-
Notifications
You must be signed in to change notification settings - Fork 1
/
FSMN.py
201 lines (167 loc) · 9.2 KB
/
FSMN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
import torch.nn as nn
import torch.nn.functional as F
class sFSMNCell(nn.Module): #scalar FSMN
def __init__(self, memory_size, input_size, output_size, bidirectional=False, drop=0.1, device=None, dtype=torch.float32):
super().__init__()
factory_kwargs={'device':device, 'dtype':dtype}
self.device = device
#memory_size: 0 - no memory, 1 - one memory step, 2 - ...
self._memory_size = memory_size = memory_size + 1
self.dropout = nn.Dropout(p=drop)
self.bidirectional=bidirectional
self._W1 = nn.Parameter(torch.randn(input_size, output_size))
self._W2 = nn.Parameter(torch.randn(input_size, output_size))
self._bias = nn.Parameter(torch.randn( output_size))
nn.init.xavier_uniform_(self._W1)
nn.init.xavier_uniform_(self._W2)
def forward(self, input_data, pad_mask=None):
num_steps = input_data.size(1)
memory=torch.ones((num_steps,num_steps), requires_grad=False).tril(-1).cumsum(0).triu(- self._memory_size+1)
if self.bidirectional: memory = memory + memory.t()
memory = memory.unsqueeze(0).expand(input_data.size(0),-1,-1).to(self.device)
if pad_mask is not None: memory=pad_mask.unsqueeze(1)*memory
h_hatt = torch.matmul(memory, input_data)
h = torch.matmul(input_data, self._W1 )
h += torch.matmul(h_hatt, self._W2) + self._bias
return h
class csFSMNCell(nn.Module): # compact scalar FSMN with bidirectional option
def __init__(self, memory_size, input_size, output_size, bidirectional=False , drop=0.1, device=None, dtype=torch.float32):
super().__init__()
factory_kwargs={'device':device, 'dtype':dtype}
self.device = device
#memory_size: 0 - no memory, 1 - one memory step, 2...
self._memory_size = memory_size = memory_size + 1
self._dtype = dtype
self.bidirectional=bidirectional
self.dropout = nn.Dropout(p=drop)
self._W1 = nn.Parameter(torch.randn(input_size, output_size))
self._W2 = nn.Parameter(torch.randn(output_size, output_size))
self._bias1 = nn.Parameter(torch.randn( output_size))
self._bias2 = nn.Parameter(torch.randn( output_size))
nn.init.xavier_uniform_(self._W1)
nn.init.xavier_uniform_(self._W2)
def forward(self, input_data, pad_mask=None):
num_steps = input_data.size(1)
p = torch.matmul(input_data, self._W1 ) + self._bias1
memory=torch.ones((num_steps,num_steps), requires_grad=False).tril(-1).cumsum(0).triu(- self._memory_size+1)
if self.bidirectional: memory = memory + memory.t()
memory = memory.fill_diagonal_(1).unsqueeze(0).expand(input_data.size(0),-1,-1).to(self.device)
if pad_mask is not None: memory=pad_mask.unsqueeze(1)*memory
p = torch.matmul(memory, p)
p = torch.matmul(p, self._W2 ) + self._bias2
return p
class vFSMNCell(nn.Module): #vectorized FSMN
def __init__(self, memory_size, input_size, output_size, bidirectional=False, drop=0.1, device=None, dtype=torch.float32):
super().__init__()
factory_kwargs={'device':device, 'dtype':dtype}
self.device = device
#memory_size: 0 - no memory, 1 - step, 2...
self._memory_size = memory_size = memory_size + 1
#self._output_size = output_size
#self._input_size = input_size
self._dtype = dtype
#self.activation=activation
self.bidirectional=bidirectional
#self.gelu = nn.GELU()
self.dropout = nn.Dropout(p=drop)
self._W1 = nn.Parameter(torch.randn(input_size, output_size))
self._W2 = nn.Parameter(torch.randn(input_size, output_size))
self._bias = nn.Parameter(torch.randn( output_size))
#self.linear1 = nn.Linear(input_size, input_size*2)
#self.linear2 = nn.Linear(input_size*2, input_size)
#self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units).to(device))
embed_tensor = torch.Tensor(memory_size, input_size).to(device)
self.embeddings_table = nn.Parameter(embed_tensor)
nn.init.xavier_uniform_(self.embeddings_table)
with torch.no_grad(): self.embeddings_table[0]=0 # not nessesary
nn.init.xavier_uniform_(self._W1)
nn.init.xavier_uniform_(self._W2)
def forward(self, input_data, pad_mask=None):
num_steps = input_data.size(1)
memory=torch.ones((num_steps,num_steps), requires_grad=False).tril(-1).cumsum(0).triu(- self._memory_size+1).long()
if self.bidirectional: memory = memory + memory.t()
memory = memory.unsqueeze(0).expand(input_data.size(0),-1,-1).to(self.device)
if pad_mask is not None: memory=pad_mask.unsqueeze(1)*memory
with torch.no_grad(): self.embeddings_table[0]=0
memory = self.embeddings_table[memory].to(self.device)
h_hatt = torch.einsum('bijd,bjd->bid', memory, input_data)#'bijd,bjd->bid'
h = torch.matmul(input_data, self._W1 )
h += torch.matmul(h_hatt, self._W2) + self._bias
return h
class cvFSMNCell(nn.Module): #compact vectorized FSMN
def __init__(self, memory_size, input_size, output_size, bidirectional=False, drop=0.1, device=None, dtype=torch.float32):
super().__init__()
factory_kwargs={'device':device, 'dtype':dtype}
self.device = device
#memory_size: 0 - no memory, 1 - step, 2...
self._memory_size = memory_size = memory_size + 1
self._dtype = dtype
self.bidirectional=bidirectional
self.dropout = nn.Dropout(p=drop)
self._W1 = nn.Parameter(torch.randn(input_size, output_size))
self._W2 = nn.Parameter(torch.randn(output_size, output_size))
self._bias1 = nn.Parameter(torch.randn( output_size))
self._bias2 = nn.Parameter(torch.randn( output_size))
embed_tensor=torch.Tensor(memory_size + 1, output_size) #add (+ 1) for 1 embedding
self.embeddings_table = nn.Parameter(embed_tensor)
nn.init.xavier_uniform_(self.embeddings_table)
with torch.no_grad():
self.embeddings_table[0]=0
self.embeddings_table[-1]=1
nn.init.xavier_uniform_(self._W1)
nn.init.xavier_uniform_(self._W2)
def forward(self, input_data, pad_mask=None):
num_steps = input_data.size(1)
p = torch.matmul(input_data, self._W1 ) + self._bias1
memory=torch.ones((num_steps,num_steps), requires_grad=False).tril(-1).cumsum(0).triu(- self._memory_size+1).long()
if self.bidirectional: memory = memory + memory.t()
memory = memory.fill_diagonal_(self.embeddings_table.size(0)-1).unsqueeze(0).expand(input_data.size(0),-1,-1).to(self.device)
if pad_mask is not None: memory=pad_mask.unsqueeze(1)*memory
with torch.no_grad():
self.embeddings_table[0]=0
self.embeddings_table[-1]=1
memory = self.embeddings_table[memory].to(self.device)
p = torch.einsum('bijd,bjd->bid', memory, p)#'bijd,bjd->bid'
p = torch.matmul(p, self._W2 ) + self._bias2
return p
class FSMN(nn.Module): # FSMN layer
def __init__(self, memory_size, input_size, hidden_size, output_size, n_layers, fsmncell, d_ff, drop=0.1,activation=F.relu, bidirectional=False, device=None, dtype=torch.float32):
super().__init__()
factory_kwargs={'device':device, 'dtype':dtype}
self.activation = activation#nn.GELU()
self.dropout = nn.Dropout(p=drop)
self.linear1 = nn.Linear(hidden_size, d_ff)
self.linear2 = nn.Linear(d_ff, output_size)
self.norm1 = nn.LayerNorm(hidden_size, **factory_kwargs)
#self.norm2 = nn.LayerNorm(input_size, **factory_kwargs)
first_layer = fsmncell(memory_size, input_size, hidden_size, bidirectional, drop, **factory_kwargs)
self.fsmn_layers = nn.ModuleList([ first_layer,*[
fsmncell(memory_size, hidden_size, hidden_size, bidirectional, drop, **factory_kwargs)
for _ in range(n_layers-1) ]])
def forward(self, x, pad_mask=None):
for layer in self.fsmn_layers:
x = self.activation(self.norm1(layer(x, pad_mask)))
return self.linear2(self.dropout(self.activation(self.linear1(x))))
def main():
batch = 2
memory_size = 3
input_size = 5
hidden_size = 10
layer_output_size = 5
sequence_size = 11
n_layers = 3 # number of layers
ff_size = 20
bidirectional = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.manual_seed(20)
src=torch.randn((batch, sequence_size, input_size)).to(device)
# memory_size, input_size, hidden_size, layer_output_size, n_layers, fsmn_class, ff_size, drop=0.1, activation=F.relu, bidirectional=False, device=None, dtype=torch.float32
#fsmn_class : sFSMNCell, csFSMNCell, vFSMNCell or cvFSMNCell
fsmn = FSMN(memory_size, input_size, hidden_size , layer_output_size, n_layers, sFSMNCell, ff_size, drop=0.1, device=device, activation=F.relu, bidirectional=bidirectional).to(device)
src_pad_mask = (torch.tensor([[1,2,3,5,6,6,8,8,13,13,13], [1,2,3,5,6,6,13,13,13,13,13]]) != 13).to(device)
predict = fsmn(src, pad_mask=src_pad_mask)
print ( predict.shape )
print ( predict )
if __name__ == '__main__':
main()