-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·315 lines (250 loc) · 14.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python3
import sys
import os.path
import tensorflow as tf
import helper
import warnings
from distutils.version import LooseVersion
import project_tests as tests
import argparse
import cv2
import numpy as np
import scipy.misc
# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))
# Check for a GPU
if not tf.test.gpu_device_name():
warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
def load_vgg(sess, vgg_path):
"""
Load Pretrained VGG Model into TensorFlow.
:param sess: TensorFlow Session
:param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb"
:return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)
"""
vgg_tag = 'vgg16'
vgg_input_tensor_name = 'image_input:0'
vgg_keep_prob_tensor_name = 'keep_prob:0'
vgg_layer3_out_tensor_name = 'layer3_out:0'
vgg_layer4_out_tensor_name = 'layer4_out:0'
vgg_layer7_out_tensor_name = 'layer7_out:0'
tf.saved_model.loader.load(sess, [vgg_tag], vgg_path)
graph = tf.get_default_graph()
image_input = graph.get_tensor_by_name(vgg_input_tensor_name)
keep_prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name)
layer3_out = graph.get_tensor_by_name(vgg_layer3_out_tensor_name)
layer4_out = graph.get_tensor_by_name(vgg_layer4_out_tensor_name)
layer7_out = graph.get_tensor_by_name(vgg_layer7_out_tensor_name)
return image_input, keep_prob, layer3_out, layer4_out, layer7_out
tests.test_load_vgg(load_vgg, tf)
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes,
reg_scale=1e-3, stddev_init=0.01):
"""
Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.
:param vgg_layer3_out: TF Tensor for VGG Layer 3 output
:param vgg_layer4_out: TF Tensor for VGG Layer 4 output
:param vgg_layer7_out: TF Tensor for VGG Layer 7 output
:param num_classes: Number of classes to classify
:param reg_scale: L2 regularization scale
:param stddev_init: Standard deviation of param intialization normal distribution
:return: The Tensor for the last layer of output
"""
conv1x1_out = tf.layers.conv2d(vgg_layer7_out, num_classes, 1,
padding="same", name="conv1x1_out",
kernel_initializer=tf.random_normal_initializer(stddev=stddev_init),
kernel_regularizer=tf.contrib.layers.l2_regularizer(reg_scale))
upscale1_out = tf.layers.conv2d_transpose(conv1x1_out, num_classes, 4,
strides=(2, 2),
padding="same", name="upscale1_out",
kernel_initializer=tf.random_normal_initializer(stddev=stddev_init),
kernel_regularizer=tf.contrib.layers.l2_regularizer(reg_scale))
# respective VGG layer with an amount of `num_classes` filters
vgg_layer4_out_match = tf.layers.conv2d(vgg_layer4_out, num_classes, 1,
padding="same", name="vgg_layer4_out_match",
kernel_initializer=tf.random_normal_initializer(stddev=stddev_init),
kernel_regularizer=tf.contrib.layers.l2_regularizer(reg_scale))
upscale1_skip_out = tf.add(vgg_layer4_out_match, upscale1_out, name="upscale1_skip_out")
upscale2_out = tf.layers.conv2d_transpose(upscale1_skip_out, num_classes, 4,
strides=(2, 2),
padding="same", name="upscale2_out",
kernel_initializer=tf.random_normal_initializer(stddev=stddev_init),
kernel_regularizer=tf.contrib.layers.l2_regularizer(reg_scale))
# respective VGG layer with an amount of `num_classes` filters
vgg_layer3_out_match = tf.layers.conv2d(vgg_layer3_out, num_classes, 1,
padding="same", name="vgg_layer3_out_match",
kernel_initializer=tf.random_normal_initializer(stddev=stddev_init),
kernel_regularizer=tf.contrib.layers.l2_regularizer(reg_scale))
upscale2_skip_out = tf.add(upscale2_out, vgg_layer3_out_match, name="decoder_output")
upscale3_out = tf.layers.conv2d_transpose(upscale2_skip_out, num_classes, 16,
strides=(8, 8),
padding="same", name="upscale3_out",
kernel_initializer=tf.random_normal_initializer(stddev=stddev_init),
kernel_regularizer=tf.contrib.layers.l2_regularizer(reg_scale))
return upscale3_out
tests.test_layers(layers)
def optimize(nn_last_layer, correct_label, learning_rate, num_classes, trainable_vars=[]):
"""
Build the TensorFLow loss and optimizer operations.
:param nn_last_layer: TF Tensor of the last layer in the neural network
:param correct_label: TF Placeholder for the correct label image
:param learning_rate: TF Placeholder for the learning rate
:param num_classes: Number of classes to classify
:param trainable_vars: List of trainable variables
:return: Tuple of (logits, train_op, loss, mean_iou_value, mean_iou_update_op)
"""
# default to all trainable vars, if none are given
if trainable_vars == []:
trainable_vars = tf.trainable_variables()
logits_op = tf.reshape(nn_last_layer, (-1, num_classes), name="decoder_logits")
# set-up mean intersection over union metric operations
prediction = tf.argmax(nn_last_layer, axis=-1, name="decoder_prediction")
ground_truth = tf.argmax(correct_label, axis=-1, name="decoder_ground_truth")
mean_iou_value, mean_iou_update_op = tf.metrics.mean_iou(ground_truth, prediction, num_classes)
cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=nn_last_layer,
labels=correct_label,
name="decoder_cross_entropy_loss"))
l2_loss = tf.losses.get_regularization_loss()
loss = tf.add(cross_entropy_loss, l2_loss, name="decoder_loss")
train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss, var_list=trainable_vars)
return logits_op, train_op, loss, mean_iou_value, mean_iou_update_op
tests.test_optimize(optimize)
def train_nn(sess, model_checkpoint, epochs, batch_size, get_batches_fn, train_op, loss_op, input_image,
correct_label, keep_prob, learning_rate, learning_rate_value, keep_prob_value, mean_iou_value, mean_iou_update_op):
"""
Train neural network and print out the loss during training.
:param sess: TF Session
:param model_checkpoint: TF checkpoint files to restore network weights from training.
:param epochs: Number of epochs
:param batch_size: Batch size
:param get_batches_fn: Function to get batches of training data
:param train_op: TF Operation to train the neural network
:param loss_op: TF Tensor for the amount of loss
:param input_image: TF Placeholder for input images
:param correct_label: TF Placeholder for label images
:param keep_prob: TF Placeholder for dropout keep probability
:param learning_rate: TF Placeholder for learning rate
:param learning_rate_value: Actual learning rate value
:param keep_prob_value: Actual keep probability value
:param mean_iou_value: TF operation which yields the IoU value
:param mean_iou_update_op: TF operation which updates the mean IoU over consecutive training/testing cycles
"""
saver = tf.train.Saver()
# initialize all variables, global as well as local
# because not all variables or operations are covered by restoring of a checkpoint
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# try to restore network weights from previous training runs
try:
saver.restore(sess, model_checkpoint)
print("Using model parameters from checkpoint '{}'".format(model_checkpoint))
except:
# if no weights are found we initialize the network
print("Couldn't load model last checkpoint ({}).".format(model_checkpoint))
print("Training the network from scratch!")
decay = learning_rate_value #learning_rate_value / epochs
current_learning_rate = learning_rate_value
for epoch in range(1,epochs+1):
print("==== Epoch {} ===".format(epoch))
current_learning_rate /= (1 + decay*epoch)
print("current learning rate: {:.8f}".format(current_learning_rate))
for img, label in get_batches_fn(batch_size):
feed_dict = {keep_prob: keep_prob_value,
learning_rate: current_learning_rate,
input_image: img,
correct_label: label}
_, loss_result, _ = sess.run([train_op, loss_op, mean_iou_update_op],
feed_dict=feed_dict)
iou_result = sess.run(mean_iou_value)
print(" Loss: {:.3f}, Mean IoU: {:.5f}".format(loss_result, iou_result))
saver.save(sess, model_checkpoint)
#tests.test_train_nn(train_nn)
def test_nn(sess, model_checkpoint, runs_dir, data_dir, image_shape):
"""
Test neural network on images and print out the loss and mean IoU
:param sess: TF Session
:param model_checkpoint: TF checkpoint files to restore network weights from training.
:param runs_dir: Directory in which segmented images are stored in.
:param data_dir: Directory with test images.
:param image_shape: Shape which is expected by network.
"""
# Save inference data using helper.save_inference_samples
helper.save_inference_samples(runs_dir, model_checkpoint, data_dir, sess, image_shape)
if __name__ == '__main__':
mode_default = "train"
model_checkpoint_default = "./runs/semantic_segmentation_model.ckpt"
parser = argparse.ArgumentParser(description="Program to train and run semantic segmentation on the KITTI dataset.")
parser.add_argument("-m", "--mode", type=str, metavar="", default=mode_default,
help="Mode (train, test, video). Default: {}".format(mode_default))
parser.add_argument("-c", "--model_checkpoint", type=str, metavar="", default=model_checkpoint_default,
help="Path to model checkpoint path. Default: {}".format(model_checkpoint_default))
args = parser.parse_args()
num_classes = 2
batch_size = 25
epochs = 30
learning_rate_value = 3e-5
keep_prob_value = 0.8
image_shape = (160, 576)
data_dir = './data'
runs_dir = './runs'
tests.test_for_kitti_dataset(data_dir)
# Download pretrained vgg model
helper.maybe_download_pretrained_vgg(data_dir)
# OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
# You'll need a GPU with at least 10 teraFLOPS to train on.
# https://www.cityscapes-dataset.com/
# TF placeholders
correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name="correct_label")
learning_rate = tf.placeholder(tf.float32, name="learning_rate")
with tf.Session() as sess:
# Path to vgg model
vgg_path = os.path.join(data_dir, "vgg")
# OPTIONAL: Augment Images for better results
# https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network
# Build NN using load_vgg, layers
image_input, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(sess, vgg_path)
last_layer = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes)
tvars = tf.trainable_variables()
# training only variables added on top of VGG16 network, i.e.: the decoder part
"""
trainable_vars = [var for var in tvars if "conv1x1" in var.name or
"vgg_layer" in var.name or
"upscale" in var.name or
"correct" in var.name]
"""
# training all variables except the not used fully connected layers
trainable_vars = [var for var in tvars if "fc6" not in var.name and
"fc7" not in var.name]
print("Trainable vars:")
for var in trainable_vars:
print("\t{}".format(var))
# Set-up optimizer
return_list = optimize(last_layer, correct_label, learning_rate, num_classes, trainable_vars)
logits_op, train_op, loss_op, mean_iou_value, mean_iou_update_op = return_list
if args.mode == "train":
print("====== Training network ======")
# Create function to get batches
get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, "data_road/training"), image_shape)
# Train NN using the train_nn function
train_nn(sess, args.model_checkpoint, epochs, batch_size, get_batches_fn,
train_op, loss_op, image_input, correct_label,
keep_prob, learning_rate, learning_rate_value,
keep_prob_value, mean_iou_value, mean_iou_update_op)
print("Training complete, in order to test the trained network, you can call the program in the test mode by '--mode=test'")
elif args.mode == "test":
print("====== Running inference with test images ======")
test_nn(sess, args.model_checkpoint, runs_dir, data_dir, image_shape)
elif args.mode == "video":
print("====== Running inference on videos ======")
video_fps = 10
video_output_folder = "videos_output/"
videos = [
"data/project_video.mp4",
"data/challenge_video.mp4",
"data/harder_challenge_video.mp4"
]
helper.save_inference_video_samples(sess, videos, args.model_checkpoint, video_fps, video_output_folder, image_shape)
else:
print("Mode '{}' not known!".format(args.mode))