfit(formula = surv ~ 1, data = _)\n\nlibrary(ggfortify)\ndrug6mp_km_model1 |> \n autoplot(\n mark.time = TRUE,\n conf.int = FALSE) +\n expand_limits(y = 0) +\n xlab('Time since diagnosis (months)') +\n ylab(\"KM Survival Curve\")\n\n\n\nFigure 5.4: Kaplan-Meier Survival Curve for 6-MP Patients\n\n\n\n\n\n\n\n\n5.7.4 Kaplan-Meier calculations\nLet’s compute these estimates and build the chart by hand:\n\nShow R codelibrary(KMsurv)\nlibrary(dplyr)\ndata(drug6mp)\n\ndrug6mp.v2 = \n drug6mp |> \n as_tibble() |> \n mutate(\n remstat = remstat |> \n case_match(\n 1 ~ \"partial\",\n 2 ~ \"complete\"\n ),\n # renaming to \"outcome\" while relabeling is just a style choice:\n outcome = relapse |> \n case_match(\n 0 ~ \"censored\",\n 1 ~ \"relapsed\"\n )\n )\n\nkm.6mp =\n drug6mp.v2 |> \n summarize(\n .by = t2,\n Relapses = sum(outcome == \"relapsed\"),\n Censored = sum(outcome == \"censored\")) |>\n # here we add a start time row, so the graph starts at time 0:\n bind_rows(\n tibble(\n t2 = 0, \n Relapses = 0, \n Censored = 0)\n ) |> \n # sort in time order:\n arrange(t2) |>\n mutate(\n Exiting = Relapses + Censored,\n `Study Size` = sum(Exiting),\n Exited = cumsum(Exiting) |> dplyr::lag(default = 0),\n `At Risk` = `Study Size` - Exited,\n Hazard = Relapses / `At Risk`,\n `KM Factor` = 1 - Hazard,\n `Cumulative Hazard` = cumsum(`Hazard`),\n `KM Survival Curve` = cumprod(`KM Factor`)\n )\n\nlibrary(pander) \npander(km.6mp)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nt2\nRelapses\nCensored\nExiting\nStudy Size\nExited\nAt Risk\nHazard\nKM Factor\nCumulative Hazard\nKM Survival Curve\n\n\n\n0\n0\n0\n0\n21\n0\n21\n0\n1\n0\n1\n\n\n6\n3\n1\n4\n21\n0\n21\n0.1429\n0.8571\n0.1429\n0.8571\n\n\n7\n1\n0\n1\n21\n4\n17\n0.05882\n0.9412\n0.2017\n0.8067\n\n\n9\n0\n1\n1\n21\n5\n16\n0\n1\n0.2017\n0.8067\n\n\n10\n1\n1\n2\n21\n6\n15\n0.06667\n0.9333\n0.2683\n0.7529\n\n\n11\n0\n1\n1\n21\n8\n13\n0\n1\n0.2683\n0.7529\n\n\n13\n1\n0\n1\n21\n9\n12\n0.08333\n0.9167\n0.3517\n0.6902\n\n\n16\n1\n0\n1\n21\n10\n11\n0.09091\n0.9091\n0.4426\n0.6275\n\n\n17\n0\n1\n1\n21\n11\n10\n0\n1\n0.4426\n0.6275\n\n\n19\n0\n1\n1\n21\n12\n9\n0\n1\n0.4426\n0.6275\n\n\n20\n0\n1\n1\n21\n13\n8\n0\n1\n0.4426\n0.6275\n\n\n22\n1\n0\n1\n21\n14\n7\n0.1429\n0.8571\n0.5854\n0.5378\n\n\n23\n1\n0\n1\n21\n15\n6\n0.1667\n0.8333\n0.7521\n0.4482\n\n\n25\n0\n1\n1\n21\n16\n5\n0\n1\n0.7521\n0.4482\n\n\n32\n0\n2\n2\n21\n17\n4\n0\n1\n0.7521\n0.4482\n\n\n34\n0\n1\n1\n21\n19\n2\n0\n1\n0.7521\n0.4482\n\n\n35\n0\n1\n1\n21\n20\n1\n0\n1\n0.7521\n0.4482\n\n\n\n\n\n\nSummary\nFor the 6-MP patients at time 6 months, there are 21 patients at risk. At \\(t=6\\) there are 3 relapses and 1 censored observations.\nThe Kaplan-Meier factor is \\((21-3)/21 = 0.857\\). The number at risk for the next time (\\(t=7\\)) is \\(21-3-1=17\\).\nAt time 7 months, there are 17 patients at risk. At \\(t=7\\) there is 1 relapse and 0 censored observations. The Kaplan-Meier factor is \\((17-1)/17 = 0.941\\). The Kaplan Meier estimate is \\(0.857\\times0.941=0.807\\). The number at risk for the next time (\\(t=9\\)) is \\(17-1=16\\).\n\nNow, let’s graph this estimated survival curve using ggplot():\n\nShow R codelibrary(ggplot2)\nconflicts_prefer(dplyr::filter)\nkm.6mp |> \n ggplot(aes(x = t2, y = `KM Survival Curve`)) +\n geom_step() +\n geom_point(data = km.6mp |> filter(Censored > 0), shape = 3) +\n expand_limits(y = c(0,1), x = 0) +\n xlab('Time since diagnosis (months)') +\n ylab(\"KM Survival Curve\") +\n scale_y_continuous(labels = scales::percent)\n\n\n\nFigure 5.5: KM curve for 6MP patients, calculated by hand", + "text": "5.7 The Kaplan-Meier Product Limit Estimator\n\n5.7.1 Estimating survival in datasets without censoring\n\nIn the drug6mp dataset, the estimated survival function for the placebo patients is easy to compute. For any time \\(t\\) in months, \\(S(t)\\) is the fraction of patients with times greater than \\(t\\):\n\n\n5.7.2 Estimating survival in datasets with censoring\n\nFor the 6-MP patients, we cannot ignore the censored data because we know that the time to relapse is greater than the censoring time.\nFor any time \\(t\\) in months, we know that 6-MP patients with times greater than \\(t\\) have not relapsed, and those with relapse time less than \\(t\\) have relapsed, but we don’t know if patients with censored time less than \\(t\\) have relapsed or not.\nThe procedure we usually use is the Kaplan-Meier product-limit estimator of the survival function.\nThe Kaplan-Meier estimator is a step function (like the empirical cdf), which changes value only at the event times, not at the censoring times.\nAt each event time \\(t\\), we compute the at-risk group size \\(Y\\), which is all those observations whose event time or censoring time is at least \\(t\\).\nIf \\(d\\) of the observations have an event time (not a censoring time) of \\(t\\), then the group of survivors immediately following time \\(t\\) is reduced by the fraction \\[\\frac{Y-d}{Y}=1-\\frac{d}{Y}\\]\n\n\n\nDefinition 5.4 (Kaplan-Meier Product-Limit Estimator of Survival Function) If the event times are \\(t_i\\) with events per time of \\(d_i\\) (\\(1\\le i \\le k\\)), then the Kaplan-Meier Product-Limit Estimator of the survival function is:\n\\[\\hat S(t) = \\prod_{t_i < t} \\left[\\frac{1-d_i}{Y_i}\\right] \\tag{5.4}\\]\nwhere \\(Y_i\\) is the set of observations whose time (event or censored) is \\(\\ge t_i\\), the group at risk at time \\(t_i\\).\n\n\n\nTheorem 5.6 (Kaplan-Meier Estimate with No Censored Observations) If there are no censored data, and there are \\(n\\) data points, then just after (say) the third event time\n\\[\n\\begin{aligned}\n\\hat S(t)\n&= \\prod_{t_i < t}\\left[1-\\frac{d_i}{Y_i}\\right]\n\\\\ &= \\left[\\frac{n-d_1}{n}\\right] \\left[\\frac{n-d_1-d_2}{n-d_1}\\right] \\left[\\frac{n-d_1-d_2-d_3}{n-d_1-d_2}\\right]\n\\\\ &= \\frac{n-d_1-d_2-d_3}{n}\n\\\\ &=1-\\frac{d_1+d_2+d_3}{n}\n\\\\ &=1-\\hat F(t)\n\\end{aligned}\n\\]\nwhere \\(\\hat F(t)\\) is the usual empirical CDF estimate.\n\n\n5.7.3 Kaplan-Meier curve for drug6mp data\nHere is the Kaplan-Meier estimated survival curve for the patients who received 6-MP in the drug6mp dataset (we will see code to produce figures like this one shortly):\n\nShow R code# | echo: false\n\nrequire(KMsurv)\ndata(drug6mp)\nlibrary(dplyr)\nlibrary(survival)\n\ndrug6mp_km_model1 = \n drug6mp |> \n mutate(surv = Surv(t2, relapse)) |> \n survfit(formula = surv ~ 1, data = _)\n\nlibrary(ggfortify)\ndrug6mp_km_model1 |> \n autoplot(\n mark.time = TRUE,\n conf.int = FALSE) +\n expand_limits(y = 0) +\n xlab('Time since diagnosis (months)') +\n ylab(\"KM Survival Curve\")\n\n\n\nFigure 5.4: Kaplan-Meier Survival Curve for 6-MP Patients\n\n\n\n\n\n\n\n\n5.7.4 Kaplan-Meier calculations\nLet’s compute these estimates and build the chart by hand:\n\nShow R codelibrary(KMsurv)\nlibrary(dplyr)\ndata(drug6mp)\n\ndrug6mp.v2 = \n drug6mp |> \n as_tibble() |> \n mutate(\n remstat = remstat |> \n case_match(\n 1 ~ \"partial\",\n 2 ~ \"complete\"\n ),\n # renaming to \"outcome\" while relabeling is just a style choice:\n outcome = relapse |> \n case_match(\n 0 ~ \"censored\",\n 1 ~ \"relapsed\"\n )\n )\n\nkm.6mp =\n drug6mp.v2 |> \n summarize(\n .by = t2,\n Relapses = sum(outcome == \"relapsed\"),\n Censored = sum(outcome == \"censored\")) |>\n # here we add a start time row, so the graph starts at time 0:\n bind_rows(\n tibble(\n t2 = 0, \n Relapses = 0, \n Censored = 0)\n ) |> \n # sort in time order:\n arrange(t2) |>\n mutate(\n Exiting = Relapses + Censored,\n `Study Size` = sum(Exiting),\n Exited = cumsum(Exiting) |> dplyr::lag(default = 0),\n `At Risk` = `Study Size` - Exited,\n Hazard = Relapses / `At Risk`,\n `KM Factor` = 1 - Hazard,\n `Cumulative Hazard` = cumsum(`Hazard`),\n `KM Survival Curve` = cumprod(`KM Factor`)\n )\n\nlibrary(pander) \npander(km.6mp)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nt2\nRelapses\nCensored\nExiting\nStudy Size\nExited\nAt Risk\nHazard\nKM Factor\nCumulative Hazard\nKM Survival Curve\n\n\n\n0\n0\n0\n0\n21\n0\n21\n0\n1\n0\n1\n\n\n6\n3\n1\n4\n21\n0\n21\n0.1429\n0.8571\n0.1429\n0.8571\n\n\n7\n1\n0\n1\n21\n4\n17\n0.05882\n0.9412\n0.2017\n0.8067\n\n\n9\n0\n1\n1\n21\n5\n16\n0\n1\n0.2017\n0.8067\n\n\n10\n1\n1\n2\n21\n6\n15\n0.06667\n0.9333\n0.2683\n0.7529\n\n\n11\n0\n1\n1\n21\n8\n13\n0\n1\n0.2683\n0.7529\n\n\n13\n1\n0\n1\n21\n9\n12\n0.08333\n0.9167\n0.3517\n0.6902\n\n\n16\n1\n0\n1\n21\n10\n11\n0.09091\n0.9091\n0.4426\n0.6275\n\n\n17\n0\n1\n1\n21\n11\n10\n0\n1\n0.4426\n0.6275\n\n\n19\n0\n1\n1\n21\n12\n9\n0\n1\n0.4426\n0.6275\n\n\n20\n0\n1\n1\n21\n13\n8\n0\n1\n0.4426\n0.6275\n\n\n22\n1\n0\n1\n21\n14\n7\n0.1429\n0.8571\n0.5854\n0.5378\n\n\n23\n1\n0\n1\n21\n15\n6\n0.1667\n0.8333\n0.7521\n0.4482\n\n\n25\n0\n1\n1\n21\n16\n5\n0\n1\n0.7521\n0.4482\n\n\n32\n0\n2\n2\n21\n17\n4\n0\n1\n0.7521\n0.4482\n\n\n34\n0\n1\n1\n21\n19\n2\n0\n1\n0.7521\n0.4482\n\n\n35\n0\n1\n1\n21\n20\n1\n0\n1\n0.7521\n0.4482\n\n\n\n\n\n\nSummary\nFor the 6-MP patients at time 6 months, there are 21 patients at risk. At \\(t=6\\) there are 3 relapses and 1 censored observations.\nThe Kaplan-Meier factor is \\((21-3)/21 = 0.857\\). The number at risk for the next time (\\(t=7\\)) is \\(21-3-1=17\\).\nAt time 7 months, there are 17 patients at risk. At \\(t=7\\) there is 1 relapse and 0 censored observations. The Kaplan-Meier factor is \\((17-1)/17 = 0.941\\). The Kaplan Meier estimate is \\(0.857\\times0.941=0.807\\). The number at risk for the next time (\\(t=9\\)) is \\(17-1=16\\).\n\nNow, let’s graph this estimated survival curve using ggplot():\n\nShow R codelibrary(ggplot2)\nconflicts_prefer(dplyr::filter)\nkm.6mp |> \n ggplot(aes(x = t2, y = `KM Survival Curve`)) +\n geom_step() +\n geom_point(data = km.6mp |> filter(Censored > 0), shape = 3) +\n expand_limits(y = c(0,1), x = 0) +\n xlab('Time since diagnosis (months)') +\n ylab(\"KM Survival Curve\") +\n scale_y_continuous(labels = scales::percent)\n\n\n\nFigure 5.5: KM curve for 6MP patients, calculated by hand", "crumbs": [ "Time to Event Models", "5  Introduction to Survival Analysis" @@ -599,7 +599,7 @@ "href": "intro-to-survival-analysis.html#example-bone-marrow-transplant-data", "title": "\n5  Introduction to Survival Analysis\n", "section": "\n5.9 Example: Bone Marrow Transplant Data", - "text": "5.9 Example: Bone Marrow Transplant Data\nCopelan et al. (1991)\n\n\n\nFigure 5.6: Recovery process from a bone marrow transplant (Fig. 1.1 from Klein, Moeschberger, et al. (2003))\n\n\n\n\n\n\n\n5.9.1 Study design\nTreatment\n\n\nallogeneic (from a donor) bone marrow transplant therapy\n\nInclusion criteria\n\nacute myeloid leukemia (AML)\nacute lymphoblastic leukemia (ALL).\nPossible intermediate events\n\n\ngraft vs. host disease (GVHD): an immunological rejection response to the transplant\n\nplatelet recovery: a return of platelet count to normal levels.\n\nOne or the other, both in either order, or neither may occur.\nEnd point events\n\nrelapse of the disease\ndeath\n\nAny or all of these events may be censored.\n\n5.9.2 KMsurv::bmt data in R\n\nShow R codelibrary(KMsurv)\n?bmt\n\n\n\n5.9.3 Analysis plan\n\nWe concentrate for now on disease-free survival (t2 and d3) for the three risk groups, ALL, AML Low Risk, and AML High Risk.\nWe will construct the Kaplan-Meier survival curves, compare them, and test for differences.\nWe will construct the cumulative hazard curves and compare them.\nWe will estimate the hazard functions, interpret, and compare them.\n\n5.9.4 Survival Function Estimate and Variance\n\\[\\hat S(t) = \\prod_{t_i < t}\\left[1-\\frac{d_i}{Y_i}\\right]\\] where \\(Y_i\\) is the group at risk at time \\(t_i\\).\nThe estimated variance of \\(\\hat S(t)\\) is:\n\nTheorem 5.4 (Greenwood’s estimator for variance of Kaplan-Meier survival estimator) \\[\n\\widehat{\\text{Var}}\\left(\\hat S(t)\\right) = \\hat S(t)^2\\sum_{t_i <t}\\frac{d_i}{Y_i(Y_i-d_i)}\n\\tag{5.4}\\]\n\nWe can use Equation 5.4 for confidence intervals for a survival function or a difference of survival functions.\n\nKaplan-Meier survival curves\n\ncode to preprocess and model bmt datalibrary(KMsurv)\nlibrary(survival)\ndata(bmt)\n\nbmt = \n bmt |> \n as_tibble() |> \n mutate(\n group = \n group |> \n factor(\n labels = c(\"ALL\",\"Low Risk AML\",\"High Risk AML\")),\n surv = Surv(t2,d3))\n\nkm_model1 = survfit(\n formula = surv ~ group, \n data = bmt)\n\n\n\nShow R codelibrary(ggfortify)\nautoplot(\n km_model1, \n conf.int = TRUE,\n ylab = \"Pr(disease-free survival)\",\n xlab = \"Time since transplant (days)\") + \n theme_bw() +\n theme(legend.position=\"bottom\")\n\n\nDisease-Free Survival by Disease Group\n\n\n\n\n\n5.9.5 Understanding Greenwood’s formula (optional)\n\nTo see where Greenwood’s formula comes from, let \\(x_i = Y_i - d_i\\). We approximate the solution treating each time as independent, with \\(Y_i\\) fixed and ignore randomness in times of failure and we treat \\(x_i\\) as independent binomials \\(\\text{Bin}(Y_i,p_i)\\). Letting \\(S(t)\\) be the “true” survival function\n\n\\[\n\\begin{aligned}\n\\hat S(t) &=\\prod_{t_i<t}x_i/Y_i\\\\\nS(t)&=\\prod_{t_i<t}p_i\n\\end{aligned}\n\\]\n\\[\n\\begin{aligned}\n\\frac{\\hat S(t)}{S(t)}\n &= \\prod_{t_i<t} \\frac{x_i}. {p_iY_i}\n\\\\ &= \\prod_{t_i<t} \\frac{\\hat p_i}{p_i}\n\\\\ &= \\prod_{t_i<t} \\left(1+\\frac{\\hat p_i-p_i}{p_i}\\right)\n\\\\ &\\approx 1+\\sum_{t_i<t} \\frac{\\hat p_i-p_i}{p_i}\n\\end{aligned}\n\\]\n\n\\[\n\\begin{aligned}\n\\text{Var}\\left(\\frac{\\hat S(t)}{S(t)}\\right)\n&\\approx \\text{Var}\\left(1+\\sum_{t_i<t} \\frac{\\hat p_i-p_i}{p_i}\\right)\n\\\\ &=\\sum_{t_i<t} \\frac{1}{p_i^2}\\frac{p_i(1-p_i)}{Y_i}\n\\\\ &= \\sum_{t_i<t} \\frac{(1-p_i)}{p_iY_i}\n\\\\ &\\approx\\sum_{t_i<t} \\frac{(1-x_i/Y_i)}{x_i}\n\\\\ &=\\sum_{t_i<t} \\frac{Y_i-x_i}{x_iY_i}\n\\\\ &=\\sum_{t_i<t} \\frac{d_i}{Y_i(Y_i-d_i)}\n\\\\ \\therefore\\text{Var}\\left(\\hat S(t)\\right)\n&\\approx \\hat S(t)^2\\sum_{t_i<t} \\frac{d_i}{Y_i(Y_i-d_i)}\n\\end{aligned}\n\\]\n\n5.9.6 Test for differences among the disease groups\nHere we compute a chi-square test for assocation between disease group (group) and disease-free survival:\n\nShow R codesurvdiff(surv ~ group, data = bmt)\n#> Call:\n#> survdiff(formula = surv ~ group, data = bmt)\n#> \n#> N Observed Expected (O-E)^2/E (O-E)^2/V\n#> group=ALL 38 24 21.9 0.211 0.289\n#> group=Low Risk AML 54 25 40.0 5.604 11.012\n#> group=High Risk AML 45 34 21.2 7.756 10.529\n#> \n#> Chisq= 13.8 on 2 degrees of freedom, p= 0.001\n\n\n\n5.9.7 Cumulative Hazard\n\\[\n\\begin{aligned}\nh(t)\n&\\stackrel{\\text{def}}{=}P(T=t|T\\ge t)\\\\\n&= \\frac{p(T=t)}{P(T\\ge t)}\\\\\n&= -\\frac{\\partial}{\\partial t}\\text{log}\\left\\{S(t)\\right\\}\n\\end{aligned}\n\\]\nThe cumulative hazard (or integrated hazard) function is\n\\[H(t)\\stackrel{\\text{def}}{=}\\int_0^t h(t) dt\\] Since \\(h(t) = -\\frac{\\partial}{\\partial t}\\text{log}\\left\\{S(t)\\right\\}\\) as shown above, we have:\n\\[\nH(t)=-\\text{log}\\left\\{S\\right\\}(t)\n\\]\n\nSo we can estimate \\(H(t)\\) as:\n\\[\n\\begin{aligned}\n\\hat H(t)\n&= -\\text{log}\\left\\{\\hat S(t)\\right\\}\\\\\n&= -\\text{log}\\left\\{\\prod_{t_i < t}\\left[1-\\frac{d_i}{Y_i}\\right]\\right\\}\\\\\n&= -\\sum_{t_i < t}\\text{log}\\left\\{1-\\frac{d_i}{Y_i}\\right\\}\\\\\n\\end{aligned}\n\\]\nThis is the Kaplan-Meier (product-limit) estimate of cumulative hazard.\n\nExample: Cumulative Hazard Curves for Bone-Marrow Transplant (bmt) data\n\nShow R codeautoplot(\n fun = \"cumhaz\",\n km_model1, \n conf.int = FALSE,\n ylab = \"Cumulative hazard (disease-free survival)\",\n xlab = \"Time since transplant (days)\") + \n theme_bw() +\n theme(legend.position=\"bottom\")\n\n\n\nFigure 5.7: Disease-Free Cumulative Hazard by Disease Group", + "text": "5.9 Example: Bone Marrow Transplant Data\nCopelan et al. (1991)\n\n\n\nFigure 5.6: Recovery process from a bone marrow transplant (Fig. 1.1 from Klein, Moeschberger, et al. (2003))\n\n\n\n\n\n\n\n5.9.1 Study design\nTreatment\n\n\nallogeneic (from a donor) bone marrow transplant therapy\n\nInclusion criteria\n\nacute myeloid leukemia (AML)\nacute lymphoblastic leukemia (ALL).\nPossible intermediate events\n\n\ngraft vs. host disease (GVHD): an immunological rejection response to the transplant\n\nplatelet recovery: a return of platelet count to normal levels.\n\nOne or the other, both in either order, or neither may occur.\nEnd point events\n\nrelapse of the disease\ndeath\n\nAny or all of these events may be censored.\n\n5.9.2 KMsurv::bmt data in R\n\nShow R codelibrary(KMsurv)\n?bmt\n\n\n\n5.9.3 Analysis plan\n\nWe concentrate for now on disease-free survival (t2 and d3) for the three risk groups, ALL, AML Low Risk, and AML High Risk.\nWe will construct the Kaplan-Meier survival curves, compare them, and test for differences.\nWe will construct the cumulative hazard curves and compare them.\nWe will estimate the hazard functions, interpret, and compare them.\n\n5.9.4 Survival Function Estimate and Variance\n\\[\\hat S(t) = \\prod_{t_i < t}\\left[1-\\frac{d_i}{Y_i}\\right]\\] where \\(Y_i\\) is the group at risk at time \\(t_i\\).\nThe estimated variance of \\(\\hat S(t)\\) is:\n\nTheorem 5.7 (Greenwood’s estimator for variance of Kaplan-Meier survival estimator) \\[\n\\widehat{\\text{Var}}\\left(\\hat S(t)\\right) = \\hat S(t)^2\\sum_{t_i <t}\\frac{d_i}{Y_i(Y_i-d_i)}\n\\tag{5.5}\\]\n\nWe can use Equation 5.5 for confidence intervals for a survival function or a difference of survival functions.\n\nKaplan-Meier survival curves\n\ncode to preprocess and model bmt datalibrary(KMsurv)\nlibrary(survival)\ndata(bmt)\n\nbmt = \n bmt |> \n as_tibble() |> \n mutate(\n group = \n group |> \n factor(\n labels = c(\"ALL\",\"Low Risk AML\",\"High Risk AML\")),\n surv = Surv(t2,d3))\n\nkm_model1 = survfit(\n formula = surv ~ group, \n data = bmt)\n\n\n\nShow R codelibrary(ggfortify)\nautoplot(\n km_model1, \n conf.int = TRUE,\n ylab = \"Pr(disease-free survival)\",\n xlab = \"Time since transplant (days)\") + \n theme_bw() +\n theme(legend.position=\"bottom\")\n\n\nDisease-Free Survival by Disease Group\n\n\n\n\n\n5.9.5 Understanding Greenwood’s formula (optional)\n\nTo see where Greenwood’s formula comes from, let \\(x_i = Y_i - d_i\\). We approximate the solution treating each time as independent, with \\(Y_i\\) fixed and ignore randomness in times of failure and we treat \\(x_i\\) as independent binomials \\(\\text{Bin}(Y_i,p_i)\\). Letting \\(S(t)\\) be the “true” survival function\n\n\\[\n\\begin{aligned}\n\\hat S(t) &=\\prod_{t_i<t}x_i/Y_i\\\\\nS(t)&=\\prod_{t_i<t}p_i\n\\end{aligned}\n\\]\n\\[\n\\begin{aligned}\n\\frac{\\hat S(t)}{S(t)}\n &= \\prod_{t_i<t} \\frac{x_i}. {p_iY_i}\n\\\\ &= \\prod_{t_i<t} \\frac{\\hat p_i}{p_i}\n\\\\ &= \\prod_{t_i<t} \\left(1+\\frac{\\hat p_i-p_i}{p_i}\\right)\n\\\\ &\\approx 1+\\sum_{t_i<t} \\frac{\\hat p_i-p_i}{p_i}\n\\end{aligned}\n\\]\n\n\\[\n\\begin{aligned}\n\\text{Var}\\left(\\frac{\\hat S(t)}{S(t)}\\right)\n&\\approx \\text{Var}\\left(1+\\sum_{t_i<t} \\frac{\\hat p_i-p_i}{p_i}\\right)\n\\\\ &=\\sum_{t_i<t} \\frac{1}{p_i^2}\\frac{p_i(1-p_i)}{Y_i}\n\\\\ &= \\sum_{t_i<t} \\frac{(1-p_i)}{p_iY_i}\n\\\\ &\\approx\\sum_{t_i<t} \\frac{(1-x_i/Y_i)}{x_i}\n\\\\ &=\\sum_{t_i<t} \\frac{Y_i-x_i}{x_iY_i}\n\\\\ &=\\sum_{t_i<t} \\frac{d_i}{Y_i(Y_i-d_i)}\n\\\\ \\therefore\\text{Var}\\left(\\hat S(t)\\right)\n&\\approx \\hat S(t)^2\\sum_{t_i<t} \\frac{d_i}{Y_i(Y_i-d_i)}\n\\end{aligned}\n\\]\n\n5.9.6 Test for differences among the disease groups\nHere we compute a chi-square test for assocation between disease group (group) and disease-free survival:\n\nShow R codesurvdiff(surv ~ group, data = bmt)\n#> Call:\n#> survdiff(formula = surv ~ group, data = bmt)\n#> \n#> N Observed Expected (O-E)^2/E (O-E)^2/V\n#> group=ALL 38 24 21.9 0.211 0.289\n#> group=Low Risk AML 54 25 40.0 5.604 11.012\n#> group=High Risk AML 45 34 21.2 7.756 10.529\n#> \n#> Chisq= 13.8 on 2 degrees of freedom, p= 0.001\n\n\n\n5.9.7 Cumulative Hazard\n\\[\n\\begin{aligned}\nh(t)\n&\\stackrel{\\text{def}}{=}P(T=t|T\\ge t)\\\\\n&= \\frac{p(T=t)}{P(T\\ge t)}\\\\\n&= -\\frac{\\partial}{\\partial t}\\text{log}\\left\\{S(t)\\right\\}\n\\end{aligned}\n\\]\nThe cumulative hazard (or integrated hazard) function is\n\\[H(t)\\stackrel{\\text{def}}{=}\\int_0^t h(t) dt\\] Since \\(h(t) = -\\frac{\\partial}{\\partial t}\\text{log}\\left\\{S(t)\\right\\}\\) as shown above, we have:\n\\[\nH(t)=-\\text{log}\\left\\{S\\right\\}(t)\n\\]\n\nSo we can estimate \\(H(t)\\) as:\n\\[\n\\begin{aligned}\n\\hat H(t)\n&= -\\text{log}\\left\\{\\hat S(t)\\right\\}\\\\\n&= -\\text{log}\\left\\{\\prod_{t_i < t}\\left[1-\\frac{d_i}{Y_i}\\right]\\right\\}\\\\\n&= -\\sum_{t_i < t}\\text{log}\\left\\{1-\\frac{d_i}{Y_i}\\right\\}\\\\\n\\end{aligned}\n\\]\nThis is the Kaplan-Meier (product-limit) estimate of cumulative hazard.\n\nExample: Cumulative Hazard Curves for Bone-Marrow Transplant (bmt) data\n\nShow R codeautoplot(\n fun = \"cumhaz\",\n km_model1, \n conf.int = FALSE,\n ylab = \"Cumulative hazard (disease-free survival)\",\n xlab = \"Time since transplant (days)\") + \n theme_bw() +\n theme(legend.position=\"bottom\")\n\n\n\nFigure 5.7: Disease-Free Cumulative Hazard by Disease Group", "crumbs": [ "Time to Event Models", "5  Introduction to Survival Analysis" @@ -610,7 +610,7 @@ "href": "intro-to-survival-analysis.html#nelson-aalen-estimates-of-cumulative-hazard-and-survival", "title": "\n5  Introduction to Survival Analysis\n", "section": "\n5.10 Nelson-Aalen Estimates of Cumulative Hazard and Survival", - "text": "5.10 Nelson-Aalen Estimates of Cumulative Hazard and Survival\n\n\nDefinition 5.5 (Nelson-Aalen Cumulative Hazard Estimator)  \n\nThe point hazard at time \\(t_i\\) can be estimated by \\(d_i/Y_i\\), which leads to the Nelson-Aalen estimator of the cumulative hazard:\n\n\\[\\hat H_{NA}(t) \\stackrel{\\text{def}}{=}\\sum_{t_i < t}\\frac{d_i}{Y_i} \\tag{5.5}\\]\n\n\n\nTheorem 5.5 (Variance of Nelson-Aalen estimator)  \n\nThe variance of this estimator is approximately:\n\n\\[\n\\begin{aligned}\n\\hat{\\text{Var}}\\left(\\hat H_{NA} (t)\\right)\n&= \\sum_{t_i <t}\\frac{(d_i/Y_i)(1-d_i/Y_i)}{Y_i}\\\\\n&\\approx \\sum_{t_i <t}\\frac{d_i}{Y_i^2}\n\\end{aligned}\n\\tag{5.6}\\]\n\n\nSince \\(S(t)=\\text{exp}\\left\\{-H(t)\\right\\}\\), the Nelson-Aalen cumulative hazard estimate can be converted into an alternate estimate of the survival function:\n\\[\n\\begin{aligned}\n\\hat S_{NA}(t)\n&= \\text{exp}\\left\\{-\\hat H_{NA}(t)\\right\\}\\\\\n&= \\text{exp}\\left\\{-\\sum_{t_i < t}\\frac{d_i}{Y_i}\\right\\}\\\\\n&= \\prod_{t_i < t}\\text{exp}\\left\\{-\\frac{d_i}{Y_i}\\right\\}\\\\\n\\end{aligned}\n\\]\n\nCompare these with the corresponding Kaplan-Meier estimates:\n\\[\n\\begin{aligned}\n\\hat H_{KM}(t) &= -\\sum_{t_i < t}\\text{log}\\left\\{1-\\frac{d_i}{Y_i}\\right\\}\\\\\n\\hat S_{KM}(t) &= \\prod_{t_i < t}\\left[1-\\frac{d_i}{Y_i}\\right]\n\\end{aligned}\n\\]\n\nThe product limit estimate and the Nelson-Aalen estimate often do not differ by much. The latter is considered more accurate in small samples and also directly estimates the cumulative hazard. The \"fleming-harrington\" method for survfit() reduces to Nelson-Aalen when the data are unweighted. We can also estimate the cumulative hazard as the negative log of the KM survival function estimate.\n\n\n5.10.1 Application to bmt dataset\n\nShow R code\nna_fit = survfit(\n formula = surv ~ group,\n type = \"fleming-harrington\",\n data = bmt)\n\nkm_fit = survfit(\n formula = surv ~ group,\n type = \"kaplan-meier\",\n data = bmt)\n\nkm_and_na = \n bind_rows(\n .id = \"model\",\n \"Kaplan-Meier\" = km_fit |> fortify(surv.connect = TRUE),\n \"Nelson-Aalen\" = na_fit |> fortify(surv.connect = TRUE)\n ) |> \n as_tibble()\n\n\n\nShow R codekm_and_na |> \n ggplot(aes(x = time, y = surv, col = model)) +\n geom_step() +\n facet_grid(. ~ strata) +\n theme_bw() + \n ylab(\"S(t) = P(T>=t)\") +\n xlab(\"Survival time (t, days)\") +\n theme(legend.position = \"bottom\")\n\n\nKaplan-Meier and Nelson-Aalen Survival Function Estimates, stratified by disease group\n\n\n\n\nThe Kaplan-Meier and Nelson-Aalen survival estimates are very similar for this dataset.\n\n\n\n\n\n\nCopelan, Edward A, James C Biggs, James M Thompson, Pamela Crilley, Jeff Szer, John P Klein, Neena Kapoor, Belinda R Avalos, Isabel Cunningham, and Kerry Atkinson. 1991. “Treatment for Acute Myelocytic Leukemia with Allogeneic Bone Marrow Transplantation Following Preparation with BuCy2.” https://doi.org/10.1182/blood.V78.3.838.838 .\n\n\nKlein, John P, Melvin L Moeschberger, et al. 2003. Survival Analysis: Techniques for Censored and Truncated Data. Vol. 1230. Springer. https://link.springer.com/book/10.1007/b97377.", + "text": "5.10 Nelson-Aalen Estimates of Cumulative Hazard and Survival\n\n\nDefinition 5.5 (Nelson-Aalen Cumulative Hazard Estimator)  \n\nThe point hazard at time \\(t_i\\) can be estimated by \\(d_i/Y_i\\), which leads to the Nelson-Aalen estimator of the cumulative hazard:\n\n\\[\\hat H_{NA}(t) \\stackrel{\\text{def}}{=}\\sum_{t_i < t}\\frac{d_i}{Y_i} \\tag{5.6}\\]\n\n\n\nTheorem 5.8 (Variance of Nelson-Aalen estimator)  \n\nThe variance of this estimator is approximately:\n\n\\[\n\\begin{aligned}\n\\hat{\\text{Var}}\\left(\\hat H_{NA} (t)\\right)\n&= \\sum_{t_i <t}\\frac{(d_i/Y_i)(1-d_i/Y_i)}{Y_i}\\\\\n&\\approx \\sum_{t_i <t}\\frac{d_i}{Y_i^2}\n\\end{aligned}\n\\tag{5.7}\\]\n\n\nSince \\(S(t)=\\text{exp}\\left\\{-H(t)\\right\\}\\), the Nelson-Aalen cumulative hazard estimate can be converted into an alternate estimate of the survival function:\n\\[\n\\begin{aligned}\n\\hat S_{NA}(t)\n&= \\text{exp}\\left\\{-\\hat H_{NA}(t)\\right\\}\\\\\n&= \\text{exp}\\left\\{-\\sum_{t_i < t}\\frac{d_i}{Y_i}\\right\\}\\\\\n&= \\prod_{t_i < t}\\text{exp}\\left\\{-\\frac{d_i}{Y_i}\\right\\}\\\\\n\\end{aligned}\n\\]\n\nCompare these with the corresponding Kaplan-Meier estimates:\n\\[\n\\begin{aligned}\n\\hat H_{KM}(t) &= -\\sum_{t_i < t}\\text{log}\\left\\{1-\\frac{d_i}{Y_i}\\right\\}\\\\\n\\hat S_{KM}(t) &= \\prod_{t_i < t}\\left[1-\\frac{d_i}{Y_i}\\right]\n\\end{aligned}\n\\]\n\nThe product limit estimate and the Nelson-Aalen estimate often do not differ by much. The latter is considered more accurate in small samples and also directly estimates the cumulative hazard. The \"fleming-harrington\" method for survfit() reduces to Nelson-Aalen when the data are unweighted. We can also estimate the cumulative hazard as the negative log of the KM survival function estimate.\n\n\n5.10.1 Application to bmt dataset\n\nShow R code\nna_fit = survfit(\n formula = surv ~ group,\n type = \"fleming-harrington\",\n data = bmt)\n\nkm_fit = survfit(\n formula = surv ~ group,\n type = \"kaplan-meier\",\n data = bmt)\n\nkm_and_na = \n bind_rows(\n .id = \"model\",\n \"Kaplan-Meier\" = km_fit |> fortify(surv.connect = TRUE),\n \"Nelson-Aalen\" = na_fit |> fortify(surv.connect = TRUE)\n ) |> \n as_tibble()\n\n\n\nShow R codekm_and_na |> \n ggplot(aes(x = time, y = surv, col = model)) +\n geom_step() +\n facet_grid(. ~ strata) +\n theme_bw() + \n ylab(\"S(t) = P(T>=t)\") +\n xlab(\"Survival time (t, days)\") +\n theme(legend.position = \"bottom\")\n\n\nKaplan-Meier and Nelson-Aalen Survival Function Estimates, stratified by disease group\n\n\n\n\nThe Kaplan-Meier and Nelson-Aalen survival estimates are very similar for this dataset.\n\n\n\n\n\n\nCopelan, Edward A, James C Biggs, James M Thompson, Pamela Crilley, Jeff Szer, John P Klein, Neena Kapoor, Belinda R Avalos, Isabel Cunningham, and Kerry Atkinson. 1991. “Treatment for Acute Myelocytic Leukemia with Allogeneic Bone Marrow Transplantation Following Preparation with BuCy2.” https://doi.org/10.1182/blood.V78.3.838.838 .\n\n\nKlein, John P, Melvin L Moeschberger, et al. 2003. Survival Analysis: Techniques for Censored and Truncated Data. Vol. 1230. Springer. https://link.springer.com/book/10.1007/b97377.", "crumbs": [ "Time to Event Models", "5  Introduction to Survival Analysis"