From 2d1bfec4d829e6e110c5a773c081d5a645b8ff49 Mon Sep 17 00:00:00 2001 From: dPys Date: Sun, 6 Dec 2020 04:14:20 -0600 Subject: [PATCH 1/3] [ENH] add recursive delete to leaked semaphores in tracking --- pynets/dmri/track.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/pynets/dmri/track.py b/pynets/dmri/track.py index 9dae172a..1c41cd0c 100644 --- a/pynets/dmri/track.py +++ b/pynets/dmri/track.py @@ -508,8 +508,8 @@ def track_ensemble( f" for errors...") if track_type != 'particle': tiss_class = 'wb' - roi_neighborhood_tol = float(roi_neighborhood_tol) * 1.05 - min_length = float(min_length) * 0.95 + roi_neighborhood_tol = float(roi_neighborhood_tol) * 1.25 + min_length = float(min_length) * 0.9875 continue else: ix -= 1 @@ -531,19 +531,19 @@ def track_ensemble( ) gc.collect() print(Style.RESET_ALL) - os.system(f"rm -f {joblib_dir}/*") + os.system(f"rm -rf {joblib_dir}/*") except BaseException: - os.system(f"rm -f {tmp_files_dir} &") + os.system(f"rm -rf {tmp_files_dir} &") return None if ix >= 0.75*len(all_combs) and \ float(stream_counter) < float(target_samples): print(f"Tractography failed. >{len(all_combs)} consecutive sampling " f"iterations with few streamlines.") - os.system(f"rm -f {tmp_files_dir} &") + os.system(f"rm -rf {tmp_files_dir} &") return None else: - os.system(f"rm -f {tmp_files_dir} &") + os.system(f"rm -rf {tmp_files_dir} &") print("Tracking Complete: ", str(time.time() - start)) del parallel, all_combs From faf2994bb1f432fb4bf099e76b01397e5ceb8702 Mon Sep 17 00:00:00 2001 From: dPys Date: Tue, 15 Dec 2020 13:45:04 -0600 Subject: [PATCH 2/3] [FIX] Prevent premature watchdog timeouts --- Dockerfile | 3 +- pynets/cli/pynets_collect.py | 1207 +++++++++++++++++++++++++++++++++- pynets/cli/pynets_run.py | 9 +- pynets/core/utils.py | 5 +- pynets/dmri/track.py | 24 +- pynets/runconfig.yaml | 4 +- pynets/stats/benchmarking.py | 29 +- 7 files changed, 1224 insertions(+), 57 deletions(-) diff --git a/Dockerfile b/Dockerfile index 56c6dbb5..da1dff04 100755 --- a/Dockerfile +++ b/Dockerfile @@ -86,7 +86,8 @@ RUN apt-get update -qq \ && rm -r fsl* \ && chmod 777 -R $FSLDIR/bin \ && chmod 777 -R /usr/lib/fsl/5.0 \ - && echo "tmpfs /tmp tmpfs rw,nodev,nosuid,size=10G 0 0" >> /etc/fstab + && echo "tmpfs /tmp tmpfs rw,nodev,nosuid,size=10G 0 0" >> /etc/fstab \ + && echo "GRUB_CMDLINE_LINUX_DEFAULT="rootflags=uquota,pquota"" >> /etc/default/grub # && wget --retry-connrefused --waitretry=5 --read-timeout=60 --timeout=60 -t 0 -q -O examples.tar.gz "https://osf.io/ye4vf/download" && tar -xvzf examples.tar.gz -C /tmp \ # && rm -rf examples.tar.gz diff --git a/pynets/cli/pynets_collect.py b/pynets/cli/pynets_collect.py index 0027f79e..04f29061 100644 --- a/pynets/cli/pynets_collect.py +++ b/pynets/cli/pynets_collect.py @@ -157,7 +157,7 @@ def load_pd_dfs(file_): # Find empty duplicate columns df_dups = df.loc[:, df.columns.duplicated()] - if df_dups.empty is False: + if len(df_dups.columns) > 0: empty_cols = [col for col in df.columns if df_dups[col].isnull().all()] # Drop these columns from the dataframe @@ -229,6 +229,15 @@ def mergedicts(dict1, dict2): print('Harmonizing columnn types across dataframes...') dfs = [harmonize_dtypes(df) for df in dfs if df is not None and df.empty is False] + + # print('Replacing with smooth-0fwhm...') + # for df in dfs: + # empty_smooths = df.columns[df.columns.str.contains("nodetype-parc")] + # df.rename(columns=dict(zip(empty_smooths, [smooth_col.replace("nodetype-parc", "nodetype-parc_smooth-0fwhm") for smooth_col in empty_smooths if 'smooth-' not in smooth_col])), inplace=True) + + # for df in dfs: + # print(len(df.columns)) + all_cols = [] for df in dfs: all_cols.extend(df.columns.tolist()) @@ -238,8 +247,9 @@ def mergedicts(dict1, dict2): out_dfs = [fill_columns(df, all_cols) for df in dfs] # for df in out_dfs: - # print(df.columns) + # print(len(df.columns)) # + print('Joining...') frame = pd.concat(out_dfs, axis=0, join="outer", sort=False, ignore_index=False) @@ -259,8 +269,8 @@ def mergedicts(dict1, dict2): except: pass - drop = [i for i in frame.columns if 'participation' in i or 'diversity' in i] - frame = frame.drop(columns=drop) + # drop = [i for i in frame.columns if 'participation' in i or 'diversity' in i] + # frame = frame.drop(columns=drop) out_path = f"{working_path}/all_subs_neat_{modality}.csv" if os.path.isfile(out_path): @@ -398,7 +408,8 @@ def recover_missing(bad_col, bad_cols_dict, rerun_dict, modality, f"topology/*_neat.csv"), f"{sub}_{ses}", None, False) rerun = True - outs = [i for i in glob.glob(f"{working_path}/{sub}/{ses}/{modality}/{atlas}/topology/auc/*") + outs = [i for i in glob.glob(f"{working_path}/{sub}/{ses}/{modality}/" + f"{atlas}/topology/auc/*") if search_str in i] if len(outs) == 1: @@ -409,17 +420,19 @@ def recover_missing(bad_col, bad_cols_dict, rerun_dict, modality, outs[0], chunksize=100000, compression="gzip", encoding="utf-8", engine='python').read() except: + print(f"Cannot load {outs[0]} using python engine...") try: df_tmp = pd.read_csv( outs[0], chunksize=100000, compression="gzip", encoding="utf-8", engine='c').read() except: - print(f"Cannot load {outs[0]}") + print(f"Cannot load {outs[0]} using c engine...") continue if not df_tmp.empty: for drop in drop_cols: if drop in bad_col: - print(f"Removing column: {drop}") + print(f"Because it is empty in {df_tmp}, " + f"removing column: {drop}...") frame = frame.drop(columns=bad_col) if bad_col not in frame.columns: @@ -430,7 +443,7 @@ def recover_missing(bad_col, bad_cols_dict, rerun_dict, modality, glob.glob(f"{working_path}/{sub}/{ses}/" f"{modality}/{atlas}/topology/*_neat.csv"), f"{sub}_{ses}", None, False) - print(f"{bad_col} not found in {frame.columns}") + print(f"{bad_col} not found in {frame.columns}...") continue try: print(f"Recovered missing data from {sub}, {ses} for " @@ -439,7 +452,8 @@ def recover_missing(bad_col, bad_cols_dict, rerun_dict, modality, regex=bad_col.split('auc_')[1:][0] ).values.tolist()[0][0] except: - print(f"Failed to recover missing data from {bad_col}...") + print( + f"Missing auc suffix in {bad_col}...") # if regen is True: # from pynets.stats.netstats import \ # collect_pandas_df_make @@ -450,27 +464,31 @@ def recover_missing(bad_col, bad_cols_dict, rerun_dict, modality, continue del df_tmp else: - print(f"{df_tmp} is empty...") + print(f"{bad_col} of {df_tmp} is empty...") if regen is True: from pynets.stats.netstats import collect_pandas_df_make collect_pandas_df_make(glob.glob(f"{working_path}/{sub}/{ses}/" - f"{modality}/{atlas}/topology/*_neat.csv"), + f"{modality}/{atlas}/" + f"topology/*_neat.csv"), f"{sub}_{ses}", None, False) rerun_dict[sub][ses][modality][atlas].append(bad_col) continue elif len(outs) > 1: + print(f">1 AUC output found for {outs}. Iterating through all of " + f"them to aggregate as much useable data as possible...") for out in outs: try: df_tmp = pd.read_csv( out, chunksize=100000, compression="gzip", encoding="utf-8", engine='python').read() except: + print(f"Cannot load {out} using python engine...") try: df_tmp = pd.read_csv( out, chunksize=100000, compression="gzip", encoding="utf-8", engine='c').read() except: - print(f"Cannot load {out}") + print(f"Cannot load {out} using c engine...") continue if not df_tmp.empty: print(f"Recovered missing data from {sub}, {ses} for " @@ -478,7 +496,8 @@ def recover_missing(bad_col, bad_cols_dict, rerun_dict, modality, for drop in drop_cols: if drop in bad_col: - print(f"Removing column: {drop}") + print(f"Because it is empty in {df_tmp}, " + f"removing column: {drop}") frame = frame.drop(columns=bad_col) try: frame.loc[lab, bad_col] = df_tmp.filter( @@ -486,7 +505,7 @@ def recover_missing(bad_col, bad_cols_dict, rerun_dict, modality, ).values.tolist()[0][0] except: print( - f"Failed to recover missing data from {bad_col}...") + f"Missing auc suffix in {bad_col}...") # if regen is True: # from pynets.stats.netstats import \ # collect_pandas_df_make @@ -506,7 +525,7 @@ def recover_missing(bad_col, bad_cols_dict, rerun_dict, modality, glob.glob(f"{working_path}/{sub}/{ses}/" f"{modality}/{atlas}/topology/*_neat.csv"), f"{sub}_{ses}", None, False) - print(f"No outputs!") + print(f"No AUC outputs found for {bad_col}...") return rerun_dict, rerun @@ -594,15 +613,19 @@ def load_pd_dfs_auc(atlas_name, prefix, auc_file, modality, drop_cols): bad_cols = [i for i in df_pref.columns if any(ele in i for ele in drop_cols)] - # print(f"{Fore.YELLOW} Dropping {len(bad_cols)}: {bad_cols} containing exclusionary strings...{Style.RESET_ALL}") - df_pref.drop(columns=bad_cols, inplace=True) + if len(bad_cols) > 0: + print(f"{Fore.YELLOW} Dropping {len(bad_cols)}: {bad_cols} containing " + f"exclusionary strings...{Style.RESET_ALL}") + df_pref.drop(columns=bad_cols, inplace=True) print(df_pref) # Find empty duplicate columns df_dups = df_pref.loc[:, df_pref.columns.duplicated()] - if df_dups.empty is False: + if len(df_dups.columns) > 0: empty_cols = [col for col in df_pref.columns if df_dups[col].isnull().all()] + print(f"{Fore.YELLOW} Because they are empty, dropping " + f"{len(empty_cols)}: {empty_cols} ...{Style.RESET_ALL}") # Drop these columns from the dataframe df_pref.drop(empty_cols, axis=1, inplace=True) if "Unnamed: 0" in df_pref.columns: @@ -611,6 +634,1150 @@ def load_pd_dfs_auc(atlas_name, prefix, auc_file, modality, drop_cols): if df_pref.empty: print(f"{Fore.RED}Empty raw AUC: {df_pref} from {auc_file}..." f"{Style.RESET_ALL}") + # !/usr/bin/env python3 + # -*- coding: utf-8 -*- + """ + Created on Tue Nov 7 10:40:07 2017 + Copyright (C) 2016 + @author: Derek Pisner (dPys) + """ + from nipype.interfaces import utility as niu + from nipype.pipeline import engine as pe + import os + import pandas as pd + import warnings + import sys + if sys.platform.startswith('win') is False: + import indexed_gzip + warnings.filterwarnings("ignore") + + def get_parser(): + """Parse command-line inputs""" + import argparse + from pynets.__about__ import __version__ + + verstr = f"pynets v{__version__}" + + # Parse args + parser = argparse.ArgumentParser( + description="PyNets: A Fully-Automated Workflow for Reproducible" + " Functional and Structural Connectome Ensemble Learning") + parser.add_argument( + "-basedir", + metavar="Output directory", + help="Specify the path to the base output directory with group-level" + " pynets derivatives.\n", + ) + parser.add_argument( + "-modality", + nargs=1, + choices=["dwi", "func"], + help="Specify data modality from which to collect data. Options are" + " `dwi` and `func`.", + ) + parser.add_argument( + "-dc", + metavar="Column strings to exclude", + default=None, + nargs="+", + help="Space-delimited list of strings.\n", + ) + parser.add_argument( + "-pm", + metavar="Cores,memory", + default="auto", + help="Number of cores to use, number of GB of memory to use for single" + " subject run, entered as two integers seperated by comma. " + "Otherwise, default is `auto`, which uses all resources detected" + " on the current compute node.\n", + ) + parser.add_argument( + "-plug", + metavar="Scheduler type", + default="MultiProc", + nargs=1, + choices=[ + "Linear", + "MultiProc", + "SGE", + "PBS", + "SLURM", + "SGEgraph", + "SLURMgraph", + "LegacyMultiProc", + ], + help="Include this flag to specify a workflow plugin other than the" + " default MultiProc.\n", + ) + parser.add_argument( + "-v", + default=False, + action="store_true", + help="Verbose print for debugging.\n") + parser.add_argument( + "-work", + metavar="Working directory", + default="/tmp/work", + help="Specify the path to a working directory for pynets to run." + " Default is /tmp/work.\n", + ) + parser.add_argument("--version", action="version", version=verstr) + return parser + + def load_pd_dfs(file_): + import gc + import os + import os.path as op + import pandas as pd + import numpy as np + from colorama import Fore, Style + + pd.set_option("display.float_format", lambda x: f"{x:.8f}") + + if file_: + if op.isfile(file_) and not file_.endswith("_clean.csv"): + try: + df = pd.read_csv(file_, chunksize=100000, encoding="utf-8", + engine='python').read() + except: + print( + f"Load failed for {file_}. Trying again with c engine.") + try: + df = pd.read_csv(file_, chunksize=100000, + encoding="utf-8", + engine='c').read() + except: + print(f"Cannot load {file_}") + df = pd.DataFrame() + if "Unnamed: 0" in df.columns: + df.drop(df.filter(regex="Unnamed: 0"), axis=1, + inplace=True) + id = op.basename(file_).split("_topology")[0].split('auc_')[1] + + if 'sub-sub-' in id: + id = id.replace('sub-sub-', 'sub-') + + if 'ses-ses-' in id: + id = id.replace('ses-ses-', 'ses-') + + # id = ('_').join(id.split('_')[0:2]) + + if '.csv' in id: + id = id.replace('.csv', '') + + # print(id) + + df["id"] = id + df["id"] = df["id"].astype('str') + df.replace(r"^\s*$", np.nan, regex=True, inplace=True) + bad_cols1 = df.columns[df.columns.str.endswith("_x")] + if len(bad_cols1) > 0: + for col in bad_cols1: + if np.isnan(df[col][0]) is False: + df.rename( + columns=dict(zip(bad_cols1, [bad_col.split( + "_x")[0] for bad_col in bad_cols1])), + inplace=True) + else: + df.drop(columns=[col], inplace=True) + del col + bad_cols2 = df.columns[df.columns.str.endswith("_y")] + if len(bad_cols2) > 0: + for col in bad_cols2: + if np.isnan(df[col][0]) is False: + df.rename( + columns=dict(zip(bad_cols2, [bad_col.split( + "_y")[0] for bad_col in bad_cols2])), + inplace=True) + else: + df.drop(columns=[col], inplace=True) + del col + + df = df.loc[:, + ~df.columns.str.contains(r".?\d{1}$", regex=True)] + + # Find empty duplicate columns + df_dups = df.loc[:, df.columns.duplicated()] + if len(df_dups.columns) > 0: + empty_cols = [col for col in df.columns if + df_dups[col].isnull().all()] + # Drop these columns from the dataframe + print(f"{Fore.LIGHTYELLOW_EX}" + f"Dropping duplicated empty columns: " + f"{empty_cols}{Style.RESET_ALL}") + df.drop(empty_cols, + axis=1, + inplace=True) + if "Unnamed: 0" in df.columns: + df.drop(df.filter(regex="Unnamed: 0"), axis=1, + inplace=True) + # summarize_missingness(df) + if os.path.isfile(f"{file_.split('.csv')[0]}{'_clean.csv'}"): + os.remove(f"{file_.split('.csv')[0]}{'_clean.csv'}") + df.to_csv(f"{file_.split('.csv')[0]}{'_clean.csv'}", + index=False) + del id + gc.collect() + else: + print(f"{Fore.RED}Cleaned {file_} missing...{Style.RESET_ALL}") + df = pd.DataFrame() + else: + print(f"{Fore.RED}{file_} missing...{Style.RESET_ALL}") + df = pd.DataFrame() + + return df + + def df_concat(dfs, working_path, modality, drop_cols, args): + import os + import pandas as pd + import numpy as np + from joblib import Parallel, delayed + import tempfile + from pynets.cli.pynets_collect import recover_missing + + # from colorama import Fore, Style + + pd.set_option("display.float_format", lambda x: f"{x:.8f}") + + def harmonize_dtypes(df): + for i in [j for j in df.columns if j != 'id']: + df[i] = df[i].astype("float32") + return df + + def fill_columns(df, all_cols): + import numpy as np + diverging_cols = list(np.setdiff1d(all_cols, df.columns.tolist())) + if len(diverging_cols) > 0: + df = df.reindex( + columns=[*df.columns.tolist(), *diverging_cols], + fill_value=np.nan) + df = df.reindex(sorted(df.columns), axis=1) + return df + + def mergedicts(dict1, dict2): + for k in set(dict1.keys()).union(dict2.keys()): + if k in dict1 and k in dict2: + if isinstance(dict1[k], dict) and \ + isinstance(dict2[k], dict): + yield (k, dict(mergedicts(dict1[k], + dict2[k]))) + else: + yield (k, dict2[k]) + elif k in dict1: + yield (k, dict1[k]) + else: + yield (k, dict2[k]) + + print('Harmonizing columnn types across dataframes...') + dfs = [harmonize_dtypes(df) for df in dfs if df is not None and + df.empty is False] + + # print('Replacing with smooth-0fwhm...') + # for df in dfs: + # empty_smooths = df.columns[df.columns.str.contains("nodetype-parc")] + # df.rename(columns=dict(zip(empty_smooths, [smooth_col.replace("nodetype-parc", "nodetype-parc_smooth-0fwhm") for smooth_col in empty_smooths if 'smooth-' not in smooth_col])), inplace=True) + + # for df in dfs: + # print(len(df.columns)) + + all_cols = [] + for df in dfs: + all_cols.extend(df.columns.tolist()) + all_cols = list(set(all_cols)) + + print('Filling divergent columns across dataframes...') + out_dfs = [fill_columns(df, all_cols) for df in dfs] + + # for df in out_dfs: + # print(len(df.columns)) + # + + print('Joining...') + frame = pd.concat(out_dfs, axis=0, join="outer", sort=False, + ignore_index=False) + frame = frame.loc[:, + ~frame.columns.str.contains(r"thr_auc$", regex=True)] + frame.dropna(axis='columns', how='all', inplace=True) + + # columns_with_most_nan = frame.columns[frame.isnull().any()] + # for column in columns_with_most_nan: + # if frame[column].isnull().sum() * 100.0 / frame.shape[0] > 90: + # print(column) + + for drop_col in drop_cols: + frame = frame.loc[:, ~frame.columns.str.contains(f"{drop_col}", + regex=True)] + try: + frame = frame.set_index('id') + except: + pass + + # drop = [i for i in frame.columns if 'participation' in i or 'diversity' in i] + # frame = frame.drop(columns=drop) + + out_path = f"{working_path}/all_subs_neat_{modality}.csv" + if os.path.isfile(out_path): + frame_fill = pd.read_csv(out_path) + if "Unnamed: 0" in frame_fill.columns: + frame_fill.drop(frame_fill.filter(regex="Unnamed: 0"), axis=1, + inplace=True) + + if len(frame_fill.columns) == len(frame.columns): + print("Found existing dataframe. Using this to fill in " + "missing values...") + try: + frame_fill = frame_fill.set_index('id') + frame[frame.isnull()] = frame_fill + except: + pass + else: + frame.to_csv(out_path) + + bad_cols1 = frame.columns[frame.columns.str.endswith("_x")] + if len(bad_cols1) > 0: + for col in bad_cols1: + if np.isnan(frame[col][0]) is False: + frame.rename(columns=dict(zip(bad_cols1, [bad_col.split( + "_x")[0] for bad_col in bad_cols1])), inplace=True) + else: + frame.drop(columns=[col], inplace=True) + del col + bad_cols2 = frame.columns[frame.columns.str.endswith("_y")] + if len(bad_cols2) > 0: + for col in bad_cols2: + if np.isnan(frame[col][0]) is False: + frame.rename(columns=dict(zip(bad_cols2, [bad_col.split( + "_y")[0] for bad_col in bad_cols2])), + inplace=True) + else: + frame.drop(columns=[col], inplace=True) + del col + + # If > 50% of a column is NA/missing + # frame = frame.loc[:, frame.isnull().mean() <= 0.20] + + # If > 50% of a column is zero + # frame = frame.loc[:, (frame == 0).mean() < .5] + + # If > 50% of a row is NA/missing + # frame.dropna(thresh=0.50*len(frame.columns), inplace=True) + + missingness_dict = summarize_missingness(frame)[0] + bad_cols = [] + for col in missingness_dict.keys(): + if missingness_dict[col] > 0.20: + bad_cols.append(col) + del col + + bad_cols_dict = {} + for col in bad_cols: + bad_cols_dict[col] = frame[col].index[frame[col].apply(np.isnan)] + + rerun_dict = {} + print('Fill in any missing cells if auc files are detected, ' + 'otherwise create an inventory of missingness...') + par_dict = rerun_dict.copy() + cache_dir = tempfile.mkdtemp() + with Parallel(n_jobs=224, require='sharedmem', verbose=10, + temp_folder=cache_dir) as parallel: + outs = parallel(delayed(recover_missing)(bad_col, bad_cols_dict, + par_dict, modality, + working_path, drop_cols, + frame) for + bad_col in list(bad_cols_dict.keys())) + + if os.path.isfile(f"{working_path}/all_subs_neat_{modality}.csv"): + os.remove(f"{working_path}/all_subs_neat_{modality}.csv") + frame.to_csv(f"{working_path}/all_subs_neat_{modality}.csv", + index=True) + + # frame = frame.drop(frame.filter(regex="thrtype-PROP"), axis=1) + # frame.to_csv(f"{working_path}/all_subs_neat_{modality}.csv", index=True) + + rerun_dicts = [] + reruns = [] + for rd, rerun in outs: + rerun_dicts.append(rd) + reruns.append(rerun) + + for rd in rerun_dicts: + rerun_dict = dict(mergedicts(rerun_dict, rd)) + + # # Re-run collection... + # if sum(reruns) > 1: + # build_collect_workflow(args, outs) + + # if len(bad_cols) > 0: + # print(f"{Fore.LIGHTYELLOW_EX}Dropping columns with excessive " + # f"missingness: {bad_cols}{Style.RESET_ALL}") + # frame = frame.drop(columns=bad_cols) + + # frame['missing'] = frame.apply(lambda x: x.count(), axis=1) + # frame = frame.loc[frame['missing'] > np.mean(frame['missing'])] + # frame = frame.sort_values(by=['missing'], ascending=False) + + return frame, rerun_dict + + def recover_missing(bad_col, bad_cols_dict, rerun_dict, modality, + working_path, drop_cols, frame, regen=True): + import glob + import os + atlas = bad_col.split('_')[0] + '_' + bad_col.split('_')[1] + rerun = False + + for lab in list(bad_cols_dict[bad_col]): + sub = lab.split('_')[0] + ses = lab.split('_')[1] + if sub not in rerun_dict.keys(): + rerun_dict[sub] = {} + if ses not in rerun_dict[sub].keys(): + rerun_dict[sub][ses] = {} + if modality not in rerun_dict[sub][ses].keys(): + rerun_dict[sub][ses][modality] = {} + if atlas not in rerun_dict[sub][ses][modality].keys(): + rerun_dict[sub][ses][modality][atlas] = [] + search_str = bad_col.replace(f"{atlas}_", '').split('_thrtype')[0] + # print(search_str) + if not os.path.isdir(f"{working_path}/{sub}/{ses}/" + f"{modality}/{atlas}/topology/auc"): + if not os.path.isdir( + f"{working_path}/{sub}/{ses}/{modality}/{atlas}/topology"): + print(f"Missing graph analysis for {sub}, {ses} for " + f"{atlas}...") + else: + if regen is True: + from pynets.stats.netstats import \ + collect_pandas_df_make + collect_pandas_df_make( + glob.glob(f"{working_path}/{sub}/{ses}/" + f"{modality}/{atlas}/" + f"topology/*_neat.csv"), + f"{sub}_{ses}", None, False) + rerun = True + outs = [i for i in + glob.glob(f"{working_path}/{sub}/{ses}/{modality}/" + f"{atlas}/topology/auc/*") + if search_str in i] + + if len(outs) == 1: + # Fill in gaps (for things that get dropped during earlier + # stages) + try: + df_tmp = pd.read_csv( + outs[0], chunksize=100000, compression="gzip", + encoding="utf-8", engine='python').read() + except: + print(f"Cannot load {outs[0]} using python engine...") + try: + df_tmp = pd.read_csv( + outs[0], chunksize=100000, compression="gzip", + encoding="utf-8", engine='c').read() + except: + print(f"Cannot load {outs[0]} using c engine...") + continue + if not df_tmp.empty: + for drop in drop_cols: + if drop in bad_col: + print(f"Because it is empty in {df_tmp}, " + f"removing column: {drop}...") + frame = frame.drop(columns=bad_col) + + if bad_col not in frame.columns: + if regen is True: + from pynets.stats.netstats import \ + collect_pandas_df_make + collect_pandas_df_make( + glob.glob(f"{working_path}/{sub}/{ses}/" + f"{modality}/{atlas}/topology/*_neat.csv"), + f"{sub}_{ses}", None, False) + print(f"{bad_col} not found in {frame.columns}...") + continue + try: + print(f"Recovered missing data from {sub}, {ses} for " + f"{bad_col}...") + frame.loc[lab, bad_col] = df_tmp.filter( + regex=bad_col.split('auc_')[1:][0] + ).values.tolist()[0][0] + except: + print( + f"Missing auc suffix in {bad_col}...") + # if regen is True: + # from pynets.stats.netstats import \ + # collect_pandas_df_make + # collect_pandas_df_make( + # glob.glob(f"{working_path}/{sub}/{ses}/" + # f"{modality}/{atlas}/topology/*_neat.csv"), + # f"{sub}_{ses}", None, False) + continue + del df_tmp + else: + print(f"{bad_col} of {df_tmp} is empty...") + if regen is True: + from pynets.stats.netstats import \ + collect_pandas_df_make + collect_pandas_df_make( + glob.glob(f"{working_path}/{sub}/{ses}/" + f"{modality}/{atlas}/" + f"topology/*_neat.csv"), + f"{sub}_{ses}", None, False) + rerun_dict[sub][ses][modality][atlas].append(bad_col) + continue + elif len(outs) > 1: + print( + f">1 AUC output found for {outs}. Iterating through all of " + f"them to aggregate as much useable data as possible...") + for out in outs: + try: + df_tmp = pd.read_csv( + out, chunksize=100000, compression="gzip", + encoding="utf-8", engine='python').read() + except: + print(f"Cannot load {out} using python engine...") + try: + df_tmp = pd.read_csv( + out, chunksize=100000, compression="gzip", + encoding="utf-8", engine='c').read() + except: + print(f"Cannot load {out} using c engine...") + continue + if not df_tmp.empty: + print(f"Recovered missing data from {sub}, {ses} for " + f"{bad_col}...") + + for drop in drop_cols: + if drop in bad_col: + print(f"Because it is empty in {df_tmp}, " + f"removing column: {drop}") + frame = frame.drop(columns=bad_col) + try: + frame.loc[lab, bad_col] = df_tmp.filter( + regex=bad_col.split('auc_')[1:][0] + ).values.tolist()[0][0] + except: + print( + f"Missing auc suffix in {bad_col}...") + # if regen is True: + # from pynets.stats.netstats import \ + # collect_pandas_df_make + # collect_pandas_df_make( + # glob.glob(f"{working_path}/{sub}/{ses}/" + # f"{modality}/{atlas}/topology/*_neat.csv"), + # f"{sub}_{ses}", None, False) + continue + del df_tmp + else: + # Add to missingness inventory if not found + rerun_dict[sub][ses][modality][atlas].append(bad_col) + if regen is True: + from pynets.stats.netstats import \ + collect_pandas_df_make + collect_pandas_df_make( + glob.glob(f"{working_path}/{sub}/{ses}/" + f"{modality}/{atlas}/topology/*_neat.csv"), + f"{sub}_{ses}", None, False) + print(f"No AUC outputs found for {bad_col}...") + + return rerun_dict, rerun + + def summarize_missingness(df): + import numpy as np + from colorama import Fore, Style + missingness_dict = dict(df.apply(lambda x: x.isna().sum() / + ( + x.count() + x.isna().sum()), + axis=0)) + missingness_mean = np.mean(list(missingness_dict.values())) + if missingness_mean > 0.50: + print(f"{Fore.RED} {df} missing {100 * missingness_mean}% " + f"values!{Style.RESET_ALL}") + + return missingness_dict, missingness_mean + + def load_pd_dfs_auc(atlas_name, prefix, auc_file, modality, drop_cols): + from colorama import Fore, Style + import pandas as pd + import re + import numpy as np + import os + + pd.set_option("display.float_format", lambda x: f"{x:.8f}") + + try: + df = pd.read_csv( + auc_file, chunksize=100000, compression="gzip", + encoding="utf-8", engine='c').read() + except: + try: + df = pd.read_csv( + auc_file, chunksize=100000, compression="gzip", + encoding="utf-8", engine='python').read() + except: + df = pd.DataFrame() + + # print(f"{'Atlas: '}{atlas_name}") + prefix = f"{atlas_name}{'_'}{prefix}{'_'}" + df_pref = df.add_prefix(prefix) + if modality == 'dwi': + df_pref = df_pref.rename( + columns=lambda x: re.sub( + "nodetype-parc_samples-\d{1,5}0000streams_tracktype-local_", + "", x)) + + df_pref = df_pref.rename( + columns=lambda x: re.sub( + "mod-", + "model-", x)) + df_pref = df_pref.rename( + columns=lambda x: re.sub( + "sub-sub-", + "sub-", x)) + df_pref = df_pref.rename( + columns=lambda x: re.sub( + "ses-ses-", + "ses-", x)) + df_pref = df_pref.rename( + columns=lambda x: re.sub( + "topology_auc", + "", x)) + df_pref = df_pref.rename( + columns=lambda x: re.sub( + "mod-", + "model-", x)) + df_pref = df_pref.rename( + columns=lambda x: re.sub( + "res-200", + "res-77", x)) + df_pref = df_pref.rename( + columns=lambda x: re.sub( + "res-400", + "res-135", x)) + df_pref = df_pref.rename( + columns=lambda x: re.sub( + "res-600", + "res-180", x)) + df_pref = df_pref.rename( + columns=lambda x: re.sub( + "res-800", + "res-228", x)) + + bad_cols = [i for i in df_pref.columns if any(ele in i for ele in + drop_cols)] + if len(bad_cols) > 0: + print( + f"{Fore.YELLOW} Dropping {len(bad_cols)}: {bad_cols} containing " + f"exclusionary strings...{Style.RESET_ALL}") + df_pref.drop(columns=bad_cols, inplace=True) + + print(df_pref) + # Find empty duplicate columns + df_dups = df_pref.loc[:, df_pref.columns.duplicated()] + if len(df_dups.columns) > 0: + empty_cols = [col for col in df_pref.columns if + df_dups[col].isnull().all()] + print(f"{Fore.YELLOW} Because they are empty, dropping " + f"{len(empty_cols)}: {empty_cols} ...{Style.RESET_ALL}") + # Drop these columns from the dataframe + df_pref.drop(empty_cols, axis=1, inplace=True) + if "Unnamed: 0" in df_pref.columns: + df_pref.drop(df_pref.filter(regex="Unnamed: 0"), axis=1, + inplace=True) + + if df_pref.empty: + print(f"{Fore.RED}Empty raw AUC: {df_pref} from {auc_file}..." + f"{Style.RESET_ALL}") + + return df_pref + + def build_subject_dict(sub, working_path, modality, drop_cols): + import shutil + import os + import glob + from pathlib import Path + from colorama import Fore, Style + from pynets.cli.pynets_collect import load_pd_dfs_auc + + def is_non_zero_file(fpath): + return os.path.isfile(fpath) and os.path.getsize(fpath) > 0 + + subject_dict = {} + print(sub) + subject_dict[sub] = {} + sessions = sorted( + [i for i in os.listdir(f"{working_path}{'/'}{sub}") if + i.startswith( + "ses-")], + key=lambda x: x.split("-")[1], + ) + atlases = list( + set( + [ + os.path.basename(str(Path(i).parent.parent)) + for i in glob.glob(f"{working_path}/{sub}/*/{modality}/*/" + f"topology/*", recursive=True) + ] + ) + ) + print(atlases) + + files_ = [] + for ses in sessions: + print(ses) + subject_dict[sub][ses] = {} + for atlas in atlases: + subject_dict[sub][ses][atlas] = [] + # atlas_name = "_".join(atlas.split("_")[1:]) + auc_csvs = glob.glob( + f"{working_path}/{sub}/{ses}/{modality}/{atlas}/topology/auc/*" + ) + print(f"AUC csv's: {auc_csvs}") + + for auc_file in auc_csvs: + prefix = ( + os.path.basename(auc_file) + .split(".csv")[0] + .split("model-")[1] + .split(modality)[0] + ) + if os.path.isfile(auc_file) and is_non_zero_file(auc_file): + df_sub = load_pd_dfs_auc(atlas, f"model-{prefix}", + auc_file, modality, drop_cols) + df_sub['id'] = f"{sub}_{ses}" + if df_sub.empty: + print( + f"{Fore.RED}Empty auc file for {sub} {ses}..." + f"{Style.RESET_ALL}") + else: + subject_dict[sub][ses][atlas].append(df_sub) + else: + print(f"{Fore.RED}Missing auc file for {sub} {ses}..." + f"{Style.RESET_ALL}") + list_ = [subject_dict[sub][ses][i] for i in + subject_dict[sub][ses].keys()] + list_ = [item for sublist in list_ for item in sublist] + if len(list_) > 0: + df_base = list_[0][[c for c in list_[ + 0].columns if c.endswith("auc") or c == 'id']] + try: + df_base.set_index('id', inplace=True) + except: + pass + for m in range(len(list_))[1:]: + df_to_be_merged = list_[m][[c for c in list_[m].columns if + c.endswith( + "auc") or c == 'id']] + try: + df_to_be_merged.set_index('id', inplace=True) + except: + pass + df_base = df_base.merge( + df_to_be_merged, + left_index=True, + right_index=True, + ) + if os.path.isdir( + f"{working_path}{'/'}{sub}{'/'}{ses}{'/'}{modality}"): + out_path = ( + f"{working_path}/{sub}/{ses}/{modality}/all_combinations" + f"_auc.csv" + ) + if os.path.isfile(out_path): + os.remove(out_path) + df_base.to_csv(out_path, index=False) + out_path_new = f"{str(Path(working_path))}/{modality}_" \ + f"group_topology_auc/topology_auc_{sub}_" \ + f"{ses}.csv" + files_.append(out_path_new) + shutil.copyfile(out_path, out_path_new) + + del df_base + else: + print(f"{Fore.RED}Missing data for {sub} {ses}..." + f"{Style.RESET_ALL}") + del list_ + + return files_ + + def collect_all(working_path, modality, drop_cols): + from pathlib import Path + import shutil + import os + + import_list = [ + "import warnings", + 'warnings.filterwarnings("ignore")', + "import os", + "import numpy as np", + "import nibabel as nib", + "import glob", + "import pandas as pd", + "import shutil", + "from pathlib import Path", + "from colorama import Fore, Style" + ] + + shutil.rmtree( + f"{str(Path(working_path))}/{modality}_group_topology_auc", + ignore_errors=True) + + os.makedirs(f"{str(Path(working_path))}/{modality}_group_topology_auc") + + wf = pe.Workflow(name="load_pd_dfs") + + inputnode = pe.Node( + niu.IdentityInterface(fields=["working_path", "modality", + "drop_cols"]), + name="inputnode" + ) + inputnode.inputs.working_path = working_path + inputnode.inputs.modality = modality + inputnode.inputs.drop_cols = drop_cols + + build_subject_dict_node = pe.Node( + niu.Function( + input_names=["sub", "working_path", "modality", "drop_cols"], + output_names=["files_"], + function=build_subject_dict, + ), + name="build_subject_dict_node", + imports=import_list, + ) + build_subject_dict_node.iterables = ( + "sub", + [i for i in os.listdir(working_path) if i.startswith("sub-")], + ) + build_subject_dict_node.synchronize = True + + df_join_node = pe.JoinNode( + niu.IdentityInterface(fields=["files_"]), + name="df_join_node", + joinfield=["files_"], + joinsource=build_subject_dict_node, + ) + + load_pd_dfs_map = pe.MapNode( + niu.Function( + input_names=["file_"], + outputs_names=["df"], + function=load_pd_dfs), + name="load_pd_dfs", + imports=import_list, + iterfield=["file_"], + nested=True, + ) + + outputnode = pe.Node( + niu.IdentityInterface( + fields=["dfs"]), + name="outputnode") + + wf.connect( + [ + (inputnode, build_subject_dict_node, + [("working_path", "working_path"), ('modality', 'modality'), + ('drop_cols', 'drop_cols')]), + ( + build_subject_dict_node, df_join_node, [("files_", "files_")]), + (df_join_node, load_pd_dfs_map, [("files_", "file_")]), + (load_pd_dfs_map, outputnode, [("df", "dfs")]), + ] + ) + + return wf + + def build_collect_workflow(args, retval): + import os + import glob + import psutil + import warnings + warnings.filterwarnings("ignore") + import ast + from pathlib import Path + from pynets.core.utils import load_runconfig + import uuid + from time import strftime + import shutil + + try: + import pynets + + print(f"\n\nPyNets Version:\n{pynets.__version__}\n\n") + except ImportError: + print( + "PyNets not installed! Ensure that you are using the correct" + " python version." + ) + + # Set Arguments to global variables + resources = args.pm + if resources == "auto": + from multiprocessing import cpu_count + import psutil + nthreads = cpu_count() - 1 + procmem = [int(nthreads), + int(list(psutil.virtual_memory())[4] / 1000000000)] + else: + procmem = list(eval(str(resources))) + plugin_type = args.plug + if isinstance(plugin_type, list): + plugin_type = plugin_type[0] + verbose = args.v + working_path = args.basedir + work_dir = args.work + modality = args.modality + drop_cols = args.dc + if isinstance(modality, list): + modality = modality[0] + + if os.path.isdir(work_dir): + shutil.rmtree(work_dir) + + os.makedirs( + f"{str(Path(working_path))}/{modality}_group_topology_auc", + exist_ok=True) + + wf = collect_all(working_path, modality, drop_cols) + + run_uuid = f"{strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4()}" + os.makedirs(f"{work_dir}/pynets_out_collection{run_uuid}", + exist_ok=True) + wf.base_dir = f"{work_dir}/pynets_out_collection{run_uuid}" + + if verbose is True: + from nipype import config, logging + + cfg_v = dict( + logging={ + "workflow_level": "DEBUG", + "utils_level": "DEBUG", + "interface_level": "DEBUG", + "filemanip_level": "DEBUG", + "log_directory": str(wf.base_dir), + "log_to_file": True, + }, + monitoring={ + "enabled": True, + "sample_frequency": "0.1", + "summary_append": True, + "summary_file": str(wf.base_dir), + }, + ) + logging.update_logging(config) + config.update_config(cfg_v) + config.enable_debug_mode() + config.enable_resource_monitor() + + import logging + + callback_log_path = f"{wf.base_dir}{'/run_stats.log'}" + logger = logging.getLogger("callback") + logger.setLevel(logging.DEBUG) + handler = logging.FileHandler(callback_log_path) + logger.addHandler(handler) + + execution_dict = {} + execution_dict["crashdump_dir"] = str(wf.base_dir) + execution_dict["plugin"] = str(plugin_type) + execution_dict["poll_sleep_duration"] = 0.5 + execution_dict["crashfile_format"] = "txt" + execution_dict["local_hash_check"] = False + execution_dict["stop_on_first_crash"] = False + execution_dict['hash_method'] = 'timestamp' + execution_dict["keep_inputs"] = True + execution_dict["use_relative_paths"] = False + execution_dict["remove_unnecessary_outputs"] = False + execution_dict["remove_node_directories"] = False + execution_dict["raise_insufficient"] = False + nthreads = psutil.cpu_count() * 2 + procmem = [int(nthreads), + int(list(psutil.virtual_memory())[4] / 1000000000) - 2] + plugin_args = { + "n_procs": int(procmem[0]), + "memory_gb": int(procmem[1]), + "scheduler": "topological_sort", + } + execution_dict["plugin_args"] = plugin_args + cfg = dict(execution=execution_dict) + + for key in cfg.keys(): + for setting, value in cfg[key].items(): + wf.config[key][setting] = value + try: + wf.write_graph(graph2use="colored", format="png") + except BaseException: + pass + if verbose is True: + from nipype.utils.profiler import log_nodes_cb + + plugin_args = { + "n_procs": int(procmem[0]), + "memory_gb": int(procmem[1]), + "status_callback": log_nodes_cb, + "scheduler": "mem_thread", + } + else: + plugin_args = { + "n_procs": int(procmem[0]), + "memory_gb": int(procmem[1]), + "scheduler": "mem_thread", + } + print("%s%s%s" % ("\nRunning with ", str(plugin_args), "\n")) + wf.run(plugin=plugin_type, plugin_args=plugin_args) + if verbose is True: + from nipype.utils.draw_gantt_chart import generate_gantt_chart + + print("Plotting resource profile from run...") + generate_gantt_chart(callback_log_path, cores=int(procmem[0])) + handler.close() + logger.removeHandler(handler) + return + + def main(): + """Initializes collection of pynets outputs.""" + import gc + import sys + import glob + from pynets.cli.pynets_collect import build_collect_workflow + from types import SimpleNamespace + from pathlib import Path + + try: + from pynets.core.utils import do_dir_path + except ImportError: + print( + "PyNets not installed! Ensure that you are referencing the correct" + " site-packages and using Python3.5+" + ) + + if len(sys.argv) < 1: + print("\nMissing command-line inputs! See help options with the -h" + " flag.\n") + sys.exit() + + # args = get_parser().parse_args() + args_dict_all = {} + args_dict_all['plug'] = 'MultiProc' + args_dict_all['v'] = False + args_dict_all['pm'] = '48,67' + # args_dict_all['pm'] = '128,500' + # args_dict_all['pm'] = '224,2000' + # args_dict_all['basedir'] = '/working/tuning_set/outputs_clustering/pynets' + # args_dict_all['basedir'] = '/working/tuning_set/outputs_shaeffer/pynets' + # args_dict_all['basedir'] = '/working/tuning_set/outputs_language/pynets' + # args_dict_all['basedir'] = '/scratch/04171/dpisner/HNU/HNU_outs/triple/pynets' + # args_dict_all['basedir'] = '/scratch/04171/dpisner/HNU/HNU_outs/triple_network/pynets' + # args_dict_all['basedir'] = '/scratch/04171/dpisner/HNU/HNU_outs/visual/pynets' + args_dict_all[ + 'basedir'] = '/scratch/04171/dpisner/HNU/HNU_outs/outputs_language/pynets' + # args_dict_all['basedir'] = '/scratch/04171/dpisner/tuning_set/outputs_shaeffer/pynets' + args_dict_all['work'] = '/tmp/work/func' + args_dict_all['modality'] = 'func' + args_dict_all['dc'] = ['diversity_coefficient', + 'participation_coefficient', + 'average_local_efficiency', + # 'weighted_transitivity', + # 'communicability_centrality', + # 'average_clustering', + 'average_local_clustering_nodewise', + 'average_local_efficiency_nodewise', + 'degree_centrality', + # 'csd', + # '_minlength-0', + # '_minlength-40', + 'samples-2000streams', + 'samples-7700streams', + # 'rsn-kmeans_', + # 'rsn-triple_' + # "_minlength-0", + # 'degree_assortativity_coefficient', + 'ward', + "variance", + "res-1000", "smooth-2fwhm"] + args = SimpleNamespace(**args_dict_all) + + from multiprocessing import set_start_method, Process, Manager + + try: + set_start_method("forkserver") + except: + pass + + with Manager() as mgr: + retval = mgr.dict() + p = Process(target=build_collect_workflow, args=(args, retval)) + p.start() + p.join() + + if p.exitcode != 0: + sys.exit(p.exitcode) + + # Clean up master process before running workflow, which may create + # forks + gc.collect() + mgr.shutdown() + + working_path = args_dict_all['basedir'] + modality = args_dict_all['modality'] + drop_cols = args_dict_all['dc'] + # working_path = args.basedir + # modality = args.modality + # drop_cols = args.dc + + all_files = glob.glob( + f"{str(Path(working_path))}/{modality}_group_topology_auc/*.csv" + ) + + files_ = [i for i in all_files if '_clean.csv' in i] + + dfs = [] + missingness_dict = {} + ensemble_list = [] + for file_ in files_: + try: + df = pd.read_csv(file_, chunksize=100000, encoding="utf-8", + engine='python').read() + except: + try: + df = pd.read_csv(file_, chunksize=100000, encoding="utf-8", + engine='c').read() + except: + print(f"Cannot load {file_}...") + continue + + if "Unnamed: 0" in df.columns: + df.drop(df.filter(regex="Unnamed: 0"), axis=1, inplace=True) + missingness_dict[file_] = summarize_missingness(df)[1] + df.set_index('id', inplace=True) + df.index = df.index.map(str) + ensemble_list.extend((list(df.columns))) + ensemble_list = list(set(ensemble_list)) + dfs.append(df) + del df + + # dfs = [df for df in dfs if len(df.columns) > 0.50*len(ensemble_list)] + + print("Aggregating dataframes...") + frame, rerun_dict = df_concat(dfs, working_path, modality, drop_cols, + args) + + print("Missingness Summary:") + summarize_missingness(frame) + + print(f"Rerun:\n{rerun_dict}") + + # Cleanup + for j in all_files: + if j not in files_: + os.remove(j) + + print('\nDone!') + return + + if __name__ == "__main__": + import warnings + warnings.filterwarnings("ignore") + __spec__ = "ModuleSpec(name='builtins', loader=)" + main() return df_pref @@ -992,8 +2159,8 @@ def main(): #args_dict_all['basedir'] = '/scratch/04171/dpisner/HNU/HNU_outs/visual/pynets' args_dict_all['basedir'] = '/scratch/04171/dpisner/HNU/HNU_outs/outputs_language/pynets' #args_dict_all['basedir'] = '/scratch/04171/dpisner/tuning_set/outputs_shaeffer/pynets' - args_dict_all['work'] = '/tmp/work/func' - args_dict_all['modality'] = 'func' + args_dict_all['work'] = '/tmp/work/dwi' + args_dict_all['modality'] = 'dwi' args_dict_all['dc'] = ['diversity_coefficient', 'participation_coefficient', 'average_local_efficiency', diff --git a/pynets/cli/pynets_run.py b/pynets/cli/pynets_run.py index ffd0c9c7..2b9d4c42 100755 --- a/pynets/cli/pynets_run.py +++ b/pynets/cli/pynets_run.py @@ -3515,6 +3515,7 @@ def main(): "PyNets not installed! Ensure that you are referencing the correct" " site-packages and using Python3.6+" ) + sys.exit(1) if len(sys.argv) < 1: print("\nMissing command-line inputs! See help options with the -h" @@ -3541,11 +3542,9 @@ def main(): run_uuid = retval.get("run_uuid", None) retcode = retcode or int(pynets_wf is None) - if retcode != 0: - sys.exit(retcode) + if retcode == 1: + return retcode - # Clean up master process before running workflow, which may create - # forks gc.collect() mgr.shutdown() @@ -3555,7 +3554,7 @@ def main(): rmtree(work_dir, ignore_errors=True) - sys.exit(0) + return 0 if __name__ == "__main__": diff --git a/pynets/core/utils.py b/pynets/core/utils.py index c9e15415..33beaa15 100644 --- a/pynets/core/utils.py +++ b/pynets/core/utils.py @@ -1973,8 +1973,7 @@ def run(self): watchdog_thread.join() return 0 - def _watchdog(self): - WATCHDOG_HARD_KILL_TIMEOUT = 7200 + def _watchdog(self, watchdog_timeout=10800): self.last_progress_time = time.time() @@ -1982,7 +1981,7 @@ def _watchdog(self): if self.shutdown.wait(timeout=5): return last_progress_delay = time.time() - self.last_progress_time - if last_progress_delay < WATCHDOG_HARD_KILL_TIMEOUT: + if last_progress_delay < watchdog_timeout: continue try: signal.signal(signal.SIGQUIT, dumpstacks) diff --git a/pynets/dmri/track.py b/pynets/dmri/track.py index 1c41cd0c..969774ca 100644 --- a/pynets/dmri/track.py +++ b/pynets/dmri/track.py @@ -69,7 +69,7 @@ def reconstruction(conn_model, gtab, dwi_data, B0_mask): ) except ValueError: import sys - sys.exit(0) + sys.exit(1) del dwi_data @@ -191,7 +191,7 @@ def prep_tissues( raise ValueError("Tissue classifier cannot be none.") except ValueError: import sys - sys.exit(0) + sys.exit(1) del gm_data, wm_data, vent_csf_in_dwi_data @@ -482,8 +482,7 @@ def track_ensemble( while float(stream_counter) < float(target_samples) and float(ix) < 0.50*float(len(all_combs)): with Parallel(n_jobs=nthreads, backend='loky', mmap_mode='r+', temp_folder=joblib_dir, - verbose=0, max_nbytes='50000M', - timeout=timeout) as parallel: + verbose=0, timeout=timeout) as parallel: out_streams = parallel( delayed(run_tracking)( i, recon_path, n_seeds_per_iter, directget, maxcrossing, @@ -502,14 +501,15 @@ def track_ensemble( if len(out_streams) < min_streams: ix += 2 - print(f"Fewer than {min_streams} streamlines tracked on last" - f" iteration. Loosening tolerance and anatomical" - f" constraints. Check {tissues4d} or {recon_path}" - f" for errors...") - if track_type != 'particle': - tiss_class = 'wb' + print(f"Fewer than {min_streams} streamlines tracked " + f"on last iteration with cache directory: " + f"{cache_dir}. Loosening tolerance and " + f"anatomical constraints. Check {tissues4d} or " + f"{recon_path} for errors...") + # if track_type != 'particle': + # tiss_class = 'wb' roi_neighborhood_tol = float(roi_neighborhood_tol) * 1.25 - min_length = float(min_length) * 0.9875 + # min_length = float(min_length) * 0.9875 continue else: ix -= 1 @@ -730,7 +730,7 @@ def run_tracking(step_curv_combinations, recon_path, "ERROR: No valid tracking method(s) specified.") except ValueError: import sys - sys.exit(0) + sys.exit(1) # Filter resulting streamlines by those that stay entirely # inside the brain diff --git a/pynets/runconfig.yaml b/pynets/runconfig.yaml index 8b1b5d9c..fa8b2c90 100755 --- a/pynets/runconfig.yaml +++ b/pynets/runconfig.yaml @@ -209,7 +209,7 @@ resource_dict: # Nipype workflow resource settings - 'get_fa_node': - (2, 1) - 'run_tracking_node': - - (3, 8) + - (3, 10) - 'thresh_diff_node': - (1, 1.5) - 'dsn_node': @@ -217,7 +217,7 @@ resource_dict: # Nipype workflow resource settings - 'plot_all_node': - (1, 2) - 'streams2graph_node': - - (3, 4) + - (3, 6) - 'build_multigraphs_node': - (2, 8) - 'plot_all_struct_func_node': diff --git a/pynets/stats/benchmarking.py b/pynets/stats/benchmarking.py index d159c7b4..bc0d8451 100644 --- a/pynets/stats/benchmarking.py +++ b/pynets/stats/benchmarking.py @@ -449,19 +449,19 @@ def benchmark_reproducibility(comb, modality, alg, par_dict, disc, with open(label_file, 'r+') as f: node_dict = json.load(f) indices = [i['index'] for i in - node_dict.values()] + node_dict] if indices == ixs: coords = [i['coord'] for i in - node_dict.values()] + node_dict] df_coords = pd.DataFrame( [str(tuple(x)) for x in coords]).T df_coords.columns = [f"rsn-{comb_tuple[0]}_res-{comb_tuple[-2]}_{i}" for i in ixs] labels = [ - list(i['label'].values())[7] for i + list(i['label'])[7] for i in - node_dict.values()] + node_dict] df_labels = pd.DataFrame( labels).T @@ -520,7 +520,6 @@ def benchmark_reproducibility(comb, modality, alg, par_dict, disc, df_summary.at[0, f"{lp}_icc"] = np.nan coord_in = np.nan label_in = np.nan - del c_icc dict_sum[f"{lp}_coord"] = coord_in dict_sum[f"{lp}_label"] = label_in @@ -593,11 +592,11 @@ def benchmark_reproducibility(comb, modality, alg, par_dict, disc, if __name__ == "__main__": __spec__ = "ModuleSpec(name='builtins', loader=)" - base_dir = '/scratch/04171/dpisner/HNU/HNU_outs/triple' - #base_dir = '/scratch/04171/dpisner/HNU/HNU_outs/outputs_language' + #base_dir = '/scratch/04171/dpisner/HNU/HNU_outs/triple' + base_dir = '/scratch/04171/dpisner/HNU/HNU_outs/outputs_language' thr_type = "MST" - icc = False - disc = True + icc = True + disc = False int_consist = False target_modality = 'dwi' @@ -606,8 +605,10 @@ def benchmark_reproducibility(comb, modality, alg, par_dict, disc, #embedding_types = ['OMNI'] embedding_types = ['OMNI', 'ASE'] modalities = ['func', 'dwi'] - rsns = ['kmeans'] - #rsns = ['language'] + #rsns = ['kmeans', 'triple'] + #rsns = ['triple'] + #rsns = ['kmeans'] + rsns = ['language'] #template = 'CN200' template = 'MNI152_T1' mets = ["global_efficiency", @@ -719,7 +720,7 @@ def tuple_insert(tup, pos, ele): cache_dir = tempfile.mkdtemp() with Parallel( - n_jobs=128, require="sharedmem", backend='threading', + n_jobs=-1, require="sharedmem", backend='threading', verbose=10, max_nbytes='20000M', temp_folder=cache_dir ) as parallel: @@ -734,8 +735,8 @@ def tuple_insert(tup, pos, ele): # outs = [] # for comb in grid: # outs.append(benchmark_reproducibility( - # comb, modality, alg, par_dict, - # disc, final_missingness_summary, + # comb, modality, alg, sub_dict_clean, + # disc, final_missingness_summary, icc_tmps_dir, # )) df_summary = pd.concat([i for i in outs if i is not None and not i.empty], axis=0) df_summary = df_summary.dropna(axis=0, how='all') From 14c1e6135f840c8ad1a843ff20a54771218643a6 Mon Sep 17 00:00:00 2001 From: dPys Date: Tue, 15 Dec 2020 16:04:36 -0600 Subject: [PATCH 3/3] [MAINT] Bump version --- pynets/__about__.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pynets/__about__.py b/pynets/__about__.py index 6b8b6627..7af88177 100644 --- a/pynets/__about__.py +++ b/pynets/__about__.py @@ -6,7 +6,7 @@ # from ._version import get_versions # __version__ = get_versions()['version'] # del get_versions -__version__ = "1.0.3" +__version__ = "1.0.4" __packagename__ = "pynets" __copyright__ = "Copyright 2016, Derek Pisner"