-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMD.py
68 lines (61 loc) · 3.63 KB
/
MD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# author: donglee
# environment:python2.7
# 模拟的为单原子分子所构成的系统
# My unit system: energy-eV; length-Angstrom; mass-atomic mass unit
import numpy as np
import math
import initialize_position as i_p
import initialize_velocity as i_i
import find_neighbor as f_n
import find_force as f_f
def MD(D, n0, nxyz, a, pbc, Ne, Np, Ns, rc, dt, T):
"""
:param D:dimension, which should be 3 D维度,为3
:param n0:number of atoms in a cubic unit cell, which is 4 in this case 一个晶胞中的原子数,这里为4个
:param nxyz:nxyz(d) is the number of unit cells in the d-th direction nxyz[d]由各个方向的晶胞数目构成的矩阵
:param a:a(d) is the lattice constant in the d-th direction a[d]为d方向的晶格常数
:param pbc:pbc(d)=1(0) means periodic (free) in the d-th direction pbc[d]为研究系统的某一方向的自由度,这里为[1,1,1]
:param Ne: number of time steps in the equilibration stage 在平衡阶段中的时间步数
:param Np: number of time steps in the production stage 生产阶段的时间步数
:param Ns: sampling interval in the production stage 在生产阶段的采样间隔
:param rc: cutoff distance 截断距离
:param dt: time step of integration in units of fs 以fs为单位的时间间隔
:param T: temperature prescribed in units of K 温度规定单位为K
:return:E[:, 2]: total eneryg per atom at regular time points 在规则时间点的每原子的总能量
E[:, 1]: kinetic eneryg per atom at regular time points 在规则时间点的每原子的总动能
E[:, 0]: potenital eneryg per atom at regular time points 在规则时间点的每原子的总势能
"""
K_B = 8.625e-5 # Boltzmann's constant in my unit system
TIME_UNIT_CONVERSION = 10.18 # from fs to my unit system
N = n0*nxyz[0]*nxyz[1]*nxyz[2] # number of atoms
L = a*nxyz # box size (Angstrom)
dt /= TIME_UNIT_CONVERSION # time step in my unit system
m = np.ones((N,1))*40 # mass for Argon atom in my unit system
r = i_p.ini_position(N, D, n0, nxyz, a) # 初始化位置坐标
v = i_i.ini_velocity(K_B, N, D, T, m) # 初始化速度坐标
[NN, NL] = f_n.f_neighbor(N, L, pbc, rc, r) # 寻找近邻粒子
[f, U] = f_f.f_force(N, D, NN, NL, L, pbc, r) # 初始化各个粒子的受力
E = np.zeros([(Np+Ne)/Ns, 3]) # 能量数据
print 0.5 * np.sum(m * np.sum(v ** 2, axis=1))/N # just for a test
i = 0
# 这里采用Velocity-Verlet算法
for step in range(Ne + Np):
if step % 100 == 0:
i += 1
print i, # 进度条orz
for d in range(D):
v[:, d] += (f[:, d]/m[0])*(dt*0.5)
r[:, d] += v[:, d]*dt
[f, U] = f_f.f_force(N, D, NN, NL, L, pbc, r)
for d in range(D):
v[:, d] += (f[:, d]/m[0])*(dt*0.5) # Velocity-Verlet算法进行迭代
if step <= Ne:
v *= math.sqrt(T * D * K_B * N / np.sum(m * np.sum(v ** 2, axis=1)))# 平衡(控制温度)过程用1000步
if step % Ns == 0: # 产出(不控制温度)过程也用1000步,并每隔20步抽样
E[(step/Ns), 0] = U/N
E[(step/Ns), 1] = 0.5*np.sum(m * np.sum(v ** 2, axis=1))/N
E[:, 2] = E[:, 1] + E[:, 0]
return E[:, 2], E[:, 1], E[:, 0]
print MD(3, 4, np.array([3,3,3]), np.array([5.45,5.45,5.45]), [1,1,1], 5000, 5000, 20, 10, 5, 80)