diff --git a/StoDIG/Facies_classification_StoDIG_5_CLDNN.ipynb b/StoDIG/Facies_classification_StoDIG_5_CLDNN.ipynb new file mode 100644 index 0000000..e12c0c9 --- /dev/null +++ b/StoDIG/Facies_classification_StoDIG_5_CLDNN.ipynb @@ -0,0 +1,1070 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Facies classification using Convolutional Neural Networks #\n", + "## Team StoDIG - Statoil Deep-learning Interest Group ##\n", + "### _[Eskil Kulseth Dahl](https://www.linkedin.com/in/eskil-k-dahl-87a94679), [David Wade](https://no.linkedin.com/in/david-wade-79918023) & [John Thurmond](https://www.linkedin.com/in/john-thurmond-098b774)_###" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this python notebook we propose a facies classification model, building on the simple Neural Network solution proposed by LA_Team in order to outperform the prediction model proposed in the [predicting facies from well logs challenge](https://github.com/seg/2016-ml-contest). \n", + "\n", + "Given the limited size of the training data set, Deep Learning is not likely to exceed the accuracy of results from refined Machine Learning techniques (such as Gradient Boosted Trees). However, we chose to use the opportunity to advance our understanding of Deep Learning network design, and have enjoyed participating in the contest. With a substantially larger training set and perhaps more facies ambiguity, Deep Learning could be a preferred approach to this sort of problem.\n", + "\n", + "\n", + "We use three key innovations:\n", + " - Inserting a convolutional layer as the first layer in the Neural Network\n", + " - A convolution layer, a stack of LSTMs (with skip connection) feeding a Maxout layer cf. [CLDNN](research.google.com/pubs/archive/43455.pdf) & [Maxout](https://arxiv.org/pdf/1302.4389v4.pdf)\n", + " - Adding Dropout regularization to prevent overfitting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Problem Modeling\n", + "----\n", + "\n", + "The dataset we will use comes from a class excercise from The University of Kansas on [Neural Networks and Fuzzy Systems](http://www.people.ku.edu/~gbohling/EECS833/). This exercise is based on a consortium project to use machine learning techniques to create a reservoir model of the largest gas fields in North America, the Hugoton and Panoma Fields. For more info on the origin of the data, see [Bohling and Dubois (2003)](http://www.kgs.ku.edu/PRS/publication/2003/ofr2003-50.pdf) and [Dubois et al. (2007)](http://dx.doi.org/10.1016/j.cageo.2006.08.011). \n", + "\n", + "The dataset we will use is log data from nine wells that have been labeled with a facies type based on oberservation of core. We will use this log data to train a classifier to predict facies types. \n", + "\n", + "This data is from the Council Grove gas reservoir in Southwest Kansas. The Panoma Council Grove Field is predominantly a carbonate gas reservoir encompassing 2700 square miles in Southwestern Kansas. This dataset is from nine wells (with 4149 examples), consisting of a set of seven predictor variables and a rock facies (class) for each example vector and validation (test) data (830 examples from two wells) having the same seven predictor variables in the feature vector. Facies are based on examination of cores from nine wells taken vertically at half-foot intervals. Predictor variables include five from wireline log measurements and two geologic constraining variables that are derived from geologic knowledge. These are essentially continuous variables sampled at a half-foot sample rate. \n", + "\n", + "The seven predictor variables are:\n", + "* Five wire line log curves include [gamma ray](http://petrowiki.org/Gamma_ray_logs) (GR), [resistivity logging](http://petrowiki.org/Resistivity_and_spontaneous_%28SP%29_logging) (ILD_log10),\n", + "[photoelectric effect](http://www.glossary.oilfield.slb.com/en/Terms/p/photoelectric_effect.aspx) (PE), [neutron-density porosity difference and average neutron-density porosity](http://petrowiki.org/Neutron_porosity_logs) (DeltaPHI and PHIND). Note, some wells do not have PE.\n", + "* Two geologic constraining variables: nonmarine-marine indicator (NM_M) and relative position (RELPOS)\n", + "\n", + "The nine discrete facies (classes of rocks) are: \n", + "1. Nonmarine sandstone\n", + "2. Nonmarine coarse siltstone \n", + "3. Nonmarine fine siltstone \n", + "4. Marine siltstone and shale \n", + "5. Mudstone (limestone)\n", + "6. Wackestone (limestone)\n", + "7. Dolomite\n", + "8. Packstone-grainstone (limestone)\n", + "9. Phylloid-algal bafflestone (limestone)\n", + "\n", + "These facies aren't discrete, and gradually blend into one another. Some have neighboring facies that are rather close. Mislabeling within these neighboring facies can be expected to occur. The following table lists the facies, their abbreviated labels and their approximate neighbors.\n", + "\n", + "Facies |Label| Adjacent Facies\n", + ":---: | :---: |:--:\n", + "1 |SS| 2\n", + "2 |CSiS| 1,3\n", + "3 |FSiS| 2\n", + "4 |SiSh| 5\n", + "5 |MS| 4,6\n", + "6 |WS| 5,7\n", + "7 |D| 6,8\n", + "8 |PS| 6,7,9\n", + "9 |BS| 7,8" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup\n", + "---\n", + "\n", + "Check we have all the libraries we need, and import the modules we require. Note that we have used the Theano backend for Keras, and to achieve a reasonable training time we have used an NVidia K20 GPU." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%%sh\n", + "pip install pandas\n", + "pip install scikit-learn\n", + "pip install keras\n", + "pip install sklearn" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using Theano backend.\n", + "ERROR (theano.sandbox.cuda): nvcc compiler not found on $PATH. Check your nvcc installation and try again.\n" + ] + } + ], + "source": [ + "from __future__ import print_function\n", + "import time\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.colors as colors\n", + "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", + "from keras.preprocessing import sequence\n", + "from keras.models import Model, Sequential\n", + "from keras.constraints import maxnorm, nonneg\n", + "from keras.optimizers import SGD, Adam, Adamax, Nadam\n", + "from keras.regularizers import l1, l2, activity_l2\n", + "from keras.layers import Input, Dense, Dropout, Activation, LSTM, GRU, Reshape, MaxoutDense, Convolution1D, Cropping1D, Cropping2D, Permute, Flatten, MaxPooling1D, merge\n", + "from keras.wrappers.scikit_learn import KerasClassifier\n", + "from keras.utils import np_utils\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.model_selection import KFold , StratifiedKFold\n", + "from classification_utilities import display_cm, display_adj_cm\n", + "from sklearn.metrics import confusion_matrix, f1_score\n", + "from sklearn import preprocessing\n", + "from sklearn.model_selection import GridSearchCV" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data ingest\n", + "---\n", + "We load the training and testing data to preprocess it for further analysis, filling the missing data values in the PE field with zero and proceeding to normalize the data that will be fed into our model. We now incorporate the Imputation from Paolo Bestagini via LA_Team's Submission 5." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(2, 9)\n" + ] + } + ], + "source": [ + "data = pd.read_csv('train_test_data.csv')\n", + "\n", + "# Set 'Well Name' and 'Formation' fields as categories\n", + "data['Well Name'] = data['Well Name'].astype('category')\n", + "data['Formation'] = data['Formation'].astype('category')\n", + "\n", + "def coding(col, codeDict):\n", + " colCoded = pd.Series(col, copy=True)\n", + " for key, value in codeDict.items():\n", + " colCoded.replace(key, value, inplace=True)\n", + " return colCoded\n", + "\n", + "data['Formation_coded'] = coding(data['Formation'], {'A1 LM':1,'A1 SH':2,'B1 LM':3,'B1 SH':4,'B2 LM':5,'B2 SH':6,'B3 LM':7,'B3 SH':8,'B4 LM':9,'B4 SH':10,'B5 LM':11,'B5 SH':12,'C LM':13,'C SH':14})\n", + "formation = data['Formation_coded'].values[:,np.newaxis]\n", + "\n", + "# Parameters\n", + "feature_names = ['Depth', 'GR', 'ILD_log10', 'DeltaPHI', 'PHIND', 'PE', 'NM_M', 'RELPOS']\n", + "facies_labels = ['SS', 'CSiS', 'FSiS', 'SiSh', 'MS','WS', 'D','PS', 'BS']\n", + "facies_colors = ['#F4D03F', '#F5B041','#DC7633','#6E2C00', '#1B4F72','#2E86C1', '#AED6F1', '#A569BD', '#196F3D']\n", + "well_names_test = ['SHRIMPLIN', 'ALEXANDER D', 'SHANKLE', 'LUKE G U', 'KIMZEY A', 'CROSS H CATTLE', 'NOLAN', 'Recruit F9', 'NEWBY', 'CHURCHMAN BIBLE']\n", + "well_names_validate = ['STUART', 'CRAWFORD']\n", + "\n", + "data_vectors = data[feature_names].values\n", + "correct_facies_labels = data['Facies'].values\n", + "\n", + "well_labels = data[['Well Name', 'Facies']].values\n", + "depth = data['Depth'].values\n", + "\n", + "# Fill missing values and normalize for 'PE' field\n", + "imp = preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0)\n", + "imp.fit(data_vectors)\n", + "data_vectors = imp.transform(data_vectors)\n", + "\n", + "data_vectors = np.hstack([data_vectors, formation])\n", + "\n", + "scaler = preprocessing.StandardScaler().fit(data_vectors)\n", + "scaled_features = scaler.transform(data_vectors)\n", + "data_out = np.hstack([well_labels, scaled_features])\n", + "print(data_out[0:2,2:11].shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Split data into training data and blind data, and output as Numpy arrays" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(4149, 10)\n", + "(4149, 11)\n" + ] + } + ], + "source": [ + "def preprocess(data_out):\n", + " \n", + " data = data_out\n", + " \n", + " X = data[0:4149,0:11]\n", + " \n", + " y = np.concatenate((data[0:4149,0].reshape(4149,1), np_utils.to_categorical(correct_facies_labels[0:4149]-1)), axis=1)\n", + " X_test = data[4149:,0:11]\n", + "\n", + " return X, y, X_test\n", + "\n", + "X_train_in, y_train, X_test_in = preprocess(data_out)\n", + "\n", + "print(y_train.shape)\n", + "print(X_train_in.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Augmentation\n", + "---\n", + "\n", + "We expand the input data to be acted on by the convolutional layer." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(4069, 7, 9)\n", + "(830, 7, 9)\n", + "(4069, 9)\n" + ] + } + ], + "source": [ + "conv_domain = 7\n", + "\n", + "# Reproducibility\n", + "np.random.seed(7) \n", + "# Load data\n", + "\n", + "def expand_dims(input):\n", + " r = int((conv_domain-1)/2)\n", + " l = input.shape[0]\n", + " n_input_vars = input.shape[1]\n", + " output = np.zeros((l, conv_domain, n_input_vars))\n", + " for i in range(l):\n", + " for j in range(conv_domain):\n", + " for k in range(n_input_vars):\n", + " output[i,j,k] = input[min(i+j-r,l-1),k]\n", + " return output\n", + "\n", + "X_train = np.empty((0,conv_domain,9), dtype=float)\n", + "X_test = np.empty((0,conv_domain,9), dtype=float)\n", + "y_select = np.empty((0,9), dtype=int)\n", + "\n", + "well_names_train = ['SHRIMPLIN', 'ALEXANDER D', 'SHANKLE', 'LUKE G U', 'KIMZEY A', 'CROSS H CATTLE', 'NOLAN', 'NEWBY', 'CHURCHMAN BIBLE']\n", + "\n", + "for wellId in well_names_train:\n", + " X_train_subset = X_train_in[X_train_in[:, 0] == wellId][:,2:11]\n", + " X_train_subset = expand_dims(X_train_subset)\n", + " X_train = np.concatenate((X_train,X_train_subset),axis=0)\n", + " y_select = np.concatenate((y_select, y_train[y_train[:, 0] == wellId][:,1:10]), axis=0)\n", + " \n", + "for wellId in well_names_validate:\n", + " X_test_subset = X_test_in[X_test_in[:, 0] == wellId][:,2:11]\n", + " X_test_subset = expand_dims(X_test_subset)\n", + " X_test = np.concatenate((X_test,X_test_subset),axis=0)\n", + "\n", + "y_train = y_select\n", + " \n", + "print(X_train.shape)\n", + "print(X_test.shape)\n", + "print(y_select.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Convolutional Long-Short term Memory Fully connected Neural Network\n", + "#### We build a CLDNN with the following layers (no longer using Sequential() model):\n", + "\n", + " - Dropout layer on input\n", + " - One 1D convolutional layer (7-point radius) feeding the LSTM stack and skipping to the Maxout layer\n", + " - One 1D cropping layer (just take actual log-value of interest), feeding the LSTM branch\n", + " - A Merge layer re-adding result of LSTM stack and the result from the convolution layer\n", + " - L1 regularization is applied to the Convolution filter to avoid noisy kernels." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "____________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "====================================================================================================\n", + "Input (InputLayer) (None, 7, 9) 0 \n", + "____________________________________________________________________________________________________\n", + "Dropout_Conv_1 (Dropout) (None, 7, 9) 0 Input[0][0] \n", + "____________________________________________________________________________________________________\n", + "Conv1D_1 (Convolution1D) (None, 7, 63) 4032 Dropout_Conv_1[0][0] \n", + "____________________________________________________________________________________________________\n", + "Dropout_Conv_Dense (Dropout) (None, 7, 63) 0 Conv1D_1[0][0] \n", + "____________________________________________________________________________________________________\n", + "flatten_1 (Flatten) (None, 441) 0 Dropout_Conv_Dense[0][0] \n", + "____________________________________________________________________________________________________\n", + "Dense1 (Dense) (None, 18) 7956 flatten_1[0][0] \n", + "____________________________________________________________________________________________________\n", + "Crop_Input (Cropping1D) (None, 1, 9) 0 Input[0][0] \n", + "____________________________________________________________________________________________________\n", + "reshape_1 (Reshape) (None, 1, 18) 0 Dense1[0][0] \n", + "____________________________________________________________________________________________________\n", + "merge_1 (Merge) (None, 1, 27) 0 Crop_Input[0][0] \n", + " reshape_1[0][0] \n", + "____________________________________________________________________________________________________\n", + "LSTM_1 (LSTM) (None, 1, 18) 3312 merge_1[0][0] \n", + "____________________________________________________________________________________________________\n", + "merge_2 (Merge) (None, 1, 27) 0 Crop_Input[0][0] \n", + " LSTM_1[0][0] \n", + "____________________________________________________________________________________________________\n", + "LSTM_2 (LSTM) (None, 1, 18) 3312 merge_2[0][0] \n", + "____________________________________________________________________________________________________\n", + "merge_3 (Merge) (None, 1, 45) 0 merge_2[0][0] \n", + " LSTM_2[0][0] \n", + "____________________________________________________________________________________________________\n", + "LSTM_3 (LSTM) (None, 1, 18) 4608 merge_3[0][0] \n", + "____________________________________________________________________________________________________\n", + "merge_4 (Merge) (None, 1, 63) 0 merge_3[0][0] \n", + " LSTM_3[0][0] \n", + "____________________________________________________________________________________________________\n", + "LSTM_4 (LSTM) (None, 9) 2628 merge_4[0][0] \n", + "____________________________________________________________________________________________________\n", + "merge_5 (Merge) (None, 27) 0 Dense1[0][0] \n", + " LSTM_4[0][0] \n", + "____________________________________________________________________________________________________\n", + "dropout_1 (Dropout) (None, 27) 0 merge_5[0][0] \n", + "____________________________________________________________________________________________________\n", + "MaxoutDense_1 (MaxoutDense) (None, 36) 6048 dropout_1[0][0] \n", + "____________________________________________________________________________________________________\n", + "Output (Dense) (None, 9) 333 MaxoutDense_1[0][0] \n", + "====================================================================================================\n", + "Total params: 32,229\n", + "Trainable params: 32,229\n", + "Non-trainable params: 0\n", + "____________________________________________________________________________________________________\n", + "Load time = 10\n", + "(7, 1, 9, 63)\n", + "(63,)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAByCAYAAACiEEJaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGf9JREFUeJzt3Xl8lNW9x/HPLxMWASUuLMV9RdzQIaB1QxSxatWqt0hK\nXS+1uLQ2LqjXBcHWol7AFbWr4gJitVVbFRfcwIVlFEVBQVFUdpQgq2Ry7h8z4SYZyPyeEDIT+L5f\nr3m9kjO/+Z2TOc/MnHnyPM/PQgiIiIiIiDRWBbkegIiIiIjIxtCCVkREREQaNS1oRURERKRR04JW\nRERERBo1LWhFREREpFHTglZEREREGjUtaEVERESkUdOCVkREREQaNS1oRURERKRRK9yUyc1se+AE\n4Atg9absS0REREQ2K82B3YCxIYQltQXWaUFrZpcAVwLtganAb0IIk9YTegLwaF36EBEREREB+gKP\n1RYQeUFrZmcBQ4ELgYlAKTDWzPYJISyuEf4FAMc+Att2qn7PW6Vw+PDqbScG1xiu7lfsHu+UyTe5\n4l5++xR3Tmb5xsmdC9wpD5w8xxX3YfEnrrgBkz9399379Gcy2koXwfA21duKb5vszrnj3p+54p6Z\ne5Y7J86nPSzzpywuescV9/Aph7nizv6d/zma3NS3HRd/v4Gcz5XCSdVfQ5Nfc+ZMRhhn3JfzvdHu\nlDw85Q+uuOlhP1fct0u3c/edvLalL3DScnfO3lOezGgbX/pvjhz+02ptfYL/SZpdvMgVd8Vzb7lz\nMr6pK6z7GS+44k4qvt7d9dWdpvgCv3K+0AGWf+MKGzz5zoy2R0s/oO/wgzLab5x4u6/vBf5xjhnk\new0NnTLUFbcytHD33bP4Ildc397ulBT/wvn+4fsYAODCY+7KaHuhdBw/GX5stbZTQ+bn1Ya0K1vq\niuv6L9/fs+e5H7n7fnzBua6437a7zZ3z7rsG+AJPcqckzPTF3XFi/4y2V0ufp8fwEzPaDym+35Xz\niraO94S10+G7X0LlerIWddlDWwo8EEIYCWBm/YGTgQuAmjOTOsxg207QJl79nqatM9s6+t4gdokw\n2M/ju/kCF8Wzx1Ra7X0j+9qdsmW8mTNyhStq57h/VRdvntlWFFtPeyf/c9TsIN/fE/evQ/wL2m8j\n5NzhEFfYvt58O/mfI/eUL91AzuZF0KH6fXHv51wywjjb+uJWujNCUXx3V1zTsL8rzpa083e+zdbO\nQP9rqG0884tR09bNaRvfsVrb/sG3oIQIJzgc6NuGAZjj2+iK4r4vznv4e4YWzm0uFmFBy7auqN3i\nmXEtipqst53vnOPcyj9O39cy2Ca+pyuuILRy972TMy7eJnvMOvtH+Lx06hDPfA03b90so/2A4F+2\n7Oz9LJjk+3u2iifdfcedH/+td/K/iuLtnYHeDQ4Ia31x7eIdMtqaFTVfb7tvKwaaRtqOsh62Gumk\nMDNrAnQBXqlsCyEE4GXgx1FyiYiIiIjUh6hXOdgBiAE1/5e+gNTxtCIiIiIiDUqX7RIRERGRRi3q\nMbSLgSRQ82CXdsD8DT7qrdLUMbNVtdo1YtfSkPp4DzOU3DmoT65HILXYp6RzrocgtTisz865HoJk\ncWBJp+xBkjP79jmwfhOuHJW6VVVR5n54pAVtCGGtmU0BjgOeATAzS/+eeYpipcOHZ54AJnmtRAva\n/HdQSa5HILXYp+TgXA9BavHjEi1o850WtPmtU0nmVUI2SouS1K2qHxKwsIvr4XW5ysEw4MH0wrby\nsl0tgAfrkEtEREREZKNEXtCGEMaY2Q7AYFKHGrwPnBBC8F00UURERESkHkU+KczMjgJ+AjQBmgF/\nDCH4r9IuIiIiIlKP6nLIQUtSe2X/CjzlecDVT3ZhZyxr3KUPlLsG0CF5vCsOoGfsfFfc20n/ZXS/\nbO67zH7sQ/9FmHfnRVfcrVzliusee8/d95vlR/kCC4dnj0m7IvmBL9A/TMKzvrjYwKzXX16n4iNn\ndQPnJjfrqpi779hjvu0j+ZY/Z8F9zm2u2yPunBzuCzuaNf6c/9vEFzfAN85J5UPcXXcdN80Vd0Ry\nojvnvRf7Xpd3XXuNO+f5yZdccau391eNan69b/u4lHtdcb1Y6O77o0m+YhoHL37fnXP1EXu54gon\n+D5bAJK3Z/+sAnjBNz0A7Pe2L26f4Ctoce8ffNsbwNuMdcVdea+zggpw/wjfe9Kfkq+7c67Etx3P\ntR2zB6X9a7vTXXEVy3z79sJtvm0DoOCGCl/gCHdK7DFfTvuzv+jH/CWtswcBwy68zp3z9hNvdMUl\n383+fCbKoauz37occvAC8AKsOyFMRERERCRndB1aEREREWnUtKAVERERkUZNC1oRERERadTqclJY\nZE8Czal+kHIxUOw4UUxERERENm+j1sDoH6q3lfnPb2uYBe2Z4LrKgYiIiIhseUqapW5VJcqh6zLf\n4yMvaM2sJbAXrFuh7mFmnYFvQwhfRc0nIiIiIrIx6rKHthh4FQjp29B0+0PABfU0LhERERERl7pc\nh/Z1dDKZiIiIiOQJC8F/xK2ZXQucDuwLrALeAq4OIXy6gfg4MIV7J8Pe8ewdPOocx7v+MS/7ylfR\nZOuP/FWOBu5ygytu0N/81YvOvMBXEemJP5/jilv2W3fXbLOfLy709B8HHcNXkWjrG/2VhpZd094V\nV7FLhHHu6RundfBtc/8+3F/V6/WKga64m5cOcud8Zjtf3K4Rjmk/dHdflaVtPlrgzjmmZQdX3PHv\nOBM+7e6aMN33t8eu81f6u/cQX0XCFoUPuXOeM9I3ziN/4S9Z9faAY11xNuxjV9wp5c6KgMCzL53l\nivvP8b4xAnwa81Wi+p05S3UBS9cc7Yor+rn/M8Mm+N4/ygt8+5hiFf5tk8W3usJmJu90p3wmNt8V\nVxrhdbnsJF/1wFVN17pztlrl2/f2YtNerrhk8L+/n3nsc664Hq/64gA+Dr4P68Vn7uLOaZf6qo+d\n0uNxd85nYs7P9SccC5XPE3B1MUCXEEKittCoe1qPAu4GDgV6Ak2AF81sq4h5RERERETqRaRDDkII\nJ1X93czOAxYCXYDx9TcsERERERGfjT0WtojUiWHf1sNYREREREQiq/OC1swMuAMYH0LwHXAlIiIi\nIlLPNqawwghgP+CIrJH3l0LLouptPfpAj5KN6F5ERERENgvjR8H40dXbVi51P7xOC1ozuwc4CTgq\nhDAv6wP6D/dd5UBEREREtjxHlqRuVf3/VQ6yqkulsHuA04DuIYQ5UR8vIiIiIlKfIi1ozWwEUAKc\nCqwws3bpu8pCCKvre3AiIiIiItlEPSmsP7AN8Bowt8qtd/0OS0RERETEJ+qC9mJgGrA8fXsXODmE\nMLK+ByYiIiIi4hG19O3JQBKYCRhwHnAVcHAIYfp64uPAlBMnX8d28V2z5n/0o36ucST/4C8/F2vn\nLBH4S//zkDzNWZ5w7gPunGb/7Yobm/SVZTzukQnuvmNHOks4DvCVJgSglS+sooP/O1VwPp1vLuzq\nzrlD4WRX3LTyn7ri+sT+5e57jwrf1e5mt3bWJga+Xuqrfbvbki/cOde2vcMVV7Gjv0RvGJ09BiDW\nylmaOO7v+5zydtmDgIf8bzO8YZe44gqTnd05J9LNFdeaMnfOc378hCsudqSv3HHyCf9Ra7vOnuGK\nm9G6ozvn8jLfG0372OXunMnuN7viYnv7y8/+5wFfOd9TFz7jihvXtoe77+53TXTFVSyLsMHv7Ixr\n6U9ZcJ/z+XztKXdO63GGK+7+V851xfWP8Jn+0o96uuJ6dvd/VjP+bmdg9otPrWO1VpNd567ku+6U\nv93mT664iv2zb3OJFVA8DXCUvo1aKew/NZquN7OLgMOAjAWtiIiIiMimVufr0JpZAaljZ1sAb9fb\niEREREREIqjLZbsOILWAbQ58D5weQvD9L0lEREREpJ7VpfTtDKAz0A24DxhpZvvW66hERERERJwi\n76ENIZQDn6d/fc/MugGXARdt6DFTSsfQpGiram279enGbiW+kx5EREREZPM1ajGMXlK9ban/3Mu6\nH0NbRQHQrLaALsN7u65yICIiIiJbnpIdUreqqlzlIKuolcJuAZ4H5gBbA32B7kCvKHlEREREROpL\n1D20bYGHgB8BZcAHQK8Qwrj6HpiIiIiIiEfU69D6Kh+IiIiIiDSQjTqG1syuAW4B7gghbLAUyxn2\nJB2tRdZ8yf18F10Y/ri/qhfP+sJmxHdzp4zN/dAZ+aU75+Dgm4o27OWKiw2scPfNGN/z+eE//JVk\nDrzZWeFpsTtlqtCywzGxN90pjVtccfcX+qoHda7wV1O5nKGuuHO/v8Gd87uYr2rUWvNV/wLgpYGu\nsO2OuNCd8ruLd3TFJZf4trlBwdx9D+7oPctghTvnEXOclcKG+aryACSnOV9vtZ7BUEMnX9jo23/m\niis8xldRDKB8qrPC4vJR7pxW6KsKeE7yRXfO2H7Ov+kN33sHwMl9nf/EfM0Xdszgs919Dyof4IqL\nFd7ozpmcOtgV9/v9r3Dn5ArnRZd+5qv+BfD6k77tIxF7zxUXPn7I3XePEe/4Ao/xv3cx7FJXWLKv\nf2kXO9u3vf8Q+7U7Z8E3vs8XG+KIWQg4j6Gty2W7Up2YdQUuBKbWNYeIiIiIyMaq04LWzFoBjwD9\ngKX1OiIRERERkQjquof2XuBZnQwmIiIiIrlWl9K3fYCDgeL6H46IiIiISDRRr0O7E3AH0DOEsNb7\nuHtKv6Zl6+onOPQs2ZaeJdtF6V5ERERENkOjPoFRn1ZvK1vjf3zUPbRdgDZAwswqT82LAUeb2aVA\nsxBCxinzlw7fiY7x7Fc5EBEREZEtT0nH1K2qxELoMtr3+KgL2peBA2u0PQhMB4asbzErIiIiIrIp\nRS2ssAL4uGqbma0AloQQptfnwEREREREPOp8HdoqtFdWRERERHIm0oLWzAaaWUXVG9C+tiphIiIi\nIiKbUl1K304DjgMqTwrLWjft4H/MID4xe+KjL57vGsDjn/jLLVZc6lyzj3Cn5I8ZhxGvX7uKn/tz\nBl9JzBsnHOSKGzfb/13l8ON9pfdmJ3d25yxv6yvb+fpCX2lCgKMHTXLFbbd2kTvnZ/zRFfdkQR9X\n3AefdXP3/csPnnTFncsB7pzLkp19gbFr3TkrPnFuS7PcKQkTfHGFJ/vK1JatbOLue7CztuF13Xzb\nBkDsRmc53Vv+4s7Jlc6+V3pL+cIrf/K9Lif9zfe6TCb95bC52Bd2T/IFd8ory453xf39MV9pYoCR\nN13kC9z1f9w5Odx3UaAvae7rGn857OtHDnPFDTzV/7l6S2df6dvr5vv6Bnjly+NcceMGnOzOWTjK\n9zclb/Ftx1vt59/e7Q1fXHkn/2d14SJnSflf+/9xfs3lN7niRl3/mjvnXDq44o66Y2zWmOWJmTDa\nV/K3Lgva8hCCf8UgIiIiIrIJ1eUY2r3N7Bsz+8zMHjEz/247EREREZF6FnVB+w5wHnAC0B/YHXjD\nzFrW87hERERERFyiXrar6gEP08xsIvAl0Bv4e30OTERERETEoy7H0K4TQigzs0+BvWqLu/wJaL1V\n9bY+XaHEfz6QiIiIiGymFo16lUWjX6vWVr50ufvxG7WgNbNWpBazI2uLG/ZziO+yMT2JiIiIyOaq\nTUkP2pT0qNa2PDGT94t9VzmIeh3a283saDPb1cwOB/4JrAVGRckjIiIiIlJfou6h3Ql4DNgeWASM\nBw4LISyp74GJiIiIiHhEPSmsZFMNRERERESkLiIfQ2tmHYBbgROBFsBM4PwQNlzqavyZXZkX3zpr\n7l0vPN01hhGF/qpAg8oH+OLuGuLOac/5qnCU3+B/eq+++TZXXHKas1LJvu6umfTx/q6439jd7pyt\nFn7vinu18DB3zmTftq64AbFb3TkHcZMr7o6xzspaJ7m7xsZ5I33HDwEcUej7zpm8favsQWkFz1e4\n4ryvC4D2yc9dcY9whiuu1SzfGAFGHuqr4Jc0f1Wgnw7+hyvu6Un93Tk7DnnPFRcKHWUY014p923H\nQ//nel/cEF+lLgCKDnWFWcK/Hf27m+899sly/wuzwlk5MbT3xQEcUOGrcnhLGOqKS75+hbvvwuN8\n1bI6JX3bG0A8dHfFxS5xv8nB/b7ygYU8705Zvrtv+yi4wPke19m/bf7qb773jy5/dZZNBPjeV3Gu\n4KoIta+Wb+cKu+pGX3U4gDcLfJ//44k7ovzvw5EWtGZWBEwAXiF1LdrFwN7Ad1HyiIiIiIjUl6h7\naK8B5oQQ+lVp+7IexyMiIiIiEknUSmGnAJPNbIyZLTCzhJn1y/ooEREREZFNJOqCdg/gIuAToBdw\nH3CXmZ0dtePXR82P+hBpQGNHLc31ECSrp3I9AKnFN6MiHBsnDW78qG9yPQTJ6uVcD0BqMX3Uh7ke\nQjVRDzkoACaGEG5I/z7VzA4A+gMPb+hBfymdScui6l0t+WYN3UvaR+xeGspLo8s4oaQo18OQWj0F\nzpOmpOHNHT2BHUuOyPUwZAMmjJ7LkSU75noYUquXgZ65HoRswPTR0+hUcmA9ZnyKzB01y9yPjrqg\nnQdMr9E2nSyfqv2G782eNa5y8PvTPojYtYiIiIhsns4gczk5Fe+XmqiHHEwAOtZo64hODBMRERGR\nHIm6oB0OHGZm15rZnmb2C6AfcE/9D01EREREJLuolcImm9npwBDgBmA2cFkIYfQGHtIc4KsZKzLu\nWLG0nM8S1S++uyZ87BrHrOC/uPG8hPPks682WBciQ8DXf2Kef5xrE9N8Oec4E652d82MxKqMtu+X\nJjPaV9in7pyhYqUvLrRw50w4Cyx/k1jozrkE5wX5Zzm3D/+Uk3A/nVM30L4s474Qynx9fx1hoGW+\nvz1EeF2uTfhOyJmN7+TExFfurvlime+y2VEKK5RVZBaKWFu2krJE9fbEMv9ztDpR8+iuDQg/uHO6\n3w/ne98PP3H3TbmvIE6Y4X+OvJ8FqxKZr4uVZeV8vp72hO+a8ISm/nGuSsxwxS0KX7viEp/6+66l\n5lE1qxL+uZwVnE/SIv/n6vq3pRUZ7SHCh1tijfN5mut8j1vpf94Ti31xKyM878xz7oMMy/0557Z2\nhS1IzMtoW7N09XrbfWVzYMOfbVXNrPyhebZIi/IhFFV6D+6jm6wDEREREdnc9Q0hPFZbwKZe0G5P\nqqLYF0TaZygiIiIiW7jmwG7A2BBCrf+n3aQLWhERERGRTS3qSWEiIiIiInlFC1oRERERadS0oBUR\nERGRRk0LWhERERFp1Bp8QWtml5jZbDNbZWbvmFnXhh6DpJjZUWb2jJl9Y2YVZnbqemIGm9lcM1tp\nZi+Z2V65GOuWKF3AZKKZLTOzBWb2TzPbZz1xmqMcMLP+ZjbVzMrSt7fM7Cc1YjQ3ecLMrkm/zw2r\n0a45yhEzG5iek6q3j2vEaH5yyMw6mNnDZrY4PQdTzSxeIyYv5qhBF7RmdhYwFBgIHELqqrpjzWyH\nhhyHrNMSeB+4mPWUBDCzq4FLgQuBbqSucj3WzJo25CC3YEcBdwOHkipm3QR40cy2qgzQHOXUV8DV\nQBzoAowDnjazTqC5ySfpHScXUuNK7pqjvDANaAe0T9+OrLxD85NbZlYETADWkLoEayfgCuC7KjH5\nM0chhAa7Ae8Ad1b53YCvgQENOQ7d1js3FcCpNdrmAqVVft8GWAX0zvV4t8QbsEN6no7UHOXnDVgC\nnK+5yZ8b0IpUualjgVeBYVXu0xzldm4GAola7tf85HZ+hgCvZ4nJmzlqsD20ZtaE1F6MVyrbQuqv\nfxn4cUONQ3zMbHdS35arztcy4F00X7lSRGpP+regOconZlZgZn2AFsBbmpu8ci/wbAhhXNVGzVHe\n2Dt92NtnZvaIme0Mmp88cQow2czGpA97S5hZv8o7822OGvKQgx2AGLCgRvsCUk+I5Jf2pBZPmq88\nYGYG3AGMDyFUHmOmOcoxMzvAzL4n9S+5EcDpIYRP0NzkhfSXjIOBa9dzt+Yo994BziP17+z+wO7A\nG2bWEs1PPtgDuIjUfzh6AfcBd5nZ2en782qOChu6QxGpkxHAfsARuR6IVDMD6Ay0Bv4LGGlmR+d2\nSAJgZjuR+hLYM4SwNtfjkUwhhLFVfp1mZhOBL4HepF5bklsFwMQQwg3p36ea2QGkvnw8nLthrV9D\n7qFdDCRJHfxdVTtgfgOOQ3zmkzrGWfOVY2Z2D3AScEwIYV6VuzRHORZCKA8hfB5CeC+EcB2pk44u\nQ3OTD7oAbYCEma01s7VAd+AyM/uB1F4kzVEeCSGUAZ8Ce6HXUD6YB0yv0TYd2CX9c17NUYMtaNPf\nkKcAx1W2pf+NehzwVkONQ3xCCLNJbZBV52sbUmfca74aSHoxexrQI4Qwp+p9mqO8VAA009zkhZeB\nA0kdctA5fZsMPAJ0DiF8juYor5hZK1KL2bl6DeWFCUDHGm0dSe1Fz7vPoIY+5GAY8KCZTQEmAqWk\nTqJ4sIHHIUD6OKW9SH3DAtjDzDoD34YQviL177rrzWwW8AVwM6mrUjydg+FuccxsBFACnAqsMLPK\nb8FlIYTV6Z81RzliZrcAzwNzgK2BvqT2APZKh2huciiEsAKoeU3TFcCSEELlXifNUQ6Z2e3As6QW\nSDsCg4C1wOh0iOYnt4YDE8zsWmAMqYVqP+BXVWLyZo4adEEbQhiTvubsYFK7pN8HTgghLGrIccg6\nxaQuYxPSt6Hp9oeAC0IIt5lZC+ABUmfYvwmcGEL4IReD3QL1JzUvr9VoPx8YCaA5yqm2pF4rPwLK\ngA+AXpVn02tu8lK1621rjnJuJ+AxYHtgETAeOCyEsAQ0P7kWQphsZqeTunzXDcBs4LIQwugqMXkz\nR5a+bpiIiIiISKPU4KVvRURERETqkxa0IiIiItKoaUErIiIiIo2aFrQiIiIi0qhpQSsiIiIijZoW\ntCIiIiLSqGlBKyIiIiKNmha0IiIiItKoaUErIiIiIo2aFrQiIiIi0qhpQSsiIiIijZoWtCIiIiLS\nqP0fImqrRNVvKIYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Set parameters\n", + "input_dim = 9\n", + "output_dim = 9\n", + "n_per_batch = 512\n", + "epochs = 100\n", + "crop_factor = int(conv_domain/2)\n", + "crop_len=crop_factor\n", + "filters_per_log = 7\n", + "\n", + "n_convolutions = input_dim*filters_per_log\n", + "\n", + "# Set parameters\n", + "conv_dim = 2*input_dim\n", + "#hidden_dim_1 = 128\n", + "lstm_dim1=18\n", + "lstm_dim2=18\n", + "lstm_dim3=18\n", + "lstm_dim4=9\n", + "\n", + "output_dim = y_train.shape[1]\n", + "n_per_batch = 512\n", + "epochs = 100\n", + "nb_conv1 = input_dim*conv_domain\n", + "conv_length=conv_domain\n", + "n_conv=input_dim*nb_conv1\n", + "\n", + "init_drop=0.25\n", + "lstm_drop=0.5\n", + "dense_drop=0.5\n", + "\n", + "\n", + "def cld_model():\n", + "#Input\n", + " inputs=Input(shape=(conv_length,input_dim), name='Input')\n", + "#Conv branch \n", + " x_conv=Dropout(init_drop, name='Dropout_Conv_1')(inputs) \n", + " x_conv=Convolution1D(nb_conv1, conv_length, border_mode='same', activation='tanh', W_regularizer=l1(0.001), name='Conv1D_1')(x_conv)\n", + " x_conv=Dropout(dense_drop, name='Dropout_Conv_Dense')(x_conv)\n", + " x_conv=Flatten()(x_conv)\n", + " x_conv=Dense(conv_dim, activation='tanh', W_regularizer=l1(0.001), name='Dense1')(x_conv)\n", + " x_conv_in=Reshape((1,conv_dim))(x_conv)\n", + "\n", + "#LSTM branch\n", + " input_lstm=Cropping1D(cropping=(crop_len,crop_len),name='Crop_Input')(inputs)\n", + " #Merge input+conv-branch\n", + " lstm_in=merge([input_lstm,x_conv_in], mode='concat', concat_axis=2)\n", + " x_lstm_1=LSTM(lstm_dim1, return_sequences=True, init='uniform', dropout_W=lstm_drop, dropout_U=lstm_drop, name='LSTM_1')(lstm_in)\n", + " #Merge LSTM1+inputLSTM1\n", + " lstm_in_2=merge([input_lstm,x_lstm_1], mode='concat', concat_axis=2)\n", + " x_lstm_2=LSTM(lstm_dim2, return_sequences=True, init='uniform',dropout_W=lstm_drop, dropout_U=lstm_drop, name='LSTM_2')(lstm_in_2)\n", + " #Merge LSTM2+inputLSTM2\n", + " lstm_in_3=merge([lstm_in_2,x_lstm_2], mode='concat', concat_axis=2)\n", + " x_lstm_3=LSTM(lstm_dim3, return_sequences=True, init='uniform',dropout_W=lstm_drop, dropout_U=lstm_drop, name='LSTM_3')(lstm_in_3)\n", + " #Merge LSTM3+inoutLSTM3\n", + " lstm_in_4=merge([lstm_in_3,x_lstm_3], mode='concat', concat_axis=2)\n", + " x_lstm=LSTM(lstm_dim4, init='uniform', dropout_W=lstm_drop, dropout_U=lstm_drop, name='LSTM_4')(lstm_in_4)\n", + "\n", + "#Fully connected branch\n", + " #input_x=Reshape((input_dim,))(input_lstm)\n", + " input_dense=merge([x_conv,x_lstm], mode='concat', concat_axis=1)\n", + " x_dense=Dropout(dense_drop)(input_dense)\n", + " x_dense=MaxoutDense(36, nb_feature=6, name='MaxoutDense_1')(x_dense)\n", + " out_dense=Dense(9, activation='softmax', name='Output')(x_dense)\n", + "\n", + "#define model\n", + " model=Model(input=inputs, output=out_dense)\n", + "\n", + "#optimizer and compile\n", + " optimizerNadam = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)\n", + " model.compile(loss='categorical_crossentropy', optimizer=optimizerNadam, metrics=['accuracy'])\n", + " return model\n", + "\n", + "# Load the model\n", + "t0 = time.time()\n", + "model_cld = cld_model()\n", + "model_cld.summary()\n", + "t1 = time.time()\n", + "print(\"Load time = %d\" % (t1-t0) )\n", + "\n", + "def plot_weights(n_convs_disp=input_dim):\n", + " layerID=2\n", + "\n", + " print(model_cld.layers[layerID].get_weights()[0].shape)\n", + " print(model_cld.layers[layerID].get_weights()[1].shape)\n", + "\n", + " fig, ax = plt.subplots(figsize=(12,10))\n", + "\n", + " for i in range(n_convs_disp):\n", + " plt.subplot(input_dim,1,i+1)\n", + " plt.imshow(model_cld.layers[layerID].get_weights()[0][:,0,i,:], interpolation='none')\n", + "\n", + " plt.show()\n", + " \n", + "plot_weights(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### We train the CLDNN and evaluate it on precision/recall." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "0s - loss: 2.6430 - acc: 0.1010\n", + "Epoch 2/100\n", + "0s - loss: 2.3007 - acc: 0.3274\n", + "Epoch 3/100\n", + "0s - loss: 1.9966 - acc: 0.4146\n", + "Epoch 4/100\n", + "0s - loss: 1.8142 - acc: 0.4227\n", + "Epoch 5/100\n", + "0s - loss: 1.6910 - acc: 0.4524\n", + "Epoch 6/100\n", + "0s - loss: 1.5764 - acc: 0.4682\n", + "Epoch 7/100\n", + "0s - loss: 1.5119 - acc: 0.4822\n", + "Epoch 8/100\n", + "0s - loss: 1.4455 - acc: 0.4977\n", + "Epoch 9/100\n", + "0s - loss: 1.4022 - acc: 0.4984\n", + "Epoch 10/100\n", + "0s - loss: 1.3687 - acc: 0.5014\n", + "Epoch 11/100\n", + "0s - loss: 1.3332 - acc: 0.5065\n", + "Epoch 12/100\n", + "0s - loss: 1.3125 - acc: 0.5205\n", + "Epoch 13/100\n", + "0s - loss: 1.3027 - acc: 0.5154\n", + "Epoch 14/100\n", + "0s - loss: 1.2771 - acc: 0.5326\n", + "Epoch 15/100\n", + "1s - loss: 1.2608 - acc: 0.5245\n", + "Epoch 16/100\n", + "1s - loss: 1.2541 - acc: 0.5311\n", + "Epoch 17/100\n", + "0s - loss: 1.2402 - acc: 0.5318\n", + "Epoch 18/100\n", + "1s - loss: 1.2395 - acc: 0.5257\n", + "Epoch 19/100\n", + "1s - loss: 1.2145 - acc: 0.5370\n", + "Epoch 20/100\n", + "1s - loss: 1.2099 - acc: 0.5424\n", + "Epoch 21/100\n", + "1s - loss: 1.2132 - acc: 0.5343\n", + "Epoch 22/100\n", + "1s - loss: 1.2027 - acc: 0.5281\n", + "Epoch 23/100\n", + "0s - loss: 1.2064 - acc: 0.5453\n", + "Epoch 24/100\n", + "0s - loss: 1.2039 - acc: 0.5402\n", + "Epoch 25/100\n", + "0s - loss: 1.1884 - acc: 0.5421\n", + "Epoch 26/100\n", + "1s - loss: 1.1839 - acc: 0.5409\n", + "Epoch 27/100\n", + "1s - loss: 1.1836 - acc: 0.5495\n", + "Epoch 28/100\n", + "0s - loss: 1.1658 - acc: 0.5476\n", + "Epoch 29/100\n", + "0s - loss: 1.1590 - acc: 0.5498\n", + "Epoch 30/100\n", + "0s - loss: 1.1726 - acc: 0.5429\n", + "Epoch 31/100\n", + "0s - loss: 1.1649 - acc: 0.5478\n", + "Epoch 32/100\n", + "0s - loss: 1.1700 - acc: 0.5458\n", + "Epoch 33/100\n", + "0s - loss: 1.1549 - acc: 0.5559\n", + "Epoch 34/100\n", + "0s - loss: 1.1475 - acc: 0.5571\n", + "Epoch 35/100\n", + "0s - loss: 1.1473 - acc: 0.5554\n", + "Epoch 36/100\n", + "0s - loss: 1.1368 - acc: 0.5579\n", + "Epoch 37/100\n", + "0s - loss: 1.1427 - acc: 0.5606\n", + "Epoch 38/100\n", + "0s - loss: 1.1338 - acc: 0.5579\n", + "Epoch 39/100\n", + "0s - loss: 1.1406 - acc: 0.5574\n", + "Epoch 40/100\n", + "0s - loss: 1.1353 - acc: 0.5552\n", + "Epoch 41/100\n", + "0s - loss: 1.1358 - acc: 0.5621\n", + "Epoch 42/100\n", + "0s - loss: 1.1351 - acc: 0.5549\n", + "Epoch 43/100\n", + "0s - loss: 1.1428 - acc: 0.5522\n", + "Epoch 44/100\n", + "0s - loss: 1.1336 - acc: 0.5581\n", + "Epoch 45/100\n", + "0s - loss: 1.1173 - acc: 0.5638\n", + "Epoch 46/100\n", + "0s - loss: 1.1327 - acc: 0.5581\n", + "Epoch 47/100\n", + "0s - loss: 1.1298 - acc: 0.5539\n", + "Epoch 48/100\n", + "0s - loss: 1.1146 - acc: 0.5711\n", + "Epoch 49/100\n", + "1s - loss: 1.1181 - acc: 0.5648\n", + "Epoch 50/100\n", + "0s - loss: 1.1211 - acc: 0.5707\n", + "Epoch 51/100\n", + "0s - loss: 1.1140 - acc: 0.5675\n", + "Epoch 52/100\n", + "0s - loss: 1.1086 - acc: 0.5569\n", + "Epoch 53/100\n", + "0s - loss: 1.1085 - acc: 0.5635\n", + "Epoch 54/100\n", + "0s - loss: 1.1061 - acc: 0.5707\n", + "Epoch 55/100\n", + "0s - loss: 1.1245 - acc: 0.5630\n", + "Epoch 56/100\n", + "0s - loss: 1.0967 - acc: 0.5788\n", + "Epoch 57/100\n", + "0s - loss: 1.1067 - acc: 0.5665\n", + "Epoch 58/100\n", + "0s - loss: 1.0963 - acc: 0.5748\n", + "Epoch 59/100\n", + "0s - loss: 1.1168 - acc: 0.5640\n", + "Epoch 60/100\n", + "1s - loss: 1.1041 - acc: 0.5675\n", + "Epoch 61/100\n", + "1s - loss: 1.0926 - acc: 0.5662\n", + "Epoch 62/100\n", + "1s - loss: 1.0980 - acc: 0.5660\n", + "Epoch 63/100\n", + "1s - loss: 1.1043 - acc: 0.5761\n", + "Epoch 64/100\n", + "0s - loss: 1.0980 - acc: 0.5748\n", + "Epoch 65/100\n", + "0s - loss: 1.0927 - acc: 0.5778\n", + "Epoch 66/100\n", + "0s - loss: 1.1004 - acc: 0.5702\n", + "Epoch 67/100\n", + "0s - loss: 1.0902 - acc: 0.5650\n", + "Epoch 68/100\n", + "0s - loss: 1.0931 - acc: 0.5734\n", + "Epoch 69/100\n", + "0s - loss: 1.0872 - acc: 0.5736\n", + "Epoch 70/100\n", + "0s - loss: 1.0771 - acc: 0.5748\n", + "Epoch 71/100\n", + "0s - loss: 1.0946 - acc: 0.5810\n", + "Epoch 72/100\n", + "0s - loss: 1.0778 - acc: 0.5797\n", + "Epoch 73/100\n", + "0s - loss: 1.0809 - acc: 0.5748\n", + "Epoch 74/100\n", + "0s - loss: 1.0853 - acc: 0.5739\n", + "Epoch 75/100\n", + "0s - loss: 1.0851 - acc: 0.5844\n", + "Epoch 76/100\n", + "1s - loss: 1.0789 - acc: 0.5817\n", + "Epoch 77/100\n", + "1s - loss: 1.0969 - acc: 0.5739\n", + "Epoch 78/100\n", + "1s - loss: 1.0760 - acc: 0.5844\n", + "Epoch 79/100\n", + "0s - loss: 1.0759 - acc: 0.5797\n", + "Epoch 80/100\n", + "0s - loss: 1.0811 - acc: 0.5856\n", + "Epoch 81/100\n", + "0s - loss: 1.0933 - acc: 0.5714\n", + "Epoch 82/100\n", + "0s - loss: 1.0809 - acc: 0.5758\n", + "Epoch 83/100\n", + "1s - loss: 1.0781 - acc: 0.5802\n", + "Epoch 84/100\n", + "1s - loss: 1.0739 - acc: 0.5876\n", + "Epoch 85/100\n", + "0s - loss: 1.0757 - acc: 0.5775\n", + "Epoch 86/100\n", + "0s - loss: 1.0776 - acc: 0.5680\n", + "Epoch 87/100\n", + "0s - loss: 1.0706 - acc: 0.5802\n", + "Epoch 88/100\n", + "0s - loss: 1.0656 - acc: 0.5884\n", + "Epoch 89/100\n", + "0s - loss: 1.0757 - acc: 0.5805\n", + "Epoch 90/100\n", + "0s - loss: 1.0691 - acc: 0.5756\n", + "Epoch 91/100\n", + "1s - loss: 1.0713 - acc: 0.5802\n", + "Epoch 92/100\n", + "1s - loss: 1.0688 - acc: 0.5790\n", + "Epoch 93/100\n", + "1s - loss: 1.0702 - acc: 0.5788\n", + "Epoch 94/100\n", + "1s - loss: 1.0716 - acc: 0.5852\n", + "Epoch 95/100\n", + "0s - loss: 1.0693 - acc: 0.5797\n", + "Epoch 96/100\n", + "0s - loss: 1.0544 - acc: 0.5994\n", + "Epoch 97/100\n", + "1s - loss: 1.0648 - acc: 0.5849\n", + "Epoch 98/100\n", + "0s - loss: 1.0627 - acc: 0.5871\n", + "Epoch 99/100\n", + "0s - loss: 1.0671 - acc: 0.5847\n", + "Epoch 100/100\n", + "0s - loss: 1.0745 - acc: 0.5837\n", + "Train time = 197 seconds\n", + "Test time = 15 seconds\n", + "\n", + "Model Report\n", + "-Accuracy: 0.648562\n", + "-Adjacent Accuracy: 0.918407\n", + "\n", + "Confusion Matrix\n", + " Pred SS CSiS FSiS SiSh MS WS D PS BS Total\n", + " True\n", + " SS 168 93 7 268\n", + " CSiS 62 734 142 2 940\n", + " FSiS 5 265 500 2 2 6 780\n", + " SiSh 3 2 211 9 35 4 7 271\n", + " MS 6 7 52 54 101 11 65 296\n", + " WS 2 73 27 339 13 125 3 582\n", + " D 2 16 6 7 83 27 141\n", + " PS 2 11 26 10 124 8 478 27 686\n", + " BS 4 2 11 1 15 72 105\n", + "\n", + "Precision 0.71 0.67 0.74 0.55 0.50 0.55 0.69 0.66 0.71 0.65\n", + " Recall 0.63 0.78 0.64 0.78 0.18 0.58 0.59 0.70 0.69 0.65\n", + " F1 0.67 0.72 0.69 0.64 0.27 0.56 0.64 0.68 0.70 0.64\n" + ] + } + ], + "source": [ + "#Train model\n", + "t0 = time.time()\n", + "model_cld.fit(X_train, y_train, batch_size=n_per_batch, nb_epoch=epochs, verbose=2)\n", + "t1 = time.time()\n", + "print(\"Train time = %d seconds\" % (t1-t0) )\n", + "\n", + "\n", + "# Predict Values on Training set\n", + "t0 = time.time()\n", + "y_predicted = model_cld.predict( X_train , batch_size=n_per_batch, verbose=2)\n", + "t1 = time.time()\n", + "print(\"Test time = %d seconds\" % (t1-t0) )\n", + "\n", + "# Print Report\n", + "\n", + "# Format output [0 - 8 ]\n", + "y_ = np.zeros((len(y_train),1))\n", + "for i in range(len(y_train)):\n", + " y_[i] = np.argmax(y_train[i])\n", + "\n", + "y_predicted_ = np.zeros((len(y_predicted), 1))\n", + "for i in range(len(y_predicted)):\n", + " y_predicted_[i] = np.argmax( y_predicted[i] )\n", + " \n", + "# Confusion Matrix\n", + "conf = confusion_matrix(y_, y_predicted_)\n", + "\n", + "def accuracy(conf):\n", + " total_correct = 0.\n", + " nb_classes = conf.shape[0]\n", + " for i in np.arange(0,nb_classes):\n", + " total_correct += conf[i][i]\n", + " acc = total_correct/sum(sum(conf))\n", + " return acc\n", + "\n", + "adjacent_facies = np.array([[1], [0,2], [1], [4], [3,5], [4,6,7], [5,7], [5,6,8], [6,7]])\n", + "\n", + "def accuracy_adjacent(conf, adjacent_facies):\n", + " nb_classes = conf.shape[0]\n", + " total_correct = 0.\n", + " for i in np.arange(0,nb_classes):\n", + " total_correct += conf[i][i]\n", + " for j in adjacent_facies[i]:\n", + " total_correct += conf[i][j]\n", + " return total_correct / sum(sum(conf))\n", + "\n", + "# Print Results\n", + "print (\"\\nModel Report\")\n", + "print (\"-Accuracy: %.6f\" % ( accuracy(conf) ))\n", + "print (\"-Adjacent Accuracy: %.6f\" % ( accuracy_adjacent(conf, adjacent_facies) ))\n", + "print (\"\\nConfusion Matrix\")\n", + "display_cm(conf, facies_labels, display_metrics=True, hide_zeros=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### We display the learned 1D convolution kernels" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(7, 1, 9, 63)\n", + "(63,)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAMwCAYAAADRaPOgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8HNWZ7//PI2+yvMjGxiyBYIONY66JQWILYCCBAUIS\nwJkMoSHJkIyHn8nyY5QN+CXEA3eGkDAgAoTcezPzCxBAXJIM2w3BhLBkwAEDAgPBYHYb23gDC++2\nrHP/qDZ0Sy31c1rV6pb9fb9e/XpJpafOOV2nqvqouuo8FkJARERERKS/qql0A0REREREekMDWhER\nERHp1zSgFREREZF+TQNaEREREenXNKAVERERkX5NA1oRERER6dc0oBURERGRfk0DWhERERHp1zSg\nFREREZF+bWA5CzezMcBJwJvApnLWJSIiIiI7lFpgPDAnhLC6p8CSBrRm9g3gu8DuwHzgWyGEJwuE\nngTcUkodIiIiIiLA2cCtPQVED2jN7IvAlcC5wDygCZhjZvuHEFZ1Cn8T4Kybj2fclNF5f7i76TFO\nbT4qb9k25x0Qy9jT3d49WeqO7Q+GsNkVt5kh7jIH0t5l2Z1Nczm9+ciSy/S2cx3D3WXWscEVt5XB\n7jIhuKJq2OaKW81Yd827844rLmAFl9/VNJfTOvXRSN53lbmCca44gEFhqyvuK0tvd5d530eOdcWt\nCLv56n7MX/fNR3/BFbeVQe4yB7Oly7JC/fNxnnOX+RSHuOIGOPfN/sJ3RCY63B9hXUv9fdOf+Uzz\nMV2We7dnDR3Ouv37kve82R7x0e1t59vs5S6z1vmF6y686y5zaIHz+++anuRvmw/NW7aOEe4y0+7L\nzdS66/buxzHn4o+yyBXXEXE3qbedHQzosqy7Y8i7f4znraIxixds4Kdfegmy48melHKFtgn4nyGE\nmwDMbBbwGeBrwE87xW4CGDdlNHs17Jr3h9r6wV2WtRfYYIW0Rxx4HykwWKtOvt1qqHNH2Rhx4A2m\n64BlaP1g9m7IH5xtZKi7zKFsdMW1Ue8uczjrXHFbIgbeaQ9oB7CHu+a9nftmdyenQsfQLs5jaCC+\ngSLA4OD7kG3YxV0kL08Y5YobFHYtHgQ0LPfX/XCDr8wtEf8YFRqIFOqfydS5y1zm/KDTgLa0Umvr\nB/ORhq7beIDzuBwQMaD17kve8+aWiH+2vO3cHPG56r24MM55PoLC5/eh9YP4aMOYvGVt+M4dkH5f\nbow4fv0DRf9238u5f2yL2O69GdB2dwx594+JEf/w4LhtNeqhMDMbBDQCf9q+LIQQgAeAT8SUJSIi\nIiKShthZDsYCA4DO10OWk9xPKyIiIiLSpzRtl4iIiIj0a7H30K4CtkGXG/B2g+6fcLm76TFq6/Pv\nIRq9j//Gbul7DZmJlW6CFHGw+qiqqX+q27TM5Eo3QYo4JDOh0k2QHqR9DD3csoKHW1bkLVvf5n8O\nKmpAG0LYamZPA8cDdwOYmWV/v6a79U5tPqrLwxFS3TSgrX4NmUmVboL0QP1T3TSgrX6HZPatdBOk\nB2kfQ8dlxnFcJv8hs1db1/KtxlbX+qXMcnAVcEN2YLt92q464IYSyhIRERER6ZXoAW0I4XYzGwtc\nSnKrwbPASSGElWk3TkRERESkmOiHwsxsOnAyMAgYAvw4hPBU2g0TEREREfEo5ZaDYSRXZf8D+E/P\nCjV0pDr593685o71TmhdKNNPd+ZxmCvuIJ51l+mdANqbcSZm0u+YSZi9Nju3+4aIiaprnZNKP8Gh\nxYOyDmeeK26gc//1JgcB/3b3ZtCLMShif+8mUVkXK8f7s76tdCYNGOJs5wOfdVfNtg7f9ow5J3j7\nPaZMb2xMAoj0kzD40yDEnJP80j8uu8vM11nMdj+a/3LFPcvBrrgQUfdyZxKV5znQXeaJ3O+K2xYx\nxNiTZa64mMQK3pOX9xw7nLXummM+27ycp+Ko49z7OeQdo8RYxZiiMWsiPv9KueXgPuA++OCBMBER\nERGRitE8tCIiIiLSr2lAKyIiIiL9mga0IiIiItKvlfJQWLQ7m+YytFOmsIbMRE3eLyIiIiL8pWUx\nf2lZnLdsQ9tW9/p9MqA9vflI9m4Y2xdViYiIiEg/84nM3nwis3fesjdb3+Pixodc60cPaM1sGDCR\nD2eQ2NfMpgHvhhAWd7+miIiIiEj6SrlCewjwEMkEhAG4Mrv8RuBrKbVLRERERMSllHloH0EPk4mI\niIhIlYga0JrZRcAM4GPARmAucEEIYWFP6+3NYvZjTdHyX+QAVzteYX9XHMRlFfPyZ/vx553wZlSJ\nybyStpjsI97Y4axzlzkw+Mq8a3LGXeaRC//ijvUYEfF+vNmLtpYhE5Q38xnAtuD7/3XXq/zv/Znv\nHOSKm0yPp5YPnPAP7qp5JuXsQTFWOzLjbOc9e8RkH/Nmt6px7h8dEeejtHOUJWWmn6HNm/vMm1EM\n4H5OdMXt4cyWFWNw2OyKe+Ldw91lfn/MT1xxL0RkH9uN5a6419jPXaaX91iPyappzj1pKi+4y9zA\nUFdcOT4zYmxyHhtPOLKurmAJyU0BxcWesacD1wKHAycAg4D7zcy3lUVEREREUhZ1uS+EcEru72Z2\nDrACaAQeTa9ZIiIiIiI+vf1ObRTJNzTvptAWEREREZFoJQ9ozcyAq4FHQwgvptckERERERG/3jxh\ndD1wAHBUSm0REREREYlW0oDWzK4DTgGmhxCKPpb5702vMKw+v6rpmXEcm9m9lOpFREREZAeysOVZ\nFrbMz1u2pW2Te/1SMoVdB5wGHBtCWORZZ2bzJPZrGBFblYiIiIjsBPbPHMT+mfwpHVe0LuH2xmtd\n68fOQ3s9kAFOBdab2W7ZP7WFEPzDaBERERGRlMQ+FDYLGAk8DCzNeZ2RbrNERERERHxiB7RfB14A\n1mVfTwCfCSHclHbDREREREQ8Yu+hXQxcALxCkpnxHOAuMzsohLCgu5X2ZCkTGFK08Of5uKsRI1jr\nioPypHVbyh6uuKk87y6zw5lSz/t+Yt73FkffQFzaP2/9WxjkLhPqfGGvXhJRpi89of/9+FMOetPP\ndkT0ZR0bXHEx7RxAuy/wFneRrPjObsWDgANwzghY76+7HH05IPi20d+86c8/8/SERldcTFrXSvKm\n043hTT8bd+7y9WUt/rvsJvOyK24pe7rL9Fpjo1xxn97lXneZ3lS+e0ak8l2L7zmbcqSkLgfvfuQ+\nv+JPhz2oDOcE7xgF/J9t41hZNKad9yLqjRBC+H2nRT80s/OAI4BuB7QiIiIiIuVS8jy0ZlZDcu9s\nHfCX1FokIiIiIhKhlGm7ppIMYGuBtcCMEMJLaTdMRERERMSjlJtRXgKmAYcBvwBuMrOPpdoqERER\nERGn6Cu0IYR24PXsr8+Y2WHA+cB53a3z06bVjKjPHzt/OjOcUzLDY6sXERERkR3Mcy0LeL4l/wv/\nTW2b3euXfA9tjhro+TH57zeP4YAG35P0IiIiIrJz+XhmCh/PTMlbtrR1Of+j8WbX+rGZwi4D/gAs\nAkYAZwPHgnMODxERERGRlMVeoR0H3AjsAbQBzwEnhhAeTLthIiIiIiIesfPQzixXQ0REREREStGr\ne2jN7ELgMuDqEMK3u4sbwVpGsbFoed6MGUMdZX3Ilwkqxhp8mVcsom5vth9v9qKYzDhDndmlNkdk\nTvK2c2/edpe5HF92Kf7bj9xlwv/rivJml9rgzWaGP+NNTCYZb7admOxS3n6/5Bl3kfzhys+74o77\n9kO+An/jr3vbv3m3uz+zlTczzvt7+zPjeTNrxWROKke2Li/vNop5P0PwPTDizYaY1J/GoyX51jmP\nS6+YzxZvtr0n7TB3mT/gMlfcwxzrLtN7ThpAh7vMdufnoD9Tp/+86d2PYva3mM91r3KcE7zH8GDH\n8RuT9azkHHJmdihwLjC/1DJERERERHqrpAGtmQ0HbgZmAmtSbZGIiIiISIRSr9D+HLhHD4OJiIiI\nSKWVkvr2TOAg4JD0myMiIiIiEid2Htq9gKuBE0IIW73rXdK0gRH1lrfstMxgTs8o2YKIiIjIzu7Z\nloXMb1mYt2xTm/+hsNgrtI3ArkCrmW0foQ4AjjGzbwJDQghdHr+c3VzHgQ3pPzkqIiIiIv3fQZn9\nOSizf96yJa0ruLbxdtf6saPMB4ADOy27AVgAXF5oMCsiIiIiUk6xiRXWQ/6kdma2HlgdQliQZsNE\nRERERDxKnoc2h67KioiIiEjFRA1ozWy2mXXkvoDde8oSJiIiIiJSTqU8qfUCcDyw/aGwonk5/8jf\nsIBdS6iqsI0MdceO4r3U6t3uOB5xxcWlUPSmn7PiIUDMhfMt+NJxxqRb9KYnXkO9u8w6Z4pe1ni3\nUfppLh/mOHfsObzhihsSlW4x/dSIA52pd2Pm8Zv67Sd9dZvvuHj8zWnuur2pM2NSsHqNvMc9OQw2\nwxcX3OcEf4rPyvK/H29q05i+9KY8jknButz5+effN/3nrd1Y4YqbFpH08y98wh3r5U3xHdOX3nTL\n3s9f/57pT+U7H/+5axILiwdF8n6uez/TATqcfTSI4ufDWmd6ayhtQNseQlhZwnoiIiIiIqkr5RLE\nJDNbYmavmdnNZrZ36q0SEREREXGKHdA+DpwDnATMAiYAfzazYSm3S0RERETEJXbarjk5v75gZvOA\nt4AzgF+l2TAREREREY9ePRETQmgzs4XAxJ7i7mqaS2394LxlB2cm0pCZ1JvqRURERGQH8HTLazzd\n8nreso1lTH2bx8yGkwxmb+op7rTmI9mrIb1ZDkRERERkx9GY2Y/GzH55yxa3ruKKxrtc68fOQ3uF\nmR1jZvuY2ZHAHcBWoCWmHBERERGRtMReod0LuBUYA6wEHgWOCCGsTrthIiIiIiIesQ+FZcrVEBER\nERGRUkTfQ2tmewI/AT4N1AGvAF8NIbR2t87Zd/+OhueKl33VOefFNqcob+YVb8YZgDrWu+K8mUIA\ntjC4eBAwOCJrRtq8bQToKEO2Ha9Bz7zvjh3i3J7eLDZDvdnM8Gd4WssId5lH86grLiajmdcJX/LH\nvvDcob7Aab7JUzbbEHfd3kyDMcev+/zxY3eRMMOXwWdgxDG0xdnOGneGJT9vhid/PkLY6jwnDWed\nu8yN1LniNuPf51Y6M4Xtw1uuuPaIj+654UhX3L8/9y13mb+Z9llX3Gvs6y5znfM8F5MlzbsXe7Ng\nxWRi9H5eTuUFd5nec5f38yqJ9Z0/vBlFwd9Hn+JPRWMWsMldb9SA1sxGAY8BfyKZi3YVMAnKkF9W\nRERERMQh9grthcCiEMLMnGW+fylFRERERMogNlPY54CnzOx2M1tuZq1mNrPoWiIiIiIiZRI7oN0X\nOA94GTgR+AVwjZl9Oe2GiYiIiIh4xN5yUAPMCyFcnP19vplNBWYBv+5upaYWGNXpPvuPjoFrIx4i\nkb71TMsrHKxMblXtuZaX+HjmY5VuhnTj2ZaFHJTZv9LNkG60trxKQ6bHJJdSYQ+3rOC4zLhKN0O6\nkfY57g8ta7mvZW3esnVt/gdUYwe0y4AFnZYtAD7f00rNGWgYn7/stJ9F1ix9SgPa6qcBbXV79rZX\nNKCtYhrQVr9HNKCtas+2pHuO+3RmBJ/O5M92saB1E2c1LnatH3vLwWPA5E7LJqMHw0RERESkQmIH\ntM3AEWZ2kZntZ2ZnATOB69JvmoiIiIhIcVED2hDCU8AMIAM8D/wAOD+EcFsZ2iYiIiIiUlR0prAQ\nwr3Avc7wWoCXak6Gml3y/rCGR2itOTZv2fDW8a5CP8JwZ/Uw3PkWvVmbAIY6M2YMYbS7zA7n/xY1\nZcisVcjAtrou/eFtI8AAZ46WmO3uTSH0xY1/dRc5vG68K86beeUY3nXXXc9HXXHdZacZ1FbL6NaP\n5C1bzvGuMoeztysOIARfH7VOPstd5lnLuk0smGf4tvGuuDZndieA0XykeBD+fRgouG8OXDOUka37\n5C1rPdq/jTqv2x2LyK3lPYZjyqwkb+amQlnfBrQNY1jrhC7Lh7g/M/wGO/fPYc7+GRSRtXFY8GU0\ny6z0HZMAW7c1uOJGUu8ucwPDuizb1vY2G1oPz1s2ypl1LcZA5/k95jPQG+utG/z7Zszx640t9Fk9\nsK3rOa672ELe4W+KxqxesBJYDNnxZE8shPKduLK3JNxStgpEREREZEd3dgjh1p4Cyj2gHUOSIvdN\niEjIKyIiIiI7u1pgPDAnhLC6p8CyDmhFRERERMotdpYDEREREZGqogGtiIiIiPRrGtCKiIiISL/W\n5wNaM/uGmb1hZhvN7HEzO7Sv2yAJM5tuZneb2RIz6zCzUwvEXGpmS81sg5n90cyUK7KPZBOYzDOz\n981suZndYWZd8gyqjyrDzGaZ2Xwza8u+5prZyZ1i1DdVwswuzJ7nruq0XH1UIWY2O9snua8XO8Wo\nfyrIzPY0s1+b2apsH8w3s4ZOMVXRR306oDWzLwJXArOBg4H5wBwzG9uX7ZAPDAOeBb5OgWkVzewC\n4JvAucBhwHqS/vJPgii9MR24FjgcOAEYBNxvZkO3B6iPKmoxcAHQADQCDwJ3mdkUUN9Uk+yFk3NJ\nPnNyl6uPKu8FYDdg9+zr6O1/UP9UlpmNAh4DNpPMWDUF+A7wXk5M9fRRCKHPXsDjwM9yfjfgbeD7\nfdkOvQr2TQdwaqdlS4GmnN9HAhuBMyrd3p3xBYzN9tPR6qPqfAGrga+qb6rnBQwHXgY+BTwEXJXz\nN/VRZftmNtDaw9/VP5Xtn8uBR4rEVE0f9dkVWjMbRHIV40/bl4Xk3T8AfKKv2iE+ZjaB5L/l3P56\nH3gC9VeljCK5kv4uqI+qiZnVmNmZQB0wV31TVX4O3BNCeDB3ofqoakzK3vb2mpndbGZ7g/qnSnwO\neMrMbs/e9tZqZjO3/7Ha+qgvbzkYCwwAlndavpxkg0h12Z1k8KT+qgJmZsDVwKMhhO33mKmPKszM\npprZWpKv5K4HZoQQXkZ9UxWy/2QcBFxU4M/qo8p7HDiH5OvsWcAE4M9mNgz1TzXYFziP5BuOE4Ff\nANeY2Zezf6+qPvIlBhaRSrseOAA4qtINkTwvAdOAeuALwE1mdkxlmyQAZrYXyT+BJ4QQtla6PdJV\nCGFOzq8vmNk84C3gDJJjSyqrBpgXQrg4+/t8M5tK8s/HryvXrML68grtKmAbyc3fuXYD3unDdojP\nOyT3OKu/KszMrgNOAY4LISzL+ZP6qMJCCO0hhNdDCM+EEH5A8tDR+ahvqkEjsCvQamZbzWwrcCxw\nvpltIbmKpD6qIiGENmAhMBEdQ9VgGbCg07IFwEezP1dVH5X1Cq2ZjSH5KuFNYBPJhjjTzN7OCTsZ\nuK3zNBBSEft26ofVwFfM7Nbs78OAI4B71V995gKSD+F/BMYWmBFEfVRd6oE9gdGobyptJcmVvlyX\nAG8AvyK5J119VF2GApNJZgzRMVR5LwKNnbb1dGBVzrJy91EtMB6YE0JY3VOgZZ9Ki2Jm3wC+S3KP\nxHzgWyGEJwvEnQXcEl2BiIiIiEji7BDCrT0FRF+hzZlL9lxgHtBEMufY/iGEVZ3C3wT45M1nM3pK\n/hXpuU13cmTz6XnLarpOhdpnYmpud262QbSX1pgq8FjTXRzVfFrJ63u352b8U9UNYYsrbgXj3GXu\nxgpnpO8dDWedu+51jHDHFtLbPvLy9qX3uAA4gsddcU9ziLvMSiq0jeY23cWRnfonZhv15/NHf9Dd\n8ePd3wPmrmsoG11xm6l11u3nbefnuMdd5u/5bEQLStdX57hyKMd5s9rOCb09hhbSJU9QFxsXLOLV\nL/0YsuPJnpRyy0ET8D9DCDdBki0H+AzwNeCnnWI3AYyeshtjG/bO+8Pg+qFdlg2go4TmpCPmBLGV\nQa64wfTf5xAG19eya8NeJa/v3Z4bnSdwgKHJ7lTUZvzt3tU9oPa9o3ra3HW3McodW0hv+8jL25fe\n4wJg3y63ZRW2KKIvK6nQNirUPzHbqD+fP/qD7o4f7/7eEfEIivcf3Y3UueJiPq+87ZzsrBtgXh8d\nl311jiuHcpw3q+2c0NtjaKljQJuj6AAg6qEwzSUrIiIiItUmdpYDzSUrIiIiIlWlT+ahndt0J4Pr\nh+YtW7/E/9WsiIiIiOy4VrU8yKqWvIR+tLf5n0uJHdCWNJfskc2nd7lf9tWW1siqpS9Nyhxc6SZI\nEeqj6jZR/VPVdPxUP/VRdUu7f8ZmPsXYzKfylq1rXcjzjee51o+65SCbbeVp4Pjty7IpOY8H5saU\nNTGjKeSq2ST1T9VTH1U39U91U/9UP/VRdau2/inlloOrgBvM7Gk+nLarDrghxXaJiIiIiLhED2hD\nCLdnsxVdSnKrwbPASSGElWk3TkRERESkmNhZDjCz6STpagcBQ4AfhxCeSrthIiIiIiIepdxyMIzk\nqux/AP+ZZmPKMaG1N1mDRUxVvQvvuuJ6mwmqkEpuo5jJvLeFAa64Gx/03ewNMOv4ZlfcBoYWDyqT\ndQxLvcz+kvRjANvcscu7PFdaWCX393KoZN3i483/FbO/j+sy02VhbzHBFefPUeZv54scEFGql//s\nVeNsZ0fEsCXt80c5jt8NEQktBkck7ukPJvFy0ZjVLOJ5Z3ml3HJwH3AffPBAmIiIiIhIxUTfciAi\nIiIiUk00oBURERGRfk0DWhERERHp1yqW+nZipkHJFURERESEN1qe5I2W/EmztrRtdK/fJwPaQqlv\nRUREREQAJmQOZULm0Lxlq1sX8fvGy13rRw9ozWwYMJEPZw7Z18ymAe+GEBbHliciIiIi0hulXKE9\nBHiIZIq3AFyZXX4j8LWU2iUiIiIi4lLKPLSPoIfJRERERKRKRA1ozewiYAbwMWAjMBe4IISwsMia\neHKbbMOXXWodw11xAKPKkFljDKtcceXIFObNZFFThowm5chOE9GVbqNZ445td+5zd3K6K+4Ufu+u\nu45N7lgv7/uJyRRmwZdv5xevfttd5vcnXeKO9fHvndvKkBXIm2lwEJvdZcZkRJLq9g57VLoJRb3G\nfu7Y4ax1xa2N+AzcymBXXNxx6VOOz0uv4ayrWN2VtsmR1XMLQ9zlxV5pnQ5cCxwOnAAMAu43s8rl\nGhURERGRnVrUJYAQwim5v5vZOcAKoBF4NL1miYiIiIj49PZe2FEkD4a9m0JbRERERESilTygNTMD\nrgYeDSG8mF6TRERERET8evPUwfXAAcBRxQLnNt3RTaawxl5ULyIiIiI7gkUtj7Oo5Ym8ZVvaNrjX\nL2lAa2bXAacA00MIy4rFH9k8Q5nCRERERKSgj2aO4KOZI/KWvdf6Jn9s9M2KU0qmsOuA04BjQwiL\nYtcXEREREUlT7Dy01wMZ4FRgvZntlv1TWwgh/Uk1RURERESKiH0obBYwEngYWJrzOiPdZomIiIiI\n+MTecvB14DxgfPb3vwKXhhDu62mlIWxiKMVv7N3szAjxPAe64gCmu6fH9WcaeuuDt1+9YrJ6efly\nISU6zJex6muH/by0xqTEm9Hsb8PvXHE3vP/37rq/Wn+jO9YrJgNY2m6f7N9Drmz5oStu1hebXXFr\nI1LO1Zche6DXELa4YzcqU9gOI5TljOzlq3sNo9wlliO7lbf+MRGzhHrPSB1lyB7o5c0yCOm/H/C/\np5jPf2/W11o2Fo0ZHJFdMfYK7WLgAqCBJJnCg8BdZjYlshwRERERkVTEZgrrnKj+h2Z2HnAEsCC1\nVomIiIiIOJX8nZaZ1ZDcO1sH/CW1FomIiIiIRChl2q6pJAPYWmAtMCOE8FLaDRMRERER8Sgl9e1L\nwDTgMOAXwE1m9rFUWyUiIiIi4hR9hTaE0A68nv31GTM7DDifZPaDgv7c9HsG19fmLZucmcbkzLTY\n6kVERERkB/NGy5O80fJU3rItbcVnQtgujXlhaqDn+baOaf4M4xo+kkJVIiIiIrKjmZA5lAmZQ/OW\nrW5dxO8bL3etH5sp7DLgD8AiYARwNnAscGJMOSIiIiIiaYm9QjsOuBHYA2gDngNODCE8mHbDRERE\nREQ8YuehnVmuhoiIiIiIlKJX99Ca2YXAZcDVIYRvdxd3FrcwlUFFy/sJF7rq3Ye3vE2M4E/sNtSR\nrg1gI3WlNqYqxSRvrHGmlE2mM07XsIi0jN73FJyBx418xF23V0xqRG+awI4ypFVdEJMbMXOJL+6L\nI11hb0akoz6I+e5YN+d7v2Lij9xFfvO1fyuxMX0nKh12BdOLxvCnF/Wl9wTYj9dccQs4wBUXs93X\nOdNCj2OFu8wtDI5ogU85UlJ7z+81ZUlpm37d/eH9gD+lvCcVeEw695JHE2Z2KHAulOPTQURERETE\np6QBrZkNB24GZgJrUm2RiIiIiEiEUq/Q/hy4Rw+DiYiIiEillZL69kzgIOCQ9JsjIiIiIhIndh7a\nvYCrgRNCCO47df970zpG1OdfDD41M4RTM7XdrCEiIiIiO4tXW57mtZbWvGXlzBTWCOwKtJrZ9ofe\nBgDHmNk3gSEhhC4PYF7cPJypDcVnORARERGRnc/ETCMTM415y1a1LuaOxitd68cOaB8ADuy07AZg\nAXB5ocGsiIiIiEg5xSZWWA+8mLvMzNYDq0MIC9JsmIiIiIiIRxqz2uuqrIiIiIhUTOxDYbOB2Z0W\nv9RTljCA0UevYVdHUhVb6xsbj+cNVxz4MyKFiDwY3swrlc540x+0R2TbGeTMGDKI9ogW+PY5b+aT\n8fZmRN07ltnf88deekW6D4QOdmScqQaPvLFj/f8flz2wf5wPve/Je04AWMuI0hrTjZjsgfXOqeLb\nqHeX6T3eYto5htWuuDZGucv0itmPvbzvfCP+c6EnsxZUfuyR5jEUc94oJf/lC8DxfNjmmNGDiIiI\niEiqShnQtocQVqbeEhERERGREpRyD+0kM1tiZq+Z2c1mtnfqrRIRERERcYod0D4OnAOcBMwCJgB/\nNrNhKbdLRERERMQldtquOTm/vmBm84C3gDOAX6XZMBERERERj1Luof1ACKHNzBYCE3uKu2Az1Hd6\n7O0LA+EMJQ8TERER2em90tLKqy3P5C3b0rbJvX6vBrRmNpxkMHtTT3E/GQIH+WdnEhEREZGdyKRM\nA5MyDXkfMsn5AAAgAElEQVTLVra+ze8am13rR91Da2ZXmNkxZraPmR0J3AFsBVpiyhERERERSUvs\nFdq9gFuBMcBK4FHgiBCCb0ZkEREREZGURV2hDSFkgMOA3wJ1wOnAnWbW0OOKIiIiIiJlEpv6dhTw\nGPAnkqm7VgGTgPd6Wu/ZjbDekQttmzMN6i7OFHkAqxnriuuIGNtXMoWjN51ezPvxinnfHc6+HBiR\nPtIrJp3uYGeSvm3OQyUmjWEd3pvd/YkZvds9RjBf/ef9xHefEwCnnO8KM3xlTmGBv+4KOu4af+xv\nyteM1MQk8vWekyqdtrMcRvX8EfmBpezhivOejwC2MMQVF5OedwzvumO9YlLveqX9eRmzb3rP2kPd\nnwM7Hs82iklLHHvLwYXAohDCzJxlb0WWISIiIiKSmtjLeJ8DnjKz281suZm1mtnMomuJiIiIiJRJ\n7IB2X+A84GXgROAXwDVm9uW0GyYiIiIi4hE7oK0Bng4hXBxCmB9C+CXwS5I0uFEeirn5Svrcqy2t\nlW6CFPGK+qiqvdJpgnCpLjp+qp+OoepWbcdQ7D20y6DL0xcLgM/3tNL/AIZ3GsCuAj4ZWbn0nVdb\nWpmY0eQV1eyVlme6TEIt1eOV255hUubgSjdDuqHjp/olfaRjqFqlfQy90tLa5Z+YcmYKewyY3GnZ\nZIo8GDYLmNTpUbXZukIrIiIiInSfKey35cgUBjQDR5jZRWa2n5mdBcwErossR0REREQkFbGJFZ4C\nZgAZ4HngB8D5IYTbytA2EREREZGiYm85IIRwL3CvM7wWYDF0meF4HfBK5/tqWxe7Cm13TlIN0Oac\ntDhETN9rzumaYyYE9vLeqRHzfgrZ0raxS39433dSv+9/pW0R/1MNpN0Vt5nB7jLXs8UV533n5ai7\nO1vaNrGy9e1OS70t9e8f7n0uROxzC30PE6wc2fn9dVO3v+ayHJeEri3YsqZr/zhPcQAF+rb6xGx3\n7zmpJqrU0hU+fmL427nImQxoJUtccd4kROBPGrAu4nO1g/fdsX4FjqGCfVSGc1cF981y7O1lOccV\n0PtjqLj3Fizf/mPRrEUWCpyI05K9JeGWslUgIiIiIju6s0MIt/YUUO4B7RiSFLlvwk6c301ERERE\nYtUC44E5IYQev+oo64BWRERERKTcYmc5EBERERGpKhrQioiIiEi/pgGtiIiIiPRrGtCKiIiISL/W\n5wNaM/uGmb1hZhvN7HEzO7Sv2yAJM5tuZneb2RIz6zCzUwvEXGpmS81sg5n90cwmVqKtO6NsRr55\nZva+mS03szvMbP8CceqjCjCzWWY238zasq+5ZnZypxj1TZUwswuz57mrOi1XH1WImc3O9knu68VO\nMeqfCjKzPc3s12a2KtsH882soVNMVfRRnw5ozeyLwJXAbOBgYD4wx8zG9mU75APDgGeBr1Ngfmcz\nuwD4JnAucBiwnqS//NkDpDemA9cChwMnAIOA+81s6PYA9VFFLQYuABqARuBB4C4zmwLqm2qSvXBy\nLslnTu5y9VHlvQDsBuyefR29/Q/qn8oys1HAY8BmkilYpwDfgQ+zcFRVH4UQ+uwFPA78LOd3A94G\nvt+X7dCrYN90AKd2WrYUaMr5fSSwETij0u3dGV/A2Gw/Ha0+qs4XsBr4qvqmel7AcOBl4FPAQ8BV\nOX9TH1W2b2YDrT38Xf1T2f65HHikSEzV9FGfXaE1s0EkVzH+tH1ZSN79A8An+qod4mNmE0j+W87t\nr/eBJ1B/Vcookivp74L6qJqYWY2ZnQnUAXPVN1Xl58A9IYQHcxeqj6rGpOxtb6+Z2c1mtjeof6rE\n54CnzOz27G1vrWY2c/sfq62P+vKWg7HAAGB5p+XLSTaIVJfdSQZP6q8qYGYGXA08GkLYfo+Z+qjC\nzGyqma0l+UruemBGCOFl1DdVIftPxkHARQX+rD6qvMeBc0i+zp4FTAD+bGbDUP9Ug32B80i+4TgR\n+AVwjZl9Ofv3quqjgX1doYiU5HrgAOCoSjdE8rwETAPqgS8AN5nZMZVtkgCY2V4k/wSeEELYWun2\nSFchhDk5v75gZvOAt4AzSI4tqawaYF4I4eLs7/PNbCrJPx+/rlyzCuvLK7SrgG0kN3/n2g14pw/b\nIT7vkNzjrP6qMDO7DjgFOC6EsCznT+qjCgshtIcQXg8hPBNC+AHJQ0fno76pBo3ArkCrmW01s63A\nscD5ZraF5CqS+qiKhBDagIXARHQMVYNlwIJOyxYAH83+XFV9VNIVWjP7BvBdkkvK84FvhRCeLBA3\nhuSrhDeBTSQb4kwzezsn7GTgts7TQEhF7NupH1YDXzGzW7O/DwOOAO5Vf/WZC0g+hP8RGFtgRhD1\nUXWpB/YERqO+qbSVJFf6cl0CvAH8iuSedPVRdRkKTCaZMUTHUOW9CDR22tbTgVU5y8rdR7XAeGBO\nCGF1T4GWfSrNLTv11o0kUzTMA5qAvwP2DyGs6hR7FnBLVAUiIiIiIh86O4Rwa08BpQxoHweeCCGc\nn/3dSOZjvCaE8NNOsUcCj1178zAmThmQV84/N23gn5vr8pZ5W7KZIe721rLZFRezGU5pfbB4EPCH\nxk+6y6xxvntvM+MmsOhaaqH+MXftEDBXXDnKHOzsc4At1Drr9jmfn7nrvpZvOesu/L4L9dFA2l1l\ndjCgeFBOCzwGRtymePwhf++Km/N0j+evD9TQ4a67nUHuWLcCJ5BC/bPre2vdRa7cZaS3cneZ3uOt\nPBPg+Or2ngv9JRZ+P4X6J6bUmHPXog++oe3ZPizyFRjxgTV843pX3FFffspd5l2/O9EVN8h5PgJY\nwbguy65uWso/Ne+Zt2w3VrjLTLsv2yO+1B7kPB/Wbd3gLnPd4OGuuLjPVe+x7jvHAdQE3/l41Lri\n++ZLC+HvzwXgqBDC3J5io245yJl667Lty0IIwcy6m3prE8DEKQM4sCG/qpH11mWZtws24p+vt45t\nrriocf0631X0zu+vJwOcH8jeZvZ2wDKyvqZL+2MGDR3Og6QcZdbiH1htch4C3u1ex2R33R939lF3\n77tQHw1ytrQcA9pBwXesJfZwRX28wdfOGuc/OwBby/EsbIETyMhRXftnz5X+IpeO87bTf/LyHm9x\n+4eXr53ec6G/xMLvp9BnUEypMeeuWoa54iZ7t3vEB1a9bzwLtf5vh6c2+P4pjJlZ/226DoyG1w9g\nckP+8r2jjt90+3JLRN1DnIO64Vv85662Ib764z5Xvce6b5wAMMD5WTDmfWfViU3FAmL/DdfUWyIi\nIiJSVfo09a2IiIiISNpiv3sraeqtf27awMj6/Mvqy5b4L4mLiIiIyI7rtt/C//5t/rL3I25LiBrQ\nhhC2mtnTwPHA3fDBQ2HHA9d0t94/N9d1uc/izhb/gzvS907LxNz9JJWgPqpup52p/qlmOn6q399k\nRlW6CdKDtI+hM7+QvHI98ywcfpxv/VKejrgKuCE7sN0+bVcdcENMIadn/DMVSN87XSf7qqc+qm7q\nn+qmz6Dqd2JmdKWbID2otnNc9IA2hHB7dnL3S0luNXgWOCmEEPH8roiIiIhIOkqavyaEcD1JbnkR\nERERkYqKHtCa2XTgeyTz0e4BnB5CuLvntQKe+eC88w8OZaMr7sO6i4uZ+5BP/tEX1+GfX25bRSec\n8LXTOw8s+Oeh2+1i/x3fS/+77+unug1Fp6v7wKZhhSZWL90p3OuO9W5P77YEGLFhnStuzbB6d5kd\nwTdP4dBtEfPQ/nK2K2wb1zrj/POm1jjnpi7HXKxby/Itt/88E3MMp8/XzsqeC8HfTv/+MYeTXHHj\necMVN9C5DwNsqXUmEvmsu0jqaXPFbSwwt2x3dmeZvwFu6X62DY6Y49x7WG4cPNRdpH8e6d4lVupN\n3eA/NgZeVjxmQLfTDXRVypljGMltBl8nZkZvEREREZEyKOUe2vuA++CDGQ5ERERERCqm0t/tiIiI\niIj0iga0IiIiItKvaUArIiIiIv1aSdN2xUpS3+aPnU/LDK66SXlFREREpO+1vAi3LchftiYiqWzf\nDGgLpL4VEREREQHIHJC8crW+A4fc5Fu/lHlohwET+XCWtX3NbBrwbghhcWx5IiIiIiK9Ucpl00OA\nh/gwW8KV2eU3Al9LqV0iIiIiIi5RA1ozuwiYAawDNgJzgQtCCAvL0DYRERERkaJir9BOB64Fnsqu\n+2PgfjObEkLoNh/trv9rLXvuWbzwpRf7Upt+ZOW7rjiApeN8ZUbZ54T0y4xIX5m+9FPftTtT313i\nSH233cx/8W2jhXUT3WWOY6W/AQ7T+a+I6PRTbG4Z4ktzGZUa0blrbhjgT3N59D884Irzpv0dvsWX\n8hdg7ZAR7ti0DfKfuqA+/eOyHOl8/Xa09+M3gHZXnDe1aof53/faAb79ffefvu4u813GuOJi0tS/\nwx6uuH14y12mf/8oQ/p3Z3riEJGfyl9/zHiicglfzZEp3vy7UNyANoRwSl5FZucAK4BG4NGYskRE\nRERE0tDbeWhHkQzvY647iIiIiIikpuQBrZkZcDXwaAjhxfSaJCIiIiLi15vJYa8HDgCOSqktIiIi\nIiLRShrQmtl1wCnA9BDCsmLxTffBqNr8ZWceCJkDS6ldRERERHYkLWugpS1/WZvv2TqgtMQK1wGn\nAceGEBZ51mk+GRocsxyIiIiIyM4nMyp55WrdCI2v+daPnYf2eiADnAqsN7Pdsn9qCyFsiilLRERE\nRCQNsQ+FzQJGAg8DS3NeZ6TbLBERERERn9h5aHs7zZeIiIiISKpibzmYBZwHjM8u+itwaQjhvh5X\nbAVecVRwsa8da3fxZUMCf9aZmGxMjCpHVq90s+jEZdBJP0vKQGeWlNk/dhfJO84yh9gWd5neft/M\nYFfc/4c/9dn/4bOuOG/GGYCRr/oyDW34mD8bk3sbmW8bAfwTV/vqDr66hy3wv5+2g7z7sT+DjruP\nlrqLhAnpH5fp828j/7kr5v2UI/uYr/4BEWX+Lb9zx7oE/3Yf0eHLotdSc5a7zHHbVrjivFnKAHZx\nTmdfyf0j5nPVP6aIGU+UY+xRuSxpXOKIeR34nq+42DPhYuACoIEkO9iDwF1mNiWyHBERERGRVMTe\ncvD7Tot+aGbnAUcAC1JrlYiIiIiIU8mJFcyshuRhsDrgL6m1SEREREQkQinz0E4lGcDWAmuBGSGE\nl9JumIiIiIiIRylXaF8CpgH1wBeAm8zsmJ4GtU2vwKhONZ05DjK7l1C7iIiIiOxQWv4LWh7NX9a2\nwb9+9IA2hNBO8twZwDNmdhhwPsnsBwU1T4IG/8OOIiIiIrITyUxPXrlaX4fGMs1y0F0ZQ1IoR0RE\nREQkWuw8tJcBfwAWASOAs4FjgRPTb5qIiIiISHGxtxyMA24E9gDagOeAE0MID6bdMBERERERj6hb\nDkIIM0MI+4YQhoYQdidJrPCAmV1VnuaJiIiIiPSsN/PQHgqcC8wvGvyvwMeLlxnMl4Jt6YA9XHEA\nI1jrC4zIKDe19Ul/sFu66edqItKl+stMP10qte4i3WX+nK+7y7wg/NQVN+n/X+KK+/w/3OKu29vn\n28yfbvG9yb4NGpPG0JzpI93HGrAfr7ri3CkUv+Kumprn/Ptx2jZNK0ep1Z+KG2L2ufTfT1y6VOdx\nGZEG9W32csXthi+lbIwB7b5jaPQQX+pZgPaamNTqPk/T4Io7jkfcZXpT1Zbnc9VX97aKpq6O4T8u\n3cfG1FSrLW1Lmtlw4GZgJrCmlDJERERERNJQ6r8GPwfu0b2zIiIiIlJppWQKOxM4CDgk/eaIiIiI\niMSJnbZrL+Bq4IQQwtbyNElERERExC/2Cm0jsCvQavbBE1wDgGPM7JvAkBBCl6cJmn4Eo0bmLztz\nBmRmxDdYRERERHYsLf8neeVq8z9rHD2gfQA4sNOyG4AFwOWFBrMAzZdCg2OWAxERERHZ+WQ+m7xy\ntf4VGj/vWz9qQBtCWA+8mLvMzNYDq0MIC2LKEhERERFJQxoToPkmLBQRERERKYOSEytsF0L4VBoN\nEREREREpRewsB7OB2Z0WvxRCOKCn9Zbssgujxw0qWv5gnBMnRCWSST/rzCl2rzPSf/Ham3En7cwn\ncXWXIaNJxB7ozRo1j8P9ZZqvzOlfu98V959Pn+2u+2eN57viBgR/dprBW7a44jYOqXOXSeFb47sY\n/d4md5ELdhnujFzuC7vTXbVbOfb3LbXFz4MfKke2Lm+Gp3QzF8aodJZD/zbyu5fPuOIOw5eFshzb\nvS5sdMfustJ3rC8Z5z/PLGZvV1zcZ5t/X6pU3Rsj0mUO8Y6RolQuK2AY44ipd1db0hXaF4Dj+fCM\n115CGSIiIiIiqShlQNseQliZektEREREREpQyvcWk8xsiZm9ZmY3m5nvewIRERERkTKIHdA+DpwD\nnATMAiYAfzazYSm3S0RERETEJXYe2jk5v75gZvOAt4AzgF91t96/NK1l5Kj8hww+e2Ytp2aGxlQv\nIiIiIjuglt/Bbf+Zv2zN+/71ezVtVwihzcwWAhN7ivth8wimNsQ83SsiIiIiO4vM3yavXK3z4ZDj\nfev3au4PMxtOMphd1ptyRERERERKFTWgNbMrzOwYM9vHzI4E7gC2Ai1laZ2IiIiISBGxtxzsBdwK\njAFWAo8CR4QQVqfdMBERERERj6grtCGEDHAY8FugDjgduNPMGsrQNhERERGRomJT344CHgP+RDJ1\n1ypgEvBeT+vt+f67jO8xIrF0l11c7biFs1xxALP4X+5Yry/za2ekP+2uP4WjL51eTPrGcqSPNPOl\n03vv6/60f9uc7+kgnnWX6X3vLWRccR8Z60zVCnj3D+/7Bhi8ydlHQ2LSMvv2udax7iJ5vuNAV9wE\ne9MV994E/37kT18Zkzbbtz1HPuZPXbnh2HKkpE43zWU5Umxvwf8A8cCUU5uWy3jecMUNcCbe7DD/\nOWHDYF/62dU48pBmTVy/xB3rtTeLnZHpf65W0vN83B17GPNccXHpm9NPc+1NU8/TjphX3NVG33Jw\nIbAohDAzZ9lbkWWIiIiIiKQm9t+XzwFPmdntZrbczFrNbGbRtUREREREyiR2QLsvcB7wMnAi8Avg\nGjP7ctoNExERERHxiB3Q1gBPhxAuDiHMDyH8EvglSRrcKC2/i11D+tKdLVsq3QQpQn1U3dQ/1e0O\n9U/Vm9vydqWbID2otnNc7D20y4AFnZYtAD7f00rf/gHU1+cvW7K0a0YIqR53tWzh9MzgSjdDenDX\nbeqjaqb+qW53tmxlhvqnqs1tWcKRmb0q3QzpRtrjhJaH4LaH85etWedfP3ZA+xgwudOyyRR5MOyq\nf4WGafnLTjs7smYRERER2SFlPpm8crW+Aod807d+7C0HzcARZnaRme1nZmcBM4HrIssREREREUlF\nbGKFp4AZQAZ4HvgBcH4I4bYytE1EREREpKjYWw4IIdwL3OsMrwV4aWHXP7S1Qev8/GUr632TSi/j\nHWf18Lxzomr/NPOwls2uuJHOumNaYM64EPWOusa+39bB86357ffWHRM7KPiTNWwy3/Zc5Z6g279/\nWHC+93ee8de92rl/dFP3+2u69tFo5/1G743w75vm7KOVEbvcolZftmxv/wyJ2I82O/ejqMQKBfqo\nUP+8U+Bc2J1VI3yTk4eIhCde/vNMRLIVZ5ntEdvdO4F7obrfbws819p1fe+5M+YMu4SVrrj5zu3Z\nHpFQoib4YpewwV3moKW+uBXv+c8zb7Cmy7INbVt5ozV/+egyfK6Wg3d/f4333WXWOvs97vPfyzdO\nAKhxno/HOJImvPThx3nR7DkWvB/UJcjeknBL2SoQERERkR3d2SGEW3sKKPeAdgxJitw3gU1lq0hE\nREREdjS1wHhgTgihx6/2yjqgFREREREpt9hZDkREREREqooGtCIiIiLSr2lAKyIiIiL9mga0IiIi\nItKv9fmA1sy+YWZvmNlGM3vczA7t6zZIwsymm9ndZrbEzDrM7NQCMZea2VIz22BmfzSziZVo684o\nm5Fvnpm9b2bLzewOM9u/QJz6qALMbJaZzTeztuxrrpmd3ClGfVMlzOzC7Hnuqk7L1UcVYmazs32S\n+3qxU4z6p4LMbE8z+7WZrcr2wXwza+gUUxV91KcDWjP7InAlMBs4GJgPzDGzsX3ZDvnAMOBZ4OsU\nmDXZzC4AvgmcCxwGrCfpr8F92cid2HTgWuBw4ARgEHC/mQ3dHqA+qqjFwAVAA9AIPAjcZWZTQH1T\nTbIXTs4l+czJXa4+qrwXgN2A3bOvo7f/Qf1TWWY2CngM2EwyBesU4DvAezkx1dNHIYQ+ewGPAz/L\n+d2At4Hv92U79CrYNx3AqZ2WLQWacn4fCWwEzqh0e3fGFzA2209Hq4+q8wWsBr6qvqmeFzAceBn4\nFPAQcFXO39RHle2b2UBrD39X/1S2fy4HHikSUzV91GdXaM1sEMlVjD9tXxaSd/8A8Im+aof4mNkE\nkv+Wc/vrfeAJ1F+VMorkSvq7oD6qJmZWY2ZnAnXAXPVNVfk5cE8I4cHcheqjqjEpe9vba2Z2s5nt\nDeqfKvE54Ckzuz1721urmc3c/sdq66O+vOVgLDAAWN5p+XKSDSLVZXeSwZP6qwqYmQFXA4+GELbf\nY6Y+qjAzm2pma0m+krsemBFCeBn1TVXI/pNxEHBRgT+rjyrvceAckq+zZwETgD+b2TDUP9VgX+A8\nkm84TgR+AVxjZl/O/r2q+mhgX1coIiW5HjgAOKrSDZE8LwHTgHrgC8BNZnZMZZskAGa2F8k/gSeE\nELZWuj3SVQhhTs6vL5jZPOAt4AySY0sqqwaYF0K4OPv7fDObSvLPx68r16zC+vIK7SpgG8nN37l2\nA97pw3aIzzsk9zirvyrMzK4DTgGOCyEsy/mT+qjCQgjtIYTXQwjPhBB+QPLQ0fmob6pBI7Ar0Gpm\nW81sK3AscL6ZbSG5iqQ+qiIhhDZgITARHUPVYBmwoNOyBcBHsz9XVR+VdIXWzL4BfJfkkvJ84Fsh\nhCcLxI0h+SrhTWATyYY408zezgk7Gbit8zQQUhH7duqH1cBXzOzW7O/DgCOAe9VffeYCkg/hfwTG\nFpgRRH1UXeqBPYHRqG8qbSXJlb5clwBvAL8iuSddfVRdhgKTSWYM0TFUeS8CjZ229XRgVc6ycvdR\nLTAemBNCWN1ToGWfSnPLTr11I8kUDfOAJuDvgP1DCKs6xZ4F3BJVgYiIiIjIh84OIdzaU0ApA9rH\ngSdCCOdnfzeS+RivCSH8tFPskcBjN/8rTJmQX07Tv0HzdzsVPsDZCG8cwBZfWMxWeGh/38N7n3rt\nL/5CvQ3o8BfZGwX7J+YGFW87Y8rc5ozbFFHmMGdcOba79713U3fBPvKKOYYqWGZwHr9dvvDqga0q\nHpOGpp9C8/c7LayNKCBmP66UmBNnH527vLo9frzHpfd8BPC+M67eGRdx3gxLfXGH7PKUu8yn1x3i\nC9zVXWTB80fT5dB8YaeFMdu9PxgZEfte8ZBo3vN2gWO96Qpo/l6BWO+xvkvxkAWvwJe+BcBRIYS5\nPcVG3XKQM/XWZduXhRCCmXU39dYmSAazDVPy/1A/vOsyd2tiPjg3+8JizstvTfOddRqGRBTqbUAf\nHcwF+ydmu3vbGVNmuzNuQ0SZ3pNJOba79713U3fBPvIqx+OgMWU69/fgPH7Z21+1LSsek4b6EdBw\nQKeFdREFxOzHlRJz4qyygUi3x4/3uPSej8A/EHF8wANR580wtHgMAOP83w43eAfoe7qLLPieCh5D\nVbYf9droiNiVZajfe94ucKzXDy/QP+Dvo3HOuETRf/FjHwrT1FsiIiIiUlX6NPWtiIiIiEjaYr94\nLGnqraZ/Sy5N51qyIrJmEREREdkhtdyZvHK1eW9vIXJAG0LYamZPA8cDd8MHD4UdD1zT3XrN3+16\nr1LLH2Jqlr6WObnSLZBi1EfVLfPpSrdAeqLjp/plTql0C6QnaZ/jMqcnr1ytz0Oj81gt5dGQq4Ab\nsgPb7dN21QE3xBSik311U/9UP/VRddOHcXXT8VP9Mp+pdAukJ9V2jose0IYQbs9O7n4pya0GzwIn\nhRDK8fydiIiIiEiPSpq8J4RwPUlueRERERGRiooe0JrZdOB7JPPR7gGcHkK4u8eVavDNm+ed0zBm\nHknvxM7mL/IGznHFfT7c5y+0HPO2pl13Oeb/8yY2AFjvjFsUUeaBzjjvdvfOm1ouvZgku1vOfg8R\nZ5NLP1ZoNu6ufvTXK1xxG4b5D+Bh7c43X465er2JIiqtkvNiV/IcFxMbsX8EZ5KM9vG+uEGL/XXz\nuDPu8t/5y7zJGRczz6h3Xt9yzIdejmPdK6buchwbXhFjJO9nwWbHPPCbI8YIpUzbNYzkNoOvE/ex\nKCIiIiKSulLuob0PuA8+mOFARERERKRilFhBRERERPo1DWhFREREpF/rk1uhm67omiks8+nqm8NM\nRERERPre//4N/OY3+cvKlimsVM3fg4YD+qImEREREelvvvh3ySvXM8/CkdN96+uWAxERERHp10qZ\nh3YYMJEPZyXb18ymAe+GEGJmxxMRERER6bVSbjk4BHiIZA7aAFyZXX4j8LWU2iUiIiIi4hI1oDWz\ni4AZwDpgIzAXuCCEsLAMbRMRERERKSr2Cu104Frgqey6PwbuN7MpIYSN3a61CdjgKN2b4sybzjaG\nN+0eMJx1vsCYdItpp7SrZN1A8KbcqPeXad7Ut2P8Zford8YNKUPdFU7b6d4/Io6hDC2plvnMkIPc\ndR894Bl3bOoGR8RudcaVI/2sVyVTcUK/Sb1r5/niBs5Jv25Od8b9+Hl/md52TvMX6RojQFy69LTP\nXRH7RnDum+0RnxmDvIHl+PyPKNOcny9D3iseM7hcsxyEEPIm2jKzc4AVQCPwaExZIiIiIiJp6O0s\nB6NI7qN9N4W2iIiIiIhEK3lAa2YGXA08GkJ4Mb0miYiIiIj49SaxwvXAAcBRKbVFRERERCRaSQNa\nM+Etd0cAACAASURBVLsOOAWYHkJYViy+6eoCqW9PTF4iIiIisnNruQtuuyt/2Zpypr7NDmZPA44N\nISzyrNP8T9DwsdiaRERERGRnkDkteeVqfR4O+Yxv/dh5aK8HMsCpwHoz2y37p7YQwqaYskRERERE\n0hD7UNgsYCTwMLA053VGus0SEREREfGJnYe2t9N8iYiIiIikKvaWg1nAecD47KK/ApeGEO7rccXF\n+LJR/DdnQyJuEmaXiFin1d5UVDEZZ9LOeFOOuiP2Fm9irbDSX6Y7m8t3I8q8NSLWY1xEbNHHKUvg\nzTqzuQx1R2TwGek9iJ373D2c6q77aHNmCgvuIv3HkDcbEvgPokpm6+onmbrKkg0xIjPepa6nTWB2\nzD7n5d2P+J6/zG2XltKSnrU542IyhaV9DJVhfx9QyUx/FWaOPjdnYlaIv+VgMXAB0ECSHexB4C4z\nmxJZjoiIiIhIKmJvOfh9p0U/NLPzgCOABam1SkRERETEqeTECmZWQ/IwWB3wl9RaJCIiIiISoZR5\naKeSDGBrgbXAjBDCS2k3TERERETEo5QrtC8B04B64AvATWZ2TE+D2qabob4uf1nmE8lLRERERHZu\nLfdCyx/yl7Wt9a8fPaANIbQDr2d/fcbMDgPOJ5n9oKDmL0HD+NiaRERERGRnkDkleeVqfREav+hb\nP415ZWvwTxYkIiIiIpKq2HloLwP+ACwCRgBnA8cCJ6bfNBERERGR4mJvORgH3AjsQTIN8nPAiSGE\nB9NumIiIiIiIR+w8tDNzfzezC4EHzOzqEMK3u11xH2Byiq2pKx7ygTJkwUq9bqhstp8y8Ca8+eHk\nH7rL/Ndn/8UXuNVdpD/7mHf/iMli51WOfTNmf/NuoxX+Iuv3cG4oZ91jWOWv3MudYQn/9ozILpV6\n3eA/J1UyW1c5tnsM5zayiOPyR58qrSmpGOSMWxSxMZ90xsV8Bu4REevl/SAqw3Hh3o0X+8t0fxbE\nHBflyEjoPc95+ny0v9qS76E1s0OBc4H5pZYhIiIiItJbJQ1ozWw4cDMwE1iTaotERERERCKUeoX2\n58A9undWRERERCqtlExhZwIHAYek3xwRERERkTix03btBVwNnBBCiHn0RkRERESkLGKv0DYCuwKt\nZrb92bgBwDFm9k1gSAihy3OFTc1QPzx/WeZEyJwU32ARERER2bG03JG8crVFzBwUO6B9ADiw07Ib\ngAXA5YUGswDNTdDwsciaRERERGSnkJmRvHK1PgeNztRdsfPQrgdezF1mZuuB1SGEBTFliYiIiIik\noeR5aHN4py4WEREREUld1IDWzGabWUfuC9i9xyxhIiIiIiJlVEpSzReA4/kwYVrxJGeGK71acKaf\nW3TIWF8gsM8LzpSYESkp/4H/8Ad7pZ16LybloFdM2k7nnvU1/j31Mvl//EWmnjozZht56475DmS9\nMy7myHfGWsR7r12Wbt0H86y/8rTTYUJ5Ut8OccaVo53lSJEbk9K2kmWWoS9tqTOwHOftzb6wzF63\n+sv0plOK2d83OOPqIsqsZKpn53u3mHTp9c64cqRLjznWvPV7+qcj/WpztYcQVpawnoiIiIhI6kq5\nh3aSmS0xs9fM7GYz2zv1VomIiIiIOMUOaB8HzgFOAmYBE4A/m9mwlNslIiIiIuISO23XnJxfXzCz\necBbwBnAr9JsmIiIiIiIR69uHQ4htJnZQmBiT3FNVxXIFHaSMoWJiIiICLTcmbxylTNTWB4zG04y\nmL2pp7jmbytTmIiIiIgUljk9eeVqfR4aT/atHzsP7RVmdoyZ7WNmRwJ3AFuBlphyRERERETSEnuF\ndi/+L3t3HiVHdd/9//2d0WhHEiBWgwGxCIlFIGHABgEBggmOMWCMaWMccAgBL4coTgx44zFP7BDn\nGBHWJ3YSsw8/HmIbiDFgVj+AQYYBgdCAMDtCu2CEds3M/f1RLeie6Zn+3p7qrhrp8zqnz5mu/va9\nt+tWVd+prrpfuBXYGlgCPAYcGkJYlnbDREREREQ8Ym8KK9SrISIiIiIitYi+htbMdgT+BfgLkpwd\nrwBnhxDa+nxTF66MEOZszcf/5Mz+VSfH8ED6hdYjU0mGvFmjJsxe6C/Uu4528RfpziSTZuaTWDHZ\ndrwZiT5eS0P6FyIm73t+j37vI/3Q/i/+yRV3ZMfj/sq9GW/qsU86szYB/kxhg4V3O45Z7/XIBFWP\nffj0OpTpZIt8cbf86Zw6VB4R680AFlOmt9+9ZcZkbfSKGYXVI7tkPbb3NL8vI9oXNaA1s3HA48CD\nJHPRLgX2BN6LKUdEREREJC2xZ2gvAt4KIZT+K/dmiu0REREREYkSmynss8DTZna7mS0yszYzq8Pv\nFCIiIiIiPrED2gnA+cDLwHHAdcCVZnZm2g0TEREREfGIHdA2Ac+EEL4fQpgdQvg58HPgvNiKW++P\nfYc0Uutvs26BVNN6b9YtkP603pN1C6Q/6p/8Ux/lW97GCbHX0C4A2nssawdO6e9NM67onfp2/hIo\nHBdZuzRM671Q+IusWyH9ab0XCs4MKtJ4rb+FwglZt0L6ov7JP/VRvqU9Tmi9M3mUqmfq28eBiT2W\nTaTKjWEz/6536tsT/yGyZhERERHZJBU+lzxKtb0A0z7je3/sJQczgUPN7GIz293MvgScA1wdWY6I\niIiISCqiBrQhhKeBk4EC8ALwXeCCEMJtdWibiIiIiEhV0ZnCQgj3AN5LtYcDtC/cE0aWpwHpWPM6\nbW/tVh7d4mzDUGftgG1wlhmRWWNll6+hW7ztrBzisp94DDCjScea12l7Y7fqgQMU00zzrqOYRHLe\nMmN/y/Dwfvjuyos7Vlfoo+UDK7Mi5zoKERnN3rZtXXGd833px7oiUrsM8cYOdB9a/Tptr/Xon7UR\nBQx3xkXtRCmXGXPcylmZFfsnpsyY9e7d316rQ93O42GIGA14v1cHum1W7KMst7l69Pn6iDK9x4QY\nAzjO9TlO8H5fjqge0v7GapKEtNU/vYWYkVyk4iUJt9StAhERERHZ1J0RQri1v4B6D2i3JkmR+wZx\n5yZEREREZPM2HNgVuC+EsKy/wLoOaEVERERE6q0eVwaKiIiIiDSMBrQiIiIiMqhpQCsiIiIig5oG\ntCIiIiIyqDV8QGtmXzez181sjZk9aWafaHQbJGFm083sLjObb2bdZnZihZhLzexdM1ttZr8zsz2y\naOvmqJiRb5aZrTCzRWb2KzPbq0Kc+igDZnaemc02s47i4wkzO75HjPomJ8zsouJx7vIey9VHGTGz\nS4p9UvqY2yNG/ZMhM9vRzG4ys6XFPphtZlN7xOSijxo6oDWzLwI/BS4BDgRmA/eZ2fhGtkM+NAp4\nDvgaFaZXNrMLgW8A5wIHA6tI+isitYUMwHTgKuAQ4FiS1CP3m9mH01GrjzL1NnAhMBWYBjwE3Glm\nk0B9kyfFEyfnknznlC5XH2VvDrAdsH3xcfjGF9Q/2TKzccDjwDqSKVgnAd8C3iuJyU8fhRAa9gCe\nBP6t5LkB7wDfbmQ79KjYN93AiT2WvQvMKHk+BlgDnJZ1ezfHBzC+2E+Hq4/y+QCWAWerb/LzAEYD\nLwNHAw8Dl5e8pj7Ktm8uAdr6eV39k23/XAY8WiUmN33UsDO0ZtZCchbjwY3LQvLpHwA+2ah2iI+Z\n7Uby33Jpf60AnkL9lZVxJGfSl4P6KE/MrMnMTgdGAk+ob3LlGuDuEMJDpQvVR7mxZ/Gyt1fN7GYz\n2xnUPznxWeBpM7u9eNlbm5mds/HFvPVRIy85GA80A4t6LF9EskIkX7YnGTypv3LAzAy4AngshLDx\nGjP1UcbMbF8z+4DkJ7lrgZNDCC+jvsmF4j8ZBwAXV3hZfZS9J4GzSH7OPg/YDfi9mY1C/ZMHE4Dz\nSX7hOA64DrjSzM4svp6rPhrS6ApFpCbXApOBw7JuiJR5CZgCjAVOBW40syOybZIAmNlOJP8EHhtC\n2JB1e6S3EMJ9JU/nmNks4E3gNJJ9S7LVBMwKIXy/+Hy2me1L8s/HTdk1q7K6DmjNbGuS/7zeADqB\nLuCTZlZ6cJkErOl515xkYkJJP2xNco3zUWb2SknM7sDL6q+GuhA4AvhrYAcz26G4XH2UL/8NHAP8\nb+AG1DdZOxLYBng2+YEDSH4lPMLMvgmcgvooj94huTFsCeqfrC0DFvdY1yuB3YvLGvEdNBzYFbgv\nhLCsv0ArXsQbxcy+DvwDySnl2cA3Qwh/rBD3JeCW6ApERERERBJnhBBu7S8g+gxtydRb5wKzgBkk\nUzTsFUJY2iP8DYBP3Hw+W0zaseyF52fczP4zv1y2zDu07oxodgudzkj/wL6JbldcN83uMvOmUv/E\n8a1P77oE6HKuz8Vs6y5zOxa74rz/9z38x79w1330wb91Rlau/PkZt7D/zDPKlm350Wwq/XqPrZx1\nx6jHPuS7zH80K911r2QLd6xf789eqX9itvfBfPwYDAZ+jBscvHvlGkZUDyoayZpU64bK3+svzriR\nfWZ+pWyZ/zs9a75Pn/2xq3Z970O+z/4Vx1ULb7Sv5X99+W0ojif7U8slBzOAfw8h3AjJ5OLAZ4Cv\nAj/pEbsWYItJO7Ll1F3LXmgZO7LXMu/Gvx7/9GbDWO+M1IC2VKX+iZPdgHYVO7nL3JKRrjj3Dxnv\n+39h2XJquzOycuWV+mgbRjnL9A/6/bIb0I6lw113C+PcsX69P3ul/tGANj8GfowbHLx7ZQuj3WVu\n4RyExQxoK32vt4wdydipE8qW+b/Ts+b79Nkfu2rX9z7k++wTnd+/RWurBUTNcqCpt0REREQkb2Kn\n7dLUWyIiIiKSKw1NfSsiIiIikrbYa2iXkky9tV2P5dsBC/t60/MzbqZlbPm1EiN3GR9ZtTTSzgVd\nQZJ3OxcOzboJ0g/1T77pGJd/OxY07Xaepb0P3d/6Hr9rfb9s2cqOLvf7owa0IYQNZvYMyVyLd8GH\nGYyOAa7s6337z/zyZnHx/aZEB/v8Ux/lm/on39Q/+fcxDWhzLe196LjClhxX2LJs2cttqzlr2it9\nvKNcLbMcXA5cXxzYbpy2ayRwfQ1liYiIiIgMSPSANoRwu5mNBy4ludTgOeDTIYQlaTdORERERKSa\n6JvCzGw6cDzQAgwD/jmE8HTaDRMRERER8ajlkoNRJGdl/xP4pecNTXTRRPULe70T538QkS1jGP2m\n/i1h1UOKvJO9ZylmQusu5+cZEjEpvFezY7vYyLt9bMXyWpszcI/4Q8Mxvjjv5wbYmp7J+ipbEpVY\nIf0Jwt9xJr/Ygg9ccTFZjkTSUI9jrFdzxLF4pTNhwnBn9i+A1c79bUREmTHfBZuSoyK+NO7kpPo1\nJE3OneOQP82uGtPylr/aWi45uBe4Fz68IUxEREREJDP5P9UoIiIiItIPDWhFREREZFDTgFZERERE\nBrVabgqL9tyMW3tlCvt44VA+rkw6IiIiIpu91v+B2/6nfNn7vvuCgQYNaA+Y+SVlChMRERGRigp/\nmTxKtb0IB53se3/0gNbMRgF78NE8VxPMbAqwPITwdmx5IiIiIiIDUcsZ2oOAh0lmGgvAT4vLbwC+\nmlK7RERERERcapmH9lF0M5mIiIiI5ETUgNbMLgZOBvYG1gBPABeGEOal0hpndolHLzneXeTnL73F\nWbc/78vtT/yVK+60w250l5m2mIwXMVln0laP7DDezDgAo1idbuWd/lBvHw0J/nV04fqfuOLOHna9\nu0yvzoiMZv6sRL61tJ6h7rqzFLO9d0esT8m35zjQFXcAz6Zet3ebGxKxba6ty7YZk3ttEHB+nFNX\n/7e7yDtHDZJMYU7muEjVFvrLiz3TOh24CjgEOBZoAe43M+WdFBEREZFMRJ2hDSGcUPrczM4CFgPT\ngMfSa5aIiIiIiM9Ar4UdR3JifXkKbRERERERiVbzgNbMDLgCeCyEMDe9JomIiIiI+A0kscK1wGTg\nsGqByhQmIiIiIn1pfSh5lOpY6X9/TQNaM7saOAGYHkJYUC1emcJEREREpC+Fo5NHqbZ5MO183/tr\nyRR2NfA54MgQwlux7xcRERERSVPsPLTXAgXgRGCVmW1XfKkjhLA27caJiIiIiFQTe1PYecAY4BHg\n3ZLHaek2S0RERETEJ3ZA+zVgDrCy+HgK+EwIIbuUWCIiIiKyWYu9hvZt4ELgFZKclGcBd5rZASGE\n9pTb1rd/ipgl7NL0q7fXnTntqs7/kA8xaXLTNjIi9exafAnptmVxrc0ZuDnZVQ0w+j+c6Su/nn7d\n41nmjl3JFq44bzLMxWxXPahoO/f24U/FOQrfrbjrGeYuU3IuIlPrm5fu7YqbdskzNTamb13ONLUf\nOPdJgAXs4Irbi3nuMjdXw2Nm8R9Vt2ZkYsUJ1WNWdvvLi80U9psei75nZucDhwKNG9CKiIiIiBTV\nPA+tmTWRXDs7EvhDai0SEREREYlQy7Rd+5IMYIcDHwAnhxBeSrthIiIiIiIetaS+fQmYAhwMXAfc\naGa+C4RERERERFIWfYY2hNAJvFZ8+qyZHQxcAPSZy0Gpb0VERESkL3d0wR09bgLriLj5suZraEs0\nQf+37ir1rYiIiIj05dTm5FHquW44coPv/bGZwn4M/BZ4C9gCOAM4EjguphwRERERkbTEnqHdFrgB\n2AHoAJ4HjgshPJR2w0REREREPGLnoT2nXg0REREREanFgK6hNbOLgB8DV4QQ/r6vuA0MYT0tVctr\nxpnlKPxfZwsB9oiIdbrLGffl9KseNJwXcl8+Zoa7yLM+uMEV902udpd5Nd9wxe3+4X2QVWzvrrou\nHvumM7AOmcLWMdQd2+WcYKU5+NLEzO2e7K57u2ZvpjB/Dr1VjHbFteC8GEzyLyLF4p//wPel4S0y\n4j4ZhrPGFfc+W7rL9GZ4tIiWjmCtK25DxHEmU87OvGWnU+rbjhzb4vvVY0a9C1zrK6+WabsAMLNP\nAOcCs2stQ0RERERkoGoa0JrZaOBm4Bzg/VRbJCIiIiISodYztNcAd+tmMBERERHJWi2pb08HDgAO\nSr85IiIiIiJxYueh3Qm4Ajg2hOC+u2HOjJt7ZQr7WOGT7FT4VEz1IiIiIrIJap0Nt71Qvux9372C\nQPwZ2mnANkCbmW28h68ZOMLMvgEMCyH0uq1x35lfZtzU3SKrEhEREZHNQWFK8ijV9i4c5JzlIHZA\n+wCwX49l1wPtwGWVBrMiIiIiIvUUm1hhFTC3dJmZrQKWhRDa02yYiIiIiIhHzfPQltBZWRERERHJ\nTNSA1swuMbPu0gewfX9ZwkRERERE6qmW1LdzgGP4KLFbZ3rNceaK+8MlEWXeUlNL+vWF9IvcXI36\nz/RP8L/LDqmXuSPvuuK2um5+6nXHeDDD30vWMyyzupc/8jF/8DH1a0c13TRnV7lkZpitS7W8iKy7\nDHGmlO+OOL81mg+ckf6WbqDFHbspecAyPCDVi7PbH/7OoVVj5rWtgmtfqBoHtQ1oO0MIS2p4n4iI\niIhI6mq5hnZPM5tvZq+a2c1mtnPqrRIRERERcYod0D4JnAV8GjgP2A34vZmNSrldIiIiIiIusdN2\n3VfydI6ZzQLeBE4DfpFmw0REREREPGq5hvZDIYQOM5sH7NFfnFLfioiIiEhfHmpdykO3LStbtvJ9\n/7wDAxrQmtloksHsjf3FKfWtiIiIiPTl6MJ4ji6ML1s2r20V5x/km+Ugdh7afzWzI8xsFzP7FPAr\nYAPQGlOOiIiIiEhaYs/Q7gTcCmwNLAEeAw4NISzr910iIiIiInUSe1NYoV4NERERERGpRfQ1tGa2\nI/AvwF8AI4FXgLNDCG19vaeJQDPdjrJ9aY6+cEi/l+yWcWfmiUi98qNTlem3KvOt0C98wd+XXtux\nOCLa187H7HBX3FHNj0TU7RSxbZ7TvZUr7u9qbEp/1jDCHes5HgDuz3780b9y152lDBO5ySYkZjt6\nn7GuuK3w/9DawThnpL+lw1nrilsbcZzJUnAevN53r0sY4j1uDhJ32KlVY5bYO0AdMoWZ2TjgceBB\nkrlolwJ7Au/FlCMiIiIikpbYM7QXAW+FEM4pWfZmiu0REREREYkSmynss8DTZna7mS0yszYzO6fq\nu0RERERE6iR2QDsBOB94GTgOuA640szOTLthIiIiIiIesZccNAGzQgjfLz6fbWb7AucBN/X1pucr\nZAobuct4DrjqK5HVS6O83foHdi58MutmSD/UR/mm/sk39U/+vdE6i10LB2fdDOlD2vvQK63P8krr\ns2XL1nf4bhaE+AHtAqC9x7J24JT+3rT/zC+z5dRdy5Y9ceLlkVVLI+lgn39vtz6pPsox9U++6RiX\nfxrQ5lva+9CehQPZs3Bg2bIlbe9wx7QrXO+PveTgcWBij2UT0Y1hIiIiIpKR2AHtTOBQM7vYzHY3\nsy8B5wBXp980EREREZHqoga0IYSngZOBAslMt98FLggh3FaHtomIiIiIVBWdKSyEcA9wjzN8OMBf\nt+/GJCaVvTCjYwu+2zY5tvqc2McVdUKdW1FPMzq24DuDtn/8Pxh8p46tqLekj8q3xcX8zvXewfy5\nB4tK/SP5MbiPcYPFdgN699sd4/j7tmkptUXSNvB9qPrxsb29nTuSP4dXi7UQ6peMsXhJwi11q0BE\nRERENnVnhBBu7S+g3gParUlS5L4BzkTNIiIiIiLJmdldgftCCMv6C6zrgFZEREREpN5iZzkQERER\nEckVDWhFREREZFDTgFZEREREBrWGD2jN7Otm9rqZrTGzJ83sE41ugyTMbLqZ3WVm882s28xOrBBz\nqZm9a2arzex3ZrZHFm3dHBUTmMwysxVmtsjMfmVme1WIUx9lwMzOM7PZZtZRfDxhZsf3iFHf5ISZ\nXVQ8zl3eY7n6KCNmdkmxT0ofc3vEqH8yZGY7mtlNZra02AezzWxqj5hc9FFDB7Rm9kXgp8AlwIHA\nbOA+MxvfyHbIh0YBzwFfA3rdHWhmFwLfAM4FDgZWkfTX0EY2cjM2HbgKOAQ4FmgB7jezERsD1EeZ\nehu4EJgKTAMeAu40s0mgvsmT4omTc0m+c0qXq4+yN4dkwtrti4/DN76g/smWmY0DHgfWkcxYNQn4\nFvBeSUx++iiE0LAH8CTwbyXPDXgH+HYj26FHxb7pBk7ssexdYEbJ8zHAGuC0rNu7OT6A8cV+Olx9\nlM8HsAw4W32TnwcwGngZOBp4GLi85DX1UbZ9cwnQ1s/r6p9s++cy4NEqMbnpo4adoTWzFpKzGA9u\nXBaST/8A8MlGtUN8zGw3kv+WS/trBfAU6q+sjCM5k74c1Ed5YmZNZnY6MBJ4Qn2TK9cAd4cQHipd\nqD7KjT2Ll729amY3m9nOoP7Jic8CT5vZ7cXL3trM7JyNL+atjxp5ycF4oBlY1GP5IpIVIvmyPcng\nSf2VA2ZmwBXAYyGEjdeYqY8yZmb7mtkHJD/JXQucHEJ4GfVNLhT/yTgAuLjCy+qj7D0JnEXyc/Z5\nwG7A781sFOqfPJgAnE/yC8dxwHXAlWZ2ZvH1XPXRkEZXKCI1uRaYDByWdUOkzEvAFGAscCpwo5kd\nkW2TBMDMdiL5J/DYEMKGrNsjvYUQ7it5OsfMZgFvAqeR7FuSrSZgVgjh+8Xns81sX5J/Pm7KrlmV\nNfIM7VKgi+Ti71LbAQsb2A7xWUhyjbP6K2NmdjVwAnBUCGFByUvqo4yFEDpDCK+FEJ4NIXyX5Kaj\nC1Df5ME0YBugzcw2mNkG4EjgAjNbT3IWSX2UIyGEDmAesAfah/JgAdDeY1k78PHi37nqo7qeoTWz\nrUl+SngDWEuyIk43s3dKwo4Hbus5DYRkYkKPflgGfMXMbi0+HwUcCtyj/mqYC0m+hP8GGF9hRhD1\nUb6MBXYEtkR9k7UlJGf6Sv0QeB34Bck16eqjfBkBTCSZMUT7UPbmAtN6rOvpwNKSZfXuo+HArsB9\nIYRl/QVa8a60KGb2deAfSK6RmA18M4TwxwpxXwJuia5ARERERCRxRgjh1v4Cos/Qlswley4wC5hB\nMufYXiGEpT3C3wD47M0nMX5S+YmlB2bcz7Ezj+sR7htct+C/HGotw32BEeP6b674mSvuqrHn+gvN\nmYdm3MvRM4+vHtiHbufVLGfzX+4yb+AsV9yQiO2jkxZ3rMdqRrpjR7J6QHVV6qODeNr13qc5yF2P\nty9351V3mWsZ5oqbz87OEv07cBPd7tiBqNQ/MXV713uWYtpYj/Xurb9S3QM9xnXR7I7d4PyqHcka\nV1w9to2tkslTXJbimzo+ps87GNtr2VMzfskhM08pW7YFK91leo8L3nbWY/89M+JS1Js4s3pQA/W5\nDzkPxxc8UH0s1T4fvnwVUBxP9qeWSw5mAP8eQrgRkmw5wGeArwI/6RG7FmD8pPFsP3WHsheGjR3W\na5l3LQxlvbuxa7wDjIgz1VPfqx4DsP1WO7rLzJthY4ez/dTy9secy/fuzFMiDszb03N7qawlYvvY\n4BxYeT/7Ska76/YfmCvXnvRR+TrZgy1cJb6Nf9v09uWuEV+IqxlRPQjodLfTv3U212VA27v+Sv0T\n94XoHzClzbs2YwZW3vVej+NMpborHeNi6o8Z0K53/uM8mlWuuLhtw/eJto0os9l5LI7Z3lvYqtey\noWNHMH5q+T+14+hwl+n97M10ueLqMaDdP2K9bx9x3G6EvvYh73hq6mtR1a2tFhD1b57mkhURERGR\nvIn93UJzyYqIiIhIrjRkHtoHZtzPsLHlP+1+MP+DRlQtIiIiIjnX+hi0Pl6+rCPiVpPYAW1Nc8ke\nO/O4XteSvdg6J7JqaaRJhf2yboJUMamwb9ZNkH6of/JNx7j8m1CYlnUTpB9p70OFw5NHqbbXYNpF\nvvdHXXJQzLbyDHDMxmXFlJzHAE/ElLWPDva5NlkH+9xTH+Wb+iff1D/5t7sGtLmWt32olksOLgeu\nN7Nn+GjarpHA9Sm2S0RERETEJXpAG0K4vZit6FKSSw2eAz4dQliSduNERERERKqJnp3ZzKaT5WUE\nlQAAIABJREFUpKttAYYB/xxC8M3mLiIiIiKSslouORhFclb2P4Ffet4Q8E1v7J0segv8MyS4EytE\nsKrT+9Yi3YwmMZN+DyTbTp+cs5Nv9XLEytzbFzbEOUk2EJFTzOd9xrlj3YkVImaaP2r1o664R0b9\nmbtM76TjMd5k19TLHAya6XTHZplYwZxx9cj+5a076/pj9ou3meCKm8grrriuiHNRO/GOKy7m2OXN\niBjzXT2Jdlfcol73pKfB1+sx+2RX8PXRNkdEZD77f/7QTDl3ouWnVk9s1NHWjfebupZLDu4F7oUP\nbwgTEREREclM/pOFi4iIiIj0QwNaERERERnUNKAVERERkUGtIalvH6yQ+nZyYV8mK7mCiIiIyGbv\nv1u7+OVt5Td6drzvvyu6IQPaYyqkvhURERERAfh8oZnPF8pnkpjd1s3RB9VplgMzGwXswUcTM0ww\nsynA8hDC27HliYiIiIgMRC1naA8CHuaj6WV/Wlx+A/DVlNolIiIiIuJSyzy0j6KbyUREREQkJ6IG\ntGZ2MXAySc6mNcATwIUhhHn9ve89tqSZbaqWvxXLXe14g11ccQAjST+t14ptW1Iv05+pxPe/RD2y\n7cSU2Wy+LDoLJ46NKNVnBKvdsWlnkhvKulTLizXctwsl+f5SdghPuWPbmeyKa3JmY1rJaHfd7gxt\nUlU9MutEJMZzHw9jNNch+9hI1qRaXkyWsnUMdcV1Bn8WrOtu/HtX3Lf/6ofuMk/gHlfc9ZztLjNL\n3j66/fE6NyTHnrMDq8bMs1XAC67yYo8G04GrgEOAY4EW4H4zGxFZjoiIiIhIKqLO0IYQTih9bmZn\nAYuBacBj6TVLRERERMRnoL/XjCP5hcj7Q6eIiIiISKpqHtCamQFXAI+FEOam1yQREREREb+BJFa4\nFpgMHFYt8KkZv2To2PLLbCcUprF7YdoAqhcRERGRTcFDrUt5qHVZ2bKVHZ3u99c0oDWzq4ETgOkh\nhAXV4g+ZeQrjp+5cS1UiIiIisok7ujCeowvjy5bNa1vF+dN8sxzUkinsauBzwJEhhLdi3y8iIiIi\nkqbYeWivBQrAicAqM9uu+FJHCCH9CV9FRERERKqIvSnsPGAM8AjwbsnjtHSbJSIiIiLiE3vJwdeA\n84Fdi89fBC4NIdzb35u2ZinbO6pa68zaNCQiS0o9jFi1wReYfhIsvLl56pFtpx4ZdBbZtu7Y4Pzs\nC9nBXeZQnH3p9P84wh17Kv/tC4xIx7RkJ3/GrLS98eFhobou9zbn29c/y93uuh/hz9yxaRvPsupB\nRQvYsY4tya96ZDmMySjmPXZ24c+sNZYOZ5npH4uXs7Ur7h/5ibvMH93yI1/gV9xFsvcdb/oCv+Av\nczBoj/myHiycn2la9zNVY5q7/Cso9gzt28CFwFSSZAoPAXea2aTIckREREREUhGbKew3PRZ9z8zO\nBw4F2lNrlYiIiIiIU83z0JpZE8m1syOBP6TWIhERERGRCLVM27UvyQB2OPABcHII4aW0GyYiIiIi\n4lFL6tuXgCnAwcB1wI1mtneqrRIRERERcYo+QxtC6AReKz591swOBi4gmf2got/NeIDhY4eVLdun\nMJl9CvvEVi8iIiIim5g7buvmjtvKZ/BY4ZsgBBjANbQlmoBh/QX8+cxj2WHq9ilUJSIiIiKbmlNP\nb+LU08svHHiuLXDUwZ2u98dmCvsx8FvgLWAL4AzgSOC4mHJERERERNISe4Z2W+AGYAegA3geOC6E\n8FDaDRMRERER8Yi6KSyEcE4IYUIIYUQIYXuSxAoPmNnl9WmeiIiIiEj/BjIP7SeAc4HZaTWmyZnm\n0pseMEpEvsXbx5ySevXe5G71SFPrTR8Zs969KUv/yMHuMr0r6YpZF7uL/PYhl6Za92t/G3Gj48+c\nqW8j/I/9Zeplei1iO3fsOoa64oaF9a6442971F33I4XsUt+udqb3lux4vwq8xziAJWzjihvFKmeJ\n/nSgI1ntinuIY9xltty6whcY8b16zalf9Qc7Zfm96vWD7/hj/d9sg8OYV6qnnh/9lr+8mkaGZjYa\nuBk4B3i/ljJERERERNJQ66nOa4C7de2siIiIiGStlkxhpwMHAAel3xwRERERkTix03btBFwBHBtC\nqH7xg4iIiIhIncWeoZ0GbAO0mdnGy72bgSPM7BvAsBBCr+uwlSlMRERERPrS+hu47Tfly97/wP/+\n2AHtA8B+PZZdD7QDl1UazIIyhYmIiIhI3wqfSR6l2l6Eg071vT9qQBtCWAXMLV1mZquAZSGE9piy\nRERERETSkMaErv4J8UREREREUlZzYoWNQghHp9EQEREREZFaxM5ycAlwSY/FL4UQJqfRGHOe7B3F\nSneZ6xlWPQjoptld5tu2szs2fb7UK3FZvXzZT7wZxWIsZ8vUy+STEbFpf6TDUi4vUky2riwNJd1J\nUmaeERFc8IXF/PT0Dr5jwlDWRZSafzHrKMtsTFnz7pcTeK3OLenbrvaGO3bi1i+74kJEqrA3bFdX\n3Ka2fdhuWbegDpzdftnEC6rGzF+1GGh1lVfLGdo5wDF81OTOGsoQEREREUlFLQPazhDCktRbIiIi\nIiJSg1puCtvTzOab2atmdrNZpr+/i4iIiMhmLnZA+yRwFvBp4DxgN+D3ZjYq5XaJiIiIiLjEzkN7\nX8nTOWY2C3gTOA34RZoNExERERHxGNC0XSGEDjObB+zRX5xS34qIiIhIX2a3vszs28pn0Fj7/nr3\n+wc0oDWz0SSD2Rv7i1PqWxERERHpy5TCRKYUJpYtm9+2mGsO8k3bFXUNrZn9q5kdYWa7mNmngF8B\nG/BOEiYiIiIikrLYM7Q7AbcCWwNLgMeAQ0MIy9JumIiIiIiIR9QZ2hBCATgYuAMYCZwE/NrMptah\nbSIiIiIiVcWmvh0HPA48SDJ111JgT+C9/t43nHWMZE3V8t93pqldywhXHNQnXetQ/Bcpe3kTBDbR\nlXrdXv4khn5b8IE7dhlb+wLDD91lelMzdnlTIx/mTwbqjYxJy5zl9hHTl+tpccV5jhsAe0fkYF3k\nD3XbgQWuuK6oQ67vQ8Uc47zbsT9NrX97a3GmO47Z3jMVsc099ss/d8Ud9PmnXXEx30HrnN+rI1nt\nLnOqPeOK86azBxjtTGm/hpHuMv3fq759KC6lvHPfuNtdJOEcX5x3/wV/O2OOM976h1r17bjF/GnS\nYy85uAh4K4Sy1fpmZBkiIiIiIqmJTazwWeBpM7vdzBaZWZuZOf9nEBERERFJX+yAdgJwPvAycBxw\nHXClmZ2ZdsNERERERDxiB7RNwDMhhO+HEGaHEH4O/JwkDW6U2a0vxb5FGmhu6wtZN0GqaG99Pusm\nSD9eUv/kmvaf/HuhdW7WTZB+zG2dk3UTysReQ7sAaO+xrB04pb833TPj0V6ZwlbMX8mUwt6R1Uuj\ntLe+wOTCflk3Q/rxUusLTCrsn3UzpA8vtT7P3uqf3NL+k39zWtvZrzA562ZIH+a2zmFyYd/Uynu2\n9RWebX2lbNnajvplCnscmNhj2USq3Bh2wswj+djUbcuW3XTiXZFVi4iIiMim6MDCnhxY2LNs2Ttt\nS7hi2h2u98decjATONTMLjaz3c3sS8A5wNWR5YiIiIiIpCI2scLTwMlAAXgB+C5wQQjhtjq0TURE\nRESkqthLDggh3APc4wwfDrCkfXmvF9Z2rGN+2+KyZSudEzvHTBrsnQw4pswulrrilmc4yf1AretY\ny8K2d+tej+HPmrwo+CYIj7GozRfXFZyTvb/jLBBYtMK3fvvaNtd1rGVRjz5aT+99rZKOOiQHeY0O\nd+xi5rvihod1rrg/uWumLtt1pYQFlfonZkJ8bxKEekx47o2Lqbsex2KvSmVW6h+I+EwRiRV4zXdc\nWNzm2y+G0Omu2jtx/lx8+xrAMt5yRvqORwDDWdtr2dqOdSxoW1i+LBlWZCJq7BF821Hb+/76K22v\nldRjjFQpbl3HOha29U4q463f8321uP3DvF1VO95CiNkr4xQvSbilbhWIiIiIyKbujBDCrf0F1HtA\nuzVJitw3oMK/XyIiIiIilQ0HdgXuCyH0+5NuXQe0IiIiIiL1lv7FSiIiIiIiDaQBrYiIiIgMahrQ\nioiIiMigpgGtiIiIiAxqDR/QmtnXzex1M1tjZk+a2Sca3QZJmNl0M7vLzOabWbeZnVgh5lIze9fM\nVpvZ78xsjyzaujkqZuSbZWYrzGyRmf3KzPaqEKc+yoCZnWdms82so/h4wsyO7xGjvskJM7uoeJy7\nvMdy9VFGzOySYp+UPub2iFH/ZMjMdjSzm8xsabEPZpvZ1B4xueijhg5ozeyLwE+BS4ADgdnAfWY2\nvpHtkA+NAp4DvkaFacLN7ELgG8C5wMHAKpL+GtrIRm7GpgNXAYcAxwItwP1mNmJjgPooU28DFwJT\ngWnAQ8CdZjYJ1Dd5Ujxxci7Jd07pcvVR9uYA2wHbFx+Hb3xB/ZMtMxsHPA6sI5mCdRLwLeC9kpj8\n9FEIoWEP4Eng30qeG/AO8O1GtkOPin3TDZzYY9m7wIyS52OANcBpWbd3c3wA44v9dLj6KJ8PYBlw\ntvomPw9gNPAycDTwMHB5yWvqo2z75hKgrZ/X1T/Z9s9lwKNVYnLTRw07Q2tmLSRnMR7cuCwkn/4B\n4JONaof4mNluJP8tl/bXCuAp1F9ZGUdyJn05qI/yxMyazOx0YCTwhPomV64B7g4hPFS6UH2UG3sW\nL3t71cxuNrOdQf2TE58Fnjaz24uXvbWZ2TkbX8xbHzXykoPxQDOwqMfyRSQrRPJle5LBk/orB8zM\ngCuAx0IIG68xUx9lzMz2NbMPSH6SuxY4OYTwMuqbXCj+k3EAcHGFl9VH2XsSOIvk5+zzgN2A35vZ\nKNQ/eTABOJ/kF47jgOuAK83szOLrueqjIY2uUERqci0wGTgs64ZImZeAKcBY4FTgRjM7ItsmCYCZ\n7UTyT+CxIYQNWbdHegsh3FfydI6ZzQLeBE4j2bckW03ArBDC94vPZ5vZviT/fNyUXbMqa+QZ2qVA\nF8nF36W2AxY2sB3is5DkGmf1V8bM7GrgBOCoEMKCkpfURxkLIXSGEF4LITwbQvguyU1HF6C+yYNp\nwDZAm5ltMLMNwJHABWa2nuQskvooR0IIHcA8YA+0D+XBAqC9x7J24OPFv3PVRzWdoTWzrwP/QHJK\neTbwzRDCHyvEbU3yU8IbwFqSFXG6mb1TEnY8cFvPaSAkExN69MMy4Ctmdmvx+SjgUOAe9VfDXEjy\nJfw3wPgKM4Koj/JlLLAjsCXqm6wtITnTV+qHwOvAL0iuSVcf5csIYCLJjCHah7I3F5jWY11PB5aW\nLKt3Hw0HdgXuCyEs6y/QineluRWn3rqBZIqGWcAM4AvAXiGEpT1ivwTcElWBiIiIiMhHzggh3Npf\nQC0D2ieBp0IIFxSfG8l8jFeGEH7SI/ZTwOOfvvk0tpq0TVk5v5/xG46Y+ZmyZV00u9rwBw51t3c6\njzsj/ethKOtdcesZ5i4zbx6d8RuO7NE/Mbxr8x12cpe5A++64s6MuLTnJs6sHgQ00+2K64q4imeI\ns8y+DLSP/Hy9uS2L3SX+id1dcVuEla641jfPdtd92q43uOLi+qf3Onp0xj0cOfOEsmUWcZzxTkIT\ncwT3bp8D3TYHg4HvP/41vwd/csXt3evX3cruDr1y4PSp9VjnvnFzp7vM03bwnacaQpe7zMm82LtJ\nM+bw5Zn7li17nv3dZXq3Y29PescoMaUOZ527xE5aIuqvv0Z8By1vX8K9X74d4LAQwhP9xUZdclAy\n9daPNy4LIQQz62vqrbUAW03ahm2nfqzshaFjh/da1uncWIYzyd3mbXnDGek/OA1PPlZVaxlRPSin\nhlXonxjetfkBE9xlbou54vaN2Om3xfcZ8zigHWgf+fl6c6eIfei9Dy/B6t+40OErcLT/l61tJz7g\nihvogLZS/zRFlNntPB5qQFubge8//jW/SzLTXlWTGO6KeypEtHuIc9/Y13/f3La7POKrOmJAuxvz\ney0bObaF3aaOK1u20HnMTurP/4B2hHM8AbCBfOWTaNx3EED1FRV7U5im3hIRERGRXGlo6lsRERER\nkbTFznJQ09Rbv5/xG4aOLf8pZeX8FZFVi4iIiMim6KXW2cxrnV22bF2H/5KMqAFtCGGDmT0DHAPc\nBR/eFHYMcGVf7zti5md6XWfxco9GS77sVZiSdROkCvVRvu1V8N+8Io2n/Sf/Pllo2PWZUoO096G9\nC1PYu0eZi9vmc+u0a1zvr2Ue2suB64sD243Tdo0Ero8pZKIOJrnWc6OS/FEf5Zv6J9/UP/n3qYJ/\nFhxpvLztQ9ED2hDC7cXJ3S8ludTgOeDTIYQlaTdORERERKSamjKFhRCuJcktLyIiIiKSqegBrZlN\nB/6RZD7aHYCTQgh39feeLppc8x8OCb456165P+I096d/64912lCHyY398+BtWvNINuOfzNs7p+EW\nfBBRv289eSfEH80qd93+eYr9813uyTxX3CtMdJfptYAd3LGj8SVMcLvXH9o8sR77hm+O5O46TCzj\nqznh3d4lXd7tfTYHpF/5UucW8if/99qvdznZFXcqd7jL/DMeccXN4hB3mWl/rzZHzKsbMyf5pse3\n5kc59ovhrHbXWssaH0VymcHXiJvTW0REREQkdbVcQ3svxfMhxRkOREREREQyszmfExcRERGRTYAG\ntCIiIiIyqGlAKyIiIiKDWk3TdsV6bMb/9Ep9u1dhCnsV6nBHp4iIiIgMKi+2vsiLrXPLlq3tWOd+\nf0MGtIfP/MteqW9FRERERAD2KezDPoV9ypYtaFvIf037hev9tcxDOwrYg4+mP5xgZlOA5SGEt2PL\nExEREREZiFrO0B4EPEwyB20AflpcfgPw1ZTaJSIiIiLiEjWgNbOLgZOBlcAa4AngwhCCLz2RiIiI\niEjKYs/QTgeuAp4uvvefgfvNbFIIYU1fb+qmmS5HVc223tWIrxz3f1xx9dLkTB/pT5LnT1+5qaWu\nfI4D3bE7O69o2WrJWneZtq071CUm7a479W1EPr7z//MGV9zfn/Njf6FOISIJ6waGuuKG0Odhpdwc\nd9VRqWL9fJ3kPXYAdNHsjPNPVjNYUmJ7pZ3aFCLWUcR++YW//R9X3MKfjXXFPRtx3ITnXVF7H+1P\nQz4M5406Eeto+9s6XHFW8Jfpr953VIjbjmJGAD6Zbu914Pke6MSfkjlqQBtCOKH0uZmdBSwGpgGP\nxZQlIiIiIpKGgc5DO47kn4blKbRFRERERCRazQNaMzPgCuCxEMLcavEiIiIiIvUwkHlorwUmA4el\n1BYRERERkWg1DWjN7GrgBGB6CGFBtfjHZ9zVK1PYnoUD2bMQc2G7iIiIiGyK5ra+QHtr+R2+6zr8\nN3nXkljhauBzwJEhhLc87zls5olsM3Wn2KpEREREZDMwubAfkwv7lS1b2LaAG6f9zPX+2HlorwUK\nwInAKjPbrvhSRwjBP4wWEREREUlJ7E1h5wFjgEeAd0sep6XbLBERERERn9h5aAc6zZeIiIiISKpi\nLzk4Dzgf2LW46EXg0hDCvWk0xpx5MHa0qvehfcidjSnCON53xS0h5TRU1CvLkU9E0hc6gy/L0ZvN\ne7vLHNL9K1fcY9tMdZfp51vzS9gmq6oB+M1fH51+/e4sOr4+j9FpvjIn/awt9bpjtnfvZx+N/8os\n77GrOfgz/VzxrYtccX93+WXuMrM0WDIsXvofvrgfXOzLlvXhN7DLO66oTzPbXeK/TfBtR3/26sPu\nMn9yhjMwIlOYf/tIP6uXV3fEcXOwbO9+6Y5oYs+4vg1cCEwlyQ72EHCnmU1KtVUiIiIiIk6xlxz8\npsei75nZ+cChQHtqrRIRERERcao5sYKZNZHcDDYS+ENqLRIRERERiVDLPLT7kgxghwMfACeHEF5K\nu2EiIiIiIh61nKF9CZgCjAVOBW40syP6G9QqU5iIiIiI9CXJFPZC2bK6ZgoLIXQCrxWfPmtmBwMX\nkMx+UJEyhYmIiIhIXypnCnvXnSksjXllm4BhKZQjIiIiIhItdh7aHwO/Bd4CtgDOAI4Ejku/aSIi\nIiIi1cVecrAtcAOwA9ABPA8cF0J4KO2GiYiIiIh4RF1yEEI4J4QwIYQwIoSwPUlihQfM7PL6NE9E\nREREpH8DmYf2E8C5EJEvr4rgTIO2klHuMr0p4GLSdq6uQzrdwSAmSd0QbyrBcHdNbenPbDsg9TL9\nskxODG/ZzpnVHfPJR7Am1bqPtgdTLQ/iPo/3OLOW4dWDIllEQy/46eBIaevlTU/cFXHuZkgd0ob+\nYKIvbq0zc3Zn1LmoWa6ooTFb/BsR1Tv94xG+uG9FlJn29hGzbXjHM+tocZfprT/bbyE/z3rvjtjW\na7opzMxGAzcD5wDv11KGiIiIiEgaap3l4Brgbl07KyIiIiJZqyVT2OnAAcBB6TdHRERERCRO7LRd\nOwFXAMeGEDbUp0kiIiIiIn6xZ2inAdsAbWYf3orQDBxhZt8AhoUQel2HrdS3IiIiItKX9tbneamB\nqW8fAPbrsex6oB24rNJgFpT6VkRERET6NqmwP5MK+5ctW9T2LjdP+z+u90cNaEMIq4C5pcvMbBWw\nLITQHlOWiIiIiEgaap3loJR3qjcRERERkdTVnFhhoxDC0Wk0RERERESkFrGzHFwCXNJj8UshhMn9\nva+bpqhMXNUsYEd37M6844pzZ7aqk7QzmngzF8WUWY8MOrBl6iWuY1jqZW7efFvnWDrcJXYwLtW6\nh7HeXXd3iseiWDHb5lDnZ4rKgmX12Iez482IFHM8TL1yYP7crVxxj3CUKy6mH3fp/qIrbj2/dpfJ\nd51xEevoiofPc8XFZEmrS787mfPYNRT/hFHecVTMMcGfTTX9MtcxtGrM+qhMavHmAMfw0abaWUMZ\nIiIiIiKpqGVA2xlCWJJ6S0REREREalDLTWF7mtl8M3vVzG42s51Tb5WIiIiIiFPsgPZJ4Czg08B5\nwG7A781sVMrtEhERERFxiZ2H9r6Sp3PMbBbwJnAa8Iu+3vfEjF8zdOyIsmV7FKayR2FqTPUiIiIi\nsgma1/oc81pnly1bX8dMYWVCCB1mNg/Yo7+4T808ifFTdWWCiIiIiPS2V+EA9iocULZscdt8bp92\nlev9A0qsYGajSQazCwZSjoiIiIhIraIGtGb2r2Z2hJntYmafAn4FbABa69I6EREREZEqYi852Am4\nFdgaWAI8BhwaQliWdsNERERERDyiztCGEArAwcAdwEjgJODXZqa7u0REREQkE7Gpb8cBjwMPkkzd\ntRTYE3ivv/d10exK2dYZfGnd/rv5KFccwN913+yO9epyrraYFH3etLJZpvKri4cPd4d28oQrrh6p\nb72pidc7UvltFJOu1esgnnHFtTPJXaY3LfQX+f/cZV7L+a447/b+HFPcdU9mrisuJtWzN81lTHrg\ntYyoHsQmeEyog4gMrHVxrX3NFbfG2efuAxLw5i/3dsVte8pif6F/7UvXGiLW/Ou2q7/+QcH32bsj\nxgn1SPVcnzLTOx6uZqW73thLDi4C3gohnFOy7M3IMkREREREUhM7y8FngafN7HYzW2RmbWZ2TtV3\niYiIiIjUSeyAdgJwPvAycBxwHXClmZ2ZdsNERERERDxiB7RNwDMhhO+HEGaHEH4O/JwkDW6UV1t9\n1/pJNua1Ppd1E6SKl3pkVJF8Uf/km/on//Q9lG8v52wfir2GdgHQ3mNZO3BKf296asYve6W+XTX/\nfXYvTIusXhplXuvsXhk7JF/mtT7P3gX/zVDSWOqffJvXOlv9k3P6Hsq3l1tnMzHFfejF1hd5sbX8\npt21Hevc748d0D4OTOyxbCJVbgw7ZOYpvVLf/u7En0VWLSIiIiKbon0K+7BPYZ+yZQvaFvJf037h\nen/sJQczgUPN7GIz293MvgScA1wdWY6IiIiISCpiEys8DZwMFIAXgO8CF4QQbqtD20REREREqoq9\n5IAQwj3APc7w4QAr2hfT3GPsvL5jLe+1zS9bNiz4rpUYMuQFZ/WwtG2hM9I/U/VQfO30TowO0OSs\nP2I+bbdKk19v6FjL8rYFZcu8bQQIztAhr7S5y1w+ZkH1IMDwZ2J+zzlZtPeTd0bsUi10OiMr176u\nY12v7ftlfBOeL8e3LgGanOtobsTE2976vRN0r2Fk6nXHbO+V+qhS/3iPHQDrk8NnDTX3LesEA3lS\nqX/i+Nf8MGe/e5PChODvySGv+46xC9uW+stc8Kwrbuly//r1fg/F8B4/vAkg4o4JXunvwfU4JlQq\nc30f+5B3va9iddWY99qXb/yz6gHRgnfkUYPiJQm31K0CEREREdnUnRFCuLW/gHoPaLcmSZH7BrC2\nbhWJiIiIyKZmOLArcF8Iod+fX+s6oBURERERqbfYWQ5ERERERHJFA1oRERERGdQ0oBURERGRQU0D\nWhEREREZ1Bo+oDWzr5vZ62a2xsyeNLNPNLoNkjCz6WZ2l5nNN7NuMzuxQsylZvauma02s9+Z2R5Z\ntHVzVMzIN8vMVpjZIjP7lZntVSFOfZQBMzvPzGabWUfx8YSZHd8jRn2TE2Z2UfE4d3mP5eqjjJjZ\nJcU+KX3M7RGj/smQme1oZjeZ2dJiH8w2s6k9YnLRRw0d0JrZF4GfApcABwKzgfvMbHwj2yEfGgU8\nB3yNCvMmm9mFwDeAc4GDgVUk/TW0kY3cjE0HrgIOAY4FWoD7zezDjB3qo0y9DVwITAWmAQ8Bd5rZ\nJFDf5EnxxMm5JN85pcvVR9mbA2wHbF98HL7xBfVPtsxsHPA4sI5kCtZJwLeA90pi8tNHIYSGPYAn\ngX8reW7AO8C3G9kOPSr2TTdwYo9l7wIzSp6PAdYAp2Xd3s3xAYwv9tPh6qN8PoBlwNnqm/w8gNHA\ny8DRwMPA5SWvqY+y7ZtLgLZ+Xlf/ZNs/lwGPVonJTR817AytmbWQnMV4cOOykHz6B4AnuC7UAAAg\nAElEQVRPNqod4mNmu5H8t1zaXyuAp1B/ZWUcyZn05aA+yhMzazKz04GRwBPqm1y5Brg7hPBQ6UL1\nUW7sWbzs7VUzu9nMdgb1T058FnjazG4vXvbWZmbnbHwxb33UyEsOxgPNwKIeyxeRrBDJl+1JBk/q\nrxwwMwOuAB4LIWy8xkx9lDEz29fMPiD5Se5a4OQQwsuob3Kh+E/GAcDFFV5WH2XvSeAskp+zzwN2\nA35vZqNQ/+TBBOB8kl84jgOuA640szOLr+eqj4Y0ukIRqcm1wGTgsKwbImVeAqYAY4FTgRvN7Ihs\nmyQAZrYTyT+Bx4YQNmTdHukthHBfydM5ZjYLeBM4jWTfkmw1AbNCCN8vPp9tZvuS/PNxU3bNqqyR\nZ2iXAl0kF3+X2g5Y2MB2iM9Ckmuc1V8ZM7OrgROAo0IIC0peUh9lLITQGUJ4LYTwbAjhuyQ3HV2A\n+iYPpgHbAG1mtsHMNgBHAheY2XqSs0jqoxwJIXQA84A90D6UBwuA9h7L2oGPF//OVR/VdIbWzL4O\n/APJKeXZwDdDCH+sELc1yU8JbwBrSVbE6Wb2TknY8cBtPaeBkExM6NEPy4CvmNmtxeejgEOBe9Rf\nDXMhyZfw3wDjK8wIoj7Kl7HAjsCWqG+ytoTkTF+pHwKvA78guSZdfZQvI4CJJDOGaB/K3lxgWo91\nPR1YWrKs3n00HNgVuC+EsKy/QCveleZWnHrrBpIpGmYBM4AvAHuFEJb2iP0ScEtUBSIiIiIiHzkj\nhHBrfwG1DGifBJ4KIVxQfG4k8zFeGUL4SY/YTwGPc81/YHtOLCsn/OAi7NLLypYNGeq7zGnDmmHu\n9raMWOeKC13+qy9GjF7jiluzcqS7TD9ff1lzt7/ECp+963vfofmffpxqmZWMHrvSXebKjtGuuDFj\nO/xlrtzCFRec633DUb93193yyJG+uvtYl5X6aKex71SM7emdjp1dccUWuKKGOfc1gFV/2NoV1zJt\nhStuw/1j3HUPOWaVO3Ygur53Mc3/9M8DKKEe+3pzrY3JKd86aqqwjjZ857u0/PhHNZYI3Z3+ddm1\nfJQrbvgO77viOtf7f1z1Hg+Xv/Qxd5mM63SFDRmx1l1kpePH2m9fwvCf/LBs2bo1w91lZso5tnry\nR0e5izz0e4+44urxXV2pzM7vfJchlfYhZ5l3j+uVy6mXP7V38c0vrwI4LITwRH+xUZcclEy99eG3\naAghmFlfU2+tBbA9J2L7H1D2QhgzpteypmHrfQ1ZNaJ6zMYyR/kGn90RB/ohzkGYdfgGS3G8B/Au\nd4kVP/uYMdiUHv0z0DIrGLKVf/Bpy8e64lq26vdXiTJNK8a54vz/+L3lr3vKFFdcn+uyQh8N38q3\nzdnymEQuvs/e7NzXAFjc85KrypqmvFc9COClLd1V25QP3LEDMmZsr/6JU499fVO7D9i5job0Xkc2\nZixNB/TeB727euiMWJeLfPtl8y5LqwcBXev8c9b7j4e7uctkvO/kkzlP/kDl44eNHUPzgfuXL1tV\njxNFdeDckKb6voIA3MeTenxXVyrTxoyt+D3mLXO/raOOR1X/O4q9KUxTb4mIiIhIrjQ09a2IiIiI\nSNpif3+qaeqt8IOLCGN6XOO24N3IqkVERERkU/Tr1nXc2Vp+6emKDv99XlED2hDCBjN7BjgGuAs+\nvCnsGODKvt5nl17W+xraX/3fmKqlwZpOOTXrJkgV6qN8U//kW/Opp2TdBKmi5QsnZd0E6UfT59Pd\nh04qDOOkQvlN/y+0dfIXzpuDa7lD4HLg+uLAduO0XSOB62MKsZO/UEPV0ihNn9eXcd6pj/JN/ZNv\nzad+PusmSBUtXzw56yZIP/K2D0UPaEMItxcnd7+U5FKD54BPhxCWpN04EREREZFqaprDJYRwLUlu\neRERERGRTEUPaM1sOvCPJPPR7gCcFEK4q7/3NDV1uyb67fLO6xcxobV3PrQQzF3me/O3ccW1jPZP\nKr25Wh8xn6LXROa5Y//QWWn65N7c28dRf+Wuu7vLd11QjMnMdcW9Ssw8tD4jhq12x65w5tNwHxOi\nsoZrftdNh2+/7Ir4zqiLsb7vgq46JL4YhnN+908s9xfavpUrrHmcf87noc556NfEzEMfsQ97xMxX\n3zzEl3zih7+OaMDPfdt7TDu9+1BcmT5X8s2qMQtZAPzMVV4t03aNIrnM4Gv4k6qIiIiIiNRFLdfQ\n3gvcCx/OcCAiIiIikhklVhARERGRQU0DWhEREREZ1BpyJ0PX9y/GxowtW2annKqJx0VERESEua0v\n0N46p2zZug7/zfUNGdA2/+9/xqYcUD1QRERERDY7kwv7MbmwX9myhW0LuHFa/WY5EBERERHJjVrm\noR0F7MFHk5dNMLMpwPIQwttpNk5EREREpJpaLjk4CHiYZA7aAPy0uPwG4KsptUtERERExCVqQGtm\nFwMnAyuBNcATwIUhhH5TM201bjlDt15UtfylHVu72uHLvxFnSMsGd2zrxwuuuC8tb41oQbrZi7LO\nFOLNkrLtsOrbxUZvrtrVFXch/+Iu8yTudMe6/MK/HXl51yXAUTziirubE2tsTd+6Yg4nh/nWk/ez\nd27vr9q7D8XMst08xPd5Ro9Z5S6zY/k4V1w9MvjUI5uaV32yrqU/ZbqZP6/QqHG+1HjNQ3zrc/WG\nke6633p5oi8w/NBdJu9c4grrGu/vy7Wrhzsj/X2Z9r5Rj+39B3/tj/2xOzJme09/X/fuG7/g7Kox\nG5hDvTKFTQeuAg4BjgVagPvNzJ+LTkREREQkRVH/CocQTih9bmZnAYuBacBj6TVLRERERMRnoLMc\njCM5X708hbaIiIiIiESreUBrZgZcATwWQpibXpNERERERPwGcvX9tcBk4LCU2iIiIiIiEq2mAa2Z\nXQ2cAEwPISyoFt8x48c0jduibNmI0/+SkYW/rKV6EREREdmErG29k3Wtd5ct6+5Y4X5/LYkVrgY+\nBxwZQnjL856xM7/D0Kn7xFYlIiIiIpuB4YXPMbzwubJlG9rm8P4038nP2HlorwUKwInAKjPbrvhS\nRwhhbUxZIiIiIiJpiL0p7DxgDPAI8G7J47R0myUiIiIi4hM7oP0aMIckU9hK4CngMyGEG9NumIiI\niIiIR+w1tG8DFwKvkORWOwu408wOCCG09/WmDbQQGFa1cG+auiGjsr26YTHb1KHUdNPPxqSpq0eq\nyRB8n+fN5bumXvff8u/u2KZmX2pV73r/811+6677keVHOSP9aQy/vcKb9tefttObjnPNqoiEgS2+\nMrs6ndvmTv6q65Eq1ru9L33Ln6O3ZbT3OJd+Wtd68K93/7bpTwVej3S6ftNGPeOKm7XiE+lXPnqd\nL25vXzpbAMbX1pT+dHr39f+/vXuPsqo88zz+faooqoASUBC8QHsDFBoCFmqM9xEXMdrRQW1DxThL\nM7SNMWmHZFpxWuPE9DKatGLU6HTWzGrv5bi8tDq20VYTEzCGwYqlKBcRLyjKpZDiWkUV9c4f++Cc\nU1TVed7DuRX8Pmudtare8+x3v+e8e+/znn32fp8o3n3Dv815eY9dNjam1vynqS3E8dD72jc2Z0/v\nHTbWutcbmynsuS5F15vZlcCJQI8DWhERERGRQsn5K5GZVZBcOzsQ+GPeWiQiIiIiEiGXabsmkgxg\na4DNwIwQwtJ8N0xERERExCOX1LdLgcnACcC9wANmdkxeWyUiIiIi4hR9hjaE0AGsTP37ZzM7Abga\nuLKnZbbMuYmKoYMzyqpnnkd1lwl0RURERGTf0/nE43Q++Xhm4aYCZgrrRgX0PoVB7bwf069uUh5W\nJSIiIiJ7m4oLL6LiwosyykLTm3RMO8O1fGymsJuB54GPgf2AS4DTgekx9YiIiIiI5EvsGdoRwP3A\nwUAL8BYwPYTwSr4bJiIiIiLiETsP7axCNUREREREJBd7dA2tmc0FbgbuCCH8sKe4CnZSSfaMTN5s\nOx0t/swRVUO3uOLcGYmA/85PnJGFyHjjy+phEcmD/Nmy/O+RP/tITJYj3/s5hBZ3jWt2joxYf3Z3\n8QN37CQWu+J2dvgzufSv3uGs0/++x6zfq191uyuusp9v2+w4yr/ufO9rENHO1ip3nbgzhRVCfjMX\nxtRZiKxNpbYZ32dWzOeQm3f/fcpf5aBR611xba3ZM4Tu0ro+e9YogKqhm9115juTXNQxocp3TPjL\nv1/krpMNpdsvY+r0vu9tM/bPHrTZP97LZdouAMzseOAKoCnXOkRERERE9lROA1ozqwUeAmYBG/Pa\nIhERERGRCLmeof0V8KxuBhMRERGRUssl9e1MYApwXP6bIyIiIiISJ3Ye2lHAHcBZIQTfXR0iIiIi\nIgUUe4Z2KnAg0Gj25X30lcBpZvZ9oDqEsNstqpvn/CPWJfVtzcy/YkD9eTk0WURERET2KmsaYO2j\nmWUd/tu0Yge0LwFdc9jeBywBbuluMAuw37zrqaqbGLkqEREREdknjKxPHuk2N8IbvitcYxMrbAXe\nTS8zs61AcwhhSUxdIiIiIiL5kPM8tGn2vlmwRURERKTPiBrQmtmNZtaZ/gAO6i1LmIiIiIhIIeWS\nZ28xMI3/ny8ta363LzYcgK0dkbXiispOXwsi0nZ607rG2LjBl6LPm/4N/GnlvHXGpCuNaaeXO41x\nmz8VaFWNL63r0KhcH/lNx/kGde41e7fNmHSYW98f7oqrGrXJXad3+2j90JHGMOWSr/xPV9z/bv6W\nr8I17lXTeWD+0zK7+8iXMTQx3LfNxR1nvNtSKdft503xHfM5UIh2+vlekJn/h9Exh72bPQj4qPlw\nd523DrrGFfdfWn/prpPXnZ15tr/KfG8fMelfvZ+BSz7ueltSz6rc6bDzn1K+EOMErnK0c6XBG77q\nctlzO0II63JYTkREREQk73K5hnasmX1qZu+b2UNmNjrvrRIRERERcYod0L4OXAZ8HZgNHAH83swG\n5bldIiIiIiIusdN2vZD272IzWwh8BFwM/Es+GyYiIiIi4rFHV7+HEFrMbDkwpte4H88lDM7MFGYz\n/hqb8dd7snoRERER2RvMb0ge6ba1uBffowGtmdWSDGYf6DXupluwr0zZk1WJiIiIyN7qlPrkkW5l\nI1w71bV47Dy0vzCz08zsMDM7CXgKaAcasiwqIiIiIlIQsWdoRwGPAMOAdcB84MQQQnO+GyYiIiIi\n4hF7U1h99igRERERkeKJvobWzA4BbgW+AQwE3gMuDyE09rRMRUUn5s0C5rHUH9o53J/Zw8+XhSMm\nq0j++TOFlLSdrdXu0Mraba645Yxz15nvTHKXrn3IHVvZrwCZV9x7dP63j6pD/dnHYvrIxZtAB8h3\ndjjw92X+8xYWSimPcTEZ2kp5jPXrh2/7aG/1ZU6scR4LAbYz0Lfutv7uOj/jYHesm+8yyaiMVd7t\nw19nAbIHvunPlskp211hhcjgF7Ovu9d/kCPGf09Y3IDWzIYCC4CXSeaiXQ+MBb6IqUdEREREJF9i\nz9DOBT4OIcxKK/soj+0REREREYkSmynsm8AiM3vMzNaYWaOZzcq6lIiIiIhIgcQOaI8ErgSWAdOB\ne4E7zezSfDdMRERERMQj9pKDCmBhCOGG1P9NZjYRmA082NNCO2+4Dhs8JLNw1Ggqb/lF5OqlWDqf\neJyKCy8qdTOkF51PPk7FBeqjcrXz8SeovOjCUjdDeqBjXB/wXAOcq8mVylXe96GXGpJHui2FyxT2\nGbCkS9kS4ILeFqr86c+wyZmZwnZ+Z2bkqqWYOp/Uwb7chScfBw1oy1bnE09qQFvGdIzrA557VAPa\nMpb3feis+uSRblkjzCpApjCSGQ6O7lJ2NLoxTERERERKJHZAOw840cyuM7OjzOzbwCzg7vw3TURE\nREQku6gBbQhhETADqAfeBv4BuDqE8GgB2iYiIiIiklV0prAQwr8B/+YMrwH4ysoV1PbLzDLxzuZN\n/OU7b8euHoDOjTXu2Mp3olIIlT2r8GVcC52xJ98zLd68mYnvLM55+eBMstQZkSms6nNfdpzqmh3u\nOlu3+9fvEZO5qKLC9yb19F52tw91bvHtG5XNBdgv/Im1GFX7uSuuZovvGNG5vrTHhO72y8WbNzFx\n8TsZZR2f+7I2AVTu9LXTe0yAPT8u7E329BgXY9Qg3/bef2OTK64q4hg3sMZ33Dx8Y7O7zv6f+46b\nX3PuvwCdW3ffh9/dupEJKzOTkPZb78+S5t3eC/G56v4MLMB4pljHhJ72Ie/6Oz4blDVmy/olpPaK\nrG+UBe+7noPUJQkPF2wFIiIiIrK3uySE8EhvAYUe0A4jSZH7IZHZ1kVERERkn1YDHA68EELo9WeE\ngg5oRUREREQKTRdUiYiIiEifpgGtiIiIiPRpGtCKiIiISJ+mAa2IiIiI9GlFH9Ca2VVm9oGZbTez\n183s+GK3QRJmdqqZPWNmn5pZp5md103MTWa22sy2mdm/m9mYUrR1X5TKyLfQzDaZ2Roze8rMxnUT\npz4qATObbWZNZtaSerxmZmd3iVHflAkzm5s6zt3epVx9VCJmdmOqT9If73aJUf+UkJkdYmYPmtn6\nVB80mVldl5iy6KOiDmjN7FvAbcCNwLFAE/CCmQ0vZjvkS4OAN4Hv0c20+GZ2LfB94ArgBGArSX/1\nL2Yj92GnAncBXwXOAqqAF81swK4A9VFJrQKuBeqAqcArwNNmNh7UN+UkdeLkCqCpS7n6qPQWAyOB\ng1KPU3Y9of4pLTMbCiwA2kimYB0P/Aj4Ii2mfPoohFC0B/A68Mu0/w34BLimmO3Qo9u+6QTO61K2\nGpiT9v9gYDtwcanbuy8+gOGpfjpFfVSeD6AZuFx9Uz4PoBZYBpwJ/Ba4Pe059VFp++ZGoLGX59U/\npe2fW4BXs8SUTR8V7QytmVWRnMV4eVdZSF79S8DXitUO8TGzI0i+Laf31ybgT6i/SmUoyZn0DaA+\nKidmVmFmM4GBwGvqm7LyK+DZEMIr6YXqo7IxNnXZ2/tm9pCZjQb1T5n4JrDIzB5LXfbWaGazdj1Z\nbn1UzEsOhgOVwJou5WtI3hApLweRDJ7UX2XAzAy4A5gfQth1jZn6qMTMbKKZbSb5Se4eYEYIYRnq\nm7KQ+pIxBbium6fVR6X3OnAZyc/Zs4EjgN+b2SDUP+XgSOBKkl84pgP3Anea2aWp58uqj/oVe4Ui\nkpN7gAnAyaVuiGRYCkwGhgAXAQ+Y2WmlbZIAmNkoki+BZ4UQ2kvdHtldCOGFtH8Xm9lC4CPgYpJ9\nS0qrAlgYQrgh9X+TmU0k+fLxYOma1b2CDmjNbBjJN68PgQ5gJ/A1M0s/uIwHtne9a05K4si0fhhG\nco3zGWb2XlrMUcAy9VdRXQucBvxn4GAzOzhVrj4qL08A04CfAvejvim104EDgT8nP3AAya+Ep5nZ\nD4ALUB+Vo09Ibgxbh/qn1JqBtV3e6y3AUamyYnwG1QCHAy+EEJp7C7TURbxRzOwq4L+SnFJuAn4Q\nQvi/3cR9G3g4egUiIiIiIolLQgiP9BYQfYY2beqtK4CFwBySKRrGhRDWdwn/EODchy5g2PjMmble\nmfMbzpyXMWUjm9nP1YbOiEt/q2l1xfXH/4vUOJa74pqY7K4zYNmDgAFsd8W1U+Ved3fv54I5z3Dy\nvMxpaSvodNe5M1S64p749SXuOi/8W993oy/Y313ncLpusj1wfvH74Za73Ov+p/3mOCO7X3d3fXQy\nC1w1/jHiev2d+PqyLfhnafmb4251xT38xg9ccZdG/Pp1P5e54vZ0e39tztOcNO/8jLInPvJv7xcd\n7j0X4D8p4X1N3mNszHvU6dyOYl7PQLa54rZ089ny2pynOGneDPe6dudv51G874pr5gBXXBs17nW3\nOmNbGOKucxHHueLO5JXsQSmD2bRb2ctzXmTavOkZZdsYsFtcT6rocMV5Py/bqHav2zv2qKHNXecW\nal1x/ZyvO87u2/v8Of+HU+b91W7lMa8pm+Yl63nuO09CajzZm1wuOZgD/HMI4QFIJhcHzgW+C/y8\nS2wrwLDxwxlZd0jGE9VDanYvY6irATED2gHOA141O9x1Hs46V9xqRrnr9L6mWra44trwDy66+6Dp\nP6SGA+sy21/BTnedO4Nz0zrE/4vEgXWveiPddY7wHqCcA9pjdz8m9+jAId7to/t1d9dHRzm/FK7g\nUOe6YafzMLE9+D9kJzrjRtT52jkx4gvcgc79ck+39/5Dd+8faiO296O923vMgNb3mryDz5j3qNP9\nceN/Pd7jYU03ny39hwxgeN1o97p252/naFpccf0Z4YrbzkD3urc5YysY5q6zyrkHD+e97EEpByST\nt2SoHlLNQXUHZ5RtYZC7Tu+JKu/nZWvEYNo79hjgHPgC1Di/dPSPGM/47b699x9S0+0xemDEa4qQ\ntdKoWQ409ZaIiIiIlJvYabs09ZaIiIiIlJWipr4VEREREcm32Gto15NMvTWyS/lI4POeFnplzm+o\nHpJ5fd3gw3zXy0ppjK0/ttRNkCzUR+VtzEz1TzkbU69Zn8rdhHrv1fZSCuPq/Te+e7zb8DZLGt7O\nKGtr8V+PGzWgDSG0m9kbJHMtPgNfZjCaBtzZ03Jnzjt7txvApLxpsFT+1EflbawGTGVtTP3UUjdB\nstCAtryNq5+S1/om1E9iQv2kjLLPG1fzwNRfu5bPZZaD24H7UgPbXdN2DQTuy6EuEREREZE9Ej2g\nDSE8ZmbDgZtILjV4E/h6CME3l5WIiIiISB5F3xRmZqcCZwNVQDXwsxDConw3TERERETEI5dLDgaR\nnJX9X8CTngVeZDrVTMgadxYvuRpwGB+54gA+4+DsQQDBPxHxd/71CVfcn2ac4K7TnBOZe7M2+bPy\n+LOUtUckawjmq/PIH7/jrnOHc/3eicTBPzV6p/l2lZ8N/nv3uivcWWz87/tCfNtcTJ3ebFDdZWPq\nyQpnXD/nxP0xiVG8+5A3DqDKfOsfP67RXad3+4iR74QJMccZ795WGZGswZvhqSqPmYt2iXnth7Da\nFdfsTG7gzaoJ/qyAw2h21zmaj11xVRH75QZnlrT+EX2Z78/L7pI/9MTbRxsiPq9qnJlCt0ckgPAm\nYaiMOB7tcO6XB/FZ1pjtbHSvN5dLDn4D/Aa+vCFMRERERKRkNA+tiIiIiPRpGtCKiIiISJ+mAa2I\niIiI9Gm53BQW7Ys5t1AxJPMC6UH15zCo/txirF5EREREytibDctpalieUdba4r+xsCgD2v3nzaW6\nLvssByIiIiKy75lSP44p9eMyyj5tXMtdUx9zLR89oDWzQcAY+HKupyPNbDKwIYSwKrY+EREREZE9\nkcsZ2uOA35JMKhiA21Ll9wPfzVO7RERERERccpmH9lV0M5mIiIiIlImoAa2ZXQfMAI4BtgOvAdeG\nEJb3ttznjxwOfzgma/21V/+rqx3ebEgAo/jEFReTeeV/XOiL6+z0Z5LxZuvwZsvy1hdT5wBnlhKI\nyNYVk5rDmdbr+cox7iqv7PzQFVftzE4zxFrc617DSFdczPu+itGuuFq2uOv0eotJ7tjX8rzutyPW\n7X0/26h217nTeSitNH8WrHxn9Yrh3S1j1h2Tnc7Pm+vPz9vOyuB/7Rd873lX3Px7T3HFdUacUzqB\nha64N5ia9zq9+wX4P4OHRmxz3kjvdrydGve6vdY7s8MBjGStK86bUQz8fbQj6njoez9bHRnN2iLe\n89gzracCdwFfBc4CqoAXzcyfZ01EREREJI+iztCGEM5J/9/MLgPWAlOB+flrloiIiIiIz55eCzuU\n5DefDXloi4iIiIhItJwHtGZmwB3A/BDCu/lrkoiIiIiI354kVrgHmACcnDXyqTkwYGhmWd1MmFq/\nB6sXERERkb3B2w1LeLthSUZZa4vvhmzIcUBrZncD5wCnhhA+y7rAjHkwui6XVYmIiIjIXm5S/Xgm\n1Y/PKFvduIZfT33AtXwumcLuBs4HTg8hfBy7vIiIiIhIPsXOQ3sPUA+cB2w1s10TabaEEFrz3TgR\nERERkWxibwqbDQwGfgesTntcnN9miYiIiIj4xA5ovwcsBrakHn8Czg0h+C5wEBERERHJs9hraFcB\n1wLvkWRHvAx42symhBCW9LjUtDaYlP2KBG+qyQNodsUBVNLhiuuMSMs425lZ9e8iUvSZM4VjTBpU\nL2/q2xgD2ZbXOIAB3tjwlLvOnQzNHhRhNKvcsR9yuCtuuyM94C7eVM9bIlI9e/fL0+wP7jpndR7g\nirvVmf51WMQxwct77ADcGVgXv3W8u8rTJ//OFReTPboQaXLzLaaN3rSdO53bEUClc/1R20ee7zYZ\nykZ37GF85IpbwvjsQSnez6sYL3GWK+5CnnDX6U0R7P1cjdmOdjjXPY1X3HUuY5wrLuaYUIgxUnC2\nYDWHZI1ZH3E8iM0U9lyXouvN7ErgRKDnAa2IiIiISIHkPA+tmVWQXDs7EPhj3lokIiIiIhIhl2m7\nJpIMYGuAzcCMEMLSfDdMRERERMQjl9S3S4HJwAnAvcADZnZMXlslIiIiIuIUfYY2hNABrEz9+2cz\nOwG4Griyx4V+cg3sNySz7PyL4T9qti8RERGRfd2KhkZWNDRmlO1o8d8In/M1tGkqIMtt0Df+HCYd\nm4dViYiIiMjeZkx9HWPq6zLK1jeu4smpt7uWj80UdjPwPMkkJPsBlwCnA9Nj6hERERERyZfYM7Qj\ngPuBg4EW4C1gegjBP5GaiIiIiEgexc5DO6tQDRERERERycUeXUNrZnOBm4E7Qgg/7Cnu0BGfUH3o\n4D1ZVYat1LpjBzmzS/Wnzd+Asb6wmFwq2xjoivO2s5LOiLX7xGRJ8b6eNYx019nPmzFk7o3uOivx\nXZvT4XztMZnPvBnaYrbN/Z0ZhNYxwl2nd/3n8Yy7zm3m2z68nuBCd6x3O+6M2N77s8MVV3PYBned\nXjH7pTcLl7fOmGxZ/mxM/sl3vO/7lojPjArnsXOHM4MewHvP++K8x82YPj+S94/3wqsAAAwxSURB\nVF1xI1jjrvMabnXF3Rrmuutct/wvXHGVR/u3Oe+75M3GWIhMnWsjjsXtBcjq6d2Hqpxx4M/gt8bx\n2jey1b3eXKbtAsDMjgeuAJpyrUNEREREZE/lNKA1s1rgIWAWRCSVFhERERHJs1zP0P4KeFY3g4mI\niIhIqeWS+nYmMAU4Lv/NERERERGJEzsP7SjgDuCsEEK7d7nmOT+nYuh+GWW1M79Bbf05MasXERER\nkb3QJw2v8WnDHzPK2lv8N1rHnqGdChwINJqZpcoqgdPM7PtAdQhht5v7h827huq6CZGrEhEREZF9\nwaj6kxhVf1JG2cbGD3h16vWu5WMHtC8Bk7qU3QcsAW7pbjArIiIiIlJIsYkVtgLvppeZ2VagOYSw\nJJ8NExERERHxyHke2jQ6KysiIiIiJRM1oDWzG82sM/0BHNRbljARERERkULKJfXtYmAasOumsKx5\n6NZtGU7FpoOzN2aIb+KE83naFQcwn1NccTEpS9sf9sVZ9pAvedPKBWetMakea9niivOmagWoCM4U\nm53+FI7ur19/656Aw532z5w/RLRFpMP0pyH176ab2S97EHEpHL39/jLT3HV6edMdj2Ctu07ve+Tt\nH4AO823HU4c0uuv0ikmDWul8TYXYNndEtNPLm5bZe4wDfxrUmJTUozf54gqRHnitM734+2GMu84j\nP/ncFzjaXSWjxr3niotJSe1P4ezb3ndQ5V63N4VyzHHzBBa6Y738Kdjzn/rWExfT37kMaDtCCOty\nWE5EREREJO9yuYZ2rJl9ambvm9lDZhbxHUxEREREJL9iB7SvA5cBXwdmA0cAvzezQXlul4iIiIiI\nS+y0XS+k/bvYzBYCHwEXA/+Sz4aJiIiIiHjkcg3tl0IILWa2HOj1avL2/3Y9NnhwRlnlRRdQedGF\ne7J6EREREdkLfNqwgNUNCzLKCpn6NoOZ1ZIMZh/oLa7q5n+kYsrkPVmViIiIiOylDq0/mUPrT84o\na2lcyR+mXudaPnYe2l+Y2WlmdpiZnQQ8BbQDDTH1iIiIiIjkS+wZ2lHAI8AwYB0wHzgxhNCc74aJ\niIiIiHjE3hRWX6iGiIiIiIjkIvoaWjM7BLgV+AYwEHgPuDyE0GMKnANqv6B6cPZMPjucWZZe5XRX\nHECNM/PKNga666xyJszwZh+BuCxcHoXIjBOTXcqbjWnzRl8cQNsw3/ZRd5g/m4r3ffe+9heZ7l63\nN/NKZUSGljeY6oo7nA/ddXqz073NJHed03jZFddRgOxS3uxBMZlxvLZbjTu23bltejMSQf63dyKO\ncV4xx8JK52uPyazlzdro/bwCqDnGF7fzE9+2GZMdriP4Yt8ZeZy7Tv6TL6z6n1rdVf7IbnPFreYQ\nd53ejJnez8sWhrjX7d2HRvGJu07vZ3WMmHGKl3f79IwTtuKfFTZqQGtmQ4EFwMskc9GuB8YCX8TU\nIyIiIiKSL7FnaOcCH4cQZqWVfZTH9oiIiIiIRInNFPZNYJGZPWZma8ys0cxmZV1KRERERKRAYge0\nRwJXAsuA6cC9wJ1mdmnsirc2PBe7iBTRioYeL4mWMrG04a1SN0F6sayhqdRNkF4sb3iz1E2QLBob\nVpS6CdKLcjvGxV5yUAEsDCHckPq/ycwmArOBB3ta6Is5t1AxNPPi345P1zCo/tzI1UuxrGhoZEx9\nXambIb1Y2vAWx9R/pdTNkB4sa2ji6HollClXyxuaGFc/pdTNkF40Nqygrr7XRKRSQvk+xq1t+B1r\nG17NKOto2epePnZA+xmwpEvZEuCC3hbaf95cqusmZJStPf+qyFWLiIiIyN5oRP0ZjKg/I6Nsc+MK\nGqf+nWv52EsOFgBHdyk7Gt0YJiIiIiIlEjugnQecaGbXmdlRZvZtYBZwd/6bJiIiIiKSXWymsEVm\nNgO4BbgB+AC4OoTwaA+L1AC0L1252xOdGzfT1vhuRtl6W+VqR8yk0tW0ueI6g39s3+icdXftAZ+6\n62ynyh3rUUW7O7atmwnCd7RsZ31jZn9430uArcE3GXJo8d+YsW6obwLqbcE/+fU689Xpfe3dvZc9\n8fZRTxPnt7W0sqZxdUZZi3OXXstnrjjw72+bCO46V7DZFbcW3z7Un/Xuda9zJlGJ2Ye6s6OllbWN\nme3fxjL38uvxHQ8t4n33JsmI2dfzLeZY6O2j7hIrdNc/Cd971BH8H5+Nzhwd3bdnd50R56LaQosr\nLrT7bwRuXOOL874e6H4f3t6yg1WNmeX+Pd2fMGkr21xxW9jkXrd3H/oiIoHLzoj1e3kTs3S3r/W0\nD7XiSyCz2bEdb1vy5XEwa6UWgv9gGCt1Bvfhgq1ARERERPZ2l4QQHuktoNAD2mEkGcU+BPw58ERE\nRERkX1cDHA68EEJo7i2woANaEREREZFCi70pTERERESkrGhAKyIiIiJ9mga0IiIiItKnaUArIiIi\nIn1a0Qe0ZnaVmX1gZtvN7HUzO77YbZCEmZ1qZs+Y2adm1mlm53UTc5OZrTazbWb272amxNpFkkpg\nstDMNpnZGjN7yszGdROnPioBM5ttZk1m1pJ6vGZmZ3eJUd+UCTObmzrO3d6lXH1UImZ2Y6pP0h/v\ndolR/5SQmR1iZg+a2fpUHzSZWV2XmLLoo6IOaM3sW8BtwI3AsUAT8IKZDS9mO+RLg4A3ge/B7rOz\nm9m1wPeBK4ATgK0k/dW/mI3ch50K3AV8FTgLqAJeNLMBuwLURyW1CrgWqAOmAq8AT5vZeFDflJPU\niZMrSD5z0svVR6W3GBgJHJR6nLLrCfVPaZnZUGAB0EYyBet44EfAF2kx5dNHIYSiPYDXgV+m/W/A\nJ8A1xWyHHt32TSdwXpey1cCctP8HA9uBi0vd3n3xAQxP9dMp6qPyfADNwOXqm/J5ALXAMuBM4LfA\n7WnPqY9K2zc3Ao29PK/+KW3/3AK8miWmbPqoaGdozayK5CzGy7vKQvLqXwK+Vqx2iI+ZHUHybTm9\nvzYBf0L9VSpDSc6kbwD1UTkxswozmwkMBF5T35SVXwHPhhBeSS9UH5WNsanL3t43s4fMbDSof8rE\nN4FFZvZY6rK3RjObtevJcuujYl5yMByoBLpmgV5D8oZIeTmIZPCk/ioDZmbAHcD8EMKua8zURyVm\nZhPNbDPJT3L3ADNCCMtQ35SF1JeMKcB13TytPiq914HLSH7Ong0cAfzezAah/ikHRwJXkvzCMR24\nF7jTzC5NPV9WfdSv2CsUkZzcA0wATi51QyTDUmAyMAS4CHjAzE4rbZMEwMxGkXwJPCuE0F7q9sju\nQggvpP272MwWAh8BF5PsW1JaFcDCEMINqf+bzGwiyZePB0vXrO4V8wztemAnycXf6UYCnxexHeLz\nOck1zuqvEjOzu4FzgDNCCJ+lPaU+KrEQQkcIYWUI4c8hhH8guenoatQ35WAqcCDQaGbtZtYOnA5c\nbWY7SM4iqY/KSAihBVgOjEH7UDn4DFjSpWwJ8Bepv8uqj4o2oE19Q34DmLarLPUz6jTgtWK1Q3xC\nCB+QbJDp/TWY5I579VeRpAaz5wP/IYTwcfpz6qOyVAFUq2/KwkvAJJJLDianHouAh4DJIYSVqI/K\nipnVkgxmV2sfKgsLgKO7lB1Ncha97D6Din3Jwe3AfWb2BrAQmENyE8V9RW6HAKnrlMaQfMMCONLM\nJgMbQgirSH6uu97MVgAfAj8lmZXi6RI0d59jZvcA9cB5wFYz2/UtuCWE0Jr6W31UImZ2M/A88DGw\nH3AJyRnA6akQ9U0JhRC2Al3nNN0KNIcQdp11Uh+VkJn9AniWZIB0KPAToB14NBWi/imtecACM7sO\neIxkoDoL+Ju0mLLpo6IOaEMIj6XmnL2J5JT0m8DXQwjritkO+dJxJNPYhNTjtlT5/cB3Qwg/N7OB\nwD+T3GH/B+AbIYQdpWjsPmg2Sb/8rkv55cADAOqjkhpBsq8cDLQAbwHTd91Nr74pSxnzbauPSm4U\n8AgwDFgHzAdODCE0g/qn1EIIi8xsBsn0XTcAHwBXhxAeTYspmz6y1LxhIiIiIiJ9UtFT34qIiIiI\n5JMGtCIiIiLSp2lAKyIiIiJ9mga0IiIiItKnaUArIiIiIn2aBrQiIiIi0qdpQCsiIiIifZoGtCIi\nIiLSp2lAKyIiIiJ9mga0IiIiItKnaUArIiIiIn2aBrQiIiIi0qf9P1UNXyLBzHePAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_weights()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### In order to avoid overfitting, we evaluate our model by running a 5-fold stratified cross-validation routine." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Cross Validation\n", + "def cross_validate():\n", + " t0 = time.time()\n", + " estimator = KerasClassifier(build_fn=cld_model, nb_epoch=epochs, batch_size=n_per_batch, verbose=0)\n", + " skf = StratifiedKFold(n_splits=5, shuffle=True)\n", + " results_cld = cross_val_score(estimator, X_train, y_train, cv= skf.get_n_splits(X_train, y_train))\n", + " t1 = time.time()\n", + " print(\"Cross Validation time = %d\" % (t1-t0) )\n", + " print(' Cross Validation Results')\n", + " print( results_cld )\n", + " print(np.mean(results_cld))\n", + "\n", + "cross_validate()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prediction\n", + "---\n", + "To predict the STUART and CRAWFORD blind wells we do the following:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "#### Set up a plotting function to display the logs & facies." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# 1=sandstone 2=c_siltstone 3=f_siltstone \n", + "# 4=marine_silt_shale 5=mudstone 6=wackestone 7=dolomite\n", + "# 8=packstone 9=bafflestone\n", + "facies_colors = ['#F4D03F', '#F5B041','#DC7633','#6E2C00', '#1B4F72','#2E86C1', '#AED6F1', '#A569BD', '#196F3D']\n", + "\n", + "#facies_color_map is a dictionary that maps facies labels\n", + "#to their respective colors\n", + "facies_color_map = {}\n", + "for ind, label in enumerate(facies_labels):\n", + " facies_color_map[label] = facies_colors[ind]\n", + "\n", + "def label_facies(row, labels):\n", + " return labels[ row['Facies'] -1]\n", + "\n", + "def make_facies_log_plot(logs, facies_colors, y_test=None, wellId=None):\n", + " #make sure logs are sorted by depth\n", + " logs = logs.sort_values(by='Depth')\n", + " cmap_facies = colors.ListedColormap(\n", + " facies_colors[0:len(facies_colors)], 'indexed')\n", + " \n", + " ztop=logs.Depth.min(); zbot=logs.Depth.max()\n", + "\n", + " facies = np.zeros(2*(int(zbot-ztop)+1))\n", + " \n", + " shift = 0\n", + " depth = ztop\n", + " for i in range(logs.Depth.count()-1):\n", + " while (depth < logs.Depth.values[i] + 0.25 and depth < zbot+0.25):\n", + " if (i" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAQOCAYAAADSegctAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VFX6wPHvmZIy6QmEkgChCCT0plIURBFBRFQUUVZF\nsaG7rq5t96crllVX19XFtiuoKBawIhIFVKSKiNKkSZEaOiGkt5nz++NOIIQkzCRzp8D7eZ55Jpl7\n7znvPZk7ue+ce85VWmuEEEIIIYQQIthZAh2AEEIIIYQQQnhCkhchhBBCCCFESJDkRQghhBBCCBES\nJHkRQgghhBBChARJXoQQQgghhBAhQZIXIYQQQgghREiQ5EUIIYQQQggREiR5EUIIIYQQQoQESV6E\nEEIIIYQQIUGSFyGE8IJSardSalOV125RSrmUUtcFKi4hhBDiTCDJixAiZCilznEnCV/VsPwl9/L1\nNSz/s3v54/UIQ3v5ep0opXoqpd5SSm1SSuUrpQqVUluUUu8opQZWWfdJ935VfuQrpda4l0V7UN8T\n7u2KlVINalhnvnudztUsa1Sp7uHVLLcqpfLcD6v7tduribvy44ca4hiklPpYKbXLHe8hpdQCpdTd\nSqmwGrb5sUrZTqXUEaXUQqXU2Bq2GVzNNrlKqR1KqUyl1P1KqUa1tasQQgjfsgU6ACGE8MLPQD7Q\nVyll0Vq7qiwfALiAdkqpZK31gWqWa+A7swOtK6WUBXgR+CNQCswDvgDKgJbAUGCMUupvWut/VtpU\nAx8DFYlbY+BS4P+AIUqpc7XW5TXUqYAbMdrODvzBHUNV84DzMNpxTZVlF7ifXe7lM6ss7wVEAbO1\n1s4qy2YDP1ZT3+4qcdqASe5Y84BMYBsQDwwGJgJ3KKUu1VrvqFKWdj+eBUoAK5AGXAn0U0p11lrf\nW00MuGOb7f7ZATQB+gJDgAlKqfu01m/UsK0QQggfkuRFCBEytNZOpdQi4BKMk+FlFcuUUolAJ+Az\njBPSC4DplZYrjBPvEqo/UQ4Wz2IkLsuBq7XWOysvVEqFA3cDcdVs+5HW+rMq6y4HugGjgPdrqHMw\n0Ax4HSNxuYXqk5fvgQkYbTuxyrILgFyMtr2Akw3ASB7mV7Nstta6annVeREjcVkMXKW1PlixwJ30\nPQU8DGQqpXpprYuqKeOfWuvcSts9A6wA7lZKPae13lvNNj9qrZ+o+qJS6gqMZOp1pVSe1vpDD/ZB\nCCFEPchlY0KIUPM9oDBOhiur+H0icISTT6C7AAnAUq11aeUFSqlWSqk3lVI7lVIlSqks9++pPo++\nFkqptsB9wAFgSNXEBUBrXaK1fgF48lTlaa1LgA8w2qtHLavegpFY/Bf4FEhXSp1TzXo/AkUYSWBV\nAzCSinlAJ6VUQpXlFX+P708Vd3WUUh2A8cB+4PLKiQuA1tqltf4bRvKaDtzjSbla643ADxj/D7t5\nE5PW+nPgOoz2fb6mS9aEEEL4jiQvQohQU3HyWzU5uQDjxPpHYFENyytvD4BSqjewEhgD/ITx7f5i\n9+/LlVLN6hqoUuop91iJv3m4yc0YJ8Kvaa2za1tRa13mZTg1XTKWBFwGrNZa/wq8647hlhrq/AFI\nUEp1rVRGU+AsjF6VBRj/WwZUWm4D+mBc6vWLl3FXuNn9/KrW+kgt6z3pjv/mWtapSbVtVBut9VyM\n3q0mVJ/UCSGE8CG5bEwIEWpWAkeBPkopa6XxE/0xLu8pU0otAIYrpZpqrfe4l1+A0btwLHlxf1M+\nHWOcRnet9bpKy85zr/sScFUdY60YZ+GpPu7nOvVOVKWUigSud8ewuIbVbgDCgKnu3+cDu4BRSqk/\na60Lq6z/PTAQIzlZ5X6tctuuAgrcr33uXl4x3iWzmnFKYIzJqdpTA/BypSSut/t5Xg37AYDWerVS\n6jDQWinVQGt9qLb1lVIZGO1eTN0Tq/lAT4z9DNrxVEIIcTqQ5EUIEVK01i6l1EJgGHA2sNQ9O1YH\n4CP3agswvn2/AHjfPd6lH0bPzLJKxV0OpAJ/rZy4uOtZpJSaBVymlHJUcxLviRcxkoKDp1rRrbH7\neXeta1VPYSQcndy/N8JooxTgY6111QH0FW7B6HH4AEBrrZVS7wMPAdcAU6qsX3HZ3gUYiR3un/OA\nFe7tf+DEnq8BVEkcq7jY/ajqQ6Aiealom101lFHZbiDRvU3V5OWvSqliThywHwbcrbU+7EHZ1dmD\n0SbVztImhBDCdyR5EUKEovkYlzpdACzl+InyfPfzKozemQswBql3xZiR6psqM26dg3FSnaGUeqya\nepIxTnLbcPLsWqfk7jWo9fIvHxtZzWvTtNbXV7eye1xLBvC11np/pUXvYgx8v4WTk5flGD0r5yml\nlNZa4x7v4v4ZjOTxSaVUQ/fYlFONd/mz1vrlWvfMNxTwYJXXNHC71vpNP9QvhBCinmTMixAiFFWc\nBA+o9FyMu1fFfRK9mOMnzRX3Ral6yVEixgntGODv1TwqkpsoH8dfk33u55Q6bKuBkVprK8Z0x52A\nb4DRSqm/17DNOPd2Uyu/6B7E/jPGpXlnVVlWDizBmO2sm3tSg1YYCUuFip6vAZXGu+RorVfWEIfy\nYP8q2saTMUgVEy1UnTlMA/HuNooCLsLopXlVKdXfg3Jr0tRdtqc9bEIIIepIkhchRChajTGjWB+l\nlB0jefmxyiD2+UCaUqo5NV+2lOt+/RKttbWGh01rvdTk/amwBONE/sI6bq/g2Mxb64ERwO/Ao5Uu\nJzNWVMqBcVkYwAdVbxCJMYYDqhm4z4mTJlSMd5lfaflPGJfoXYBxaZ+DE5ObuvgBD9pGKdUFSAK2\n1nAZWEUbFWutv8fowbMCb7vfS3UxwP28vI7bCyGE8JAkL0KIkOPuWVkARALDMabGnV9ltYqT5UEY\n413yMXoTKluGcTLbh+AwBWPygDtqGMB+jCfT8mqtizEuk7ICz1RZPAqIwZgAYXINj1LgBvc9VCqr\nPF31AKrMIuZOIisu5xtQaZv6mOJ+vlMpVd09bio8gpFMeXQZmHuGtUlAC+Aub4NSSg3GGKi/G2OW\nOyGEECaS5EUIEaoqTqAfo/qbH67ASFjuwbjEaVE1M119hnHS+YBSqm/VCpRStupe95RSKkkp1c59\nA81T0lr/BryAMdh+tlKqRTVlRiilHgQe9bDMzzB6qoZUuXdLxb1d/qS1vq26BzCT4wP/K/sFI2E5\nD6MnZEk1bbsAaAdcS+2D9T2ajU1rvRbjJpqNgS+VUg0rL1dKWZRST2HMDLeek2+iWZt/AGXAQ+4Z\n2jyilLoSY6IDDTxQh+mrhRBCeEkG7AshQlXFyXBHjt/f5Rj3rGRLgEuo4eRZa12ilBoJfAUsUkp9\nB6x1L24OnI8xbqKzB/FUN27jXuBvGL0BT3tQBsBfMWa/+hPwm1JqnjsmJ9ASY5xGAsZsYKeqv8Lj\nGInaE8BgpVQ7jN6mzVrrH2rZ7m3gaoxE59hsZVprp1JqETAUo/fm1Wq2rej56ggccicf1fFkvEuF\nPwPRGGOUtiilMoFtGJMxDMYYe7MOuFRrXeRpoVrrLKXUZIybYP4ReK7KKr0rTegQgTHGpR/G3yMf\nGKe1/gghhBCmk+RFCBGStNZrlVIHMaanXVrDt94LME5qa/zmX2v9k3ucxAPAEKAvUAJkAZ8A06rb\nzIvXvLrXi7sH4173dMV3YCRQ52P0lO8BMoG3tdbzPai/oswZSqlVwIVKqX4Y4zw0J88kVtVcd52X\nKKUaa633VVr2PUZ7VdfrBcYlecVAOLVfMuZN25QBNyql3gNuw+j5uRJj9rO1GFNTv1FLD0htdT2D\ncWPLvyilXtVaF1Ta5mz3A3dd2e76XgWmumdUE0II4Qfq+MyWQgghhBBCCBG8ZMyLEEIIIYQQIiRI\n8iKEEEIIIYQICZK8CCGEEEIIIUKCJC9CCCGEEEKIkCDJixBCCCGEECIkSPIihBBCCCGECAmSvAgh\nhBBCCCFCgiQvQgghhBBCiJAgyYsQQgghhBAiJEjyIoQQQgghhAgJkrwIIYQQQgghQoIkL0IIIYQQ\nQoiQIMmLEEIIIYQQIiRI8iKEEEIIIYQICZK8CCGEEEIIIUKCJC9CCCGEEEKIkCDJixBCCCGEECIk\nSPIihBBCCCGECAmSvAghhBBCCCFCgiQvQgghhBBCiJAgyYsQQgghhBAiJEjyIoQQQgghhAgJkrwI\nIYQQQgghQoIkL0IIIYQQQoiQIMmLEEIIIYQQIiRI8iKEEEIIIYQICZK8CCGEEEIIIUKCJC9CCCGE\nEGcopdRdSqltSqkipdSPSqlegY5JiNpI8iKEEEIIcQZSSo0CXgAeA7oBq4E5SqkGAQ1MiFoorXWg\nYxBCCCGEEH6mlPoRWKa1vsf9uwJ2ARO11s8FNDghamDzZCWlVBIwGNgOFJsZUJCLANKAOVrrw95u\nLO14TL3aEaQtK5H3pG/Ie9J35D3pG/KeFL52wntKKWUHegBPV6ygtdZKqW+B3lU3lvdTyKj2s0Mp\n1RzwdY/aIa31Th+XeWpa61M+gOsALY9jj+s8aTdpR3PaUdrSd20p7eibdpS29F1bSjv6ph2lLeVR\ny+M69/ujCeACzqnyvvknsFTeTyH/uK7S3665slnMqKMAaF7Xz6i6PjzqecHIsnnvvfdIT0+vdoWs\n3CxmbZpF5uZMsnKzaBrTlGFthzGs7TDuufkePvnkEw+r8szIkSN9Xuapyt2wYQNjxowBd3vUwXao\nvR29YUYb1KXMd9+Fl1+Gjz6Cli1PXZ4P2vHYtr5qy6p80bYlJSWsWbOGX3/9FaUUnTt3plOnToSF\nhfmsvoC+J8vLYdky+PJLWLAAysoYGR7OJ488AgMGQGRkHUM6mdnHe7C+J6vb76KiIrZs2cKGDRvY\nuHEjv/32G1u2bKG8vByAtLQ02rdvT/v27WnXrh3t27cnNjb2lOX6ymWXXcaePXsgSD4nKzNjvydN\nmsSkSZP46aeffFquL9+TV187ggfu/StW28n/8rXWbNi+h/mrt/LDznxKHQ1QFmM9Z3E+DXQu/dsl\n069Ta5o1SqqxIjPfU4Gop6515e4vICcrn/xDxeQfLqLgcDHFeaU1rm8Ns/LS1xN45k8vEZUUQVRS\nJPFNooiMC69v+Cfx1f+LtAZtGDfgLz6KyvDektcY03e8lOkD2a79/PuzCXDi37mBLncRP7gdtkSH\nT+opzy4kZ85vDozeHL/2vniavBQDpKen07179xMW7Mnbw/jM8Xzx2xdEh0VzTb9ruLHrjfRr3g+L\nMuYDuN9+/0nb1Zfdbvd5mV6UW9fu0hrbsS7MaIO6lNmhA8ycCZMnw1dfgVIel1efbmeftmVV9W3b\nrVu38umnn1JWVsbll19O3759cThq/sDwwd/SP+9Jlwt+/BGmTYOPP4Z9+4w3wFNPwXXXYR84kO7/\n9391DKVmfjzeg+o9WdN+9+3b94TfS0tLWbduHStXrmTFihWsWLGC//3vfxQVFQHQsmVL+vTpQ9++\nfenbty82m82U9gSwHT9BDorPycrMeB81bdoUwLT2xAfvyUGDR9Dr7LNPWlhUUsZDr33MZwt+ITaj\nH/Z2SdiBCF3Cxa0cjB/UkSZJcR5VZNYxGqh6fFlXWXE5ufsLyd1XSO6+Ao7uKyR3fwF5B4rQLo1y\nWQg/kET5ATgK5FqKaXdBAzpd2hJ7hKenaV6peE8dApxAoyrLGwH7atruUN5+Plv+7gkLep81kD5n\nDaxzQI6waFo2bFvn7c/UMn/YPI+lm+ed8FqJLqr48aTPDluiA3tydJ3qCib1Oiqmr53OnZl3Em4L\n5+3L3+bqjKuJCos6ab127drVp5pqmVGmmeWaIVjaNTwc/vMfGD7c6IW58cb6lRcM6hP32rVr+fzz\nz2nVqhXDhw8nJibG1PpMpzWsWGEkLNOnw65d0KQJjBoFf/gDdO9+LGMNteMyqNsdz+MLCwujW7du\ndOvWjZtvvhkAp9PJpk2bWLFiBT///DNLlixh+vTplJeXY7PZGDJkyLFk5uyzzyYq6uTP7rpIS0tj\n507/XwLtCbP+3rZqejSCSfPWJ/dg7T6Qzbhnp7D29yxsYRHYY5JQwFPD2jC0YxMslb+F8oC/jiV/\nHrO+qsseYSOpRSxJLU7sAXU5XeQfKuLtdR3ocnkrcvcVkrOngCO78tj43S52/nKAHte0JbVLA5SX\nfw9PaK3LlFK/ABcCM+HYgP0LgYk1bZeamMZfhj7l83iE9/pUkzQecO7i3jduCkxAflKnT9yjxUe5\nM/NOPlz7IVdnXM3rl75OkqPm7mRx+rvsMrjhBrjnHrjwQkhNDXRE/nf06FHWrFnDvHnz6Ny5M8OH\nD8dqtQY6rLo7eNDISqdNg61boUEDuPpqI2np1w9Ced/OAFarlfT0dNLT07n++usBKCws5KeffuLO\nO+8E4F//+hePPvooNpuNbt260bdvXwYNGsTgwYND+70rTmCvclOENVt2MeaJSWTnFpAYG8X4G67h\n9eXZpCVFMqxT08AEeQayWC3ENooiMi6MDoPTjr2+Z91hlk/7jYLDxSx641eadW1I31s6YLGacneL\nfwNT3EnMT8C9gAOYYkZlQviC18nL70d+Z9gHw9iTt4f3r3yf0R1Hm/KNgAg9L70E330Ho0fDvHlg\ntwc6IvNorTl8+DA7duxg586d7Nixg6NHjwLQu3dvBg0aFNrHxd69MHAg7NkDI0fCa68Zvwf5N8yi\ndg6HgwEDBnDWWWcxc+ZMXC4X69atY8mSJSxevJgZM2bw0ksv0axZM2699VZuueWWY5dFidBlsxz/\nLCotK+eelz4kO7eATq1SmfTwjaw+UAZkk5VTzLLtRzgnLSFwwQqadkji0kfPYe1X21k/dwe7Vh2k\n8EgJ0Q18N46wgtb6I/c9XZ7AuFxsFTBYa33Q55UJ4SNenYms2ruKh757iPiIeJaNW0a7Bp51qQ4b\nNqxOwfm7TDPLNUOwtWtCgnFV0YAB8Ne/wr/+FVrtWVnVuF0uF/v37z+WrOzcuZOCggKUUjRu3Jj0\n9HSaN29O8+bN63T5TVC1U1YWXHABFBXBzz/DWWd5vGmoHZdB1e7VMHu/LRYLnTp1olOnTtxxxx0A\n/Pzzz/zvf//j2Wef5fHHH2f48OHcfvvtDBo0CIvl1N/89uvXj4ULF5oSd32Z1Z7h4b4fXO1LlkrJ\ny/9mzGfz7v0kxUXzweO3kxDjoHEDzTe/HeL7TYe555N1/PfaTnRN9WysSwV/HUv+PGYDuU+2MCup\nXRuyfu4Owhw2ohIjTKtfa/0a8Jqn63dq1svnMfSux3gZKfPM41Uf5O2Zt5PRMIMfb/nR48QFYNas\nWV4HFogyzSzXDMHYrn37wvPPwwsvwDffhFZ7VlY57l9//ZXnn3+eN954g2+//ZbCwkK6d+/OmDFj\neOihh7jtttsYPHgw6enpdR43EDTtpDVccgmUlBgziHmRuEDoHZdB0+41CMR+9+zZk0mTJrFnzx4m\nTpzIli1buOSSS+jZs+exCQBqs3jxYl+G6lNmtWdJSYkp5fpKRSdwQVEJ//n4WwD+PnY4CTHGJCI2\ni+K5y9Pp3TKBojIXd3+0lg378ryqw1/Hkj+P2UDv07alewFo2CYeZQmenvwuzX2fvNRnsL+Ueebx\nKnkpd5Yz7appXo9vmTBhglfrB6pMM8s1Q7C26z33wDnnwD/+EVrtWdmECRPQWrNw4UI+++wz2rRp\nw9ixY3n44Ye56aabGDhwIK1bt/bZN65B007798PatfDvf0OrVl5vHmrHZdC0ew0Cud9xcXGMHz+e\n1atXM2/ePNauXcvzzz9/yu1uu+02H0RoDrPa05NJOQKp4h/9xp37KC4tIzkhhiv7nziLVpjNwotX\nZdAtNZa8Eid3TlvL1kMFHtfhr2PJn8dsIPdp27J9bF6UBUCbfnLpphCVeT36q7rZxE7FjGkNzZoq\n0V9TMPpCsLarUvDgg8YX9+XlodOelXXt2pWZM2fy/fffM2DAAK688kqaN29u2qxCQfO+W7vWeO7c\nuU6bh9pxGTTtXoNg2G+lFBdccAH33XcfzzzzDDt27Kh1fTPuu+QrZrWnPcgH+FXMHLZl934A2jZr\nXO2YvEi7lZev7khG42iOFJVx+4e/sv1woUd1+OtY8ucxG6h9OrAlh58+2AhAhyFppHT09U3RhQht\nXicvTpfTjDjEaebyy40Zx6ZNC3QkdfPLL7+watUqrrjiCvr37x/ag++9YdyJFzZvDmwcIuiMHz+e\n4uJili1bFuhQhJcqPr4O5hiXgjWu5d4tMRE2Xh/ViTYNHRzML+WmqatZt9e7S8hE3W1btpd5E1fi\nLHPRtGMSnS9teeqNhDjDeJ28bM/ZbkIY4nRjtRrjX0LxPKegoIB58+bRrVs3OtexByJkXXSR8bjr\nLij07BtXcWaouIN8nz59AhyJ8FbFcIm4KGO2qryC2scuxTvsTLquMx3cPTDjPljDj9uOmB3mGU27\nNKtnbmXpOxtwlWuadW1Iv1s6BtVYFyGChdfJy8ZDG72u5M033/R6m0CUaWa5Zgj2du3VC3766c1j\nX+aHikWLFrF8+XIuuugiv9UZNO87peD1142pkm+/HcrLvdo81I7LoGn3GgTLfhcWFvLaa6/Rrl07\nUk9xE6cZM2bUJzRTmdWehUGe6GuXC4D4aGOAfs4pkheAREcYk67rzDlp8RSWOrnnk3XsPXrSDbuP\n8dex5M9j1p/7tG7ODtbNNi7JzBjcgn7jOmILl3stCVEdr5KXjIYZTF0z1etKVqxY4fU2gSjTzHLN\nEOzt6nKBUisItSuusrKyKCgowOFw+K3OoHrftWkDb78NH35o3JDSi5mUQu24DKp2r0Yw7Hd2djaD\nBg1i2bJlTJxY4023j9m40fsvuPzFrPYsKyszpVxfKXUaX0LERRs9Lzl5niVbUeE2Xrm6I11TYyku\nd/Hqwu01ruuvY8mfx6y/6lry/VJ+nfU7AD1HtaXr5a2lx0WIWniVvIzMGMnsLbPZdmSbV5W8+uqr\nXq0fqDLNLNcMwd6ue/ZA69ah055g3Hzy4MGD/O1vf/NrvUH3vhs9Gj77DDIz4bLLIDfXo81C7bgM\nunavItD7vXPnTvr168emTZv4/vvvufjii0+5zcMPP1zf8ExjVnvGxXl3TxR/Ky43kquKnpejHvS8\nVAizWXjgwtYAzFp7gI3786tdz1/Hkj+PWX/UVVJQxvDmY9Ea0s5uTNv+tfdsCiG8TF4ubn0xseGx\nTFoxyax4xGli92547z3o0SPQkXhHa01paSmRkb6/k3HIGT4cvv7aGLjUuzds2RLoiIQf/frrr/Tu\n3ZuioiKWLFnC2WefHeiQRB2VuHuGkhNjATh4JI+iklKPt+/YNIbB6Q3RwDs/7jIjxDOS1pofp26g\nMKeEmORIel3bNtAhCRESvEpeIu2R3NDlBt5c+SalTs8/+MSZpbzc+OI+IgJeeinQ0XjHYrEQFxfH\nkSMyOBWACy4wkpfycmMQ0+zZgY5I+MGCBQs477zzSE5OZunSpbRtKydVoayw1Ph/3SghlobxMThd\nLtZv2+NVGWPPNXoE5m48xP684L4pZ6j4bd4ustYcwmJT9L2lI/YIc6biF+J04/WA/dt63MaBggPM\n3TrXjHhECHO5YOZMOP98WLrUmCa5QQhOT5+UlERWVhY61GYaMEv79kYC06cPDB0K69cHOiJhgtzc\nXKZOncqwYcO46KKL6NmzJwsWLKBx48aBDk3UU747eVFK0aVNMwDmLl/nVRnpjWPo0SyOcpfm/s/W\nc7hAvsCsC601e9Yd5psXfmHFp0Zvdrcr2pDYLLhvdCpEMPE6eWnfoD0ABwsOerzN8OHDva0mIGWa\nWa4ZgqVdS0qM8d0dOxr3d7FYjC/o+/YNrfas0LNnT5555hl+++03v9UZ9O0UH2/8kbWu9R4woXZc\nBnu7m73fBQUFTJ8+nSuvvJLk5GRuuOEGcnJyePHFF8nMzCQ2Ntbrsu+9915fh+szZrVndna2KeX6\nyqFKicY1F/YCYPLMhezYd9ircu6/sBWxETbW7MnjhndXnXADS38dS/48Zn1Zl3Zpdq08wJx//sz8\nV1dzcOtRLDZF+qDmPPDiXT6rR4gzgdd9lDaLDauyUuL0vNv47rvv9raagJRpZrlmCHS77tsHU6bA\nyy8bg/MvvxwmTTKSFjNjNFu7du244oormD17NikpKcTEmP+NWEi0U8WJbE5OjauE2nEZ7O1uVnyX\nXXYZ1157LV9++SWFhYX06tWLf/zjH1xzzTU0a9asXmVfc801LFy40EeR+pZZ7RkVFWVKub5yML+Y\nojIXkXYLQ87tRL/OZ7F4zWbue3kabzx4I0lx0R6Vk9Ekhqk3dOWuj9ayO6eY699ZSf82SfRsEceo\nG29Fa236DX39eczWpS6X00VBdjF5B4rIO1BI3kHj+ejeAgqPGOdN1jALbfqlkH5Rcxzx4dwdFdyf\nQ0IEmzpdYBlhi6C4vOb53qvyZIYab5lRppnlmiEQ7VpebvSqTJ4Ms2aB3Q7XXQf33w/p6f6J0WxK\nKR588EHeeustXnvtNS655BI6d+5s6j/loG8nreHhh437wLRuXeNqoXZcBnu7+zo+rTWvvfYa999/\nP6mpqTzyyCOMGjWKVq1a+ayO3r17+6wsXzPr7x0eHm5Kub5SVF7Kd9sK6N4kgqYxdp64dQRD/vIi\ny9b9zoV/ep7n7rqai8/u6FFZaUkOpt7YlT9/sp7VWblkrjtA5roDQBzvvLqMns3j6dkijl7N40mN\nj/D556Y/j9ma6nK5NIXZxceTE3eCknegiILDRbic1V9ybI+w0nZAKu0GNiMiOuyU9Qghqlfn5KWk\nXAbsnUm2bIG33jJ6WvbuhW7d4D//MRKXhIRAR+d7iYmJjB8/njlz5jBjxgzWrl3LsGHDgn5KVNM8\n9ZTxB3/tNejXL9DRiDo4cOAAN998M5mZmdx9990899xzMqveGSLM4qLMqVm2u4i0+HKaJCTxydN/\n5qFXP2T9tixufvptRl14Ng//YSgN40/d05zoCOOtMV34eUcOP+88ys87c/h1Tx7780orJTPQKCbM\nSGaax9FR7KW2AAAgAElEQVQ1NY60pEgsQXzjL5dLU1ZYTmlhGSXu59LCckoLysg/VHSsNyX/cBGu\n8prHRFrtFqIbRBKTHElMQ4fxnOwgsXmMDMoXwgfqdBTFhMfw64FffR2LCEJZWfB//wfvvmtcNXT9\n9XDLLdC9e6AjM5/D4eCKK66gQ4cOzJo1i5dffpn27dvTtWtXWrVqhcXi9ZCx0LR+Pfz97/DYY3Dn\nnYGORnhh+/btZGZmkpmZyffff09sbCyZmZkMHTo00KEJP0qNdtImMYwt2aVszylje04ZEMWdt42j\nrLSEnXv2czj7CH//YAEtGsZxYbez6NAimUibqrHnxGZRnNsygXNbGt9eFZU5WZOVy/IdNSczcRE2\nOqfE0i01li6psXRoEkOk3bd3kddaU17sPJZ4lFRKQEoLy90P97JjrxnPZUXlHtdjsSmik4ykpGqS\n4ogPl5tMCmGiOiUvf+33V26fdTtD2gzh+s7Xn3L9GTNmMGLEiLpU5dcyzSzXDGa2a0EB/Otf8Nxz\n4HDAK6/A2LHg7Re1odSelVWOu23btowfP54VK1awatUq3n//fWJiYujcuTNdu3algQ+mVAvqdoqP\nN547dz7lqqF2XAZ1u+N9fOXl5SxdupTMzExmzZrFunXrsNlsnH/++Tz99NNcf/31JCcnm7rf33//\nvSnl+oJZ+11c7Pll1IGwc/fvdGoUQXKUjW05pRSUuigsc1HuAntYOK3TmtM6rfmx9XeXwe4t+aA1\nUWEW42G34Kh4thuv2S0cS27mZH7JiBEjOCetajKTw4pduazdm8fR4nIWbc1m0VZjggObRdGuUbSR\nzKTE0jU1luQY4xI8Z5mTkoJKvR/u56/mzuL8bhfWmpRoV/1mirSFWwlz2Phlxw/073EhYQ47UUkR\nxDQ8nqw4EiKw+ChBCfbPISGCTZ2Sl1u738qSXUu4bdZttExoSZ9mfWpd/8MPP/T5gWlGmWaWawaz\n2jU2dgQ33AAHD8I99xg9L3W9WiqU2rOyqnFHRETQp08fevfuzd69e1m1ahW//PILS5YsITU1lU6d\nOpGRkUF0tGcDX09VX1Bp2hRSUuDTT2HIkFoz2FA7LoO63fEsvn379jF37lxmz57N7NmzOXLkCA0b\nNuTSSy9lwoQJDBo06KTLHc3c7zlz5phSri+Ytd9FRZ7fsT4QdmRtBaBRtI1G0ca/fa01pU5NYZmm\noMxFQamLnQdz2XHoKC5lIzE+DqvVSkGZpqDMCThPKtdmAbtFEWZVTJw8lcY9LsZuNX63WxUNYqO4\nvGs0V3XX6BInO/bk8/vuo/y+O5c9+wtxFpbjOJzDkbU5/OSCtU5NgrLg0OAsc1W7L+/N/YDEfTWP\nu6tgsSnCHHbCHDbCo+zYI43nMIft2OthDjthUcZzuPvZHmnDajN61T8cNZEn732gjq3uuWD/HBIi\n2NQpeVFK8fqlr7Mlewvnv30+j/V/jL+e91dsluqLmz59er2C9FeZZpZrBjNifeON6bRvD2edBQsX\nQn3H8YZSe1ZWU9xKKZo2bUrTpk25+OKL2bRpE6tWrWLOnDnMnj2btLQ0OnToQHp6Og6Ho971BY27\n7zay2O++g/vugzvuOD77WCWhdlwGe7tXF19paSlLliw59p5bvXo1AN27d+fuu+9m2LBh9OzZs9bL\nGs3c72effZZvvvnGtPLrw6z9TgjygX97tm/E5XKd8J5QShFuU4TbICHSuHSrXYOGQEP2HMph9GP/\nI7ughOZNknn5gZsoLudYopNf4qSk2ElpUTmlRWXkF5Vz59jn2blgFxSVowvL0UVl6KJy4/eiMnAP\nYldAa/ejeq7jaZICW6TthITjXz1ePp6EuJ/DT0hGjJ+tdku9Jwvw1+dDsH8OCRFs6jxyzGF3MP/G\n+Ty58EkmLJjAnK1zmHrFVFomtPRlfMLPHnsM8vLg/fehnjOmnvZsNhsZGRlkZGRQWFjIxo0bWbdu\n3bExBq1atTqWyERERAQ63Pp5+GEYOdK4jvCRR+CZZ+CPf4Q//Sk070QaYrZu3crs2bOZM2cO8+bN\no6CggOTkZAYPHswDDzzAoEGDSE5ODnSYIkiVHz3Cqjkf0X3ItR6tP+/n9eTvLyQjvAHXpnZh/5e/\nU5xfRkleKcX5pZTkldXYM1IrmwUibahjDzsq0ma85rCjIoxnImyoCCuEWVFKoYES9yMPIwGyu3t3\nwiyVf1bYSzURLicJkZq4cCtWGXsixGmnXtNe2K12nrjgCS5ufTF/+PwPnDP5HJaNWyYJTIg6eNC4\nZ8vTT0vi4i2Hw0H37t3p3r07BQUFrF+/nnXr1jFz5ky+/fZbLrvsMtq3bx/oMOunTRt44w0jw33h\nheOP22+Hv/zFuLRM+ExBQQEfffQRkydP5ocffsBms9GvXz8eeeQRBg8eTJcuXc6cSSNEvdicTj54\ndCwlhfmce+Ut1fZIlBaWse+3I6xftou8lUf4S3J/AIrWFbGN6i+Ls9othMfYiYgOIzzaTkRMpeeK\n12PCKLbCtHX7mbZmH+VOF+F2J3ERinNbxnF2WgLpjaOxWiyUuYxL2cqcutLPnPC6BjRQ6jReK6hl\nvxUQF2EhIdJKQoSVhEgrMWH175E504WPSicio2ugwxA1sG+2wxuBjsJcPpmzr1/zfiy/dTm93+zN\npR9cyg+3/EB8RLwvihZ+tHw5uFwwalSgIwltUVFR9OrVi169epGbm8tXX33F9OnT6d69O4MHDyYs\nLOzUhQSzlBT497/hb3+DiRONjPfVV+Gmm+DBB2u9D4yondaa5cuX8+abb/Lhhx+Sn5/PoEGDmDZt\nGkOHDvXLDVPF6adx0zTK1v/EtAm3snn5fEb9/b+ERURxZHcee9Zls3f9YQ5tyz020D3OGokTFynp\nScQ3jT6WlIRHhxERczxJsYVba00ECkrKmfpTFu/8tJvCUuNisLNbxHNN9yb0bZWII8y7mca01jg1\nlLkTlzKXPunnMifkl7o4Uuyk1KnJKXaRU+xiG2WA0flTkchUPEfa5UsAIUKJz47YBo4GzBo9i735\nexkxbQTbc7YfWzZ27FhfVWNqmWaWawZfx7piBYSFjaVFC9+VGUrtWZmv4o6NjWXUqFEMGzaMX3/9\nlf/9738cOnTItPr8qkEDeOIJ2LHDeJ4xg7Ft2hjzaa9Z49OqzoTj/dNPP6VLly6cc845fP3119x7\n771cddVVzJkzh1GjRvk0cTFzvydMmGBa2fVl1n7n5OSYUq6v9Bl6PZf9+VksViu/ZL7PPy7twXt3\nf8LsZ39mzZe/c3DrUbRL43RoFuVv46PiNQya0JOBf+xG96vOIuPiFrTu05TUzg1o0DKO6AaR2CNs\nJyQuVdv2m40HGfbf5by+eAeFpU4yGkfzv2s7Mem6zgxq39DrxAWMcTq33nIzkXYLcRFWGjhsNImx\n0yI+jDaJ4aQ3jKBz4wj6NHcw9KxoLm4dTa+USNokhpEUacWqoNwFBwudbDpcyrKsImZvyWfl3up7\nlvz1+RBMn0NChAKfft3QrkE7ZoyawW+Hf6PdK+24b859HCo8FJA7wQdbuWbwdazffgsZGRfjyx71\nUGrPynwZt1KKHj16cPvtt2O1WpkyZQoHDx40rT6/i42Fhx6C7du5+KabYMkS6NIFLr3UmPVB12/a\nUji9j/e9e/dy1VVXMXLkSFJTU/n666/Ztm0bjz/+OFdeeaUpdZq53+eee65pZdeXWfsdHh5uSrm+\nYtdOLrrlIe5+az4NUruQlvYoVpJwlheSfWgx27a8yO59f+fDgzP4Mnc9vc5uQMNE72ZOrGjbwwWl\nPPD5eu7/fAPZhWU0T4jk+RHpvH9Tt2P3hKkPT/+GSimiwiykxtrp1CiC89OiGNYuhk6NwrFW+R9X\n5qz+M8pfnw/B8DnkFWXc/0ceQfrg9L8s0ud9pf3T+rP5j5t59PxHmbxiMq0ntmZ76nYKywp9Ws/o\n0aN9Wp7Z5ZrBl7FmZ8PixXDnnb7d/1Bqz8rMiDspKYkbb7yR6OhopkyZwv79+02tz+8iIxn99tuw\neTNMnQo7d0L//tCnD3zxRb2SmNPxeNda8/bbb5ORkcHixYv56KOPyMzM5JJLLsFqtZoan5n7fckl\nl5hWdn2Ztd+R3t4Ay8+cRbkANG3diy69XiMisinWiBJcsTPIznuHA3tnkbV5Cbm7fgNg4fsv83Cf\neF4eO4AvXniAhR+8wurvPmf7mmXk7NuNs6zspDquvfZaMtfu56pJvzB34yGsCm7r25xPx/Xg4vSG\nWHz0rZg3f8Mypyan2ElWbhkbD5Uw7/cCft1fUjHxGQ0cVs5OiaRnSvV/P399PpwWn/9C+JFPxrxU\nFR0WzSPnP8LtPW7nqYVP8dj8x3hl+StM6D+Bsd3G1jilsgicr78GpxOGDQt0JKe3qKgobrjhBt59\n910mT55Mnz596Nu3b+iPg6nMbocxY4zLx776Cp59FkaMMGYse+aZQEcXNObMmcPNN9/MmDFjeOml\nl0hKSgp0SOI0VV5oJC8rP99K/qFiopIiuOjePkQlDgEg7/ABdqz9ic1TF8AhFyo8ktKcArb8vIAt\nPy84qTylFDFJjYht2JT4RikcTe7C/PBz2OU0pk9vFWfl0UEt6NYmxfTB8WVOTUGpi3z3vWry3Y+C\nUhcl1fSoWBU0j7PTKjGM2HDvL10TQgSeqVlEw6iG/GfIf7jn3Ht4ZN4j3DbrNv7947955sJnuLzd\n5TLjRxCZORN69jTuRyjM5XA4GDt2LIsWLWLJkiWsWLGCCy+8kC5dupxex4RSxqVjl15qzEp2//3G\nNHbjxwc6sqAwa9YsWrduzdSpUwMdijjNuYrzKTxSzI6fjd7efrd0JCrx+PTtMUnJ6NSurDn0PUop\nXpz8AQnOHLav+ZGsjavIOZBF7oE9xvOhvbjKy8k9tI99xVZ+TxrBIVt/cIK1rJDm694ndeM03nm9\nnPfDwolr2JS4RinGc3IKccnu54rXk1MIi6i956rMqY8lJPlVEpXSGi75qhBmNS4fi7ZbSIy00izO\njr3qdWNCiJDily6QPev28MFVH3B/n/t56NuHuGL6FfRt1pdpI6eRGptapzIXL15Mv379fBypeeWa\nwVexlpXB7NnGbLe+3v9Qas/KzI47PDyciy66iJ49e/Ltt98yceJEevfuzejRo4mO9u5a82BSY7v9\n5S+we7dxs8s2bcDLa7xPx+P9m2++OeW17qG43ytXrjSlXF8wa79LS0t9XqYvlRfls3lRFtqlST4r\nnqS0E28w63K5eHLKlwBccX530tOaAk1p3DrjpLKcTidLN+xk2oq9/LKnDKdWKDSNt37FxeG/U1a+\niaNx8RQcOUR5aQmHs7ZxOGtbrfFFJyaTlJJGYtM04lu0I6ZlV8IatcEVk0yR1UFR+fF1N/yylPQe\nvU/YPtydoESFWYh2JyoVv4fVI1Hx1+dDqP6fFCJQ/DI/4HPPPQdA9ybd+eYP3zB3zFx25e6iz5t9\n2HhoY73K9DWzyjWDr2L9/XfIzYXzzvP9/odSe1bmr7jj4+MZOXIku3btIjc3l48//hin03nqDYNU\nre32wgvG+Jc6XDp2Oh7vhYWFxMfXPqV8KO73u+++a1rZ9WXWfufn55tSrq/o4jzyDxkzaqV0Ovmm\nsq999j0//LqFiDA7911bfUJdWOrk01V7uXbKKu76cheLsspxakXfVgl8PK4nYQc2cN+rH/PQp6t5\neuFBXvilmL/P3sY97y7mpn99xBUPvsjAm+6nx9DraNOzPw1bnEVkUhMSOg0g4bzriLpoPGHD/g99\n0f3ktr6IQ9FpZOvjiUt53mHK923i81efIHLPChofXU9H614uSoWhbWPonxZFz6aRtG8QTmqcnYRI\na70SF/Df50Oo/p8UIlD80vMybdq0E34f1HoQS25ewiXvXUK/t/rx1fVfcXbK2fUq01fMKtcMvop1\nm/tLsVatfL//odSelfk77i+++ILDhw8zZcoU5s6dy5AhQ/xav6/U2m4Wi3HJ2PXXG4P6zzrLN+XW\nQyDfnxkZGWzYsKHWdUJxv59++umg/RbZrP1OSKj/LFpmshTnoypuaFrlKquf1v/O8x/MBuCp264g\nrcmJyU1uURmTl+7is9X7yCs2MokIm4VLOyYzqntT2jUyeoqrtq0tLJyklDSSUtIAcLo0R4qdHCky\nHjnFTgrKqr/ky3l0P4U713Fk449kr19K/vY1lBcY01H3csHXf77ghPUdcYkkNk0jMSWNpJSWJKe1\no1HL9iSntSM6sWGdL8f11+dDqP6fFCJQ/JK8OByOk15LjU1l4diFDPtgGOe9fR5PXvAkf+n9F6wW\nzwbQVVemL5hVrhl8FWvFpFfJyRAZ6dv9D6X2rMzfcTscDhwOB4MHD+brr78mLS2N9PR0v8bgC6ds\ntyuvhIQEeOstr3pgTsfjPSMjg6+++qrWdUJxv4N55i2z9jvYx6qpkgIs7l4IXWXWv39Pm4vT5eLK\n/j0YdeHxLxG11ny17gD/+u53sguN2cVS4yMY1aMpIzo1IjbSfkI5ldtWa01BmeZIkZPsonKyi5wc\nLXZVzZsAiLIr4iOsxEdajecIK2HWWDj3LGAEhbk5HNm7g+ys7WRXPO+peOyg8Gj2scfuDStOKt8R\nm0CyO5FpVOm5QbPWWO32kwOqYZ/MFGr/J395qD+7gvcwP+OVJzQPdAimC+i0X4mRicy7cR5///7v\nPPztw8zYOIMpI6bQNqltIMM647RsaTxv2wYZJ1/iLPyoV69ebNu2jS+//JJmzZqF9PiXakVEGD0v\nU6bAk0+C7cydeTAjI4OJEydSUlIS9PcJEaHNWl6CshjJi6vSAPcjuQUsXbsVgL+MHnwsCdt+uJCn\n525h2Xajt6NlUiT3XtCK89okVjvlcblLk+3uUcl2P6obSB9uVSQ6jt/Z3khUak/8HLHxOGLjSWnX\npdrlxfm5ZO/ZcSyZObRrCwe2/cb+7Rs5smcHhblH2L56KdtXLz1hO4vVSoNmrUlOa3dCctO4dQcc\nsbVfzimECKyAnzlE2CJ4btBzXN7ucm764ia6/rcrk4dP5rpO1wU6tDNGRcKyfr0kL4GmlGLYsGG8\n/vrrZGZmMmrUqECH5HvjxsErrxjTKA8fHuhoAiYjIwOXy8WmTZvo1KlToMMRpzGLswyljGTC5XQd\ne33eio04XS7S05rQorExVffmAwWMeWclxeUuwm0Wbu3TnJvOTcVuPXmIrNOl2ZJdyqbDJZS7Tlxm\nURDvTlIS3Y9Im/J5L1VEdCxN23aiaduTj6HS4iIO7tjMge2/cWDbRvZXPG/bSGlRAQe2b+LA9k0w\n/8vjcdtsdB54Bf1G3UmbXgOCvldNiDORXwbsP/DAA6dcp2/zvqy6fRUjM0Yy5rMxTFk1pd5l1oVZ\n5ZrBV7FW9Jw7nb7f/1Bqz8r8HXfl+qKiohg4cCAbN24kLy/Pr3HUl0ft1qWLMS/35Mm+LbcOgv39\nGYr7/dJLL5lWdn2Ztd+5ubmmlOsrNkCXG5d+VfTAAGzbexCAnu3TAONyr6fnbqa43EXXlFg+HdeD\nW/s2Pylx0Vqz82gp32zNZ/1BI3F5/4VHSY210alROP3THAxzD6Lv3CiC1Fg7DrvFJ4mAN3/DsIhI\nUtp1ptvgqxl8x6Pc8Ox73D/9Z55blsfj3+5m/KRvGfl/r3L+dX+kfZ+LiW/cDFd5Oavmfswrtwzk\n/LMasOD9iRTm5tQ77toE++eQEMHGLz0vzZt7dv1dVFgUU0ZMIdIWyc1f3Ey5q5xx3cfVq0xvmVWu\nGXwV6969xnOTJr7f/1Bqz8r8HXfV+tLT08nMzGT9+vWcc845fo2lPjxut3HjjMH7WVmQkuK7cr0U\nyPfn9u3bAUhLS6txnVDc78aNG5tWdn2Ztd9Wa3Df7NAKON3TOVsqJS/ZRwsASIw1Lk/9ev1BVuzK\nJcJm4dnL29MkLuKkso4UOVm1r4icYqOrJdKm6JAcwa7OremVYv7YDV/8DZVSxDdKIb5RCu3OvfCE\nZVm/rWHJR6+z/MupWA9n89mz9zDrP3+l56VjGHLX48Q28P37O1T/TwoRKH7pefnjH//o8boWZeH1\nYa9zU9ebGJ85nlJn9fPne1OmN8wq1wy+itXl7u7fuNH3+x9K7VmZv+OuWl9kZCQtW7Zk69atfo2j\nvjxut9GjjfEv77zj23K9FMj35/Lly2nSpAkxMTE1rhOK+33ttdeaVnZ9mbXfUVFRppTrK1Y0OMtP\nev1oQSEACdFG0jF9xR4AxvZudlLi4tKajQdLWLC9gJxiFzYLZDQMZ1DraJrF2fnTn/5k8l4YzD5m\nU9p15ppHX+fJeXt48t+v0rhNB0qLCvnhkzd4enh7Fn/0X1wu16kL8kKo/p8UIlD8krx4y6IsXJV+\nFWWuMg4VHgp0OKe9jAwYOxbuuw82bQp0NKJCw4YNOXz4cKDDMEdsLFxzDbz55vHs+QxSXFzM1KlT\nGTNmTKBDEWcAG2B3zwlRWng8iSlzD1Sx26yUlLtYt9e4THVoRvIJ2+eXuli4o5ANh0rQQEqsjYtb\nR9OuQThWy+k5JiQiOpbzrh3Pw5/9yh/fmk+zjB4U5R3l4yfv5KU/9GH3xlWBDlGIM1ZQJi9gzEQG\ncLDgYIAjOTNMnGhcvXP99WfkuWRQSkxMJCcnx+ff8gWNW24x7pC6cGGgI/G7GTNmkJ2dzbhx1V8W\nK4Qv2RSERRhJRklB2bHXne7PFqvVwoZ9eZQ5NYkOO80Sjve65Jc6mb8tnyNFTuwW6Nk0krNTHITb\ngvb0waeUUrTp1Z/7PljGVQ9PJDwqhh1rlvHv0WezbdXSUxcghPA5v3z6bNy40ett5m+fT4Qtghbx\nLXxWpifMKtcMvow1Otr4Evznnzfy6ac+Kzak2rMyf8ddXX3FxcXY7faQmu3Gq3br2xfi4+GHH3xb\nrhcC9f5cuXIlaWlptG1b+7Twobjf2yruehuEzNrv8vKTL8kKJgqwRxizjVVOXsLtxrDX4tIydh0p\nBqBtctSxzxynS7M8q4gyFyREWBjYyrhErDr+Opb8ecxWrstitXL+9X/kb19soF3vQTjLy/jg0Zso\nLS7yaT1CiFPzS/Ly4IMPerW+S7t4c+WbXJ1xNfER1c+37m2ZnjKrXDP4OtZ+/aBhwweZMMGYecwX\nQqk9K/N33NXVd/DgQZKTk0MqefGq3ZSCjh1hzRrfluuFQL0/d+7cSYsW1X8xU1ko7vfEiRNNK7u+\nzNrvYJ9tDCDM3ZlSkn88eYmONF7MLyxhX24JAI1ij99zaN3BEnKKXYRZFeekOnDYaz5l8Nex5M9j\ntrq64hulcNPz04lLbsqB7Zv4+rXHTKlHCFEzvyQvr7zyilfrL89aztYjW7m5280+K9NTZpVrBjNi\n/e9/X2H9epg3zzflhVJ7VubvuKvWV1ZWxu+//06TJk38Gkd9ed1u7dvDli2+L9dDgXp/5uTkEBcX\nd8r1QnG/g/lEzKz99uRvGUgKCAt397xUSl5ioozkJa+omMMFxuQ4DaPDjPXKXfyebbzWvUkEkbUk\nLuC/Y8mfx2xNdTniErj6/14DYIkPBvCH6v9JIepCKdVfKTVUKZVQ1zL8krx4Ow3g3K1ziQ2PpW+z\nvj4r01OhNGWhGbFecUVzWrSAGTN8U14otWdlgZ4qeeXKlRQWFobUNMlQh3aLi4P8fN+X66FAvT9b\ntWrl0UxyobjfwZxwn6lTJSsg7NhlY8dn8Ixx97zkFRRT6r55ZcVYlqy8cjQQF26hSUz1l4pV5q9j\nyZ/HbG11ZZw3FFtYOCUFeWRn1e9SyVD9PylEbZRSDymlnqz0u1JKzQa+B2YBG5RSHepSdlCOuPt2\n27cMbDkQu/XUH5jCt5SCESPgiy9A60BHc2bau3cvixYtolOnTiQmJgY6HHNFRHiUvJxu2rdvz+bN\nmyktrX4qeCF8LSzcSE5KC8pxuROVaIdxiVh+UTFlTuMDP8x9Q8qdR40emprGuJzprHY7Tdp0BGD7\nmmUBjkaIoDQKWFvp95HA+cB5QAPgZ6BO110GZfKy7cg2OjSsUzImfGDIEOPegRs2BDqSM4vWmiVL\nljB58mSio6O58MILT71RqFuwADp3DnQUftevXz9KS0tZtGhRoEMRZ4iwcJfRBQOUFBgTDGj3N1QW\ni6K0Ytpkq4XsIidHipwooFmsJC81ad93MABLP50U4EiECEotgcqDWocCn2itl2its4GngN51Kdgv\nycs///lPr9Y/XHSYpMgkn5bpKbPKNYMZsf7zn/+kXz8IC4PvvvNNeaHI33E//vjjTJ06lW+//ZZz\nzz2XcePGERsb69cYfMGrdtu5ExYvNm5Y6ctyvRCo92fXrl1JTU1l5syZta4Xivs9ZcoU08quL7P2\nOz/Iew8VoHAR7jASkZJ8o8evsNh4doSHU+YyEhm7VbE12xi8nxpnJ+IUY10q+OtY8ucxe6q6+l5z\nBxarlS3L55P126knHqlrPUKEKBtQUun33kDl6UX3YPTAeM0vyUthYaHH62qtKS4vJsIWUet63pTp\nDbPKNYMZsRYWFhIVBV27wooVvikvFPkz7i1btrB48WIOHTrEDTfcwKBBg4L+GvqaeNVuU6dCZCRc\nfrlvy/VCoN6fSimGDx/OzJkzj337XZ1Q3O/i4mLTyq4vs/a7tr9hMKiYr9AeaXyulBUZPS9FJcal\nYZHh9hN6XvbkGctbJ4R5XIe/jiV/HrOnqiuhcTM6X3glAIs+fNm0eoQIUVsxLhNDKdUcaAtUvrFb\nKlCnO3H7JXl5/PHHPV5XKUUDRwMOF9W+P96U6Q2zyjWDGbFWlNmwIWRn+668UOOPuF0uF/PmzeP9\n99/npptu4o477qBly5am12smj9vN5YJJk+Daa8GDHqbT8XgfPnw427dvZ+3atTWuE4r7fccdd5hW\ndn2Ztd8xMTGmlOtLyl7pC0H39OuFJe6el4gwypwVN6y04tIQaVPER3h+iuCvY8mfx6wndfUfcw8A\nP1oN38gAACAASURBVM96j4KcOp2Hhez/SSFO4VXgFaXUm8DXwFKt9fpKywcCK+tScFCOeWkU1Yi1\nB2r+hy7Ml5Dgm+RF1OyLL75g8eLFDBw4kOuuuw6HwxHokPxnwQLYsQNuvTXQkQTMgAEDiI6OZtas\nWYEORZwBVFjEsUlYKm4dVVhsXNERGR52bLYxrMaNKxtH20LqHlOB0rJrH1LTu1NWUswXLzwQ9L1w\nQviL1noS8CcgEaPH5aoqqzQF3qpL2UGZvNzR8w6mr5vO9LXTAx3KGatxY9i3L9BRnL4OHjzImjVr\nGDp0KOedd96Zd5Lw229gtUKITQXtS+Hh4fTo0YNVq1YFOhRxBrCERcKx5MX4vDlwJA+ABvHR7D1a\nQqPYCJzu04Lm8TJQ3xNKKYbd8zTKYmHZjLf5+rUJgQ5JiKChtX5La32F1vpOrfW+KsvGa60/r0u5\nfkleDh065NX6d/a8k2s7Xsu4L8exdNdSn5TpKbPKNYMZsVaUmZJizDhW3y+RQqk9KzM77h9++IGY\nmBi6devml/r8xeP92LsXGjUCi2cfQafr8Z6RkcH69etrXB6K+33kyBHTyq4vs/a7vjcpNJvCuGys\noldAuQ+7PYdyAGiQEMfe3BIGdWgKKFJibSRG2ryqw1/Hkj+PWU/rSu87+NhNK+f89wl++PgNU+oR\nItS57/UyUCl1adDfpPLmm2/2an2lFJMum0TbpLb0easPl7x3CQt3LDyhO9bbMj1lVrlmMCPWijJT\nUqCoCOp7HhJK7VmZ2XEfPnwYm8127D4fodpOVXm8H0pBYSF4eJ+T0/V479q1Kxs2bCAnJ6fa5aG4\n30888YRpZdeXWftd098vmFjCIo+N3NcuI+Haud8Yo+GyO4iLtNOmkTH+rEPD2ifMqY6/jiV/HrPe\n1NX3mtu55E7jlhWfPH0321f/aEo9QoQKpVS8UuodpdSvSqlJSqlYYBHwLfAlxk0q63SvBL8kLxMm\nTPB6m+iwaJaNW8YHV37Anrw99J/Sn35v9yNzUyZa6zqV6QmzyjWDGbFWlJmaavyeleWb8kKN2XGP\nGDGC4uJiPv74Y5xOZ8i2U1Ue78fIkZCTA1995dtyvRTodh8yZAhOp5PZs2dXuzwU9/u2224zrez6\nMmu/g33AvgIsEVHY7MZsY+WlTrIO5lBYXEqYzcrhUivtm8QBkOSwEhXm/amBv44lfx6z3tZ1yZ2P\n0XXQSJzlZbx130jyDh8wpR4hQsS/MKZHngZ0AmYDVuBc4BxgA/CPuhTsl+Sle/fuddrOZrExutNo\nVt+xmi9Hf4nWmmEfDqP9q+2ZlTeLrdlbfRxp3WMNBDNirSizInnZtcs35YUas+NOTExk1KhR7Nix\ng0WLFoVsO1Xl8X507GjMxz3ds3FtZrVPoNu9WbNmdO3alSlTplQ70DcU9zs9Pd20suvLrP2224N7\nfIhx2Vgk1jAjeXGWudi0az8ALZs2ZP2+fDKaxgPQJNq7y8Uq+OtY8ucx621dSilGP/kWyWntOHog\ni3ceGo2zvNzn9QgRIoYAt2qt/4ExWP9c4K9a65+01suBh4BedSk4KAfsV6WUYljbYSy5eQkLblrA\nuann8vwPz9Pm5Tb0frM3r/z0CgcLDgY6zNNKSgrEx8PKOk1iJzzRokULunXrxsqVK8/MGWp694Za\nxnucKSZMmMCcOXP473//G+hQxGlK2cJRFgs2d49KeamTvYeNS92aN0pk55FiWjSIBjQpscGdiAW7\niKgYbnnpM8Iio9i8bB5fvfJooEMSIlAaAZsAtNZZQDFQ+SvxnUDDuhQcEslLBaUU57c4n3dGvMP+\n+/fz4VUf0sDRgHvn3EuTF5ow9P2hvLPqHUlkfMBigV69YNmyQEdyeuvSpQu5ubns2LEj0KH4X6tW\nsG1b/WeFCHGXX345d911F/feey+rV68OdDjiNKTs4QDYwt09L6X/z955hzdZtX/882Q1adOmewMd\nlLJRKBuZMpShgAtFfAFRcePA7Yv6E3EPRHErvoooKiDIRkREQPZsgUIpo3unzWiT/P5IKZTZ8TwZ\n8HyuK1fSNP2e+9x5zmnunHPu20ZOYSkAQYEGIgL9AAjRKfFVe9XHAo8kMrE1Y17+AoBVX8xg9x+L\n3GyRjIxbUAC2M362UZPzEM56XG9hyfniiy9E15w7Zy63tb2N38b8RtbjWcy8bialllLGLxxPxFsR\n9PqyF6+vf519efvq9a22FLZKhRS2nqnZpw+sWQOlpeLoeROusjs2NpaQkBCmT5/ukvakpl5+CwgA\no9FZsFJM3XrgKdfnW2+9RZs2bRg4cGCtopXe2O8FCxZIpt1YpOq3p1dIV54VvFgrqiirMAOg9jOQ\nEhcKQFKIT4PbcNVYcuWYbUxbHYfcWlPA8odpky5awNJT5iEZGQm4WxCEhwVBeBhQAf854+e7Gyrq\nkuBl27ZtkmqG+oYyufNk1k9YT9bjWXw+4nPC/MJ4ed3LtPmoDc1nNmfKsimsObKGSluly22VCqn9\netddzoxj338vjp434Sq7BUGgb9++7Nixg8zMTJe0KSX18lt2NoSHO+u9iKlbDzzl+tRqtSxfvpyY\nmBj69evH7t27Ae/sd2pqqmTajUWqfldWXvz/irsRNDoAtP4aACzG0/ZGRjfBR62kuNxCZAPPu4Dr\nxpIrx2xj2xox5XUiE1tjLMzl5xmPSNaOjIyHkglMAqZU37KBO8/4+e7q19QblwQvs2bNcplmhD6C\nCVdP4Ndbf6VgagFLbl/CoIRB/LTvJwbMGUDLWS3Zl3fhffZS2CoVUvs1NhaGDYNPPmn4zh5v8ueZ\nuNLuNm3aMGHCBNasWeP1Z1/q5beDByE6WnzdeuBJ12doaCirV6+mSZMmXHvttRQWFnplv59++mnJ\ntBuLVP02GAyS6IqFQu1Mfeyjd55nMZdZEQQwBPjTJDoSgKyiskYVy3XVWHLlmG1sWyqND7e/8hWC\nQsHWJd9xaMs6SdqRkfFEHA5HnMPhiL/UrSHal/XmVq1Ky/VJ1/PxsI85NuUY/076Fz+1Hz2+6MHK\n9JXuNs8ruPde2LED/v3X3ZZcvgiCQP/+/Tl69CiHDx92tzmuITcX5s93pkyWqSE4OJjff/8ds9nM\nCy/IB31lxEHw8QVOr7yYyyrx9dEwuF9vlEoFR/ONVNUhK5ZM/WnWrgvdR08CYOVnDcoKKyMjcxaX\ndfByJoIgkBKdwvoJ6+nRpAfXfXcd/9v1P3eb5fEMHgxNmzpXX2SkIykpidjYWNasWeNuU1zDrFnO\nrBD33eduSzyOyMhIpk2bxuzZs+UD/DKioKxeeTm9bcxKYKCBHp2vBmDN/iw0yivm44DLuXbCUyiU\nSlI3rODoHvmbQBmZxnLFzVYBPgHMu2kePiof1hy5Qj4oNgKlEu6+G374AUpK3G3N5YsgCAQFBWE0\nGt1tivRkZ8M77ziX9YKD3W2NR/Lggw+SkJDAq6/K39TKNB5B4wxedAZn8FJRbCEoOg6lUklmdj5H\nC8qx2b17y6onExIbT8frxgCwfq68RUxGprG4JHgZMWKER2nO3DyTSlslz/d+XlRdV+Mqv06cCBYL\nfPedOHregKvtHjx4MLt376ZXr14ubVds6uS3Z58FHx+ox7Yoqd4PT70+1Wo1U6ZM4aeffpIkjbaU\n/Z4yZYpk2o1Fqn4XFhZKoisWiuoD+34hzvvyIjMKjR/Wykr+3OLMbldibty2MVeNJVeOWTHb6nXr\n/QBsXz6PipIiydqRkbkScEnw8uCDD7pdM688j8+2fsbg/w3mxT9e5IHOD5AQlNBoXXfiKr9GR8Pw\n4Q07uO9N/jwTV9p95MgREhMTCQ4O9vpKy5f02//+B199BS+/DEFB4uk2EE++Pu+66y70ej0zZ84U\nXVvKft9yyy2SaTcWqfrt5+cnia5YnDqwrwvQoFAJYAdHmZVlq/8kr8CZwjfPaGlUG64aS64cs2K2\nFdehG1FJ7ai0mPl38beStSMjcyXgkuBl0KBBbtHMNmbz8b8fM2DOACLfjuS+JfdRZa9i5nUzmXHt\njAbregqu9Ou998KuXfUvWulN/jwTV9hdUVHBwoULmTNnDikpKYwZMwZlHdIGezIX9dvnn8O4cTBh\ngvOCEku3EXjy9enn58cDDzzAZ599RllZmajaUva7e/fukmk3Fqn67ePT8PoorkChdGYZcwig8Hfa\nqigpZ/Vf/6CwlgOQmlNOVSO2jrlqLLlyzIrZliAI9LzZOe9t+OmTWpklPXkekpHxRC67My8HCg7w\n7j/v0ufrPkS/Hc1DSx9CpVAxe+hssh/PZvW41UzuPBkflWf/s/E0Bg2CuDj54L4YWCwWNm3axKxZ\ns0hNTWXYsGGMHz+e0NBQd5smDXY7vPkmTJrkPKD/2Wd1qu0i4/xGtqKigk8//dTdpsh4MYLKWb/l\nQL4Ve/WhfW1JCXa7HWWVCT+NkgqrjdTsK+DMnRtJGTYWtVZHdvo+ju6q5zeBMjIyNTS8IpWHYLVZ\nWXd0HYsPLGbJwSUcKjyEj9KHAQkD+GLEF4xIHkGIb4i7zfR6FArn2ZcZM+DDD8HDd0l4JPn5+Wze\nvJmdO3dSWVlJu3btGDhwIHq93t2mScfRozB+PPzxBzz9NEyfDo2oJXGlERsby6RJk3j22Wfp3Lkz\nvXv3drdJMl6IoFBRarGRmm9BCNZCZimVedXbxBwOuscHsSotn1nrMvjo1raNqvcic2F0/gYi4lty\nfP92SvJOutscGRmvxSUrLwsWLBBVL8eYw4NvP8ioeaMIeSOEgd8OZP6++QyIH8Ci2xbVFKccf/X4\negcuYtsqJVLYejHNO+6A8nKoT7Pe5M8zEctuh8NBamoq3377LbNmzWLfvn107dqVRx99lJEjR9YE\nLt7qp7Op6YfDAV9+Ce3awaFDsGoVvPZagwMXqfzj6X5fsGAB7733Hj179uTGG28UrXq9lP3+448/\nJNNuLFL122w2S6IrGkoV27PMOICQhEAALCedNjsc8HDfeNRKgQ1HiliVlt+gJlw1llw5ZsVuy1ZZ\nSXa6s0h2dIv2krUjI3O545LgZe7cuaJp/bzvZxI/SGTWV7PIKc/hmV7PsOPeHRybcozZw2YzPHk4\nfpqGLwuIaavUSGHrxTTj4+Gaa+Ddd6Gu9cy8yZ9nIpbdGzZsYN68eVitVkaOHMmjjz5K//79CQgI\nkKQ9d1PTjw8/dC7V3XQT7N4NAwaIoysynu73uXPnotFo+OWXX4iKimLgwIEcOHBAFF2pWL58uWTa\njUWqfptMJkl0xaJUFUShyYZKASkpYSBAZVEVwUodZmslzYJ1jO/WBICXlx7kcH5Fvdtw1Vhy5ZgV\nsy273c6Ct5+gympB5x9ISOzphEGePg/JyHgaLgle5s2b12gNu8POC2te4KafbmJYi2Hkbsrl7wl/\n8+w1z9IhsoNoy9xi2OoqpLD1Uppvvgnbtzu/RBdDz1MRw26Hw8HWrVvp0KEDEydOpH379qhU59+p\n6a1+Opt58+Y5t4o98ww88IBz9cVgEEdXAjzd76fsCwwMZOXKlfj7+9O7d292794tiq4UzJhx/mQo\nnoBU/Q6qR+Y8d1CgdNZTigvUEBjoQ2Sy094U3yYcyy2kxGji7h5NaR/tT6m5igd+3E2+0VqvNlw1\nllw5ZsVqy26z8cN/72bddx8AcMMTb6FQnP745enzkIyMp+EVB/ar7FWM/nE0r/71Kq8NeI25o+cS\n5hfmbrOuSLp2dZbpePll2LDB3dZ4NseOHaOoqIirrrrK3aa4lgcecKZBrmuEK1MnoqOj+fPPP4mK\niqJv3778/vvv7jZJxksoFpzbU5sanFnHEntGA9Bd34wAhQ9bUjPwUSl4/+Y2NA3ScrLEwh3fbOfj\nvzI4VuTZq0qeSuHJo/z727fM/e/d/N+wFmxa8BWCQsHY6XPoPmqiu82TkfFqvOLA/ktrX+K3tN9Y\neNtChicPd7c5Vzwvvghr18L11zuPMqSkuNsizyQ7OxuFQkGzZs3cbYrrOHYMliyBb74Bf393W3PZ\nERYWxh9//MEtt9zC0KFDGT58OO+99x4JCefWrJKROY0CvUaBQevM8hfbPgy/EC0UwH2h3fnou1X0\nvTqZYF8NH93ajgnf7SS71MLs9ZnMXp/JVbEBjGgXwcCWYQRoveJjg0txOBzkHT3IoS1/kr51Helb\n11GUlVnrNRqdL2Onf0uHa0e5yUoZmcsHj5+F1hxZw6t/vcor/V6RAxcPQa12fj4dPBgGDoTVq8HL\naytKgsViQavVXlmZexYtApUK5IrRkhEYGMjy5cuZP38+jz32GK1bt+app57i6aefRqfTuds8GQ8l\nWHc6PblSrWDAI1ez8t1thBZBv/J4vpn7FxPG9qFJkI5F93bmjwMF/LY7h40ZRew4XsqO46XMWHGI\nvkkhdI8PolWkP83DfFErvWIDhyg4HA7KCnIoPJFB4ckMCk5kcHz/NtK3rqOsIKfWaxUqFU1bp5DY\nqTeJKb1JuLoXOv/Gb6GVkZFx0bax8ePHN+jvcstzueOXO+gf35+nez0tiualkEpXCqSwta6aAQGw\nbBkkJUGvXs6zMJWVDdfzNBprt81mIz09vc5pkL3VT7VwOBj/0kvQvz8EBooqfaWO9wvZJwgCN998\nM6mpqTz++OPMmDGDF198sdG6YjBt2jTJtBuLVP0uLi6WRFdMzgxeAPShOgY/0QmHn0CwyhftBhs/\nvbKe7LRCtCoF17cJ5+Pb2rH8ga481j+e5mG+WG0OVqTm89LSg9z21Ta6v/03Y77axstLD9BvxK3s\nzSrDWmWXtB9SXrsOh4PS/Bwydm1i27J5DO6Zwo+vTObj+4bw6vCWPNnZlxf6RfHu2O58M3UMi99/\nhh0rfqKsIAeVxofmKX0YfO8L3P/pSmb8XcSU7/5hxGOv06b30IsGLp4+D8nIeBouWXlpSPVYu8PO\nXQvuwma38e3Ib1Eqak+8V2LF7bORwtb6aBoMsGYNvPCCs4THd9/Bp59Cly7S2ugKGmO3w+Hgt99+\n4/jx44wdO1by9jyGdesYlJcHDz8suvSVOt4vZZ+fnx+vvvoqhYWF/Pzzz7zxxht1WumTst/dunXj\nt99+k0y/MUjVbx8fzy56bHfYCNKeWxjWN0jLyOe68+n0VYSUaSHLypr3dxDczJ82g5oR2yGMcH8f\n7urahHFdYknLLWf5/jz2nCxjf46RMnMV+7KN7Ms2UuSbzO1fb0elEEgM86V1pD+tIvS0itSTFO6H\nTi1OYdrGvId2ux1jYR5FWUcpPJFBwYkjFJ7MqFlJKTyZQaXldNproRj+/nFrLQ1BEDBExBISHUdw\nTBzhcckkdupN07adUftoXd4nGZkrEZcEL2PGjKnzax0OB9uytvHB5g9YdmgZy+5YRpR/VKM064NU\nulIgha311dTrnamTx46Fe+6Bbt3goYectQj9/LzLn2dSX7vLy8vJzs4mJyeHzMxM0tLSGDVqFHFx\ncZK053EUFMDTTzOmfXvnYSiRuVLHe13sKy0tRafTceTIEdLS0mjZsqUoug1lyJAhPPfcc5LpNwap\n+u3p2/UcDjsB2vNvtPAN1PLga9fx+IwfqEqz0MWvCYVHy/jrsz346NVEtAhy3pIDSQ73o2WEvlrT\nwYliM/tznMHLvrib2J9tpMRcRVpOOWk55fx6RjuhfhqiDT5EG7REB2qJMWhrfo4yaPFR1W0jyJnv\nYZXVgrEwD2NxvvO+KI/yizwuLy7AYb/4ypAgCBjCYwiOiSMlOo7g6iAlJCae4Og4AiNjUak1dbK1\nrnj6PCQj42l4zJmXo8VH+W73d/xv1//Yn7+fCL8IZl43k8HNB7vbNJk60KkTbNoEM2fCc885z8R8\n9ZWzLszlhM1mIz8/n5ycnJpbdnY25eXlAKjVaiIiIhg2bBjt2rVzs7UuYv58Z4axykr4+ecGF6KU\nqTtWq5WlS5fy3Xff8dtvv2E2m+nXrx8hIfUryitzZaBT2lBcZFyqlEreeuo27ntzDtP/XcOg0GSu\n0cdjMVaSuS2XzG25Th2DhojkU8FMELEhOmKDdAxs6cz+6XA4yCq1sC/bSGp22elVmYpK8sut5Jdb\n2XWy7Lw2hOk1ROpVhGkdBCstGBxG9JXF+Fbkoi49gbk41xmEFOXVBCyW8vNrXYwzg5PgM4KT4Og4\nQmLiCIxsInpwIiMjIy5uDV7KreXM3TOXb3d9y7qj69CpdIxsNZJ3Br/DtQnXolJ4TGwlUwdUKpgy\nBYYNg/HjoU8f5w6i114DD/9i8hwcDgdlZWW1ApXs7Gzy8vKwV39zZzAYiIyMpFOnTkRERBAREUFw\ncPCVc0A/N9cZtMyfDzfeCB99BFHnrpLKiMfmzZv58ssv+fHHHykqKqJ9+/a89NJLjBkzhiZNmrjb\nPBkPxVd96deoVUo+ePR2hk99n1+P7SY7tIIPJ99G7sESctKKyD9SiqnESsbmHDI2Ow+n+4VoiUwO\nIrJlMJGtgvHxUztXVgxark0OBZxzaW5BMfsPHSH9eDZHc4s5WWKhwKqkyKGjTBVIldKHPKOVvFq1\nZXyrb9HgaI9GKECryUKrz8bXnonecQi9/RA6ayH6wFD0QWHog8PwO/txcBj6oDMeB4aiVNfBITIy\nMh6LS6KD9evX06tXr5qfbXYbX+/4mhf+eIFsYzYDEgbwzY3fMLLlSPx96pZe9WxNqWz1ZKSwVQzN\npCT48094/314+un1qFS9eOstkQwUGYvFQn5+PgUFBbVuW7duJSYmBgCVSkVERAQxMTF07NixJlDR\nahu2v/l8eNN1BzgrlY4YAWYzzJsHN98MguB149LT/X6mfdu2baNbt240adKEe++9lzvuuIO2bds2\nWldstm/fLomuGEjVb6u1fgUdXY2ujp/V/XQ+3DmkBy989iv/7EvHpLfT7vp42l0fT5XVRv4RZyCT\nc6CYgoxSygvMpG/IIn1DFmnZu7m6TRtU+kKsVYcoyd9BwcnDFJw4QkVJYe12qm9NAQdQ6WPA7BeJ\n2S+SqsCmVAU3w+IfQ4U2DKM6kEpBjdU3DKtvGFkZ4Nfh9BmRQJ2KlhF6giP0JEToSY7wo1mwLypF\n479EctX84Onz0NlsGfwpvjEt3G2GzAUwGI/CX3e52wxJcUnw8sYbb9QMzJXpK3li5RPsytnFmLZj\neLX/q8QHxTdKU0yk0pUCKWwVS1OphMceg48/foNPPunF88+LnoCqzthsNoqKimoCk/z8fAoLC8nP\nz6/Z7gWg1+sJCQkhOjqab7/9lscff5zQ0FCCgoJqVUOWAm+67vj1V+chp9atYeFCiI6u+ZW3jUtP\n9/sp+xwOB1OnTqVly5bs2rULlapxU7eU/Z4zZ44kumIgVb+NRqPommKiEuqWAWzdjjRe+WoRADf1\nS6FZpHMbosPhoCTvGKXFh6moOkKl5giVvscx5oLNFIJO24rF2+aRHPl/UBAKhKKsbIOPfRt+2i1U\nmf5F7Wuv3poVT3BMHAFh0c4VkiDnSolf9aqIRudbyyaHw0GRqZKTxRZOlpiZes8rDB12Lak5Ro7k\nV1BsqmJjRjEbM05nfNOqFDQP8yM5wnlG59RNU8dzNadw1fzg6fOQjIyn4ZLg5YcffmBv7l6eWPkE\nyw4to2eTnmycuJGusV0bpSkFUulKgRS2iq25bNkPtG7tzEI2daqo0hekpKSE9PR0Dh8+TFZWFkVF\nRTgcDsB5JiUkJITQ0FCaNWtGaGgoISEhhISE1MoYNGDAAHx9fS/UhOh4zXX39dfOPYE33+x8fJaP\nvG1cerrfT9m3du1aVq9ezcKFCxsduJypKwXTp0/32A9iUvU7KChIEl2xUNQheFm/8wATX/saa5WN\n67q25aG+Cayd8y6Ht6/n8Pb1GAvzLvr3A6KaUFAyF0NgJ1RCHCq1PyFhfQgJ6wOAPkxHRItAwpOc\nZ2Z8A+uWoU0QBIJ9NQT7amgb7U+v5Qtr5mZLlZ30vHJSc4yk5pSTlmvkQG45FVYbe7LK2JN1+kxM\nhL+GGTe0omOTutdacdX84OnzkIyMpyF58JJjzOHFP17k8+2fEx8Yz8+3/MzIliMbfS5Aqg+WrvzA\n2liksFVszcREX0aOhLlzpQteLBYLGRkZNQFLQUEBgiAQHR1NUlJSrQDF39+/Tteeq68Dr7juLBZ4\n9lm47TZnXuzzrEZ527j0dL+fsi8tLQ2FQsHw4eIU6pWy356ceUuqfnv6ObdLrTcs+3sbk9+ZS6XN\nToK6FP9fH+GD72sfhleqNYTExDtXTmLjq1MFxxMS63zO13D6vJ/d7qDwaClZ+wrJ2ldAQUYpxjwT\nxjwT6X9nAaeDmYgWQYQn1T2YOfM99FEpaB3lT+uo09vN7Q4Hx4rMpOUYSc0xkpZjZG+WkZwyKxO/\n28n918QxoXsTlHXYVuaq+cHT56FzEAQ5MYsncwW8N5IFL+YqM29veJsZf89ArVDz9qC3ub/z/WiU\nchaPK42RI52fd48ehWbNxNVetGgRS5YswW63ExgYSEJCAv379yc+Pt6jP0R5Jd9+C9nZ8NJL5w1c\nZKRDrVbXJIqQkak/jnOesdtsrP32XX5ZuoqF5pY4BCVR5Ydon70EGzZ8A4KIv7oniR2vIaHjNTRp\n3RGVpm4BhkIhEBpvIDTeQLuh8VhNVeQdKib3YDE5B4ooOlZ2TjDjH64jMjmYZp0jCEs0NDggVAgC\nzYJ1NAvWMaiVMwtahdXG9OUH+W1PLh+uy2BLZjEf3tIWtVKex2RkvBFJgpf0wnRu/ulm9uTu4aEu\nD/Fc7+cI1gVL0ZSMF9C/v/N+0ybxgxeNRsPAgQNJTEwkKCjI478B9Wr++AMSE50ZGWRcSnCwc/7c\nunUrKSkpbrZGxvuoHbwYC/P4ZuoY0jatZmXTCTjUShIqM/nPVX60SJlJQsdriExsLdpZP41ORUy7\nUGLaOTOQnQpmcg4UkXuwmKJjZZTlmijLPcHBv06gD9MR3zWS+C6R6EMb/yWUr0bJ/w1vidXmnDH9\nwgAAIABJREFUYPn+PDZmFJOWU07b6LolCJKRkfEsRP/a4ae9P9Hx046UWcvYPGkzbw9+m9defE3s\nZnjyySdF15RSVwqksFVszSeffJLSUudjKUpQxMTE0LlzZ9FTFLv6OvCK627cODh0CFasuOBLvG1c\nerrfT9k3fPhw2rVrx0MPPSTKCoyU/X7vvfck024sUvW79NQk56GcOvMHcGTHP7x5S0cObFpNhX8s\n5epAfNRKls7/HxPe/J5et04mOqltvQOX+vj2VDDTcXQSQ57uzOg3r6H3fe1J6BaJykeJMc/E7sVH\nWPTiP6x6Zxvpf5+k0lxV73ZO4XA4+OKfTJbvd57bubF9BG2i9KL2qTF4+jwkI+NpiBq8zN4ym1vm\n38KQ5kPYes9Wroq8CoCmTZuK2YxkmlLqSoE3+LVp06acPOl8LEUJkM2bN/PPP/9gsVhE1XX1deAV\n192gQdCtG0yffsGXeNu49HS/n7JPpVIxc+ZMNm7cyPfffy+arhRERkZKpt1YpOq3UqmURFdsSvNz\nmHV3f4pzjhMel0zS+DcA6N4uCT9d3baEXYjG+Fbjqya2fSjdxrVm1IxedL+rNZEtg0CA3EPFbPou\nlbWzdja4nb/SC/lgbQYAE7o3Ydr1Ler0ZZer5gdPn4dkZDwNUYOXaH9nytSOkR0J8Amoef6hhx4S\nsxnJNKXUlQJv8OtDDz3EunXg7w/Nm4sqDUBCQgKrVq3i3XffZcWKFZSUlIii6+rrwCuuO0GAW2+F\nf/8Fx7l76MH7xqWn+/1M+/r06cPQoUN58803a32T3lhdsbntttsk024sUvXbz89PEl2xsFdvG/Px\n9UOtdR4Ov2rQzbRq1RKA7WlHKSqraFQbYvlW5aMkvmskfR/oQLNOETXPn9o+1pB2DuY5U+L3axHC\nI33j67xK76r5wdPnIRkZT0PU4GVE8giev+Z5nln9DIsPLBZTWsaLWbzY+aW9RoJcDf369eORRx4h\nJSWF7du38/777/Pzzz9z+PBhjy8c55XEx4PJBDk57rbkimTKlCns2rWLtWvXutsUGS/CXh3r+vjq\nufm5WQCs+nIG2tTlNI8KoqTcxGtzlmCzuTcphN3uoPBYGWl/HGPl29s4usU5z7S5Lo6ud7ZquHB1\n/w1al1SHkJGRkRjRR/JL/V5id+5ubvzhRl7p9wpP9XoKhSBn9LhS2bjRefv2W+naCAgI4Nprr6V3\n795s376djRs3smfPHhQKBVFRUTRp0oSmTZvStGlTj/+G1ONp08Z5P38+PPige225Aunfvz9JSUnM\nmzePfv36udscGS+hylZV8/jqIbeyc9Uv7FjxE0vef4YI3zgORY3i+5Ub2bl3Hx88fhfJiXGusctq\noyCjlLz0YvLSS8g7XEKV2Vbze5VWSY+7WhPbIazBbWSXmvlxuzOjWbCfnO1URuZyQPTgRSEo+Onm\nn/jv2v/y3JrnWH1kNS+2eZHenXqL2k5qaiotW7YUVVNKXSmQwlYxNW02mDAhlauvbsmYMaJIXhSN\nRkPXrl3p0qULeXl5ZGZmkpmZyf79+9m4cSMAISEhNYFM06ZNL5ihzNXXgddcd82bw6RJ8NxzMGoU\nREfX+rW3jUtP9/vZ9gmCQEpKCnv37hVVV0yOHDkiia4YSNXvqqqqS7/IjZSfsQotCAJjp88hseM1\n7P1rCap/19Ipdzk7Q/ux92Qpg6a8TX+/LMb070SLLv0IimqKPjgc5SWKo9bFt6ZSqzNYOVRMXnox\nhZll2G21t0CqtUpCEwyEJQYS1zninGxjdX0PHdX1Xh6ev4fsUgtxwTrGdYm95N81pK3G4unzkIyM\npyHJGqpaqWb6gOkMiB/A2F/HMvDOgaxetppeTcWrujx16lQWLVokmp7UulIgha1iar79NuzfP5WN\nGxfhyvOsgiAQHh5OeHh4TVrZkpKSmmAmMzOT7du3A8696lFRUURERBAREUFkZCQhISEuvw686bpj\nxgxYuBDGjoWff4Yzqot727j0dL+fz75WrVqx4iIZ3xqqKxYffPCBJLpiIFW/PT3bWIW1dkITtY+W\n3nc8RO87HsJqquDQlj9Zv3oZn23PJ0sRykpTM/bP+5tOM19E5ahCUCjwDw4nICyagLAoDGfcG8Kd\nj6c89iyLl/yOUqXC4XBQUWShMLOMouNlzvtjZZhKzt3KqzNoCEsMJKx5IOGJBgwxehQXKSB59nto\nrbKTWWTiSEFF9c1ERvVjU6VzG1xkgA+fjGlHkK+6Xn5z1fzg6fOQjIynIekG0AEJA9h13y6GM5wB\ncwbw1Q1fcXu720XR/vDDD0XRcZWuFEhhq1iaS5fCM8/Affd9SNeuokg2CoPBQLt27WjXrh0AJpOJ\n48ePk5mZSU5ODrt37+bvv/8GnJmDevTowcKFC2sFNVIWvfSm647gYPjhBxg9Gjp1cgYwV18NeN+4\n9HS/n8++yspKfHwalxlKyn5PnTqVdevWSabfGKTqt8FgkERXLMrM5gv+TqPzpfU119H6muu4227n\n/W8X8N6CvzmuT8akC6XbiV/QVpZRmp9NaX427D9bQcBHG01LVRPeHXU/AYFt0PkmoFScf4uuPlRD\neItgwpsHEd48EL8QbZ0O0JeaKjlcUMGw+1/k3TWHa4KV48XmmjM9Z6NSCLSM0PN/w5OJDNBeso2z\ncdX84OnzkIyMpyH56bUwvzDWPbqOSb9N4o5f7uBAwQGe7/08KkXjmr5SU6eeiaemSt6/H267Da67\nDj780DP9qdPpSEpKIumMgosVFRXk5uaSnZ1NTk5OTVBjszn3YAcEBNQEMxEREYSHhxMSEiJKmlRv\nuu4A6NcPtm2Dm26C7t3h/ffh7ru9blx6ut/PZ19mZibNGlntVcp+R0mRE10krtRUyaV1TCWvUCiY\nctcouqd04J7Xv6GgFDa3f4w5T95KoGCiOPckRcfzKDpeQUW+gqoKPwRHKArh3MDAbq/CVJFBufEg\nFcaDzvvyw9jtZgRBQB8cjiE8Gn1wOLqAIBQBEVj1kZh1YZSrAylT6ClBR2GlihNGB0VnnIWB2pnR\n/DRK4kN8iQ/RER/qW/3Yl9hALWplw8/cyqmSZWQ8E5ek3tAoNXx9w9ckBSfx4h8vsjBtIR8P/Zhu\nsd1c0byMCykogOHDoUkT+P57XLpdrLH4+voSFxdHXFxczXN2u52CggJycnJqgpqdO3dSVlYGOP/Z\nh4SEEB4eTlhYWM12taCgINGqU3sscXGwfj088gjcdx/MnAkvvwwjRzrTKstIQllZGb6+vu42Q8aL\nMFkr6/X6phEhJDeNZNveDAIqNOz5s4AYZQD5RwIxl56+9pQAAihUCgJj/PAPV6HRW0BdiNWaRVlB\nNqX5RvLzlJhL4zCVN6GoSoVZG4rZNxyLXzgW3wjMvmHYlb5gwnmrxenzRD4Vufibsgmy5hNCGREq\nM9E6G6F6H/xMwfiWBuFLML6VQVARRGFJMLqAIHwNQajU8mF9GZnLBZflDRQEged7P8+gxEHcv+R+\nun/RnYlXT2TGtTMI9Q11lRkyElJZCbfcAsXFsHkzBARc+m88HYVCQVhYGGFhYbRt27bmeZPJRG5u\nLrm5ueTl5ZGbm8vhw4cxmZz/eZVKZU0wc2ZQYzAY6lxjwCvQauGTT2DCBHjhBedWso4d4f/+D4YM\nkYMYCWjZsiXffPONu82Q8SLsaHE4HJece4yFJhb8tIWdmzPopojmhshkFIKAY4+V4+QDICgEAmP8\nCIkzEBoXQHBTf/QROtLyKsgoqCC7zEJ2SQjZlU3J0VjI1lsoUVVBHRbkdA4L/vYyfC1FaE15qI1Z\nqIqPocxNQ1t0BFVV7cimpPpWFzQ6P3wDgvA1BOMbEFQd1Dgfn/m8X2Ao4fHJBEbEXl5ztYzMZYRL\ngpfXX3+dp556CoAuMV3YdPcmPt36Kc+ueZaFaQvZMmkLzQLrtw3iTE2pbPV0pLC1MZrTpsG6dbBq\nFSQkNF7PnVzKbp1OR7NmzWpt33E4HJSXl9cKaHJzc0lLS8NSvW1Do9HQqlUrUlJSiImJqfnn6K1+\nqqFrV1ixgtfvvZen9u6F6693Bi/ffec8I9NIrtTxfj772rZty4kTJ8jPzyc0tGFf/EjZ76+//loS\nXTGQqt9Go1F0TTFRq3SUWewEaM+/FG632dm/KpPti9JROASu9omp+Z1vsA+hcQZC4gIIqQ5WVBol\nFVYb/xwp4usdJ/jrUCGpS78hvM+Fz7T6aZREBPgQ6e9DZEDtW4S/DxEBPujU57fP4XBgqTBSUVrE\nW2+/w/hbbqCitMh5KymsuTed5zmzsQSHw4HVVI7VVE5xzvE6+UyrD2CvOZCxNwwisnlbohLbEJXU\nFv+QCNGDGk+fh86m07JJhEt3BFSmkVQFNeUvdxshMS4JXioqau9PVSqUTO48mVGtRtHp0048uvxR\nfr3110ZpioVUulIgha0N1czLg/feg6lToU+fxuu5m4bYLQgCer0evV5PwqnoDec/3tLSUvLy8jhx\n4gQ7duxg586dREREkJKSQrt27bzWT2dTERkJs2c7K5OOHw+dO8OCBVCdKKHBulfoeD+ffddccw0A\nq1atanA1eyn7bb7I4XB3I1W/HY4LnBj3ELQaHRbb+W0sOl7Gxm/3U3TMiAKBTGsxEcmBDLi2LWEJ\nBnSG08khskrMzN+dw7pDBWw+WkzlGZoqu5WUpgaiTgUkAT5E+muJNDgDFv9GFIgUBAGtnz9aP3/U\nfgaSutS9xpHdZsNsLKWi9FRAU3TG43MDnrKCHPIyD2I2lpKXU8o/P39eS88vMITIxDZENW9LZHPn\nfVTzNvgFhjS4f54+D8nIeBouCV5eeuml8z4foY/g3cHvcsv8W1hyYAlDWwxttGZjkUpXCqSwtaGa\n77wDCgU89pg4eu5GTLsFQcBgMGAwGGjevDm9e/cmPT2dLVu28Pvvv7Ny5UpSUlIwmUySZjRzBTV+\nGz4c/v0XbrzReaD/xx+dqzGN1RUZT78+z2dfbGwsHTp0YMmSJQ0OXqTs93333cdnn30mmX5jkKrf\n/v7+kuiKhY9aR+V5UnKlbzjJ5u/TcNgdVNgrWVK2nzsnXcOovp1qvS6rxMzjv+5nb1ZZredjA7X0\naR5Cn6RgOk79vFGH4+tKfd9DhVKJr8F57qWuVFVayc04QHb6XrIO7nHeH9pDfuYhyosLSN+6jvSt\ntTPqBYRG0vG6MYyc+k697APPn4dkZDwNl515uRCjWo3C4GNgfeb6egUvMp6D1Qqffgr33gshDf/y\n6YpBEASaN29O8+bNKSkp4c8//2Tbtm20aNGC5ORkd5snHvHxsGGDMzPZm282KniRqU2vXr1Yu3at\nu82Q8RI0Kg1V51l5ObY9D4fdQWZVMV/nb+H/Hhp1TuACsDerrCZwuSo2gL5JIfRpHkJ8iO6yPBei\nUmuITmpLdFJbGHJrzfNWs4ncI6lkHdpD1iFnQJN9aA+FJ49Smp/N5kXfcMMTb132yVqE6puMZ3Kx\n9+bRynuIt7YQpZ0jlQd4nsmiaNUXtwcv646uo8RSwojkEe42RaaBLF0KhYXOXUIy9cNgMKBQKNDr\n9TRv3tzd5oiPnx9ERzuzOciIhlarpVL2qUydEaiu11iL8KRATu4twIadCruVtgkx574I6B4fhJ9G\nSbnVxu0pMQxsGYriMgxaLoVGqyO21dXEtLyK8uICSvOyyNi1kXkv3QPA6GdmXvaBi4yMJ+CS4OVC\nB0vXZqzl0eWPkhCUUO+0yY05rOoOXSmQwtaGaM6bB1ddBW3aiKPnCUhtt8lk4uDBg6SlpZGamkr7\n9u09vlZEXTjHb/v2OevB9O0rrq5IePr1eSH71Go1VVVV5/mLxumKQVFRkSS6YiBVv+3280QGHoWD\nqvNsG4tuE8KOBenEq4KZFjmQZe9toaR/C1qmxBIQ6VuzquLno2J4uwh+2HqSqQv24++jpG10AB1i\n/GkfHUC7aH+s5SUuGUtSXrt2u52K4gJK8k5SmpfF0fQ0FBYjpXlZNc+V5J2kND8bW6W11t/2uvV+\nUoY2rAi3p89DMjKehkuClwkTJrBo0aKan7ee3Mqza55lRfoKUqJTmDt6br2Xns/WFAupdKVAClsb\norl5M4y4wMKZN/nzTKSwu6ioiLS0NNLS0jh69CgOh4Po6Gj69OnDG2+8wQ033CBqe+6gxm92u7Pu\ny1NPOVPPPfOMOLoi4+nX54XsU6vVjVp5kbLfL7/8siS6YiBVv4uLi0XXFBNLleW8Z14M0X4k929C\n6l/H0Faq0VrUpC89QfrSE2gNGqJaBhPZMoiI5GAmdG9CRkEFO06UUmZxZhr758jpQDX3h+eZNP0z\nOsQE0D46gIRQX5QK8VdnGvIe2u12jIV5lOZnUZJ7ktL8rFoBSWneSUrysijNz8J+xpcCvx2F4RdJ\nhOoXGEJAaBSJnXo36KzLKTx9HpKR8TRcErxMmzYNU6WJP4/+yZfbv+SnfT/RMrQlP9/yMyNbjmzQ\nntlp06aJb6iEulIgha311TQaIT0d2rcXR89TEMNuh8NBbm4ue/fuJTU1lby8PJRKJfHx8Vx//fW0\naNGCgOpiOHq9vtHteQLTpk2DrCwYN86ZM/uRR+C116CRiQiu1PF+IftUKlWjVl6k7Pc999zDunXr\nLv1CNyBVvz39wL7JUnHeMy+CINDppiSuHtWcnVsy+HHeJnyKBeI1wVBi5cimbI5sygZAH6bj5kAf\nxgYGYlYJ5NtsHDdXcsho4aipEkWPO1m8M5uFu3IAZ2rkFuF+zmr3ob4kVFe9jzL41GvLma2qCkt5\nGeaKMszGUiaNGcn+9cswG0trnjOXl2I2lmIpL8VcXvu5ipJCygpzagUll0IfHEZAaBS3tfCjbeuW\nBIRFYQiLrnUfEBqJSuNzabE64OnzkIyMpyFp8HKk6Ai/H/ydpYeWsmbpGkxVJhKCEvhixBeM6zAO\nlaLhzXfs2FFES6XXlQIpbK2v5u+/O++7dxdHz1NojN0FBQXs2bOHPXv2kJ+fj1arJTk5mX79+pGY\nmIhGc26lZ2/109l0NJmcRSoFAVasgIEDxdG9Qsf7heyLiIggLy+PkpISDAaDaLpi0KpVK8m0G4tU\n/Var1ZLoioW5soJSy4W3tikUAld3ieeqznHM/2ML079ajMHiw/XN29A+IJrCY2UY80wY82oXiYyp\nvgEgJMJxG1VKgTKFA6NQRcVJK2WKIjYqBVYroVwBVpUDnY8VvcqIwVFEoCWPAHMWutLjVJYXO4OQ\nM4ISq+ncNMKrGuADQRDwCwrDEB5NQGjUOfcBYc7H/iERqNTnztFS4unzkIyMpyFq8GKpsvBX5l8s\nPbiU3w/9Tmp+KmqFmmuaXcMr/V7huqTraBXa6rLMTnKl8vHHcM01cDklyWoIJSUl7Nmzh71795KV\nlYVGo6Fly5YMGjSIhISEy+I8y0VxOODDD525sk+lRo6MdLdVly1DhgyhqqqK5cuXc8stt7jbHBkP\nx2ytoNBkw2pzoFFe+P+vIAjc3L8zzWMjuOHpD/hg3zo+mDyCDt3sZB/MwlxmxWq0UWlyUGVRYLOq\ncNg0CA4dCkGPIKhQ2RwE2cCZmPjUas/Zqz5qIAirEESFIoFyJRSrwOJfTqVPEXbfbATNIbTWjSgo\notJahKCsQqsPQOsXgI+fP1q/gJqftfpznzv1sy4gEENYNP7B4Sg9PMiUkZGpG6IFL78f/J2JiyaS\nbcwmxj+G65OuZ3r/6QxIGECAT4BYzch4EIcPw9q18P337rbEPRiNRvbt28eePXs4duwYKpWKFi1a\n0KtXL5KSkjz+21jRcDjg4YedwcuUKfD663Cl9N1NNGvWjA4dOvDee+8xdOhQ/Pz83G2SjAdjqyrH\nARRWVBHpf+7YtNvtFJ08SvbhfRw/uI/ft6WjtmuwoObldz6iz8kf69SOUumHWhOEWh3kvNcEo/OL\nxEcbhsYnGJU6CIUqEAW+KFCicYDGBoG2Uwp+zpsuFnQpEHG6jpFCpUAboEbrr0Hrr0EXoMGn+rE2\nQIOu+l7rr0Hjp5K/JJWQNld9THxYkrvNkLkAubZj8Nflnf610cFLubWcJ1Y8weyts7mu+XW8NuA1\n2ke0rzVxfPHFF0ycOLGxTdVCCk0pdaXA3X5dvdpZmHLoRcrzeJM/z+RCdptMJlJTU9mzZw9HjhxB\nEAQSExMZOXIkycnJ+Pg0bA+0t/oJhwMefdQZuHzyCV8olUyUIHC5Usf7xeybNWsWQ4YMYejQoSxe\nvLhe56ak7PeCBQsk0RUDqfrt6RXSlcrqMWm3kXM4newj+8lJ30f24f3kHN5HzpFUKixVHAloz8HA\nTphVzmtJYzPRvGwX4XEtCG2ahM4/sNZqh9YvAK2fPz76ABav/puxt99a85xWH4BG53feIMLhcFBl\nsWEus5KTW8Ffu3PZlJqPwmzH1+bAzw5RGhVRaiUWYyVVZhv2KjsVhRZ+//tX+ra6eM0oQSGg9VfX\nBDNn3+vO+Fnjp0ZxgcQCrpofPH0ekpHxNBoVvGw4toH/LPgPJ8pO8PHQj7m3073nnai2bdsm+sCU\nQlNKXSlwt1/XrXMebwi4yMKaN/nzTM602263c+DAAbZv386hQ4ew2+3ExcUxdOhQWrVqha+vr6jt\neRVPPQUffACffAL33MO2Bx7wqnHp6X6/mH09e/Zk+fLlDBkyhCFDhvDmm2/SrVu3On3jLGW/U1NT\nJdEVA6n67ek1dwTBGbzMvL0jxsz9tX5nE5QcMlzNgcguWJVaAAJ9BEZ3asqd119DXIt363Qw/dNf\nVtGsbedLvs5UaWP3yTK2HSupuVXaHOADBoOGGztEctNVUTQNPp3ko8rqDHTMpVaWP/M/utyeXP1z\nZc3z5jIrplIrlaYqHHYHphIrphLrRSw55Rvw8degD9GiD9WdcdOy+Z9/mTB+AoIEWdPOxNPnIRkZ\nT6NBwUuZpYxnVj/DR/9+RJeYLiy+fTEtQi5csXPWrFkNNtCVmlLqSoG7/bp1KwwYIJ6eJzFr1izM\nZjPbtm3j33//pbi4mOjoaAYOHEibNm1Ezy7klX5KT4e33nJmE7vHWaTN28alp/v9Uvb16NGDFStW\ncOutt9KjRw+SkpIYN24cY8eOJS4ursG6jeHpp5/mp59+kky/MUjV74YkTXAlSqUam9VERdYRNDo/\nIhJaEZ7QmgxNPAvSreSWWQBIiA7j/lH9GNWnExp1/T4eXMi3ZeYqdp4oZeuxErZllrAnq+ycmjNt\no/y5tWMUg1qFoVWfez5QpVGiD9GhD9HxzQ9fXtQOW6Udi/F0MHM6uKmsCXJO3VvKK3E4cP5caiX/\nSGktrT6aW5j36J/oQ7T4herwrw5qTgU4fiFa1NrG77739HnobAQBeVueB3MlvDf1HnVLDizhviX3\nUWgq5N3B7/JglwdRKi7zw8gy52CzOT+73n+/uy0Rn7y8PDZv3szOnTux2Wy0bduWm266iZiY81ef\nvmKZOROCg53pkGXcRrdu3Th8+DBr165lzpw5zJgxgxdeeIG+ffsybtw4Ro8eXZOSW+bKRK3UULJr\nDQ9/uZpm7bux49Axnv/kF3btOw5AVIiBqXdcx6g+nVAqG18hfteJUpbty2PrsRIO5Bo5u8RMmF5D\npyYGOjYxkNLMQGKoeGe2lGoFvkFafIO0l3yt3WbHYqzEVGLBWGB2ZlTLr74VmCkvMGOvslOaU0Fp\nTgVZ59HQ+qvxO2PFJjQ+gOg2IVfEB0gZGXdRr+BlV/Yuxv87nkGJg/hk2CfEBcZJZJaMp3PiBFit\nkJjobkvEZdOmTSxbtgy9Xk/Pnj3p1KnTZVODRXQWLYJevRpdw0Wm8SiVSgYMGMCAAQOYNWsWv/zy\nC3PmzGHixIk89NBDjB07lsmTJ9OhQwd3myrjBpRKNT169CQ+sSnZhSXc/t9PMJos6HU+PDh6ABOH\n90bnI85ZtXlbT/L6ykOcWVamaZCWq5sY6FR9iwnUesSHe4VSgc7gg87gQ3DTcwN8u81ORbGlOqAx\nnw5s8k2U55uxlFc6V3TKKik4Y9UmKFZPu6HxxLQP9Yh+yshcbtQreMkozgBg8ZjFqJVyNqErmVP1\nvhp4Pt3jcDgcrF27lnXr1tG9e3cGDBhw+ac3biwPP+zMLvbZZzBpkrutkalGr9czbtw4xo0bR2Zm\nJl9++SWfffYZn3zyCT169GDy5MncdNNNaLWX/mZa5vLAZqukaZNYAP7v698wmix0aN6Eb56fSGig\nOFtgq+wO3lqVztytJwHo3yKEwa3C6NjEQLi/d/6jUCgVNdvVOE85AKupivJ8E2XVAU1ZTgVHt+ZS\ndNzIuk92E9TE3xnEtJNXYmRkxKRe68PFlmICfALqHbiMGDGiXq93l6aUulLgTr8qqq8c+4XrntVL\nz92sXr2adevWce211zJo0CBGjhzp0va9xU+1eOQRmDzZefvjD8D7xqWn+72x9jVt2pRp06aRkZHB\n/Pnz0el03HnnnRgMBp5++mmOHTsmkqWnmTJliuiaYiHV+11YWCiJrlhYqyxolAJbUzNYsG47giDw\n2n2jRQtcANp0H1ATuDzcN453RrVmSOtw0QMXV47ZS7Wl0akIauJP06vDaT2wGV3HtuKGV3rQenAz\nVD5Kio6VsW72LtZ/vqdR7cjIyNSmXsGLv8Yfo9VIXnlevRp58MEH6/V6d2lKqSsF7vRrXYMXb/Hn\nli1b6N69Oz179gRcb7e3+KkWguDMNNarF9x9N5hMXjcuPd3vYtmnVqsZPXo0q1atIjU1laFDhzJ7\n9mzi4+O57bbb2LhxoyjtAB5dNFOq99vT6+xUWMpQKeCP7c5McMN7dqB98yaithHb+yYAJvVoysTu\nTSVbaXDlmG1IWz56NVfdkMiIV7qT2DMKgLz0EtHbkZG5kqlX8NInrg8AC1Lrl8d/0KBB9Xq9uzSl\n1JUCd/q1rsGLN/jTbDZjsViIjo6uec7VdnuDn86LSuVMk3zsGLz+uteNS0/3uxT2JSfyKy3bAAAg\nAElEQVQn88svv3Ds2DHee+89tm7dSvfu3enWrRs//PADVaf2hDaQ7t27i2Sp+Ej1fje0vpOrKDUV\nIggCh47lAtC+eazobYwcdh0ARwulrXnjyjHbmLa0eg0hzZznaAIiLp5OX4o+vfTSSygUilq3m266\nqdZrBEF4WRCEk4IgVAiCsFIQhOaiGyIjIwH1Cl6CdcH0i+vHGxveIKvsfHk3ZK4UTn2pdqngxRso\nLy8HQCcfPG8YycnOQpWvv+5MQyfjFfj7+/Pggw+SlpbGb7/9hl6vZ8yYMXK9icuQ0nLntraTBcUA\nRASJn9q5V2IwACtS83l0/l6OF5tEb8NbKMwsZf3ne/h3bhoAgTHuSfrStm1bcnJyyM7OJjs7my++\n+KLmd4IgPAU8CNwDdAHKgeWCIGjcYqyMTD2od07E2cNmY64y0/ebvpwsOymFTTJegKn6/9Ll8Hk/\nMDAQlUpFbm6uu03xXlq3BrP58ohmrzAUCgXDhg1j1apVfPPNN8yZM4fvvvvO3WbJiEhReT4A7RKc\n6d437TssehsdYgKY1KMpSgH+OFjAyE+38PFfGZgrr4wvNBwOB9mphax+fzvLZmwhc1suDgdEtwmh\n1bVN3WKTSqUiLCyM8PBwwsPDz65H9AjwisPhWOxwOPYA44Bo4EZ32CojUx/qHbw0D27O2rvWYqo0\n0ffrvhwsOHjJv1mwoH7bzOqCFJpS6kqBO/1aUb0z4FLF5b3Bn0qlkujoaI4ePVrznKvt9gY/XZTq\nFZcFixZJIn+ljndX9/vOO++kT58+TJ48mezs7AZp/1GdvMETkcqfZrNZEl2xKCovxOFwMCClNQAr\nNu+h3GQRtY2FCxfyYJ84fpzYiS7NArHaHMxen8m1H27iwR/38PmGTLZkFmNqZDDjyjF7obbsNjvF\nJ40c2ZzN9l8OsWbmDn595m/WfLCDnLQiBIVAXJcIrn+uC30f6IBf8MUz+0nVp4MHDxITE0NiYiJj\nx449c0xHA5HA6lNPOByOUmAT4Ln7PmVkqmlQNarE4ETW/mctACmfpVzyDMzcuXMb0ozLNaXUlQJ3\n+vVU8HKpc6re4s/27duTlpbG1q1bAdfb7S1+Oi82G8yeDe3bM/fHHyVp4kod767qt9Fo5KOPPqJN\nmzb8+eefxMXF4XA4LvDXF2f58uVimCgJUvnTZPLsLVKVVVYAerRrTmSIgdyiMp74cF6D3+Pzccq3\nzcP8+HRMO968sRWRAT6Umav4K72QmX9mMPG7XfR6ZwN3fL2dN1elsyo1j3yjtUHtuIK5c+diragk\n50ARqWuOsfHb/Sx97V9+nLKO3/9vM/98vY/9qzLJ3l+IudSKUq2gRd9Yhr/UjR7/aVPn7WJS9Klb\nt258/fXXLF++nNmzZ3PkyBEmnU5pHwI4gJyz/iwHZ1AjI+PR1KvOy5kkBCWw5Z4tjF84npHzRvJk\njyeZPmA6KsW5kvPmzWuUkedDCk0pdaXAnX6tPiZyyZUXb/Fnx44dycnJYcmSJQQEBLjcbm/x03mZ\nORO2boUNG5jXrZskTVyp413qfh86dIiZM2fy9ddfU15ezo033shHH31Enz59GpwtasaMGaxcuVJM\nc0VDKn8GBQVJoisWSkGJIAhoNWpmP3knNz33Eb/9vZOrWzTjnhv6iNLGmb4VBIFBrcLonxxKWo6R\nHcdL2XG8hO3HS8kzWtmTVcaerDL+9+8JAGIDtVwVG0DbKH+SI/S0CPdD73P+jydSvIcOhwNLeSVl\nuSbKcisoy6mg+GQ5Y5o/zPwn/jrv36h8lATG6AmK0RMYqycoVk9gjB6Vpv71waTo0+DBg2set23b\nli5duhAbK06ihv/9/RG+mtqBWfek/vRI6i+Kvkzd2XBwDf8cXFPrOYvDs79MEYMGBy8AAT4BzL95\nPu9ufJepK6eyM2cnP938EwE+51aqlbm8aGRCIo9DEASGDBlCaWkpP/74I6NGjaJVq1buNsvzOXoU\nnn8eHngAJApcZMQnKyuLadOm8cUXXxAUFMQDDzzA5MmTadJE3PS5Mp6BUqEk+/B+IhNakdIynv9O\nuIEXPvuVV79ZTNuEGHq0kybJlEoh0CbKnzZR/tzROQaHw8HJEgs7jpc4A5oTpRzMLed4sZnjxWYW\n7zl97rBJoJbkCD3JEX60jNCTHKEnXK9pVApmq6nKGZzkVpwOVPJMlOZUUGm68D81vxDt6SCl+l4f\nokNQeE/hSYPBQLNmzdi7dy9AASAAEdRefYkAtl9Ka2zP+4kPayGJnTL1o8d5gsZc2zGmfPof9xjk\nIhoVvIDzQ99j3R+jQ0QHRv84ml5f9mLx7YtpanDPATUZ19C2rfN+505ISHCvLWJxKpXkggUL+PHH\nHxk0aBDdunWTKyNfCIfDGbQEBsKrr7rbGpk6UFpayptvvsk777yDVqvlzTffZPLkyWi1F9+TL+Pd\n+Kp1fPHISB6fuxmtPoD/XN+T7Qcy+eXPrUx+61uWvj2F6NBAye0QBIGYQC0xgVqGto0AoMxcxa6T\npew8XkpqjpG03HKySy0cKzZzrNjMqrT8mr8P0qlJjvAjOUJfHdD4ERfsi/KMIKLKaqsdnFQHKGW5\nFZjLKi9qn2+QD/7hvviH6TBE+RHUxJ/AGD0aXaM/Krkdo9F4ZlHak0A2MADYBSAIQgDQFZjlFgNl\nZOqBaCNyQMIANkzcwNDvh9L1866s+886kkKSxJKX8TBiYiA6GjZtAhcXo5cUlUrF6NGjMRgMrFix\ngpycHPr3709AgLyaeA4LFsCSJc572T8ez6JFi7j77rspKyvj0Ucf5amnniIwUPoPrDLux1+jJzcj\njY/vG8LY6XMIa9qc1++/idSjWezLOMn4V79g7kv3Ehzg+pS+/loVPROC6ZkQXPNcUUUlB3KNpOaU\nk5ZjJDXHSEZBBUWmSjZmFLMxw5nyWWV30EKt4toQPQkoqcgqpzSrnIsd5dEGaPAP1+Ef5ot/uI6A\ncF/8w33Rh+katOXLU3nyyScZPnw4zZo148SJE/z3v/9Fpar1ke894HlBEA4BGcArwHFgoeutlZGp\nHw06sH8hWoe1ZuPEjfhr/LnjlzuotDm/5Rg/fryYzUimKaWuFLjbr337wqXO5nqTP08hCALff/89\nw4cP58CBA3zwwQcsXbqUsrIyydr0Rj+xcCFcfTXccEPNU942Lj3d72LZN2fOHEaNGkWPHj04ePAg\n2dnZkgUu06ZNk0RXDKR6v4uLiyXRFQtDQAg+vnoydv7D66Pb8+d3H+CjVvHZ0/8hOMCPvUdOMurZ\nWZzMb3g/xPRtkK+arnFB3NU1lukjWvLLpBT+eqQ7nw9qQdCyd7lf8GFygYMpJ2wMz7Cg21pA1tZc\nSk46AxeNr4qQuADiukTQblg8PSa0YcjTnbn57d6MmtGLgY91+n/2zjs8iqr745/ZTe8hHdILCb33\nIkWKgDRRil1QELH+hNcOduFVUcEXwUJRCIgiAoIISJceOoQE0gtJCKTX3Z3fH0NiAgGS7M5mN8zn\nefaBzM5+7zknOzdz5t57Lt0fbUGrIYH4dfC85VoVY/UPcrSTkpLCpEmTiIiIYMKECXh4eLBs2bLK\n90VRnAcsABYjVRmzBe4TRbFuFRQUFBoAg4+Fejl4sXLsSnp834P3dr/H+wPeb9Cd4E1FVw4aOq6j\nR8OqVZCQAIGB+uuZEoMHD6Zjx460atWKQ4cOceDAAaKioujcuTN9+vTB7k6VCurRntkRFQU9e1Y7\nZG7XpanHXV/7tFotCxcu5KWXXmLKlCl88803qNVqWf3u3r07GzdulE1fH+Ty29raWhZdQ2Fn48h/\n1p0mcvZkYg/9zbpPXuTktl8Z98ZC1n30HBNnL+ZiSiZjXl/I6vemEeTjXuc2DB1bnVbH5QvXSD15\nhezEPHJSC9BpRVpbtcIxqbDyPMFWTaa1ihidhnQrgQwrAU9PO2bcE0jP8Lr7URVj9Q9ytFNTBbOo\nqKhqP4uiOAeYY/DGFRRkRpaJnF2adeGtvm/xwZ4PeKXHK0ycONHgbcihKaeuHDR0XIcOBRsbWL0a\nXntNfz1TosJua2tr+vbtS9euXTl48CAHDx7k3LlzTJw4EW9vw1WUNMs4RUfDv6U3AfO7Lk097vWx\nTxRFTp06xU8//cSqVatIS0vjlVde4dNPP61cvyWn30OHDuXNN9+UTV8f5PD7yJEjFBQUVG4A2KpV\nK9555x2GDh1aec4777zDd999R05ODr169WLRokWEhv67SL60tJRXXnmFNWvWUFpaypAhQ5g2bVq1\ndgRBcAUWAiMAHfAr8KIoioXcAWtLa9yaBTJ9yTb2//wNGz6fxaVje5g3rh0d75vId8+/yowlfxKf\ndoVH3l3Chrkv4OZctylkhoitqBPJissl8WgGSVGZlBZUX6NibW/JA6PG0cTPkSYBTjTxd8TO1RpB\nEIjJLODnqHQ2nckgLruID7fGMlDP5MVY/YOp90M3ssxTjV2zxjPFrrHhXND41+kadNpYVR5p+wha\nUcuh1ENyNaHQwDg6wkMPwZIljX9jdRsbG/r168f06dOxt7fnhx9+IDo6uqHNalhEESzMfyFrYyEp\nKYlPPvmENm3a0L59e5YuXcqYMWM4cOAAn332mVJ4QiacnJxwdHQkKiqKY8eOMWDAAEaNGsX58+cB\nmDt3LgsXLmTJkiUcPnwYe3t7hgwZQlnZv7NzXnrpJf744w9+/fVX9uzZQ1paGjNnzryxqVVAC6RF\n1sOBvkhTfu6IWpCuU5VKRZ8J03lt3Wk6DB2PKIoc27yKZU904VHXBJq5O5F4OZsnP/qB4tLbL243\nJFeT8jm+7iK/v/0P2z+PInZPKqUF5Vg7WBLapxm9p7Rm5Ps9GDuvN/1ntKfdqBD82ntg38Sm8nvd\n3NOBt4aG8cuUToC0bkZnwH1sFBQUTAfZkpdg12AcrBw4lKIkL42ZZ5+F+Hj488+GtsQ4ODk58eST\nTxIWFsaaNWs4c+ZMQ5vUcFhYQJkyPbohEUWRbdu2MXDgQAICAnjvvfdo06YNmzZtIj09nYULF9Jd\nKWEtK+Hh4djY2BASEkJoaCgffPABDg4OHDx4EIAvv/ySt99+mxEjRtC6dWtWrFhBWlpa5a7qeXl5\n/PDDD8yfP5977rmHDh06sHTpUk6ePFnZhiAILYAhwGRRFI+KovgP8DwwQRCEOw4BC6rqT8ndfIN4\n4r+rmbn2OC37Dken1XJ2wxI6xy7Hyc6GqAuJzP1ps6FCdFvOb0viz0+OcH57EkXXSrG0URPU3Zt+\nM9ox5uNedJ0Yjn9HT6k0cS0ScHd7KwB0IhSUNLKa/goKCoCMycvr21+nsKyQ7r7d2bdvn8H15dCU\nU1cOTCGu3bpB164wb55h9EyF29mtVqtRq9WoVCqDrX0xyziFh0vl5qpgbtelqcf9VvaJosiWLVvo\n2bMngwcPJj8/n+XLl5ORkUFkZCTDhw/H0tKyzrqG4PjxO24T0WDI5XfFKIpOp2P16tUUFRXRs2dP\n4uPjuXz5MgMHDqw818nJiW7dunHgwAEAjh49ikajqXZOeHj4jdNSuwPXRFGsGtztSLukd7uTfWpV\nzVN8fCPaM/XrTby4Yh9uzYKwuBrPE53cADh8Lq42rldSn9gWXi3h1CapHd+27vR5ujVj5/amx2Mt\nadrSDZX65luUO7VjY6nGy1FKYM5eLqizTXVpy1CYej90E4KgvEz91ciRJXlZdGQR8/6Zx+dDPmdI\n6BDm3erOVg/k0JRTVw5MIa6CAK+/Drt3wz//6K9nKtzKblEU2bhxI2fOnGHs2LEEG2iTG7OM05gx\nUqnkKqMv5nZdmnrca7Jv69atdOvWjWHDhgGwZcsWDh06xGOPPYajo2O9dQ3FihUrZNPWF7n8zsvL\nw9HREWtra6ZPn85vv/1GeHg4ly9fRhAEvLy8qp3v5eXF5cuXAcjIyMDKyuqmcuxNmjSp+qM3kFn1\ngCiKWuDq9fduy62SlwqCO/Si0/CHpR9SpBGfxIzsO8lWoz6xPfH7JbTlOjxDXegztQ1+HTxRW97e\n1tq00y3QFYBDCfpVgTNW/2Dq/ZCCgqlRp+Rl2LBhjBw5stqrR48elcPfoigyb/88pn81naAtQbzU\n/SUAVq9eDcBzzz3H999/X00zKiqKkSNHcuXKlWrHZ8+ezdy5c6sdS0pKYuTIkURHR1dqAixYsOCm\n+cFFRUWMHDnypicakZGRNZYlHD9+POvXr6/UjYyMpEePHnh7e1f6+vLLL9c6VrfjTnGs4K+//mLk\nyJE3fb4ijlVjUN84VmXBggU33YzXJo4jR0qbVs6YAePGja/mx9ixY2WLIxgullWJiopCq9XWGMtp\n06Zx4sQJxowZQ6tWrW4by7p8JysW+1al4jtZ9TyT+k4OHw55eRAVJet3cubMmdV063ttVz2vIo5a\nrdakv5MVflfEct26dQwdOhQrKyu2bdvGoEGDOHnyZLXpNLX5TlboGjKWFb5qtdpax+p2yHFt/+c/\n/zHYd7Iqrq6udO3alcWLF/Pss8/y2GOPER0dzV9//YVYw7qLAwcOkJKSUvmzVqu9KY5JSUm3iU7d\n+O2jz28by8zEWE5u+4XEfPjmZ2kOcElZObrrixlr87e74jtVl1guXfUtq/5ZzLXUAs5tTURTpr3j\nd7JqXwA3fycBLFKOE7/idU6n5VU7Xtd7kC5dutTKD33vQVavXl2jH3X9u1XVj8jISEaOHEl4eDgt\nW7Y0eD+noNCQCDV1rDedJAgdgWPHjh2jY8eONZ6j0Wl47o/nWBK1hLf6vMV7/d9rdAtEo6Ki6NSp\nE0AnURSj7nT+jdQmjubK8ePQowc89RT873+3P1ffOELDxDImJobIyEj69+9P3759jdLmnWjQ72RW\nFnh6wrp1Zr9TqTl8J3NycmjTpg1hYWFs374dlUq2Wb96cbf1k++//z6LFi0iLS2t8tigQYMIDQ1l\n1qxZhISEcOLECdq2bVv5fr9+/ejQoQPz589n586d3HvvvVy7dq3a6EvTpk1JT08H6AS0Az4VRdGt\n4n1BENRACTBOFMUaNxasiOUz8+ey+KVZNdof/c9fLHt1PMX5OTh4+rEz6CmSruTz9Mi+zH5qVI2f\nMRSZsdc4uiaGnDSpYJqtsxWthwUR0tOnxiljtSUqOZcnfzpJMxcbNj/b1VDmmj2GujZDn/sWu2bN\nDW6fgmFwLkhk70ePQZXfc8Xv7oNxiwjyMMzvLj4rhrd+ebZaO8bCIH/9RFFk/C/j+eHED3w/8nve\nH/B+o0tcFG5Phw7wxRewaJF0L9vYyMrKYt26dYSHh9OnT5+GNsc0cHMDlQquT39RkJc33niDvLw8\nli1bZrKJi4KETqejtLSUoKAgvL292bFjR+V7eXl5HDp0iJ7X90jq1KkTFhYW1c65cOFC5bSy6xwA\nXARB6FDl2EBAQNpg8LbY3GL9076fv+GbZ++jOD+HwHY9cH70S5Ku5OPh4sjL4+Xf48QzzJWhb3Sl\nx+MtsXezoTi3jCORF/j97QOc/TOBkoL6FQSpWLSfmV9a48iXgoKCeWOQOqffRX3HuvPr+G38b4yO\nGG0ISQUzZOpUaQnEyy/DffeBrW1DW2QY8vPzWblyJc7OzowePVpJzCu4ckWqke2u314KCrVjz549\nPPLII/j7+ze0KQpV2LZtG2VlZSQmJlb2Fbt37+avv/4CpDLIH3zwAaGhoQQGBvL222/j6+vLqFHS\nqIaTkxOTJ0/mlVdewdXVFUdHR1544QXatWvHiRMnABBFMVoQhK3At4IgPAtYIe2OHimK4h2fHthY\nWlX7WRRFNn31Jtu/+xiAbqOfpNWjbzP6jUUAvPXE/TjZG6cDV6kEgrp549/Rk4v7Ujm7NZHinFJO\nbojj9OYEArt4Ed7fF1ff2q3nAtgXdxUAf9faVShTUFAwL/R+fJeQk8Arf73C5A6Tb5m41FCvXm/k\n0JRTVw5MLa6CAJ9/Dunp8Omn+us1JBV2l5aWsnLlSkRR5OGHH8bGxkbW9syKilKu7dpVHjK369LU\n415hnyiKJCQkGKxAhJx+f/HFF7Jp64scfhcWFnL16lUiIiK49957OXbsGH/99RcDBgwAYNasWTz/\n/PNMnTqVbt26UVxczJYtW7Cy+jehmD9/PiNGjGDcuHH069ePpk2b8t///vfGpiYB0UhVxjYBe4Cp\ntbGxavKi0+lY9daTlYnLfdPfZezbi3ll4S+Ua7QM7d6GsffUfbqevrFVW6oI7+/HqPd70uPxFjTx\nd0Sn0RF3IJ0tHx1h+/woko9n8ur/vXpbHa1OZM0xaQrf+I5N9bLJWP2DqfdDCgqmht4jL5/+8ykO\nVg58PuTzW54jx5NCuZ4+mtNTTVOMa1gYPPcczJ8Pr71mXvGsSoXdp06dIisri6lTp95UDUiO9syK\nuDgpYw0JqTxkbtelqce9wj6dToednR1Lly5lxIgRhIeHG0RXDm4o8WtSyOH36NGjuXjxIrm5ubc8\nZ86cOcyZM+eW71tbW7NgwQIWLFhQeSwqqvoUclEUc4BH6mOjbZXk5c9F73J4w3JUajXjZ39L9zFP\n8tXa7VxIuoybswNznx1Xr9EKQ8VWbakiqJsPgV29uRKXx4WdySSfyCIzNofM2BxyL2k5ty2R0F5N\nsbK7eTrc4n2JJFwtxsFazYjWnnrZYqz+wdT7IQUFU0OvkRedqGN99HrGtxqPk/Wtb+yef/55fZox\nmqacunJgqnF95BG4dg327TOveFalwu7s7GxcXV3x9NTvj2Bt2zMr1GoQRWndy3XM7bo09bhX2KdW\nq9m1axdarZYuXbrw66+/GkRXDiZMmCCbtr7I5be9vb0suobC+vqalxPbfmXrN+8BMPHd7+k+5kmS\nM67y1drtAMx+aiRuzg71asPQsRUEAY8QZ3pPac2o93vQckgA1vaW9A+5nxO/XeK3N/ZzeFU0uemF\nlZ/Zf+kqS/ZLVdreGByKvbV+z2eN1T+Yej+koGBq6JW8nLh8gtT8VGWdi0I1OnYEX1/YsKGhLdGf\na9eu3bjfgkIFFtdvDDTKLtbGoGXLlhw+fJihQ4cybtw43njjjcpStgoKt8PawpLCnGxWvfUEAP0e\nfZmuox4HYN6qLZSUldOjdQhj+ppmdTc7Vxvajwph1Ic96fZwBC7NHNCW6bi4L40/PjjEwR/Pcyr2\nKv/ZEI0IPNTBh+Gtve6oq6CgYJ7o9VgiNS8VgAj3CIMYo9A4EATo3BkuXGhoS/SnuLgYNze3O594\nN1JRwUij+ff/CrLi6OjImjVr6NKlC7NmzSIhIYGlS5dibW3d0KYpmDCWajWHf19OaVEBTZu3ZeQr\n0qaI+UUlbD5wCoA3Hhth8ovbLazUhPRqSnBPHzJjc7jwdzIpp64QdyCd8oPptHVUURLhzMx7Q+4s\npqCgYLboNfJSoikBwNbi9lVJbtzQyRDIoSmnrhyYclx9fSElxbziWZUKu8vKyrA0wo25WcapIi7l\n5ZWHzO26NPW412SfIAjMnDmTtWvXsm7dOgYNGkRmZmYNn66brqGIj4+XTVtf5PJbY+Kjj4Ig8M8v\nSwDoPX466uujpn8ePE1pmYaQZh60D/PTqw1jXUvR0dEIgoBXc1f6TmtLu6mtybARsBShd56OERcK\nyY7NMVhbxsDU+yEFBVNDr5EXnShNWRC5fR31WbNmscHAc4jk0JRTVw5MOa7NmknJiznFsyoVdguC\nYLAdw2vTnllRWir9q1ZXHjK369LU4347+8aNG0fTpk0ZNWoUERERzJ07l8mTJ9dqDxg5/f7qq69k\n0TUEcvmdl5d355MakOKcK2QmXMDSxpZOwydVHt/0j1QxcHTfjnqPuhjrWrqxnZ9TrrHeXcVAa2v6\nXtNRdLWE3YtO0ntKG3zb6lfGvaF8MnUez9AQpDPthP1uJlOrY29DGyEzeo28eNh7AHCl6Mptz1u4\ncKE+zRhNU05dOTDluPr6Sov2580zn3hWpSIOHh4edX6qrU97ZkVcHHh6QpXFyuZ2XZp63O9kX8+e\nPTl37hwjR47kmWeeoW/fvpw5c0ZvXX2YNavmndxNAbn8dnZ2lkXXUFxLvgRAcIfe2NhL+6UUlZSy\n72QsAPd1b6N3G8a6lqq2k1dczpZzWSAIPDa+BffP7oZfBw90GpG9S06TdFy/vrshfFJQULgzeiUv\nXvbSgriUvJTbnmeKJX2NrSsHphxXX1/pX5XKfOJZlYo4eHt7k5GRIfvoizl97yqJialWJhnM77o0\n9bjXxj4PDw+WLVvGzp07uXLlCh06dGDMmDFERkZSUFBQb9364uPjI5u2vsjlt7rK6KMpkp0UA0BY\n1/6Vx3ZGXaC0XIO/VxPC/fUvb90QZYX3XLpKqUZHkJst7Zo5obZU0+upVgR08ULUifzzw1mKc0sN\n0pacmHo/dCOC8jL5V2NHr+Ql3D0cDzsPNsVsMpQ9Co2EiuQl5fZ5rckTGBhIeXk5SUlJDW2KaVFW\nBlu2QP/+dz5XwSj069ePkydP8tlnn5Gens6kSZPw8PBg3LhxrF27lsLCwjuLKDRKrqZIIy9B7XtV\nHlu/R9pHZliPtia/UP9W+DhJhSou55VSWCY9YFKpVfR4vCXOTe3RaUUyLxpm/YuCgkLdEAShuSAI\nXW84NlAQhJ2CIBwWBOGN+mrrlbxYqCx4sOWDrDm7pnL9i4ICSGtewPyTFx8fHxwdHYmJiWloU0yL\nbdukeYEmvKfH3Yi1tTUvvPACBw8eJD4+nvfee4+EhAQeeughPD09mTBhAgcPHmxoMxWMTFG2NH3K\nN6I9ALkFxew4eg6Asf06NZhd+tLRz5kgN1uKy3V8vSeBkvLrCYxKwLWZtF/NlXjTXo+koNCImQuM\nqPhBEIQgYCNQBhwAXhcE4aX6COuVvABMbDORlLwU9iftv+U5c+fO1bcZo2jKqSsHphxXW1twdobV\nq80nnlWpiIMgCLi6ut5292xDtmc2fPsttGkDrVtXO2xu16Wpx10f+wIDA5k5cxlhdD8AACAASURB\nVCZHjx4lNjaWt956i9OnT9O3b19ZN5JctmyZbNr6Itfv+1bT80wFUVOKi5cvNg7SZtKHzl2iTKMl\npJkHLQObGqQNY11LVdsRBIFHukjD/KuOpjHimyOs3Z/E3u9Ok3AkAwBRe/uCQrVtS05MvR9SUKgn\nnYEtVX5+GIgRRXGIKIovAi8BT9RHWO/kpadfT/yc/Ig8E3nLc4qKivRtxiiacurKganH1dERCgrM\nJ55VqYhDaWkpKSkpBAYGGqU9syA2VtqB9MUXpU19qmBu16Wpx91Q9oWGhvL6669z/PhxHnnkEdas\nWcN7772HKNb/xu5WlJSUGFzTUMj1+5YjjoZEW16KhbVN5c9n4qQ92jo2DzBYG8a6lm5s54H23nww\nIhxfRyuaXS4hf9VFkqOyQIDm/X1pNyrYYG3Jhan3QwoK9cQdqDr/pj/SyEsFu4DA+gjrVSoZQCWo\nmNB6AstOLOPrYV/XOHf23Xff1bcZo2jKqSsHph5XOzvo0sV84lmVd999F1EU2b9/PzqdjpAQeTc9\nM6fvHQsXgrs7PPzwTW+Z23Vp6nE3tH1WVlZ8//33ZGVlMXv2bAICAnj88ccN2sa0adP49ttvDapp\nKOT6fTs6OsqiazC01cvaXki6DEALA426gPGupRvbKSvUEJxazORUDSW50vT1dEvY2kSNa34BL6Tl\n0TPItV7rehrKJ1Nnmacau2amXaTibsa5wGTWsF0FfIBkQRBUSCMxn1d534p61hfQe+QFYGDQQLKK\nsrh49aIh5BQaAaIIaWngrX8RmwZBo9Gwfv169u7dS79+/XBzc2tok0yD0lL46Sd48kmwsbnz+Qom\nxYULF7jvvvvYtGkTQ4cOZfDgwQ1tkoIxEOFqajxlxdITfkc76dotKDbdUbI7kZteyOFV0ax/cz8n\nN8RRkluGjZMVbcaEYP9AMAUOFkRnFDB9zRmmrDrFqVRl7YuCgpHZBbwtCIIf0hQx1fVjFbQEEuoj\nrPfIC0Dnpp0BOJp2lDC3MENIKpg5GRlQUADNmze0JXWnpKSEyMhIUlNTGTt2LG3a6L8HQqNhwwa4\nelVKXhTMhitXrjBv3jy++OILfH19+f3337n//vvNtsqUQt2wd3ZBV5BJ8vkoQjr2JqiptEfbpVT5\n97AyNJkXczi3NZG0s9mVx1x9HQgf4EdAJy/UliraAOM7N+P7A0msPpbG0aRcHl1xgpFtvJgzrDlq\nlfK9V1AwAm8C24FEQAu8IIpi1bKXjwJ/10fYICMvbnZuNHdrzq6EXTW+f+XK7TexrA9yaMqpKwem\nHNfFi8HSEoKCzCeeFWzZsoW4uDgef/xxoyUuZvO927ABOnSAiIga3za369LU466vfSkpKbz88ssE\nBATw9ddf8+abb3L27Fl69uwpW+Jy7do1WXQNgVy/b53OtKtt+oRJ/di2bz9CFEXahUiL3P88dIbU\nLMP8vuS8lkRRJPXMFbZ9dozfPtwpJS4C+LZ1Z+BLHRj6eheCu/ugtvz3lsbVzpJXB4awcWoXRrf1\nQiXAhtMZzN12qdZrlIzVP5h6P3QTgqC8TP1lAoiimABEAB2AAFEUF91wymzgg/poGyR5ARgaMpQt\nF7fU2Ck89dRThmpGVk05deXAVON66RJ8/DHMnAlvvWU+8QQ4e/Ysp06dYu/evfj5+RmtXbP53u3b\nB/363fJtc7suTT3u9bUvNjaWp59+muDgYJYtW8arr75KYmIis2fPxtbWVla/33vvPdm09UUuv3Ny\nTHsvkc7DHkFtYcn5fVs4s3MDvdqG0a1lMKVlGj5a8YdB2pArtsknstjy8RF2/+8UWZdyWbL7v4T2\nbsqI2d3pO60tXs1vv57Fx9mGd4eHM290CwRgTVQayw/Vroa/sfoHU++HFBT0wBbwBDoIguBR9Q1R\nFE+Kophd88duj8GSl2Fhw0jOS+Zw6uGb3pszZ46hmpFVU05dOTDFuGo0MHmytNblzTfNK54AO3bs\nICQkhM8++8yo7ZpFnDIyICEBeva85Snmdl2aetzrat/Fixd57LHHiIiIYOPGjXz44YckJiby7rvv\n4u7uXm/duvDMM8/Ipq0vcvlt6gv2Xbya0v+JVwH48fVHOLXjN96dMgpBEPh973G+3bBb7zbkiG1O\nWgF7l5wmJ6UAC2s1EQP9+Grp53SdFIGTp12tdTQ6EVEEN3srAL7cFU9BqeYOnzJe/2Dq/ZCCQn0Q\nBKE9cAH4E6nK2EVBEIYYQttgycvA4IFEuEfwzq53bnqvY8eOhmpGVk05deXAFOM6axbs3w8rVkjV\nxswpngB+fn5kZGQYfZ2LWcQp+/oDkqa3rlBkbtelqce9tvbFx8czefJkIiIi2L59O19++SUJCQnM\nnDkTJyeneuvWhxYtWsimrS9y+W1paSmLrqEoKC1lyDNvEda1P6VFBfzw8gPEb/wfLz10LwDv/rCB\nb9bv1KsNOWJbscFkE39HRn3Qk44PhNHrnu61/nxBqYYfD6dw/zeHmbn+PFcKy7BUC0zs1Ax7qztX\nyzJW/2Dq/ZCCQj2ZC8QBvYBOwA5goSGEDZa8WKgs+KD/B/x16S/WR683lKyCGbFqFcyfD599Bn37\nNrQ19aN///4UFxezZcsWsrKyTH7/BqNSsRGfvX3D2qFQSUlJCdOnT6d58+b88ccffPbZZ1y6dIkZ\nM2Zgo1SDU7hObnEhVrZ2PLv4L/o99goA27/7mPK1/2F4kFS354Nlm5j93XoKi0sb0lQASgvLiTuY\nTuxuaXqXV3NXrO1rnyCev5zPh3/GMnjhIT7dEUdabimutpZM7eXP1ue6MWtQiFKsQkFBfjohLdI/\nKIriceApIEQQhJufqNURg1Qbq2Bsi7HcF3ofY9aMYXrn6Xxy7yc4Wpv2cLqCYThxAqZMgUcfheef\nb2hr6o+Liwv9+/dn165dnDhxAhcXF8LCwmjevDmBgYFYWBj0kjEvmjaVqjCsWwft2jW0NXc9paWl\njB07lp07d/Lxxx8zffp07OxqP5VG4e4hNUdaEK62sGDMzM/wb9WZ1XOmkB57CpvYU7R07c65Jj35\nftNe1v99gLceHsSDw+81qo3FuaWknLxC8olMMmJyEHX/PjjybtHkjp/PK9Gw5Wwm605eJjqjoPJ4\nkJstj3b1ZXgrT2wslb1JFBSMSBOqbFIpimKOIAiFgBugV+1yg428AAiCwKZJm1hw3wKWn1xOm0Vt\n2HZpG99//70hmwGQRVNOXTkwlbhmZ8PYsVIBqsWLqxe6MKd4VtCrVy88PDyYNGkSoaGhxMTEsHLl\nSubNm0dkZCRHjx4lL8+wewaYRZx8feE//4FPPoELF2o8xdyuS1OP+63sKysrY9y4cezcuZONGzfy\n6quv1ilxkdPv9etNd+RdLr9NfYf0uMz0aj93GjaRd7bE8/AHy+h430Q6c5Fe6euwK88lu0jDy99u\noffISXz7znMcWr+M2MM7yUq6SHnprfeFqWtsy0s0ZF7M4fy2JKmK2Bv7ObL6ApejryHqRFyaOdBm\neBDD3uqKT5XkpaIdnSiSeLWYbdFZvLUxmkELDvLRXxeJzijAUi0wpIUH30xow7qnO/NAe596JS7G\n6h9MvR9SUNCDloIgtK14IW1K2eKGY3XG4I+RVYKKGV1nMDxsOFM2TmHwT4Px3euLXz8/BgUPMthQ\nbVRUFJMnTzaIljF05UAOW+uqWVoK48ZBXh7s3Am2tvLbaAxOnjzJM888Q1hYGKIokpWVRWxsLDEx\nMWzevJk//vgDDw8PgoODCQkJISAgACsrq3q3ZzZxeuMNiIyE4cPhxx+hR49qb5vbdWnqca/JvsLC\nQh588EF27NjBhg0buPfeuj8hl9Pv6OhoWXQNgVx+l5eXG1zTkMRnpyCKYrW/v45unnQd9ThdRz2O\nTqcj5XwUJ/f8yfJdZzlU4kWCyodPogrpsfkN3ErTq3zOC1cff+nl7V/5/93b/+Sh0ffj0MTjpr/z\nJQVlXEsu4FpyPleT87mWnE9+VjHcMCvXLdAJv/Ye+Lb3qLYgv7BUQ2xWITGZhSxZ/ze7LDoSm1VI\ncXn1EtUh7naMbefN8NZeuNrpvw7JWP2DqfdDCgp6sAMpYanKJqSrX7j+b52fLMg2BybINYjtj27n\n57M/M89nHkN+GkI7r3bM7DmTh1o9hKVav47l66+/NpClxtGVAzlsrYumVguPPAIHD8K2bRAQoJ+e\nKVHVbkEQ8PT0xNPTk169elFcXMylS5eIi4vj/PnzHDp0CLVajZ+fHyEhIQQHB+Pj41OnRN1s4mRr\nC3/+Kc0P7N1bqtAwZw5YWwPmd12aetxvtO/KlSsMHz6cc+fOsWnTJgYNGmQQXUPy2muvsXbtWtn0\n9UEuv52dnWXRNRTp19LJLtbiblfzn3yVSoV/q874t+rM/c/CqeiLTP/vChKyYa/vePrqTuGVfoDy\nkmLyszPIz84g6cyRahquwFv9fsHOoRkevt1wdm2DrW0QAh6I5TWvv7JztcbVzxHvcFf82ntg62JN\nam4JRzMLibmQxYXMAmIyC0nJqTLi03Mqp9LyAbC2UBHqbkcrH0fub+NFm6aOBl3LYqz+wdT7IQWF\nehIkl7CsE/gFQWB86/E81OohdibsZN7+eTzy2yO88fcbvNnnTaZ0nIJKMOjMNQUjIYrw4ovS8od1\n66T72LsFW1tbWrduTevWrRFFkezs7MpkZs+ePezYsQM7OzuCg4Pp0qUL/v7+DW2yYQkNhb174b//\nhdmz4Y8/4NtvoVu3hrasUZOYmMiQIUO4evUqu3btolOnTg1tkoKZkFN4hZNpuQwIaVKrm/u2EaH8\nufANXvwikq2HzrBT1Z5PP/6IEZ1CuJaeJL0uJ3E1LYnctHxKcmyh3BMbmzCsrNz+FSr/d3CluCiF\nosJYCgsuouUygoOGcoswCjOak1vgR9YJN9LKbSnW1myfh4MV4Z72NPdyoLmnPeGeDvg3scVCpSy8\nV1AwRURRTJRL2yirjwVBYEDQAAYEDeBUxinm7p/L1E1TWXZiGd+M+Ia2XvWa8qbQQIiitPTh66+l\ne9ZRoxraooZDEATc3d1xd3enW7duaLVaUlJSuHTpEufPn2fp0qUEBATQu3dvQkIaUYUbCwt4/XUY\nNgyefBK6d5c2+Pn4Y/DwuPPnFerE6dOnGTp0KNbW1uzfv5+wsLCGNknBzEjNKyQhx5Eg19pNb3Ww\ntWHmpKHsOHoOjVZH1rV87JzdKMu3ohB3hIJgdJm5WJWWY2WLtBUd0ppHGxewsCtCRwZFRfGkXYsn\nHg3pNo7kukVQ4DqcYkdfqHh4WX79BQjaMuxzE3HIvYR7eRY+6kICHES8tU1wtm6Ks3UznK2aYmvV\njDLLpqidXBpPv6qgoFArjF46qa1XW1aOXcm0TtOYumkqHRd35JUerzD7ntnYWyklWM2BOXOkh+5f\nfilVGFP4F7VaTUBAAAEBAfTv358LFy6wd+9eVq5ciY+PD3369CEiIqLx/LFt1w6OHJEqNbz5Jvz6\nK3zwAUybBmqlso8h2Lt3L/fffz9BQUFs2bIFb2/vhjZJwQyxs3LgdEYJ7nZqHK3vfG1eycnnyQ9/\nwEKnYkJIR1pdduPXV/dQXqKtdp7aSoVHsDOeYS54hrrg5OfI4ZRcDsbncCHTj5jMFuQ51LwhpKNa\ng7eQj1vZZRzzErDOOIOQcpKCrFREnbSepRy4eP1VE5Y2tjh7NJVeXs1w8miKu28wvi060iy8HVa2\nSgU+BYXGhlGSl5EjR7Jhw4Zqx/oE9OHEtBN8+s+nvL/nfdIL0vlxzI96aRoCuXTlQA5b76S5eDG8\n9x7MnQsvvKC/nqliCLsFQSAiIoLw8HDi4+PZu3cvP//8M+PHjyciIsLg7TUYajVMnw4PPsjIzp3Z\nMGMG/PKLtLDfQDfad+v13rNnT44fP06PHj1Yv359jRtO1gc5/X755Zdl0TUEcvl99epVg2saEhu1\nBd6O1mQVaTmbVUp339vf0OcWFPPEnO8IK2rC095dsCm24PL5awBY2qjxCHGRkpUwF5r4O6JSqxh0\n33BG/GchG/+8QFZBWTU9C5VAoJstzT0dpKlfnvaEezlU7nh/IzqtlvzsDHKz0sjNSJX+zUwjNzOV\nT37cxKQOXuRmpVGUe5XykmKuJF/iSvKlm3RUajVeQS3wa9kJv5ad8G3ZkWbh7bG2q92DUmP1D6be\nD91Ipz+fxtP2zucpNAwaV3/2NrQRMmOU5GXGjBk1HrdSW/FGnzewUlvx1t9vseC+BbjYuOilqS9y\n6cqBHLbeTnP/fmkPl+eek9Zp66tnyhjSbkEQCA4OJjg4mA8//JCcnBxZ22swPDyY8e230uL9CROg\nY0dYvdogO5bejdf73r17iYqK4p577uH333836KaTcvr90EMPsWfPHtn09UEuv+1NfONWOwsL2nrb\nsCOukPR8DQVlOhysal5vmptTxMdz1jOqpAX2TlJy4exjT0hPHzzDXHHxdUB1fZ1JUZmWTWczWX8q\ng0s+A/jhQDIArraWDG7hTisfR5p7OhDiboeVRe3Xt6rUapw9m+Ls2RRada72nnufvxg8eDAA5aUl\nUlKTlUZeZho5mankZqaSEXee5HPHyM/OIP3iGdIvnuHwhuUACCoVXkER15OZ60lNRHus7RxussNY\n/YMp90MKCqaIUZKXio7mVkxqM4lZ22bx67lfmdyxduUC76RZX+TSlQM5bL2VZnw8PPCAVBl3/nz9\n9UwdOezOyclBEAQ0mpunUJhrnG6k0o/jx2HiRBgwABYsgGefNYyugTHVuB8/fpxhw4bRs2dP1q9f\nb9DEBeT1u8cN5bNNCbn8tr5ebc9UsVdb4GStxsvegoxCDTHZpXT0ufnReXmJhl/f3kdbrTeowLqJ\nFZ1Gh+Hf0bMyYangdFoez/98lmvF0mIV5+Zd6Bnkyph23twT5oalWp5iPFV/h5bWNrj7BePuF3zT\neaIokpuZRvK5YySfO0bK+SiSzx0jLyudy5fOcfnSOY5slGZ7qC0seeLTn2k7cPQt25ITU+2HFBRM\nFZPYLvxY2jFExFqPuigYl+houPdecHSEn3+WNllXqD0FBQXs3buXY8eOYW1t3fiqj9WEt7dUP/uV\nV6ShOm9vGDOmoa0yC4qKipg4cSJhYWFs3LgR2xs3T1JQqCMWorROpbm7FRmFGhJzyvF1ssTTvvot\nwJnzKdhopWM+gz24Z2Trm5IWgDNp+Ty7+jT5pVqaOlsztp0PI9t44eVkOkmcIAi4eDXDxasZbfqP\nrDyem5UuJTPnpGQm8fQh8rMz2LfmfzclLwo1I3Dzxh0KpsPd8Ltp8OQlpySHaX9M477Q+xjbYmxD\nm6NwAydPwqBB4OUl3Yt6eTW0ReZDUVERBw4c4NChQ6hUKvr27Uv37t312szSrLCwgC++gMuX4eGH\nYfdu6NKloa0yeV577TUSExOJiooy+elICuaBRiONjrjbWRDkYkl8TjlRacUMCHbASv3vrc7Snf/Q\nWfTAQlDTpXdojYlLdEYB09ZIiUtHPye+fqgNdlbmU5zD2cMH53tG0PqeEQAknDzI/Ed6EHtkJ0W5\n17Bzdm1gCxUUFO6EUTZZWb9+/S3fm/nXTPJL81k8YnGdKjDdTlMf5NKVAzlsraq5ezfccw/4+8Ou\nXfVbe21O8axKfe0WRZGEhATWrVvH559/zqFDh+jWrRsvvvgiffv2vWXiYq5xupGb/FCpYPlyqSrZ\nAw9Afr5hdA2EqcX97NmzLFiwgI8//pgWLVqYpd87d+6UTVtf5PK7pKTkzic1ICWacnRlko2tvWyw\nsxQo1ojsii8gt0r1sD8PnyZDUwDAkTUxaMq0N2ktP5RCfomG1j6OLHywdWXiYqxrSd92RFEk+VwU\nW795n88f7s4Xj/YEQKfRkBF/3qBt1RZT64cUFEwdoyQvkZGRNR7fdmkb3x3/jk8Hf4qfs59BNPVF\nLl05kMPWCs1ffoHBg6FzZ/j7b3Bzu8MH76BnbtTV7sLCQvbv38/XX3/N8uXLSU1NpX///rz44osM\nHDjwjlN/zDVON1KjH7a2UuWx7GypnLKhdA2AqcX9m2++wcvLi+nTpwPm6ffWrVtl09YXufwuLi6W\nRddQZIuQe243IFX+6u5rh52lQGG5yO6EQpJzpZEZAYFNuedRWQikn81m58ITlBVXX6MX4Cr1Zf5N\nbLG3/nfyhrGupfq0U1KYz6kd64mcPYV3Bjbj0/Gd2Pz1OySeOoQoijSLaM/9L32Cf+uuerdVH0yt\nH1JQMHWMMm1szZo1Nx2LvxbP0xufpn9gf57u+LRBNA2BXLpyIIeta9as4bvv4JlnpIJRy5aBPrOc\nzCmeVamN3cXFxcTGxnL+/HliYmIQBIGWLVsyYsQIAgIC6jSSaK5xupFb+hEYCB9+KK2BefxxqOPu\n8HfD9V5UVMSKFSuYMWNG5QidOfr9ySefsG3bNtn09UEuv11dTXuqkQ6BC0c20r39EACcbdT0C7Tn\naFoxmYVajqYVk55fTjNvD2ISUgh60Jek9elkXczl7y+PM+CF9ljZSYsd2zZzBGDPxWx+OJDMuPbe\nONlaGu1aulU7FQv0MxMukBEfTWZ8dOX/r6UnVTvXytae8O730rLvcFr2GYaLV7M6tWVoTKkfUlAw\nBxpkzcvv0b/z+PrHcbNz44dRPzSeDfsaAevWSYnLs89KRaJURhmbMx9ycnK4cOECFy5cICEhQXpq\n16wZgwYNol27dsri6tvx/PPSDqfbt9c5ebkb2L17N3l5eTz66KMNbYpCI2Rv7HG6lhSgspFKAltb\nqOjpZ8e5rFJisstIzdcwfcoT7Dl4hGRtPgNf6sDOBSe4mpTPzoUnGfB8eyxtLWjv60wzFxtSc0r4\nclc8i/cnMqqNF5M6NyPQTf4NIctLS8hKjK1MTDKuJymZ8dGUFhXc8nPufiG07DucVn2HE9r5Hiys\nTKe4gIKCQt0wavKi0Wl4bftrfHbgM8ZEjGHpqKU42zgb0wSF27B7N0yaBA89pCQuFYiiyOXLlysT\nlsuXL6NSqQgODmbYsGGEh4fj6OjY0GaaB2o1hIbCxVvtlX13s337dnx9fQkPD29oUxQaIfvKYdq5\n3Th2HF55TBAEWnna4OtkyZnMEjILoX+v7mjKy8mwsaTbtLYcXHSS7IQ8dv3vJP2fb4+dlZr1T3dm\ny7lMfjqSSkxmIWui0lkTlU7f0CY81cOPDr76/V3XabVcS08iK+kiWUmxZCXGkpUYQ0Z8NFdT4xFF\nscbPqdRq3HyD8QqKwDMoQvo3MBzPwHAcXN31sklBQcF0MGrysuTYEuYfnM/8IfN5sduLyoiLCbF5\ns5S09O4tra++mxOXkpIS4uLiiI2N5eLFixQUFGBtbU1YWBi9e/cmNDTU5Pd1MEmKiiAnB/LyGtoS\nk0MURTZu3MigQYOUflFBFk6IKvIuHKiWvFTgbKOml789W6PiiLmmwbepN9FXygAB+zHhaH+JJutS\nLsd+jqHbIy2wslAxqq03I9t4cTgxh5+OpLLn4tXKV7dAF6b1DqCj362TmH8TlFgpSUmM5Uqy9G92\nShza6xXSasLW0VlKTgIj8AwKr0xU3P1CsLC8S6o5KijcxRgleXnyySf54YcfWHxsMaMjRvNS95cM\norl06VIDWGccXTkwlK3ffw9Tp8Lw4eDk9CTW1obz3xziKYoiWVlZlclKUlIS69atY8qUKbRp04aw\nsDD8/f1Rq+UrB2oOcaoNt/XjhRcgPR1mzzasrh6YStx37dpFbGws3377bbXj5uj3nDlzZNE1BHL5\nnZOTY3BNQ2IpiJQjkJKZRM2rOyT6tvLlucfeoVVEOM9NGkWRzoISV1vUQ0PQro/h0j/plDd1pFUP\nH1xsVAiCQLdAV7oFuvLgpEdp/cjbbDidwaGEHA4l5NAlwJmHI2zwKUmsc4KitrTC3S8ED/9Q3P3D\n8AgIwzuoBXM+X8SPqyKNkuQbq38wlX5IQcFcMEryMnjwYI5fPs6pjFPMvXeuwTTlwJx2ujWErZ98\nAq+/Lq1x+eorWLvWsP6bejxjYmLYvHkzubm5WFhYEBwczNChQ/Hx8WHKlClGs8PU41RbbunH2rVS\nlrx0KbRsaThdPTGVuC9atIjw8HD69u1b7bg5+t29e3c2btwom74+yOW3qY/E+lgJpANxVzPodpvz\nbK2t6NUmlB1HzxDT1p9nRg/gckE5aQ4WJKd4U370MkkbLpHpbo+royWhTaxp5mSBShAYe/8wJg5r\nzuQevny1OYrtSRqOJOZyJDGXiAOf4x1/cxW6fxOUMNz9Q/EICMPDT/rXxcsXVQ0PjIaPTDPa6KSx\n+gdT6YcUFMwFoyQvEydOZHvcdgDCmoQZTFMO5NKVA31tXbhQSlzeeUdaRy0IhvfflOOZnJzM2rVr\nCQwMZMSIEQQGBmJhIV0SXYy8maIpx6ku1OhHcTH83//B6NFSpTFD6RoAU4j78ePH+eWXX/jf//53\n002ZOfo9dOhQ3qxnSWy5kctvUy/U0dQa0oHE4lsvaK+gY/MAdhw9T3zaFazUAv7OVvg7WxHQ24ed\nRy8jACqVQE6JjqNpxZzNFAhyVtM2wJOfP5jOmZ2/U5qZRhc7T+LaTyMzcCDp7R5nYIA1HhUJin8Y\nHv6ht0xQbocxr1ljtWUK/ZCCgjlhtDUvfk7SPi7JecmENAkxVrMKt+DHH6XiT//3f/8mLncT2dnZ\nREZG0rRpU8aPH1+ZtCjIwFdfSdPF5s27+75od0AURf7zn//QvHlzJk+e3NDmKDRSmjpYcEwDyRod\nok6HcJtFje4uUgGS7NzqiU7y0QwAAtp70CnCifhr5VzMLqFYA+eyNWism3PZ2heNtQvW9vl07DuA\nR/u24uVzArl2zejz3E+08FaKmygoKOiP0e7Y/J39cbBy4KO9H9GtWTdsLU37SVVjRaORRlo+/hgm\nT4b//vfuvJ88e/YsxcXFiKJIXFwcYWFhykJpufjxR5g4EcIMM+raWCgqh2cKogAAIABJREFUKuKZ\nZ55h27Zt/P7771haWja0SQqNFD8PX0i/QryoQpObiKVr0C3PtVBLiU1xaRkgJdhn/0zk4r40AIK6\nemFtocJTk8G610egCuiI34gZ2DVrjt+IGfiNmIGTlYC7nYqfj6ZQppWSnpjMQiV5aSQcHbIEu2bN\nG9oMhVvgXJAIe+s3y8FcMEpNqX379mFracvvE35nf/J+RkSOoLCsUG9NOZBLVw7qauvlyzBokPQA\n/JNPYMmSmxMXQ/tvqvHs3bs3DzzwADqdjsjISL7++muOHDlCWZn0B9vYdptqnOpKjX7Y2kovQ+sa\ngIaKe0JCAr169WLdunVERkYycuTIGs8zR7+PHz8um7a+yOV3Rb9hqjQPvw+AGFFF3okFtz331KUU\nAFoENkWn1XEk8gKnNsYB0HKwP94tmpARf4EvH+tNxsXTFJ/9m64uRQhJx/BxtEAA8spE4nK0dAj2\nZkK3IJ7uHcjQlh4G8cWY16yx2mos/b+CgrEwysjLvHnz6N27NwOCBvDnw38ybNUwHlz7IJsf3qy3\npqGRS1cO6mLrxYvQp4+UrPz9N9ywLrhemoa20ZioVCpat25N69atSU5O5uDBg2zZsoW///6bUaNG\nGd1uU41TXanRDxcXOHEC8vOhnnviNKbrfd++fYwePRonJycOHDhAu3btbnmuOfq9YsUKWXQNgVx+\nFxTceS1JQxLYrB3Wwo8UiQIXzx7EtVcmKivPGs89ESPtRt8+zI/Dqy4QdyAdBOj0YHPC+/miLS9n\n0dTB5FxOxjMwnOnfbsPV24//GzmS2QtX8MuReGytrWnv14SmrnZE+EjlkrfHFeHrZIm/s2VlpbL6\nYMxr1lhtmVv/P7V/c4Jbtm9oMxRuQXqsir0NbYTMGGXkZfXq1ZX/7xPQh2/v/5YtF7dwPuu8QTQN\niVy6clBbW0tK4MEHwcEBoqJunbjURbO2mEM8/fz8ePDBB3nhhRcIDAxk7dq1vP/++0a1wRziVBtq\n9OOll+DcOejQAQ4dMpyuATB23NetW8e9995L69atOXr06G0TFzBPvz/66CPZtPVFLr9dXV1l0TUU\nFmoL7K4vjC/K0aLNrfnW5lp+EafjpJEXn2v2xB1IRxCg95TWhPfzBeD8P1u5lp6EQxNPXly+F1dv\nP9JySwh+eA5PrTzF6dR8zqdew91aR79AO0KbWGGtFijTisRdK2NXQiF/xxcSm11KSbmuzr4Y85o1\nVluNpf9XUDAWRkle7Ozsqv08JmIMLjYu/HjqR4NpGgq5dOWgtra+8gqcPy9Vq/X2NoxmbTGneLq4\nuDBu3DiaN2/Oxo0buXTpktHaNqc43Y4a/Rg+HI4fBzc36NUL3n8f6jjNpjFc74sWLWLcuHGMGjWK\nrVu30qRJkzt+xhz9NuXKW3L5bQ7r5Qp0UqJgna+j/NruGs/ZfzoWnU6kv28YcX+lAtDhgTD8O/w7\nSnPsj1UAdBo2EdHOlYW74xm95Cg74wpQCTCugw8bpnVhfKemuNpa0MbLhqFhDvTws71eVhnySnWc\nySxly8UC/kkqIjWvHJ0o1soPY16zxmqrsfT/CgrGokFKLFlbWDMoeBD7kpR5nnKzeTMsWiS92iuj\nvHdErVYzbtw4li9fzu7duwkJUSrjGYTQUNi3T0pc5syBFStg7lwYM+auqBixZs0apk+fzgsvvMD8\n+fNR3abak4KCockrLqBcJyUHjqJIWepJbENLEFQ21c7beugMdoIlg1ShiBoI6elDeH/faudcOrYb\nrcqKhLAHGL7oMLklGgA6+zsz694Qwr0cbmpfJQh4O1ji7WBJmVYkNa+cpNxyrhZrySjUkFGowUot\n4OdsSaCLJU7W8m0IrGAABMEsEva7FYHG/7tpsL+gJZoSnG2cG6r5u4LcXJg6FYYMkf5VqB1qtRoP\nDw90urpPaVC4DZaW8N57cPKklMw88IA0h/Hw4Ya2TFaOHj3KE088waRJk/jiiy+UxEXB6MRnXZ8K\nphKxE6D8igZdcWy1cwqLS/nz4BlGu7TGQqPC2ceezuObV7tJ1Wh1XHDuxOH7V7L8gkhuiYYgN1s+\nG9uS7ya1rTFxuRErtUCQqxX3BNpzb7A9zd2ssLGQppVdulrGjrhCdsUXEn+tjHJt7UZjFBQU7i6M\n8ld05syZNx1Ly0+jie2dp03URdMQyKUrB3ey9eWXISen5qpi9dWsK+YUzwo0Gk2NGwbKiTnGqSZq\n5Ufr1rBlC2zdKmXY3bpJpZQTEvTTrQdyx724uJgxY8bQtm1bvvvuuzp/p8zR7y+++EI2bX2Ry++8\nvDxZdA1FXFYyAOHXZ/SVZWnRFUVXO2fr4TM0Ex1pb9sUQSXQ4/EWqC3/HQFJyC7i4W//IbrLq5Ta\ne+LlYMWcYc35ZUpn7g13Z9asWXW2y9FaTStPG4aEOtDd1xYfB6la2bUSLScul7AlNp9jacVcKdIg\nXp9WZsy+0lhtNZb+X0HBWBglefH396/2c1R6FMfSjzE0ZKjBNA2FXLpycDtbf/wRli6V9gesi0uG\n9t+c4gmQn5/P8uXLUavV9OjRw2jtmlucbkWd/Bg8WFoL8/33sHs3hIfDrFlSxq2Pbh2QO+5r1qwh\nJSWFlStX1mstiDn67X2nhXUNiFx+q+u4S7yxibs+8tLCSUqeS1M1aPJOVztn3e4outsHABDapylN\n/J0A0IkiK4+k8uD3x4i+pkNdVkCv3F1sfLYrY9p5Y6GSNPWJrUoQ8HG0pLufHUPDHGjlaY2DlQqt\nCEm55exNLGJ7XCExV0rxaeZX73bqirH65cbS/ysoGAujJC/PP/98tZ8/3vcxIa4hPNjqQYNpGgq5\ndOXgVraeOwfTpsHjj8OTTxpGs76YUzxTU1NZsmQJubm5LF68mJYtWxqtbXOK0+2osx9qNTz1FMTE\nwBtvwNdfS1PKFi2CKgt4zfV6X7RoEUOGDCE0NLRenzdHvydMmCCbtr7I5be9vb0suoaiYtpYyyYq\n1NYqRA0UxURVvn8lJ5+okwm0tPECILRXMwDySzQ8E3mKedsvUaYVcU0/wuDjs/nv6zOwtqh++2Co\n2NpYqGjuZs29wfb0DbAjwNkStQAFZTrOZpUSPOQJDqUUkVuiNUh7t8NY/XJj6f8VFIyF0RfsF5YV\n8tv53/h8yOdYqBqkXkCj5soVGDkSgoKk+0CF2lFUVMTq1atxdnZmwoQJODjcee62ggFxcIDZs+Hp\np+Htt2H6dCmxeeaZhras3mRlZXH48GFWrlzZ0KYo3OVczr0CTgIh9ips3CwoTCujJOEKuvIrqCzd\n+WXXUdzUdlgIKuxcrXH1daBcq+OVdec4kpiLWltC8LGvCUzdwQsrD2LvXP8p37VFEATc7Cxws5Mq\nlqXml5OYIy3yT8vXkJavwc/ZkpYe1thZKuvIFBTuJoyePRxLP4ZW1NIvsJ+xm270lJZKxZvy8mDb\nNjDxh4EmxebNm9FqtYwfP15JXBqSpk2laWQ2NjBjBrRtC927N7RV9SLh+hqeiIiIhjVE4a6nXKsB\nLLGxdcPaNYPCtDJK0zVo86PA5V5W/nWQXG0JAKUF5ei0Ot7ZdIHDiTmoy4tov/0Fghx0PL50F03D\nWhvdfku1QKCLFYEuVuSVaDl/pZS0fA3JueWk5pUT5GpFuJvVTaNBCgoKjROjXOnR0f8uDDyUcgg7\nSztaeug3JaeqpiGRS1cObrT1zTfhyBH4/Xdp5MUQmvpiDvG8dOkSZ8+eZdiwYThe3wHe2HabQ5xq\ng8H8mD8funaVdlctKzPL6z0xMRGAgICAemuYo9/x8fGyaeuLXH5rNBpZdA2FVidNsbK098TKUY1g\nqUYshZL4nRyNTiA+7QoaKx0IoC3X8ds/iWw+lwU6Da32vcM93Tsx8+co/Ft1vmUbxurD0hJi6eZr\nR79Aezzs1OhEuHS1jN0JhRSWGbZCpLF8aiz9v4KCsTBK8lK1CsnhtMN0btpZ7ylj9als0pC6clDV\n1vJyWLYMXngB9Flnbmj/zSGeycnJ2Nvb07r1v08UjW23OcSpNhjMDysrad1LSgr89ZdZXu+JiYnY\n29vXajPKW2GOfn/11VeyaeuLXH6berUxzfXkxcrOA0ElYOXuDkBJ8kn2nIwBoH/nFjh7S8P1v285\nA0DwmWU8+8zTPDZ3FTYOTrdtw1h9WEU7rrZqevnb0cvPDjtLgcJykb2JhRSUGW4tjLF9UlBQqB1G\nSV4WLlxY+f9DKYfo1qybQTUNiVy6clDV1h07IDsbJk0ynKYhMId4Zmdn4+bmVu2Yse02hzjVBoP6\n0aYNtGoFkZFmeb0nJiYSGBioV8ltc/TblG/E5PLb2dm09yyrKDNsaSctyLdycQWgPOsq/5w6D0DP\nNqG4+knJi6POAYuyAt56ZiI9xz1dq++wsfqwqu0IgoCngwV9A+xxsFJRrBHZk1BEcblhRmAawicF\nBYU7Y9RSyRkFGSTnJdO1WVeDaRoacypZWNXWrVshMBDatTOcpiEw9XiKokhycjJeXl7VjhvbblOP\nU20xuB/33QcHDpjd9S6KIrt37642mlcfzM1vAB8fH9m09eVuLZVcgaW91M9Z2Ep/+rUFIjFJlwHo\n0Nyf7IyTADhrYFCoI53631dr7YYsK2xrqaJvgB0OVipKtSKp+eWytSUHjaX/V1AwFkZd3RaVLpVm\n7OTTyZjN3hUcOyYtETDivoqNgtTUVHJzc41aFlmhDjg6QklJQ1tRZw4dOsSpU6d4sq61yhUUZERl\n6yn9R5MPgE4jUlAs3ejboCHm4HYARCAiJLABLKw/1hYqfJ0sAcgpMezaFwUFBdPCqMnL8cvHcbFx\nIdAl0JjN3hWcPi0VZlKoG8eOHcPe3l558mWqlJRIC7rMjBUrVhAQEMCgQYMa2hQFhUoEu4rkRVqj\nU6YV0OikJ14Xdq5DU1Jaea6dlXmMJlXFzlLypaBUSV4UFBozRkle5s6dC0D8tXhCm4TqNQf8Rk1D\nI5euHFS11c0Nrl41rKYhMOV4RkdHc+LECfr164dKVf1SMLbdphynumBQP3JzYckSGD3a7K7306dP\n07t375u+V3XF3PwGWLZsmWza+iKX3wUFBbLoGhqVtQsAulIpSfl/9s47PIrqbcP37CbZFFIgCQkJ\nhJCA9N5BsdIUQQVBVEBEASkCooj6UW2AYqUICgj+AFFQBARREJCiSO89IYRAQiqkbbJlvj+GICWQ\n7O7M7myY+7pyBdjhOc95d2Z23znnvMfbzx9fL2mBe0Z2Hp4GaSF/jh6Op9jWJ2fdw27XjiiKJGRJ\nDzoq+MiTeLm6TxoaGsXjlOQlLy8PgMQriVQOqCyrptwopasE13utUwcOH5ZXUw7UGs+cnBxWr15N\nzZo1adr01mmMzvat1jjZiqz9mDoVcnNh4kS3u97PnDlDbGyswzru1m8Ao4qn+SnV76IF8WpH8PAB\nwFJ4dQF/UCUqBxUCkGnxwuAdDsBlD4F/z2bZ1C9n3cNu187FbDPp+RZ0AtQI9lK0LbkpK/d/DQ1n\n4ZTkZdKkSQDkmfLw85Rn58QiTblRSlcJrvfavj38/jv8+KN8mnKg1nju2rULs9nM448/XuxIoLN9\nqzVOtiJbP1auhClTYOxYiIx0u+s9Pz8fb29vh3Xcrd8AgwcPVkzbUZTqd9H+UGpHEPSg88RydVqV\nR2BFooOlZDNDF4iHXvp8NushMcvIoQvZpdZ21j2suHbOXzHxb1I+ANWCvPDxlOerjSv7pKGhcXuc\nuuYl1C+U1LxUZzZ51zB0KPTuDX36wI4drnajbqxWK/v376devXr4+cmTTGvIyN9/Sydzjx4wbpyr\n3dhFrVq1tI3nNFSICFYz1qubOeq8cmhUJReAs7l6/CpIJZ9DMqW9X5buueAam6XEKoqcyShgV1I+\nIhAZ4EG9MIOrbWloaCiMU5OXcL9wLmSr+2boruh0sGCBVHHs8cdh/35XO1IvSUlJXLlyhUaNGrna\nisbNHDwoncDNmsGiRdKJ7YbUrVuXHTt2qH7ndY27C9FqBcRr08YQztIkSlrbsudEAlH1pVr7kZcS\nAVh/JIULWfmusHpH8k1WjqUaWX86h4Mp0vqdakGeNI/wQaeV3NTQKPM45ZtBWloaAHVC63Ai7QSF\nlkLZNOVGKV0luNmrwQC//AIxMfDQQ1L5ZEc1HUWN8TRdrV51p6kezvatxjjZg0P9OHwYHn4YqlaF\nVavgumlX7na9v/LKK5w5c4bZs2c7pONu/QbIzMxUTNtRlOq31eoe1a2sVz97dR7SF3xrQQ71qoVi\n8PQg/XIOfjUDAKhc4X6qXzyGBYFR731OwuFdJWorfQ8TRZGUHDO/HTjHb6dzOJ5WiNEs4qUXqFfR\nQMNwb1mKAV2Ps+7LZeX+r6HhLJySvLz44osANK7UGJPVxJFLR2TTlBuldJWgOK/ly8Mff8A990jf\nA7dudVzTEdQYz6IN5e70VNzZvtUYJ3uwux9nzkgnbOXK0glcvrw8uiWglG7Tpk15+eWXGTduHCkp\nKXbruFu/ASZPnqyYtqMo1e+srCxFdOXGbJFGKXRXSwpbjXoCYsbTsHoVAE6Z0ohqUhFB0PGERxS+\nFpETQc14f1AP5o18imPb1982UZM7tqIoctloIT6zkN1J+aw/ncOOxDzGjZLWVIX46mke4UOn6uWo\nEWyQPXEB592Xy8r9X0PDWXg4o5GJEycC0DCsIQIC+5L30bhSY1k05UYpXSW4ndegIGnxfteu8MAD\nMGECvPMOlGYTaLn7r8Z4li9fHkEQOHXqFCEhIcUe42zfaoyTPdjdjxkzpB1W//gDKlSQT7cElIz7\n+++/z8qVK+nTpw/r1q2zaxd2d+z3wIED+euvvxTTdwSl+u0uC/YtJmlxvt4gPbcULbXR+cTQun51\n/j0Wz7p/DvHVq31JOZlJQQ68lGZlaXlPDtw/Bf3vQzi48WcqRFSl1VMv0erJFwmsGHFN29HYWqwi\nmUYL6XnST0a+GdNNeZKnDl4fO46HY/wIMCi/D42z7stl5f6voX4Mz9TBp448U+YNRz1guSxSNuOU\nkZcmTZoA4OflR82Qmuy9uFc2TblRSlcJ7uQ1IAA2bJDWO0+aJE0jS0x0TNMe1BjPgIAAGjVqxPbt\n2yksLH4Ko7N9qzFO9mBXP0QRfv4ZuneH2yST7ni9h4SEsGTJEjZs2MAHH3xgl4Y79rt27dqKaTuK\nUv329PRURFcu9IL0UV+YfwYADz/p76YM6f731P1SXDbvPUGOtYD2o5vgX9EXn0KRPqkWovSVONt9\nAR7lK5FxIYG1M8YxsUMU37z6BIc3r8ZsKrQptqIokmeyknTFxKEUI5vP5rL6RDZbE/I4mlpASq6U\nuOgFCPXVUyvEi7ZVfOlUw59eHVo7JXEB592Xy8r9X0PDWTh9NWyTSk3Yl7zP2c3elXh4wMSJsHkz\nxMdDo0awfr2rXamDdu3akZ+fz4IFCzh69KjbzFkvk5w+DQkJ0KWLq53IzsMPP8z48eMZP348DRs2\n5O2332bHjh1YLBZXW9O4iyiaUmU8J63B8vSTJl2Y0s4BEBtZkcb3RGGxWvl5y14CwvzoOKYp4bXK\n42mFJ9OtNE4P5FT3FTR9+wdim9yH1WLh0KZf+Hp4V8Y/FMEP7w0hbt/2YveGKTBbSckxczy1gL8T\n81h3Kof1p3P4Nymf0xmFZOZbEAFvD4FIfw8ahBl4INqPLjX9ubeqH7VDvalYzgMPnbYYX0NDwwXJ\nS+PwxuxP3o/Fqn14O4v77pOqj7VsCZ07w3vvwd3+XT0oKIh+/frh4+PDjz/+yOzZs9m/f7/2pdIV\nFG3QFhrqWh8KMX78eH788UcaNmzI3Llzadu2LWFhYfTp04dly5a5zXoJDffFfPXz1t+YLv1djATA\nq2K1a8c8/WBzAH7cJC3O9/L15IGhDandPgoEqJcn0uVUPquOhpLz7HxGrTjCA31fIyAknNysdLYv\nm83nfe/l3W51WbVoNntPnuPfpDx+P53N2lPSepVjaQUk55gpsIgIQKBBR3SQJ00jvOkQW45O1cvR\norIvsRUMlPfRa5XDNDQ0isUpycu8efOu/blxeGPyTHmcyjglm6acKKWrBLZ4rVAB1qyRppGNGwfd\nusHFi45plgY1xzMqKoq+ffsyYMAAgoOD+eWXX/jyyy+Jj493um81x8kW7OpHdskb4bnz9a7T6ejR\noweLFi0iJSWF7du3M2jQIA4ePMgzzzxDSEgIDzzwABMnTmT16tVcvO7CdMd+r1y5UjFtR1Gq3+6w\nQ7qXDvyMOkSrSP4lae2LT41W115//N5GeHnoOXb2IkfikgDQ6XU0frI6HV5vSrmKvpSzwlPpVnS/\nnePD79M5XGsQTT7fz6PzjlD4yBu0/HwP9T7cjqX5cyRYgki6YibXJI3E+HnpqBLgSf0wA+2q+vJ4\nTX8eiilH40o+RAV64eelK9Wie2feK53VVlm5/2toOAunLNjfu3cvAwYMAOBE+gl0gg5fT1/ZNOVE\nKV0lsNWrTietf2nRAl58EWrVgg8/hEGD/lvML3f/3SGelStX5plnniElJYU5c+Zw9uxZp/t2hziV\nBpv7sWYN9OsnlUeuUUM+3VLi7Ljr9XratGlDmzZteP/99zl37hxr167l119/ZebMmddKplaqVIlm\nzZqRnJxMeHg4TZs2JTw8XDYfSvZbzZtzKtXvovLraibcGzBCxskCCi8ngN6DcvUfvvZ6eX9fHmxa\nm/U7D/PHrqPUjZFGZ0RRxCfSnyavNubk+rMkb0siqgCikk3wxwUKY/Ox1A7mbHImHSpVB8Ccm0nW\n0R1cOb2H7NN7CAn0o/NLbxLb9D6H++HMa9ZZbbnb/X/Pm/eT6ONqFxq3w1w+ytUWFMcpycvMmTMB\nMFlMfLTjI3rW7UlUoGPBLdKUG6V0lcBer489BseOwdixMHQoLFwIc+ZIa2Lk7r87xROkD+ro6Gin\n+3a3ON2OUvejoEAaAvzoI2lTym+/hcBAx3VtxNVxj4qKYvDgwQwePBhRFElMTGT37t3s2bOH3bt3\nExcXR5era4EiIyNp2rQpzZo1o2nTpjRv3pxQO6faKdnvsWPH8uOPPyqm7whK9TvwDueuWqhugLTD\neVjyLegMfoT1/QivsGo3HPNgk1ocTUwnxQh7LuSTXWDhSoEVS9EylkaVMMRUwHIiHcvxdMSsAunP\nJ9J5Ovw59v5wiBN6K3GClaoh1Qj2ziU7/zhnL8Rz9OVHqdesNT3HfUVIlRi7++HMa9ZZbbn6PqSh\n4W44JXkp4r2/3uNs1llW9lLvtIK7hQoVYO5c6aH3oEHShuYjR0oL/MuVc7U711C0H0dSUhLR0dGK\n7BtwV5OSAmvXSqMtf/wB+fnw8cfw2mtSmeS7HEEQiIqKIioqiqeeegqQkumEhIRrycyePXv49NNP\nr20EWbNmTe69995rP7Gxsdp5q1EslXNNWAQLHoFhhL/4OYbw6pitIhn5V8sT55spF1WHMcPrAnDu\n8n+jSToB/L10BBj0+IcaCKgThL9XDfLPZxO/M5mzu1PwNlqonVJAbcACpKTmcd4QS3r914nzEjDq\nBf41ZrHm2900b2IiOtiX6Ao+RAf7UjnIG0+905fgamhouClOS14W7FvA5L8m8/5D79MwvKGzmtUo\ngbZtYe9e+OQTmDwZfvhB2nKja1dXO3M+derU4eLFi2zcuJH4+Hi6detGQECAq225L6II+/ZJycqa\nNbBrl5SktGwJb74plUauVcvVLlWNIAhER0cTHR1N9+7dASmhiY+PZ+fOnWzbto1t27Yxf/58RFEk\nLCzshmSmUaNGeHg49RmVhkqparVCVH2Enh9xQihHenwOl41WbqwNJpCXb+TSpUt0alqdAIOeAIMO\nPy9dsYvny8UGERobRJ1OYRxYu5Okg+kUXPFBrwsiohAiCkVaZEstpHlAosGf84YANu5NJtvjPz29\nAJFB3lSt4Et0sA/R1/0O9vPUEnINDY0bcMqn2rZz2xi4ZiADmwzkrXvfckaTGjbg5SVNIevZU5pG\n1q0bPPmklMRERJT8/8sKHh4edOzYkRo1arBy5Upmz55N9+7dqV69uqutuQ8mk1Sbe/lyKWG5cEHa\ndKhjRxg2TCp3V0arijkLQRCIiYkhJiaG3r17A9IO73///Tdbt25l27ZtjB07loKCAvz8/GjVqhW9\ne/emd+/e+Po6ttZQw33xa/4SBxv0gkyA//a38vEQCPbVE+zrwaJVG5m3cgN9O7eldqd6xeqIokhq\nwini9+/g7IG/iT/wN8mnD99QItnLEEZ4lfsJi3oAg2c1THlehJghxCzSOFc67kqoge2VDZy+UkBe\noYVzmUbOZRrZeubG9gK8Page6kuNUD+qX/cT4K0l5a5id8e5+Ebe42obGrchMCcBtvZztQ1FccrV\n3+upXtQeUJuZj82U7QlK165dWbVqlSxaztBVArm9xsSAp2dXli1bxauvQt268Omn0tQye982d4pn\nETExMWzcuJHnnnuOpUuX8sQTT1C/fn1F23THOF3DZII//4Qff6TrokWsMpmgWjXo1Utaz3LvveDg\nJn536/VeWn9BQUF07tyZzp07A1BQUMCePXvYtm0bGzZs4OWXX+b111/nhRdeYPDgwbzxxhuK9XvU\nqFGK6MqBUu93RkaG7JpyohMEvOs8CUCAQSclKz4eBPvq8fWUpmsdOnOeBb/8iShCh+Z1r/3fgrwc\nEg79ey1RSTj4D7lZ6be0sf6SL+MHPUP1pu2IbdqOCpH/Tb01ZheSeuYyl05nkXomi8zEHAJSC+hh\nFbj3pfpYKhg4m5HP2fQ8Eq7+PpuRz4XLRq4YzexNvMLexCsAxC96i2p9PyTM30tKaCr6XUtsYoJ9\n8fKQb/qZs+4Par8PaWioDcWTF6PZSEaDDIbUHYKHTr7mhg0bJpuWM3SVQAmvw4YNo0MHePhhGDUK\n+veH77+Hr76C6Gh1eHQGI0aM4JFHHmHVqlX89NNP5Ofn07x5c8UMDNerAAAgAElEQVSmL7hdnERR\n2vH0hx9g5UrIzITYWIY99RSMGQONG8u6juVuvd7t9WcwGK5VNRszZgzx8fHMmTOHefPm8dlnn9Go\nUSN++uknnnjiCXQ6edca9OzZk7/++ktWTblQ6v328/NTRFcuQgMj8fb0okWkD+H+tz5IKDSZGf3l\nMixWK4+3bUj9cB+WfzCcuH3buHDyIOJNG4N5eBmoUrcZ1Rq2Jvrqz2P7DtGhQ4di2/f296JKo1Cq\nNJJGXTPP57D160PkpObzx/S9tOpbmxbNwmhRNehGX2Yr8el5nErN5XRqHqdTc/F4uBdmICW7kJTs\nQrbFZV47Xi9A1Qq+VA/1pXGVQLrWD6Ocwf7vHc66P6j9PqShoTYUT17OZJzBWNXIvH3zMFlN9GnQ\nh9gKsQ7r3u4mqVZdJVDCa5FmcDAsWgTPPCMt6K9eXVoHM3gwPPKIVHbZVR6dQZHvbt264e3tzbp1\n6zh8+DDt2rVTZFG0W8VJFGH4cJg5Uypv/Mor8PTT0LAhHRRK7u7W610uf9WqVWPKlClMmjSJ5cuX\nM2vWLLp3706fPn1YsGAB+qJa6TLQunVr2bTkRqn322AwKKIrFxFBkdxb1ZcKPrd+5IuiyP/N/Zmj\nZy9Q3t+XUY834/O+95KVnHjtmKDwKlKi0qgN1Rq2JrJWIzw8vW7Q6dChUqn9lK9cjk5vNuPvhcdI\nOpTG7u9PEN0s7JbjvDx01AwrR82w66rI9KzHFaOZ06m5135OpeZyKjWPbKOZuPQ84tLz+P14GjO2\nnOXJhuH0bhZB5SDba/s66/6g9vvQLQiCVmRFzdwF743iyUvdinXZ3G8zCw8sZPrf05m0ZRJtq7Sl\nT4M+9Kzbk/I+5ZW2oOEAjz4KR4/C//4Hs2dLSxdiYqSEpn//sr98QRAEOnbsSGxsLFu2bGHx4sVE\nRkbSrl07atSocXcuJP3wQylxmT1bOhHuxhi4KQaDgeeee+7alMg+ffpgtVpZuHChrAmMhrqoViGk\n2MQFYN6arSz54x8EQeDdPu35fmQXspITqRhdk8eGv0d0w9YEhUXK7snL15PW/Wqz/PWtFOaZsZit\n6Es55SvA24MmVQJpUuW/EtWiKHIpp5DTl3I5fimHNYcuEZeex/92JbFkdxIP3RNCnxaRNIwMuDvv\n2xoaZQin1Ca8P/p+5nebT8rrKSx5agn+Bn+GrB1C+PRw+q3sR2Z+ZskiGi7D3196uH7gAGzfLlUo\nGz8eKleGl16CK1dc7VBZBEGgRo0aDBgwgOeffx6dTsfSpUuZO3cuu3btcovdtWVj1Sp45x2ppvbg\nwVri4sb07t2bpUuX8v3332vTVso4VUJuHdUAaZ3L5AXSWot3+j3Gya9HkJ4UT0iVWIZ+s5FGHXoo\nkrgUoff6L2E2Gc0OaQmCQJi/gbaxFRjQOooVLzdlVs96tIoOwirChhNp9PvuAIv+TXLUtoaGhotx\nSvKycqW0r4uvpy+96/dm3XPrOD/qPB889AGrTqyiydwm7EraZZem3CilqwRKeL2TpiBAmzbSdLKk\nJHj/fWnJQ+PGUhVcZ3l0BsX5FgSB2NhY+vfvT9++ffH392fdunVMnz6dpUuXcvjwYbt32nabOB07\nBj4+0gaTxeBu16Xa4650v59++mnGjh3LsmXLbqgW5QibNm2SRUcJlIqn0WhURFcuKvoXP8Phx027\nsVpFOrasR/cmUSQd34/ew5Oh8/60OWmxJ7Z6Dx1+FbwBSIsr3VOw0rajEwTaxlZgTu8GLB/QlM51\npGkCi3aex2wt3bnurPuD2u9DGhpqwynJy9KlS2/5t0r+lRjdZjT7Bu2jol9F2s5vy4x/ZzikKQdK\n6SqBEl5LqxkcDK+/Dvv3S39u0wamT5eWQyjt0RncybcgCFSrVo1nn32W0aNH06FDB3Jzc1mxYgUf\nf/wxK1euJCEhQbb2VEXDhtLmkmfPFvuyu12Xao+7M/rduHFjMjMzSU1NlUV7/fr1sugogVLxzM/P\nV0RXLrw9b50yZrVaWff3QQCeebgFZw/8DUCVOk2pUCnK5jbsjW1E/WAAkg6lKdZOjYp+vNulJkE+\nHqTlFvJ3XOlmezjr/qD2+5CGhtpwSvKybNmy274WHRTN1v5bGdh0IMPXDWd/8n6HNR1BKV0lUMKr\nrZoxMbBtm1SZ7PXXpVEZR/TUQml9+/n50bJlS1566SWGDx9OmzZtSExM5Ntvv7Xpy6DbxKlxY+n3\nli3Fvuxu16Xa4+6Mfjdq1AiAiRMnYr2pqpQ9TJkyxWENpVAqnuXLq3vtpuGmxfUA+08ncjH9Mn7e\nBu5rdA9HtqwGoFrjtna1YW9sg6tKGwFnJeUo2o6nXkfnOhUBeGf1cfadv6xYW7ai9vuQhobacEry\nUhJeei+mPjIVoNTJi4Z68PKCadOkTS7fegtySvcZVOaoUKEC999/P6+88gre3t4cOnTI1ZbkJyxM\nqqO9YIGrnWjIRGxsLHPnzuWrr77ilVdekSWB0VAX3h63Ji9rd0ijLo80r01BVioHNv4EQLMuzzvV\n26VTWQCEVAtQvK1X7qtK/Qh/LhvNDFxykA3H5Rlt1NDQcC6qSF5AWg9T0a8ix9OOu9qKhp1MmwYZ\nGdLGlnczgiAQFhbG0aNHXW1FGQYMgK1b4fRpVzvRkImXX36Z+fPn8/XXX9O3b1/VT4PSsA0vjxv3\ndrFaray9OmWsc6v6/DZ7ElazmZgm91K5ViOn+TIXWK5NF4usH6J4e4E+nnz9bAMeqBFMoUVk9M/H\neP3no5y8dJc+cdPQcFNUk7y8+9e7XMq9RLuq7VxtRcNOqlaFdu3g4EFXO3EdcXFxfPXVV5w7d46a\nNWu62o4yFO3jcZt1LxruyQsvvMCSJUtYsWIFbdq04cyZM662pCETXjeNvPx14CTnUjLw9/VGd3Q9\nO5bPBaDDy+841dehtfEU5JjwC/amYo2gkv+DDPh46vnkqTo82ywCgD+Op/H0vL2MWnGE4ylaEqOh\n4Q44JXnp37//bV8TRZHvDnzHhM0TePfBd3m0xqMOazqCUrpKoIRXRzV9fOD6wjvuFM/rsdV3RkYG\nP/zwA9999x2+vr4MHDiQ9u3bK9aeS/G8+hS3mMpq7nZdqj3uzu73M888wz///EN2djZNmzZlzZo1\nNmtPnDjRQXfKoVQ8s7KyFNGVC8NNIy8L124HoF1VP9Z/MRaAJ16fTu17O9ndhq2xzbqQw/GN0kaY\nzXreg05fuq8jcryHep3Am+2rs3xAUzrUDkUA/jyZTq/5exm5/AjHkrNla6s0qP0+pKGhNhTfpBKK\n3z02tzCXxYcWM2vXLA6kHOC5+s/xzn2lf+pzt+64fT1KeHVU09tbmjoml56rKI1vURQ5d+4c//zz\nD8ePH8ff35+nnnqKevXq2bwJmlvFqagQgbf3LS+523Wp9ri7ot8NGzZk9+7dPP/88/To0YPExERC\nbdiNtlWrVqxevVoOm7KjVDwNBoMiunLhqf8veTmXks6G3ccAMK3/CG/ggT6jeLDfaw61YWtsj6xP\nQLSKVG4QYtOUMTnfwxoV/fjoidqcbhvFNzvO8dvRVDadSmfTqXTaVa9A7eb3ydbWnVD7fUhDQ204\nZeSld+/e1/58Mv0kI38bSeQnkQxeM5iowCh+e+43Fj25yKYvfNdryolSukqghFdHNW8eeXGneF7P\nnXxbLBYOHTrEN998w7fffktaWhpdunRh+PDh1K9f367dm90qTj/8AOXLS7uV3oS7XZdqj7ur+h0U\nFMTChQvR6XTMmTPHJu1Onex/eq80SsXTx8dHEV25uP6WtPDXrYiiSMW8s/ibsniw32i6vf6xw23Y\nEltjdiGJey8BUO/RaMXaKS3VQ/2Y0q02Pw9sxqN1K6IT4K/TGSy+XJ2hyw5xMEnZnZjVfh/S0FAb\nThl5Afg36V8mbp7IutPrCPEN4ZVmrzCo2SCig6KdZUHDCXh7S9uAlEVEUeTo0aP8/vvvXLlyhZiY\nGJ599lmqV69uV8LitvzwA/ToIZWZ0yizBAcH061bN2bNmsU777xzd53jZYyi985stvDdms2Anho5\nh+g1YS5terzsdD9nd6VgtYgERwdQIUr5KmOlpVqwLx92rcWgqyMxa49cYltcJtviMpnarRadrpZa\n1tDQcC2KJy/7Lu5jwuYJrD65mtohtVn0xCKervs03h63TjnRcH88PMBicbUL+cnKymLt2rWcOnWK\nWrVq8eyzzxIWFuZqW64hNRXKajECjWusWbOGFStW0LNnTy1xcXMEpPdv9ZJvyLPq0VtNTPhoBnXa\numa6ktUileMuF6LO7wHRwb6893gtBratyhdb4vnjeBrv/naKehH+VA5S9yibhsbdgGLTxk5nnKb7\nD91pMrcJ+3buY/FTizn0yiH6NOwjS+Kybds2GVw6T1cJlPAqt6Y7xfN6inyLosjff//NrFmzSElJ\noVevXvTq1Uv2xMWt4uTtfePcwOtwt+tS7XF3Vb9//fVXunfvTpcuXVhg454++/btc8SaoigVz8LC\nQkV05UIQBDKTE1k2bxYAUeV9ZE9cbIltQEVfALIv2T5M78xr9tzRPUzpVptGkQHkFFh465fjWEVR\n9nbUfh/S0FAbiiQvl42X6fBdB3Zf2M2CbgtodKYRz9Z/Fr1OL1sb06ZNk03LGbpKoIRXRzXNZtBd\nd1a5UzyvZ9q0aVgsFn7++Wd+//13GjduzJAhQ6hVq5Zi7bkFVqs0L9Cj+EFbd7su1R53Z/c7OTmZ\nvn370qVLFzp27Mj333+Pp6dnscfejkWLFslhURGUimeOynfmFUWRnT8vIMsqTfVs2KCe7G3YEtvA\nCD8AMhOzyTxvW+ycec1OmzYND53AWx2rA3DwQjYZubdWWZSjHQ0NjdIje/IiiiJD1g4hLS+Nzf02\n80KjF1i2bJnczfD999/LrqmkrhIo4dVRzZwc8PeXT89VLFy4kCVLlnD06FF69OhB586dFa0o5DZx\nOnIEsrOhZctiX3a361LtcXdWv00mE5999hk1a9Zk3bp1fPPNN6xcuRIvO9Y1ffDBB3LZlB2l4lm+\nfHlFdOXCYrVy8p8NCFdHDXQyPkgswpbY+of6EtWkIqIIe5efRLRhNMOZ12xRW0cuSqWTa1b0I6Sc\n/Gv91H4f0tBQG7InL1sStrDk0BJmPjqTauWrAeDr6yt3M4poKqmrBGqMa3Y2lCsnn54rKCgoYPny\n5SQlJfH8889Tt25dxdt0mzht2iSNurRoUezL7nZdqj3uzuh3WloarVq1YvTo0Tz//POcOHGCAQMG\noNPZ9/Gg5spbSsVT7WuCjAX5nD34DwLSWhOzAgsTbY1t4ydj0XvqSDmZxaFf40udwDjzmvX19eXk\npRy+2XEOQLEF+2q/D2loqA3ZF+xX9KuIgECBpUBuaQ034OJFqF/f1S7sx2Kx8OOPP5Kens4LL7xA\neHi4qy2pB1GEuXPhscdA+7AtE6Snp/PII49w8eJFdu7cSbNmzVxtSUMBjMY8LGYTPmZpilbipYwS\n/ofy+AX70LBbLHuXn+Lw2rOY8s006V4DQaeeRHDN4RTeXXcKo9lKZJA3TzS8S4u0aGioDNlHXuqE\n1qFHnR68v/V9Lhsvyy2voXISE6FKFVe7sJ9ff/2V+Ph4evXqpSUuN7NxozRtbMQIVzvRkIGsrCza\nt29PUlISf/75p5a4lGGsSKMaAYXpAJw8l4LVanWlJQBqPVSFpk/XAODEpvNsX3AEY7brix9k5BUy\nae1J3ll9AqPZStuY8ix9oTEVfLXy8BoaakCRBfsT7p/ApdxLVPu8GlO2TWHkayNlb+ONN96QXVNJ\nXSVQwqsjmgUFkJwMUVHy6Dkbi8XC4cOHqVWrFrNmzXJq26qPU3IyvPQSNGsGDzxw28Pc7bpUe9yV\n7PeECRM4ffo0GzdulHVq5GeffSabltwoFc8rV5TdxNBRCgulmRDlTJl46HXkGgtIzpDXs72xrflg\nFVr1rY2gEzi35xKrJ/7D8T8Tr5VTlqud0mA0WZi34xxdZu/ipwPJXFg3m4Fto/jy6XoE+thWuMIW\n1H4f0tBQG4okL3Ur1uXU8FM8W/9Zxm8az/y4+Xyx8wuM5uLLq9pD1PXfkGVEKV0lUMKrI5pJSdLv\n60de3Cmeer2e+++/n2PHjhEUFOTUtlUdp5wcaaqYyQQrVty4XfdNuNt1qeq4o5w/X19fZs+ezdix\nY2nQoIGs2moesVQqnnq9/Avg5eRyVioA5QKCiAyRigucl3nqmCOxjWlViUdGNaF8lXKY8s3sXX6K\ndR/s4sLR9FvWwijxHhaYraw6mEzXObv4YstZcgst1AkvxwsPN2Zou2j0Ck9lU/t9SENDbSi2z0uE\nfwQzHp3ByeEn6dG/B6PWj+KeL+9h0YFFWEXHh6uHDx8ug0vn6SqBEl4d0UxMlH5fn7y4UzwBWrVq\nRUhICCEhIRhvs5eJEqg6TiNGwMmT8OuvNw6rFYO7XZeqjjvK+Tt69CjBwcGMUGAK4DPPPCO7plwo\nFU8/Pz9FdOXiSmYaAAGhlahcUUpezqXIm7w4GtvQ2EA6vtmcFs/WxODnyeWLuWyecYA1k/7hyPqz\n5GUVyNJOEQVmK5tPpfP2quM8+PnfjPv1JCnZhVQKMPBh11osfqExH00YI0tbJaH2+5CGhtpQLHkp\nIjoomvnd5nN0yFFaRLag38p+NJvbjI1xG5VuWsPJXLgg/Y6MdK0PR9Dr9Tz11FNkZWWxePFiCgru\n8sITBQXwww/w5pvQqJGr3WjIwNKlS1m+fDmffvqp6r90a8hDnjEPAC8fP6pXlipmnTiX7EpLxaLT\nCVS/N5LHJ7Wi5oOV8TDoyb6Uz4Ff4vjlne1snnWAxP2pWMz2PQAtMFvZdDKNt64mLCOWH+HXI5fI\nLbRQ0d+LkQ9W45dBzXm0bkV0Kq4gt3XrVrp27UpkZCQ6nY5Vq1bdcsz48eOJiIjA19eX9u3bc/r0\n6RteFwTBIAjCTEEQ0gRByBYEYbkgCMqUU9PQkBnFk5ciaobUZHnP5Wzrvw2Dh4FHvnuERxc/ypmM\nM86yoKEwFy+Cn9+N+7y4I+Hh4fTp04fU1FQWL15MVlaWqy25jj//lKaNPfmkq51oyMDZs2cZMmQI\nzzzzjKpHSDTkJd8sPYQRdDpqR0cAcCzhoist3REvX0+aPn0PT37YlpZ9ahEaG4gowoXD6Wyde4iV\nb2/nyPqzWEwll3w2W0W2x2XwzmopYRm54ihrryYsYf5ePN88koV9GrJ+aEv6t6qCwcNpX4vsJjc3\nl0aNGjFr1qxiy3RPnTqVGTNmMHfuXP7991/8/Pzo2LEjJtMNG2x+BjwGdAfaARHACmf419BwFKdc\npcePH7/257ZRbdnx4g5+fPpHjqcdp+ncpqw6cetTA1s05UQpXSVQwqsjmmfOQNWq8um5kitXrtCn\nTx/S09P54osvWLFiBReKhpYUQLVx2rEDKlWCOnVKdbi7XZeqjftV5PS3ZcsWWrRoQfny5RWZLlZE\nfHy8YtqOotT7bTabFdGVC+vVPXsunDhAhK/0Zfe4zMmLErH19PYgtnUE7Uc3pcuEVtTpUJV080UK\nckwc+CWOX9/dSeL+1FvWxYiiyOEL2Uz74wwdZvzDkGWHWXP4xoRlUZ9G/Da0JW88EkujyoHFjrQ4\n6/5gazudOnVi8uTJdOvWrdj9cT7//HPGjRtHly5dqFevHosWLeLChQts2rSp6BA/4EVglCiKW0RR\n3Af0B9oKglD8Jl4aGirCKcnLmDE3zhsVBIEedXqwb9A+Hqz2IN2+78bbG9/GYi39xlk3a8qFUrpK\noIRXRzT37oUmTeTTcyVjxowhMjKSESNG0KlTJ5KSkvj6669ZuHAhp06dsmlH6NK2p0qSkqR1LqWc\nQuFu16Vq434VOfyJosgXX3zBww8/TP369dm5cycffPCBDO6K54svvlBM21GUer/VXm3Mw+BB9eYP\nYCowcmql9P4kp18m80qubG0ofS0FhPnS6IlYfr/4Pa371cYn0IucNCNb5x7izy/2c/liLmk5hXy1\nLYFuc3fz3MJ9LN6dRHquiSAfD3o1qcTCPg2vJSwNKweUODXMWfcHOduJj48nOTmZhx9++Nq/BQQE\n0LJlSw4dOlT0T3WQ9vm7Nn9fFMUTwDmgtWxmNDQUwinJy4wZM4r990DvQH7q+RNTH5nK1O1TmbRl\nksOajqKUrhIo4dVeTYsFDhyAxo3l0XM1Rb69vLxo0aIFw4YNo0ePHhQWFrJkyRL++OMPRdpTHWlp\n4FX6vQ3c7bpUbdyvIoe/adOmMWLECEaMGMH69esJDQ1VtN9qTgiV6Hd2drbTqxPaSvqJLXQb8S6C\nIHD096VUqiDN7T11PkW2Npx1Lc2cOZNqLSvRZUIr6naqCgKknMjk95n76TFvD7O3JpCQkY+3h45O\ntUP58um6bBjeirc71rjtCMvtcFaf5GwnOTkZQRAIC7txQ82wsDDS09OL/loBKBRF8easOwVQb7lA\nDY2reDijkTuVARQEgTFtx7DqxCoSLifIoukI7lSyUE2lkuPjIT8f6teXR8/V3Oxbp9NRt25dateu\nzbRp0zAYDIq2pxp69oQ+feC336BTpxIPd7frUrVxv4qj/pKSkpg8eTKjRo1i+vTpsuneiUqVKimm\n7Shy9zs/P59FixbRrVs3WXXlxpyTjbj6bfQenphNhViu7qFi8JJv7xJnXUtF7eg9deRfLuTq/pv8\nZS4kM09PjVA/+rWszEP3BONncOwrjrP75C5c+HUGeu8bi30ENXyY8g0fcZGju5fMAxvIOnBjASxP\nS76L3DgPpyQvpcEiWtAL6q6Vr3F7jh2Tfteu7VofSnPx4kUKCgqIiYlxtRXn8Nxz8O23MGQIHD4M\nvr6udqRhA2+//TZ+fn5MmDDB1VbKJAsXLiQ1NVX1mwzqdQL5WTmYTYWIQEaO9OUmNLCca43ZSWGe\nia1fHyblRCYisCFIx15/HY/Vrci4zjXw8bx7v0uEh4cjiiIpKSk3jL6kpKQQ+V8p0HTASxCEgJtG\nX8KAEsvQRTw2DN/Ie+S0rWEn5Rs+ckvSGJiTwNYP+rrIkXNQTfJiFa1a8uLGHD8O5cq5d5nk0hAX\nF4eXlxcRERGutuIcBAFmz5aG1CZPhilTXO1Io5Ts2rWLRYsW8dVXXxEYGOhqO2UOs9nMRx99RI8e\nPahevbqr7dyRgEYdMKdIi7XNem/MV0degoPcrzRkTlo+m2cd4EpyHmYd/FxBR4KvjjEPx/Jss4hi\nq2/dTVSrVo3w8HA2btx4bQPaK1eusHPnTiZOnMiSJUsAjgFm4GHgZwBBEGoCUcDfJbXxbbU5NIp1\nv3PnbmH/RR/udbUJhXHKmpepU6eWeIzFakEnlN5OaTTtQSldJVDCq72ax45BrVq3rut2p3hez+18\nx8XFUa1aNdl31FZ1nGrUgHHjYPp0+G/BZ7G423Wp6rhjvz9RFBk5ciT169dnwIABsumWhm+//VYx\nbUeRs98rVqwgLi6ON998U/XnkSGwEoG9PgXAaggAwN/Tgkd+kmxtOCMGafGXeaXHKK4k55Gjh+9C\n9WQFG/j62QY81zxS9sTFWe+rre3k5uZy4MAB9u/fD0ifSwcOHCDx6k7RI0eO5L333mP16tUcOnSI\nvn37UrlyZR544IFrEsA84BNBEB4QBKEpMB/YLoriv/L0SkNDOZwy8pKXl1fiMRbRgl5X+i+EpdG0\nB6V0lUAJr/ZqHjtW/JQxd4rn9RTn22QykZiYSPv27Z3Snqp44w1YvBgGDoTt20FX/IMGd7su1R53\ne/398MMP7Nixgw0bNuDhcettXsl+G41GxbQdRa5+i6LIlClTaN++PU2aNOGXX36RRVcpBCwYTVfL\nOfuHAFBeKCDlm+cIffItPKIfdfiLv9LX0rm9l/h74VFyc/JI8YTlIXqiqwTwyVN1CAuQdw1iEc66\nP9jazu7du3nwwQcRBAFBEBg9ejQA/fr1Y/78+YwZM4a8vDwGDRpEVlYW9913H+vWrbu5Kt4owAIs\nBwzAb8DQUhkQSl2AUsMF3A1vjVNGXiZNKrmKmMVq25qX0mjag1K6SqCEV3s0RfH2yYs7xfN6ivOd\nkJCAxWJRZL2L6uPk5QVz5sA//0i/b4O7XZdqj7s9/vLz8xkzZgxdu3a9oVyqo7qlZfDgwYppO4pc\n/f7999/Zv38/Y8eOlVVXKXSYybucIf0lJBaA8vpC8lOMJC+ZjPGfSYgmx76oKxUDURQ5+nsC2745\njMVkpVG7/iyuqKdD00oseL6hYokLOO99tbWd+++/H6vVisViueFn/vz5146ZOHEiFy5cIC8vj/Xr\n198ytVEUxQJRFIeLohgiiqK/KIpPi6J4SZYOaWjchCARIghCsBx6qtlK1ipabRp50VAPyclw+XLZ\nX6wfFxeHv78/ISEhrrbiGu67D156CcaOhYvq3Z37bueTTz7h4sWLfPzxx662UmaZOnUqzZs358EH\nH3S1lVKhw3IteTEZpPVPlarXQfDwpPCKhZTf1pKz7gUsmSdcafMWrBYr/y45wf6VZwDYXU5gdZie\ntx67hwmP3oOXh2q+wmhoaBSDIAjhgiAsAjKRSnFfEgQhUxCE+YIghJXw32+Laq58i2jbmhcN9XC3\nVBqLj48nJibm7l4QOnUqeHvDyJGudqJRDBcuXODDDz9k+PDh1KhRw9V2yiQ7d+5k06ZNjB071m3u\nBXrhv5GXAk+pwlh4lWpEDluE3r8CFqOV1J3xZK8ZjOn0j4ii1ZV2ASjMN7N55gHObL+AFami2KEo\nH+Y934jujdRbjltDQ0NCEIQAYAfQCVgADEGamvgd8DiwVRAEu0oeOiVbSEtLK/EYW6eNlUbTHpTS\nVQIlvNqjeewYeHpCbKw8emrgZt+5ubkkJycrViLZbeJUoQJ8+in88AOsXXvLy+52Xao97rb6e+ed\nd/D29mbcuHGy6tpCZmamYtqOIke/p06dyj333HPD3i5qP3urvk8AACAASURBVI8E0UTu1eTFKPgA\nEBrkj6FSDSqPWIIhshaiWST9SDaXN31OwT9vIxbY9j7KGYPc9Hz++HgPycczKRTgpxAdYp0gvu/f\nhAhDoWztlISz3le1nz8aGnYyAmldVV1RFEeJojhHFMWvRFF8FaiLtDznVXuEnZK8vPjiiyUeY+u0\nsdJo2oNSukqghFd7NI8dkwpSFbMu2K3ieT03+46PjwekMpTOaE/V9O4NHTpIe7/k5t7wkrtdl2qP\nuy3+9uzZw7fffsu7775b4o7vSvZ78uTJimk7iqP9PnbsGD///DNjxoy5oeKg2s+j69e85CFtTBly\ntUyyh38IEYO/wa/+wyDC5dNGLu/+i7w/X8KSurfUbcgVg/SzV/ht2m4uX8wlWwdLKuppeV9l5vZu\nQLCfl1Nj7ay21H7+aGjYyWPAB6Iopt78wtX1VR8ijcDYjFOSl4kTJ5Z4jK3TxkqjaQ9K6SqBEl7t\n0bzdYn179dTAzb7j4uIIDQ3F31+Z2vZuFSdBgFmzICUFblpo6m7XpdrjXlp/RaWR69aty8svvyyb\nrj0MHDhQMW1HcbTfH330ERERETz//POy6iqNDhN5V6TkJccsJV2hQf/N1tB5eRP27IcEPdhfOuZ8\nIVmHkjBufZ3Co/MQreYS25AjBon7U/njk70UZJu45AnLIj15tXst3mxfHU+9TrZ2Souz2lL7+aOh\nYSf3IE0bux07gJr2CDsleWnSpEmJx9g6baw0mvaglK4SKOHVHs3jx6U9XuTSUwPX+xZFkbi4OMWm\njN3cnlsQGwvjx8Mnn8CBA9f+2d2uS7XHvbT+VqxYwbZt2/j000+LLY1sr6491Fbx4jdH+n3+/Hn+\n97//8dprr2Ew3FjhSu3nkV40XRt5uVworWcJuWmDSkGnI7jTUEKfngB6D4zpZtKP5FJw5DsKto3E\nmnfnjdcdiYEoihz74xxb5x7CarZyxltgY3VfZvZvTJd6N67pdWasndWW2s8fDQ07CQCy7vB61tVj\nbEY1K+S1amPuyeXLcOFC2V6sn5GRweXLlxVNXtyS0aOlrHXQILBYXO3mrsVoNPLGG2/QpUsXRfYg\n0pD49NNP8fPzU/XI0u0Qrk4bE4ErRmkUJTSw+FHkgGaPE/HSTHQ+AZhyLKQfyqfg/CGMm17GfGGL\n7N6sFis7l5xg38+nAdhbTuB8swp8N6AptcPtWsuroaGhDgTgTtU/ROzclkY1yYtWbcw9OX5c+l2W\nk5e4uDh0Oh1Vq1Z1tRV1UbT3y86d8NVXrnZz1/LZZ59x/vx5rTSygmRkZDBnzhyGDh2q2NRRJdFR\nQO7lDEw6AyaLCNw68nI9PjFNiRy6AM+QKCwFFtKPGDGmXqZw1yQKD3yKaCmQxZcp38yGGfuJ234B\nEdgYpKNK56rMeqYBQb6esrShoaHhMgTgpCAIGcX9AMftFXZKtjBv3rwSj7F12lhpNO1BKV0lUMKr\nrZpFZZJr3mbWojvF83qu9x0fH0/lypVvmSqiVHtuRdu20sjLW2/BhQtud12qPe4l+UtOTub9999n\n2LBh1LzdRWiHriOsXLlSMW1HsbffM2fOxGKx8OqrxRfGUft5pLs6bcyo9wXA39cbH8OdkwOv0KpE\nDpmPd0wTRLOFzOP55F4sxHx2NcYtr2C9En/D8bbGIDfDyOqpu0g7kUWhAL+GedC7b11GPBiDXnf7\nh7HOjLWz2lL7+aOhYSf9gZHAqNv8jATsqlbhlORl796SK5bYOm2sNJr2oJSuEijh1VbNY8egalXw\n85NHTy0U+bZardf2d3FGe27Jhx+Cry+MGOF216Xa416Sv//7v//Dy8uL8ePHy6rrCMeP2/0wTXHs\n6XdeXh5ffPEFAwYMoGLFirLpOhWLkcL8XAr00o06JKh007H0fkFEDJiJf9PHQRS5Em/k8jkR65V4\njFtewXR2NaIojeTYEoOMc1dY9cG/GC/lk6ODTbG+vDu0KY/UCi3x/zoz1s5qS/Xnj4aGHYiiuLA0\nP/ZoOyV5mTlzZonHWETbRl5Ko2kPSukqgRJebdW8U6Uxe/TUQpHvixcvYjQaFU9e3DVOAJQvD599\nBsuXM7NzZ0WauFuv9zv527dvH/Pnz2fy5MmUL19eNl1HGTt2rGLajmJPv+fPn09mZiajR4+WVdeZ\nmAqkkuYFHlLycrv1LsUheHgS+vR4KnQaBkDe+Wwy4wxYTQWYDnxK4e5JiKacUsfg7L5LrP1oD2Ke\nmVRPONkymBlDmhEbcpsnYDfhzFg7qy21nz8aGmpDNYtMLFZtzYs7UlLy4u7ExcXh5eVFRESEq62o\nm169oGNHGDoUcnJc7abMI4oio0aNonbt2gwaNMjVdsosJpOJjz/+mF69eim2x5MzMOfnAWD1Cwbu\nvN6lOARBoPyDLxD23BQEDwMFKWlknPLGUihgufAXxk0vY8k4ckcNURTZvS6e7V8fRmcRifcWMHSr\nxrTnG+DvXXKFPA0NDY0iVJMtaNXG3A+jEeLibl8muSwQFxdHdHT0DRvSaRSDIMDs2ZCaCtqeBYrz\n888/s2XLFj755JNSlUbWsI9ly5aRkJDAm2++6WorDmExSsmL2acCcOMeL7ZQrsEjRAyeg75cMKaM\nVNKPgckUhJifQsG2EZhOLkYUb608aLVY+W3+YU6ujkcAjgToaDuoPoMfqoZOsKvYkIaGxl2MapIX\nW6eNabie06fBai27Iy8mk4nExEStRHJpqVYNJkyQppDt2+dqN2WWgoICXn/9dR599FE6duzoajtl\nFlEUmTp1Ko8++igNGjRwtR2HMOXnS7+9pC0VbB15uR7vKvWIHLYQr/DqWHIvk74/hQJqgWjFdGwe\nBTveRDSmXzu+MN/Esmm7yNyTiggciDDw8hsteKBmiEN90tDQuHtxSvLStWvXEo+xddpYaTTtQSld\nJVDCqy2aRZXG7pS8uFM8r6dr164kJCRgsVickry4a5xupuvWrdIJMXCgrHu/3K3Xe3H+Pv/8c86d\nO8f06dNl1ZWLUaNGKabtKLb0e+3atRw+fLhUa3jUfh6ZjVLycm3NiwPJC4Bn+XAiX/kG35ptEE0F\nZOz4l6feS0TUGbCm7SV/08tYUnaSmZrH/yb9g5iYi0mA+IZBTBjTiuhgX7vbdmasndWW2s8fDQ21\n4ZTkZdiwYSUeYxEtNk0bK42mPSilqwRKeLVF89gxCAmRfuTQUxPDhg0jLi4Of39/Qu7UQRnbKwsM\ne/VVmDsX9uyBWbPk071Lr/eb/aWkpPDee+8xdOhQajkwX1PJfvfs2VMxbUexpd9TpkyhdevW3Hvv\nvbLqugKTsRCAfEEq9x4S6PjmjzrvcoT3+4TANr0AeKaaQE52fShXDQqzOLp2Hj+9+zfeV0zk6oDO\nVXhnYGN8vRybYeHMWDurLbWfPxoaasMpk6U7dOhQ4jFW0WrTtLHSaNqDUrpKoIRXWzRLs1jfneJ5\nPR06dGDOnDnExMQgOGFOtrvG6Wau9WPwYHjnHXjySahcWT5dmVF73G/2N27cODw8PJgwYYKsunLS\nunVrxbQdpbT93rZtG9u2beOXX34p1fWv9vPIVCCNguZapb1dHB15KULQexDS7Q08Q6O4b9V0cg78\niblaE474vMjF3ZXwEQUyPEUa9I6gXasasrTpzFg7qy21nz8aGmpDFWterKIVQKs25maU5Upjubm5\nJCcna+td7OWDD6TNf0aMcLWTMsP+/fv55ptvmDRpEhUqVHC1nTLN1KlTqVOnDl26dHG1FVkwGS2I\nQI5ZSsQcWfNSHIFtehH+wqdg8GP1mfpc2hmBpyiQ4ltI+1Zf0yztdcyJG2RtU0ND4+5FFdmCxSo9\nFdKqjbkPFgucOFF2k5f4eGn3aHcuj+pSgoLg88/hp59g1SpXu3F7ikoj16xZk8GDB7vaTpnm8OHD\nrFmzhjfffBOdThUfkQ5TaDRjFrwwSc8J7a42dkeiW7La6z0CcuuiAy75ZtCnjydVq4SDJZ/CvR9Q\nsHcqojlf/rY1NDTuKpxyZ165cuUdXy8aebFl2lhJmvailK4SKOG1tJoJCVKp5JKSF3eK5/UsWbKE\n0NBQ/P3lfUJ5O9w1TjdzQz+efhoefVTa+yU7Wz5dGVF73Iv8/fLLL2zevJlPPvkET09P2XSVYNOm\nTYppO0pp+j1t2jSqVKlC7969ZdV1JeZ8M0YPaZG8r7cXvt4GWfXPJucw7NmpVLxgAiA/+ByP6aZw\nedk7FHo/hGfNfoAOS+J6jJsHYb182u62nBlrZ7Wl9vNHQ0NtOCV5Wbp06R1ft4i2j7yUpGkvSukq\ngRJeS6tZVGmspDXD7hTPIkRRZN26dU6dMuaOcSqOG/ohCDBzJqSnSyWU5dKVEbXHfenSpddKI3fq\n1InOnTvLpqsU69evV0zbUUrqd0JCAkuWLGH06NE2JYlqP48K880U6KXkJTRQ3gcym/cn88vUXRw7\nuAGzABFPxtB//DP4N3gELGZSf5zMlbM5eLX5CME7BDH3PMa/hmI68xOiKNrcnjNj7ay21H7+aGio\nDackL8uWLbvj60XTxmxZ81KSpr0opasESngtreaxY+DrC1WqyKOnJjIyMnjiiSecmry4Y5yK45Z+\nREfDpEnSFLK9e+XTlQm1x33ZsmV8+eWXnD171qHSyMXpKsWUKVMU03aUkvo9ffp0AgMDeemll2TV\ndTWF+RYK9FKZ5BCZpoxZRZF5a05xYt5RQgtEBj06nlZDGvBA+2h0nt6EPfsBQQ+9CEDWpgWkrf8e\nr3tnoA9vA1YTpsMzKPz3/xALLtvUrjNj7ay21H7+aGioDVVM6LVn2piGazl+XBp1KSNTwm8gLi4O\nnU5H1apVXW2lbDByJNSrJ+39Yja72o1bcenSJd59911eeeUV6tSp42o7ZZrU1FS++eYbXn31Vfz8\n/FxtR1YK880Yr468yLFYP6fAzKS5+9CtS8TfAoXlPHjinRbcU/e/svKCTkdwxyGE9pwIeg9yD23k\n4oI30NUegWf94aDzxJL8N8bNL2NJO+CwJw0NjbsHVXz1tGfamIZrKcuVxuLj46lcuTIGg7zzwu9a\nPD2lvV/27pWmkWmUmvHjx6PT6Zg4caKrrZR5ZsyYgSAIZXLPDVOB5b9pYw4mL/HpeUz8eCc1DmRh\nEEEX4cuzE1tTPqz4hC+gaRciXpqJzjeQgsQjXJjZH6tPfbzbzUQoVwXRmEbB9tEUHv8W0SrfxrYa\nGhplF3UkL3ZMG9NwHaJYdpMXq9VKfHy8VmVMblq2hCFD4P/+DxITXe3GLTh48CBff/01EydOJDg4\n2NV2yjQ5OTl8+eWXvPzyy2Uy1jpRvG7kxf5pYxuPpzL74100SSpAB5RvGMLTY1vg5Xvn9UE+MU2J\nHLoAz5AozFnJJM0eQP7FFLzv/wp9VCfAivnEIgp2vIY1/5Ld/jQ0NO4OnJIt9O/f/46v2zNtrCRN\ne1FKVwmU8FoazUuXIDOzdMmLO8UT4OLFixiNRmbJuDt8aXC3ON2OO/bj/ffB3x9efVVeXQdQa9xF\nUeS1116jXLlyDBkyRHZ9Jfut5lGi2/X766+/Jjs7m9dee01WXbUgiGAySCMu9izYt1hFvtx4hm1z\nD9PosvSwsUbnqnQaWB+9h/Q1oqQYeIVEETl0Ad4xTRELckn+dhRX/l2FofEYvJq+Ax6+WNMPYdw0\nEPPF7bfVcWasndWW2s8fDQ214ZTkpaTdY+2ZNna37rh9PUp4LY1mUaWx0iQv7hRPkNa7eHl50a1b\nN6e2625xuh137EdgIHzxBaxcKf3IpesAao376tWr2bhxI4MGDZKlNPLNKNnvVq1aKabtKMX1u7Cw\nkOnTp/Pcc88RFRUlm666ECn0lEZcbF3zcjnfxOj/HcC0KoEaRhFRB61eqEPzx2MRBOHacaWJgd43\nkIgBM/Bv9jiIVtJ++Yi0Xz5CX+l+vB+Ygy6oJpiuUPjvOAoPfoFoKbxFw5mxdlZb6j9/NDTUhVOS\nl5Lq5dszbcyWGvy2oJSuEijhtTSax46BXg+xsfLoqYm4uDiio6N57rnnnNquu8XpdpTYj+7doUsX\nGDbMpr1f7qbrvbCwkNGjR9OhQwemTp2qSBtK9rtTp06KaTtKcf1evHgxSUlJjBkzRlZdNSGIYNT7\nALZtUHkiJYchs3dTa1cG4SYQvPV0GNWUmBbhtxxb2hgIHp6E9hhPhc7S2qLLO5aRvPA10AdiuO8L\nPKr3BMAcvxLjX0OxZp+zqx05cFZbaj9/NDTUhioWmWjVxtyLY8egenXw8nK1E3kxmUwkJiY6tUTy\nXYcgwIwZ0rzDceNc7UaVzJgxg7i4OD755JMbnmxryI/VamXatGl07dq1zFdzy0dKXko78rLuyCXG\nfbWXR87kE2AB7xBvHn+7BaGxgQ57EQSB8g+8QNjzUxE8DeSd2EHS7JcwX07Hq+5gDK2mgFcQ4pUz\nGLcMxpywzq49YTQ0NMomqkhetGpj7kVZXayfkJCAxWLRkhelqVoVJk+GL7+E3btd7UZVpKamMnny\nZAYPHkzdunVdbafMs2rVKo4fP87YsWNdbUVRrIIeEx5AydXGzFaRjzac4fslR+maYsYgQnD1QLqM\nbU65EB9ZfZWr/zARg+ai9w+mMPk0STP6YUw8jD6sBT4Pfo0utClYjBTu/4jCPe8jmnJlbV9DQ8M9\ncUrysm3btju+XjRtzJaRl5I07UUpXSVQwmtpNG1JXtwpnnFxcfj7+xMSEuJ03+4UpztR6n6MGAEN\nGpR675e75XqfMGECAJMmTQLcs9/79u1TTNtRru+3KIp8+OGHtGvXjtatW8umq0YKdFLSYfDyoJzP\n7UvAp+cWMmjJAZL+OEfHTCs6ILplOI+82rjEimL2xsC7Sl0ihy7Eq1INLDnpXPhqEDkHNyB4B2No\nPRXP2i+BoMOS9CfGzQPZsm6xXe3Yg7PeV7WfPxoaasMpycu0adPu+HrRyIsta15K0rQXpXSVQAmv\nJWlmZ0NSUumTF3eKZ3x8PDExMQiC4HTf7hSnO1Hqfnh4SHu/7N8vjcDIpWsjaor74cOHmTNnDhMm\nTCAkRNrszx37vWjRIsW0HeX6fm/ZsoV///1XllEXNZ1HxWHSewNSpbHbTUU8fCGbPvP2UGVfJi2y\npSlaDR6PoXXf2tcqit0JR2LgWT6cyFe+wbfWvYjmAlIWjyVz0wJAwPOeZzHc+zmCTxhi3kWmTRiJ\n6fQyxKvTzZXEWe+r2s8fDQ214ZTk5fvvv7/j69fWvNgwbawkTXtRSlcJlPBakubx49Lv0iYv7hLP\n3NxckpOTr00Zc7Zvd4lTSdjUj+bNpYX748bBuXN3PLSsX++iKDJq1ChiY2MZOnTotX93x35/8MEH\nimk7yvX9njJlCg0aNJClwIBazqPbUaCTkpfbrXf5+UAyQ7/dx8Nn8rknX0TQC7TpX4d6naNLve7K\n0RjoDH6E95tOYFtp8XrGbzNJ/XESotmEvkJdvB/8Gn3E/Sx8vQ6mI3Mo+OctRGOGQ22WhLPeV7Wf\nPxoaasMpyYuvr+8dX7dn2lhJmvailK4SKOG1JM2iMsm1asmjpxbi4+MBrm1O6Wzf7hKnkrC5H++9\nB0FBUhJzhwW5Zf16//XXX9mwYQPTp0/H67pKGO7Ybx8feddFyElRv/fv38/69et58803ZSmKoJbz\n6HYUjbyEBN7o8//ZO+/wKsqsgf/m9vRKegKhBELoHRFB6aCACIqriMKCrAuKBeuun+KuLrrusq69\nICoqKiqKuEgHKSII0kILEBJII73ePt8fE0JCCSl37p0L83ueee69c+ee97wn807mzPuec2wOJ39b\ndYzXlx9hcradaBvo/XQMeag7rXpfnFGsPlxhA0GjJXzso4SPexwEDWW//UDWB3/GUVGMoPfH0OtZ\ngvvMA40BZ95OqjbOwJEnX9ycu/6uSj9/VFSUhqIC9huzbEzFMxw6BHFx4N/0Is2K5MSJE7Ro0YKA\ngMYXcFNpBoGB0rKxFSvg2289rY1HOJcaeejQodx8882eVueaYMGCBbRq1Yrbb7/d06q4Beu5NMlB\nppp9eWUWpn+6j53bz3B3noMgBwRE+DByXi8i2gZ7SlUAgq67nej7FiIY/TCf2M2ZN6dhPXsKQRDQ\ntboZ06C3EAJagaUIy/YnsKa+h+i8cuyciorK1YEivIWmLBtT8QxXY6YxURQ5ceKEmmXMU4wfD2PH\nwpw5UFrqaW3czptvvklaWpqaGtlNHD9+nC+//JJ58+ah0+k8rY5bsJ5bNhYozertzizhzg/3wJFi\nJp11YhQhom0ww+f1IiBCGbMAvu2vI/aBD9CFRGPLz+DMG/dRdVyaZdEEJmIa9Ba6VrcAIvZjn2PZ\nMhdnRbZnlVZRUXELbnFe5s2bV+/3TVk2diWZTUUuuXIgh65XktlY58Ub7FlYWEhJSUkd58XdenuD\nnRpCk/ohCNLsS0kJ/OUvrpPbADxt9/z8fJ5//nlmzpxJ586dL/reG/u9cOFC2WQ3l3nz5vHPf/6T\nsLAw7rvvPpfKVTLnnJfQAB1Lf8tixqd7STlTxchzGcX6RHHjnG4Y/erPKFYfctjAGNWW2D8vxhjf\nCWdVKVkfzObBKbcCIGiNGLo+jKH3c6D3x1mUinnjTOxnNrqsfXf9XZV+/qioKA23OC8JCQn1ft+U\nZWNXktlU5JIrB3LoWp9MqxWOH2+c8+IN9jxx4gQajYaWLVvW7HO33t5gp4bQ5H4kJMALL0gFLH/9\n1XVyr9isZ+3+3HPP4XQ6mT9//iW/98Z+R0U1LlbCnQQHB/Phhx/y0EMPuTQ2x9Pn0ZWwaE0gaNiS\nH8grq45x81kH/aozinW+OZH+U5PR6pt3OyCXDXQBYcTc/zZ+XYaBw05I9m8UrHoD0Smt2NDF3IBp\n8LtoQlPAXoF113wsv7+KaDc3u213/V2Vfv6oqCgNtzgvc+bMqff7piwbu5LMpiKXXDmQQ9f6ZB47\nBg5H45wXb7DnyZMniYuLw2g8X//A3Xp7g50aQrP6MWcOdO9+ydovV+N4P3jwIG+//TbPPvssLVq0\nuOQx3tjvyZMnyya7uVRUVKDX63nggQdcKlfp49dmCiEoZSBH8wzcedZB+yoRjU6g/9SOdB6d6JLl\ninLaQKM3EXnn3wm5aTr39IygeMOH5H72FE6r5KBofKMwDliILukuQMBxaiXmzX/CWXqiWe266++q\n9PNHRUVpKCLmpSnLxlTcz7lMY1dTzIvT6eTkyZM1WcZUPMi52i/798N//uNpbWRFFEUeeeQREhMT\n1RsXN1FSUsIbb7zBrFmzCAkJ8bQ6bkXXfhCRhiCm5jmIsYLBT8dNc7qR2Fe5s2QXImg0hI74ExG3\nPwdaHRX715H1zkyqju/CXpwDCBiSp2O87hUEYxhi2SnMmx7Alr7C06qrqKi4GEVEK5ZapCBdvbbp\n621V5Of0aSk8IS0NIiI8rY1ryMvLw2w2q86LUujZU5qBefZZGDECOnXytEay8Msvv7B69Wq+/fbb\nOqmRVeRj6dKlVFZWMnfuXE+r4nYEnYFRZ60EOrT4t/Bh8ANdCYxURmB+YwnoeTO6kBhyPnkMy+lU\nst6dJX2h0aLzM6E1atDqbeiMIlqTDdv2f+IXkIQurL1nFVdRUXEZbpl5OXyusuFl+GjvRySFJdEq\nuJXLZDYVueTKgRy61ifzzjuhf3+44QZ46SVwNqDAsdLtqddLDrN4QY0Rd+utdDs1FJf04+9/h7Zt\npQxk+fmuk3sJPGX3/fv3o9Forpga2Rv7fa5mktIoLCwkICCA2NhYl8tW+vgV7VbsVdJDwm7j2sji\nuMhhA1F04qzMxXF2N7b0FVgPvMW+L/4E6f8lLFmDMVSH1qQBAXA6sJdVYMkvozLbTGm6haLDVeT/\nXsGpl+8i/e+jOfP2DPK+fJ6ide9T9vsqzBkHcFQUX3T9l7NPnmxHReVqwS0zL48//jjff//9Jb9L\nL07nm0PfsHDkwkYF7NcnsznIJVcO5NC1PpmRkbBpEzz3HDzzDKxfD19+CfWtwFC6PQMDAwFpSUlt\n3K230u3UUFzSDz8/WL4cunSB22+HdeuuuvGekZFBUFAQRUVFl413Ae+8zr322muyyHUFpaWlvP/+\n+8THxxMfH09cXFzNNaA5KH38+vkYKLObwAFrPtyH/TPQGbT4+urw89Pj52/CP8CEyc+A3qhFa9Ci\nN2rR1d4MF37WoNGe/599KRuIDivYKxFtFWCvQKx5X4lorwRbBaK9AmyV0mv1/prjq86C0yY5FyKI\nTnjylf0sfawTolPEP84H9KGI+hCcVj22Cgu24hJshTmINksdXRyleThK8zCf3HORfTRGPwL7TSBs\n9EN19rvr76r08+dC8vdWkJ17+aLCKp6lqPm5KhSPW5yX119//ZL7i83FjF86nij/KKZ2neoSmc1F\nLrlyIIeuV5Kp00lF0W+8UbqvHDMGVq++fNFKpdszPT0dAJPJVGe/u/VWup0aSrP7ceIEfPyxtJWX\nQ24u2GxX3Xhv3bo1ZWVlxMTEMHr0aKZOncqYMWPqJI2QUz85+/3444+zefNm2eQ3le7duxMWFsbM\nmTPrPGkPDAyscWZqOzW1P1+pArrSx2+YaQ+m8C5wvBwfhwYqgUoRsdhGOTbKqSS3CXI1Wic6nQOt\n1sb42DH8+NQXaAUzWsEivWrMaAQr2upNI1jRYpHeY0WD5fyraEEjWtGIVhCdiE4R0Qmce63mqd4x\nnN1TXkuLMuBUs+zjtFRQeexXwi7Y766/q9LPHxUVpeEW5+VSaQCrbFWM/XwsGSUZ/HzfzwQYG1fZ\n3BtTiLoad6dKrs2QIbBqFdx0E0yYIBVIv+C+q1HyPIHVamXlypW0bt2apKSkOt+pqZKbRpP6UVIC\nX30lOSw//yx5wpMmwYcfwsCBoNFcdeN92rRpjB07lqVLl/LRRx9x2223ERISwuTJk7nnnnvo27cv\ngiB4Zb+jo6Nlk90cRo4cSW5uLlarlaysLDIzMzl9xD8mkAAAIABJREFU+jSZmZk122+//cZ3331H\nXl5end+GhoZe0qk5t0/p43f/qe0ExUcQNfw2duw8RIlZg07vj15rxCCCXgS9U6x5b3BW7xNF6b1T\nrPnegIAGKTuZ06HB6tAAekxCO4pL6tejoQjYqh2c846OVrCgwYbWYOWk1YFW50SrdaDTiWj1oNeL\n6AwieqOIwaSRNl8tWqMBjd6EoDdWbyY01a+1Pxui212kh5oqWUVFmbg9YN9it/Dp/k95ZdsrZJRk\nsHbKWlIiUtythooL6N1bclpGjoQ//QkWLfK0Ro3jwIEDlJSUYDAYWLNmDQkJCcTHx+Pn5+dp1a5e\nRFGaXdm+Xdp++QX27pUCqIYOhSVL4NZb4QpPuq8GwsPDmT17NrNnzyY1NZVPPvmETz75hLfeeov4\n+HhGjx7N6NGjGTJkiHpOuhCDwUCrVq1o1arVZY8xm82cOXPmkg7O9u3b+eqrrygoKKg5vmfPnuza\ntcsN2jedHUfX0S9pCCMGxbD10esBcGgMWHxb0LdPLyr8YzhNONlCKAWaYEq0QVToAnBoLkgoIYpo\nAaG0GMuxXzEIOoyCFoOgw18r8GybfDRaHxyCL07BR9ow4hANOEU9Dqceh1MnbQ4NDocGu12Dwwai\nKDlFInrsoh7wgwtXJzmqXy00CK1eg8FXh8FPL736Xua1rAKDrxWj3/l9tZfFqZznQOWDVJRd7Oyp\nKIM8RyawwdNqyIrbnJdSSynv7HqHhTsWklWWxbj24/h0wqf0iO7hLhVUZGDwYHjzTZg+XVpCdttt\nntao4aSkpGC328nMzOTgwYNs374dOP+UNT4+noSEBMLDw11SB+GapKICdu6UnJRzzsq5p9pJSVIG\niJkzpZMnLs6zunqQjh078tJLL/G3v/2NjRs3smLFClauXMk777yDwWBg8ODBjBkzhjFjxtCmTRtP\nq3vVYzKZaNOmTb22rqys5PTp07z88sv8+OOPbtSuaZgMvsSEtiTzm3+f36dx0j0xiBF922LwC0Zj\n9EMw+qEx+iCYDFQisCTNzrJ0DVWO6ht5QcBqqaIy7xhWh7l6l0BSfCSjbuhB34lDmqSfKIo47SJ2\niwO71YHd4sBmceCofrVb7NitTun72pvVgc1sx1Zlx1ppx1plx1ppw1ppBxEcNidVJVaqSqyN1kln\n1F7g6FzK+al+71frs4/q+KioyInszkuFtYKxfx7Lrja7qLJVMaXLFOYNmEeH8A7NkrtgwQKeeOIJ\nF2kpv1w5kEPXpsi87z5YuRJmzJDuRWNi5NXRVRiNRvr06UOfPn0AKWg/MzOTjIwM3n//fbp164Yo\niphMJuLj4xkwYAAtW7aURRcl26kxLPjrX3miSxcps8O2bbBvn1TZNCAA+vSRHJX+/aFvXwi7cIV5\nPXKvkfGu1WoZMmQIQ4YMYeHChcybN4/Y2Fh+/PFH5s2bx0MPPURSUhK33HIL9957L52amEpazn4v\nXrxYFrmuwJX99vX1JSkpiZYtW1JeXn7lH3iYUT0mU7h6MVn/e5MuQybQY+QddLxhDEbfS8/qbT6W\nz4Nf7Uesrr8mOp1Yi7KxnM3A117Gde1b0nNEF3q2b0m3dgm89fprzG6i4wKSA6TVC2j1GoxcvmxC\nQ/+GolPEZq52aCrPOzS1Xy0VtT+ff2+rkorkfvvLEm7pfieVRQ2c5qmF0U9P7zvbk9DjynUFlHYd\nahjqAz3lcvX/bWR1Xv537H888OMDZB7P5OFJDzO331xiA12TprKystIlctwlVw7k0LUpMgVBqi2Y\nkgIPPgjLljVPnqcICgoiKCiITp06sWPHDmbPns23337L6dOnOX78OMnJybI5L95kpzrk5kqOysaN\nsHEjlecqmbZrBwMGwKxZkrPSsSNom16E9lod776+vsydO5e5c+dSXl7OunXrWLlyJR9//DGvvvoq\n/fr1Y8aMGdxxxx2NWlomZ7/NZuWmupGr35dLtasUdFo9/X0iad/ZwP1zzmLyu3KM6fbDmTWOC0Cg\nzsGQPq24s9+NJMVFoNHUnVlw11hqaDuCRqieHWl8/TinU8RWZWff/61lxOxel3Rw6jhBlXasFbY6\nTo6lwkZpbsN0Vfp1SEVFacjivGSXZTP3p7l8efBLhrUexppla2gb2talbTz//PMulSe3XDmQQ9em\nygwLg4ULpVowK1bALbc0T54nKSgooFevXrz55ptotVr69+9Pv379XJJS9XJ4jZ3OnoUNG2qcFc45\nK0lJMHgwz//1rzBoUN3pNxdwrY732vr5+/szbtw4xo0bx+uvv87333/Pe++9xx//+Efmzp3LH/7w\nB2bOnEmPHldeiitnv2fNmsV7770nm/zmIFe/AwIal3DG3ZgMfnTuO5iuUT4N/o1QmkvJoT20SelO\nkehLmVPP8uM2tuamM75LFe0i/IkKMBIVZCTcz+C2seSOdjQaAaOfnn/888VLfm8z2zGXWTGX2qpf\nLaRtza5xXnyCjXS5JZHEvg1LXqH065CKitKQxXkZ+slQ8ivz+XTCp9zZ6U41XuAa4Y47YPFieOAB\n6aF7aKinNWo8FouFt956C5PJxKBBg+jdu/dFaZSvWT74AP78Z7BYapwVZHJWVOrHYDAwceJEJk6c\nSHp6OosWLeLll1/mnXfe4ciRIxdlz1O5tjHqjFjsjZsdOnEmD3tpPnkHtnLfuKFoQ+P47kAeZ8ut\nvLcts86xOo1ARICByAAj0YFGIgNNRAUaa7boQCOBJp1i7wVEUZppkRwRK+YyG1Wl1lqf6753WC9d\noVln0pIyvCXtb4pHZ2j6TLOKikr9uNx5OVN6htSzqSybtIzbOnpR9LZKszm3fKxrVym04auvpH3e\nhFarxeFwMGzYMLp27eppdZRBVRXMni2lk5sxQ6pSqjoriiE6OpozZ85gsVh46KGH1IB+lYsw6Izk\nlttwiiKaBl6UZ4wbRGp6FieyzvKvJd8TFRbEnIlDCY1LYtuJIrJLLeSWWcgttWB3imSVWMgqsXBx\nCUgJk14jOTYB5xwaE5HVjk1UoJHIQCM+etfd8ItOEUuF7QIHxHb+fe3XcivORjp3WoMGU4BB2gIN\nBEX70eGmeEwBhiv/WEVFpVm43HnZlrkNgOvir6vZl5+fT3h4uEvbkUOmnHLlQIl2TUiA99+HiRPh\n009h5EjvsSeATqfDYDBw5swZtzovij3vqqrg+ushNVWqu3LvvfUe7m3jUrF2r+ZK+pWXlzNs2DD2\n7NnD4sWLmTq1YcV+5ex3UVGRLHJdgVz9djov/SReKegELXZRoLDKQbhvw/7t92zfkvX/nceyDbv4\n19LVZOUX88w7X9OhZTRf/e0BQgKkdOYOp0h+hZVDJ7Ow6P3JKTWTU2qpsxVW2jDbnJwsqOJkQdVl\n24wKNJIc5U9KVAAdo/xJjvYn1LeuM3Dh39BucVCaW0FJdiWlORWU5FRQmlNJ2dkqRGfjHBK9SYsp\n8LxDYnZWEBUXWfNZetVjCjCgN7nu9knp1yEVFaXhcucl3FcagBvSN/CHzn8ApIJs33//vUvbkUOm\nnHLlQKl2vfVWacnYoUPw5ZfeY89z6PV6/v73vzN69Gi3tanY8+7332H3bqki6YgRVzzc28alYu1e\nzZX0e/XVV9m9ezebN2+mb9++LpPbHObPny+LXFcgV7+Li4tdLtOV2K2Sw2C2OqCBzguATqtl8tC+\n3DqoJ0t+2s5/vlzD4VPZzP7XEj7+yx/RajVoNQKRAUZm/OWhy9rWYneSW2ohu9Rc/SrN2uRUv88p\ntVBpddQ4OxuOnq+hExNkJDkqgJQQHxJ1WuY/MZ1XH3mT0monpaKw/gQRBj9dnRmSi94HGvAJ0GMM\nMFy01Gvs2LFuuT4o/TqkoqI0XO683Jh4IxM7TmTuqrmMbDuSUJ9QnnvuOVc3I4tMOeXKgVLtumsX\nFBZKxStvu6358tyNw+Fg+vTpbm1TseedXUoZSj0F/WrjbeNSsXavpj79cnJyeOWVV3jwwQcb5bhc\nSW5zmTlzJps3b5ZNfnOQq99KD9ivckg1Tk7tXEfcsMY/lDHqdUy/eSD9U9ow9onX2LTnCC9/9j+e\nmjKm5pj6bGvUaUgI9SEh9NIJA0RRpMxs59jZCg7mlJN2oojSE6XoiqyE5VUSnlqBjxNygGGxt3Fk\nfd2YG6O/nqAoPwKjfAmM8iMo2o/ASF9MgQa0uqbXW3HX9UHp1yEVFaUhS8D+ayNfI/mNZIZ/Mpwv\nJ33ZoOw3jUUOmXLKlQOl2vXbbyEkRMqQq9N5jz1BclxsNluT62c0FcWed+eWw2gadgPgbeNSsXav\npj795s2bh8Fg4Omnn3ap3OaSnJwsm+zmIle/9frGp+N1J1V2KRXvyn89wqmfv+bmB/9OYHhUo+V0\nTIzh1Tl38OdXl/DmNxu446Y+tI5tATTPttYKO8VHi3AcLiT4SBEdzl56aVmFXkCMb89OHRToBQr0\nAlHxAbwwsSMxQa5PrOKu64PSr0MXsjhCi2+smpBAqQSVe1mwcROQxXmJDohm/dT13P7V7XR/pzsf\njP2AiR0nytGUisKw2aSMY3fdBTrZS6C6nqysLBwOB7GxrqlH5PWce6JcVuZZPVTqsGzZMpYsWcLH\nH39MSEiIp9VRUTgWmxmbw4YhJIYd3y7i95++ZNiMZxg8ZS56Y+Nu+scN7M63m3azdlcqi1b+zN9m\nTmi0Pnarg7NpxeQcLiLnSBFFp8ugVniKoBEIaxVIRNsgaRYlSppJ0Zt0lJrtHMopY39WGYt/yeR0\nXjl3LNrN/DFJ3Jikxo2oqFwLyHZ72SO6B7/N/I2ZP8xk0leTmNt3Lq+OeBWN0PQpXBXl8/33kJMD\nf/yjpzVpGunp6RgMBqKjG5af/6onOFh6TUsDL3s6eLWybds2Zs2axW233cbdd9/taXVUvITyqmJG\nP/kWW/5xD6f2/8oP/3mKNe/9nfiOPYlP6UVCSi/iU3oRHt/miimNZ4y9gbW7Uvly/U6emjIGPx9j\nvcc7HU4KM8okZ+VwIfknSy7K7hUU7UdUhxCiOoQS0TYYvc+lb08CTTr6tgqhb6sQRnZswZ+/OEB6\nYRVzv07llfHJDE9u0TjDqDQeQfC+VKLXEvX8bd7ZcBTfo65ppvKMiwQ1AVk9iSBTEEtvW8ofbH/g\nPzv+w8wVM3GKrsnK8sEHH7hEjrvkyoEcujZHZlUVPPEEDBkipUturjxPEBAQgNVq5ZVXXnFru4q1\nU0ICXHcdTJkCb70FV6gk7m3jUrF2r6a2fjk5OUydOpUBAwbQunVr3n777SbXzZCz38uXL5dNdnOR\nq9/eUCE9pyiTcv9YHvpkG3e/+AnBkXFYKstJ27WJDR+9ykeP38nfxrTjqQGhvPHHoXz/7yf5ffUy\nCs6kI14w7q/r3JbgAF8qzVYy8wqBurYVRZGS7AqObMhk09v7+Hrez6x+5Tf2rThB3rFinHYR3xAj\nrftH0//ejtz60gDG/LUvPSclEds5/LKOS+129p0pZcGa46QXnl9i5ur7aXddH5R+HVJRURqyT4MI\ngkBwUTAf3/oxH/7+IdO+m4bD6Wi23N27d7tAO/fJlQM5dG2OzBdfhMxMeOMN18jzBF27diUhIYEf\nfvgBm83mtnYVayedDtavlwr3PPAA3H03lJRc9nBvG5eKtXs1u3fvxmw28+9//5ukpCRWrlzJu+++\nyy+//NKs1Kpy9vvw4cOyyW4ucvXbndeKpnK6II0Si5PsCie9b7mbZ1ed5Ilv9vOHFz5k4OQ/07Jz\nH3QGI1VlxRzdsY51ixbw4aOTmD8ykWduaMFbs0by/b+fZNtX73J42xr8DZKDUVohOQ+7d++motDM\n9o9SWf70Vla+sIPfvjrGmX352MwO9D464ru1oPfkJG7+v36M+9t19JuSTGKfKHyCLj9zI4oiJVU2\nUrPLWHP4LJ/9uJmZn+9jyse/szmtEAEYmdyCZdN7MqyDa2dd3HV9UPp1SEVFabglKuGN6rtZraDl\n7m/vplNEJx677jGXyHQ1csmVAzl0barMb7+Fl16Cv/wF2rdvvjxPIQgCKSkpDB06lJMnT7qtUrmi\n7WQ0wn//CwMGSOsBv/sObr9det+/f53Hnd42LpVqd1EU2bp1K3a7naioKMrKypg1axYvvPACoaGh\nzZYvZ7+ffPJJvvrqK9nkNwe5+h0UFCSLXFdSUZkDwM4zVZwptZESYSKmXSdi2nWi7/h7AbDbrOSk\nHSTj4C4yD+4i4+Auso7to6K4gMNbf+Lw1p8oMYSzL+wG8nxbAfD+w5PYERPAdTGJ/PD3VTiqAgHQ\naAVatA0iqkMoUR1CCYkPQKO59NSI2eYgq8TCmWIzp4urOFNi5kyxuea13FLrgWev6eSnF6PTCIzp\nFMG0fvG0CvOVxWbuuj4o9TqkoqJU3BpSfWfnO9mWuY35m+YzpcsUIv0j3dm8ikycu5edOFFyXryZ\nY8eO8dNPP9GxY0fatm3raXWUxeTJMHAgLFokbR9+CB06wPTpcM89EBHhaQ29nrS0ND755BOWLFnC\niRMnaNmyJbNnz+aee+5xmyOtcnXSKjSYlkF6TpXYyCqzk11WTmKIgQ7hBozV6YR1egNxyd2JS+4O\nE2cAYLOYyTq2n307t/PxthP8claDiIBGdNCu+DdMhXtIyxIJCCykY9cpOJ1Wjh78K6Wl+9BuEwiN\naUVobCK6uBSc4W2xBMZRbgyjRPAnp9zBmRIzZ8utV9Q/zE9PbJCJ2GATLUN9GNs5ithg12cYU1FR\nUT5uzwf1/I3P89mBz3hh8wu8Pvp1dzev4mJ27IBJk2D8eFiyxDszjDmdTjIzMzl69Cg7duygXbt2\nTJgwAU0D0wNfU8TGwl//Cs88Iy0n++AD6f1TT8HQodC9O3TuDF26QFISKDyFrFLIz89n4sSJbNq0\nicDAQCZNmsSiRYsYOHCgeh6quIRwnYYeMT60CTVwMM9CboWdE0VW0outRPnriAvUE+WvQ3vB7Ije\naCKsTWeee/VHcouk9Li3DOjKk1NGE6KzU3D6JAWnT5C+TYe1GBAsBEV3JtvXyNngluwJ70RJeAp2\nbTAUIW3Yzr2pwc+gJTZYck7OOSmxQSbiQkzEBJnw0aupeZVCz1UziLh0yR4VBWAPSeBnTyshM26/\n1Qz1CSUpLImCqoIrH6yieEwmadVQUBBoveh/S1VVFcePH+fo0aOkpaVRVVWFr68vPXr0YPjw4Wi9\nqTOeQKORnJWhQ6GgAD79FH78ET76CLKypGMMBmlmpkuX8w5N584QE6NmqrmAxx9/nL179/L5558z\nbtw4fHzUOwMV13Jo6zKsfUYRFJnIdQm+5FXYOZhnptjsJKvMTlaZHZ0GYgL0xAXqaeGnRVM9TnVa\nLWarFNdzz8jreHHWbTVyA8Oj8GvTg9P5x7D+modGCCA6/G4iwyHdJHDER6BCL+Bw2DBV5GCqyMZU\nnk2IUMkdMx+mXUI0sUEmgnx0TU5AoaKicm3hlkd6Y8eOrXlfYa1gV9Yubki4wWUyXYlccuVADl0b\nK7NrV3j3XekB/H//23x5clJeXs62bdv46KOPeOWVV/j666/Jy8ujV69eTJ8+nccee4zRo0ej0+nc\nrreS7NRowsLgwQdh1SrG9uwpOTMbN8Krr0LfvlKa5RdegFGjIC5OOn7wYJgzRzp5fv/9ilnMrubx\nvnnzZj788EMWLFjA5MmT6zgu3tjvhx9+WDbZzUWufhcWFsoi15X8YrZy+u0ZWM+mAxDhp2NwKz9u\nTPSjXagBH52A3QkZJTa2ZVbyv2Pl7Ms1Y3eKmAx6/m+aZLsv1v/KiayzHMop54lvDzD8ta0Me30H\n9yy4n3eitGwK0pCrl24uWptFRhU5mXPGyszU3fzx7AkeahHE/FFjefWx+dzUKo6kEJ9GOS7uHLPu\naksJ1yEVFW/CLTMvs2fPBqDMUsY9y+/B4XQwtPVQl8h0NXLJlQM5dG2KzKlTYe9eePRR6f60Xbvm\nyZOLTZs2sWvXLkDKKnbjjTdeNtDW3XoryU7NYfbs2RAaCoMGSds5nE5IT4f9+6Vt3z5YuxbefFP6\nrmVLuPVWmDBBSs18wczX1Tzev/nmGwDmz5/P9u3bGTZsGEOHDiUiIsIr+3377bezefNm2eQ3B7n6\n7efnJ4tcV2EQIAcNX5aWM3PPKkKHzwKqs4GatASbtKREGCmocnC61MaZUjtWh8jxQiu5uXkEntxI\nYPYpQgxOimwOZrz4AQXRfRA11bcQTgfxnfrge/JbSs4e5PDZ/WSLehKTJxMSMgCsgQQH9wSgKhvS\nsh2kbdhfo5/WoMEnyIhPoAGfICOmQAM+QbXeBxrxCTJg9NO7dcy6qy0lXIcaQ6dub5HYot2VD1Tx\nCHmOTPj5Pk+rIStucV6GDx9OWmEa45eOJ6Mkg+WTl9MurHkn/vDhw12knXvkyoEcujZV5osvwtdf\nS3Vequ/FmiVPDoYPH05ERAQ7duxg79695Ofn079/f5KTky+KK3C33kqyU3O4bD80GmjdWtrGjTu/\nv6oKtm6V0tV98QUsXCgF/o8fLzkyN94IBsNVPd4XLFjAqFGjWL16NWvWrGHx4sWA5GAPGzYMgIED\nB7p0KZmc/e7fv79sspuLXP02Gusv0uhp7ooPZ4nZzBsOPdeFJTJQFDl76hhF2RkU5WRSknua4tzT\nFOVkUpx7mpKz2fgm9Sf5wfcoNwSTll3F5g/fp7T1NIKSupPvJxWvDc/YSMuMn2ipryC8RQuCI+MI\n7tGP2A6zaNd7MH7BYQCU5laSdSCfiiILVSUWzCVWqkotVJVasZsdOKxOys9WUX62qr5uIGgEfAL9\nWLVnZ41DY6p2eHyCJCfHFGjAFGBAq2/+whJ3XR+UcB1SUfEmZHdeRFFkWeoy7v/hfsJ9w9nxxx0k\nt0iWu1kVN2MySamS77pLCuLv29fTGl2MXq+nd+/e9OrVi2PHjrF9+3aWLVtGUFAQ06ZNIzAw0NMq\nXnv4+JyPnfnvf6WT55tvpO3dd6VgqkWLJEfmKsVoNDJixAhGjBgBSMUo165dy+rVq1myZAn//Oc/\nMRqN9O7dm7Zt29K6dWvatGlTs4WFhamxAir1MrC4iFxfPWucOv742cvctOAxjIcOXPJYQaPFv1UX\nTC0SMBdk4RfdhqhBd6IVkwgqFBA0Gvx1IrN7+jPuzw/iE/DXK55/gZG+BEYmXPI7m9mOudRKVamV\nqhILVSXW6s/V70skJ8dSbkN0ilQWW6gstgBl9bapN2lrHBmjvwFTgF56H2DAJ9CA0V/6bAowYPDV\nIVwmjbPKxQgC6jVHwVwLfxtZnZfc8lwe+PEBvjn0Dbcl38b7Y98n2BQsZ5MqHmTyZKmG4d69ynRe\nziEIAklJSSQlJbF161bWrl17UQVpFQ+g0Uh1Y/r3lzzhIUNg2zbJgbmGiIqK4u677+buu+9GFEUO\nHjzImjVr2LlzJ4cOHeKHH34gPz+/5vjAwMA6Dk3t9/Hx8ei8MQWgikvJzT1LL6fI7rAwCgL9+T46\nmC7WRG4QfAmJaUVIh/74te6OJqINVt8WoKl7zphtDsp1QQiacq5PDOL5m5MJ9ze4RDe9SYfepCMg\nov5aLQ67E3NpXcemqsQifa6eyZFmdKyIThGb2YHNXEVZXv2zOSDN6Bj99ZKz43/eyTEFnNtnqHZ0\n9BgDDOgMakIXFRVPIst/NZvDxmf7P+OR1Y+gFbQ8FvIYr9z+ikvbWL58OePHj3epTDnlyoEcujZH\npkYDgYF1C7Ar3Z6nT58mJibmotgXd+utdDs1lGb3QxTh1Cl48knJcfnySxgy5Jod79999x3jx4+n\nU6dOdfaXlJRw4sQJTpw4wfHjx2u2r776ilOnTuF0OgHQ6XS0bNmyjmPTtm1bcnJymDlzpixpmDds\n2OByma5Crr+32Wx2uUxXsm7/KSJ8YFB6Jkf79OWAn559reIwtO7HvUOfQhC02GsdX1llJj0rj8wK\nyCgyk11cSZtQIx/8oQu9Wl76AaTcY0mr0+AXamLN5lX1tiOKIrYqO+YyK+Yym/RaasVcZsVSZsNc\nbq3eJ31nq7IjOsUax6g2u05uoVfi9Re1oTNq6zg6gVG+BMf6ExzrT2CkLxpt48aV0q9DKipKw2XO\niyiK/J7zOx/t/YhP939KfmU+kztN5rWRrzF72mx40FUtSXz++eeyDHa55MqBHLo2V2ZgIJSWuk6e\n3BQXF5OTk8P7779PcnIyHTt2JCQkxO16K91ODaXR/bBYYM8eyVE5t2VnS2mWv/hCCuJvily59HUz\nl9MvKCiI7t27071794u+s9lsnDp1iuPHj9dxbrZs2cLHH39MRUUFAPPmzaNz58506dKFLl260LVr\nVzp37tzs5ZM//fRTs34vJ3L9vauqrvx035PoDAb6TZhCr0kPYGnRkSXbf+Czn99i14lf6HlqF4nh\nKaSdPEXayQwyMk8TFJXAaa1URLpNuC//vi2FQW1D612O4q6xdKV2BEHA4KvH4KsnsAF1sB12J5by\nSzg5ZVYWLdjOLWPGYi6zYSmzYi634rSL2C2OujE6+87L0+gEgqL9CKl2ZoLjpFdTPTNVSr8Oqago\njWY7L7nluXy6/1M+2vsR+3L3EekXydSuU5nadSqdIzsD8MUXXzRb0QuRQ6accuVAiXYNCqo786J0\ne957770cPXqUQ4cOsXHjRtauXUt0dDRz5syhsLCQ0NBQt+ihdDs1lCv2Iy8Ptm8/76js3Ck5MCYT\n9Okjpa677jppCwtruFy59PUwTdFPr9fTtm1b2rZte9F3oiiSnZ3Nvn37arZt27bxwQcfYLdLz95b\ntWpVx6Hp0qULbdq0aXDto3/84x+sWbOm0Xq7A7n+3iEhIbLIdRWTXvqSmN7DOVhiQyy00rf9cI6e\nSeWXY2v5ZMVHmLMi6ZfShnvHDKDKOIC/rT4BwL394nhwUOJFhSsvhbvGkqvb0eo0+AYb8Q2+OOnC\n2gn/q/NZFKXlaOccHUuZlcoSK6XZFRSdKafi4QuAAAAgAElEQVT4TDl2i4OizHKKMsvr/NYnyEBw\nrD8h1c5MeGIQ/uE+svRJReVqp8nOi9lu5qH/PcQHez5Aq9Eytv1YXrzpRUa0HYFOo66xvlYJCpLK\nfHgLRqORzp0707lzZ6xWK8eOHSM1NZXNmzezbt062rVrx5133nlNBMDJQlkZrF8PP/0kpUY+dkza\nHxsLAwbAggWSo9K1qzTboiIrgiAQExNDTEwMI0eOrNlvtVo5fPgwe/furXFq3n//fXJycgDw8fHh\nhhtu4LHHHmPIkCHqePAyjtlDcJRIRSbN5aV8/M2P7D+VDhHg9Clg6QtPc33njuSVWRjxxg4A/tAr\nhrmDE9W/dS0EQcDgo8PgoyPwEjE6olOkotBM0WnJkSk+U07RmXLKz1ZVx+gUkp1aWC0LRj7Zm5D4\nAHd3Q0XF62mSl3Gm9AwTvpzA3py9vDzsZe7tdi+hPu55Qq2ibPr2hU8+AZsN9HpPa9M4DAYDKSkp\npKSkYLPZ2LFjB+vWraOkpITgYDXRRINwOqWik6tWSQ7Ltm1gt0ObNjB8OMyfLzkrCZfOPKTiGQwG\nQ81sS23y8vLYt28fe/fu5dNPP2XYsGH07NmTJ554ggkTJjR4NkbFs4hAuK8Wg6WY21/6Dw6nkymj\nR7HmzBdkleTxr41v0Sf5XxRUWHGKEGTS8fjQNqrj0kgEjYB/uA/+4T7Ed2tRs99mtlOcVSE5NKfL\nOXMwn8pCC2cO5KvOi4pKE2h0tOavZ36l13u9yCrLYsu0LTzS/xHVcVGp4e674exZ6SG7N6PX62vi\nCTIzMz2sjcKx26X4lLvvhqgo6NlTyhYWHAz/+Q+kpUnbm29KKelUx8VriIiIYOjQoTz66KP89ttv\nrF69mqCgIG6//XY6dOjAkiVLPK2iSgMQgG6RRp7676c4nE7GDezGSzMnsWTWy/gbffnl+F6e+PJV\nIgKkpVOlZjs2h5qB0VXoTTpatA6i3cBYet/ZnnYDYwE4e7zkCr9UUVG5FI12XmasmEFsQCy7Zuyi\nV0yvBv3mvvtcX+lTDplyypUDJdq1Wzfo1Anef9818jzFvffey88//wyAxWKRvT2vtJMowg8/SEu+\nJk+G1FTui4qCDRuktYPffQcPPCDNujSTa3W8K6nfgiAwbNgw1q1bx6+//kpSUhJTpky5yLl/7rnn\nXKSl65HLnsXFxbLIdRURfloqKis4mpkLwDP33AxAh+jWvHvvfDSChi9+/ZFf0rYT7KNDBJ5ZcRi7\ns+EOjLvGkjvHrKvbMpdZ2bn0CPtWnATAUm6TpR0VlaudRjkvmSWZ7Mvdx1PXP0WkfwPSeFSjpErw\nnpIrB0q0qyBI96vLl0NGhnfZ8xzFxcXo9Xp27tzJyJEj6dmzp+xtep2ddu6EG2+EW26ByEjYtQt2\n72b4U0/B4MEuj1+5Vse7Uvvdu3dv3njjDQAOHKhb7LBfv37Nki0nctnTaLw42FtJBBi0RIYEEtdC\nSiyw9/jpmu8GJ/fhz0P+AMAzX/+bJ4fGotMIrD6cz19/OIKjgQ7M1ViN3lVtOWwODvwvne//bzvH\nNp9BdIrEdApjwLQUl7ajonKt0CjnZfOpzRi1Rka0HdGoRu68885GHe8pmXLKlQOl2nXKFAgIkGZf\nvMmeIM2yvPvuu6SkpDBt2jT69u3rlnXfXmWnF16QMoMVFMCPP8K6ddJSMbxvXCrd7krud0JCAj4+\nPhw6dKjO/tqJAJSGXPb08fGRRa6rMOk0CILAqP5SBtAVW36v8/3Mwbdj0hvIKy3k0OkN/PPWZHQa\ngR8P5vHQsoOUmu2XElsHd40ld45ZV7X16+dH2LfiBHazg9CEAIbM7c7gB7rWFOZU+nVIRUVpNMp5\n2Z+3nz6xffA3+Mulj8pVgL8/3HSTlBHX29Dr9fj5+REUFERMTIyn1VEeP/wAzz4Lf/mLFJg/apQ0\n3aZyzeF0OrFarfj61l8ZXcXz6Kr/0982WHrI8OP2fWQXSPEWx3JPcetrszHbrBi0enolduLGpHAW\njOuAUafh5+OF3LV4N8fOVnhKfa+msthC+q/Scr1+U5IZ8XgvIpOUnVpbRUXpNMp5OZR/iJ7R8i+h\nUfF+unSBffuufJzS0Gg0jBo1ioyMDPbv3+9pdZTFqVNwzz0wdiw8/zyomaauaTIzM3E4HCQmJnpa\nFZUrcO75QqfWcfRNaY3d4WTxj1vYemw3Y/51P2l5GUQHteCbOf/lhvZSLOvQDi34aEpXYoKMZBSZ\nmfLRHjYd86I8+AohbYu0TCyibTCt+0cjNKBmjoqKSv00ynk5XXKarlFdG93Ili1bGv0bT8iUU64c\nKNmuXbpI9Qi/+8577HmO1q1bA7Bx40acTqdb2vSK8+6dd0CjgcWLpddL4G3jUul2V3K/RVGKhSi4\noLDTnj17mi1bLuSyp9VqlUWuHEy/eSAAn23YyPQPnqHcUknf1l1Y9dh79GjVsc6xyVEBfHZvD/q1\nCqbK5uSRb1LZcrzwknLdNZbcOWab25atys7RTVJ8UdLgONnaUVG51mh0trEO4R0a3cjLL7/c6N94\nQqaccuVAyXY9Vy7iH//wHnvWZuvWrRQVFXH06FG3tOcV593OnVJhyXqqiXvbuFS63ZXc79atWzNk\nyBAWLlxY48gAfPzxx82WLRdy2bO8vPzKB3mQ2g/7h/VOISTYSIHP75SaK+id2JmlD/yLFgGXLnkQ\n4qvnjTs6M7xDOHanyMNfH+SXk0UXHeeuseTOMdvcto5uOo21wk5gpC9xteq+uLodFZVrjUY7L+3D\n2je6kaVLlzb6N56QKadcOVCyXVu3Bl9fGDvWe+xZm+XLlxMfH89vv/3mlvYUf96JopRRrHfveg/z\ntnGpdLsrvd+PPPIIO3fu5Ndff63Z9+KLL7pEthzIZc+Qehx6JaDhvPei12kJSywCvQVfrT8fTPsb\nRl392QF1GoEXx3bgxnZhWB0iD3+TSlaJuc4x7hpL7hyzzWnL6XByeJ2URrzT6FZo6lkupvTrkIqK\n0miU8xJsCibEp/EXaTkCOuUKEvWm4FMl21WjgehoKCryHnvWxtfXl9jYWLfVb1D8eXf8OBQXX9F5\n8bZxqXS7K73fI0eOpEWLFnz77bc1+5SceUsueyq+En0t9XJL8jlechiAOHoRHtCw/+l6rYaXxyfT\nLTaQSquDv606VmfGzV1jyZ1jtjlt5R4txlJhwxSgJ6Fn/aUllH4dUlFRGo1yXlqFtJJJDZWrkZAQ\nKLp4dYHXYDQa3VKg0ivYuVN6dUPNGxXvQaPRMGbMGFasWOFpVVTqobZv9dHW73A4HWD2p6SgcYsv\nDDoNz41JQq8V2HqiiFWpZ12s6dXD6b2SbWK7tKh31kVFRaXxNM55CWolkxoqVyNW62XjuhWPKIpk\nZGQo+imyW9m5ExITITzc05qoKIzhw4eTmpp6UeC+inKofeu8NnWbtK8sgvySxsfqJIb58sf+CQB8\n/luWK9S7KjmbJs3ax6SEeVgTFZWrj0bdWrYNbdukRubNm9ek37lbppxy5UDJdjWbITUVTpzwHnvW\nZvr06Zw8eZKhQ4e6pT3Fn3cNiHcB7xuXSre7N/S7c2ep8OG5YpULFy50mWxXI5c9S0tLZZHraqx2\nG0eyT0ofLP6IoojD0fiMihO6RSEAe8+UklsqzU67ayy5c8w2tS2nw0lpXiUAIfFXroun9OuQiorS\naJTz0ia0TZMaSUhIaNLv3C1TTrlyoGS77t8Pdjt07eo99jyH0+mkuLiYpKQk2rVr55Y2FX3eORyw\ne3eDnBdvG5eKtjve0e82baT/C+cy80VFRblMtquRy55ahdc8OheZciTnJDaHnUCTP9ilIH2bw9Fo\neREBRrrFBQKw6pC0PMpdY8mdY7apbZWdrcJpF9EaNPiFmGRrR0XlWqVRzku70KbdyM2ZM6dJv3O3\nTDnlyoGS7bp7t1TD8IUXvMee50hLS6Nr164MGjTIbW0q+rw7dAgqKqBXryse6m3jUtF2xzv6va+6\nGm2HDlIa/cmTJ7tMtquRy55+fn6yyHU1B04fA6BDdGuE6sVk+iY6XmM6RQDwze/ZiKLotrHkzjHb\n1LZKsysACIrya1BRSqVfh1RUlEajnJemZBpTuTb57Tfo2BG8MWRk9+7dREVFER0d7WlVlMHOnVLE\nrxqsr3IJVq9eTWBgIH369PG0KiqXo3rqZf9paXYsKVIqxKvTatBqmxaYOKpjBD56DemFVexId09W\nRm+h+JzzEuMdTq2KirfhpeHUKkpn927vvNfNy8vjyJEj9OrVS/npT93FmjVS1dGAAE9roqIwRFHk\ns88+Y9SoUeh0Ok+ro3IZzi0b23JUqluVEi2tomjONc7fqOOWTlIK4Of/d5SSKluzdLxacDpF0n/N\nBSCsZaCHtVFRuTpxi/Ny+PBhr5App1w5UKpdrVYp5qVHD++yJ8CmTZsIDg7GZLryOmVXolg7VVXB\n99/DxIkNOtzbxqVi7V6N0vu9fv16Dh8+zJ/+9KeafSdPnnSJbDmQy552u10Wua4kLTeDtLwM9Fod\ngzpIs2Q2u6NJAfvneHBwIvHBJrJKLMx+dxXOWnVf5MKdY7YpbZ3+/SxleZUYfHUk9m1Y/JfSr0Mq\nKkrDLc7L448/7hUy5ZQrB0q16+HDkgPTvbt32bO0tJTU1FQGDhzIU0895da2FWunjRuleJfbbmvQ\n4d42LhVr92qU3G9RFHnxxRdJSUnhhhtuqNn/2muvNVu2XMhlT2/INvbTgS0AXNe2O5HB55eAl1WZ\nmywzwKTjlVuT0WsFvnv7Hzz53WHMtsYnAGgM7hyzjW2rMKOUnUuPAJA0OA69qWGzkUq/DqmoKA23\nOC+vv/66V8iUU64cKNWumZnSa2Kid9mzvFyqeRATE+N2vRVrp4wMqVhPUlKDDve2calYu1ej5H6/\n++67rF+/nldffbXO8iMl34jJZc+goCBZ5LoMEVbt/xmAkZ0H4mM0EBMeDEDqyebVakmOCuCFMe1p\nOf5hfjp0lpmf76ew0tpslS+HO8dsY9rKOVLI2n/vwVJuIzQhgOQhDc8gpvTrkIqKKxEEYZAgCKMF\nQWhyIL1bnBclp/R1l1w5UKpds7Ol+O7ISO+yp9Uq/cM1GAxu11uxdsrLkwpTNjAjkbeNS8XavRql\n9vv48eM8+uijzJw5kxEjRtT5TsmJLq7VVMmFlaXsPpUKwPBOAwDo1k6yxZ5jGc2WPyolgkWzhhJg\n0rH3TCl3LNrN+9syyCuzNFv2hSgtVXLR6XJ2fnGEjW/sxW5xENk+hCFzu6P3aXgMmNKvQyoqTUEQ\nhCcEQXih1mdBEIRVwAbgB+CQIAgpTZHdKOdld/buprShco1hMoEoQrGXJaApKysDwNfX18OaKIi8\nPIiI8LQWKgqirKyM8ePHExUVxSuvvOJpdVQawG8n9yKKIt0SOhAd3AKALm3iADiU3ryZl3P0bhnM\nknu6ER9sIq/Myn83pTPijR08+NUBNh4rwO6UPx7GXdgtDo5vy+Knl3fxvxd/5dimMzjtIvHdWzD4\nga4NXi6monKVcwdwoNbnicANwEAgHNgF/F9TBDdqhP3fhv/jjqF3EGBUsw6pXJ7Bg6XXDRtg0iSP\nqtIozp49S0BAgNuD9RWN6ryo1MLhcHDXXXeRkZHBL7/8QmCgmk3JG/j1xO+AtGTsHO3ipUxhaafz\nXNZOqzBfvvpjT9Yezufr37PZc7qUTWmFbEorpIW/gZs7RdK7ZRDJUf6E+hpc1q7ciKJIZZGFoswy\nslMLSd+Zg80sxfYIGoG4ruG0vT6WqA4hapZKFZXzJAL7an0eDSwTRXErgCAIfwO+aorgRs28FFYV\n0uu9Xnyy9xPszoZnV1mwYEGjFfOETDnlyoFS7RoXBx06wLJl3mXP4uLimrXr7tZbsXbKzpbW/zUQ\nbxuXirV7NUrqt81mY/r06axcuZKlS5eSnJx8yeMWL17cTO3kQy57nouXUyr7T0vZrEZ0ur5mX7u4\n886L6IIsYeds66PXckvnSBZP6cbymb2Y2jeOEF89Z8utfPhLJg98cYAb//MLw1//hbnLDvL2llNs\nOlbA2fKGLTGTe8yKTpHSvEpO7crloXvmsf61PXzz+Ba++8s2Nr+zn2M/n8FmduAfbqLb+DaMf3EA\nA2d0Jjo5tMmOi9KvQyoqTUQH1B7Y/YFttT5nIc3ANElwg1k0bhGfF3zOPcvvYf7m+fxl4F+4q8td\n6DT1i6msrGyKbm6XKadcOVCyXR9+GO6/H4KCvMeeERERHD58GIfD4fbzQJHnnShKOa8viGmoD28b\nl4q0ey2U0u+KigomTZrE2rVrWbJkCaNGjbrssWZz07NXyY1c9nTFzb+c2B12WvgGkBTVqmZfTAsp\nYN9stVFcXkVIQPOWy17KtolhvjxyU2vmDGrFpmMFrD2ST2pOOacKq8gts5JbVsCGYwU1x4f7GUiO\n8qdDpD8do/1JjvQnKtBYxylw5d/Q6XBSmlNJYWYZRZll0uvpcuzVsyqZqbnk+BcB0gxLULQfoQkB\ntOodSWRSCILGNbMsSr8Oqag0keNIy8ROCIKQACQBm2t9HwcUXOqHV6JRzkv78PZ8P/x7dmfvZv6m\n+dz73b3M3zyff4/4N2Pbj73s755//vmm6FYvcsiUU64cKNmu06bBv/4F6eneY8/ExETWrVtHWlqa\n288DRZ53p05JgUvduzf4J942LhVp91oood8Wi4UhQ4Zw8OBBfvzxR4YOHVrv8bNmzeK9995rroqy\nIJc9A7yggGtKbNs6ToDJoCckwJeiskpyCkqa7bzUZ1u9VsPQDi0Y2kGKtym32DmaV8GhnHJSc8o4\nlFPOyYJK8ius/Hy8kJ+PF9b8NsRXT5eYALrEBtIlNpDHn/5rk/QTRZHy/CoK0kspOFVGQXopRZll\nOGwX17nR6jUEx/rz5MBnCI33JyQ+gOAYP7R6eRIzKP06pKLSRN4AXhcEYSDQD9guimJqre9vAvY0\nRXCTosp6RPdg+eTl/J7zO0+ve5pxS8cxp88cXh72MiadGi+gAjodvPQSTJggFWgfNszTGl2Z6Oho\nEhIS+OKLL7j++usZNGiQ4rMIyUp1AgOCgz2rh4pH2bBhAzt27GDTpk116rmoeBcpMe0u2hdc7byU\nVVa5VRd/o44e8UH0iD+fYrrK5uBobgWHcss5VO3QHM+vpKjSVhM3A6ARoG0LPzrHBNC12qFpGeqD\n5oIlW+Yya7WjUlrzaq24eLm7zqQlNC6AkGonJTQhgMBIXzRatyRjVVG5ahFF8T1BEBzALUgzLhd6\n6THAoqbIblZKjG5R3Vj5h5W8sfMNHl39KD9n/MzS25bSPrx9c8SqXCWMHw/9+8MTT8CQIVK5ECWj\n0WiYOnUqW7ZsYdOmTRw7doxbb72ViGs1YD0mRnrNzvasHioeZc2aNcTExDBw4MArH6yiWNqHx120\n79wNvxJWvfnotXSNC6Rr3PkkEBa7kyO55ew7U8q+rDL2nSklu9TC0bwKjuZV8PXvOYBULLNnqC9d\n7RpiLU7M2ZVUFFy8fFGjEwiJCyCsVSBhLQMJaxVAQAtfly3/UlFRqYsoiou4jIMiiuIDTZXb7Hx+\ngiAwu89srk+4njuW3cHADweS+udUwn3Px+Dk5+cTHt6kmJzLIodMOeXKgdLtKgjw9NP53HJLOCtW\nwLhxLhErKxqNhhtuuIHQ0FA2b97Me++9x/jx40lJaVIq8gajyPMuNFSq75LX8GxE3jYuFWn3Wiih\n32vXrmXYsGENDkYuKipqjmqyIpc9nc6Llx4pjuNHpASltbA7JL1dkSBLDtsadZqa5WLnOJR+hiyL\nkX1ZpRxKL8Zxooy2eRYSjpkROL+AXgT8I3yIaB1U7agEEhzrj1bX8Kdo7ro+KP06pKLSFARB2ASs\nQ6rr8osoijZXyXbZs/BuUd3YfO9m7E47c1fNrfPdtGnTXNWMrDLllCsH3mDXd9+dRu/e8M47LhUr\nO08//TQzZswgOTmZZcuWsXHjRlmDchV53lmt4HCAn1+Df+Jt41KRdq+Fp/udm5vLvn37GNaIdZ/z\n589vqlqyI5c9i72gqFXGT1/X+ex0OsnOl/SODmv+0lB3jaV5f55F62Ib3VPLuPG3EoYUOGhpERGA\n0kAdm4M0fN5Cw8JYLc+bbCwxOkgLN+AT7dcoxwXc1yelX4dUVJrISeA+YBNQLAjCWkEQnhEEob8g\nCM1ak+/SSkqR/pEsHLmQqcunck/XexjeZjgAzz33nCubkU2mnHLlwBvs+txzz7FnD8yYIcV/t2zp\nUvGy8dxzz6HX67n11ltp0aIF69evp6CggAkTJsiSx1+R5925G7JGxLx427hUpN1r4el+r1y5EuCK\nQfq1mTlzJps3b77ygR5ALnsqPWDf5HCSlbqTrKP7iUnqDEBuURlWuwOdVkN0eNAVJFwZuceS0+Hk\nyMbTXB88lu0fHarZHxLnT8tekST0jMA/zIfCSis/pZ5l5cE89meVseVEEVtOFBFg0vHgoFZM7B59\nUXzM5XDX9UHp16ELWRyhxTf2Go4HVThB5cpYBimK4r0AgiC0QgrOHwTMBF4AygVB2AqsF0Wx0dWO\nXR6FMKXLFBKDE1l9fHXNvh49eri6GVlkyilXDrzBrj169OCOO8DfHz74wKWiZeWcHQRBYODAgUya\nNIkDBw6wadMmWdtTFGlp0mt8fIN/4m3jUpF2r4Un+3348GEeeeQRxo0bR2Qjav1crv6LEpDLnnq9\nXha5riKgOpHOke1ravZl5EgLrGJbhKBzQWISOcdSYWYZq1/5jT1fp5EQ1IbASF86j0lkzLN9GfV0\nHzoOb4l/mA8Aob4G7uwVy5Kp3fn+/t7cPyCBuGATZWY7f/8pjfs+2cuxsxUe75Mn2lFR8QSiKKaL\norhIFMWpoii2BNoCrwHXAf9oikyXOy+CINA2tC3pxemuFq3ipfj7w113Sc6LveG1TRVFx44dufHG\nG9m0aRNp527qr3b27AGDAWSO91FRHgUFBdx8883Exsby8ccfe1odlWYS7CfFjJzYs6VmX0au5Ly0\njAzziE4NZd8PJ/hpwS4KM8rQ++joe1cHxjzbl85jEgmKqn9Ja8tQHx64oRXf39+bx4e2wdeg5fcz\npUxetJu3fk5XfH0eFZWrBUEQWgqCMFUQhA+R4mAeBnZxcQayBuFy56WwqpBTJaeosDXsyYbKtcH9\n90NWFlSvQvFKWrdujVarZevWrZ5WRX7sdvjsM6nGi8HgaW1U3EhOTg5Dhw6lpKSEFStWEBgYeOUf\nqSiakIAQAHJPHq7Z93taJgAto5XrvFSVWDjwYzqiUySqQwg3P9uXNgNiGr10V6sRuKt3LN/O6MmN\n7cKwO0Xe3pJBZpFyC6oqGkFQN6VvCkAQhHsEQVgkCMIJYD9wJ3AUuAsIFkVxiCiKTQqSdKnzUmop\nZcSSERRWFfLq8Fdr9n8gw3ohOWTKKVcOvMGu5+R16wa9e8O777pUvGzUtoMoimzZsoUPP/yQqKgo\nbrnlFlnbUwT/+Afs2AGvNG4pqreNS8XZ/QLc3e/jx48zYMAA8vLyWL9+Pa1bt2607OXLlzdXPdmQ\ny55Kr5CuNUs36dFtpFlUi83Odz9LteGG9+nkkjbksK0p0EBsZykLV0WhGZ1R26x2ogJNLJyYQoBJ\nCvd1XmHmxV3XB6Vfh1RUmshipFiXl/+fvfMOj6Jq+/A929IbJCGBhC6hQwggwSAICIgYsCEoKogV\nUUCFF30/BRVRFH1FARugIlVREQSUKr2HXqQEEggkQCqp2+b7YwkkAdJ2Znc2mfu69kqyc/Z3nvPs\nOZN5Zs55DlBTFMU+oih+KIriNnszj0kWvFisFmIXxnIq7RSrh6ymeVDz68fi4uKkqkZWTTl15cAV\n/FpU7/nnYdUqSE6WtApZKLQ7Ly+PefPmsW7dOqKjoxk2bBg1atSQrT5FEBcHEyfCW29BBff2cLVx\nqSi/3wJHtjspKYnOnTuj1+vZtm0brVq1qpT28ePHyy7kJOTyp8kkWQZQWbCkXwGgQeRdAKzfe4yM\nq7nUquHL3W2aSFKHHL4VBIFOTzbD09+Nq5fy2PTNIXbv3G2XptFsxWi2pYjWlrG/i6POD0o/D6mo\nVJIRwA5gAnBJEITlgiC8LghCe8HOzEeSBS+z4maxMWEjSx9bSmRoZLFjM2bMkKoaWTXl1JUDV/Br\nUb2BA20bVbrCrKsZM2aQlpbG7NmzuXjxIk8++SQ9e/ZEK8HC1tvVpxjeew8aNYJ33qnwR11tXCrK\n77fAke1esmQJGRkZbNq0iXp2pAUcP368PabJilz+9POzP1uXnOQlJwHQsF0MAKu2HwKgf0wkWol2\nkpfLt27eeu4a3hKtXkPKv+n0CXqSK2cyK603a1siBWYrNb30hPi6lVrWUecHpZ+HVFQqgyiKX4ui\nOEgUxVDgLmAl0BFYAaQLgrBCEIQ3KqMtyVkrNTeVt9a/xdC2Q+lav6sUkipVEF9f29SxXbucbUnZ\nJCQkMGvWLACeffbZSk2fcUmOHYM//oBx40DhGZRUpGX16tV06dKF4OBgZ5uiIjHWvBwMHp7UadIG\nk9nCuj1HAbgvunJP1xxNUCM/eo9rj0+wB7npBaz9LI4TG89XeMH9qcs5zN5uW+sz/t7G6CUK3FRU\nVEpHFMWjoih+JYriY0AkMB2IAaZURk+Skfu/Hf/DZDHxUY9KZTxTqUZ06QKHDzvbitJJSEhg3rx5\nBAcHM3z4cFmmiSmWr76CkBAYMsTZlqg4mNOnT3Pw4EF++OEH19gxXqXcaMwm6rW6E61ez74TCWTm\n5FHD14t2TVxk4y3Av443ff7TgfC2QVgtInsWn2DbD0cxF1jK9fnMPBNjfj2K2SrStXEN7m3qujva\nb968mdjYWOrUqYNGo2HZsmXFjg8bNgyNRlPs1bdv32JlBEFwEwRhhiAIVwRBuCoIwhJBENQ7FyqS\nIwhCsCAIjwmC8JUgCMeAc8AbwD7AOfBw3E4AACAASURBVAv2zVYzc/bN4cnWT1LLu/x7AahUTwID\nITvb2VbcnqSkJBYsWEB4eDhDhgzBw8PD2SY5DosFliyBQYPArfTpFCpVj9WrV9O9e3eGDRtGdHQ0\nO3fudLZJKhKhs1hpGGmbMrb7+FkA7mzeULIpY45C76Ej5rmWRD7cGEEjkLA7hb8/3kNmcunZTU0W\nK2/8fozE9DxCfd2Y0LeJLJsNO4qcnBzatm3LzJkzb9uO++67j5SUFJKTk0lOTmbhwoUli3wO3A88\nDNwN1AZ+ldNuleqFIAgzBUE4ClwE5gItgSXAvdiyjXUTRdE5qZJXnVzFxeyLPNvu2duWiY2Ntbca\nh2jKqSsHruDXkno+PqDUxDz5+fnMmzePWrVq8fPPP6PT6RxWtyL63c6dcPEiPPJIpSVcbVwqwu+l\n4Mh2161bl0WLFrFp0yaMRiOdOnXi448/rrD2mDFjpDBRFuTyZ1pamiy6UqERxeuL9eOuBS8dmjWQ\ntA5HjaX+/fvTrEddeoyOxMPPQObFHNZM3Ut+tvG2n5mz/Ry7EjLwNGj54tEW1PQqX/p3R7WpovX0\n6dOH9957j/79+9926pybmxtBQUEEBwcTHBxccl2WF/AMMEYUxY2iKO4DhgF3CYLQsXKtUFG5iUhg\nKdAHCBBFsYsoim+LorheFEW78pTbHbysiV9Dw4CGNy3SL8rIkSPtrcYhmnLqyoEr+LWkntVqW7Sv\nRCwWC/n5+bRr145XX33VoXUrot95XdvwzY7o0tXGpSL8XgrOaHeXLl3Ys2cPtWrV4ty5cxXWHjhw\noD2myYpc/vTyKn2zROcjElT3DgDSrtqeUtQJCpC0BkeNpcJ6ghv702d8B3xreWLMNXN2V8oty4ui\nyB+HbMf+c28jmgR7V7guuZGjnn/++YdatWrRtGlTRowYUTLAbgbosG0WCIAoiv8CiUC05MaoVEtE\nUYwWRfEtURTXiKIo6W1ruy8jtyRuoUvd0tOp9urVy95qHKIpp64cuIJfS+plZ4Onp6RVSIaXlxeh\noaHEx8c7vB8oot+1bg316tkW7FcSVxuXivB7KTir3YmJiaSkpNCzZ88Ka0dHK/faRy5/uil8mqUo\nCBg8bAGW2WJbz6TXSXsXyVFjqWg9Hn5uNOkWBsDpbRdu+RTiWHI2SRn5uOs09GoaVOm65ETqeu67\n7z7mzp3L+vXr+fjjj9m4cSN9+/Yt6p+agFEUxawSH00BQiQ1RkVFBuyeF3PsyjGeavOUFLaoVAM2\nb4agIMgqecpUCA0bNmT//v2IoujSc6IrhSDAY4/BtGnQuzfIsBmnimvw2Wef4e7uTteuavbIqoCI\ngPbaNFj9tXTvOXm3n2blSoS1CWLP4hNkXsjBYrKiMxRPZ7/9bDoAnRsG4GmQJ9W90ij69LNFixa0\natWKRo0asWfPHidapaIiHXYHL94Gb3JNCl3EoKIoVq6EFSvg449tmXiVSFhYGFu3biUrK0vxezfI\nwnvvwenT8OCD8NNPMHiwsy1ScTBr1qxh+vTpTJs2DX9/f2eboyIBVo1A3tVMvPxr0qxBbXYdO8Oh\n0+d5sGs7Z5tmN3kZBQC4+xpuClwA4q/Yrk9ahPo41C4l0aBBAwIDA4tOA00FDIIg+JZ4+lILKHMb\n6QsrpqN1Lz5V0r9NDwLaVPxJrYp9pB9YS8aBdcXe01vynGSN47D7uXGAewDpeemlllm6dKm91ThE\nU05dOXAFvxbq5eXBqFHQowd07y5pFZJSp04dAObMmePQehXT79zcYNEiW6rkJ56A336r0MddbVwq\nxu+3wdHtzs/PZ9iwYfTo0aPS8/A3bNhgj2myIpc/8/PtWnsqO1ZBIDfLtuahTSPbNKt9JxMkrcNR\nY6lkPZkXbWt4/EJvve7o1GVb8NIwsOLzlZ3VJqk5f/48qampBAZeTw99DDADPQrfEAQhAqgLbC9L\nr/b9I2nw1IfFXmrg4hwC2vS86bto8ahyk6ZIhf3Bi0cA6fmlBy+3SNFnN3JoyqkrB67g10K9iRPh\n3DmYPt02O0mp+Pj40KRJE3788UdyHZgWTVH9TqeDOXOgf3946SWoQCYlVxuXivL7LXB0u5csWUJS\nUhIzZ85EU8nMGn///bc9psmKXP7My1P2nU6rRkNupm0cd2hu23B3/8lz5OYXSFaHo8ZSyXoyLthy\n798qeMnKN3Piku14i5CKP3lxVpvKIicnhwMHDrB//34A4uPjOXDgAOfOnSMnJ4dx48axc+dOEhIS\nWLduHQMGDKBJkyZF16PlALOBzwRB6CYIQhQwB9gqiqILbCOtUt2R5slLGcHL4sWL7a3GIZpy6sqB\nK/h18eLF7NwJU6faApimTSWVl4V+/frx+OOPs3LlSofVqbh+p9HAzJlQUABvvFHuj7nauFSc30vg\n6HZ/++23dO/enSZNmlRa+6OPlLtZsVz+DAiQNnOX1Ji12uvBS/2QmtQJCsBktrDz6BnJ6nDUWCpZ\nT+GTF//aNwcvuxIysIpQr4YHtXwrnlTBWW0qiz179hAZGUlUVBSCIPD666/Trl07JkyYgFar5eDB\ng/Tv35+IiAiee+45OnTowKZNm9Dr9UVlxgB/Ytt34x/gArY9X1RUFI/dwYtWo8VoqRoL/1Sk5++/\nbWu/27ev0DWwU/Hx8aFXr14cOXKE1NRUZ5vjPEJD4cMP4fvv4eRJZ1ujIjObN29m8+bNvPTSS842\nRUViLHoDV9MuASAIAne3tQWnK7YdcKZZkmDMNQOg1Re/nElMy2Py37bz1l0NlR1cVpSuXbtitVqx\nWCzFXnPmzMHd3Z2//vqL5ORk8vPziY+P56uvviIoqHimNVEUC0RRfEUUxUBRFH1EUXxUFMVLTmqS\nikqFsDt4OZ12mob+DaWwRaUKIYrwv/9B374QEwNr1thmI7kKzZo1Q6PREB8f72xTnMvQoRAQAN9+\n62xLVGTEarXy+uuvExUVxUMPPeRsc1QkxuLmRmZK0vW/H+nWHoBlW/ZzNVfZ63XKolYTW1KJC0dv\nTG9NySrghUUHSc0x0STYi5di6jnLPBUVFRmwK3gxW83Ep8fTpGblpxioVD0uXrRl3H3tNdvTlj/+\nAF9fZ1tVMdzc3AgLC+PMGemmVbgkHh7w9NO2py8ZGc62RkUGsrKyePXVV9m9ezdTp06t9FqX6sru\n3bu5fPkyfn5++Pn50blzZ/76669iZd555x1q166Np6cn9957L6dOnSp2vFu3bmg0musvrVbLhx9+\nWKyMIAgBgiDMFwQhUxCEdEEQZgmCUK7dMa0Gd9KTE6//3bF5AxqHBZObb+Tn9bsr23RFULulbRF6\n8jFb8HI138xLiw9xIbOAugEefD2oFb4e+tIkVFRUXAy7/kslZCRgspq4o+YdpZYbNmyYPdU4TFNO\nXTlQml+tVvjqK9u6ln/+gcWL4dKlYWhdMLX+sGHDCAoKIsNBF+yK7nevvw4mk+1nGbjauFS035G3\n3aIoMn/+fCIiIpgzZw6ffvop3bp1s1t74sSJdmvIhRz+9PX1RaPREBcXx969e+nevTv9+/fn2LFj\nAEyZMoXp06fz7bffsmvXLry8vOjduzdG443p1oIg8Pzzz5OSkkJycjIXL15k1KhRJatagG1n9B7A\n/cDdwDflsdHo5s65o3uL1Te8n21z6elL1kmycN9RY6lkPYXTxTRaAZPFyhu/H+X0lVyCvA18M7gV\nNb0MktUlF0o/D6moKA27gpeTabb5pHfUKD14cYWd4OXWlQMl+XXfPujcGUaMsD11OX4cBg50LX8W\npVevXnh7e3P16tVb7tosR32KJSwMPv3UloFs1apSi7rauFS035HePqvVyunTp/H396dbt24MGTKE\nmJgYjh8/zmuvvSZJHZ06dZJERw7k+L4jIiLw9PSkUaNGNG7cmEmTJuHt7c2OHTsAmDZtGm+//Tb9\n+vWjZcuWzJ07lwsXLtyUHtfT05OgoCCCg4MJDg7G0/NGal9BEJoCvYHhoijuEUVxG/AKMEgQhDJ3\nRM8z6LiccJKrqTeWNDzWoyN1a9XgcsZVvl+51W4/OGs3+uzLtkxvXjXdmfz3KXaczcBdr+HLR1tQ\n289d0rrkQunnIRUVpWFf8JJ6EoPWQF2/uqWWGyzDRndyaMqpKwdK8OuFC/DMMxAVBdnZsGWLbXlE\njRry2egIBg8eTGhoKNnZ2axZs0b2AEbxfho+3LaA6ZFHbLuN3gZXG5dK97s99uXl5bFnzx5mzZrF\nyJEj6dKlC/7+/jRu3JjPP/+c1NRUVq9ezS+//ELduqWfwytCnz59JNOSGrm+bw8PD8AWHC5atIjc\n3Fw6d+7MmTNnSE5OpkeP69tp4Ovry5133sn27cW305g/fz5BQUG0atWKt956q+TeMdFAuiiK+4q8\ntxYQgTvLsi9Pa8tPv+Xnr66/Z9DreG1QbwBm/raezGz70j07aiwVrcdqsXJsrW063Bmrld8OJCMA\nU/o3o1klUiOXVpecKP08pKKiNOxaQn0y7SSNAhqh1bjgvCAVu8jNtd2MnzLFtixi+nR4/nnXWpRf\nFhEREfTp04e//vqLvLw8Hnjggeq7HkAQYMkSGDwYYmNh1izbYn4VRXDp0qXr+z4Uvv79918sFgsa\njYaIiAjatm3LAw88QJs2bWjTpg0hIWXesFcpJyaTCR8fH/Lz8/Hx8eH3338nIiKC7du3IwgCtWrV\nKla+Vq1aJCff2Mj8iSeeoF69etSuXZuDBw8ybtw4du0qtt1GCFAsE5QoihZBENKuHSuVAqsJs8GN\nDT9M5a5HX8Q30GbPg3e3Y8av6zl5PoVv//iHsU/cV2kfOIPDK8+SlngVq0HDXGMeglbg3fub0O2O\nms42TUVFRUbsutQ8kXqizPUuKlWPy5dtU8QSEmDUKPjvf8Hf39lWycOdd96Jh4cHS5cuRRRF+vfv\nj6DkXTblxMPDFsCMGAHDhsGuXfDBB7ZsZCoO5/jx4yxYsICFCxdeXwDu5eVFmzZt6NatG6NHj6ZN\nmza0bNmy2BQkFenR6XQcOHCAzMxMlixZwlNPPcWmTZvK/flnn332+u8tWrQgNDSU7t27S2pjrX7D\nSf1tJuu+/5gHx34KgFarYewTfXh+yo/MWr6ZEQ91x8uj4vuhOJq8LCP7fjvF2V22AHC5D2RrBSbc\ndwf9W6tBuYpKVadCt5H79u1LbGzs9dfmKZvZ9e6um+burl69mtjY2Ot/b9myBYCXX36Z2bNnFysb\nFxdHbGwsV65cKfb+hAkTmDJlSrH3EhMTiY2N5fjx49c1Ab788kvGjh1brGxubi6xsbHFyoFtJ9tb\nLY577LHHWLp06fXyCxcuJDo6mpCQkOvtHTNmTKn+KS8l/RgbG0t0dHSZfiyk0I9F21ZZPxblyy+/\nvOnxdUk/mky2NS0pKQvp128Yn3xSPHAp9GMhEydOlM2PIJ0vixIXF0dMTMx1X7Zu3ZoBAwbw+eef\n8+qrrxYrW5ovK9In+/bte5NtJX2piD65fj2xyckwbRr89BNERMDcubw8YoRsfXLs2LHFdCs7touW\nK/RjTEyMovtkYRsLfXn48GE+++wzoqKiaNasGVOmTMHf35+ff/6ZEydOkJWVxcKFCzl37hxdunSh\nY8eO1wOXon2yUFdKXxa29Zlnnqms64ohx9iePXu2ZH2yKEajkdGjR5OTk8MHH3xAmzZtmDZtGrt2\n7cJqtZKSklKs/IYNG8jJybn+d0k/fvzxxyWnqiYDwUXfEARBC9S4dqxU0v44zMK/9rA8AcZ++AX9\n7u973Zf3dWpFw9pB5OQX8OGX31boPFnUl4V9yF5fltYnhw4dxoIvf+PPd3fYAhcBZuz+mJ1ntxIZ\n5stDbUOBip/vb9cnSu55JFU7So6tLVu23DS27G3HwoULiY2NJSIigubNm0t+nlNRcSZCeebyC4LQ\nDti7d+9e2rVrB4DRYsTjAw++uv8rno96vtTPx8bGsmzZMinslVWzLN24uDiioqIAokRRjKuo9q38\naA/O8Otrr8GXX8K6dXD33ZXTs9ePIL0vS3Iru1esWMG+ffsYPnw4oaGhstdXHpzaJy9csGUgW7QI\nunSBuXOJffVVh49LKXSV2icL7Vu/fj0ffPABGzZsQK/X069fPx5//HHuv/9+3N0rvihZLn+CbQO9\na08dFHGeLIoc7X7//ff54IMPiq1R6dGjB/Xq1WPOnDnUrl2bsWPHXr9wzMrKolatWsydO5dHH330\nlppbt27l7rvvxmq1AkQBucARoH3huhdBEHoBK4EwURRvGcAU+jJwcCSD+o+m6YnDnPj5Ex79v5nE\nPHbjwvyLX9by8fxVdG7VmJ/fr9wmpXL2KYArZzLZvegE//fNKF7vO4mAcB86DI7gQIGR1347StNa\n3iwaFinpk3G52+ToeqT6f9H45e/wrKNukaFU/LIT2Dz5KSjyPcvx3eUmneDUjOeK1eMoKj2B/0z6\nGayitcxMYwCLFi2qbDUO1ZRTVw4c7de0NPjiC3jvvfIFLmXpKZlb2d27d2/0ev1Nd93kqk/x1K4N\nCxfC2rWQmAgDBrDo++9lqaq6jvdC+77//nvWr1/Pl19+SUpKCr/++isPP/xwpQKXorpyMHnyZNm0\n7UWOdq9ZswYvLy8SEhI4fPgwb775Jhs3bmTIkCEAjB49mkmTJrF8+XIOHTrEU089RVhYGP379wcg\nPj6eSZMmERcXR0JCAsuWLePpp58uFriJongc+Bv4ThCEDoIg3AV8CSy8XeBSkqy8DOr0eQGAxCN7\nih3r3yUSgJ1H4skrMN702fIgV58qyDGxa8FxVk/dS/q5q4yJnUj7x5rQ+z/tCazvS90atmQJx1Oy\neW/VScxW6ZKrOOr8oPTzkIqK0qj0mpcTqScAyrXmRY751nLN4XalueGO9uvff4PFAk89JY2ekrmV\n3TqdDqvVWukLxorW5zL06AHLlsGdd+L53//C119LXkV1He+F9r399tssXryYtLQ0/CVYYCZnuwsz\nbykROdqdk5NDZmYmTZs2xc/Pj9atW7N69erra1bGjRtHbm4uL7zwAhkZGXTp0oVVq1ZhMNj2HzEY\nDKxdu5Zp06aRk5NDeHg4jz76KPfffz9dunQpWtXjwHRsWcaswBLgps1gboeAiOgdhHeDtugNxc9h\ndWvVoFaALynpWRw6fZ6OzRtW2A9y+DZ+x0X2/XaKgmwTAA3uDKHtg43x8L2xd8sdQV78X5/GTP77\nFL8dSCYt18SU/k1x19ufSMhR5weln4dUVJRGpYOX+PR43HXu1PapLaU9Kgpm1Spo2xbq1HG2Jc4h\nLy8Po9Go/qO5Fa1bw+efw4sv2nJnd+zobIuqFE2aNGHMmDF88MEH+Pr6MnLkSLSuuPtrFWTAgAFc\nvHiRCxcu3LbMxIkTb7t5Z1hYGP/8889N78fFFZ+FIYpiBjCksnZ6G2wTLYI7P4jBkF3smCAItLkj\nnNW7jnA4PqlSwYvUpJ+/yo65to0+/UK96DCoCcF33Do5yKORtanpZeA/S4/xz8lUfjuQzOPtq+k/\nKhWVakClp40ZLUbcde5ohGqaOrYasmsXxMQ42wrnsWvXLnQ6HY0bN3a2KcrkrrtsP81m59pRRZk4\ncSLDhw9nzJgxREdHs3//fmebpOJC1PD0AsAjpBFhTSNvOq7X2YJhpWRTdPcxwDVTur7U+raBSyHd\nmwTyaKTtZmrK1QK5zVNRUXEilY48BEHAKlrLVbZkFg4pkENTTl05cKRfr16FEyegoutnXcmfRblV\n5pidO3fSrl07vLy8ZK/PJTl/nrEgy6O56jrei9rn4eHBjBkz2Lp1K3l5ebRv357XXnuNc+fO2aUr\nNZ9//rls2vYiV7uzsrJk0ZUSn2tP6twDw4iIvvem49l5tgt+H8/KTYuV2rcefm4ENvAD4PCqsxhz\nTWXWo9fZoh2zRZp1L446Pyj9PKSiojQqHby469zJM+WVa+dxKXdvllNTTl05cKRfL1wAUYSGFZxN\n4Er+LEpRu5OTk/nuu+8QBIHOnTvLXp9LkpYGb7xB3Ro1bAv5Jaa6jvdb2RcdHc3evXt57733mDVr\nFvXr12fAgAGsXr26MDtVpXSlQsmbX8rVbleYwpd/NQ+wrd3zDggsdiwnr4C4fxMAqBNUuX2b5PBt\no862rI7x2y+y7J3tHF2dQJ3aYbcsa7JYWf9vKgBB3oZblqkojjo/KP08pKKiNCodvAR7BWOymsgs\nyCyz7CuvvFLZahyqKaeuHDjSr5WdSeBK/ixKod1Hjhxhzpw5uLu789xzz+Hn5ydrfS5Jbi7ExkJy\nMq9s3Qp6veRVVNfxfjv7DAYDb731FklJScyYMYP4+Hh69+5NREQEn332GWlpaZXSlYJBgwbJpm0v\ncrVbjqexUiP41gPAO/PMTcd+27iXq7n5NKgdyJ3NG1RKXw7fNowOpcvzrfAL9cKYa2b/0tPUTYni\n1Nab1xct3HuBxPQ8anrpeSRSmlT2jjo/KP08pKKiNCodvNTxsU0NWXlypWTGqCiXwuClHA/aqgwJ\nCQksWbKEiIgInnnmGUmyPFU5kpOhd2/Ytw9WrICmTZ1tUbXCx8eHF198kQMHDrBlyxY6duzI+PHj\nCQ0NJTY2lnnz5rnElCYV+fH0DiQ36QRNG9w8rfOXDbbUyU/3uQuNRjnrWAVBILxtEPf9tyOdnmqG\nV0138rOM7Jp/nAtHUouV/X2/LWP0izH18HardC4iFRUVF6DSZ6no8GgGtRzE0KVD+fPEn1LapKJA\nCv+fVafg5ciRI/j5+fHQQw+hl+FpgsuzdattEdTp07BmDdx5p7MtqrYIgsBdd93F/PnzOX/+PFOm\nTCE1NZUnn3ySoKAg+vfvz/z589VAphrj6eZNwu+fYi7IL/a+yWzhSHwSAD06NHeGaWWi0Qg07BRK\nvwmdqN/RNi0xfvvFYmWCfWxTxfJM5Zs6qaKi4rpUOnjRCBrmDphLvyb9ePjnh/lx/4+3XcAvx6Z+\ncmjKqSsHjvRr4ZOXck6pL1NP6Rw/fpwTJ07QpEkTh2TfcSk/WSzw6afQrRs0bgxxcXBtLZCrjUul\n+70y9gUHBzN69Gi2bt1KYmIiU6ZM4fLlywwZMoTg4GAGDBjAjBkzMMuUFe7MmZunJSkFub5vuXwp\nJW7GPC5tXcKVc6eLvX8iMZkCkxlfT3fqh9SstL4jxpJWp0FTNxeApENXMOXf8PvdjW22bzld+pTJ\niuCo84PSz0MqKkrDrufDeq2eRY8s4qFmDzH0j6FEfhPJ8n+X37SIf9y4cXYZeSvk0JRTVw4c6dfK\nThtzJX8WZdy4cZhMJoc9cXEZP+3bB506wdix8OqrsG4dFFmg7WrjUul+t9e+8PBwRo8ezbZt20hI\nSGDy5MkkJSUxcuRIGjZsyKRJk0hOLtcG7eXmiy++kFRPSuT6vl3hiZY2+QiixUx83OZi759Ntk2/\nuiO8ll03ahw1liZ9+i4AFpMVS5GnLG3DfAE4k5orWV2OapPSz0MqKkrD7smtBq2BhQ8vZOszWwlw\nDyB2USx3zbmLf87+c73M9OnT7a3mJuTQlFNXDhzp18pOG3MlfxZl+vTpNG3alKNHj5Yro54U9Sma\nnBx44w3o0AEKCmDbNtvTlxLBnauNS6X7XUr76taty2uvvcbu3bv5888/6dWrF5MnTyY8PJzHHnuM\njRs3SlKPki/E5Pq+5UrkISVeNWyb6x7dsgqz8cY+KKmZtg0rgwJ87dJ31Fh6Z9T7AHgHedj2grmG\nn7ttncvVAumegjmqTUo/D6moKA3JVuZ1Du/Mhqc3sHrIakxWE/f8eA+9furF7qTdaqpkmXCkXwuv\nUfPypNFTOnXr1qVFixZkZGRw/vx5h9SnaF5+GWbMgEmTYO9e29OXW+Bq41LpfpfLvvvvv59Zs2aR\nlJTEJ598wvLly+nWrRs7d+60Wzs0VJpMT3JQnVMlF3i74RsUSkHOVTYt+PL6+1cyrwJQ09e+jGmO\nGEuJcZc4t9Zmb607iidQ8fWw/ZPKN1nJzDNJUp+aKllFRZlImlZEEATubXQvu57dxW8DfyPpahId\nZ3XkocUPceTSESmrUnEwoaHg7w8HDjjbEsfRoEEDAgIC2L17t7NNcT7r1sErr8D48bKkQlZxDoIg\nsHnzZvLy8hg5ciTtKroLrYrLsDP+APe9NBGA5dPe5OxBW6Ba+OQl0M/bWaaVSf5VI1tmHWbLrMMU\nZJvwr+1Fy77FUzr7uutoFGh7urRZwnUvKioqykOWnIiCIPBgswc5+OJB5g6Yy/7k/bT6qhVP/v4k\np9JOyVGliswIAnTsCBLcmHUZBEGgffv2HD16lKtXrzrbHOdx4QKcP2/rACouj9VqZf/+/Xz66adE\nRkayfv16fv31V7788ks1q14VZsvJODo9/Cxtez2K1WzmhzcGknr+DFeuBS96nTLTC2el5LJy0k4S\n4y4haARa3lef3uM74FXDHQCj2cq+85nM2pZIvtm2BmbjKTV4UVGpysia0F2r0fJkmyd5NvdZpved\nzrr4dTSd3pThfwznTLp9GWmmTJkikZWO0ZUDOWwtTTMqquJPXlzJn0UptDsyMhI3Nzf+/PNPWde+\nKNpPnp7g5wd//FFmUVcbl4r2O9LYJ4oi//77L1999RWPPPIIQUFBREZG8vbbb9OqVSv27dvHQw89\nJIG1Nn744QfJtKRGru87OztbFl2p0AoaLmZcJj45nkETvyOwbmPSLyYy7ekYQr1slwFf/rqWrQdP\nVroOOXxrLrCw+dtD5F814RfqRe9x7Vl2aDF7zmfy1eazDJ9/gJj/bWPoTwf4cuNZkjJsaaCDvQ1l\nKJcPR50flH4eUlFRGg651VKQX8CIDiMY1nYY3+z9hg+3fMjcg3MZHjmct7q8RV2/is/3zM2VLqOI\nI3TlQA5bS9Ns3tx2Az4rC3zLubbTlfxZlEK7PTw8iI2NZdGiRcTFxREVFSVrfYrE3x+++AKefhoe\neggefPC2RV1tXCra71TevgsXMOMEIAAAIABJREFULrBmzRrWrVvH+vXrSUpKQqfTceeddzJy5EgS\nEhL45ptvcHNzk9hiyM/PL7uQk5D6+7ZareTm5jokqYc9hPmHcYE0Vnz7Ek9GRjJs+EPM/XYeKUkX\nMMwbSVTUK+w9n8fQSd8xf3RXohqHgEYHGgOCRnftdz1odAjXfiLoQasHQYcgCBXyrSiKWIxWjHkm\ncnPNZGebyM4uIC/HTG6uifxcEwV5FvLOZmG5mIPooeVEuwB+/uc0q9ef4BfhUDG9AE89UeF+RNX1\nIyrcjybB9q3fKcRR5weln4dUVJSGUJ6TriAI7YC9e/fulWROdI4xh5m7ZzJl6xQyCzIZ2GIgYzqN\noX3t9nZry0mRi9coURTjKvp5qf3oaLZuhZgYOHgQWrWqvI69fgTH+3LZsmXs27ePJk2a0LFjRxo2\nbOiQ/V/KwmF9UhRtQcuqVfDii/DWW1CrVqXtVhqu2CdLkpGRwZIlS5g/f/71zGFt27alR48edO/e\nnS5duuDtLf+6hqpynhRFkcuXL3Pu3Llir/Pnz1//PSkpCbPZTOPGjTl5svJPLW6FlH2y8fAe5Hgb\nud+aT/dLqexJd+N4vg9X9MGku4WQq79xN6pHrVT+d+dptG4atG4Cgk5AEASsVoECszs5Ji+yjV7k\nmLzIM3uSZ/Ig3+KJ0eyJyeyOyeKGxWzAYjFgtejArAOLBo1Vi8YioLUK6KygoXznTwuwMFhLktuN\n8sGeEBWiITJUT1QdN+oHGNBoDSDcIsjS6G0vQauIc7YzkWpsNn75OzzrNJHcPhVp8MtOYPPkp6DI\n9yzHd5ebdIJTM54rVo+jcMokVy+DF2PvGsuL7V9kzr45TNs5jQWHFhBTN4YxncbQP6I/Wo3ys7dU\nNy5csP2sU8e5djiD+++/n/DwcHbu3Mm8efMIDAykY8eOtGnTBoNBmikKikYQYMEC+N//4JNPYNYs\nGDXKtt9LQICzrau25Ofns3LlSubNm8eKFSswm810796dOXPm8MADD1CzZuU3HazKiKJIWlraTcFI\nySDFaDRe/4zBYCAsLIywsDDq1atHTEwM4eHhhIeH07ZtWye2pmwyctPw8qjBiay7OecZhpu3Hi+N\nnpoaHW4aPW5o8dZo8NII+GgEFhzQohG1aEUNOlGDThTQi+W78Ndfe5WXAgGMGjAJImaNiFVjxaq1\nIGosoDWT5ZdJW58M7tIW0MQ9mbaeCdTWp9v2Hku3vYxlVVKIRl8iwCkS3JR8qnSLAEgo8gQKocTf\nGn2J8jrbU6nr7xlKaF77TKE9Og+bnoqKSpk4daT4uPkwqtMoRnYcybJ/l/G/Hf/j4Z8fpoF/A2bH\nzuaeBvc40zyVEvz7L9SsCTVqONsSx6PVaomMjKRt27YkJiayc+dOVq1axbp162jdujWtWrUiLCys\nat/Z8/SE//4XRoywBTDTpsHMmfD227ZARqELfqsiycnJTJo0iXnz5pGZmUlUVBQfffQRgwYNUnSq\nYmeyZ88e3nzzTRITEzl37hx5RfK+63Q66tSpQ1hYGOHh4XTs2PF6YFL4XlBQEBqNrMtEZaOWNYiR\nlhH4evncvpD12qsMLECBBsyCiFmwYtGIiO5uoBNADxq9gMYgoDOAzgAGNxGDm4i7wYqHuxV3Nwve\nbia83M14u5vw0pnw0BjRiCawmsFq+ykW/i6awWJEFM1g1YI1HKyhiNai5a99Rizx3k1tNAEmsNi+\n+5LzTpw6+c8tAPe7Z6DxDCm7rJP5ocE3tG1USl9ScSr7L3oQ42wjZMYhVxtXrlwhMDDwtse1Gi0P\nNnuQB5s9yN4Le3l99ev0X9SfTcM20Tbk1ne0ytKUy1YlIYetpWlu2gQVncXhSv4syu3sFgSBevXq\nUa9ePTIyMtizZw8HDx5k9+7d+Pn50aJFC1q2bElISEiFAhmX8lNAAEyebAtY3n/f9vRl8WKYPZsr\noaEuNS6V7veS9mVnZzN16lSmTp2KwWBg5MiRDBkyhKZNm9qlKyXp6emy6NrLmjVr2LRpEyNHjrwp\nMKlVq5Zde7UovR8NsD6ARuNNhhZEnQZRr4FrL42bFq1Bi9ZNi95di8Fdh5uHDjdPHR5uAm5CDm7W\nTDxMqbgXpGDISULIuIAlIxlzRjKIVoIemYCxfrRDfFBeX4uiCKL1FgFQYYBjvikAEgvLXnvvypVU\navp7lihjhiJBkmgtqmm6oSmaStRhBqvxWvkigZnVxJUsI4G+6YgF6eACwYuKirNxSPDyzDPPsGzZ\nsnKVjaodxZ+P/0m3H7px3/z72DF8B/X869mlWRHk0pUDOWy9nWZ2NmzcaLvhLoWe0imP3f7+/vTs\n2ZMePXqQmJjIoUOH2L9/P9u2baNmzZq0aNGC1q1bl2vqjkv6qVYtmD4dhgyB4cMhKopnGjRg2eHD\nku8FU13He6F9VquVb7/9lokTJ5KRkcGoUaMYP348AZWcsidnu9977z1ZdKXi008/lVxT6f0odoSG\njt16SK6bvnEuaSu/IGP9HEZu/pZly5dLXkdJyutrQRBA0ELhFHQ95Vxlc4PnR8bK/r1aruznpb49\n+eXdGDT+LrKORLDNJFZRJtXhq3HIM/CJEydWqLy3wZsVj6/AZDExddtUSTTLi1y6ciCHrbfT/OUX\nMBqhXz9p9JRORewufBrTr18/XnvtNZ544onr62NmzJjBihUryswm46p+AqBTJ4iLg/HjmXj6NDiw\nXypVVyoK7fvrr7946aWX6N69OydOnGDKlCmVDlyK6srB888/L5u2vXh6esqiq/R+JOiDZNH1btUT\nAFPqOf77yrOy1FESR/raEXVZs8/x1qAGCO6BOOiSTEXF5XHIk5fKZIwJ8gqiwFJAuF+4ZJrlwZWy\ngMlh6600TSbb7KCHHoKGDe3XcwUqa7dWq6Vx48Y0btyY+++/n127drFp0yYOHz5M165d6dChwy2n\np7iqn67j5gbvvUc7i8W2qH/ECEkzO1TX8V5oX+E6lldffZW6dSueWv52unLQrFkz2bTtRa5NOJXe\njwRB+pTYAJlbFwJgqN2Ejj0fkKWOkjjS146oS1urE5FNghCz4rEkrUcXJv0TMhWVqoZiw/zjV46T\nbcymXaiy/ylUB77/Hs6ckeWGepVGp9PRuXNnXnnlFZo3b87q1av5+uuvSUxMdLZp8jFunG1h/+TJ\nzrakShEREYEgCBw5csTZpqi4IjJksTJePkvm9iUA1LzvVQQXTWbgbDQeQejvGAyA6ci3iKYcJ1uk\noqJ8FHu2+XzH5wR6BtIprJOzTanWZGTA//0fPPGEfXu7VGe8vLx44IEHeP755/Hw8OD777/nr7/+\nwmS6RTYcV8fPDzp2hHPnnG1JlcLT05O2bduyfv16Z5ui4opIvImmaDFzadE7YDHhGdEZzybq/2l7\n0DUeiOAZiph/GeORr5xtjoqK4nFI8DJ79uwKlT+ZepI5++bwZsybeBtuvalaRTXLi1y6ciCHrSU1\nJ0yAvDz4+GNp9FwFOewOCQlh6NCh9OrVi7179/L1119z7tpFvqv6qSSzZ8+2BS4STG26SVcGlO73\novb169ePVatWYTabJdWVmqVLl8qmbS9F0yNLidL7kWgt904o5SJ93WwKzh9F4+FL0MP/BzjOB470\ntaPqmvPDPAzt/gMIWBJWYknZ5ZB6VVRcFYcEL3FxFdt489PtnxLsFcxL7V+STLO8yKUrB3LYWlTz\n1CmYMcP25KV2bfv1XAm57NZoNERHR/PCCy/g6enJTz/9RHZ2tsv6qSRxcXGyBC/VdbwXte/ee+8l\nPT2do0ePSqorNcePH5dN216kCPxuhdL7EaJ0wYtotZKxZQEAgQP+g84vGHCcDxzpa0e2SVuzNbqG\nDwJgOqPcGwAqKkrAIQv2Z8yYUe6yOcYcFhxawOhOo/HQe0iiWRHk0pUDOWwtqvn++xAcDK++Ko2e\nKyG33YGBgTz++ON88cUX/PPPPy7rp5LMmDzZtnGlxMFLdR3vRe3z8/MDID8/X1JdqRk/fjy//PKL\nbPr24OMjz8Z6Su9HooTBiyk1EbEgB0HvhnerG4vLHeUDR/ra0W3ShtyFOf43xOzzDqlXpfqRefgf\n8s4fk0TLmJEiiU5lUNyal1+O/sJV41WGtR3mbFOqNadPw7x58NZb4HH7GFLFDjw8POjSpQtxcXFk\nZGQ42xxpKFzrInHwomJLAAFUzbVSKvJiLZBMKufwPwAYQpsgaB1y/7PaIHjbMjSKuRex5l1ysjUq\nKspFUcGLVbQyddtU+t7RlwYBDZxtTrVmyRJwd7ftPagiH40aNUIURbKzs51tijQUBi/ht05xrlJ5\nCtMln1OTIahUFEvp+0yVl+zDG0j72/aUwKdtb0k0VW4guAeh8WsCogXjrgmIFmnXKqmoVBUUFbz8\neeJPjlw+wpsxbzrblGrPihXQo4f61EVuCgpsd0Td3OTZh8HhJCaCVgvXLrRVpCMgIICQkBBJ1ryo\nVC9ES5bdGvkJh7i08P9AFPHp+CC+nR+TwDKVogiCgKHDBND7Ys34F+PBac42SUVFkTgkeImNjS2z\njMVqYcI/E+hStwsxdWMk0awMcunKgRy2xsbGkpcH27bBffdJo+eKOMrukydPotFoGDp0qEPqk5vY\njz6C+vVBJ+10kuo63kvaFxYWRlJSkuS6UjJmzBjZtO0lMzNTFl2l9yPRnGrX5y152aQsfAvRXIBn\nsy4EDfgPgiAUK+MoHzjS185ok8YrFLcO7wAaLImrsKRJsz5BRaUq4ZDgZeTIkWWWmXdwHvuT9zOl\n5xTJNCuDXLpyIIetI0eO5MABsFhs23VIoeeKOMLupKQktm7dyt13382oUaNkr092RJGR+fnQq5fk\n0tV1vJe07/z584SFhUmuKyUDBw6UTdtePGR6lKz0fmQtsG8B+JVln2BOv4iuRh1qDZ50y7UujvKB\nI33trDZpg9qhrWs7j5r+/cEhNqiouBIOCV56lXExYxWt/N+G/2Ngi4FEh0dLollZ5NKVAzls7dWr\nF3FxoNdDy5bS6LkictttNptZunQpISEhxMTEuKyfinH6NL2Sk6FvX8mlq+t4L2pfbm4uycnJNGhg\n/3pAOdsdHV2+c7gzMBgMsugqvR+JBUmIYuXSROee2EF23AoQNAQ/9i4aN69blnOUDxzpa2e2Sd9k\nCAharJd2Y8085RA7VFRcBUWseUnKSuJ81nmeav2Us01RAfbutQUuVWUZhhLZsGED6enpDBgwAK1W\n62xzpMFqtf30uvXFjYp9bN26FYD27ds72RIVl0MswJp3slIfTV9v26jRr/NAPOq3ldIqlVLQeNVG\nE9wBAMuV/U62RkVFWSgieIlPjwegUY1GTrZEBSAuDqKinG1F1eXcuXNs376dbt26ERwc7GxzpKNe\nPRAEiI93tiVVktWrV1O7dm1atGjhbFNUXBBL9r4Kfybv7H7yz+wDrQ7/rurNRUejrWEb69Z0dd2L\nikpRHBK8LF1a+m6xp9NPIyBQ37++ZJqVRS5dOZDD1kWLlnL4sHTBiyv5syhy2r1lyxaCg4Pp3Lmz\nQ+pzGG5uLA0NhU2bJJeuruO90L7c3Fzmz59Pv379bloobY+uHGzYsEE2bXspzO4nNUrvRwCWzG0V\n/kz2gdUA+LS9D51f6TdaHOUDR/ra2W0SvAr3fXHeZoAqKkrEIcHLwoULSz0enx5PHd86uOvcJdOs\nLHLpyoEctn799ULMZrj7bmn0XMmfRZHLbrPZzJkzZ2jVqhUazY3h56p+KsnCmjXh558hLU1a3Wo6\n3gvtmzZtGleuXGH8+PGS6srB33//LZu2vcgVvCi9H4GANfcw1oKLFfpU/lnbdCXPpneVWdZRPnCk\nr53dJjH/CgCCR5BD7FBRcRUcErwsXry41OPx6fE0DGgoqWZlkUtXDuSw9e67FxMYCM2aSaPnSv4s\nilx2JyYmYjKZuOOOOxxSn6NZvHatLVXd9OnS6lbT8b548WLOnj3LlClTeOmllyRZrF+oKxcfffSR\nbNr24uvrK4uu0vuR4BEBgDltebk/Yy3IwXjRtk7GvX6bMss7ygeO9LWz2yReTQRA8AxxiB0qKq6C\nIta8JGQmUM+vnrPNUAGOH4fWrW1LF1Sk59KlS+h0OoKCquidtOBgeO01mDTJtnhKxS6ysrLo168f\ngYGBTJgwwdnmqLgoOv97ADBdXoLVWL4pSMaUMyCKaH0C0flW0fOVghHNeZiTbFMwtYGRTrZGRUVZ\nKCJ4OZd5jnDfcGeboQKcOQMS3dxVuQVpaWnUqFFDknULiuW996BFC3jiCcjNdbY1LovVamXw4MGc\nO3eO5cuXU6NGDWebpOKiaL0j0Xi1BdGI8eJ35fqMMcWWeMNQq2KzIlSkwZK0Acw5CJ6haILVDIMq\nKkVRRPCSVZCFn7ufs81QAdLTQb1Gkg+r1UpBQQHWwrTCVRGDARYsgLNnYdw4Z1vjsuzYsYOVK1fy\n448/0kyqeZwq1RJBEDDUHgGAJWMDoiWvzM/kHN0IgCG0iay2qdwa69WzAGiDOyIIirhUU1FRDA4Z\nEcOGDSv1eJBXEJdzLkuqWVnk0pUDOWzNyhpGioSJTVzJn0WRy+62bduSmZnJqVPFNx1zVT+V5Ho7\nmjWDqVNhxgxYuVI6XYlRst/XrVuHXq+nX79+kmvL2e6JEyfKpm0vWVlZsugquR8VovG4A0FfC7Bg\nzT1SalnTlXPkHrNlDfTtOKBc+o7ygSN97cw2aXxsUyCs2QkOsUFFxZVwSPBS1i61Id4hnL96XlLN\nyqL0nZKLIoet4eG9JA1eXMmfRZHL7jp16hAaGsquXbscUp+jKdaOESPgvvtg+HDbIn6pdCVEyX5f\nu3Ytbdq0QafTSa4tZ7s7deokm7a9GAwGWXSV3I8KEQQBrbdtk0nz1V2lls3cthhEEc+IzhiC65dL\n35m70bt6XbeqR+Nve+Jlzajc5qIqKlUZhwQvgwcPLvV4THgMa06vwWw1S6ZZWeTSlQM5bM3KGkzj\nxtLpuZI/iyKX3YIgEB0dzenTp7l48UbaUlf1U0mKtUMQ4D//geRkOHpUOl0JUarfc3Jy2L59O08/\n/bQs+nK2u0+fPrJp24u7e/nT8VcEpfajkmj9YgCwpK9BFG/9/9aSl03W7mUA+MU8Xm5tR/nAkb52\nZpsE95q2X8w5iGIVnmasolIJFDGR8uHmD5Oal8rGsxudbUq15sIFOHUKunZ1tiVVmxYtWhAQEMCW\nLVucbYr8REWBRgO7Sr/Tq1KczZs3YzKZ6Nmzp7NNUalCaH2jQReAaE7HdPmXW14UX93zB6IxF31w\nQzzuuNMJVqoAiOacG39YjM4zREVFgSgieIkKjaJhQEPmHpzrbFOqNQsXgl4P99zjbEuqLlarlR07\ndpCVlUVOTk7ZH3B1jh1ztgUuh9lsZuLEiTRt2pSIiAhnm6NShRAEHfqasQCYLn5D/ulRWPPii5XJ\nO7UbsK11qdJZERWKKIqYE1aS/8+Ltjf03qCRfuqoioor45Dgpaw7zIIg8Hy751l8eDFpeeXbmVuu\nu9audDdcSlvNZvjiC+jefQuBgZLJupQ/iyKH3RkZGcydO5c1a9bQoUMHnnjiCVnrcwbF2mE02ta7\ntG0Ldk5/qk7j/eOPP2b37t3MmTOHrVu3ylKHnO3et2+fbNr2YjKZZNFVYj+6HfpaT2IIfQk07lhz\nDpF34jmMF77BWnABAFOa7WdFUyQ7ygeO9LUj2ySKFizp/1Kw/T8Y908Fcw4a/6a4x3yBoAYvKirF\ncEjw8vHHH5dZZljkMKyilQWHFkimWRnk0pUDKW1dtgwSEyEvT9r2u5I/iyK13ceOHeOrr74iIyOD\np59+mt69e6PX62Wrz1kUa8e0aba1LrNng52LzqvDeE9OTmb06NFMmDCBcePGER0d7ZLtnjtXuU/Q\nc2Xad0hJ/agsBEGHPvgxPCJ+ROsbA1gwXV5I3vHHyT02CHO6bVd3rY9HhXQd5QNH+lrOukRRxHo1\nEVP8Uj566xnyVj1EwaaXsF7eAxoD+hYv4Hb3l2h868tmg4qKq+KQcH7RokVllgn2CqZzeGfWnVnH\nyI4jJdGsDHLpyoGUti5YAO3awapV0rbflfxZFKnstlqtrF+/nq1bt9K8eXNiY2Nxc3OTrT5nc70d\nV6/ClCnw7LO2Jy9S6UqMEvx++fJlpkyZwsyZMzEYDLzzzjuMHz8ecM12T548mZiYGNn07cHX11cW\nXSX0o4qiMdTCvcEkzJnbMF1ehDXnCNb8i4gm20J+Y+KrWDIboPVph9a7HVrvNghan9vqOcoHjvS1\n1HVZ8y5hvRyH5fI+rFfiEPNTAfhhZCiYroLOE21QFPrmz6LxVjfuVlG5HQ4JXjw9PctVrmu9rkzf\nPR2raEVTxqZM5dWsKHLpyoFUtl69CitWwPvvS99+V/JnUaSw22QysXDhQs6ePcu9995LdHT0beeQ\nu6qfSnK9HdOn2zrWf/8rra7EONPvVquVd999l08//RSNRsPYsWMZM2YM/v7+stsnZ7s9PCp2x96R\nyLWGw5XHr86vMzq/zoiWXExpu4A3ABD0AmLBWcwFZzFf+Q3QoPFqgc6/Jzr/exB0xQNBR/nAkb6W\noi5rdhKW82sxJ21AzE4sflCjR1OjJX5B7dAERqLxj0DQaO2uU0WlqqOoiZQeeg/yTHlYrBY0WkXk\nEqgWbN0K+fnQv7+zLalanDx5kjNnzjBkyBAaNWrkbHMcS1wcdOoE4erdw1thtVp54YUXmDNnDmPH\njmXs2LHUrFnT2WapVGMErSdazxtPST1b/oY19xCW7Dgs2XGIBeew5hzCmHMI44XpaH07oQvohdbn\nTgSNPPvnuCpifhrmpH+wnF+LNeN4kSMaNAERaALboQ2KRFOjBYL25ifxKioqpaOo4OWPf/+gT+M+\n6LX6sgurSMbeveDnh6T7u6hAQkICAQEB1S9wAVtn2r3b2VYoElEUeeWVV5g9ezY//PADTz31lLNN\nUlGxUeSuv6DxQeffFZ2/LXe+1ZiCJWMD5vQ1WPNPY8ncjCVzM2h90Pl3Q1/zQTQeFVvkX5UQrRYs\nFzZiPrfatm7lehpqDZrgKHRhPdGGRCPovZ1qp4pKVcAhjzfGjh1bZpmtiVvZcX4HDzZ9UDLNyiCX\nrhxIZeu+fRAZadtTUOr2u5I/iyKF3cnJyWg0mnKlRHZVP5XkejuaNrVlgDhyRFpdiXGG3+fMmcPM\nmTP59ttvywxcXLHdn3/+uWza9pKdnS2LblUZv0KRG4eW3MxixzSGWuiDB+ERMRuPJrPRBw1C0AWC\n5Srm1OW89uI9GC98g2jNl9VGR/q6PHWJogXzubXkrx+Gce8krJd2gWhF498UfcuRePT+GffoKejC\n771t4FJV+o+KiqNwSPBSt27dUo+fzTjLgMUDuLve3TzW8jFJNCuLXLpyIJWt//4LzZtLq1mIK/mz\nKFLY3aNHD/Lz8/nuu++4ePGi7PUpgevtePRRaNECHnnEtvZFKl2JcbTfRVHk888/Z8CAATz77LNl\nlnfFdoeEhMimbS9arTzrCarK+NUY3HGr0wyAnMPrbl/OoxGG2i/i0Xwx7g2novW9i7BQgy1r2b/P\nYLm6RzYbHenr0uoSRQvm8+vJXz8cY9xkxJzzYPBF1+RJ3HvMxb3rTPSNHkJwr2FXPSoqKjfjkODl\nlVdeue2xbGM2Dyx8AF83X34d+CsGbfnmzpamaQ9y6cqBFLZarXDyJDRpIp1mUVzJn0WRwu66devy\n3HPP4eXlxZw5c9i9ezcWi0W2+pTA9XZ4esKSJXD+PAwbBgUF0uhKjKP9vmXLFg4fPszLL79crvKu\n2O5BgwbJpm0vciUTqCrjF8C7XV8Aru5dgSiKpZYVBC1an/a4N/iA0W/+gKAPQjReID/+DQrOf4Yo\nmiW3z5G+vl1dlsv7yP/nBYx7J9kW4et90DcbjkfPBRiaDUPjHSZJPSoqKrfG6avix/w1hvj0eJYP\nXk6gp4S7I6qUi5QU23Vlw+o7VVlW/Pz8GDp0KK1bt2blypXMnDmTI0eOlHlRUCWIiIC5c2H5coiJ\ngTNnnG2R04mPt+1m3qlTJydbolKdsFisZRe6hnfb3qDVU3D+KPln4sr9OZ3fXXhE/Igu8GFAwJy6\njPz4cYhm+5+8KgVrbgoFu9+lYNvriFnxoPdG33QYHvcuQN/kCQS962adU1FxJZwavPx+7Hdm7ZvF\ntD7TaB7U3JmmVFsKZzOFhjrXjqqMXq/ngQce4IUXXqBmzZosWbKE7777jlOnTlX9IObBB2HbNkhN\ntW0ktGyZsy1yKi1atABsm5aqqDgKs7X8wYvOuwa+HWypJ9P+mkFe/F4sORnl+qyg9cStziu4NfgA\nNB5Ys+PIOzUCq7H0abNKR7RaMJ2YT/76oVgubAQ06Or3x6PnPPQRTyLovZxtoopKtcIhwcvx48dv\neu9A8gGeWfYMA5oOYHjkcEk0pUAuXTmQwtaUFNvPwmnqUrfflfxZFDnsDgkJ4fHHH2fo0KHodDrm\nz5/PZ599xu+//84ff/xRroX9SueWfouKsqVO7tbNlo+7Vy/YsAEqELhVlfHerFkzDAYDn3zyCQXl\nmErniu0+o+AnbGaz9NOYQPnnuQKjqULl/bs+BRot+QkHufDNC5x9rydn3+/Nhe9GcGXZVLJ2/k7+\n2QNY8mwJEERrPkfilmG6/Av5CZMwXvgKrHm2YwXnMF1aLFlbHOnr48ePIxqvUrDjTUzHZoOlAE3N\nVrh3+wZDm1EIBmk2PVV6/1FRURoOCV7GjRtX7O+jl4/S86eeNApoxA/9f6jUxmElNaVCLl05kMLW\nwutlb2/pNIviSv4sipx216tXj2HDhvH000/TunVrUlJSGDduHFOnTuWbb75h7dq1nDlzRrYLLTm5\nrd/8/eG332DxYrh8Gbp3h+hoWLrUtvCqsrp24uj+6eXlxU8//cQff/xBnz59SE9PL7W8K7b7iy++\nkE3bXuS6QaD081xqZsVcZkOiAAAgAElEQVSyrOlr1Cb4sffwbNYFXY06AFiyU8k7tYvMrYu4/NsH\nJH01nLMTu3HmvWjOf9GVMcOHkrHlc/JP/40lx7YZo2AIQet3D/pA6TYRc6Svx772CvmbXralPta6\nY4gcj9tdn6Pxkzb9vdL7j4qK0nDIPi/Tp0+//vu/V/6l59yehHqH8veQv/Fz97NbU0rk0pUDKWzN\nv5bV0t1dOs2iuJI/iyK33YIgUL9+ferXr8+9995L165dMRqNxMfHs3//frZu3Yper6dhw4b069cP\nb2/X2BugVL8JAgwcaMtE9vff8OGHtmllzZrBzz9Dy5aV07UDZ/TPgQMHEhoaSv/+/enUqRODBw+m\nefPmNG/enDvuuAM3txub1rliu8eNG8emTZtk07cHucaR0s9zl9Irvu7Ep21vvFt2xpp/CnPmUYwX\nDmBMOYXxcgrmTDPmDCvWPBFrjgljDrzdKYysHTeeJgpunmg9stF4HEfj8SFaD1807j5oPHzQePii\n9fBG4+F77eVtO37td43e/bZ2SeFr0VKAmJ+GWJB242dBOmJ+Klx/L52pD+cj5pxH8AjG7c5JaPzk\n2QxN6f1HRUVpOCR4KUwDGHcxjt7zehPsFczap9ZS07PyO0q7YgpRqZHC1pIzd9RUyTYcbXezZrb0\npG3atEEURVJSUjh9+jSbN29m27Zt9OrVy6H2VJZy+U0QoE8f22vbNnjiCfjgA1i40D7dSuCs/tml\nSxe2b9/OqFGj+Prrr0m5Nn9Tq9XSqFGj68FM4SsiIgJPT+kWA8vZ7lAFL6CrrqmS45Mul3pcFK2I\nxgtY805hzTuNNf801rxTiKZL18toDOAeDu7hetDWQOvRFDT1Med4Y84E38spGC/FY0w+jTUnHbEg\nF3NBLmQkV9heQWewBTnu1wIdT5/rgY+3hy8ZZ4sGQbbfBXcvtBoRKABjepHgJPVaYHIjWMFcvidw\n4YF6NDVb49ZhAoJbQIXbUV6U3n9UVJSGQ4IXgI1nN/LAwgdoFtSMlY+vtCtwUZGOwsyh+fk3nr6o\nOBdBEAgJCSEkJIScnBz27dvHPffcg16vL/vDrkbnzvDCC/Duu5CVBb7SzCF3BSIiIvjrr78ASE1N\n5dixYxw9evT668cffyQpKQmw9YkGDf6fvfMOj6Lc/vhntmbTe0iDBAg1EBAIHekgYKFYECsq2LBc\nCyKoiAWx/Wx4vXq9IiBiA0QBqdJ77x1CIJKekGSzm+zu/P6YJGwokjKz2ZX5PM8+27/vOWdnZufM\n+77njb8sqWnVqhVe6o6rcg1Sj2Vd9pq96AC23GVSwmI5WTFH5VIEQz00Xo3RmBqhMTVG49UYwVDv\nb4d728352IvycFgKcJgLsBdfkB4XF+AovoC9uBBH8YWy52XvFxfgsBSAKCLaSrAXZGMvyK6Rv4JO\nQKMFjU6QHjvd6721GPy1aE1GBK8QBGMwgjFIeuwVjGAMBmOQ9NgrBMErrEZD2//JZO0p4q/0f3ix\nGQ8mV9l1Yt0ClyQvP+z/gfsX3E+3+t1YcNcCfA2eMQTmeqD8vMdyHWzsnkijRo3YtGkTaWlpNGjQ\noK7NUYbhw2HCBFi3DgYPrmtr6oSQkBC6detGt27dKr2en59/WVLzww8/kJKSAkiV7JKSkkhOTqZj\nx4507NiRhIQENJo6r4Kv4kY0yw9m0Tc7GDCqDVqdg9Lz/6M0cy7gdAIq6NF4NZSSFK/GUqJiaoig\nrf7/tdY7AK139YeEO+w2HPlnsGUfxZ5zCnt+Cvb8NByFGdiLCxDtIg6bdBNt4LCXP5buy90RbSJ2\nG9itVz/B1gb4YIpviFdcG7zqt0Ef0RBB3W9UVDwCRZMXURSZtmEaE16fwKjHRvH1LV9j1Bmv/cUq\nMG3aNMaPHy+Llit0lUAOW517XuTSdMaT4umMq+2+UnuiKLJu3TpCQkKIianeomd1RY3iVl51KzBQ\nXt0q4O7b5xdffMH48eMvWxemsLCQgwcPsm3bNrZu3crKlSv5/PPPAQgMDKRDhw4VyUxycjLh4eGV\nvq+k3zNmzFBEVw7MZrMiuu6+HekFLfnb8llwZB1JXdcSEbUWjVZEF9QbnX9XNKZGCMYYBKHmpwRV\njYEoimC3IBal4ShMRSw8g6PgDI7CM4iFZ8Eu/RkJSCcoOgMQDGBEMIbwwa/nefHRYQimcKnXxCuo\nrLckGFFjQrSaK/fmOPX22AuzsaYewJp2BHt+OoW7/6Bwt9T7qTH54dUgSUpm4tpgjGnOex9+5JLf\n1d23HxUVd0Ox5KXEXsLjix7n611f0z2qO7OGzpK161WpPyGldJVADlvLe16Ki+XTdMaT4umMq+02\nm82IokhhYSEZGRlkZmZy7tw5UlJSuOeeexQbqy831Y5bYSHMnSs9jo2VT7eKuPv2eTX7fH19SU5O\nJjk5mSeeeAKA3Nxctm/fzpYtW9iyZQv/+c9/ePPNNwGIi4uja9eu3HTTTQwcOFBRvy1u3I1rsVh4\n+umniY2NrbjFxMQQFRWFTlfzv0N33442Rp0iUIwj6IKBbUu6AVIPn6AR0Oo1aHRn0GjPotVp0Og0\naHUCmksel7+nKRt+pdU40GhsaChFI5RwattBDvy0FAELGqxoxGI0mBHEYjSiGY2jEEEsROsoRMCK\nVmNDo7GX3ZwfaxG8oxF8osArEsGrHniFIRiCEdFhXvwRNlNnRFsJoqUEMTsbsfQvRJsVh60EsdQq\nvVd+byt/Lj0WjN4YwuMoOX+iUowcxQWYD6/HfHg9AFr/cIrMSS75fdx9+1FRcTcUSV7OF55n+I/D\n2Z62nRm3zuD+NvfL3sbrr78uu6aSukogh63l/9flVXnl9t+T4umMknaXJymZmZkViUqDBg149913\nK078dDodoaGh9OrVi0aN5C3LqSRVjtvBg/Dvf8O330r1uu+/H/6md+l63d+rY19QUBD9+vWjX79+\ngLSdpaSksGXLFrZu3crq1av57rvv0Gg0dOrUCaPRyODBg2ndurWsF5YeffRRvvrqK9n05KJ///6s\nWbOG5cuXk5qaSmHhxfLBGo2GyMjISgmNc4ITGxtLRETEVS8iuPt2tDVzOcfqH6RbwI10SmuBr126\naiU6RGxWO1x7yaFr0iP8fvb8CaAH/GqlJWBDwI5GsCFgQ0MmgvAXGux0pAsrPz1Q9roNQbBXeqy5\n7LvOn7EjCA40+CLQ8rLPON/r8WfCv16k1GJDq9cgaATF5r64+/ajolITBEEIBXxEUUxxeq0l8Dzg\nAywQRXFOTbRlT162ndvG0B+G4hAdrHlgDZ1iOl37Syp1hjoPUVlKSko4d+5cRZJSnrCUJylarZbQ\n0FDCw8NJSEggLCyM8PBwAgMD/3nzFhwOmD8fpk+XFqkMD4ennoIxY0CttiM7zuW477zzTgDS0tJY\nsmQJixYtYurUqUycOJGYmBgGDRrE4MGDGTBgQKVSzf8k2rVrV1EgQRRF8vPzOXv2LKmpqZVuZ8+e\nZc+ePaSmplJcfHESu06nIyoq6rKkJiYmhnbt2rl1xSg/vTeFlnz+sCxktddyujcbRNv6g9h7upAT\n5y/gby+iuSOV/tYthNgLEEUdDrRl9zrEisdaRHQ4ROk1B7pLXi+7L3tdRFv2WWc9Z40ybSonhdLr\nOhyi0flF11IE217ZdfG5ABrtJT1Reg0areDUY1XeM6W5rBfLJ9iLJjfGoDe5rE6SYuw3P0VRQUJd\nm6FyFTLsqcCfdW0GwKdAGvAcgCAI4cC6stdOADMEQdCKojirusKy7kWl9lJu/v5mGgQ2YP6d84ny\ni5JTXkUBynte3Hikh0dRWlrKmTNnOH36NKdPnyYtLQ2Hw1GRpISFhdGoUSPCw8MJCwsjKCjon5ek\nXAlRlBKV6dOha1eYMweGDYN/6ImyuxIVFcVDDz3EQw89hNVqZd26dSxatIhFixbx5ZdfEhYWxkMP\nPcTYsWOJi4ura3MVQxAEAgMDCQwMJPEq6wuJokhOTs5lCU75823btnH27FmsViuNGjXi+PHjLvai\n6kyzZ5GpD2IWfqSUFrN83y9sPr6S/m3uJic9jDyjL2dojlVbyFPmy0uWCzo9gs5Qdm9E0Hsh6L3Q\n6I1lz43S++X3OkPZ6wY0Og2CXnNRo+Iz0vuCzoCgNSIKehzoETWGygmSXcBhd2AvdeCwObDbRBz2\n8scOHKWidG93er9Uem63iRc/Z3PgsIkVj+1lzyu9bxcr2nHYHJWXEhApex3AXqPf4eias7S7vQmx\nbdUKZirXBZ2AB5ye3wfkAG1EUbQJgvA88ARQt8nL8pPLSS9K5497/qiUuGRlZREaGipnU4poKqmr\nBHLYWj4i6ehR6NBBfv89KZ7OVNXu0tJSzp49W5GsnD17FofDgbe3N/Hx8bRu3Zq4uDhCQkL+Nknx\n1DhdylX9mDRJSlz+8x+pp0Uu3Vri7nFX2u++ffvSt29f/u///o+DBw/y5Zdf8u9//5tp06YxaNAg\nHnvsMQYOHFitOVe5ubmy2ysX1YmnIAiEhIQQEhJCUtKV5z6IosikSZP4+uuv5TRTdoIT29GnVTPu\n1Hvz6XkTv55cT3reWX7Z9Dk+QiBeQXeg0dfnpptuon7CqLKkQ0ow0OqqdKLtqn1Jaif82h+UgYz0\nDIKDQqQEpzx5sosVyY29VCxLkpySo9JLEqmy757aep7CzGLW/3c/kS2C6XBXU3xDTU4+ue9xSEWl\nhtQDTjs97w3ME0WxbKICC4EJNRGW9ZLv9/u/p0VYC5IiKh/oR48eLWczimkqqasEctgaEADR0dIU\nBLk0nfGkeDpzLbszMzOZPXs206ZNY+bMmWzbtg0fHx8GDBjAY489xvPPP8+IESPo0KEDYWFh1+xd\n8dQ4XcoV/fj6a3j7bXjvvRolLlfVlQF3j7sr/W7RogUfffQR586d46uvviItLY0hQ4aQkJDAqVOn\nqqw9ZcoUOU2VFbnjKQgCXl5e5OXlyaorN4F9nyV48Cv8YutGUod7mDjiM1qH98ak96JIzCM750uK\n8j9jx/m17MzNAJM/Gi9fqbekij0ErtqXXLnPPvzIw+gMWgzeekwBRnxCTPiHexMY5UtwfX/CGgUQ\n0SSIqBYhxLQOo/4N4cR3rEejLlEk9IihWe9YWvRvQKvB8QyamEzDTvUA+OtgDkve3krxhRKX+yQf\ngnpz65tbcAFwLiOaDGxxei4CNRp+IWvPy5azWxicMPiyg93kyZPlbEYxTSV1lUAuW6OjoWyBb9n9\n96R4OnM1u0VRZPPmzaxcuZKgoCD69u1LfHw84eHhtRoG4KlxupQr+rFoEfTsCc8/L6+uDLh73OvC\nbx8fH0aPHo1Op2Ps2LEIgoCpvKZ6FRgzZgxr166VwUr5USqefn61m6CuNIJGw7nMXLYcS2NIfHOK\nLuQx/7mXKSopou+Hb5ORuw2z5TzTV81h+qo5BHn707tFJ/q26EzPZskEeF/bP1ftS67cZ+Voy2F3\ncG5fNsfXn+OvQzkVrxt89Gh1gmztqKi4IZuBpwRBeAQYhlTJY5XT+02A1JoIy5a8lNhLOJl7kmah\nzS5774YbbpCrGUU1ldRVArls9fODggJ5NcvxpHg6cyW78/PzmT9/PikpKXTs2JE+ffrItuq9p8bp\nUq7oR2oqtGkjv64MuHvc68LvCxcu8Oijj/L9999z//338+mnn1br5Lx58+ZymKgISsVTruOAkrwz\nezFofABoFReJyWjAahcQDTcTEtaX8b1h0/Et/HloC7nmC/yyfRm/bF+GVqOlY8PWDG3Xl6E39MXb\neOVE1lX7kiv32Zq2JYoiOSkFnNmVwakt57GU9bAA1GsWRONu0US3DkWr09SqHRUVN+cVYCVwD1K+\n8bYois7jiu8C1tREWLbkJd+Sj120y7YIpYrrCAgANx/1UOeIoshPP/1EQUEB9913H/Hx8XVtkudg\nsagbmAcxbtw4fv/9d+bMmcPIkSPr2hwVGRBFkd/W7+bGrlL1z8JSBwBncqVqahH+AdzTuRP3dB6A\nzW5jx+kDLD+wkeUHNnIsPYWNx3ex8fgu3lz4b+7qNJj7u95GXGh0nfnjjogOkcyT+aTuziR1dwbm\nnIv1p7389DTsHEWjrpH4hXnXoZUqKq5DFMW9giA0B7oC50VR3HLJR+YCB2uiLVvyEuYTxo0NbmTG\n7hk80OYBuWRVXEB0NKxcWddWuDcnT57k3LlzjBo1Sk1cqsu4cTB2LOzeXeseGBVl2bVrF7NmzeLz\nzz9XE5d/EKIoYrM72LlnP0Nv6ke22U6W2UZ0oLTeS1ZhCcWldkx6LTqtjo6NkujYKIlJtzzG6axz\nLN67llkbfiUlO43//PkDX67+kT7NO/Fg92H0aNoercYzFtGVG4fdQcaxPFJ3ZZK6J7NSD4vOqCWq\nZQj124UT3epiL4uKyvWEKIpZwK9XeW9RTXVl3Zsea/8Ya1LWsOf8nkqvK1GJRanqLu5eNcYZuWyN\njYUzZ+TVLMeT4umMs92iKLJ27VqioqIUWzDSU+N0KVf0Y/RoaNIEJtSoqMjVdWXA3ePuar9feukl\nmjZtysMPP1xj7QULFtT4u0qjVDzdfYX08pK/ufkXqOctzbM4nlNCiI+BIG89InAq68o+xIVG83jv\nkWyYOIdZY6bRu3lHRFFkxcFNjPrPC7R5dSjPznmHZyaPx2wtvqKGnLhyn71SW3abg7QD2WyZfYj5\nL21g1Se7ObbuHJYLJehNOuKSI+g+phXDpnWj28OJ1G8bfs3Exd2PQyoqNUEQhPuqcquJtqzJy9Dm\nQ2kS0oSn/ngK0alA+s6dO+VsRjFNJXWVQC5b7XYoH7Itt/+eFE9nnO1OSUnhzJkz9OjRQ7Ha/J4a\np0u5oh86nVRt7I8/YNWqy9+vqa4MuHvcXen3wYMHWbZsGa+++io6Xc075Q8fPlwb0xRFqXiWlpYq\noqsE/kbpGGZ3SP/RPgap16TU/verQGo0Gvq06Mzsse+xfuJ3PHLj7QSYfMkuzOOHrYv5av4sWk68\nmfu+HM93m34jPT9LEftduc+Wt2UrsZO6O5ONMw4wb/x6Vk/fw4mNf2EtKsXoo6dRl0h6PpHEsGnd\n6PJAS2LbhKEzVL03yt2PQyoqNWQG8BnwEfDxVW4f1URY1mpjBq2B6YOm029WP2bvnc29SfcCMH36\ndDmbUUxTSV0lkMvWv/6CyEh5NcvxpHg642z32rVriYiIoEmTJi5pz5O5qh/DhkFyMowfD1u3QjWT\nwOt1f3el31988QVhYWEMHz68VtovvfQSP/30U600lEKpeAYEBCiiKxei0/L05lLpsa9BunZZZJUW\nXPQxVv1ku2FYLK8PHcekWx5j68m9LN23nqXB60nNOc+Kg5tYcXATAG3rN+ex3iMZ0qanTJ64dp+d\n9vr7bPjmAOf2ZmGzXlyY0svfQGxSGLE3hBHeOBCNtnbXgd39OKSiUkMOARHAbOB/oijulUtY1uQF\noG/Dvtze4nYmrprIyFYj0Wlkb0JFRkpLYcUKSEioa0vck9zcXE6dOsWwYcPUFZFrgyDAO+9A796w\nZAkMGlTXFqlcwurVqxkyZAgGg6GuTVGRG6dOFVvZY4NWwCGKFFil9eL8jNX/r9ZrdXRNuIGuCTfw\n+tBxHDl/iqX71rNs/wZ2nTnErjOHGDPjVUa0H8Cbw5/G3+QrhzeK47A7OLwqlX2/n8JeVtzAO9hI\nbJtwYtuEEdYwAEGj/h+oqPwdoii2FAShIzAaWCsIwnHga+A7URQv1EZbkcxiYveJtPlPG34++DN3\nJd6lRBMqMvH553DoEMyaVdeWuCenTp1CEAQS1Oyu9vTsCe3bw8cfq8mLG9KwYUPOnTtX12aoKIBz\nz4uPXgBE8i0O8opLsZUNHwv2qV25Z0EQaBbZkGaRDXm6/32k52fxv3XzmL5yDj9vX8rmE3v49J6J\ndGyUdG2xOiTnzAW2fHeY3NRCACKaBJJ0ayNC4vzVC1gqKtWkrMLYFkEQngFuBx4E3hcEYQEwWhRF\n698KXAVFyl8k1UuiT3wfPt36qRLyKjKRlQWvvSYteq6Wmb8yKSkpREZG4uXlVdemeD6CAM88A8uW\nwcEaVUdUUZAWLVqwZ88ej5q/oVI1RPvFIU9+eukEPM9iJ7NAqo4VZNKjr+XQp0uJCAhlwpAxzBv3\nKfVDIjmbe57hnz3NO4u+osTmntvY8fXnWPruDnJTCzF46+h4bzN6P92W0PgANXFRUakFoigWi6I4\nE3gN2Iq0xkuN64YrVrtvSJMh7PprF6Iocsstt8iur4SmkrpKUFtb338fbDZ44w35NC/Fk+LpTLnd\nRUVFLhnP7qlxupRr+nH77dIEq08+kVe3hrh73F3p9x133EFGRgaff/55rbSfffbZWn1fSZSKZ05O\nzrU/VIeUll4s4etdNrfFLsLJsgpj9YOvvPBkdbhabJMbtmL5C//jzuRBOEQHnyyfxS0fP86x9BRZ\n26kNDofIjp+PsXXOEUSHSGzbMAa/2olnpz7qkqTF3Y9DKiq1QRCEaEEQXhYE4RjS2i7bgJaXLFhZ\nLRRLXuIC4yi2FZNpzuTJJ5+UXV8JTSV1laA2tmZkwKefwtNPQ1iYPJpXwpPi6Uy53aIouuTPy1Pj\ndCnX9MNggMcfh5kzoRonfNfr/u5Kv9u0acOYMWN47bXXyMjIqLH2HXfcURvTFEWpePr4+CiiKxcW\ny8WRGTqtlLxoBTiSUQRAk/Da2/93sfXz8uH/7n6JLx+YQpC3P3tTjzDg/Yf5cesSWdupCXabg3Vf\n7uPIqlQAWt8cT7eHEzH5G1x2fHD345CKSk0QBOEOQRCWAMeADsBzQKwoii+KolirspSKJS+h3qEA\nZJmz6N+/v+z6SmgqqasENbVVFKWhYkYjPPecPJpXw5Pi6Uy53SaTiczMzEqlv5Vsz9Opkh9jx0pd\nfrNny6tbA9w97q72+80330Sj0TBx4sQaa3fu3LnG31UapeJpNBoV0ZWLkhIpeTEadIhIF2M0AhzN\nkOZ1yJG8VCW2Q9r0ZMWL39CjaXsspVaemTOVz1Z8V63jq5y/oSiKbJ1zmHN7s9DqNXR9qCWJN8VX\nXLBy1fHB3Y9DKio1ZC7QHPg/4E8gDnhCEISnnG81EVYsecmz5AEQ5BWkVBMqNeSjj+DXX2HGDAgO\nrmtr3Jvk5GQyMzPdeu0KjyMsDAYMgB9+qGtLVC4hNDSUN954g6+//prt27fXtTkqMmGxSsmLyWig\nbH4+GkHgSLrU89I03HVVwCIDw5gz9n2e7DMKgLd//w9Tfp2Ow+FwmQ3lHFyawqnN5xE0At3HtKJB\nuwiX26Ci8g/mDFKtw7uBZ69ye6YmwoolL1lmaYGqYJN6duxOHD4ML74o9biow2yvTf369YmLi2Pt\n2rWK975cV9x1F2zcCKmpdW2JyiWMHTuWxMREXn755bo2RUUmrFZpzouXQY+97DgmIpJVVIIAJMjQ\n81IdNBoNL988ltdufQKA/6z+kf+u/dmlNmSfvsCehScBaH9HAlEtQ1zavorKPx1RFONEUYy/xq1h\nTbQVS15O5p4k0jcSo87IggULZNdXQlNJXSWoia2zZoGfH7z1lnyaf4cnxdMZZ7t79OjB+fPnOXbs\nmEva82Sq7MfgwaDRwNKl8upWE3ePe134rdPpGDBgACkpNZtQ/eeff9bULMVRKp4Wi0URXbmwlCUv\nJuPFcsg2u5TEBJr0eFdjNfirUZPYju11J1OGSqNG/m/pDHKK8hVp50ocWnkGgAbtI0joEaNoW9fC\n3Y9DKiruhmLJy5HsIzQNbQrA999/L7u+EppK6ipBdW0VRZg7F4YPl+a7yKF5LTwpns442x0XF0ds\nbKyivS+eGqdLqbIfgYHQoYNUNllO3Wri7nGvK791Oh02m61G2kurmJDWBUrFs7i4WBFduSgpGzbm\nZdAjlM15Ke+B8TfJs9xbTWP7YPehtIhqTH5xIZ8su/aCY3L8hkU5FlJ3ZQLQon99RduqCu5+HFJR\ncTcUS15S81OJC4wD4AcFxrYroamkrhJU19bt2+HkSWnEjlya18KT4umMs92CINCjRw/OnTvHiRMn\nFG/Pk6mWH/37w8qV4LQGhSy61cDd415XflutVnS6mp3UvvPOOzX6nitQKp5BQe49t9NSIq2rYjIa\n0JYVTyyfYuKll+c0oKax1Wq0jO0pVajbemqvYu04k336AqJDJCjWj6AYP0XbqgrufhxSUXE3FEte\nzKVmvHU1Xn9GRQHmzoWICGmhc5Xq0ahRI2JjY/nzzz/VuS9y0a+fVC555866tkTlElJSUmjQoEFd\nm6EiEyVlC496GfSYypKV8ksGllLXT5S/lDzzBQBiguq5pD2HXfLZ4C1Pr5OKioprUSx5KbYVY9LX\nfuErFfn4+WcYMQK0tR/efN0hCAI9e/YkLS2N06dP17U5/ww6dQIfH3DjORLXIzk5OWzbto2GDWs0\nj1LFDbnY86LHpC9ft0ogyNtAfnFpnV6QWXd0B1+tkSbrx4ddee6JUphzrdjdIHlTUVGpHoolLxab\nBZNOTV7chfx8OHMGunata0s8l/j4eAwGA2lpaXVtyj8DvV6qHmG1XvuzKi4hLy+P/v37U1xczNNP\nP13X5qjIREnJxZ4XjSAQ6i1dwWofH0JesY3jWWaX25RvLuC5udO48/NnOZt7nqjAcO7t4poSmBFN\ngjB46yjIMLNr/nGXtKmioiIfyvW8lF7seXnwwQdl11dCU0ldJaiOreWFspo0kU+zKnhSPJ25kt2C\nIBASEkJ2drZL2vNEqu2HxQJeXvLrVhF3j7sr/c7Ozuamm27i5MmTrFixgubNm9dIe/LkybW0TjmU\nimdeXp4iunJhLZWKL5iMBgAaBkn3HeJCMeg0rD1W+2NaVWJbXGLlz0NbeHXeJ9z4zr18v3kRAA90\nG8rql2YSE3ztYWNy/IamACOd728BwNHVZ9n720lKLZcXqHDV8cHdj0MqKu6GIgM+HaKDfGs+/kZ/\nQJnVY6/XFbedqdV6rPEAACAASURBVI6tp05J99caCSK3/54UT2euZrcgCNirMMFcrvY8jWr5sW0b\n5OVBfLy8utXA3ePuKr9XrVrFvffei8ViYdmyZSQlJdVYu1OnTvz222+1NVERlIqn8WrlG90EUZSG\nRjnKVqiM9NNh0gmAltvbxzF7eyq3t43E36T/G5W/50qxFUWRExmprD68hVWHtrD5xG4spSUV7zcM\ni+GDu8bTsVHVtze5fsPoVqG06N+Ag8tS2L/kNMfWnqNF/wYk3BiNrqx0tKuOD+5+HFJRcTcUSV4y\nizIpsZcQ6x8LwMiRI2VvQwlNJXWVoDq2pqVJF7gDA+XTrAqeFE9nrmR3cXExaWlptG/f3iXteSLV\n8uOVV6B5cxg6VF7dauDucVfa79LSUl599VWmTZtGr169mDlzJtHR0bXSHjhwIBMnTpTDTNlRKp4m\nk3sPkfY1SPNccgqKANAIAskx3qxLKSKhnj+55nCmr0thQv/GNW5j5MiRiKLIX/mZ7E45xLqjO1h1\naDOpOecrfS4yMIzezTvRq1kyvVt0wktfvcRPzt8w6daGBMb4su/3UxVDyA6tPEPLAQ1o1DXKZccH\ndz8Oqai4G4okL6kXpFWzYwNilZBXqQHp6VKlMUG49mdVrszevVIZT3Uiswx8+620QOVPP6kVJOqI\n3bt3M3r0aPbt28c777zD888/j0aj2EhilTrEt2wXy84rrHgt2KSlfZSJreeKSW4YxumsQlYcyaJv\n09Aq62YV5LL7zGH2pB5mz5nD7Ek9QmZBTqXPGLR6OjZKolfzZHo160iTenEIbvJHJAgCce0jqN82\njNNb09m3+BRF2RZ2/HSM/YtP07hHNE16RGMKcO+eNRWV6w1lkpf8suTFX01e3AVRhBou26ACnD17\nlmXLltG+fXsCAgLq2hzP5ttv4cEH4ZFHpBVTVVyKxWLhjTfeYNq0abRo0YLNmzfTrl27ujZLRUF8\ndNJ8jqz8gkqvR/vraWsX2ZFWTFyoL7mlDlafvED3OD+0msoJRp65gD2ph9l75gh7Ug+z+8xh0vIy\nLmtLq9HStF48HRom0rt5J7o0boOP0b2XTdBoNTTsHEmDDhGc3PgXB5enUJRt4cCS0xxankJc+wia\n9q5PUIxvXZuqoqKCQhP2Uy+k4qXzItRbuoKzfv162dtQQlNJXSWojq06HZSV+pdNsyp4Ujydcba7\nqKiIH3/8kaioKAYOHKh4e57MNf3473+lxGXMGPjiiyp3BV6v+7vc9m3cuJG2bdvy7rvvMnnyZLZv\n3y574rJr1y5Z9eREqd+7pKTk2h+qQ7wFaZ5edn7hZWWR44IM9GvkS1ZBMTqthlwr/HGsgB1nc/h1\n1xom/Pwh3d4aRYuXBzPy388xddGXLN67lrS8DARBICGiASPaD+C+xv1Z+PTnHHlnCSte/B9TR/yL\nfi27yJ64KLnPanUaEnpEc/Prnen2SCLnhVM4bCInN59nydtb2f7DUUXadffjkIqKu6FI8pJTnEOw\nKbiia/jdd9+VvQ0lNJXUVYLq2FpQAFUZli23/54UT2ec7V66dCk2m4077rgDrUJDnDw1TpdyVT9s\nNnj2Wam35bHH4PPPoRpDlK7X/V0u+woLC3n66afp1q0bAQEBdOvWjUmTJmEwGGTRd2bmzJmya8qF\nUr93YWHhtT9Uh3jZzHgZ9JTY7Bw4de6y9/29tNyeGMCCbeuYv3kWb897nls/GMZj377Ct+sXcDJT\nGk0RFxrNLW178+qtj/PLk59weOpi1kyYxSf3TOTgsq20j0/E23Dt6oG1wRX7rEYjUL9tOKtTf6X/\nC+0IiPQBIPOEMlXl3P04pKLibigykEgjaCpd3Zk7d67sbSihqaSuElTH1qNHr10mubqaVcGT4ulM\nud2nTp1i37593HLLLfj5+SnenqdzRT+ys+HOO2H1avj0U3jiiWpPvrpe93c57Fu+fDljxowhIyOD\nDz/8kHHjxmFVcG2dt99+m27duimmXxuU+r2DgoIU0ZULa0EOvW7ow5LN+1iyaR+JDaXFIC2lVn7a\n+gerDm1hw7GdFForr/cSHhBNs5g2NI+5gWZRLWgSHkw9Xx2BXlpM+soXH1y1L7mqHdEh8t/p32DN\nK6UoxwJA8371FWnL3Y9DKiruhiLJi06jw2q/+Ofo7S3/eFclNJXUVYKq2mqxwM6dcO+98mlWFU+K\npzPldq9evZrY2FjatGnjkvY8ncv8OHECBg6USiKvWAE9e8qjKxPuHvfa2Gez2ZgwYQLvv/8+vXv3\nZuXKlRXFJpT0250rbynlt7tMQL8aBTkZ3HRTK5Zs3sfcFVt55NYb2XlmL5PmfczprIs9MUHe/nRq\nfAOn8+uRXhRNkH8EyU2iSagXgM0Bp/NKOZ0njT82agUCTVqCvDQEemkJ9PJCFEXFYyH3b1hqsVGQ\nYSb/vJmCdDMXym4FGWbspY6KzwU38KNBuwhZ2y7H3Y9DKiruhiLJS/2A+uQU53DBeqFirReVuuOT\nTyArCx5+uK4t8TyKi4tp2LCh25+cuCXbt8OgQRAUBFu3Vmk9FxV5yMrK4q677mL16tV8+OGHPPPM\nM+o2fB2TfvY0ozu1pmHUck6kn6Xf249xziwt/lUvIJQHug3lxqYdSIxJQKvRYi6x887y4/y2L51v\nN55CAG5LiuLGZuE40HDB6sBqF0kvtJHuNGLOqBWkRMYkJTRBXlq8dEKdb3uiQ8ScayE/vXKCciHd\nTHHe1XshNToBvzBvAqN9SLqlEYJG3YdUVNwBRZKXZqHNADiSdYQO0R2UaEKlipw8CW+9BY8+Ck2b\n1rU1nofD4SA/Px+LxYJXFVaCVylj40bo3x8SE+H33yG06uVXVWqOKIosW7aMsWPHYjabWbFiBT1r\n2Nul8s8hPe0cXgYdj97Vged//oNzZgcaQcMjPW/nuQEP4utV+cq/t0HLlMFNGd0pli83nGHJwQzm\n70lj/p40+jcL5cmecfgaDeRZHORZ7ORZ7BSUJzRFNtKLLmoZtAI+Bg2+eo10b9DgYxDw0WswaGuf\n2Nisdsz5VorzrBTnWynOLym7t1KcV1LxnnMvyqV4+enxi/DGP8IH/wjviptPiBcarVo+XEXF3VBk\nr2wSIk2uOJJ9BIAXXnhB9jaU0FRSVwmuZetvv0G7dtJ542uvyaNZXTwpns6U2924cWOOHDnCBx98\nwC+//MKJEydwOK7+J1jb9jydCj8+/xzq14eVK2VJXK7X/b2q9omiyKpVq+jevTsDBw6kfv36bN++\n/aqJi5J+f/TRR4pp1xal/L5w4YIiunJxobCII5tWMH/fQtA4wOpDlLULEwaNvSxxcSYuxJu3b2nG\nvEfaM6hFGAKw7HAWw7/awcwtZwj31tAuykSfhr6s+3oKN8Z5kxThRf0APf5GDQJQYhfJLbaTeqGU\nw1lWtqcVs+a0mcXHCll0tIA/TxWy7ZyZgxkWUvJKyDbbsNgc2ErsFGYXk3kinzM7MzjyZyq7Fxzn\n7ptGs/LjXfz++mZ++tcafnx2Db9P3szKj3ax8ZuD7Jp3nMMrU0nZnkHG8TwKM4uxlzrQaAX863kT\nkxRKi/4N6HRvc/q/0I4R73dn2LTu9PtXOzqOakbzvvWJbhWKX7g3418a75Lfp7rb5dSpU0lOTsbf\n35+IiAiGDh3K0aOXV0J79dVXiYqKwtvbm379+pGamlrpfUEQjIIgTBcEIUsQhAJBEH4WBCG8Vs6o\nqLgARXpe/I3+RPpGciRLSl7q15d/kpsSmkrqKsHVbLXZYOJEePdduO02+OYbCAysnWZN8aR4OlNu\n98CBA+natSt79+5l9+7dzJ49G39/f5KSkkhKSiIkJETW9jydCj927IDevcHHR15dmXH3uFfFvrVr\n1/Lqq6+yZs0aOnTowJIlSxgwYMDfXtFW0u969eoppl1blPJbqSqEcjLj6zfY4Ac6jZaA4tak5VmZ\nvXQTo4d0v+Z340O8mXprcx7sHMsHK0+y+XQeMzaf5dc96TzftyFDEiOIa9CAYJOOYKcpT3aHSEGJ\ng6ISB4Vl90WlDgqsdiyFpVhyLRTnWcm8YEUsLEEsKq24YbFd0RZ9oQ/pR3IrvaY1aPAONGIKKL8Z\nMJU99y577BNc/V4UVx0fqtvOunXrGDduHO3bt6+Y29a/f38OHTpUMeds2rRpfPbZZ8ycOZO4uDgm\nTZrEE088canUR8BNwHDgAjAd+AX4243CeGdzvFooOw9Upeboj+nhy7q2QlkUW7awaWjTip6XcePG\nya6vhKaSukpwJVtFEUaPhjlz4P334V//ql5hJ7n996R4OuNst5+fH127dqVLly6cO3eO3bt3s3Xr\nVtatW0dUVBStWrWiZcuWtapG5qlxupRx48ZJG+G5c3DqFJjNIMNk1Ot1f7+afeXDw95++23Wrl1L\nmzZtWLhwIUOGDKnSMBwl/b7rrrt47733FNOvDUr57SNTkq4UGgH+NGeCXxjD2vWjuU8X3pjxGwvW\n7apS8lJOk3BfvrirFetO5PDmH8dILyjhtUVH6d0k9MqxtTsguxh7hhlbuhlruhlzuhlzhpkS85WT\nk0sNF3z1CD568DEg+OgZ3OVJND4GvAKM+AYZ8Asy4uerx9egxcegwVuvQa+VZ26Kq44P1W1n8eLF\nlZ7PmDGD8PBwduzYUVHp7+OPP+aVV15hyJAhgFTCPDz8YqeKIAj+wGjgLlEU15S99iBwSBCEZFEU\nt9bcIxUVZVEseWkW0owNqRuUkle5Ch9/DLNmwXffwd1317U1/ywEQSAmJoaYmBgGDBjAkSNH2L9/\nPytWrGDp0qXExcWRmJhIixYt3LrikuIIAvzvf3D//dC1K8yfD3FxdW3VPwK73c68efOYOnUqu3bt\nIjk5mfnz53PLLbegqca6OSrXF1HRoawOk3qJR3cfzoIV0oXFhlFh1dYSBAEvvZZcs1R1bGDzUMTC\nUs5n5Feq1HUh3SyVGBavruUdbMQ/3BvfMG+p5yTQgCnAiNHPAD56SnQaimyi1GNTIlJU6sBc6sAh\nQimQC+QWi1BceZFQg1aaU1M+t8bHUHbTa9yigIDc5OXlIQgCwcHBgFTi//z58/Tp06fiM/7+/iQm\nJrJjx47yl9ojnQOuLH9BFMUjgiCcAToDavKi4rYo2vMyY88MHKI0MVBFeVauhOefl25q4qIser2e\nxMREEhMTsVgsHDp0iP3797No0SIWL15M48aNadKkCQkJCfj7X4cV90aMkBYWuu02aN8ennsOBgyA\nNm2qtTilikRJSQmzZ89m2rRpHD16lD59+rBy5Up69er1jzsRU5GfnKgwRI2G4PwLlB7cyx9bpPkR\n/Tq0rLKGQxTZfiaf3/ens2FvBs0K7XTU6YlYk8mvf/x11e/pTTr8I7zxC784Ed4v3Bu/cBM6Q/WH\n24miSLFNxFzioLDUgblsKJo0JE2kxF5+s5Nrufz7GoGKwgG+ZYUEfI3SvdEDExtRFHnmmWfo1q0b\nLVq0AOD8+fMIgkBEROXSzuXJTRkRQIkoipdO2EoH/n7sp+B5cbqeEPjn/zaKJS/+Rn8sNgt2h52j\nx47SrFkzWfUPHz4su6aSukrgbOupU9I6gL17w9Sp8mjKgSfF05nq2O3l5UXbtm1p27YthYWFHDhw\ngAMHDrBo0SJEUSQiIoKEhAQSEhKIiYm54hVyT43TpVTyo3Vr2LYNxo2TSt69/DKEhUG/flIi078/\nVHF+xPW6v+/atYt169bx3nvvcfbsWW677TZmzZpFcnJyrXSV9PvUqVOK6MqBUn7bbFUYAlWH7BIM\nAMSnpTP9h0WcyQ0hwNdEz7bXLkF5PLOIRXvT2bn9PIE5VhpaRB4qLX/XSimg0Qrkium0TGxRkaT4\nlSUqRl+9rCe6R44coVmzZnjrNVypFEipXXRKZionN+ZSEYcIBVYHBdbLC6/oNOCjv5jYnD99lDat\nWuCj12DUKXfRpTbb5eOPP87BgwfZsMF1I12+eWcC3n4BlV7rPmgE3QePcJkNKhLrFv3MusU/V3rN\nWujeBUTkQLHkJac4B3+jP3qtnhdffJGFCxfKqq+EppK6SlBuq9kMQ4dCQADMnQu6WvyqcvvvSfF0\npqZ2+/r60rFjRzp27EhxcTHHjx/n+PHj7Nixg/Xr12MymWjUqBEJCQk0adKkovyyp8bpUi7zIyRE\nmoBVUiKVT166FJYtk14DKcEZMEC6de8OBkPVdJWy103Iy8tj+vTpTJkyBbvdzt1338348eNp2bLq\nV8r/DiX9/uSTTxTRlQOl/Hb3amOpogYjEJhrYaXRHzTwygM342MyXvHzJTYHv+z+i21/phL4VzH1\nrSIDnId/CRAS509UixAiWwQTXN+P24bexmOfKb8vXes31GsFArVaAr0u79VxiCLmUrGigIB0s1f0\n2tgckG91kF+W2Lz90ku8PH2upKsBX4MWX4MGP6OGEG9pHRutDGu/1HS7fPLJJ1m8eDHr1q0jMjKy\n4vV69eohiiLp6emVel9ycnKcv34eMAiC4H9J70tE2XtX5cGXptJInbDvFnQffHnS+NfRvTxxW9Xn\nsnkiiiUv+ZZ8AoxSZv7ZZ5/Jrq+EppK6SlBu61tvwdGjsHkzVO4VrrmmXHhSPJ2Rw26TyUSrVq1o\n1aoVDoeDtLQ0jh07xrFjx9i/fz/e3t4MHDiQxMREj43TpVzVD4MBevaUblOnQkYGLF8uJTMzZ8J7\n70kl8W67De64A/r0qZTIXE/7+6pVq7j33nvJzs7mzjvvZMqUKcTJPGdISb9ffPFF1q5dq5h+bVDK\n74CAgGt/qI5pFxxBWrAfdo2eNg3CuLPP5b13dofI4gMZfLviJDecsdDeejFj0XjriG0VSkzLEOo1\nC8boq6/0XVftS7VpRyMI+BoEfA0aIi55z+4QMZc6JzUOxr/5ISadQLFNpNQBuRY7uRa7kx4EeWkJ\n8dYS6q0j2KStUbGAmvj05JNP8uuvv7JmzZrLqpXFx8dTr149Vq5cSevWrQEpwd6/f7/zx3YANqAP\nMB9AEISmQH1gU7UNUlFxIYolLya9CatdWrlWLZWsDPXr16eoCP79b2kRyrJjVK015cST4umM3HZr\nNJqKyf69evUiPz+f5cuXM2/ePPbv38/gwYNlba+uqHLcwsNh1CjpJoqwezf88gv89BPMmHExkbn9\ndujb97rY30tKSnj11Vd599136dWrF99++y0xMTGKtKWk385XgN2N67lUcqewSP5nkMZ73de7VaWh\nXKIosu5EDh//eZLAU0UMyXdgEEHUCjTuFUOT5HoERvvWWfltV7Sj1Qj4GbX4GS/+lm0jpaFcNkfl\n3po8i51ssx2rXSS72E52sZ2j2VLRgEAvDSHeOkJNUlJTleFm1fXp8ccf5/vvv2fhwoX4+PiQnp4O\nSEl0eW/+M888w5tvvknjxo2Ji4vjlVdeITw8vGKtF1EULwiC8DXwoSAIuUAB8AmwQa00puLuKJa8\n+Oh9KLAWKCWvUsbs2ZCfD089VdeWqFSHgIAARowYQWJiIosWLWL69OmMHDlS9ivsHoEgQNu20u2N\nN2DfPvjxx8qJzJNPwpQp1av77UGUlJTQo0cPduzYwTvvvMPzzz+vVg9TkZUgAinWFKG3W+iedHF+\nhSiKvLb4KL/uTadfrp0bCqXeltDGAXS+pzl+4bUvde7p6DQCAV5aApyGoomiSGGJg+xiO1lmO9lm\nG+ZSkTyLgzxLCScAAWgeZqRJiEHWeT9ffPEFgiBctgjtN998w3333QdIPaBms5mxY8eSl5dH9+7d\n+fTTT7ntttucv/IsYAd+BozAH8Bli8GoqLgbiiUvsQGxFNuKSStII8ovSqlmrnvWroXOndVKtJ5K\ns2bNcDgc/PTTT1gsVyiNc70hCFIXYuvWFxOZGTPgzTehYUN48MG6tlARRFFk3759vPDCC7z44ot1\nbY7KPxCr2QAUEWJJQytcnKz+2drT/Lo3Ha0ASTYNYKft0MY06xurVpT6GwThYk9NXNki0MWljopE\nJqvYToHVwcFMK8U2B0kRXrLF0+G4vNjAlZg8eTKTJ0+ueL5z585K74uiaAXGld1UVDwGxS7tdYjq\nAMC2c9uYNm2a7PpKaCqpqwRS2VSQs3iO3P57UjydcZXddrudP//8k/3799O06bUr/7g7ssatPJH5\n8EOmdegATzwBlcds1xp32T6NRiP9+vW7bK6IJx7nZsyYoZh2bVHK78LCQkV05SQ7XxrW5G27QEGW\nNB973u6/+O9GaRjRKwMS0Fql+RxxHetV+0TbVfuSK/fZ6rZl0muIDdDTJtJE34a+tI6QhnCdyi1l\n67liRPHKi964y3FIRcVTUCx5ifGPIcY/hu/2fYfZbJZdXwlNJXWVwGw2c/YsyDksXm7/PSmezrjK\n7jVr1pCdnU39+vX/EVc5Fdsv+/aV5sl8+KG8um60fQ4fPpwNGzYwadIk7HbpJNITj3Pu3IOolN9X\nOyl1F3SIFFmk5EUQRdb/8G9EUWTGlrMAPNAphiHNwioWlCzKLq52G67al1y5z9amrRK7iF0U0Zed\nZaUV2LhwhfLMtW1HReV6RLHkRRAEpvaZyk8Hf6L93e1l13/99ddl11RSVwlef/11IiKkwk1yasqJ\nJ8XTGVfYffToUdatW0fv3r354IMPFG/PFSi2X779ttQTE1b9FcH/VteNts9Ro0bx9ttvM3XqVAYO\nHEhmZqZHHuceffRRxbRri1J++/n5KaIrFzYEWvpJc1DTfBuzY8n3rJ71EQ1DpPksQSY9epOOuGSp\nBteW2Yex26o2NKkcV+1Lrtxnq9uWNA/Gzt7zFpYeL+BAhpVSBxi1AonhRvyNVz7lcqfjkIqKJ6DY\nnBeAUa1GMWffHMb+PhaNoGFQwqB/xNVldyI2FvbuBYdDXbjckzCbzcyfP58mTZrQtWvXujbHfRFF\nOHQIFi2CM2cgIaGuLVIMjUbDhAkTSE5OZuTIkbRp04Y77riDLl260KVLF6Kjo+vaRBUPpqH+PP7e\nzbhghoNBXRDfe46iXs9D5BBmbT6Nj0FL/1sb8dfBHPL/KmL5Bzto0b8BMUlhaGRYy8TTcYgiVptI\nsc1BcenFe8slz5374PyNGhoHG4jx18uyHoyKioqEosmLIAh8dfNX3PXLXQz5fgjJ0clMvnEyAxsP\nVJMYmXjgAama7COPwFdfqQmMp5CamorFYuGmm25S94VLsVhgzRopYfn9dzh1CkwmGDIEBg2qa+sU\np0+fPuzcuZNXXnmFX3/9lY8++giQyql26dKFrl270qVLF1q3bo2uNivSqlxXnHfYefiWHnw4dxmH\ngzuRaYolafvPGPp2JosQ3lx6nA+xMiJWS/QxgZyUAtZ/tR/fMBPNesfSsFMkOqP7l4SuCXaHiMV2\n9YSk2ObAYqv60MBwHy2Ng42E+2jV47uKigIo/s8X7R/NvCHz2FOwh9dWv8agOYPoGN2RST0mMaDR\nAPRa/bVFrkBWVhahoaEyW6ucrhJkZWUxfHgoM2fC/feD3Q5ffnnVRcqrrCmn/54UT2eUtjs7Oxu9\nXl+xuJ2nxulSauzH2bPSgpW//y4tXllUBPXrSwnL4MFktWpFaGys+9irMDExMXzzzTdkZWVRWlrK\npk2b2LhxIxs3bmTevHmUlJTg7e1Nx44d6dKlC507d6Zt27ZERkZW6WRJSb9zc3MV0ZUDpfyuavWn\nuuQkOibc2Z8G9UKZ9OU8solmk99wuqUupKDYSmqjWzH7RjKzEPxCrPQtyCWhJJjCzGK2/3CUvb+f\npEG7CAKjfQmI9CEwygeD98X/b1ftS9dqRxRFSuzSopKl9vLH4sXHZc8ttotJitV+5cTkQm42/kEh\nFc8FwKQX8NJpMOkFTDoNJp2ASa/By+leU82ExV2PQyoq7opLLts99NBDLFy4kD7xfVh+cjmvrX6N\nm7+/mWBTMLc2vZURLUbQJ74PRp2xypqjR49m4cKFstuqlK4SlNt6zz2g1cK990oXrF99VXpck4uy\ncvvvSfF0Rkm7c3Jy2LZtW6UTTU+N06VU2Y+iImljXbZMSlYOHpS6DTt3hkmTYPBgSEysWNdl9C23\nXJf7e7l9w4YNY9iwYYA0IX7nzp1s3LiRDRs28NVXX/HWW28BEBYWRlJSEm3atKm4b9q0KXq9/oq6\nSjBlyhRFdOVAKb/z8vJk15Sb5YVmxosOhvdsR3LzeJ766Du2HTrN8txggny9GeCTjtZyjE3WKPID\nGjM/pB56h0irwlI6FdjxK4Jja89V0jQFGAiI9CEg0ocXP36Sud/+RECUDwZT7U4tHKJ4SeJBReLx\n8D0P8PG3P0vvlyUl5QlJiV2kmlN1KtAISMlIWVLipRd4+l/jmPXj/IrXjVpBkZ4Udz8Oqai4Gy5J\nXsrrjAuCQP9G/enXsB87/9rJL4d+4ZdDv/DN7m/wN/pzc5ObGd58OAMbD8SkN1VJUylbPQFnW0eO\nhKQkeO01GD0a3nkHXn8d7rijekPJ5Pbfk+LpjFJ2nz9/ntmzZ+Pl5VVxMqpke67mqn44HLBr18Vk\nZf16KC2VJm317y9tuH36QEjIFb9+ve7vV7LPy8urYh7M888/jyiKnD59mj179rB792727NnDzz//\nzPvvvw+AwWAgMTGRpKSkioTmueeeU8zmMWPGXFby2V1Q6vd29wn7JkSOmAv5edsy7ux4E7ERwfz0\n5uN8t3Qz//l1NWfSc5i7NQWjQceInn40j7Gx8chf7C/yZqd/CLv8RBpZRGKtIhGWEiIcAl52HcX5\nJRTnl3D+cC69I4ex/IMdUnuBRgIiffCv540p3BuvMG+86nnj0GorkhDnxOPSJOTvEpBBj7zI8ZyS\na/qs04BeI6DXChi0wmWPjTqhUq+J4QqJyXtvTSHKr2ajQ6qDux+HVFTcDZckLzfccEOl54Ig0C6q\nHe2i2vFW77c4kHmAnw/+zC+HfuG7fd/ho/ehZ1xPOsd0pktsFzpEd8DX4Pu3mkrZ6s5camuLFtKi\n5Dt3Sr0vvXB/SgAAIABJREFUI0fCW2/BxInSvBhtFYYry+2/J8XTGTntLikp4fTp0xw/fpy9e/cS\nHBzMqFGj8PHxUaS9uuSGG26QJtmnpUkb4s6dsGMHbNoEWVng4wO9esEHH0hJS5MmFb0r19RVyl43\npir2CYJAfHw88fHxlVbPzsvLY+/evezZs6cisZkzZw5WqxWABg0acO+99/LCCy/g7+8vm83NmzeX\nTUtulPq9L+3ZcjcGa+38Ckxb/BW3tO2NyWBEp9Vy/6CujBrQiSWb9vHFgtXsOZ7Kd8s2Y9Bp+d/E\n0dzYpil7Dp9gwZrtbEuzsNovBjFQurBocIiElzpoH+BDgkFPK0sHSrKKKckvoTjPSnGelfOHci4a\nIYAQ6o2mng+aSF809XwR/P9+5XmdhssSjwadO1w5IdFKyYr0uPpDt66Eq44P7n4cuhTr3IMUh9nq\n2gyVq1BiT61rExSnzmd7CoJAYngiieGJTO45mSNZR5h3aB6rU1bz7sZ3uWC9gEbQ0DqiNV1iutA5\nVkpo4gPj1YlwV+GGG6SpA5s2weTJUhLz6qvw0ktwzz21mxOjcm1EUSQjI4Pjx49z4sQJUlJScDgc\nBAYGkpSURO/evTEaqz5E0q0RRUhJuZiolCcr5fW7Q0KkDXLsWOjXTxoWpm6ALiEwMJAePXrQo0eP\nitdsNhtHjhxhz549bNiwgffff58vvviCSZMm8eijj/5ztkuVSgwMr8c2P3/S8jL4fsvvjO4+vOI9\nnVbLzd3aMKRrEpv2n+D/fljGpv0nGDPtW35+83GSmjXCp/Asjc78j4M7d1PSuBfahK54xbYgKCiY\nUF8jPl567IAW8LLacORYEHOKceQUQ7YFR04xYlEpYqYZe6YZ+75MqW0fPX6xfgTE+RPcwJ/QOH+8\nTDr0GmRLQFRUVP551HnycilNQ5syofsEJnSfgEN0cDDzIJtSN7Hx7EZWnlrJ59s/ByDcJ5wusV3o\nHNOZzjGdaR/V/ppDza43OneW5kBv2wZTp8JDD0nJzAsvSElMUFBdW/jPQRRFDh8+zNGjRzlx4gQF\nBQXodDri4+Pp378/jRs3Jjg42PMTbrsdFi6EzZsvJis5ZVdXIyKgXTspUbnhBukWG1ulnhUV16DT\n6WjZsiUtW7bk7rvvZsKECUyePJl//etffPTRR7z33nuMGDGirs1UkRnfyCY82akPL//8f0xfMYdR\nnW/GqKt8EUEQBLq0akz7ZnHc98Z/Wb/3GA9P/YaHujfEu15DvO98n+R7va7axoXiErIKrGQVWsgq\nsJJrthIdbOCZYc2JD/WhKMdC1ql8sk5dIOtkPrmpBdiKSsk9nEPu4RxOA4JGIDDal+jEEBp3j8Y7\nUE2mVVRULsclhXW//vrrGn1PI2hIDE/kkXaP8M2t33D4ycNkvZDF7yN/p8P5DuRb8pmyZgo9ZvTA\n/x1/kr9K5pk/nuGH/T9wJv9MjVY9rqmtdUFVbe3QAebNg/37oUcPeOYZ6TzzlltgzhwoLKy+ptw2\nuhvVsfvUqVN8+eWX/Pjjj5w7d47ExETuvfdexo8fz913303Hjh0JCQn528TFI+K0bBm0aQPDhsH3\n30tDwJ5+WurmS0uD8+f5etgwmDIFbrtNqhYmU+KiVHzcPe5K2fff//6XkydPsnTpUiwWC35+fpw+\nfZonnnii1qvFL1iwQCYr5UepeLr7Cun68Hju6jgInUbLX/mZpGafv+pnDXodX730AAlRwYy+7x7C\nO96Cb4NENAYvBNGBv1FDlJ+OpiEG2keZ6Bnnw5Amfpi3zadDtBd+OpG03EKOpRew+lg232w5C4BP\nsBcN2kXQbkQCA15sz+0f9qDfc+1oO6wxsW3DMAUYEB0iuakF7F9yml8nbWT9f/eTcTyv0jbpyn3W\nVW25+3FIRcXdcEnysnPnTtm0QrxDGNxkMA2KG7Dq/lXkvZTHrrG7+HjgxzQNbcpvR3/jrl/uosFH\nDYj9v1hu/+l2Ptz0IZvPbsZqs7rUVqWprq0tW8Ls2VJV2vffl6YgjBoF4eFw550wfz5s2yav/54U\nT2eqYnd2djZz585l5syZaLVaRo8ezeOPP07//v1p2LBhtdbgcOs4HTgAN90EAwZAYCBs3SotGLlg\ngTQecfBgiIwElPPD03TlQk77UlJSmDFjBvfffz/PPvssjRo1YsyYMRw5coQxY8awePFijh8/Xuve\nwcOHD8tksfwo9XuXlpYqoisXWp8g0vIysDnsGHUG6odE/u3nNy74lvvvGUVEeCglhXm0CxPo38iX\nW5sH0KehLx1jvGkR7kVsgJ4gkxa9VmD/3t30aBzCywMa8/ujHXj3Nmnu05bTeVdMiLV6LWGNAmje\ntz7dH2nFbW935dY3u9D5/haENw5EdIic2ZnBig93smTqNo5vSMNe6nDpPuuqttz9OKSi4m64ZNjY\n9OnTFdPUaXS0qdeGNvXa8HiHxwFIL0xn09lNbErdxKazm5i4aiIWmwWj1kjv+N482v5RBiUMQqe5\n3H0lbFWKmtoaGQlPPSXdTp+GH36AuXOlC+r+/tMJDobx46FsCZI6sbGuudTuoqIiMjIyyMzMrLg/\ne/Ysfn5+DB8+nJYtW9bqpM9t4/Tbb1IvSmQk/PILDB36t70pSvnhabpyURP7SktLOXr0KPv372ff\nvn3s37+f3bt3k5KSwv+zd97xUdT5/3/ObEkvpPdA6DX0DqJIEwQsIOjvRD17ubPhoZ4nqF/PdnZF\nDwtgwcKdCIegIE1QKYKhJnQIpJBKerbM/P6YEBNKsrvZ2Z2FeT4e85gts6/P+/POzGTf+/m8P29B\nEEhPT+eOO+7g8ssvZ9iwYYSHh7vV5lmzZvH111+7VdNdqPX3DnPHzVJFDIFh7MzeD0C3xPaYjRde\nYCDzl9UUxvYlrFUEufkFDEz0IyWq+dXUGvpWEAT6pyrnVV5ZLQUVFmJCmp4CJggCQRH+tBkQR5sB\ncZScKGf/+hMc3ZJP6YkKtnyWScGhUo9es55qS+v3IR0draG5nBd3EBscy+ROk5ncSVl5x2K3kJGX\nwabsTXy26zMmfTGJpNAk7ux9J3/u/WcSQhK8bLH3aN1aCVT+9jfIzISPP4bXX1eKXT71FNxzz6WV\nX11VVXVOkFJQUFA/LcRgMBAZGUlMTAyjR4+md+/eml9pqEV06qRsWVnw88/KCmHBwc1/Tkd1JEni\n2LFj9QHKmWAlKyurfiQgISGBbt26cd111zF06FAuu+wyIiIivGy5jqeR7Bb86gIWu2xv8tja2hoC\nE9oD8PaHCxnw5K0utTlv03EAYkLMtAp0/h7ZKimEATd1pufkduxbfZy93x8jP0u7BVB1dHQ8x0UZ\nvJyN2WCmX2I/+iX248GBD7ItZxvvb3ufFza9wJz1c5jUaRJPDX+KnnE9vW2qV+nUCV58URmRmT0b\nHn4Y3nhDqRkzZcrFl3ddXV3Nvn37yMvLqw9SKisrARBFsT5IadOmDdHR0cTExBAREYHoTOEcX6d9\ne6U+y7/+peSyfP21sh8xwq05LTpNI0kSGRkZrF+/vj5I2bNnT/35GhYWRvfu3Rk6dCj33HMP3bp1\no2vXrkReoG6OzqWFVFlK25hBABw6lY0syxccKQ5NaAt2sNtslJVXcDy/mD6dWjvclizLfLfnFJ9t\nUwpazh7XAZPB9XumX5CJhK6R7P3+GFUltdSUW/APuYR+UdPR0TmHSyJ4OZu+CX3pPLazsrLZj4/z\n333/JSYwhrkT5nrbNE2QmAjz5sFDDykjMjfcoEwre+89JT/G18nJyWHr1q3s3r0bu91OZGQk0dHR\n9OnTh5iYmPogxeBIYZxLAbMZHn9cOREeeABuuUV5PTYWBgxQtoEDoW9fcGO9kEud4uJifvjhB1au\nXMnKlSvJz8/H39+fLl260K1bN6ZMmUK3bt3o1q0biYmJvr+SnY5qnP55Eb3HTcUoGiivqeRkST5J\nEXHnPTYwJgVy7VSVlwLwj3c/p3tqFO1apzTbTnZJNf/84SCbDisjJNf1jGNIW9dG+moqLBzbms/h\nX3IpOVG3qowANkvTI0c6OjoXPx4JXiZOnMjSpUs1obm/aD9zt87l498/pqy2jAkdJnBfv/sY1XaU\naraqhdp+7dJFSXn4z3/g7ruVhP/33oPrrmtGRGUbXcFqtbJnzx62bdvGyZMnCQsLY/jw4fTu3btR\nscgzeNpurfipSdLSYPlyyM9XkvZ//RU2b1aG68rKQBCYGBzM0ilT/ghqunYFJxYuuBBq+UdLfpck\nid9++42VK1eyYsUKNm/ejCRJdO/enZtvvplx48YxZMgQzG6Yx6lmvx966CFVdN2BWv0uLi5u/iAv\nYistpGTRE3SOa82unENsP7b3gsFLlWwC7AjFxwmxFFFCJFc/8BwvXdedcTfeidF8bu5KUaWFy8eM\nx2/iP7DYZUwGgVsHJnPnkOYDnjNIdomqklpKTlRwdEseJ3cVItmVRH/RIJDYI4oOw5O48dYbPHbN\neur+oKX7kM7FzcgTnxFT5B6tU9XwhXuknMYjwcv999/vNU2L3cIv2b+w6vAqVh1exZaTW4gKjOKe\nvvdwV9+7aB3eWnVb1cJTfr3uOhg2TAlgrr9e2b/9NjgyMKEFf1osFt5++23Ky8sB6NKlC8OHDyc6\nOvqCU8A8bbcW/OQwsbFw9dXKBiBJSsLU5s3cv3ixUqRy/nzl9eBgZTnlxx9XllZ2EbX8oxW/r127\nlj/96U+cPHmS0NBQRo0axb///W/8/f256aab3N6emv2eOnUqGzZsUE2/JajV7/P9AKIlBBFqDv9G\nW6uJXZjY9O0rDDr2K36J3fCLb48ptg2ywY+jpRb2F1kASO87gLfuyOGB+RsoN4Twf59+zy8fzqHv\nhJtpM+42soli+4kydmSf5mhxNRUdxiLYZQa0DueJ0e1oHRl4jh22WjsVhdWUF1RTUVhNRUE1FUXK\n88qiGmSp8apkrZJDSBsUT+u+sfgFK3kznrxmPdWWVu5DOjq+gkeCl9GjR3tMU5Zl9hTsYdWhVaw+\nspr1R9dTaa0kMiCSK9Ou5C/9/8J1Xa7D33j+Yltq2KoWnvRrTIwyAvPBB0oSf1ERfPIJNFeQWwv+\nNJlMDBkyhOPHj5Obm8vevXvZu3cvRqOR2NhY4uPj67fo6GiMRqPH7daCn1xGFJVhui5dGH1rXXJv\nZaUSxCxfrqzLvWCBsp861aU8GbX8422/y7LMG2+8waOPPsqIESNYtGgRAwcOVH0RCDX7PWjQINW0\nW4pa/fZr7kboZULa+GGURUxlynOpvISyX/4L/BfJ6E9Rx6sp6D4dm7+yQpg/FpIM1XSfPJ3X4rpy\n11tLqIq+jC2Gvqyq6IFleTHQeLSp9+AR3DYoiRFJ4VQW1XDkYF7jQKWwmpoyS5N2ikaR4Eh/4rtG\nkjYwnlZJ5y4O4slr1lNtefs+pKPja1wUOS855TmsPryaVYdXsfrwavIq8vAz+DEsdRj/uOwfXJl2\nJT3jeiIKl1CitQoIAtxxxx91Ya6+Gr79FgICvG1Z0wiCwIABAxgwYAAANTU15OXlkZubS15eHseO\nHeO3335DlmVEUSQmJoa4uDji4uKIiooiMjKSsLAwPafAGYKClIqow4fDXXfBI4/AtGkwd64yKtO6\ntbct9Dp2u51bbrmFTz/9lJkzZ/L88887VRtIx3tUVVVx4sQJsrOz2blzp7fNaRZzexH/1ACOrw+C\n/Ari4lthietAcXhvihMvw+bfCgCxooDKXavZdjCbT4ki3xhNkTmW8G4j8JPBbodYu0xwhZXI8lOE\nVxYTbqulTVwSAdWRVOw+zZKm4xPMgUaCowIIjg4gpG4fHKVsgeF+CKJ+n9XR0Wkan/xPWWGpYP3R\n9fXByp6CPQD0iuvFzT1u5sq0KxmaMpQAk8a/VfsokybBihUwdiy8/LJSp9CX8Pf3p3Xr1rRu8AXa\nYrGQn59fH9Dk5uayc+dOJEkCwGg0EhERQWRkZKMtKiqKAK1Hb94mLU2pgPrVV0rUu3SpsqTdJU5R\nURFfffUVw4YN48UXX9SDY41QW1tbH5hkZ2c3enxmOzvHZcyYMV6y1jGWHfNjWYZASY2S+F7V7REy\nU/shW+3IVVbKThaRebiQgvxKAuwdCLJ3oIMdekkyQXYIstsw0vD8FIBY8IsFP7CUK5uChFk4jb+h\nGH9jMYHmIgLMJQT6nyYwqAI/fwnB7IfBzx/B5o9YHIihKhDhVAi1AcEI5kAEYwCCwQ8M/ghGZY/B\nr+41P4S65+c81n+g1NG5JPBI8LJkyRImT57s8udtko1tOdvqp4L9kv0L1j1WUgamMCptFH8f/ndG\nthlJdFC01231JGrY6qjm5Zcr3z9fekkZjYm/QMFmX/Gn2WwmOTmZ5ORkQLH7jjvuoLS0lKKiokbb\nzp07KSsrq/9sQEBAfSATERFRP1oTERHh8C/pvuKn5miyH6dOKcn7U6e6V7cFeNPvMTExLFiwgOnT\npzNnzhxmz559zjG+2O+1a9eqousOFi9eTN++fZsMTAoKChp9JiIiov7eMHjwYJKSkuqfJycnk5iY\nyMqVK73UI8f4cGcNphgj0cZoxvmPpd16f6qqtiNYlR9n/ID0JhWUwMVur0CWyhDkMgxCGSahAj+x\ngqhgC78c2MOYDoH4CcWIQoMVwWSgVtksp6GZgRkQlAR9wSggGlH2BgHRqLy2cncxE/pEIZoF/MKN\njUdqRLMS8BjMZwU85wuCzh8QCYEJiK06IQiCx+4Pvnb/HzHwQ3q2bb5wqY53+D334v9B1SPBy6JF\ni5y+MGVZZlvONhZkLGDR7kUUVxcT6hfKFW2u4LUxr7H8t+Us/+tyt/9a6Yqt3kINW53RfPJJpZjl\nW2/B88+3XE9LnLE7IiKCiIgI2rdv3+h9i8VCcXFxo6CmoKCAffv2UVtbW39cXFwcbdq0oU2bNqSm\npl5wpShf9dPZXLAf330H//ynMtcw7vyrHLmk20K87fdp06Zx5MgRnnjiCb7++mvS09Pp2bMn6enp\npKen+2S/v//+e1V0W8pXX33FDTfc0Oi1sLCw+iCkb9++TJ48uVFgkpSURGDguYnnZ+Pt86g5guQA\nrrZNoL+lF4YqAzK19eMoVtlOjVyDJFThZ6olKFggONyf4MggQmLCiYiPJiI5jqCIQAymC6/S8sYN\nN/DwPz/FXlOOVF2OvaoMqaoEqaoYe2UJUtVppOrT2KvLkarLkGoqla22Cqm2Gqm2BmQZZJBsMthk\nzrco8tcbTjGslZILE5QUQGhKg/wwyQKSBdn6x0syziOEpmFqM5lFn3/qkb+r1s8fHR2t4ZHg5csv\nv3T42JzyHD7d+SkLMhawt2AvCSEJ3N7rdiZ3mky/xH4YRcXk+5bc53VbvY0atjqjaTBATU3T30V9\nyZ8Nac5us9lcnxfTEFmWqaqqqg9msrOz2b17N7/88guiKJKYmFgfzCQlJdWPzPiqn87mnH4cOQIP\nPqhMFRs5El5/3T26bkILfp81axatW7dm48aNZGRksGzZMioqlOk9MTExjB49uj6YSU9Pp1OnTi1O\n6Fez3y+88AKrVq1STd9VDh06REhICIsXL64PTEJC3PPrsRbOo6YY7zeFuIAEioOKSY0LoE1aDNGp\n8UQmxWEONLvlR8AzPjAGR0Cw87VdZFlGtlQjVZdhr66oC3DKsVeXU3PoN8p3fAeSnTcnpQFgCI0h\nfOIL+KV0A3st2GuR6/bYa+oe1zR+zVa3lyxgrwFbLbK9pu6zNWCvQSrJRC47jCXjVT6eEYRl97sY\nW09CDE5ssY8uhNbPHx0draGZnJfdp3Yzc9VMfjj0A2aDmcmdJvPq6Fe5Mu1KDKJeLFCLrF4NFguM\nH+9tS7SDIAgEBQURFBRESkoKffr0QZZlioqKOHLkCEeOHGHr1q1s2LABo9FISkoK3bp1o1evXt42\n3b3IslL/Zc4ciIpS8l2uv96llcYudgRBYPr06UyfPh1Q6r0cOXKEjIyM+m3x4sW88sorgBI4d+nS\nhfT0dK655homTZrkTfN9Cn9//0tyZafb7h9Mn779vW1GkwiCACY/5AobtpIcLKcOYz11lNrcA1hy\nsuqP80vpTtiQaQR3H4lgqPsKYwwAYwDuuLvIlnJs2SuxHfkWuTIH26HF2A4tRgzvhBDaBjEkFTEk\nBSGkNUJAzKWZZyPot3Itcyn8aTQTvMxZP4dd+buYO34uU7tOJbxuyUYd7TJ/PvToAW3betsSbSMI\nAlFRUURFRdGvXz9kWSYvL6/+C+oPP/xw8QUvL72k1HaZOVNZ0SH43CVPdc6PKIq0bduWtm3bcu21\n19a/Xlpays6dO+sDmm3btrFgwQKee+45nnjiCT3hX8dnkO02rIXZWE4dxpJ/BGvBkbr9MWV05GxE\nA8HdRxI2ZDr+qd1VtU0wh2BqOwVj2nVIp7ZhPbIEKX8zUmkmlGY2nspm8EcMTkEISUEMaY1wJrAJ\nTEDQf3TV0VENzQQvx0qPMabtGO7sc6e3TdFxgAMHYNkymDfP25b4HoIg1NeVqaioYP/+/d42yb18\n/TXMmqUELXPmeNuai4bw8HCGDx/O8OHDAWWazTPPPMPf//53cnNzeeONNzA4UjlWR8dDyJKEtfgE\nlpOZWPIPK9upI1gLj4N0vowWEIx+mKJTMce2wRzTBlNMG/xTe2AMbfmCPM4gCCKG2P4YYvsjVeUp\n08nKjyHVbXLlCWWa2en9cHp/46BGNCEEJyMGpyCGpCojNmHtEQLj9B8ZdHTcgEfGO289U7iuCU6W\nnyQx1PE5pY5ouoJaumqghq2Oar73njIbqLni377kz4Z4wu6DBw+yb98+QkNDfdZPZ3PrNdfAzTfD\njTfCeVbPcln3Er3em7JPEASefvpp3nnnHd555x3mzp3rFt2Wcr5V07RCw1UC3YnWzyPX0tad49Zb\nbsFSeJzy37+n8H+vc/L9uzg6+3KyX76W/M+foOTHD6jcvQbrqSMg2RHMgfgldyWkzwQixj1A3C2v\nkfLYEto8u4HkBz8ndvr/0Wrk7QR3H9kocPGkr8+0JQbGYUwcganTDPz6/YOAKz4kYPx3+I9cgLn/\nM5g6344h6UqEsPbKKmaSFbnsMPacdVizFmDZOpua1TdRveIaan6eiWXvPGw565Gq8pBl2QfOHx0d\nbeGRkRdH5hjbJBt+BserFF+sFbedQQ1bHdGUZViyBK67Dvz9W66nRdS0Oz8/n1WrVnHo0CFSUlIY\nO3as6hXVPYIkMXrfPkhOhg8+cOuk6Ev1enfsepQRBIFhw4a5VddVBg4cyLJly1TTbwkXWu2vpWj9\nPEI+/yiHy3J1Iyq1J/ZSeyKT2pP76Fm2meyXrz3nWMHohzm+vbLFtMEcm4Y5pjWGsFiXRiE86eum\n2hJEQ93oSjI0KBUgyxJy9Snk8qNI5ceRyo8inz6MVHYYrGVIBb8hFfz2xwdMoYxobcOy9wPE8A6I\n4R0QAlzzjY7OpYJHgpcziahNISAgyZJbNV1BLV01UMNWRzSzsuDwYZgwwT16WkQNu202G9999x07\nduwgMjKSG264gY4dO9YnbPs8H33E9KwsWLsW3Fy481K93puzr6ysjNmzZ3PLLbeQnt50pQ5ndFvC\n2LFjefLJJ1XTbwn+zf3a4iJaP4/cFbzYygspWfMRFdu/Q6oreHmGCe2D6gMVv6TO+CV2xi+pM+aY\nNn8k1rsBT/ralbYEQUQIjIPAOAyxA+tfl+0WJaAp3Y9Uuh97aRZy2RGwljGlJ9gOfP6HiDkcY+sJ\nmNpNRTDp+YI6OmejiZwXSZYoqy0jyBzkbVN0HGDVKjCblUKVOo6zbt06MjIyuOqqq+jdu/fFl5/w\nySdKRDtihLctuWSYP38+paWlPPPMM942RUfT2Fr0aXt1OaXrF3J64yJkaw2ARwKViwnBYEaoG1k5\nw5mAxl6aVR/UyGVHwFKKbf+n2I4uxdT+JoxtJimFN3V0dACNBC8nyk5QbaumU1Qnb5ui4wDr10P/\n/uBA7TadOo4fP87PP//MFVdcQb9+/bxtjvuRZcjIgMce87YllwyyLDN37lyuueYakpKSvG2OjoaR\nXRx5ke02Sjd+Tuna+UjVSr6QX3JXIkbfQ0Dbvnqg0kIuFNDY83/Fuu9D5IpsrHvmYjv8H0ydb8OQ\nNEqfTqajg4cS9jdu3Njk+5mFmQB0jOzoNk1XUUtXDdSw1RHNn38GR6fX+5I/G+JOu6uqqvjmm29I\nTExk8ODBqrfnFQ4fhtOn2ahS7s6ler03Zd9vv/1GZmYmd911l1t1W8qOHTtU024pVqu1+YNcQOvn\nEbLzIy/26gpyP36Q4u/eRKouwxSTRtzNr5B433wCOww8J3DxlA886Wtv9EkwmDEmDMf/8o8w93wU\nwT8aufoUlu0vYN35BvIFVmnT0bmU8Ejw8tJLLzX5flZhFmaDmdbhrd2m6Spq6aqBGrY2p2mxQG4u\ntGvnHj2t4i67JUli8eLFWCwWrrvuOkTx/Jecr/qpnlWrwGjkpbVrVZG/VK/3puw7s8S2KyN5avZ7\n4cKFqmm3lKqqKlV0tX4eOZvzYi3O4eTc26g+8CuCyZ/o658i+aFFBHUdccFf/j3lA0/62pt9EkQD\nxtSr8L9yIaZOtwICtqNLqd3yFLKt2iN26ehoFY8EL1988UWT72cWZtI+oj0GJ4o6NafpKmrpqoEa\ntjanmZ+v7OPjmzzMYT2t4g67JUli+fLlHDt2jClTphAefuHCq77qp3pWrIDBg/li8WJV5C/V670p\n+44dO0Z4eDihoaFu1W0pzz//vGraLcUVXzmC1s8j2YmRF1tpPiffuRVr/mEMIVEk3j2P0H6Tmi26\n6CkfeNLXWuiTYPDD1PFPmPs9DaIZKf9Xan9+FFlqWR6Tjo4v45HgJbCZ5Iisoiyn812a03QVtXTV\nQA1bm9MsL1f2YWHu0dMqLbW7vLychQsXsmPHDsaPH0/r1q1Vbc+rFBXBypUwcaLPXZda93tT9q1Y\nsYKg+5S0AAAgAElEQVTevXu7XbelBLh5pTl3ola+gNbPI2emjRUufQV7RRGm2DSS7l+AX1Jnhz7n\nKR940tda6pMxYTh+Q14DUwhSyT5sR5Z4wDIdHW3ikeClOTILM53Kd9HxPnrO4IU5fPgw77//PkVF\nRcyYMcPlL5g+w8KFSsL+zTd725JLht27d/PTTz+5lO+icyniWPBSue8nKvesBdFA7PTnMYbHqmyX\njjMYIjpj7nIHANbMBcg1xV62SEfHO3h9qRCbZONk+UlSw1O9bYqOA1gsyv5iW+W3pUiSxP79+9my\nZQtHjhwhLS2Na6+9lqCgS2D571WroHNniIrytiWXBKtXr+b+++8nPj6eyZMne9scHV/AwZyX0z8p\ntUbCht6IX7yDiY06HsWQOg7h6FLk0wexnViNqd1Ub5uko+NxPDLyMnPmzAu+ZxSNxAfHc/z0cbdp\ntgS1dNVADVub0zx4UNmnpblHT6s4andVVRWbNm3izTff5Msvv8RqtXLttddy0003ORW4+KqfALj7\nbti5E957z+euS637vaF92dnZTJkyhVGjRhETE8OqVatcrhivZr9ff/111bRbSkVFRfMHuYDWzyNH\n8yNsp5WkxqDOQ51uw1M+8KSvtdgnQTBgiOwBgGwpV8skHR1N45GRl5SUlCbf7xrTld2ndrtV01XU\n0lUDNWxtTnPvXoiOdvxHdl/yZ0McsXvdunVs2rQJWZbp1q0b/fv3JyEhQbX2NMvEiXDPPfDww6Rc\nfz3U1oKfn1ubuFSv95SUFKqqqnjttdd4/vnnCQ0N5dNPP+XGG29sUf6Gmv2Oi4tTTbulqFUYVuvn\nkaM5L/bKUgAMQa2cbsJTPvCkrzXbJ4O/srfrq47pXJp4ZOTlgQceaPL9Eakj+OHQDxRWFbpN01XU\n0lUDNWxtTnPvXujSxX16WsURu0+fPo3NZqNHjx5cffXVLgcujranaV55BUaN4oFPP4WUFHjqKTh5\n0m3yl+L1brfbCQoKon379syZM4d77rmHrKwsbrrpphYnnqvZ72nTpqmm3VLUWkxAy+eRgmPBi2BW\n/GOvLHG6BU/5wJO+1mqf5OpTygNTsArW6OhoH00k7N/V9y5kZN7b9p63TdFpBmeDl4uZiRMncuWV\nV/L777+zcOFCysrKvG2S9wgMhKVLYd8+mDoVXn8dUlOVxz/9pCT06zjM999/T69evfjzn//MsGHD\nyMzM5JVXXlFtqV+dixwHc178U7oBUHNsl5rW6LQQqXgPAIaIrl62REfHO2gieIkKjOKW9Ft4c/Ob\nVFjUmZOs03KsVsjK0oOXMwiCwJAhQ7j11lspLS3lgw8+oLDQ8dHDi5JOneCtt5RRl9deg4wMGD4c\nBgyAxYvBrleHbor8/HymTp3K2LFjCQ8PZ/PmzXzxxRekOZpkpqNzPhycNuafmg5Axc5VyJKkpkU6\nLmIvyUSuygVExFaOLWOto3Ox4ZHgJTMzs9ljHh/2OKdrT/P6r44lezqi6Qpq6aqBGrY2pblnj7La\nWK9e7tHTMs7YnZyczB133IG/vz/z58/n1KlTqranZer7ERoKDzygjMR89x0EB8OUKdCxI7z7LjhZ\n6fxiv95lWWbhwoV07tyZtWvX8vnnn7N+/XrVRlrU7PeRI0dU024pNps6hf20ch5dEAdHXkJ6jUMw\nB2LJyaJy9xqnmvCUDzzpay32ybr3AwAMSSMR9GljOpcoHgleHnvssWaPSQlL4Z6+9/Dyzy9TWlPq\nFk1XUEtXDdSwtSnN7duV+i7p6e7R0zLO2h0cHMyMGTMIDg5m/vz5FBUVqdqeVjmnH6II48bBmjWw\ndSv06aMENamp8O23ruu6Ca34fcqUKcyYMYNx48axb98+pk+fjiAIPtnvN998UzXtllJZWamKrlbO\nowvi4MiLIbgV4cNvAqD4h7nIdseDPU/5wJO+1lqf7Ke2IRVuB9GEqfOtKlulo6NdPBK8vP322w4d\n9+jgRymrLeO7A9+5TdNZ1NJVAzVsbUpz0ybo1k35Ed0delrGFbuDgoKYMWMGAQEBLFu2DNmJPA9f\n9dPZNNmPvn3hyy/hwAFl+O6uu8DBpWsv9ut9/fr13HfffXz22WdENVjKzxf7reUv8sHO3LycQCvn\n0YVxPAgJH3YTYlA41oJjlP/2P4c/5ykfeNLXWuqTLEv1oy7G1lcjBmp3VT8dHbXxSPDi6DKASaFJ\n9IzryYqDK9ym6SyaX/KyAZ5eKnn9erjsMvfpaRlX7Q4ICGDChAkcO3aM7du3q96e1nCoH2lpMG8e\nlJbCv/7lPl0X0IrfO3bsSEnJuSs8+WK/4+PjVdNuKZfqUsmO1nkBEP2DaXW58qt+8ep5SNZahz6n\n2WWFfaAtR9qx52xAOr0fDAGYOtzkAat0dLSLJhL2GzIqbRTrj673thk6Z5GXB4cOKbnXOk0TGhpK\nQEAAO3bs8LYp2uXUKQgPV5L4dejTpw/ffPMNc+fOdWrETkfHIRzMeTlD6MDrEf2CsJ/Ox5KzXyWj\ndJzBnvczAMbWExD8nK/Do6NzMaG54CU1LJW8ijz9H7jG+O03Zd+vn3ft0DoHDhxg3rx5BAYGMnny\nZG+boz1sNnjmGRg0SKkHowcvADz//PPccsst3HvvvYwfP57c3Fxvm6RzMeFgzssfh1uQapX8IFNk\nkhoW6TiJEBALgGxTJ29LR8eX8Ejw8uKLLzp8bExQDFbJ2mzSvjOazqCWrhqoYeuFNLdvh1atlDxr\nd+hpHVfs3rNnD59//jmpqancfvvtjXIX1GhPizTZD1lWkvefeQaefFJJourYseW6LUArfg8KCuLd\nd99l+fLlbN++ne7du3Po0CGf7Pf8+fNV024pVU6ucucoWjmPLoxzIy+Vu34EwBiZhCHYsV/5PeUD\nT/paS30Sw9sDIBXsQLZVq22Sjo6m8Ujw4sw/DH+jPwAWu8Vtms6glq4aqGHrhTSLiyE+XlltzB16\nWscVu48ePUpkZCTTpk3D399f9fa0SJP9kCRYvRpeeQXmzAGTyT26LUBrfr/qqqvYunUrRUVFbNu2\nzSf7XVNTo5p2S1FrRF9r59HZyE6MvFTt/5WCJS8AENJzrOOf85APPOlrLfXJENUTzGHIVbnUbp2N\nLFk9YJmOjjbxSPAyZ84ch4+11SUWGkWj2zSdQS1dNVDDVndr+pI/G+Kq3SaTCcHZCK8F7WkNh/oR\nHq6Orgto0e/hDfzji/2+++67VdNuKUFBQaroavE8aoSDwUvNib3kfTIT7DaCeoyi1ZV3ONyEp3zg\nSV9rqU+CORS/gc+DwR/p1FYsO17Rp9fr+ASCIAQJgvCsIAg/C4JwUBCEww03VzSbjhC8gLXu1wST\nwfFfZXXUJy8PVPq/f9FQW1uL0ai5S0ob5OTAX/6iPNbwalRawGQyYTAYnK4VpKNzQRxI2JdqKsj/\n7HFkSzUB7foTe8McBFGd1dl0XMPQqjN+/Z6mdvOT2E+swh7bH2PSSG+bpaPTHB8AlwGfALlAi6Nu\nzSXsOzryouM5qqpg2TKYONHblmgXWZY5duwYycnJ3jZFW0gSvPcedO4MGzcqdV5Gj/a2VZrG39+f\nIUOGsGJF80vG6+g4giPTxgqXvoKt+CTGVvHE/r+XEIxmD1im4yyG2AGYOs4AwLL7XWRLmZct0tFp\nlnHAFFmW/ybL8uuyLL/RcHNF0CPBS2FhocPHWu3KyEtzwYszms6glq4aqGHr+TSXLoXKSpg+3T16\nvoCzdpeUlFBWVkbr1q090p5WadSPoiIYORLuuQemToV9+5S9C9PqLrXrffTo0axevZq8vDxV9NXs\n9/nq1WgFSZJU0dXqeVRPM8FLzdEMpSClIBJzwzMYApwv5ukpH3jS11rtk7H9NISQVKgtwXroa5Ws\n0tFxGyVAsTsFPRK83HbbbQ4fe6LsBBEBEZjEpqeNOaPpDGrpqoEatp5P8/PPYcAAaNvWPXq+gLN2\nn0m4DHchn8OV9rRKfT+OHYOhQ2H3blizRilK2cr12gSX0vVeVVXFwoULSU9P584771SlDTX7/cwz\nz6im3VLKy8tV0dXiedQQ2db06p3W4hMA+Kf1JqBNL5fa8JQPPOlrrfZJEE0YYgcpTywVKliko+NW\nngKeEQQh0F2CHpmbNXv2bIePzSrKomNkx2aTnp3RdAa1dNVADVvP1iwqghUr4NVX3aPnK3jabl/1\n09nMnj0bdu2CMWMgIAB+/hnat3ePrgpoze+yLDNz5kyOHz/Ot99+q9pqR2r2+84772TDhg2q6beE\nwEC3/e9shNbOo7ORLc2M4NUlfgstmK7tKR940tda7ZMsy0jlRwEQghPdb5COTgsRBGEHjXNb2gH5\ngiAcBRotlSfLcm9n9T0SvPTu7bhdmYWZdIvp5lZNZ1BLVw3UsPVszRUrlLqCU6a4R89XcNbugIAA\nAA4ePEhMTIzq7WmV3r17w1//Crm5sH69WwKXel0V0JLf169fz8yZM9m6dStvvfUWnTp1Uq0tNfvd\nuXNn1bRbismJ5bmdQUvn0XmRKpCtxQimiPO+bQhWXq8+uIWyLUsI7e98gV1P+cCTvtZin2RbNZad\nbyLl/wqAGO5YrSwdHQ+zRE1xTWXFy7JMVlEW13W+ztum6NSxbh106wZxcd62RNtERkYycOBAfvzx\nR9q0aUP8pbyi1uzZSj2XGTPgl1/0k6cZ9uzZw6xZs/jf//5H3759Wbt2LSNGjPC2WToXGfaqTIxh\ng8/7XkD7gYT0m0z51iUU/Oc57BVFBKePwRAcgWAOcGn5dx33IUs2sJxGqszBkvEacvlRQMTU+TYM\nkd29bZ6OzjnIsqzqOuOaCl7yKvIoqy2jU5R6vzjqOMdPP8GVV3rbCt9g5MiR7N+/n6VLl3LXXXd5\n2xzv0aqVMmQ3aBAMHgw33wyTJ0N6ukvJ+hczL774Ik888QSpqal88cUXTJkyBVHU3CKQOhcBUnUW\nXCB4EUSR6OuexBAUTum6+RR/P5fi7+cq7xn9MAS3whDUCkNwK8SgVhiCIzAEhde9FoEhOBxDUITy\nvjnAk93ySWTZDpYy5NpSZbOU1j+mwWO5tgTZchqsZ+Vq+bXCr+9TSuFKHR0fQhAEf+AGIAhYJcvy\nAVd0PBK8fPjhh/z5z39u9risoiwAOkY1PwzqqKazqKWrBmrY2lBTluHoUWjJ7BVf8mdDXLE7KyuL\n4uJiBgwY4JH2tEh9P1JS4Mcf4bnn4PXXYc4cSE2FSZOUQGbYMHCiJs7FeL2//PLLzJo1i8cff5yn\nn34aPz+/c47xxX4vWaLqbIEWUV1drYquL1y/gqHpFcQEQSBy3P0Yw6Ip/elz7GWFyLZaZFstttI8\nbKVN5818tbOQqT2iEEz+jYIdJahRghvxPK+LJn+n+uFJXzvalixLYK1oFHDItSVQt1cClD8eYymj\nYTrAglU5zBiV0EwrIviFYYjoirnHgwj+558CqKOjFQRBeBUwybL8QN1zM/Ar0AWoAl4SBGG0LMs/\nO6vtkeBl+/btDt0AMgszMYpG2rZqflkrRzWdRS1dNVDD1oaa5eVgsUB0tHv0fAln7LbZbOzdu5dv\nv/2W7t27M2bMGFXb0zKN+tGpE3z6KVitSv7LkiXw3//Cm29CRARMmABjx0LfvspSdk2MOFxs1/vb\nb7/NY489xlNPPdXk6ly+2O/MzExVdN2BzeZYpXln8YXrVwzs4tBxYYNvIGzwDciyjGypxl5Zgr2i\npG5fXLcvxV5ZXL+XKkrYe0pZsUy21mArycVWkutQe4I5oH4kRwwIQ/QPQvQLQvQPbvD4j9e2rl/F\nnyZcobzmH4RgCkBo4WilbLeArQrZVgnWKuS6x9s2fMvNV0Qp71mrwFaJbKsCq7JXAhJltATZhWW4\nzaEI5lZk5BRhSBiOYA4Hv3AEv1YI5jBl7xeuvG4OQRD0UVkdn2I08ESD5zcBKUB74DjwEfAkMN5Z\nYY8EL++8806zx9Taavn3b/+mV1wvTIbmkyod0XQFtXTVQA1bG2q64/+8L/mzIc3ZbbVaOXjwIPv2\n7WP//v3U1tbSqVMnJk2a5NL8cF/109mctx8mkzL38Mor4a23YPt2JZD55htYuFA5JiQEevWC3r3/\n2Dp2rB+dudiu988++wyj0dhscrsv9nvWrFl8/bU2a0+EhISooqv161eSzIgBzi2eIQgCgl8gol8g\npojmV7Ra+LiMbKlSAp2KkrrgpgR7ZWmDoKek0R67FdlSja34JLbikw7ZNTMesl9tuIKMgOAXgGj2\nRzT7IZr9EEwmRKMBwWhAMAiIBgHBICOIEqJoB2yIghWEWkS5BkGUEAycc+/+17Vg3elEDT1jUIOA\nQwk+qAs+BL8GmzkczGEIogGA90Y63oSOjg+RAuxt8Hw0sFiW5WMAgiC8AXznirBmcl7+vubv7D61\nm823b/a2KTp1REQoM322bYNp07xtjfepra3lwIED7Nu3jwMHDmC1WomJiWHgwIF07tyZmJgYPbG1\nOQQB+vRRtmefhcJC2LFDCWi2b4f//U+ZZgbKUsvp6Y0Dmq5dwez7lb+XL1/Offfdx4033sjSpUt5\n9913adWCOjg6Ok1RWNoVQVT3ulGCHWWExBSZ1Ozxsiwj1VRiKzqErWAv9vJCpKrTSDXl2GsqkGsr\nkWqrkSzVSJZaZKsFyWpFttqQbHZku1w380pGrq3CXluFvaV9MAgIRhHRaEQwGRFNZiUYMvsj1gVy\nol8QYkAIon8ohuAo/NP6IAbFKMGKwffvTY5QmFFJbr7c/IE6XqGkxtsW1CMBDb8UDQSebfC8FHDp\nH5/Xg5f8inxe3PQir/36Gi+Peple8a4VyNJRhwEDYO1aJf/lUvlebrPZKC4upqCggMLCwvqtoKAA\nu91OfHw8w4YNo0uXLkRGRnrbXN8mKgpGjVK2M5w+3TigWbsW5s5VTkKzGb78Usmb8WEiIiJYtGgR\nEydO5N577yU1NZW0tDQSEhLqt/j4+EbPY2NjMTqRJ6Sjc4b9v3fGUm3DHOD980euLcVe+DtS4Q7s\nBTuQK08g0ODLiAAE1G2NEABz3aYEP0ggSQIyAciYlU02IksGZNmAZBeQ7SDbZSSbVBf4WJEtFiSr\nBclSg1RTBZIyzUC2y8h2O1KtHagFKpvtjzEikZjrnyKgbd+WO0dH5+JiH3A18KogCF1RRmLWNng/\nFch3Rdhrd7LCqkJe3vQyb299G6No5JkRz/DwoIe9ZY7OBbj1Vhg3Dr791ue/L55DdXV1o+DkzFZS\nUqL8Y0Sp3xIdHU1CQgI9e/akQ4cO+i/kahMWBiNGKNsZKipg50647DI4dsxblrmd6dOnM2zYMBYu\nXMiJEyfIyclh165dfP/99+Tm5mK3//FbsiAIxMTENApozhfkxMTEYDAYvNgrHa1hKwnih1e2cfl9\nPQmKcC5BvqXI1grshRlKsFL4O3LZ4bOOEBFCWyOYQxGMgWAMRDAGgalubwxEMAUqU7KMgQimuteM\ngWAKAtHc4hFv2WZRRntqKpFqK5FqKur2DZ6f5z3rqaPYik+S8++7CR08lcix9yP6qVMIVUfHB3kJ\n+EIQhPFAV+A7WZaPNHj/KmCLK8IeCV4mTpzI0qVLkWWZjPwMvtz9JW9vfRuAhwY+xMODHiYiwLmV\nM85oqmWrL6CGrWdrjhmj/Cj+2GMwfrySvuBtG11BlmV27txJdnZ2fZBSWfnHr2rh4eFERUXRoUMH\noqKimDVrFt9++61qFbnPRit+aimqXZc33sjShQuVRKzQUPfpasDvSUlJPPHEE+e8brfbueqqq3jh\nhRfIzc0lJyen0bZjxw6WL19OXl4ekvRHsrAoisTGxp4T4CQlJdVvjz76KN99950q0xwfeught2u6\ni+LiYr755huSk5NJTk4mOjraLUtTa+E8aopl4mp2njrEkmd/IDY8klbmUFqZw2jlF0qrgHACzH4Y\nTKKyGUXEBo/rXzcZEOueiwYZA9WIVCLKFYhSOdPu/RuL3/wLor0UbKfBWoZcU4RcdgRl9sgfCKFp\nGKJ6IUb3whDZA8HU9EpoDXHE17Isg92GbLcg26zINkvdZlVes1sbvF73mq3BsXZlf+Pjr/LZ03fV\n6yBLCAYjojkQQTRCTCr2iiIAyn7+iqrMTSTdvwBDULhTfx+tnz86Oq4gy/I3giBcBUwAfgDeOuuQ\nKuBdV7RVD15KqkvoMaEHt317GysPriS3IpdgczD39buPRwc/SlRglEu6999/v5stVVdXDdSw9WxN\nQVBWux0wADZuhMsvb5meN6ipqeGbb75h//79xMTEEBUVRWpqKlFRUURHRxMZGXlO5e2ZM2d6LHAB\nbfjJHajSj4IC7g8OhjZtlGljbqx6rWW/GwwGHnnkEXr16kWvXheeTmu32zl16lR9UHN2oLNlyxZy\ncnI4depU/YgiQGhoaKOA5nxbRESE0wHO1KlT2bBhg8v9VotOnTohiiLXXntt/Wtms5nExMT6YObM\nlpSUVP84MjKyWR9o+TwCOGQ4zHHDKSVHpOTc9/1lP4IJIlgOIoRgguUgggkiRA4mRA4iuO61EILw\nww+Bc/3RI/g6lsyNB+IBCYNoQ6zbDKKsBERGE6LZhMEgIIoSoliGKG5AFOyIoh0RG6JgQ6jfWxFl\nKwIWRCwIkoXxscHsefExBLkGQbIgyNUI9loEqQrRVg1SNdhq3DLN+YakKkrWfOjw8bbik1jyDjo9\nhUzr54+OjqvIsvwj8OMF3nO5kKXbgxdJlvg973dWHFjBioMr+PXEr9hlO11tXbmp+02MbTeWoSlD\n8TOeW9PAGUaPHu0miz2jqwZq2Ho+zT59IDgYtmxxPnjxtj/z8vL46quvqK6uZvr06XTo0MGhz3na\nbm/7yV24tR/Hj8Mrr8AHHzBaFOGuu+DhhyGx+ZWPHEXrfnfEPoPBQHx8PPHx8fTp0+eCx1ksFnJz\nczlx4sQ5W2ZmJqtXryYnJ6fRKI6/v3+zAc7ZoxeDBg1qWadV4pprrqG2tpaCggKys7PJzs7mxIkT\n9Y+PHTvGxo0bOXnyZKMllQMCAuqDmYZBTcNtVMOcLQ1yWZeryayqRrDWIkkVWOVKrHIFFrkSGTs1\nQi011FIoFDerZZINhBBIsBxICEEEy8EEE0Jwagg75b10lTtiwIBdMmOXGiSwn5NE7NqIV4hpMBnN\nzhyVlEAIK4KgBEKiYP9jE6U/NoOsBFdGZbV2gxFEIxiMAt3iBMpMAgaTAYNJpFWUlYAQEcFgQjCa\n6zYTgkHZG8Pj8Et0vjCa1u9DZ7O76i9Ulju3ep2O5zhlz6ZxaonnEQShB7BblmWp7vEFkWV5p7P6\nbgteymrL+HD7h7y55U2Olh4l2BzMlWlX8u74dxnbbiwpYSnuakrHwxgMSimOrVu9bYlz1NbW8tFH\nH2G1Whk6dCgJCc0VAdPxKtXV8MsvSoL+mjWwebMyReyxx+CBB0BfHKFFmM1mUlNTSU1NveAxNpuN\n/Pz88wY4R48erf9yb7Va6z8THBzM448/ziOPPHLeQpta4kzeUExMzAUDPUmSyM/PP2+Ac+DAAdas\nWXNOkHfZZZexbt06D/XCeQZ2HskjlZs5tWM182t6s8fYjoCQCIIDw0GwIEkVSFIlHSy7GVq7gWJZ\noFSGYgRKZIFiWaAEgWoErIKdYsopFsrP29YAEZ73U3JXZNEf2RCALPghi371e0kwI+GHLJiQMCt7\n2YSMEQkjkmxEkgxIsgFJFpXHkqhsdgG7JCDZUR7bQLLLSI2WGhORMCNhVkab3LgwVmSbUJJ7RpPc\nOZqQaD2/RUfnAvwOxAGn6h7LNF557MxzGXA6SbPFwcvx08d549c3mLd9HtW2aqZ3m86HEz9kaMpQ\nzJfIsoGXAm3bKvnSvoTZbGbMmDHs2rWLTZs2sXHjRpKTk+nYsSOdOnXSVwrzNhaLMpx3Jlj55Reo\nrVVWILv8cnj3XbjxRmXYT8cjGI1GEhMTSUxMZMCAAec9RpIkCgoK6oOatWvX8o9//IMFCxbwzjvv\nEBHh25W/RVGsH8nq37//eY+x2Wzk5eWRnZ3NW2+9penA5QwBgQYKQ5I4nltDVY1SeqFtaiIV8b2x\niQGYhChmdA9mZFzfc0YUzowy1EgyhbXVFNVWU1RTRVF1JYXV5RRVVVBYWcYPe39ms83K/ikzmdTb\ns8VLZEnGbpOQbBJ2a4Ot7rnU4LHdaleOPc9xdutZGnWPayuslGSXU3SkjKIjZfz+zSHCk4KVQKZn\nNGHxQfpS+To6f9AGKGjw2K24HLxkn85m5qqZLN67mBC/EO7rdx/397+fxNBzp3QsWbKEyW5eqkoN\nTTV11cCTfo2Ph5Ur3afnCQRBoE+fPvTp04eqqir2799PZmYm69atY/Xq1URHR9OxY0e6du1KbGxs\no388nrbbl867pmiyHzabsgTymjXKtnEjVFUpq4tddhm8+KIStHTrpszfcFRXLXs1gBb7fWZBgNjY\nWPr06cOkSZO4/fbbue+++xg1ahTp6eluttZ9uMufRqOxftrc6tWrWenKzdGDiMALu4LZuFNJJE+I\nCmfI5Vey5rgVZGgbFcg/J3aiY2zTPxQEoBRlON+EoSVLltBpVDteXvEhTyx+ja1HdtM/rTv903oQ\nF+Zabuv5uNDfUBAFjGYDmN230t7ZbVWV1nJyZwHZvxeQv7+U0hMVlJ6oYNf/jhCeFMyIe9MJDHd+\n9FHr96Hzowdq2sX7f5szhSjPfuwuXJp0eqj4EMM+HsbG4xt5Y+wbZD+UzT+v/Od5AxeARYsWtchI\nT2mqqasGnvRrZCSUnCfR01U9TxMYGEjPnj2ZNm0aM2fOZOrUqSQkJLBt2zbef/993nnnHdasWUN+\nfj6yLHvcbq34qaU06ockQUYGvPYaTJyonET9+yvFKUURZs9W5iIWFSlrcf/1r9CjxzmByzm6atmr\nQXyl3926dWPdunXMmzePjIwMt2q7E7X8WV1drYquuxDttWzMyCLAz8ys/3cV69+ZxYkaZWbE5MuL\nkOYAACAASURBVB6xLLq1d7OBS3MsWrSIe0dOp3N8GiVVZXz003+4e8Fsej99LQOfvYG/fPp/fPrz\nUvbnHW005c6VdjxFw7ZkWcZWawdBwBxkwuTfOEgqPVlBdWlti9vR0blYEAShgyAI/c96baQgCGsF\nQdgiCMK5y2w6iNMjL1mFWVyx8AqCzcFsvHkjSaHNV9L98ssvXTLO05pq6qqBJ/1qMik/nLtLz5uY\nzWY6d+5M586dsdvtHDlyhD179rB161Z++uknoqKiuPvuuzl16hQxMTEesUmLfnIaWebL2bPhnXeU\nqWDr1imBiZ8fDBkCM2fCFVdAv35Or7l9qV7vvtRvQRC48cYbueOOO9yu7S7U8qfWaz8Vl5YBcPWQ\ndO6/XpnOJdaNNI/uFI2fseXLRZ/x7dIH3+XHvb+y5fAuthzZyd6ThzhelMvxolwWb/segFZBYfRr\n043+aT24aeAEwgJDnG7HE3zxxRcc25bPyd2F5O8vPSc4MZhEotuGEduhFQldI2mV7Hg/GqL1+5CO\njou8COyirpaLIAhtgGXAT8BO4HFBEKpkWX7dWWGngpfi6mImLJhAREAEq29eTVxwnLPt6fgoBoNr\nwYvWMRgMtGvXjnbt2jFhwgQOHz7Mnj172Lx5Mxs2bCAkJKTRKkPx8fF6AcCzkWX44Qd44gnYvh2M\nRmVt7XvvVaaBDRoE/p4tjKfjHQ4ePOhtE3TOQ1HJaQASov+oP+JvUgKWb3bm0Tc13C0BDECQXyAT\ne13BxF5XAFBWXcF/f1vFB+sXc7ggG4CSytP8sHsTP+zexP68o7x+4+Nuadvd5O4tZtNHexq9Fhjh\nR9tBCcR2CCeydRgGk3v8pqNzEdIXpVDlGW4C9suyPAZAEISdwAOAusHLnHVzsJltrPrTKj1wucSo\nrLz486YNBgPt27enffv22Gw2Dh8+zLFjxzhx4gRr1qzBZrNhMBhISEhoVA8i+GJ3TFNs3gyzZimj\nLEOGwLJlMGLExX+y6JzD9u3bGTVqFB07diQrK8vb5ug0IDFWWZzkw2U/8f/GDCIuIowZA5LYnbOP\nVZmF5Jdl8Pr1XYkMatkiO7Isc7Ikn9+PZ5KRnUlGdha7srM4XV1xzrH+Jj+6JbXnhv7jWtSmmkS2\nDiUpPYqTu4qQJWXJsqriWo79pkwvNgeaCEvQE/V1dC5AFHCiwfPLUUZezrAO+Jcrwk4FLxuPb2TZ\nI8uID4l3pS0dH+b0aSWv+lLBaDTSoUOH+rowdru9fnWhEydOsGvXLn7++WdAmTKSnJzMkCFDPDbN\nzOuUl8Mtt8B//6sk2C9bBuPH45bKcDo+xcmTJ1m+fDl/+9vf6NChAy+++CKXO1sQSkdVYqOjSG+f\nTMaBbP762ue8N/NmrugQxdxp3Xnkv3vZmVPO9I+3c8eQFK7uFou/qfnRZVmWyTtdSEZ2Jjuzs8g4\nnkVGdibFlafPOdbPaKZLQlt6pHQkPbkTPVM60S4mBaNB9TrZLcIvyMTwu3pgqbJyYmchx7efIi+z\nmLK8KnZ/d5Td3x0lIiWEEfel4x+ir66qo3MWxShVa7MFQRBRRmJebfC+GRdXF3BqvHNk2kgmdJjg\ndCO33nqr05/xhqaaumrgSb+WlroWvPiSPxtytt0Gg4HExEQGDhzI9ddfz8MPP8yDDz7I9ddfT4cO\nHTh+/DgLFy6kqKjILe1pnt27lcDl1Vfh999hwgQQBJ+7LrXudy3222q1sn79embNmkV6ejpJSUnc\nc889DB06lFWrVvHqq682L+Il1PJnaWmpKrruorTGzvP33ICfycimXQe58q+vsH5HFv1Tw/nk5p6k\ntAogv9zCcysPMu7dLczbdJyyamsjjYLyYlbv+YV/rfyYm+fNotfT19Bn9nXc9uGTvP7DQr558xOK\nK09jFA10T+rA/xt0NS/fMJPvH/2ArBdWsPzh9/nn9Q8zbcBVdIpPczlw8eQ1e6Ytc6CJtIHxjLg3\nnWtfHMagGV1I6hGFaBQpPl7Oz/P31o/MtKQdHZ2LjHXAU4IgJAMPosQc6xq83wU46oqwU3ePPvEX\nrt7cFJ6qBK9lXTXwpF9Pn4bw8PO+5ZKe1nHE7rCwMMLCwujatSvDhg3j448/5pNPPuG2224jNDTU\n7e1pijOR7IABSkJUHb52XWrd71rpd05ODitWrGDFihWsWrWKsrIyoqOjGTt2LLNmzWL06NH1dZMG\nDhzIsmXLmlH0Dmr5U+vFOWVADGrFkhce4IHXPuPgiVPcNOff3DZhGI//aTxf3tabbzLy+GTLCXLL\nanl7w1He+2kHaWFHMYt5ZOUeIKf01Dm6BtFAx7jW9EjuSHV4P+667XY6xafhb1LPH568Zs/XljnA\nSJsBcbQZEEdpTgXfv7iNvH3F7Pn+KN3GuVbOQuv3IR0dF3kSWAUcA+zAX2RZrmzw/p+ANa4IOxW8\ntI883+ruzTN9+nSXPudpTTV11cCTfnV15MWX/NkQZ+0OCgriT3/6Ex9//DH/+c9/nP4lzef8dKbA\n59GjMHhw/cu+dl1q3e/e7ndWVhbPPfccn3/+OQADBgzg0UcfZdy4cfTu3RvxPMtajx07lieffNKt\n9roLtfwZEBCgiq47OVJiYWRaAiv+9RD/t+B/zP9uEx/97yc2ZuznrYdu4qZ+iUztHc8HP21h7tpF\n5J7+ndy8P0YTBATax6WSntyRHsmdSE/uSJfEdgSaPbsYhyev2abakiSZ0pxK/IJMVJXWsnfVcbqO\nbe1S/ovW70M6Oq4gy/JRQRA6A12BAlmWc8465Gka58Q4jFPBi6CBwjc63qG0FJKaXxX7kiYsLIwx\nY8bw1VdfkZOTQ0JCgrdNUo/YWBg6FObOhRtv9LY1Om5m//79PPvss3z++efEx8fz5ptvMm3atPrR\nFR3fItzfgF2GjLwaBiUH8Nyd13JFn8488taX7M/OZ/xjr3PD+M4cr9nD+qyt9Z+LCutMtb01RlMC\nRmMC3dLiuXlgEr2Twy7ZJHW7TeLo5jz2/HCMigKlvo/R30D61WmXrE90dC6ELMs24LzFv2RZdrko\nmFPBS5W1ytV2dHyc06eVvGydpunYsSNhYWFs2bLFBysmO8nDD8O118Kvv8LAgd62RscNSJLEvffe\ny7x58+qDlttvv13z06J0mqZjpJliAfIrbeSU20gMNXFFn86sfuNRZr79JSuPLuWTjM0AGESRSb1G\ncu/IG+mS0JbdOeXM35zN6sxCfjpUzE+HihnYOpz/u7oTUcGXTpK6LMkc2ZLHzmWHqSpR6r2Yg4x0\nvDyZjiOSMAc6V7tKR0fHdZxK2D9QdMClRjZu3OjS5zytqaauGnjKr5IER45AYqJ79HwBV+0WRZHg\n4GBqamo80p5XmTgRuneHe+4Bq5Lc62vXpdb97ul+79ixg/fff585c+Zw8OBB7rvvPqcDlx07drjD\nRFVQy58Wi0UVXXcRZDbQLkIJNA4W/2FrZFgwl4+IgqASkAUoi+HuPvfz9p+eoktCWwC6JYTwyjVd\n+PaufkzpFY/ZIPDr0VKmfvQbW479sVCBp64lT16zZ9rK3VfMihe28uvCfVSV1BIQZqbXde2Y9Oxg\nul/VpsWBi9bvQzo6WsOp4GVjtmsX2EsvvdT8QRrQVFNXDTzl1yNHoKwMevd2j54v4KrdhYWFnDx5\nku7du3ukPa9iMMDHH8OuXfD884DvXZda97un+/3jjz8SGBjIY489hr+LhUUXLlzYEtNURS1/VlSc\nW8dEa7RtZUYAiqvtlNXYAThZks+zS+cCMKnr1YjFqcz772Z27D9+zudTIwL4+9j2fPXnPrSLDqSo\n0spdi3Yyb9NxZFn22LXkyWv2+Wf/ydq3f2ftW79TeqICU4CRnte0ZeIzg+g8MgWTv3uWetb6fUhH\nR2s4Fbz8nvc7eRV5TjfyxRdfOP0Zb2iqqasGnvLrmR9Se/Vyj54v4KrdGRkZ+Pv707FjR4+053X6\n9FGKVD73HBQX+9x1qXW/e7rfv/zyC4MHD8Zsdn060PN1gawWUcufrVq1UkXXnfibROJDlC/bJ8uV\nkdIFG5dQUVtFn9SuvPXnB7l6SDo2u8Tbi1dfUKdNZCCfzujF5B6xSDK8veEoC7ec8Ni15Kl2Kgqr\nubn7Q+TuLUY0CHS8IpmJcwbRZVQqBgfq4DiD1u9DOjpaw6ngxWQw8fGOj51uJDAw0OnPeENTTV01\n8JRfs7IgIkLJ0XaHni/git2yLLNz5066du2K0ejcL3K+6icAZswAmw22bPG561Lrfvd0v202W4vb\n1PLKW2r501cStVsFKF+6K63KKmIH8o8BcG3fURgNRqaPGgDA0bym61UFmAzMGd+RR0amAfDamiNs\nPVmtltmN8MQ1W326ljVv7kCqEglLCGL8PwbQ5/r2+AWrk9ei9fuQjo7WcCp4GZ02mn9v/zeSLKll\nj44GOXAA6grN6zTB7t27KSsrIz093dumeJZ27ZTo9tdfvW2JTgsxGv8/e+cdH0W1PfDvbE8vJCGE\nFAIBQofQHogiiDQRC4igYEFBBEXs5T0V2/MhtieC4hNF/CmooEgRRAQJgqB0CAkgJSFAGimkbrbM\n749JQnrbnS0w389nPrs7c+fcc8/Ond0z995zNJhMpoYLKrglHhrpJ7/IJP2Gn8k6B0B0kBRKMjw4\nEIDUjBxEseGki1P6tmZ8r1aIwHNrktib4trJOhtD8aVStiw4QEFWCd5BBoY+2hOfYMW5UFBwJZrk\nvIyKGcWZ3DMkZibKpY+CC5KWBldy1F9bsVgsbNq0ie+//54OHToQfrXFlE5Lg/z85iUCUnApgoKC\nSEtr+tRgBffAXJYFXl02UJRVkANASz8pBHarICkTcWGJkbzChkdSBEHguRvb0S/Kn6JSCzNWHGZz\nUqYMmjuGolwjv763j7zzhXj46Rg6uxcefkqkPQUFV6NJzkuP0B5oVVq2JW9rUiVPP/10k8o7S6ac\ncuXAUXYtKgIvL/vJcwcaq3dWVhZLlixh9+7d3HjjjUycOLFZU0jc1U4AfPgh6PVw//1u1y9d3e6O\nbnfnzp1JSkrCam3+6Pr777/f7HPlRi57Xrp0SRa59ia7WFqoH2CQpo8Vl0ohfz110lQ/D72WID9v\nAM5l5DRKplatYsEdXdD88TmlFpGnfkjksz/OUmqWZ4aGXN9hTmoBm9/dy6X0IjwD9NzweByvzHtJ\nlrqq4+r3IQUFV6NJzouH1oM+YX34PaVpUcciIyObVN5ZMuWUKweOsqstzos72bMyDektiiL79+/n\nk08+obS0lAcffJCBAwc2e+67u9qJ7GxYtAgefBD8/d2uX7q63R3d7ujoaIqLi8nIyGi27NDQ0Gaf\nKzdy2VOttu8Cbrm4WO68eKhJy8uiqFQaXfHxuHyDj2gpTR37K+l0o+UatGruGdaLO8qmkP33t9Pc\n9PGf/N+fqRSbLPZrAPb/DvMzitj5eQIb3vyzYqrYjU/E4Rvi6bD7g6vfhxQUXI0mOS8APVr2ICEz\noUnnPProo02txiky5ZQrB46ya2EhNHc9oTvZszL16V1cXMyqVatYs2YNXbt2Zfr06bRq1Uq2+lya\nV18Fi0WKOIb79UtXt7uj252eno5arSYoKKjZsidOnNjsc+VGLnt6NffpjoMwm0opKLVSWGpFAII8\nNXz9xzoA+kZ3I9Dr8pTP266TYuJ/8uM2zJbGOx6PzZ7NP0fE8K+RMYT46MjIL2X+r6cYtehPluxM\nocBotktb7PUdFuUa+fPrJNa9upszf6WDCBG9ghn2RG+8WnjYta6GcPX7kIKCq9HkIOWdgzvz2YHP\nMFvNaFT2iXGu4NoUFTXfebnSOHHiBOvXr8doNDJ+/Hi6dOnibJWcx969sHCh5MA0JxSdgstx5swZ\nwsPDmxwtT8G1MRYWkF4gOQ8tPNWIopmv/lgLwL2Dbq1SdtKN/Xn/219ISc/m6027uWfUwEbXIwgC\nd/QK45Zuoaw5nM5nu85yLreED7ad4ePfk+ne2pfeEX70ifKne5gPBjuHHK6PwuwSMk/lkXkyl6yT\neeSeK6A8JkFYlxZ0H9uWwAgfh+mjoKDQfJr8C9UlpAulllJOZp+kY1DTclkouCceHtLoy9VMXl4e\nGzduJCkpibZt2zJ27Fj8ruYF6jt3wujR0LMnzJnjbG0U7MTp06eJjo52thoKdqYw9yJ5ZYkpgzzV\nfPfXRi7kZRLiG8hNPQZXKeuh1/HIuBt49fM1zF2ymi7RYfSObdOk+nQaFeN7teLWHqFsPJrBkj/O\nciqriD0peexJyWPxjhS0aoFuYT70ifSnT6Qf3Vv74mEnZ8ZqFck9V0DmyTyyTuWSeTKPohxjjXIh\nMf50H9uWkBh/u9SroKDgGJo18gJwNPNoo52XpKQkYmNjm1qVw2XKKVcOHGXXiAhIqZlwudny3IFy\nva1WKzt37iQ+Ph6DwcC4cePo0qWL3fM6uJWdNm+GW26BPn1g7VrJuy3D3fqlq9vd0e0+c+YMnTp1\nskn26dONXyvhaOSyp9lsnylRcpGfnY5nWXhkg1rkg1++BGDW0LvQa2omJH3w5mv5K/E0G3YdZtq8\npax/+3Fataj/YU1tttWoBMZ0bclNXUJIzi5mT0oee1Ny+Sslj8yCUvadvcS+s5f4ZIdUtluYDz3D\n/Yht6UVsS28iAz1QVbvXVq/HarFyKb2IvPOF5J4v4OKZS2SdvoTZWHXKm6ASCAj3JqitHyEx/gS1\n9cPTv/5IYo66P7j6fUhBwdVo8pqXll4taenVks2n6s7AW51nnnmmqdU4RaaccuXAUXZt0wZOnbKf\nPHegXO8//viDLVu20Lt3b2bNmkXXrl1lSUjnFnYSRWma2KhRcN11sGED+PpWKeJu/dLV7e7Idp8+\nfZpDhw7Z/Cfqgw8+sOl8OZHLnq4ebSwnLYXiMudl85FfOJudRrBPIJMH3lJreZVKxfuPTaJjZCgZ\nOfnMevvLBte/1GdbQRBo08KT8b1a8eYtnfjlkf6sfagvL49qz+guIYT46DBbRfanXuLzXWd59sck\nbvlkDwPf2cG9yw7w759PsGr/efYnZvHIQ4+RsPEMOz5P4KfXd/PtnG389Pqf7PgsgYSNyaQl5WA2\nWtAY1LTqHEi3MdEMfawn49++lpHP9aXPhA5ExoU06Lg01CZ74ur3IQUFV6PJIy+CIDCz70ze/P1N\nXhz8IqHeDUeW+fDDD5ulnKNlyilXDhxl1x494IsvoLQUdDUf0jVZnjvw4YcfUlpays6dO4mLi2PE\niBGy1+fSFBfDjBmwbBk89hjMnw/amtmm3a1furrdHdVuq9XKfffdR8uWLZk5c6ZNsp955hni4+Nt\nkiEXctnT1aeQXjhxmEgRLBYzn2z9PwBm3XAXHrq6/8B7eej59Pn7GfXEu/yZeJp3V2zimbtH1Vm+\nKbYVBIHIQA8iAz24vWcrRFEkNbeEv1JySbhQwMnUS1w6X4h/vpmg9By0+7K5ZIJEEcZG3sfBNVWf\npmn0avzDvPAL8yYg3Jvgdn74hXmjUtn2oMlR9wdXvw9VZ2mIGs/W7hFh72rEr8D+D1hdjSaPvADM\n7j8bnVrH878+j1VsOJa7EipZHhxl17g4MJkgoWlB5uqU5w5ERkZy4MABSkpKGDRokEPqc1mOHoWB\nA+G77+DLL+H992t1XMD9+qVL2x3Htfvf//438fHxfP755/j42LZo2dbIe3JytYZKPpd4AIBdx3/l\nXE75qMvYBs+LbhXEW7PuAGDByl9JPHOhzrK22FYQBEJ0GnoUiFxzvIAR+/MYn2ZmWK6VnoUirUtB\nL4IFsAa2JMFT4Dc/FSuDVHzUSs28lgI/ROhJ7eJHiz4hBIT72Oy42NomV6xHQeFKoVkhZfwN/rw3\n4j0eXPMgJeYSlt6yFL1GyUJ7pVKeMD4ry7l6OJrc3Fz8/f3x979KF3NaLJKj8s9/QnS0tEi/Z09n\na6VgZxYsWMCLL77Iyy+/zPXXX+9sdRRkID87g/yifNbv+QqQRl08dYZGnTt2UC8+W/c7e5LOkJR8\ngU5t7OecmorNpB7KInlvOmmJ2VgtYsUx7yAD/mHe+LX2xr+VF/6tvfEONpBVZCYxvYBj6QUkpRdQ\nnF7ApTwjO0/nsPN0Dq9vPEFchB9DOwQxrGMQLX2V/yYKClcazY6HObXXVPz0ftz9/d2kFaTxw50/\n4G+4Sv/kXeGUR001mZyrh6PR6XSYrrZGl5OcDFOmwO+/S9HE3nijysJ8BffHYrGwaNEiZs+ezZNP\nPsnLL7/sbJUUZEJQqdl0eC15RdlEtgirER65IVr4eQNQUFxiF31K8kvZ8+1xzh3KwmK6PHvDv7U3\nUb1DiOrTEu+g2u83LX3VtPTVc337FhX7zlws4tdjWfx6LIuEtIKKqGZvbT5JtzAfZl3XhgHRAXbR\nXQEQBGlTcE2ugu+mWdPGyhnXeRyb79nMwbSD9P6kN/sv7K+13Lx582ypxmEy5ZQrB46ya16e9NrU\n9S51yXMH5s2bR0BAAPn5+fz4448UFxfLXp9L8eCDcPo0bN0K777baMfF3fqly9m9GnLod+zYMYYM\nGUJUVBSzZ8/m0UcfZf78+XYLRLF06VK7yJEDub7vgoICWeTaC5Xeg6MpewB4eMjEWiOM1YeXQRq9\nKCypGW64nKbY9q/lx0jZm4HFZMUnxJOuo9tw04v9Gf3PfnQZ2aZOx6Wuetq08OSBgZF8fX8cG2b2\n4+kb2tIrXAomcvh8Pst2pzZat4bqkgNXvw8pKLgaNjkvAIMiB7Fn+h78Df4MWDKAT/d9iiiKVcoU\nFRXZWk0N5JApp1w5cJRdN24Eg0Fa9mAPee5AUVER3bt35+abbyYxMZGFCxeSkJBQ49q2Z30uQ0YG\nbNkCL70Egwc3XL4S7tYvXcrutWAv/XJzc1m8eDEDBgwgNjaWP/74g7Fjx7Jr1y7++9//2jWCXkmJ\nfZ7Oy4Fc37dc9wV70XXQSAJ9pESyp84ca/L5Wo20psdsrnuNa2Ntm5aUzdkDmQgqgRvm9GLMy/3p\nPqYtfq28GnV+Q/WE+RmY3C+cyX1bAyAA9/0jvFGym1qXvXD1+5CCgqthlzTKbQPasmPqDuZsnMO0\ntdP45dQvvDP8HcJ9pRvGK6+8Yo9qqiCHTDnlyoGj7LpuHQwZAp6e9pHnDpTrHRcXR/v27dmwYQMr\nV66kY8eOjBkzBm9vb1nqcwnWrgWrFYYObfKp7tYvXcrutWCLfhcuXOCnn35i3bp1bNiwAZPJxMiR\nI/n222+5+eabMRgat+ahqcyYMYP//e9/ssi2Fbm+b1uDHMjNkEkPk5J8gr3A2p3ruNak4vrJj6HR\nNm4ERleWPLK0nnw2jbVteaSw9te1pmWHpk/lqqueAqOZPSl5/Hkml93JOfydKTkE9w+IoH+b5k0Z\nc9T9wdXvQwoKroZdnBcAg8bAx2M+ZnDUYOb8PIeOH3bkhUEv8OTAJzFo5PmRVJCf9HT47Tf46CNn\na+I8fHx8mDBhAomJiaxbt46PPvqIm2+++cpNKta3L/j7w4QJ8PPPEBTkbI0UGoHVamXfvn2sW7eO\n9evXs2fPHlQqFQMGDOD111/n7rvvdulIYAryUZKwniH9H2T9ge9I05Uy7/sF/LHyE2598m26Dhnb\n4Mibtmzho8lcf66XxlB4UZqC226gbdei0Wzl4LlL/Hkmh91nckm4kI+l2gDY0A4tmHltlE31KCgo\nuB52c17KmdRtEqPbj+a1+NeYu20uS/YvYcGoBdzU4SZ7V6XgAFauBJUKxo1ztibOp1OnTkRGRrJ2\n7Vq++eYbevbsyYgRI2R7gu00uneXPNYbb5Smja1ZA+3aOVsrhVooLS1l48aNrFmzhvXr15OWloaf\nnx+jRo1izpw5jBw5khYtWjQsSOGKpuDwVgaNfZQ7r53J//32Pglto/A/eJSsx26lQ/8buO2Z9wjr\n0K3O87VqaYZ5QXHda14awlhgIv1EDuZSaeqZ0IRQxiaLlTMXizmeUcDxzEIS0wo4kHoJY7VpbBH+\nBvq18ad/mwD6RvkR6NmMhZoKCgouj92dFwA/gx9vD3+baXHTmL1xNjcvuZktD2/h+jbX262OrKws\ngmR4IiyXXDmQQ9fqMlesgBEjoLn/f9zJnpWpS28vLy/uvPNO9u/fz88//8zff//NqFGj6NSpk03r\nBlzOTj16QHw8DB8O7dvDzTfD7NnSVLJ62ulu/dLl7F6N2vQTRZE9e/awbNkyli9fzsWLF4mNjWXy\n5MmMGTOGgQMHoq0jD099cu1FTk6OLHLtgVzttlobznfmTMyFJRQuGM+wcZ9zutNIdiRuZFfPrvwj\n8Tjs/pW37ujJwPHTGT3rVbwDg2ucHx4SCMAXG3bg7+3JYxOGoamW26a6bUuLTGScyCX9eA7px3PJ\nPVc1qIHOs+Y1KooiWYWlHM8o5ERGofSaWciprCLMVrGsLblovKTIpkFeOvpF+dGvTQD92/gT5mff\nB0mOuj+4+n1IQcHVsHnBfn10DOrIT3f9RItNLZi4ciIX8utOcNVUpk6dajdZjpArB3LoWlnm2bNS\npNyJE+0jz52oT29BEIiLi2PmzJm0bt2a7777juXLl5ObmytLfU4jNhaSkmDxYiny2LBh0LWrNIew\njuhK7tYvXdLulaisX2pqKv/5z3/o0qUL/fr1Y9WqVUydOpVDhw6RmJjI/PnzGTx4cIOOS3W59ubV\nV1+VTbatyNVuW/q+I9B6qxFEaLFnKROueYg+0f/AgsjOTu0xDhmGaLWy49uPee2mGLYseQNzUS6i\npRSxLAn1pBv7M2FoX6xWkfe+2cSdL37M+UzJSRVFkdIiE1Puvpdzh7PYt+oEG978i5VPbyd+8WGO\nbU2tcFz8WnnR7rrW9J3RlQyLhYOpl1h9KI35m08y7etDDPnvLoYt2M3Mb47w3tbTrE/I4HhGIWar\niJdOTc9wX6yb/8s/R8Sw6sHebH60P2/e0onbeoTa3XEBx90fXP0+pKDgasgy8lIZtUrNCClMrAAA\nIABJREFU8g+Xc+/ue5m0ahK/3vMrapXt2Yjnzp1ru3IOlCsHcuhaWebKlaDXw9iGEzE3Sp470Ri9\n/fz8mDhxIklJSWzYsIGFCxfSpUsXOnfuTLt27ZqUddtl7eTpCdOmSaGT4+NhwQJ45BF4/nm4/36Y\nNQtiYiqKu1u/dFm7lzF37lwOHTrESy+9xJo1azAYDNx222289957DBs2rNmZ3eVs9/Tp04mPj5dN\nvi00t91Go5Fz586RmprK2bNnq2z79+93+QX7vtdo8Y0cR0ZmEOm5qbQK6oDm9G7MiKxRGRkXGoiQ\nls2lolK+WPQ+u3avp2WbdmQV+JJX5EuR0RtjqRcjfTriozbgnW5g5cvbaGnQYTHqQFQxyPdmtn10\nqEq9RXormV5WUg0Cp3VqssRijKeNcDq9Tl1VAkT6CrRvoSnb9HQINtDKz4Cg1rGv3Qv07uIlFbSa\nEFUaBEGe57COuj+4+n1IQcHVkN15ARh2zTCWhy/n+qXX896u93hq4FM2y4yLi7ODZo6TKwdy6FpZ\n5oEDEBcHvr72kedONEXv2NhYoqOj2bVrF0eOHOHgwYPo9XpiY2Pp3Lkzbdu2RaOpv6u5vJ0EQVr/\nMngwpKRIoy//+x/8978wapQ0pezGG92uX7qy3Y8fP878+fP55ptvaNu2LYsXL+bOO+/E15YOWYac\n7e7UqZNssm2ltnabzWbOnz9fwymp7Kikp1f9s+3v709ERAQRERHcdNNNDBkyxFFNaBYrzw8iNdfE\n0dSfyC36ssqxAEsgqjbzadGuBV4qHd6o8UKNKlUgAogAKd6wvmyrhKVSVOywkA5cVEOqXiClbCuo\nfN+rtNZfQMRbVYKX2khrbTYxhnRp06fTRp+JQVUW1aywbEuB8tU2nYHijdUaKKhBpS3bNAiV3qPS\nIggaUGtBqON42Wv187v5aTCdSik7risrr0GoeF+XvLL3QmUd6p5u68r3IQUFV8QhzgvAdVHX8eSA\nJ/nnln8yMmYkXUO6OqpqhWZy/Dh07OhsLdwDvV7P4MGDue6668jMzCQhIYGjR49WODIdO3akb9++\nhIc3L9+ASxEZCW++KeWBWbFCGo0ZORI6dJCcmIceggacNYW6uXjxIs899xyff/45oaGhLF68mPvu\nu69R08EU6iYzM5OvvvqKlJSUKk5KWlpalTUrPj4+FY5Jz549GTNmTMXniIgIwsPD7R4qXW6+2vc7\n2hBJZ62oIUZsSydre2KtMQQSAHVcWsUqKFRBoVqgSAWFaihSCxSpRDCowAAqD9B5gJdBxEdrpYXG\nTJTWgo/GjLfGjI/GhLe6FG9NKT4qIz4aIx4qIyrRDNZSsJoRrWawCmBtAVbfss+VjotmsJoub2K1\nNUaiBSyWCm+qetYdl8jCI2gqOTyVHaZKDo/agLbD3aiDXduZWRq9mJ7tXHu08WrmwAUPBjlbCZlx\n6D+M14a+xtrja/nnln/y48QfHVm1QjNISZEW6ys0HkEQCAkJISQkhCFDhpCRkcHRo0c5cuQICQkJ\n3HXXXbRt29bZatoHDw9p6th998GOHZITM3s2LF0KX3wBnTs7W0O3w2g0MnbsWBITE3n77beZMWPG\nlRfNzkksXbqUZ599lg4dOhAREUHnzp0ZPnx4DcfEz8/P2araHX/RlzhLXzpa2xMqRFGq1lKsgyyN\nQJpWAA81am8dnr56DL46DHozHkIeviWZhBReQJd7Fn3OKTxKLuJlLcZgLSX8vqUYIpzzEFIULWC1\nVHJ+TGXOjuTciFYziCawmECsefzyOZf3i5WcpcvnVC5f6XhF+UrHRTNYSqHc0arhYJnBYm7QwTLr\nA1zeeVFQcDYOcV6WLFnCAw88gEFj4MkBT/LQuoc4nXOa6IBom2XaG7nkyoEculaWmZ9v25Sx6vLc\nCXvpXe7IDBo0iG+++Ybly5czefJkoqKq5h5wVzsB0pSyQYNg0CCW/OtfPLBqlTTf8LXX4IknoJnr\nMipzNfR3URSZMWMGe/fuZdu2bfTv398t27169WpZ5NqK2WzGy8uLpKQku8t2peuoNh7oGMaQgUVE\n/+MefD206DWqJkdHFEURS34WWT/Op/DIFvJ+X4Fh0usVxx1lg4p61GpQS6GQmx/nsZF1NQPJwTI3\n4CxJ+z77v1VMibuINfcYKl83eLgl1Bt0UsHJXA1fjazRxsrZt29fxfu7u9+Nv8GfRX8tsptMeyKX\nXDmQQ9dymVarFFDK1tkR7mTPythbb41Gw4QJEwgLC+Prr7/GaKyaL8Fd7VSdfTk5sG+ftJD/2Wfh\n4YftI/cq6O8LFy5k6dKlfPrpp/Tv3x9wz3bL4RzYC3M9GeJtwZWuo9q4NvYY3aOthPgaMGjVzQrr\nLggCGt9gfPvdBkDBoV+wll5e9OIoGzjS1rbUJQhqBLUeQeuNoPdH5RGMyisMlU8kKr92qAM6om7R\nFXVwLw78nYNYegkAlV/DObXefPNN+vXrh6+vLy1btuS2227j+PHjVcrcf//9qFSqKtvs2bOr6Sjo\nBUFYKAhCliAI+YIgrBQEIaTZjVZQcBAOcV4WLlxY8d5T68kDvR7g0/2fUlhaaBeZ9kQuuXIgh67l\nMrOzQRRtT67uTvasjBx6W61W8vPzCQkJQaermjzNXe1UnYULF0rTyd55Bx59VEp2aS+5MuAqdk9K\nSuLpp59m1qxZTJ48uWK/O7b7ueeek022rcgVFcxVrqP6sBrPSqMBNiBazORs/QwAfetOCNrLK/gd\nZQNH2tqRbSofcTGfbzhS3/bt23n00UfZvXs3mzdvxmQyMXz4cIqLi6uUGzVqFOnp6aSlpZGWlsYb\nb7xRXdT7wE3AOOA6IAxYZXuLFBTkxSHOS3Vm9ZvFJeMlvjr8lTOqV2gE5cF1WrZ0rh5XCqIosnHj\nRgoLC7nttttsSmjpNrRvD8nJ0jCeQp2YTCamTJlCVFQUb731lrPVUbgSETzAUoC1+ESzRYgWMxfX\nvUfJ6f0Iei9aTnr96riPOQhN+0kAWM5uwlqQWm/Zn376iSlTptCpUye6devG0qVLSUlJYe/evVXK\n6fV6goODK6YvV3beBUHwBaYCj4uiuE0Uxf3A/cA1giD0s2/rFBTsi1Oclzb+bRjebjjfJHzjjOoV\nGkG58xIa6lw9rgTMZjOrV6/mwIEDjBo1isDAQGerJD9WK/z8M/j4KM5LA3z66afs3buXZcuW4enp\n6Wx1FK5AVF5S+Gpz9k/NOt+UfZ7zi6eTt1P6zQ6+7Xm0La6AyIkuhDqwM6rg3iBaMP7xLGLJxUaf\nm5ubiyAINX5bfvvtN1q2bElsbCwzZ84kLy+v8uHeSOuefy3fIYriMSAFGGBLWxQU5MYpzgvAsOhh\n/HH2D0otpc5SQaEelJEX+1BYWMiyZctISEhg3Lhx9OzZ09kqOYa334Z166SoY0rY5DrJz89n7ty5\nTJkyhX79lIedCvKg8R8KgDl7A1ZT4/8UAxQc/IXU/95FSfIhVHovQia9jk+vkXKoedWjj3sOwbMV\nYtEFSnY+U7EOpj5EUWTOnDkMGjSIzpUiPI4aNYply5axZcsW3nrrLbZt21Z9zUsoUCqKYvVK0suO\nKSi4LA5xXsbWkqJ9cJvBFJuL2X9hv91k2gO55MqBHLqWy8zMBIPB9gX77mTPythD7+PHj/PJJ5+Q\nnZ3NfffdR9eudYcVdVc7VWfs2LFS8soXXoDnn4ebbrKfXBlwtt0/+OAD8vLyeO2112o97o7tfvzx\nx2WTbSvVnjzbDWdfRw2h8uiAyrMziCbMWd83+rzik3tI//p5rCUF6CO7Ez5nOT49a3dcHGUDR9ra\n0W0SDC3QD5yPoG+BmH8a04mvGzx35syZHD16lBUrVlTZP2HCBMaMGUOXLl0YO3Ys69atIyEhwS76\nPrvkBHe8cajK9m18esMnKtidb+PTa3wXz3y0x9lqyY5DHok+8sgjNfaF+0pDzplFmXaTaQ/kkisH\ncuhaLtPDA4xGKe+XLZFu3cmelbFF7/z8fDZu3MjRo0eJiYlhzJgxDeaOcFc7VaG4mEdKS2H6dCnK\n2Kuv2k30ldjfTSYTixYt4p577iEyMrLWMu7Y7gkTJhAf3/CiY2fg4eEhi1xX77+CIKANmYTxzIuY\nslajDbkLQe1V7zmi1ULW2ncA8I4bTcj4lxDUdf9lcJQNHGlrZ7RJ5RWGpsNdmA4vQCy80OB5P/30\nE9u3b6dVq1b1lo2Ojsbf35+cnJzyXWmAThAE32qjLy3LjtXJvAfa00tJUukSTLiuJROuqzpF5sB5\nD66Z2bwpou6CQ5yX4cOH19jnrZMe6ReUFthNpj2QS64cyKFruczgYCna2MWLEGJD4ER3smdlmqt3\nQkICa9euRaPRMG7cOLp06dKoRa3uaqcK0tLgppsYfvSoNFXsnnvsKv5K7O8//vgj58+fZ9asWXWW\nccd2DxjgutPlq0f5sxfu0H/Vvtcg6CMRjSmYL65FGzKx3vL5f62h9MIJVB6+BI15ol7HBRxnA0fa\n2lltErSSYyCa6o7I+sgjj/Djjz+ybdu2Oh9+VCY1NbX6yONewAzcAPwAIAhCRyAS+KNJDVBQcDBO\nm4yeW5ILgEGjZI92RYKDpdfMTNucl6uN7du3Exoayp133inbU16X5F//gpQU+OMPuFrW9djIwoUL\nGTRoED169HC2KgpXAYKgQhs8kdLUtzBlrkQTdDuCqnZnzpx/kYsbFgAQMGwaai9/R6p61SMYpIX3\nYnHtAyAzZ85k+fLlrFmzBi8vL9LLFqn6+flhMBgoLCzklVdeYdy4cYSGhvL333/z7LPPEhkZyZkz\nZyTZonhJEIQlwLuCIOQA+cAHwA5RFP+UvZEKTmHiNZ3oGmqfwDBH0opYcTLRLrKaitMW7O9I2QHA\ngHDXfUp3NVPZeVFoPGq1mhYtWlxdjsvJk7B0qbTORXFcGsWRI0f47bff6h11UVCwN5qAYQiaIERz\nFuaczXWWu7juXazFl9CFdcRvwB0O1FABQOXXHgCx8Hyti/Y//vhjLl26xPXXX09YWFjF9u233wLS\n79ChQ4e45ZZb6NixI9OmTaNv3758+umn1UU9DqwDVgK/AeeRcr4oKLg0DnFeVq9eXWPfrtRdtA1o\nS0vv5oWzqk2mPZBLrhzIoWu5zHLnJSvLPvLcjebqLQgCFkvTE8G5q50AeO016YKZMcPt+qWz7P7F\nF18QEhLC7bffXm85d2z31q1bZZNtK0ajURa57tJ/BZUObbDkjJgv1q5zSfJhCg78DIKKkHH/anC6\nWDmOsoEjbe2sNgk6HwSv1gBYc4/VKG+1WrFYLDW2e8qm6xoMBjZu3EhaWholJSWcOnWKjz76iICA\ngCpyRFE0iqL4qCiKQaIo+oiieIcoihkyNVNBwW44xHlZvnx5jX0nc04SGxRrV5n2QC65ciCHruUy\ny3NZXWo4UmOj5LkbzdHbYrGQnp5OSDPm2bmrnTh+HL78Uhp18fBwu37pLLsnJSXRt2/fBtdguGO7\nf/75Z9lk24pczos79V91wA0AWIv/RrTUXHOaG/8lAD5xN6EP79RouY6ygSNt7cw2qQKk/0fWnCSH\n6KCg4E44xHn55puayShT8lKI8ouyq0x7IJdcOZBD13KZGo0UcSw/3z7y3I3m6H3+/HnMZjNRUU2/\nrt3VTrz2GrRqBdOmAe7XL51l9+TkZNq0adNgOXds93/+8x/ZZNuKr6+vLHLdqf+qtEEIujDAiqXw\naJVjpoupFCb8BoDfdXc3Sa6jbOBIWzuzTSr/jgBYsu0T3lhB4UrCaWte8kvz8dXL80OiYB9CQuD8\neWdr4T5cKhumatGihZM1cSC//AL33y8lBVJoFKIocubMmWY5uQqux8cff0yPHj3w8/PDz8+PgQMH\nsnHjxorjP/zwAyNGjCAoKAiVSsWhQ4dqyDAajcyaNYugoCB8fHwYP3482dnZVcoIghAgCMJXgiDk\nCYKQIwjCp4Ig1B/vuC6Esvj3YtWRqPy960C04tG+P/rQmGaJVrAP6uA4AKwZf2JJ3+1kbRQUXAun\nOS/eOm/yjTY+1leQlc6dIdE5gSTcEr1eD8g3NcXlKI+lHRbmbE3cipycHPLz8xs18qLg+kRERDBv\n3jz27dvH3r17GTp0KLfccguJZTfPwsJCrr32Wt566606w6bPmTOH9evXs2rVKuLj4zl//jxPP/10\n9WJfA52QQtveBFwHLG6qvlZjKqLxLKBG7d2rYr9otZK/T8oN4dPn5qaKVbAzKt+2aNpKa+eN++cj\nlsqTYFVBwR1xWqjkQI9ADmccRhTFRuXBUHA8MTGwue6ANArVuOqcl5ISMJtBq3W2Jm7Fvn37AClp\nnIL7c9NNN1X5/Prrr/PRRx+xa9cuOnXqxOTJkwFpqqAoijXOv3TpEp999hkrVqxg8ODBAHz++ed0\n6nR5vYkgCJ2AEUBvURT3l+17FFgvCMJToijWm1SwMuZsyUFRefdAUHtX7C9NO4E55zyCzhOvztc3\nVpyCjGg7P4glYw9iQTKlB99H1+cl5f+SggIOGnm5//77a+x7euDTbE/Zzid7P7GbTHsgl1w5kEPX\nyjLT0yE01H7y3Inm6G0ymQDQNuPPvFvaycMDBgyAH36o2OVu/dLRdhdFkblz59KzZ0/i4uIaLO+O\n7Z47d65ssm3lkq0RSOqg3J5Wq5UVK1ZQVFTU6GSde/fuxWw2c8MNN1Ts69ixI6FVb77/AHLKHZcy\nNgMi0L+xelpL0zFlrgRAG1Q10p0pMxkAfVh7VLqmTwN1VF9yZJ91dpsEtR597+dBUGM5vw1L6q8O\n0UdBwdVxiPNSW5ba0e1HMz1uOk9seoL9F/bXclbTZdoDd8iUXI4culaWeewYdOhgP3nuRHP0Likp\nAZrnvLirnbjvPti4ERKkRaXu1i8dbfcNGzawY8cO/v3vf6NSNXz7dcd2/+Mf/5BNtq00FN2tuXTq\n1AkfHx/0ej0zZ87khx9+IDa2cdE009LS0Ol0NYIJBAYGVv4YClQJYSuKogXILjvWIKJopfTcByCW\novLqgdr3mirHTRdTAdAEhjdK7+o4Kxv9lVBXffWo/Dug7SiFQC499F+seScdopOCgivTJOdl9OjR\njB07tso2YMCAGjHKN23axNixYys+T5o0CYBZs2axZMmSiv3vjHiHyKJI+gzpw7u/vltlSP3ll19m\n3rx5VeSmpKQwduxYkpKSKmQCLFiwoMb84KKiIsaOHcvvv/9eZf/y5ctrfcpx5513snr16gq5y5cv\nZ8CAAYSGhla09fHHH2+UnRqiuXYsp9yOlW2wb98+xo4dS1a1xCwN2bEyCxYsqJjSkpsLR45A587N\ns2Nl5LIj2M+Wldm3bx/Lly9vsi1DQkLQaDR8//33vPfee026Jjdt2lRDt+q2dMlrcuJEaN+eWT17\nsmTqVCZNnFhxyF7X5NNPP13lWm9u365crtyOy5cvd+g1+e6779K/f39GjhzZqGuyvN32tGVlufa0\nZXlb7RUqWY6+rVar7WrHcmbMmEG/fv1YvHgxDz/8MPfccw9JSUmNtqPFYqlhx5SUlHqs0zRGjx7N\nzcO7M+7+xUx4LIEJjx1m4MCBVXQwXUxl++lL3Pf+jzXOr+s+WdmW5deUrbZs6JqsfC+A2n9zmnq/\nr+uaqP4d2LMdlZk0aVK97dC0vwtVQGcwF1Ky43FmPjCpwXaU39s6duxI586d7X6fU1BwJkJtc3Br\nFBKEOGDv3r17GzXVoSmUmEt4fOPjfLz3YyZ1ncTiMYvx0fvYtQ57sW/fPnr37g3SvON9TT1fTjva\nm2++kf6XJidDZKR9ZdtqR3BdWyYnJ/P1118TGhrKXXfdVbEORi5c4posKIDZs+Hzz6WL5uOPwc+v\nebKchCOuyePHj9OxY0eWLVvGlClTbFPYhXGJa7IW3nzzTd577z0yMuTPwXfjjTcSExPDRx99VLEv\nOTmZ6OhoDhw4QPfu3Sv2b926lWHDhpGTk1Nl9CUsLIwLFy4A9AZ6AG+LolgRylAQBDVQAowXRbGm\nx8FlW+7a+CJdQ+MBAX3ki2gChtYoe+7j6ZSc3kfIxNfx6TXSNgMo2B3RVIBx1wtYs4+A2oC+/+sV\nEckai7365u/v9KFXO9f8n6YAB857cM3Mn6DS91z+3a2+pxNdQz3tUs+RtCJuXZZYpR5H4bRoY+UY\nNAY+GvMRy8ctZ+3xtXT/uDs//+26Sc6uFn74Abp3t7/jcqUTFRXFlClTSE9PZ/Hixfz999/OVkl+\nvL3hs89g+XL46Sfo0gVWrZKikSlUsGrVKnx8fLjjjjucrYqCzFit1loDd9S22Lp3795oNBp+/fXy\neoZjx46RllZlDf4fgL8gCL0q7bsBEIAG4+iac9YDoGs9p1bHBcCclw6Axt/GhY4KsiBovdEPmIcq\nuA9YSjDufQPRUupstRQUnIJDnJfqw6a1MbHrRA48dIB2Ae0Y+dVI7v7+bjILM22S2RzkkisHcuj6\n+++/c/Gi5LzY4+GwO9mzMrboHR4ezrRp0/D39+err77iu+++a3ChsLvaqQoTJ/L7kiUQFwfjx8OY\nMXD6tF1EXwn93Wg04uvri6EJOXHcsd379zd9DaOjKA+qYU9eeOEFFi5cSHJyMkeOHOH5559n27Zt\nFVHGcnJyOHjwIAkJCYiiSFJSEgcPHiQ9XXIWfH19eeCBB3jiiSf47bff2Lt3L1OnTqVHjx4VdYii\nmAT8DPxPEIS+giBcAywAljc20pgmYATaoFvqPF6+SF80Ny9aoqP6kiP7rKu1SdB4oO//OoIhGIw5\nWM5tlVkzBQXXxCHOy1tvvdWocu0C2/HLlF9YestSNv69kdiFsSz6axGltTxdaKzMpiKXXDmQQ9e3\n3nqL//s/6aH5vffaR547YqveLVq0YMqUKdx+++0kJyezcOFCtm/fXrGo3971uQpvLVsGa9bA6tVw\n+LA0CvPSS1I+GFvkXgH9XavVNvnPszu2e9myZbLJtpWioiK7y8zIyOCZZ54hNjaWYcOGsXfvXjZt\n2sTQodIIx5o1a+jVqxc333wzgiAwadIk4uLiWLz4coqW9957jzFjxjB+/Hiuv/56wsLCmD9/fvWq\n7gKSkKKMrQPigYcap6UKbcv6b+gqT2mqp6Ugp3Eiq+GovuTIPuuKbRLUOjRtbwXAfLrW2YIKClc8\nDnFeVqxY0eiygiBwb897SZyVyJgOY3jkp0fo+GFHPt//OWaruVkym4JccuVADl1XrFjBypUwahQE\nB9tHnjtiD70FQaBbt2488sgj9OzZk23btvH+++/z66+/UlhYaPf6XIGKdtxyCxw9Co8+Cm+/Lc0/\nnDMHzp61Ta6dcaTdo6KiyMjIqD4dqF7csd3//ve/ZZNtK9UjetmDTz/9lMzMTIqLi0lLS6viuADc\ne++9WK1WLBZLle2ll16qKKPX61mwYAFZWVnk5+fz3XffVY82hiiKuaIoThZF0U8UxQBRFKeJotgo\nb0zl3ROVvv5ksrrQGAAKDzcvuZej+pIj+6yrtknlI+WIEk0FcqijoODyOMR58fRs+uKgEK8Qvrj1\nCw4/fJjerXozdc1UOi/szPLDyxFFsVkyG4NccuVADl1LSjzZuVOa8WMP3MmelbGn3gaDgVGjRvHY\nY48RFxfHn3/+yfvvv8+GDRsqppO5q52qU6Ud3t4wbx6kpMBTT8GyZdC2rRRe+dix5su1I460+4gR\nIxAEgQ0bNjT6HHdst4eHh2yybUWuBH+u3n9VhjYNlvH7h7QWq/DoNkxZTX/I4CgbONLWrtomy8UD\nAKhadG+gpILClYnTF+w3RJeQLqycsJJ90/fRxr8Nd31/FzvO7nC2WlcsW7aA1QqjRztbkysPHx8f\nhg8fzpw5cxg0aBCHDh1i5cqVzlZLfoKC4JVXpNB18+bBL79Anz6SU3MVERwczMCBA1m4cCGlpcpC\nWwXHIehaN1hG1zIaz44DQRS5sOxJzAXZDtBMoalYsg5iPr0GAHVwrwZKKyhcmbi881JOr1a9uLPL\nnagEFZ2DOztbnSuWPXsgPBxaN/xbp9BMPDw8GDx4cKOT2F0x+PjAE09I08l8faUpZVcZ7777LgcP\nHqwyZUhBQW4EoXGJc4PGPo3aNxhT+inOL56BOd+2tWoK9sWSdRDjrufBUoIquA/qsOucrZKCglNw\niPNSPXlTc1l9bDX9Wvcj0CPQbjKrI5dcOZBD1xUrnkYKA28f3MmelXGE3qWlpWi1WofV5wga1Q4/\nP/jgA2lh//r19pPbDBxt9379+vHGG28wb948Fi1ahMViqbe8O7b7/fffl022rRQUyLNG4Erpv9qg\nCMIeWozaNwRTxinSlj3V6HMdZQNH2tqV2iSWZFdxXPT9X0NQNc4pVVC40nCI8xJph2QhH+/5mHXH\n1zGzz0y7yawNueTKgRy6WiyRtGplP3nuZM/KOEJvq9WKWq12WH2OoNHtuP12iIqC7dvtK7eJOMPu\nTz31FNOmTWPWrFn069ePHTvqngbrju0ODXXdPCHl/c3euH7/bXzOJV1QJIHDpgFgLWm8s+coGzjS\n1q7UJlG0gEWKVqnr9RSCWt4EyAoKroxDnJdHbZweEp8cz6MbHuWRvo8wpccUu8isC7nkyoEcuoaE\nPGrX3ILuZM/KOFpvd7VTdRrdDkGAli0hs+5cTs2S20ScYXeVSsUnn3zCzp07EQSBQYMGMXnyZE6d\nOuUw/eRs98SJE2WTbStyBRO4UvpvOYWJ8QB4dR3S6HMcZQNH2tqV2qTyCEbwkyLCWdP/lFslBQWX\nxuXXvCTnJjPu23FcG3kt745419nqXPGoVEpidEcgiiLZ2dnodDpnq+Icdu6E48dBpifh7sCAAQP4\n888/WbJkCZs2baJdu3b06NGDF198kb/++gur1epsFRWuEESxcdeSaDGTuXoeRYnSiKh39xvlVEuh\niWjCBgNQemQh5vPbnKyNgoLzcGnnpbC0kFu/uRVvnTff3vEtWrUyv1NuBEGKNqY5h2tGAAAgAElE\nQVQgL4mJiWRkZNC3b19nq+J4vvkGhg6Fbt3gzTedrY1TUalUTJ06lVOnTvHdd9/Ro0cPFi1aRL9+\n/QgPD+ehhx5i/fr1FBcXO1tVBbem4SdSlqI8Lix5lEt/fAeCQODo2ehbtXeAbgqNRdP2dlQhfcFi\npPSvVzAd+xJRedqocBXiEOclKSmpWec9tO4hTlw8wZqJawjyDLKLzIaQS64cyKFrSUmSXUde3Mme\nlZFLb6PRyP79+9m0aRMxMTFERUXJWp+jqbcdp07BrFkwcSKMHy+FTG7Rwna5NuAqdvf29mb8+PEs\nW7aM9PR0fvvtNyZNmsSGDRsYM2YMQUFBzJs3z271ydnu06dPyybbVsxmc8OFmoGrXEd10sDIi2gx\nc/5/Myk++ReCzpPQe94mYPA9TarCUTZwpK1drU2CxgN9/3+jaXs7AKakzzGfWC6nagoKLolDnJdn\nnnmmyeesPbaWrw5/xeIxi+nWsptdZDYGueTKgRy6pqY+Y1fnxZ3sWRl76m21Wjlx4gSrVq3i7bff\nZs2aNQQGBjJy5EhZ6nMmtbZj92644w5o314adZk/H778EvSNX3B6NfV3jUbD4MGDeeedd+jZsycH\nDx7EbDaTnJxstzrkbPcHH3wgm2xbKSwslEWuK15HVRDrH7nL37OG0vPHUHn60XrmZ3h1HtzkKhxl\nA0fa2hXbJKjU6Lo9grbLwwCY/l6BaCqSSzUFBZdE44hKPvzwwyaVzzfmM/OnmYyKGcVd3e6yi8zG\nIpdcOZBD1+joD+06bcyd7FkZW/UWRZELFy5w6NAhjhw5QmFhIcHBwQwePJju3bvj6+tr1/pchSrt\nWL9emha2Y4fkuCxcCPfcA83IWn219vcFCxawZcsWSktLmTFjht3kytnuZ555hvj4eNnk24K3t7cs\ncl39OsKSX+chq7GI7E2LAQgYNg19q5hmVeEoGzjS1q7cJk27cZiT1yEWnMV8Zg3a9q4bKENBwd44\nxHlparjBzac2k3oplU2TNyEIgl1kNhbXD3l5GTl09fKKxJ4zK9zJnpVpjt6iKHL27FkSExNJTEwk\nLy8PLy8vunbtSo8ePQgNDXX49exoKtrx6acwbRpccw2sXg033yxFg7BVrp1xRbufPXuWzZs3V2wZ\nGRkMGzaM7t27260OOdvdyp6x1u3M1Roq2WrKrvOYKTMZS4GUjLL47z/x7j4MjU9QneXrwpXCCrtb\nXU2tRzQXYzr+FWJRGgDWHBeftqigYGcc4rw0lSh/aR1AfmndT4sU5MHPD3Jzna2F+2C1Wjlz5gyJ\niYkkJSVRUFCAt7c3sbGxdO7cmaioKFQ2/Gl3SzZuhBkz4OGHpdGWOhw2BYnc3Fx+++23Cmfl2LFj\nCIJA7969mTp1KsOGDWPQoEHOVlPBjbGW1L0OSdc6lsCRs8j+ZTFFR+M5e+YgQWOfwiOmH2ovfwTV\n1RsR0JUQrRYozcWSsRfT0f8hGiWHUxXcG22Xh5ysnYKCY3FJ5yU2KBYBgYSMBPq17udsda4qAgIg\nMdHZWrguoihy8eJFzpw5w5kzZzh16hTFxcX4+fnRtWtXOnXqRERERJ0jLFc82dnS+haNRpoqtmsX\n9OwJMuXXcEdycnL4/fff2b59O/Hx8RVhkdu1a8ewYcN4/fXXGTp0KIGBgc5WVeEKQTQmI4oWBKGm\nIyIIAgFD7sczdhAZ375M6fnjZKx4seygCrWXP2rvwKqbTyBqL+lV492ibH8AguYqDf3eTERLKaIx\nB9GYA2WvojEX0Zhdsb/ieOmlKucKXmFouzyMOnTg1ft7o3DV4hDnZd68eTz77LONLu+p9SQ6IJqE\nzAS7yWwscsmVAzl0NZnmsWfPs8THw3XX2S7PnexZmXK9qzsrZ86cobCwEJVKRVhYGH369CE2NpZW\nrVrZ9APirnaqzrxFi3h2xgyIj4fnnoPSUsmR6doV+vaFPn2k165dQdv40Ofu3N8vXLjA9u3bK5yV\nw4cPI4oirVu35tprr+WBBx5g2LBhREdHO0w/Odu9dOlSWeTag6IieRY2u37/VdNQfB59q/aEP7KM\nnC2fcWn3KiwF2SBasRRkS+8bYPHuNB6+vn2ZI9MCtXdAxXuNT3XnpwUqXfMeaDjS1s2pSzQXV3I+\nci87JiU5NR0SsxRA4p3vk3ny9qhGSFchGFqgaXsrmrbjENSKs6hwdeIQ56U5PxhdgrvU67zI9SMk\nl1w5kEPX9u2L6NMHnnxSemhu6xRxd7JnOWazmZMnT7Jy5coKZ0UQBFq3bk3Pnj2Jjo4mIiLCrgkm\n3dFOtVFkMknRxEByXA4fhr/+krbdu2HJEimRkMEgjcj07Qu9e0OHDtCuHQQH1zrNzJ36u8Vi4euv\nv2bLli3Ex8dz4sQJAGJiYrjuuut44oknuPbaa4mOjm7Q4XWndpdTUlIim2xbkSsnhqv3X0HXuIcr\nglpD4I3TCbxxOqLFjKUoF0t+doUDI20XMednYynIwVJwsWJ/scmKtTgfa3E+psyGI+MJWgNqn7JR\nGy9/VAbvSpvX5fd67yrHCvJyEK0W2aaziaIFzMWIpgIKs1OxXDwMpkJEcyGiqRBqezXmXXZILE28\n/gUNxRYDgl97BH3A5c0QgKAPLPvsj6APAJ1vraNnCgpXGw5xXl555ZUmn9PGvw1bTm+xq8zGIJdc\nOZBD11dffYXhw2HwYBgxAr7+GkJCmi/PnewJkuPy7bffEh4eTl5eHj179qRNmzZERkba1VmpjrvZ\nqS6qtEOnkxyT3r2lNTAARUWwf/9lh2bjRliw4PI5Pj6SE9OuHcTEVLx/5YEHwGKx3ZuuT1878fzz\nz/Prr7/SrVs3hg8fzuuvv861117brIXs7nifmzFjBv/73/9kk28LXl5essh19f6r0jX92hPUGjQ+\nQY1avC9arbxfkl/m6Fx2aMwF2dX2SQ6PaDIimkowZ5/DnH2uSXrdB5x6fjOC3guV3quqw6P3QKXT\no9LpEDRaVFo1glqFSg2CGlRqEQQLgsqEilKwloC5qMwJKZBCDlsuh5V+biAYf3+siZYD1PoqjggV\n7/0rOSRlx7Te/HusMu1LQaEpuOSaF4AiUxHeOnnCWirUz6BBsHmzlEswLg6+/RYGDnS2VvJjNpv5\n7rvvOHXqFHfffTft2rVztkpXHp6eUgSya665vK+gAE6elLa//778fsUKOHuWitjdOh1ER9dwbIiJ\ngTZtmpQ3Rk7i4+P5/vvvue2225ytioICAFZNqKzyBZUKtacfak8/aFlz+mNlRFFELC2SHJn8i5gL\nsrEW5mItKcBSko+1MBtLYSZicT4WYyGisQirsRhraQnW0tKK+4FoLMRiLMRyKcMGxUGlERDUguTg\nVLwXEDTqMkdIj0rvgaD3RG3wRuXph7ZFS1QGPwStF4LGC3R+ZSMl0mgJasMVvQ4l62AhF9LlGcVU\nsJ0c1x38thsu57yIosjWM1vZnrKdNv5tnK3OVcuQIbBvH9x5pzQK8+ab8MQTNkW7dRnMZjO5ubnk\n5OSQk5NDdnY2OTk5ZGZmcunSJSZOnKg4Lo7E2xt69JC26pSWwpkzVZ2akydh0yY4dUo6DtJUs8hI\niI2Fjh2l1/ItNNShEc/+85//KI6LgkuRndP00MdyIQgCaLSotSYEXR5q3XmspWcRS1Kwms+CuhB8\nkbYq6AAdolXEahYRLSKiBawWEdEsSq8WEasZRFGDaFVjtQqIFqFsvxXRZMZqNiOaTJJIEawmEUwi\nlhqamoA6/gUKAprA1uhD26MLjUHXygNdqA9aj1AlOpuCggNwiPOSlZVFUFD9N0+z1cyqo6t4a+db\n7Luwj56hPZk7eK5NMpuDXHLlQA5dK8ts3Rq2boUXXoCnn4ZffoEvvpD+CzpTx8ZQXFxcwzkp3/Ly\n8irKqVQqAgICCAgIICYmhq5duxIZGelwvd3puqsPu7dDp4MOHcgKDCRo9Oiqx6xWOHfusmNz4gQc\nOwY//wyLFlGRsMjHp6ozU+7gxMSQlZ9vd7u/8soreHh4MH36dJvzirjjfS4nJ0cWufbAas8MvJVw\n9f57ZK+ZMTLnMKxuA1EUoTQXa34KYsFZrGWbWJCCWJgG1PVdCAgeIQg6P9B6IWg8QeuNoPUCjScX\n8y0Eh7QqO+ZVtYzGEzQeCEL9T9lEqwWrsQhrSQHWksKy1wKsxoLL70sKycxIJ0Anlh2TylkuZUlT\n4i6mYr6YSmHC1suaa/XoWrZDF9oOXWh7dK1i0IXGoPGuP3Kgq18/CgquhkOcl6lTp7JmzZpajxnN\nRpbsX8LbO9/mdO5phrUdxqbJmxjWdli9w671yZRLV1dDDl2ry9RqpfXXw4bBvfdKD8f/7//gxhud\np2N1/v77b5KTk6s4K5UXDRsMBgICAggMDCQ8PLzCWQkMDMTHx6fWPCyOvg7c6bqrD4f2S5UKIiKk\nbciQqsdMJmlkJilJ2o4dk17Xrr2cyEilYqrBwJqhQ6UY4XZi8ODBzJw5k8WLF/PYY48RFRVF69at\nad26dZMzvLvjfe7VV1+VRa49yM3NZdOmTURERBAREdHk76MuXL3//pVyjGefXEqERysCvD3x89Hj\n4+uBr68HWp0GjU6FWqdGrVWh0alR61RotGWvZfvVOjUanQqVBlTWAijNlaJplUqL1e978FW+f+8e\naeF6yUWsBWfBVFC3UhpPVN4RCN4RqLwjEXzKXr1a1xtF66GxY223tSgiqDWo9F7S2hiDtxS22FwK\nFjOiWXr/5FuP8+2HbyBaTIhmk7TfYsKcl44xNQnjuaNYCy8nRhNNRoypRzGmHq1Sndq7BYa2cYTc\n8VKtUdZc/fpRUGgOgiAEAV6iKCZX2tcFeArwAlaLovh1c2Q7xHmZO3dujX0Wq4WvDn/FS1tf4uyl\ns9zZ5U5WTVhFr1a9mi3THsglVw7k0LUumSNGwMGDcM89MHq0tA6mMTNjHGHPrVu3cv78eQAiIiIY\nOHBghXMSEBCARzNyjDj6OnCn664+XKZfarXS6ErHjnDLLZf35+RIQQK++gp+/pm5RUWwbp3ddf3X\nv/7FnDlzmDp1apVjfn5+tG7dmvDw8AqHpvr7oKCgigc3LmPPJjB9+nTi4+Nlk99c2rVrh8ViYcSI\nERX7/Pz8KhyZiIgIwsPDa3z29PRsULar99949Q7+sBxEla+i1aUQwsUwIsQwwsUwQsUQNE3+K2BF\nozahUptRq0xo1CZujBzH1m8CUKu9UalboVZ1RK0yodZpUesNaAweqPWeqD280Xh4o1LpUButqE0W\nVHlmVIIZlXActXAUFSZUghGVaAJrmeNgkZyHx66PJmPVG2WORtVjFU6GpbTSflNZucv7EBs3Ajc9\nooi0L55ousGrYSm4SOGhXzAPm4auZdsax139+lFQaCYLgPPAkwCCIIQA28v2nQSWCoKgFkXxy6YK\ndojzEhcXV/FeFEXWHV/HC1te4EjGEW7vdDsbJ28kNii22TLtiVxy5UAOXeuT2bKl9D9v8mQpD+Hy\n5dJrc+XZi/vuu4/9+/ezY8cOzp49i4+PD+3btye0KfPbquHo68Cdrrv6cKl+mZMjLdzauxf27JFe\nT52Sjnl7w8CBxJVHQzMYYPx4u+nbr18/du7cSVFREefPnyc1NZVz585VvJ47d46EhAQ2bdrEhQsX\nqkxn0ul0hIWF1erglL+2atXKpuh3cl5vnTp1kk22LUyYMIFbb72Vc+fOcfbsWc6ePUtqamrF+7/+\n+ovvv/+erKysKucFBgY26OC4ev9t49OOXE0RheZ8zglpnCON3ewDQIWaQEIJFlrRkjBirDH4Wj3R\nWEW0VhGNCDoEtIIaVcV0LBVmix4sl4NkBHsGczG3lsprxVi2VUdbtl1+4CRgKnNmSlFhRi0Es+uU\nCZVQeX/lz1Ikscqf1WWfNUIhWiEfrVCASri8ykXQ6BDUWih7FTRaBLWWuFa6ivdSGU2lsloEdfXj\nZedWKkvZe21A61odF3C/+/+RotkU5rd3thoKdZBhOQtsbbCcA/gHUoDAcu4BsoGeoiiaBUF4CpgF\nuKbzAnA+/zzLDy/ny0NfcjD9IEPaDGH3g7vp17qfo1RQsANarfTQWqOBSZMgKgr6Ofkr1Gq19OvX\nj969e3Pw4EF+//13Fi9ezKhRo+jnbOUU5KV83cuxYzW35LKRam9v6NVLGoEpd1Y6dKgafWLfPlnU\n8/T0JCYmhpiYmDrLmM1m0tPTK5ya6o7Ovn37SE1Npbi4uMp5oaGhREVF1bn5+tZY8XzVo9PpiI6O\nrjUhaDklJSVVnJrK73fs2EFqairZ2VWTNo4cOZINGzbIrX6z6fvXOh6aNJ7ToTdw2BDMycJcUrL+\nJiXzBEXGArI4R5Z4jkRgm8oT/6AH0Wgux8gvOHUAY2YyKgR0ghqtoEYrqHgwKJXBPnlYRS1WtFhF\nLRZ0iKIWS9lnab8Oq6DHKugR0WFFL+1HV1ZGg8WqwSpqsFo1WMXLa8VEJFkW0bN8h13Qeqjx8NVh\n8NVj8NFh8NVh8NGV7dNV2afWXgGRahQUHE8ocKbS56HA96Ioli1IZQ3wfHMEy+q8XDJeYtXRVXx1\n+Cu2nN6CVq1lTIcxzL9xfoNrWhRcl/9n77zDo6i6P/6ZLdnsppJGQgIJhNBCDYReraiIKIogAgJ2\nUV4V7AXwlab4U4oNUUBR1BcEaQIC0qv0amgJkAAJkN42u/P7Y5KQhIRkk53dWZnP8+yTze7s9557\ndmZ2ztx7z9HpYP582LYNvvnG+cFLEVqtlpiYGFq3bs3ixYvZvn07sbGx6n72byAzs/wA5Z9/pNox\nIEXWDRtKU8UGDoTmzaFdO4iKsnt9GHui0+mKR1gqQhRFUlNTSwU1586dIz4+nvj4eHbv3s25c+co\nKEpSANSqVeuGgCYiIqL4ub+/v3pslIO7u3ulAWdWVlZxUPPVV1+xdetWB1poOx46HZ5XjtHcKFCr\nzmCaNy+cSmnJx+PYTyQkHWbbtWy2pF8j05JO2rXv8PV7Cq3WD0tuFgWZUrBmRSRXLMCisRIR4kO3\nRx+jUVhQ6dGHckYq0Opt2tdEq4jFbKXAbMGSb6Ug34LFbMWSb6Eg34rFXPi38PWCfGm7kq8XlN0+\nz0Juhpm8jHysFhFzjgVzTg7pl3IqtUdv1ElBjVeZwKbEc6OXHndvN7R65Z5r7It67lAuivlu0gFf\noGjNS3tgTon3RaBaNQ7sHrxYRSurT67mu/3fseyfZeQV5NEovhGzR82mf7P++Lr72qWdOXPmMHLk\nSLtoOUJXDuSwtaqaWi0MHgwzZ8L06dKsG0fZWBkajYbY2FiOHDnC7t27adq0KV5eXjZpONpuV9rv\nbkaN+5GXJy2u2rULjh4tXmg/JzGRYtXataUAJTZWmsNYlD0sIkKKrB1pr8wU2ScIQnGiiebNm5e7\nrcViISkpqTigKflYu3Yt8fHxpSrBm0ymUkFNZGQk/fr1u+lFe1VYsmRJjT4vJ/b6vj08PGjcuDGN\nGzdm+/btrF271g7WyUdUWAB5Q+YRp62LtXDkIsRDw/YdB/jfugwuis0x1W2Gwc9MztVvsFgucy3l\nG/TpranjZqJDy3CahIfQpF4wTcJDqF8nAF2ZGwL2PJYEjYDOoEVnuDEQqGk7oiiSn11Abno+uen5\n5GRIf3OL/pZ4vmrnEno0vgdzTgHmnALSL2VXqq836nD3ciMoyocmt9fDJ7jywqhKPw+pqFSTHcBL\ngiA8BTwEeAElq883As5VR9huwUtabhrf7f+OWbtncfLqSVoEtWBCzwkMajGISW9OYmSMfQ/MvXv3\nynKwy6UrB3LYaovmgAHw4YfSCMxtt9Vcz57Uq1ePiIgIVq1axapVq/D19S2eqx4WFkbt2rVvmsbW\n0Xa70n53M2zqhyhKa1B27rz+2LdPqt2i118PSoYPZ++OHYycOFGa7uVrnxsgNtvrBGyxT6vVEhYW\nRlhYGF1KFgEtRBRFUlJSiI+P55133uGuu+4qDm527NjB999/z9ixY+ncuTPDhg1jwIAB+FbD18eP\nH7f5M45Cru/bXFQ3RKHUHvIxJzR1QYQAk5ZLCad54aPFXLqajptfHbyipBpLeqtI+7BHOX55Addy\nroLfdkbc/ywjuvUvNytjSRx1LNW0HUEQMHjoMXjo8Qm5eWCx5vkF9P+oW+ngJiOfnPTyAx5pREcK\ndDIuZ3NqWxJhLQNoemc4gQ18ZOuTiopCeRdYBzyOFG9MFEWxZC79gcDG6gjXOHg5cvkIM3fN5PuD\n35NnyeORZo8wr988OoV1Kh4mnjVrVk2buQE5NOXUlQNn+zU6WiqhsXNnxcGLs/wpCALDhg0jPT29\n1Lz1o0ePYrVai6fqlAxoPDyu/5A52m5X2u9uxk37cfWqNKKya5e00+zaBUWLoyMjoUMHeOwx6W/r\n1mC4Pposl3eU7nd72icIAoGBgQQGBvLHH3/c8H5OTg5Lly5l3rx5PPfcc7z00kv069ePoUOHctdd\nd6Gr4qjWG2+8wa+//mo3u+2JXN+3j0/FF6ZK4JQ1kPqAryaPqbN+ZN8/CQCE1YvAXKcVBSI81q4O\nY++IRCMIJGfczis/TWbd0R2899sM1h/byQcPjSYyqG6FbTjqWHLkMfv5558DVCnQEUUpcMlJzyfr\nSi4nN1/g/MEUzh+QHoENfWhxX32CG99Y80Xp5yEVleogiuJBQRCaAl2Ai6Io7iyzyULg6I2frJxq\nBy9JGUm8vPplfj7yM8GewYztPJan2z5NiFdIdSVVXAytVlrv8scf8MYbDi1iXmW8vb2Jjo4mOjoa\nkBZHJyUlFQc0Bw4cKJ6vPmDAAMVmSnI5Ll+WRlH27pUe+/ZJhSRBqqnSvj08/7wUqLRvD2qBNqdj\nNBoZOHAgAwcOJDExkR9//JF58+Zx3333Ua9ePcaPH8+QIUNqXHhTxfFYgdqeOp5/9xNSUjPwcDfw\n0oA72Jrmy5GLmTQN9mTM7VLgAhDo5cf8p6Ywb+sSJiydxV/Hd9Ft4mAaB9end4uu9G7RjZZ1G6tr\npkogCAJuJj1uJj16dx0R7YOxWkQSj1wBIPlkGhtmHKDfh50x+lRrmr+KisshimIKsLSC91ZUV9fm\n4MUqWvn676954883cNO68W3fbxnccjBuNykqpfLvZfRo6NtXSpv82GPOtqZydDpdcYpTkO6WLViw\ngPPnz1O7dm0nW+eCiKKU7asoSCkKVM6fl9739pYyfd1/P8TESMFKVJQyI12VYurUqcOYMWN49dVX\n2bdvH5MmTWL48OFMmzaNyZMnc++996oXri5Gm2B3IkMDSUnNoG+31rzw0G24bU3gyMVMjl3MZNH+\nJAbE1CneXhAEnuj6IF0atmH80llsOrGHExfPcOLiGT5b+z0hvoH0btGN3i260TGyFXqtw5KXKgqL\n2cq18xmknEkn5XQaKWfSyL52Yxpog4eesNYBuHnonWCliopjEQThJeBrURRzC59XiCiK023Vt+ls\nczHjIl2/7cr289t5ss2TTLlzCn7GG4dAVW4d7r9fWvsyejR07w5hYc62yDb+/vtvTp06xf3334+f\nn7ovV4lTp2DuXNi9WwpWkpOl1wMCpADl8celgCUmBho0KJ2SWMWlEASBmJgYfv31V3bu3Mnrr79O\nnz596NatG19++SXNmjVztokqVUCvEXDXCYx9rDcPv/05v67fTXiwP4/0akdGXhjzdp7nw9UnOZmc\nxeDYMML9rtdZiQqO4IdnPiI1O4P1R7fzx6EtrD+2k6TUZL7bvJjvNi/G1+TFjMff4fZmnZzYS8eR\ncTmb84dSuHAwhZQz6VgLShe9FATwDfUkoL4PAQ288a/vg1egUQ34VW4lXgYWALmFzytCBGwOXmy6\nqvhkxyecTT3Lpic2Mbvv7CoHLn379rXVLqdoyqkrB0rxa1G2sZgYKJt0R+n+zMjIAGD58uV8//33\n7Nmzh8zMTIfbrXQ/AbBjh1TIsVEjmDUL3NykqV9Ll0JCAly+TF+DASZNkiLahg3tFrjcqse7kvrd\noUMHNmzYwMqVK0lOTqZz586sX7/+hu1efvlmv1PORS5/lq37ojSMeg2CINAxOpK720dTYLEy+fuV\ndHjqvxzZuYme4VKw8vPeJPp+tZtRvxxm2+mriOL1oiq+Ji8eancXXw+fwKH//s7Eh18uLlqZmp3B\n6BHPO6Qvjjxmi9qyWkWST6Wyf8lJlk/YwbJxO9i36CSX41KxFlgxeOqp09yfVn0bcPvoNjw8rTv3\nvNWe2EGNqd8hBO8g000DF6Wfh1RUbEUUxfqiKF4p8byiR/mVWyvBppGXdafXMefZOXQL72ZTI6NG\njbJpe2dpyqkrB0rxa+3a0g34IUPg7rvhnXfg/felNTFK92evXr1o164dx48f59ixY6xcuZIVK1YQ\nFRXFjh07aNq0qUMW4yrWTxYL/P47fPyxlFauUSP4/HMYOhSMxhs2d7XjUrF+L0Rp/RYEgXvuuYcu\nXbrwyCOP0Lt3b+bMmcOQIUOKtxkwYACbNm2yl6l2RS5/lkz2oUQ0Ja6bZ40ZwpJNe/lx7U72nohn\n9c5DsPMQwXUjCIpszoUcLZtPXWXzqas08DcxsG0dujX0o46PlA8/Oy+HH3esYMrK2VhFK25aPaPv\nGkqjuwMd0hdHHLMWs5WMy9k8fOdj7Jh/lAuHr5CXeT2jnKARqN3Il9AWAYQ088crqGajKko/D6mo\n2BNBEHSAuyiKmdXVsCl4CTAFMLTVUJsbueuuu2z+jDM05dSVAyX5NTAQVq6EyZPh3Xfhr7/g++9d\nw59eXl7ExsYSGxtLdnY2x48f5/jx46xdu5Y1a9YwePBgIiMjZbVBsX4aOhR+/FGaE7h0KfTpc9PR\nFFc7LhXr90KU2m9vb2+WL1/Os88+y9ChQzl79izvvPMOgiDQqZNypw7J5U+DQdkLsEteVru76Rl4\nRwcG3tGB4/FJ/LR2J//7aw8Xz53l4rmzaAwemEIa4B4Yzukr2UxccxJxtaXBA78AACAASURBVBUf\ntwtoLAdJSN5LXoG0piO2fgs+fnQsUcERDuuLPb9Di9lC+qVs0pKySLuYTVpiFukXs8hIzkG0iugI\n4jQXAal+S53m/oS1CCAk2h83o/3W+Cj9PKSiUh0EQbgf8BdFcW6J195GSqGsEwRhPfBomfTJVcKm\no+9qzlVSslMI9gy2tR2VWwCNBt56C7p1k5Y9tGoFX3wBgwY527KqYzKZiImJISYmhtzcXH788Uf+\n/PNPGjRocOvNV96wQQpcZs+GJ590tjUqCkOv1/PNN99Qv3593n33Xc6cOcNXX33lbLNUyqGiM1eT\n8BDGP9mPN4fex6rth/h9yz72/ZNAytlDZJ07hj6wFqLnFczW46RY04o/p9H6EeLXg5iG93Dqqgk/\nr3z8PZSbtKcg30LGpWxSk7JIT8oi7WIWaUlZZCbnUGJmXCn0Rh0+wSb86/sQ1jKAwEgfNFp1/Z6K\nig28Avyv6B9BEDoDE4D3gGPAh0iBzCu2CtsUvGg0Gn44+ANjOo+xtR2VW4hu3aQi6c8/L2UgW7UK\nvv3W5uLnTsfd3Z3bb7+duXPncuzYsVtrcXJBAfznP9CxI4wY4WxrVBSKIAi88847hIeHM3LkSJKS\nkvjvf//rbLNUylDZfRd3Nz0P9ojhwR4xiKLI0YQEXl04hYNJ26GgcCNRh06sj9HUFjevZuRrNCw+\neJnFBy8DUMdTR/dGAfSICiCmrg/uesem1LZaRbKv5pJ+OZuMyzlkXM4ufmReyZWWBZeD3qjDt44H\n3sEe+IRcfxh93G69G1YqKvYlmtKBycPAWlEUPwQQBCEX+Ay5g5c7G9zJjF0zGN1hNHpt1dP9LVmy\nhH79+tlqm8M15dSVAyX71ddXumkfFLSEGTP6ERUlTSdzFYr8EB4eToMGDfjrr79o0qRJpVWma9qe\nYvjmGzh4UCokaUOfXe24VJzfy+Aq/R4yZAjp6emMGjVK0dPG5PJnbm6u3TXtiS1nrX8unuXJ+W8S\nfyURjaChZ5NYHm53N1F+jTh29jIHTp5j36kj/JOSCyY/9N4B6Dx8OLZrA4mZ3Vi49yIaROr76ujZ\nKIB7WoTSMNDDLoGAKIr88uP/6Bl7R2FgIgUp6ZezyUzJwVpQQYQCuHnopMCkTJDi7l1xkOKo84PS\nz0MqKtXEC7hS4v+uQMkKxkeAOlQDm67EhrUaRkJaAgsOLbCpkZ9++smm7Z2lKaeuHLiCX5OSfuLt\nt2H8eOk62FUo6YfbbruN5ORkDh8+7JD2nM61a1LWhSeegNhYmz7qaselovxeDq7Ub7PZjNFoZMuW\nLXbXthdy+TMnJ0cWXbtRxbjhzyPb6fPps8RfSaSuXzBrxs7hh2c+ol/bO4iuX4+He7Xjg6ceZPnk\nFzjy5X/430t3MKZTLTroz5O+8zdyL8djzc/BisCpVAtzdl3i4Tl7aT95A4O+2MTKgxdKZTC7GXmZ\nZs7tu8yBZafZ8s1hVk3cxa+vbOL/3v+cdZ/uY9ePJzj2ZwLnD6aQfjEba4GIRifgE+JBWKsAmt5R\nj/aDm3DHy214cHJX+k/txp2vtKX9Y01o3KsuwU38MPoYbhpUOer8oPTzkIpKNbkANAUQBMETaAVs\nK/G+P5BdHWGbRl6i/KPo27gvU7dOZVirYVW+k/Lzzz9XxzaHa8qpKweu4Neff/4ZsxlWr5bWfh86\nZFd52Sjph9DQUBo1asSOHTto2bKl7O05nXHjIC8PJk60+aOudlwqyu/l4Er9PnfuHHXr1mXy5Mms\nLZszXSHI5c9atWrJomsvqvJLnZ2Xw3Pzx5GVl0OXqDZ8OWw8/p6+FW6v12lp2bAuLRvWZfh98PWY\nx0hMSeXv42fZcOQcf5/PINnshs7Ln3yNjqOp8OaKU0z+4xgv9axP/9jS6wjzs81cPpnKpX9SufTP\nNVIvZJY71Wv03e/iEWDEK9CIV5AJ79om6XltE6Za7mg09pvq5ajzg9LPQyoq1eRX4FNBECYC9wIX\ngR0l3m8HnKiOsM2rEP7T4T/cNv82NsZvpGdEz+q0qXKLoddLa77btJHKg3Tv7myLbCciIoINGzYg\niuK/ex700aPSl/ThhxAS4mxrVFwIq9WKVuvYdQ4qVcRqrXSTrSf3kZWXQ1itYH58dhp6re2LFOsE\n+FKna2vu79oagJw8M3tOJLDiQAKb4q6Q6eZHGm58sO4CM1bHMSIygBYGHy7HpXLtXMYNi+d9QjwI\naOAjBShBJryCjHgGGNHq1IXzzuSz5C24meOcbYZKBQTp851tQhETgFCkIpQXgcdFUbSUeH8QsKw6\nwjafnXpG9KSxf2O+3POlGryoVJmWLeGpp6TpY4sWOdsa26lVqxZms5nMzEy8vLycbY485OfDqFEQ\nESEt1ldRsQG9Xk9BQUHlG6o4HNFa+fey/qh0Q/T26I7VClzKw2jQ061lJN1aRiKKIn9sOMaatfHU\nzjEQlu+GJimd46QXb+8VZKR2o1rUblSLoEa1MHorN4OZiorKzRFFMQeosL6KKIq9qqtt8xlKEASe\nbfcsr619jUuZl6jtWbu6bavcYowfL60DL6cot+IJDQ3FYDCwatUqHnnkkX/f6EtGBtx7L2zdCsuX\ng8LrVqgoDz8/Py5dulTlNQ0qjsOSX/md2LMpFwBoU6+p3dq1Wqwkn0rjwqEULhxKIeNyDrFcP7ek\naiHBXSDeIJDj70afDqF0bhWs6LTLKioqVUMQhNuATaIo2v2uVrVurwxrNYw3173Jt/u+5c1ub1a6\n/fDhw/nuu++q05RDNeXUlQNX8GtJvdq1pTTKGzbYTV42yvrBy8uLBx54gF9++YXt27fTuXNnWdtz\nOE8+CSkpsGYN9OhRbRlXOy6d7vdKcKV+N2nShPT0dN58s/LfBGchlz9TU1PtrmlPzHmVr4nNL5Aq\nyLvrq3fjosi3BfkWLhxK4fyBZBKPXMWcc/26RaMVCIqSKtOHtghg27lEZszdiM6rLppcDTM2nuXL\nLfHc1SSQx2NDaRZy4yi3I49ZR7Wl9PNQWXyie2AMbeRsM1QqwDMz3tkmFLEWCAEuAwiCsAPoL4ri\nhZoKVyt4qWWsxaDmg5i5eyaj2o/Cy3DzaTRKqgTvLF05cAW/ltW75x4pkZXSKc8PTZs2pXPnzvz5\n559ERUURGBgoa3sOJSMDtmyB6Ogaybjacel0v1eCK/W7aVPpjn1oaKjdte2FXP40KHykMj8rvdJt\nCqzSVHSdxvZ1SxazlbaNO7L128NcOHSFgrzr09oNnnrqRPsT2iKAkKZ+6EtUpr8rIJJP8rJ5eur3\n6P1CaNG2I2dTzaw4cpkVRy4TG+7DsPZ16RJZC03haLcjj1lHtaX085CKSjUpO0UlGrDLybLaE1vf\n6/EeCw8vZMLGCXx010c33XaQDCXW5dCUU1cOXMGvZfXc3ECrBbPZrs3YnYr80KtXL44ePcr69et5\n9NFHZW/PYQwdWuPABVzvuHS63yvBlfrdqFEjwsLCyMvLs7u2vZDLn0ajURZde5F59XKl23i5mwBI\nz82qkqbVYuXi8WvE/32J8wdS8MuJIj5BasfD3516MUGEtQzEv773TTOA3dOxBY/dEcuCNTsIuHaM\nD594hAV7LrDmWDK749PYHZ9GgwATwzqEcW+zIIces45qS+nnoRsQhH/f1Ol/E7fAd1Pt4CXCN4J3\nu7/LuxveJSYkhkebP4pGUDOAqNycjAwwGkHhNd0qRKfTERsby9q1a0lMTKROnWrVV1IeMqWAVrl1\nEASBPn36sHz5cmebolKG9OQL5GZl4O5R8SwJX5M3ANey0m6qZc4t4OTmRI6tSyA3/fpaGqOvgfC2\nQdRrWxv/cC+bLm4fv7sTC9bsYM3uo0x4qoBJfZswumcEC3Ynsmh/EqdTsnl/xT/M3HiWQe3q8Ejr\nELyNVS+UraKi4hRESic8L/t/talRSpFXO7/K9vPbeWzxY0zcMpFxPcbxYNMH1SBGpUJq14a0m/82\nKpbU1FQ2btzIgQMH8Pb2Rq//F/14Tp8O/ftLkaWKSjXx8PAgvwqLw1UcS4HZzPdvPM7Iz35Doyn/\n97mWR1HwUv4Us/xsMyf+Os+JDefIz5LWsbh76akbE0R429oENvBBqEaNlWsZ2bz99WJJz01fbF+w\ntzuv3t6Ap7vUY9H+JBbsucDljHym/3WW2VsT6N86hMGxodTxcbe5TRUVFYcgAOsEQSha+GYClgmC\nUOpHQhTFGFuFaxRluGnd+H3Q72wdsZVgz2Ae/vVh2nzVhiXHl5TKOCNHxWW5qjgruTp0WVzBr2X1\n7rqrSiUHnE5JuzMzM1m5ciUzZswgLi6Ou+++mxdffNGua16cvt8dPAgPPyylS64BrnZcOt3vleBq\n/V6/fj0NGjSQRdseyNVvpQdsWoORw3/9zooZFS84rGXyAeBadungRRRFDq08w5J3tnFo+Rnyswrw\nCjLSYUgT+k3sQuyjjQlq6MvWbVtttuvomUT6vzWTvSfi8fE0snD8M4T4+5TaxstdxxMd67Lyufb8\nt09jaqXGkWO28sPuC/T5YhevLznGkaQMm9uuCo46Pyj9PKSiUk3GA4uApYWPD5AKVy4t87AZuwyR\ndK7bmbVD1rLpiU34G/158OcHmblrZvH7U6dOtUczpZBDU05dOXAFv5bVi4iAevXs2oQsFNmdm5vL\nd999x6FDh+jZsycvvfQSHTp0QKezTx2Esu05jWnTYOVK+N//aiTjasel0/1eCa7U76+//pp9+/Zx\n7do1u2vbC7n8mZmZKYuuvQiLbg/An99MYuOC6Te8X2ApYMfpAwBYxdJ3lxIPX+HQ8jMU5FrwreNB\nlxHR3PdeRyI71UGjvX4JUVXfiqLItkMnGTz+a+56eRr/nLtEsL8PiyeOom2TiAo/p9dquL9FbbyP\nLeWLR5vTMcIXiwh/HEvmsbn7GP7DftadSMFitV+qbkedH5R+HlJRqQ6iKI6vyqM62na9AusW3o31\nw9YzetVoXl3zKp3qdqJdnXYsXLjQns0AyKIpp64cuIJfy9Nr1QoSEuzajN1ZuHAhoiiybNkysrKy\nePrpp/Hz85O1PadSmCmqpvVdXO24dLrfK8EV+i2KIhMmTGDcuHGMGjWKAQMG0L17d7vp2xO5/Fmr\nVi1ZdO2Fd+1Qej8/jj8+H8fiyaMxmLzo+ODw4vfHLZnFln/+xujmzohu/Ut99sLhKwA06BhMh8eb\nVjg1rDLfWq1WVu86wqxF69kfJ/0AaDQC93dpxdtD+1AnsGo+XLhwISaTic4N/Dh+KZP5O8+z+lgy\ne8+ls/fcUcJ83XmsXSj9WtbGw1CzSxxHnR+Ufh5SUVEasixO+eiuj2gd3JoBvw4g25yNyWSyexty\naMqpKweu4Nfy9Jo3t2sTsmAymdi7dy9Hjx6lb9++sgYuRe05lZQU6W9wcI1kXO24dLrfK0Hp/c7O\nzmbkyJGMGzeOiRMnMn36dDw8POyiLQdy+VPpmZesVuj97Hv0HPIyAAvHPcmZ/dsAWH90B99uXgTA\njMFvEx3asNRnLx6Tgpdadb1uuqalIt+mZebwze+b6P7CFJ6aPJf9cQkY3HQMu6czmz9/k1mvDqly\n4FK2nSa1PZnYtwmrnm/Pk53r4u2u43xqLlP/PMUj3+4lI7dmtfEcdX5Q+nlIRUVp2HfuSyFuWjcW\nPLSAxjMb8+OhH3ky5kk5mlFxUWrXdrYFVWPnzp00a9aMZs2aOdsU+dm/X8phfSv0VcUu7Nu3j0GD\nBpGQkMC8efMYOnSos01SqYDcAhFBEOg3dhpply+wb/UvrJ/7MSM/XczRxFMA9GnVk3tb3Vig1sPf\nSGZKLnsXncRqEWlye90qBWsnEi4yd+UWFv31N9m50pogHw8jw+7twoj7uhLge/P6cLYQ5GXgxR71\nGdmpHssPX+KrLQlcSM1l0f4knuhY127tqKioKAPZ0oJF+UfRp1EfZuyaUWrxvoqKwm9SAnDp0iWS\nk5Np1aqVs01xDBs3QvfuoPDpLyrOJz8/n48//pgOHTpgNBr5+++/1cBF4WSbrVhFKYDp/dz7ABza\nsJSrifHotFJRSoPerdzP9niuJfU7BCNaRfYtPsnWOUfIz664UNe+fxIY8O4X3P7SR3z/x3ayc/Np\nXC+Yyc89zO457/La4HvsGriUxOSmZUBMHV7sGQHAgj0XMFtcIEOMioqKTcia03hwi8EcvHSQ50Y/\nZ3ftsWPH2l1TTl05kMNWe2uW1Tt7Fr791q5NyMJ//vMfDAYDkZGRDmnP6fvdrl3Qr1+NZVztuHS6\n3ytBSf0+fPgwr7zyCqGhoYwdO5bRo0ezY8cOmhatlyrk008/tZeZdkcuf6anV17B3plYgYw86SI+\nOLIZUR1uQ7Ra2ffHz6TnSEUptRWUONC5aek4tCntHm2ERiuQsPcyyyfs5Nz+5FLbjRkzhu9WbOGh\nt2ay7dBJNBqBezq24OcPnuPPz8bw+N2dMLnXvLh2Vb7DXlH+AFzOyCcprfpFUx11flD6eUhFRWnI\nMm2siHPp5zDpTTRt2LTyjW2knkwpq+TSlQM5bLW3Zkm9BQvg+efBFab3GgwGwsLC0BbelZQbp+93\nggCPPVZjGVc7Lp3u90pwdr/T09NZuHAhc+bMYdeuXQQGBjJ06FBGjhxZ4XTK4Bqum5ITufzpqPNE\nTbiWY8HHXbIzunsf4nau5+Tfm9gYGQpAh8iKR5kFQaBRjzD86nmxY/4x0i9ls/nrQ9SLCaLtgEZY\n9SI7T11i4cnfALinYwvGjXyAUBvWslSVqnyHK45clratZSSsVvXrwDjq/KD085CKitKQNXjZd3Ef\nrYNbM3rEaLtrv/jii3bXlFNXDuSw1d6aL774IpmZ8Nxz8MMPMHgwPPUU9Oxp12bsTosWLQgJCXFY\ne07f7+64AwICaizjasel0/1eCc7o99WrV1m1ahXLli3j999/Jy8vj969e7No0SL69OmDm1v504uK\nGDhwIB999JG9TbYLcvlTyUkKiriaYyGiMJZo2FbKBnf0wFb261sC0Ktph0o1Aur7cM9bsRxeeZaj\naxNI2HuZS3HX+KXgEGfEIHRaDW8P68OT93eXLYlBZd/hiUuZzNl2DoAh7UPR1MAOR50flH4eUlFR\nGrIGL3uT9nJ7/dvlbEJF4Rw/LhVuj4+/Hrzs3etsqyrHaDQqvnaDXTEanW2BihM5ceIEy5YtY9my\nZWzduhWLxUJMTAzvvPMOQ4cOJSwszNkmqtSQq7mW4uehTVoT0rA5cedPIiJicnMn2KdqNy+0ei2t\nHoikbkwQ2747QvrFbDqZwzjtlcznbw0ltml9ubpQKX8eT+bt5SfINVup72/k/hYukh1GRUXFJmQL\nXrLysziRcoKxndW5nLcqv/4KI0ZA3bqwe/f1UiKuQKNGjdi3bx9WqxWNRtalYcpg+3YQRdfIpqBS\nY6xWK1u3bmXp0qUsW7aMf/75B3d3d26//XZmzZpFnz59CA0NdbaZKnYkI8+K2SKi1wpotFqenL6E\nD4Z2BiA3P5e87CwMpqqPIPnV9SIl2kzW+RyC9J68Ue8O2jWOkMn6m5Odb+HrrQl8t0MacekY4cvU\nfk0x6pU/nU9FRcV2ZLsqi0+LR0Qkyi+K48eP211fDk05deVAyX794QcYMAC6dTvOrl2uFbgA6PV6\nsrOz2bNnj0Pac/p+l5QEL78MFkvl294EVzsune73SrCnfVarlW3btjF69GiCg4Pp3r07CxYsoHv3\n7ixdupSUlBSWL1/OM888U6PA5cyZM3az2d7I9X0XFNSsnojcGHXSTYnk7Ot2BtSNZMSH8wFpQf/4\nh1twfNuaKmtm5eQxddEffHt1F6IAZ47GkX4p2652l0fJ79BssfLz34nc98Wu4sDl8dhQZj3aAh+j\n3q5tyYnSz0MqKkpDtuDFzygV9UvNTeW1116zu74cmnLqyoFS/fr77/DEEzB8OOh0r+HpWXO7HM20\nadOIjY1lzZo1JCUlyd6e0/e7N96AGTPg0UchN7faMq52XDrd75VQU/tEUWTXrl28+uqrRERE0KVL\nF3799Vc8PT3ZunUrFy5cYPbs2fTt29du6zamT59uFx05kOv7Vnq2MX+dVGflQnrpFMetOt9NiIcv\nAGcyr/LFM3fzw1tDSU+5VKnm4o1/k56di0egEQH4afvXGDxrHjBUxmuvvUZ+gZXVx5J5aPYeJq45\nydVsM3V93Zn2UDPG3hGJ7ibFNG1tyxEo/TykoqI0ZJs2FmAKQEBg3Zl1TJ9h/x+zmTNn2l1TTl05\nkMPWmmr+/bc04tKvH3z9NSQmuo4/SzJz5kzq1KnD+fPnWbBgAVFRUQQHBxc/DIaap/ws255TeeQR\n6NgRBg2C2FgYOlT6EqOibJJxtePS6X6vhOral5WVxTfffMP06dM5ffo0QUFBPPzwwzz66KN07dqV\n8+fPy5bh6LXXXmPTpk2yaNcUub5vHx8fWXTthefZdZgbxHIxswCrKJZaxN62YWuWH/iLWj3uQVj6\nM7uXfc+eFQsIb96eJl3upmmX3tRrHoumTEa1het24aUx8ERoLCTCiNtGyxK8iKLIhbRcDl3I4FBi\nBtqez9L5k62YLVL9OD+Tnme7hvNQ62D0Wvvej3XU+UHp5yEVFaUhW/Ci0+h4p/s7fLDpA44mH2Vu\nv7nU8apjN31npxBVAkpLlWy1SqmQGzeW0iLrdK7lz5IU2f3oo4+yadMmkpKSOHToEJbCaVV+fn6E\nhIQQHBxc/Lcmd64V4acHHpCKVX74Ibz3Hrz2GkRHS0HMgw9CTEyla2Jc7bhUhN9vgq32paamMmvW\nLD799FOuXbvGoEGDmD17Nj169CiVzlfOfjsyS5+t3Kqpki27lqDt+TIFGMjIsxanTAbIyssBoP3d\nA+j5yH9YNOlFEg7v5uzBHZw9uIM/vhiPybsWjTvdSZMud9Ok892YvGvTXV+fR4KicUuUzgkderex\nS4axjNwCjiRJgcrBxHQOJWZwrVRRTE9ApJZRz8C2dRjSPhQPgzyXMmqqZBUVZSJrtrEJvSbQrV43\nhi0ZRosvWvD5vZ/zSPQjaCoohqXi2sybJ9U63LQJ7Dww4TR8fHy4//77AbBYLCQnJ3Px4kWSkpK4\nePEicXFx5OdLUzK8vb2LR2bCwsKIiIhAr5d/GoVdiY2FJUsgKwvWrJGef/65FNDUrSsFMoMHQ4fK\n06qqOI709HQmTZrErFmzyM/PZ+TIkYwdO5aIiAhnm/avRBRFUlNTOXfuHKdOnXK2OVXCcOUU2YHN\nOL9uFlbzMVLdTOzKyufv00cBaGo+Rh39NV4a9yKpV1I5cfAoR3cf5uyxJHRaf84cKuBc3D7+WphI\nsG9r6mq9QANn86/h31Ygpnd9rJnnQKMHQYco6Mgu0JBpFsg0Q1a+law8Cxl5BWTmWcjKLyAjV/qb\nWfh6/NUczqRkI5axXacRaFzbk5Z1vGhRx4sWdbypW8tdtnTMKioqykbW4AXgzsg7OfjcQZ5e9jQD\nFw3kv5v/y+tdXmdg84HoNLI3r+IgrFb44IOiRfrOtkYetFptcXDSunVrQLqIuXr1aqmAZs+ePWza\ntAmdTkdERARRUVFERUVRq5b9C7bJhoeHNNry4INgNsPmzfDbb9Jjxgy4+254/33o1MnZlt7yZGRk\n0Lt3bw4ePMgLL7zAyy+/rOhCka5Aeno658+f59y5czc8il7Pysoq3r59+/ZOtLZyUrqNwuRbn5MJ\nu/lj3y6OXDnLafH6TUQ3UcPW71PZKuoQBF/ctLUxaaPwNDxC89blayaTzzpdOv8YC/BPgs3fbiXL\n6k6WxUCm1UC21YBI9YKLEEMW0d5ptPDNINong8Y+uRh0WgSNHqw6SNRjvqgDQYeg0UkBU+FfQaMD\nQQ8abfHrQmFAdf1/XZn/r38eQSu9pt5kVVFRLA6JHubMmMPi1xezOX4zk7ZMYshvQ3h3w7uM7TyW\n4a2HY9TbXmNiypQpvP7663a3VS5dOZDD1upqrlsHZ85IWcbsoedsqmq3IAj4+/vj7+9PdHQ0IAU0\nV65cIS4ujri4OFavXs2qVavw9/cvDmTCw8NLTTVRtJ/0erjtNunx2Wfwv//B+PHQubMUxIwbJ62X\nwfWOS0X7ncrty8zM5N577+Xo0aP89ddftGvXzi66NWHu3Lmy6NqDKVOm8OKLL5YbjJR8lFyALwgC\nwcHB1K1bl7p16xIdHV38vOjx/fffO7FXlTNj+2pSDv+CFWvhK9KFeag1mCixAW2sLQh2L3+6X44G\n0rWQoRVI10G6VuCqDk4ajYiCCQOQCaz740eCejx2w+d1WPDU5uKhycNDm4eHJg9PTe7150XvafII\n1KcTbbyAn+56YEi29CjKgzhtcTyvPhRuL9dUjKBl2uIEXh3QWAqKBF1hgKMr87+++HVBKCeQKg6I\nygRKwvVA6qMvFzF21OOFwdj1z2u86yO4ecvfVxuZW/8rWkd6OdsMlQrYn2Skq7ONkBmHBC/Z2VL6\nxG7h3egW3o39F/czZesUXlz1IpO2TOLAsweKs5PZqmlv5NKVAzlsra7m7NnQrNmNN+JdyZ8lqYnd\ngiAQEBBAQEAAnTp1Ii8vj9OnTxMXF8eRI0fYsWMHbm5u9O3btzjgcRk/aTTS8NrDD18PYjp1kgKY\n9993ueNS6X6vzL6nnnqKAwcOsHbt2ioHLlXRrQm5NchWJycrVqxg/PjxvPHGG6VeDwoKKg5CevXq\ndUNgEhISgpub2021ldrnIi7knEPv5Ymf6EuUtQFRYgOirPVxEzykwMRN4KDuxiAlR8hHL+TiIebi\nRTYmMQ8fX19aNGxNJ4MOT4MWz8K//zvvxahBLfA06PBw0+JpEPDQCRg0BQhYwFqAaDWDtQAK/4rW\nAhBL/m8u/L/sNkWfKyDP41d0DfsUf060lt4e0YxotVz/32pGLNFG0UMUS9tC2clqooWc3HwwS8WK\ny05lK/t/Tcg4c4b8PTemGBeMQbjf+aM6CqSiUgaHBC/jx48v9X/rjO40UQAAIABJREFU4Nb81P8n\nxnQaQ7vZ7dh2bht9GvWpkaa9kEtXDuSwtTqaycnS0oipU29cz+1K/iyJPe02GAw0bdqUpk2bIooi\nly5dYvPmzfz22294enoSHh7uen4qCmL694cnn4TvvoP333e541Lpfq/MvsDAQAwGAy1btrSrbk14\n9tlnmT17tmz61eXgwYNoNBq+//774sAkNDTULpkDlb4ftaYTkUInDAZvRJMG0ceNS8G+1An1J7KW\nJ17uejzdtXi6SYGIh5sWQ34q1ivnMKckYL5ykZzT+8hLOIh7UAyh9w64oY0HZn1UqR32WKHy38+H\n2EGlNKIogmi9IZD67x2F/xcGVOINQVJBiYCovCCp6LUywVgpTTPvvdTuhrbF9NOIOZchPx0Mvnbv\nc40Q1HrGSuZW+GqcuugkJiSGWu612Je0z+bgRUU5zJ8vnciG2P835V9H0RSUhx56iAULFrBw4UKe\nfPJJ/P39nW1a9dBqpSxlc+fC2bOgLhB3KKNHj2bmzJnMmzePZ5991tnmKB6TycTjjz/ubDMczqQX\n76Vdp/ts+5AxEHwCMTaIASB952KSEw4i6FwsCUkVEARBmtqFFrRSMOvsC8DsVQ9CfhrWrES0Sgte\nVFScjFPHIncn7ibbnI1VtFa+sYpi+ekn6frVVa+/HY0oipw9e5acnBxyc3M5d+6cs02qHqIIixfD\nK69IebEVXqjv30hkZCQDBw5kzJgxiq2toqIAajjtKGPvSlKWTQNA71/XHhapVILGuwEAeTvfwZKy\n38nWqKgoC4cELykpKTe8lpCWQN+f+tImpA2vd7V94Wh5mvZALl05kMNWWzUTE6XClP362UdPKchl\n9/nz55k/fz4//PADOp2OYcOG0bp1a9fz04ED0gL+/v2lwj4HD0LLli53XCrd71Wx75tvvqFDhw7c\ne++9VQ5g5Oz3tWvXZNOuKVarPDfKlL4fVRexwEzy0qlc/vk9RHMexkad8Lv7uXK3dZQPHOlrZ/bJ\nrc1YBJ+GkJ9K3rYxmE/+Kk1vU1FRcUzwMmLEiOLnoiiy7MQyes3rhbvOnSWPLsFd514jTXsil64c\nyGGrrZpr1kjLH+6+2z56SsHedhcUFPD7778zZ84csrOzGThwICNGjCiuw+EyfkpOhmeekQpWJiXB\nypWwahU0bQq43nGpdL9XxT6TycSyZcuKA5hDhw7ZRbe6TJgwQTbtmpKRkSGLrtL3o+qQdXwr5/7v\nUdK3/QJArdufJGT4p2hNPuVu7ygfONLXzuyTxhSMe9fpaMPuANGK+cgX5G17FWtGgkNsUlFRMg4J\nXsaNGwfAvqR93D7/dvou7Et93/qsHbKW2p61a6Rpb+TSlQM5bLVV89QpCA2teMqYK/mzJPa0Oz09\nnblz53Lw4EH69OnDM888Q+PGjUsVWFO8n/LzYdo0aNgQfvkFPvkEDh2Ce+4ptZmrHZdK93tV7SsK\nYOrXr8+gQYMqzSYmZ7+ffvpp2bRrislkkkVX6fuRaKl6djlzyjmS5r7Mxe9GY05JQOvpT/CwT/C7\n61kEjbbCzznKB470tbP7JOjccYt5E32Ll0BrwJqyn9y/niL/+FxES75DbFNRUSIOCV4aNW/E8KXD\naft1Wy5mXmT5oOWsHbKWKP+oamvGxMTY0UL5deVADltt1UxKgpDyywNUS08p2Mvus2fPMnv2bDIy\nMhg+fDht27ZFo7nxsFO0n9atg+bN4bXX4PHHIS4ORo+W6r+UwdWOS0X7HdvsM5lMLFy4kFOnTjFm\nzBi76dpK08JROCWiL2eftQdK349ES+UjTqIokrrpBxI+GUD2sc2g0eLT7XHqjlmER7PulX7eUT5w\npK+V0CdBENA36Id7r2/RBLUHq5mCE/PJ3fCkOgqjcsvimFTJf43n58M/M+veWTzV9il0GqcmOVOx\nIxYLyDSN3KXJyspi7dq1HDhwgPDwcB5++GE8PT2dbZbtzJ4Nzz0H3bpJi/ObN3e2RSo3ITo6miFD\nhrBq1Spnm6KiJApunkxDtFq5snI6aZulKsPGqA4E3D8Gt9r1HWGdShXQeIRg6DgJS+JG8g/NRMw6\nT+7WV3DvMg2NlwOKdqqoKAjZo4hTV0/x2c7PeLf7uzwXW/5CPxXXpW1b+PFHyMsDO5RLcHmsVit7\n9+5l3bp1APTp04eYmJhSU8RcAlGE99+HDz6A55+H6dOltMgqimf37t1069bN2WaoKAjRUnHwIloK\nSF70XzL+Xg6A/72j8en+uOuds24BBEFAF9oTbUBrcreNQUw/LQUwnaeh8Y5wtnkqKg5D9mljH2/7\nGNNhE692ftWuunPmzLGrnty6ciCHrbZqtm8vLYc4cMA+ekqhunYvW7aMFStW0KRJE0aNGkXbtm2r\ndBGgOD9NnCgFLlOmwMyZVQ5cXO24VJzfy2CrfXl5eRw4cIAGDRrYVdcWlixZIpt2TcnJyZFFV+n7\nUUXTxkRRJHnxRClw0WgJHDAO3x5DqhW4OMoHjvS1UvskGHxx7zwNwTsS8q6Rt30s1pxkmaxTUVEe\nsgcv+ZZ8DJcNmPT2XSi5d+9eu+rJrSsHcthqq2arVuDmBrt22UdPKVTH7gsXLrB//37uu+8+Hnjg\nATw8PGRtTzaSkqTgZexYaZ2LDRcyrnZcKsrv5WCrfQaDgWHDhjFx4kTWrl1rN11bOH78uGzaNaWg\noEAWXaXvR4jl9zt1/Rwy9vwOgobgx6fg3bb6xaId5QNH+lrJfRIMPrh3+RjBKxwx9wp5O95CNFc9\nMYOKiisje/BS27M2xgeMdtedNWuW3TXl1JUDOWy1VdNggNatYedO++gpherY/eeffxIYGFitRZ6K\n8tOECeDuDm+9ZfNHXe24VJTfy6E69n399dfccccdPPTQQxw8eNBuulXljTfekE27pnh5ecmiq/T9\niHIKQWcd3cTVNV8CEPDAa3hE96xRE47ygSN9rfQ+CW4+GDpOAkMtxPRT5O+famfLVFSUiezBS0xI\nDPFp8fxx8g+5m1JxEt7ekJbmbCucT0pKCvXr1y83m5hLkZQkfanqGheXRK/XM3nyZDIzM9lV0ZCo\nyi3GjcUNMw/9CYBX+wfx6fSwow1SsRMaUzCG9uMBsCRuRrSanWyRior8yH6V1b9pf+5ocAfPLH+G\njDx5CoSpOA+zGbZvh65dnW2J82nWrBlHjhyRrYq3w/j4Y6kY5ejRzrZEpZpMnz6doKAgBg8e7GxT\nVJSAcOONCEu6VNXdWL+No61RsTOaWs1AowdExNwrzjZHRUV2ZA9eBEHg6z5fk5KdwlvrbJ+GoqJs\n/v4bsrKgRw9nW+J8WrduTVZWFidPnnS2KTWjYUP47DP47jtYtMjZ1qjYSEJCAvPmzWPMmDEYjfaf\nsqviggg3/tQXFAYvWu8AR1ujYmcEQYPgLn2PYs5lJ1ujoiI/DpnfMnrYaCbdPolZu2exJWGLXTT7\n9u1rFx1H6cqBHLbaqrlxI3h4QEXLPFzJnyWpjt3BwcHUrl2bAxWlXrNze7IyYgQ8+CA8/TRcuFDl\nj7nacak4v5ehOvZNmTIFHx8fnnuu4tT0cvb75Zdflk27pqTJNL9V6ftReT/1lgwpO5XOyz7Bi6N8\n4Ehfu1KfBGMQAKKadUzlFsAhwcuoUaN4IfYFOoZ15MnfnyS3INcumnIgl64cyGGrrZobN0KXLuUW\nW6+WnlKojt2CINCqVStOnDhBdrZtWV8U5ydBkApUGgzwxBNVrkTqasel4vxeBlvtS0xMZM6cObz8\n8ss3LYoqZ78HDBggm3ZNkWskSun7kVBm5MVqzsWaI03j1noH2qUNR/nAkb52pT5dD17UkReVfz8O\nCV7uuusutBot3/T9hjOpZ5iwcYJdNOVALl05kMNWWzQLCmDLlptPGXMlf5akuna3bNkSURQ5fPiw\nQ9qTFX9/mDcP/vxTmkZWBVztuFSk30tgq30ff/wx7u7ulV4MydnvTp06yaZdU9zc3GTRVfp+BKXX\nvBStdxF0BjTuFQe5tuAoHzjS167UJzV4UbmVcGhapGaBzXi3+7tM3TqVfUn7HNm0igzs3w8ZGep6\nl5J4eHjQsGHDak0dUyR33gn/+Q+88QZUkHZXRRlcvnyZL7/8kpdeegkfHx9nm6OiKErXairIuL7e\npToFKVWUh2CURtDU4EXlVsDhOV1f7/I60UHRjPh9BGaLmtLPldm4EYxGiI11tiXKonXr1iQmJnL5\n8r/kR2TSJGjcGAYPhtyaT/lUkYf/+7//Q6vVMlrNEqdSFqH8kRedl78zrFGRAU3hyItVXfOicgvg\nkOBlyZIlxc/1Wj3f9v2Wg5cO8vG2j+2iaU/k0pUDOWy1RXPTJujUCW42E8OV/FmSmtjdqFEjjEaj\nTaMvivaTuzssWABxcdIIzE1wteNS0X6n6vZdvXqVmTNn8vzzz+PvX/kFqZz93rBhg2zaNSUvL08W\nXaXvR2WzjV0febHPehdwnA8c6WtX6pM68qJyK+GQ4OWnn34q9X/bOm0Z02kM4zeOZ2vCVrto2gu5\ndOVADlurqmmxwObNlU8ZcyV/lqS6douiSGpqKoGBgRw8eLDKNV8U76cWLWDyZGntyxtvwOrVkJp6\nw2audlwq3e+V2SeKIgcOHOCFF17AYrHw6quv2kW3JqxevVo27ZoiV/Ci9P2o7E/99ZEX+6VJdpQP\nHOlrV+pT0ZoX8tMR7ZAUSeXfSUArD0I6e9vlEdDKw2n90DmikZ9//vmG18b1HMeWc1voPrc7r3d5\nnfd7vI9BZ6iRpj2QS1cO5LC1qpq//ALXrsH999tHT2nYYndOTg6nT5/m9OnTnDp1irS0NDQaDZGR\nkVWeT+4SfnrpJThxQspCNmWK9FrTptLwW8eO0KkTP//4oyxN36rHe3n2Wa1Wdu3axeLFi1m8eDGn\nTp3Cx8eHqVOnEhQUVG1dezF58mTWrl0rm35N8Pb2lkVX6fuRoNGX+V+aRmY12+8i11E+cKSvXapP\nmhKXc6KLF0pWUakEhwQv5WHUG9n4xEambJnC+I3jWRG3gvn95tMquJWzTFKpIlYrfPAB3HsvtLkF\nizOLokh8fDynTp3i9OnTJCYmAhAQEEDjxo2JjIwkPDwcg6HqwbhLoNHAF1/A559LU8i2b4cdO6S/\nc+dKO4a3N7Rvfz2g6dIF1MXjNcZisbB582YWLVrEb7/9xoULFwgKCqJfv37MmjWLXr16yZZJS+Vf\ngKb0HVK3kCgA8pPinGGNigyIudJoGlojgt7kXGNUVGTGacELgE6j4+3ub3Nfo/sY+ttQun7XlZMv\nnqS2Z21nmqVSCbNmwbFj8O23zrbE8YiiyG+//cahQ4cwmUw0aNCAdu3aERkZKdtdXcUhCNCokfQY\nNkx6LTMTdu+WgpkdO+DLL6UIV6+Hu+6CRx6BBx4AX1/n2u5inDhxgnnz5jF//nwuXLhAWFgY/fv3\np3///nTp0gWtVlu5iIpKmeDFENYUgLwLx8k68hce0T2dYJSKPSk4uxwAwaReP6n8+3Fq8FJE6+DW\nbHxiIxGfRTB5y2T+r/f/OdsklQrYvRtefVWaQdSxo7OtcSyiKLJ69WoOHTrEQw89RPPmzdU0o0V4\nekKvXtIDQBTh9GlYsQJ+/VUqdKkGMlUiNTWVn3/+mXnz5rF9+3Z8fX0ZNGgQQ4YMoUOHDmg0Dk8S\nqeLiCLrSd+L1fqF4d3iI9J2LufTjW4SMnImxQYyTrFOpKeazyyg49SsA+sZDnGyNior8OORXcPjw\n4ZVuU8tYi1c6vsIXe74gKSPJLprVQS5dOZDD1ptpZmbCgAHQujV89FHN9ZRMeXbv3r2bnTt3ct99\n99GiRQu7Bi6u6qeyFPdDECAyUopyN2+G8+fh448hLU0KZIKCoE8fWL5cyv5QVV257FUASUlJDB06\nlODgYJ5//nlq1apFjx49SEpK4vPPP6dTp052C1zk7Pe4ceNk064p6enpsugqaT8qD0Fz48LagAde\nw9SsB2JBPknfjSb5t0nknj+KKIrVasNRPnCkr5XcJ1G0Yrn8N3l7PsB8UCoirG8yHF1oL3ubp6Ki\nOBwSvFS1euzojqOxiBZ+O/6b3TRtRfmVkq8jh60305wxAxIT4aefbp4euap6SqY8u9PT03Fzc6Nl\ny5YOac8VqbAfoaE3BjKXLkkZHxo1gk8+KTd7WaW6ctnrQERR5Ntvv6Vp06asWbOGCRMmcO7cOVas\nWMEzzzyDu7u73duUs98dFTwkK9e6ICXsRzdFc+P6O0Gro/ZjH2KMjEXMzyF9xyIuzBjK+c8eI3XL\nT1iyKj4ey8OVqtErrS1b2rFmX8J8Yj65fz5O3vaxWC5sANGKNvxedI0el9FKFRXl4JBpY4MGDarS\ndr7uvnSt15VVJ1fxfOzzdtG0Fbl05UAOWyvSTE+XRlueekq6oV5TPaVTnt2xsbFs27aNvXv32v0C\nzVX9VJYq9aMokHnpJdi5E6ZPl9Ivv/suDBkCo0dLWcxs1ZXLXhmJj4/nqaeeYu3atQwbNoxPPvkE\nPz+/4vddsd+9e/fm7bfflk2/JsgRCILz96NKEcpfG6XRuxPy5CxyTv9Nxu6lZB1eT35SHFeWTePK\nyul4NOuBW3BDtB6+xQ9N0XOTL4L2+iWEo3zgSF87o0+iJR8xPw3y0xDz0hDzrz+s145hvbwHKBwd\n03mgC7sDXfg9aHwbOcRWFRUloIg1LyW5s8GdTNk6xdlmqJRh3jxp2tibbzrbEufh4+NDixYtWL16\nNXv37iUqKoqoqCjq1q2rLpyuLh06SAUwp02Dr76SFvp/+600EvPCC9L0s38poihyzz33kJmZyapV\nq+jdu7ezTVL5lyJQ8flJ0GgwNYzF1DAWS3Y6mQdWk757KfkXjpN16E+yDv1Z4Wc17p5SMGMqEdyU\neF72f43RqzhN862AaC2Q6q6UCEDEvMLAJD8NsfA9SgQpWCpPX60JaI2u3r1o63RD0P7LslqqqFQB\nxQUvtT1qk56XjsVqQXsLneSUzrJl0lrs0FBnW+Jc7r//fho3bkxcXBwHDhxg27ZtGAwGGjZsSFRU\nFA0bNsTDw3mFm1yW4GB4/30pOn7tNXjxRSlr2Vdfwb/Un+vXr+fYsWNs3LiR7t27O9sclX8zQtVm\niGtN3vh0egSfTo+Ql3iCrMMbKEhPwZqdiiWr8JGdijU7DUQRa24m1txMCq6cr6IdAhqjd/mBjqn0\nqI70vjcag0epER5nIVrNYM4qDjhuHB1Jv/5aUZBSkFW9xgQNuPkglHwYfBCMQWhDe6LxuMV/iFVu\neRxyRtiyZQtdu3at0rYebtKFSpY5C29DxalnbdG0Bbl05UAOW8vTzMyEv/6Sbo7bQ88VqMhunU5H\ns2bNaNasGaIokpiYSFxcHHFxcSxZsgSA0NBQIiIiCA8Pp27dulWaquKqfipLjfvh5gaffiqlshs5\nEg4fhh072LJnz7/ueJ89ezbR0dF069atwm1c8Ty3b98+WXTtgdlslkVX+cev7TcCDXUaY6jTuNz3\nRKsFa04GlsKgxpqVypat22jfqA6WrDSshUFO0XuW7FSsORlSwJOdhjU7DXNyfJVtEfTuaNw90Lh7\nsud8Fh2jG6AxeBS/pjF4ILh7lHnNE8FgQuNmQKMTEDQgWHMRC7IRzVlQkIVozoaCbMSCLDAX/i3I\nLt5m2/4zdGrsKQUh1uruOwK4eZcIRLzBUDow2brvLF27dUcwSNuh81AzWaqo3ASHBC9Tp06t8ol9\nc/xmQjxD8NDf/G6rLZq2IJeuHMhha3mae/aA2Xw9C25N9VyBqtgtCAKhoaGEhobSs2dPMjMziYuL\n49SpUxw4cICtW7cCEBwcTL169QgPD6devXp4enpWqz1XwG79GDhQGo3p1Qv27PlXHu9paWnUr1//\nphcprtjv+fPny6JrD7Kzs2XRVfzxq7HvT72g0RaPmBAovTbrzU+4+/ffK/yMaCnAkl06sLFkpZYe\n1clKK/H/NcT8HOmz5lws5lwsGVeYtfwkrQwp1bQbBK2AoBXQ6Eo8r+C1j+cd5adXoktvZ/REY/CV\ngoyioKREMEKJIEUw+IDeE6GCNUdFTBvVlx4PPFOtPjmDlANZJF2qXlY6Ffm5VvnMQ5fHIcHLwoUL\nq7RdtjmbBYcW8ELsC5VOGauqpq3IpSsHcthanubevWA0QpMm9tFzBapjt6enJ23atKFNmzaIosi1\na9eIj48nISGBuLg4du3aBYCfn19xIFO/fn18fHxc1k9lsWs/OneWasMcOPCvPN5btmzJTz/9RG5u\nboWjc67Y74kTJyr2Ql6uQrJKP35FUf7EopX5QNDq0BrcEPIyETiH1hqPqEtHNGaBPhvRM1uallUg\njYYg6hGtOkSLiNWC9LdAZF79Zhh1WqwWEbFAlP5aREQLxa+V+oxFBGuhH6wgWkUwi1SeoB0+6hXO\nlcNlA94MBP01aYTHUDjKUzj6o3H3QO8fhltoUwxhddC5+djFd2X58ssv+eKLLzh79iwA0dHRvPfe\ne6XWzb333nt88803pKam0qVLF7744otSGoIgGIBPgEcBA7AaeF4Uxcs2GaOi4gQcEryYTKZKtzmf\nfp7BiweTbc5mZMxIu2hWB7l05UAOW8vTTEoCkwny80Fn4x7jSv4sSU3tFgQBPz8//Pz8aNOmDQAZ\nGRnEx8cXBzRF02sCAgKIjIwkMjKS8PBw2dK5OgK7ft9ubhAYCAkJ/8rjvWPHjkydOhVfX186duxI\nz5496dGjBx07dsRoNMpqn5z9LrJdicg1FUfp57nMZPlvxZb0gWjJR8yIx5pxBmu69BDTTyPm2jZi\nImi0CAYTWp1JmkqlN2HUeUhFN/UmhOLnHgg6j8LXCrctft2EiA4xPwdrXhbW3KzCv5mFzwv/5mYW\nvy8W/jWUeM2al4lozpP69//snXd8FNX2wL+zLdn0XiAFQg29996kiKAiivrsChZQ8eETlafYQR8i\nglh+qE9R8GFBAekdpUPoICVAAgnpPdk6vz8miUloyWZmdwPz/Xz2M1tmzz33bO7NnLn3nFNhJeha\naP3D8ajfvPQRj0dUc3S+Ide0XXWIjo5mxowZNGnSBFEU+frrrxk1ahQJCQnEx8czY8YM5s6dyzff\nfEODBg149dVXueWWW/j+++8ripkNDAPuBPKAecBPwNX3saqouAmuj4IDlv+1nIeWPoSnzpP1D6wn\nLjDO1SqpVGDCBCmb7fvvSzHVKo7h6+tLq1ataNWqFQDFxcUkJiZy6tQpjh07xs6dO9FqtcTExJQ7\nM+Hh4Tfv3udTp6TCQj17uloTRRg9ejT79+9n06ZNbN68mTlz5jB9+nQMBgNdu3Ytd2a6d+/u9hfH\nKu7NmZ0pdOluQqvXoNVp0OgENNrar8aINhNicTr2/LOIeYnY885IjkphsrTMcQUEYxiCXxwa3wYI\nniEIei/QeVVwPryl13pv0HrKMv8JAHoPaZtbLRBt1kpOTvmxpEBygorzMaeexnThGJaM89hyL1GU\ne4mio5vLZWj9Qis5NJ6xbWqs14gRIyq9fuutt5g/fz47duwgPj6ejz76iGnTpnHrrbcC0lbO8PBw\nNm7cWPYVb+AR4B5RFDcDCILwMHBMEIQuoijuctBEKipOwaXOS25JLq9seIV5u+dxa9Nb+XrU1wR7\nBbtSJZUr0KgRPPcczJghFUePjXW1RjcGRqOxUvB/ZmYmp0+f5vTp02zYsIF169bh4+PD6NGjaVST\n4jp1HVGU6r/MnCltG3Mk2KoOIAgC7dq1o127djz33HPY7XYOHz5c7sx88sknvPnmm+j1etq3b09s\nbCz169cnKiqq/BgVFUW9evXq9GqdM8nJyWHcuHFER0cTHR1NVFRU+fPQ0FA0GqfUbXY6R46cZunL\nf1z2vqAV0Og16PQadHotGp0GrU4odW5saAUrGsGCRjCjEUxoKEYjlqChEI1YiEYsRqOxotHY0Gis\naDU2NBp/NBofNAY9Op9QdL5haP0i0fnVQ+dXH63RB61OA3oNmjJHSqdx2EkR7XawWxFtFkSrBdFW\n+txmQbSawWYtff/vx5XeE23W0vMtiFZr5fOryi0/p+z8yp9jtSDojYjmy2OsbHnpFOWlU3Rsq/Qb\nGIxET16CPjDCof7b7Xb+97//UVRURI8ePUhMTCQ1NZWBAweWn+Pn50fXrl05dOhQ2VstkK7/1pfb\nURRPCIJwHugOqM6LilvjFOdlypQpvP/+++WvRVHkx6M/8uyqZ8kz5fHR0I+Y2GVijSavqjKV0tWd\nUULXq8l85RX4/nsYPx5Wrqx++Y26ZM+KOFvvf/7znzz55JNkZWWRmZmJ3W5Hq9USHh5ep1Iv18pu\niYmwcCF8+y2cPCnl5f7wQ/D1vSnGu0ajoU2bNrRp04ZJkyZht9t59NFH6dixI3v27CE5OZlDhw6R\nnJxMQUFBpe+GhYVd5thUdHDq16+Pr69v+flK9nv27NmKyK0to0ePZuHChaSkpLBr1y6Sk5Mxm83l\nnxsMhnJnpqJTU/ERFBR0xf9T7vR3dCW+0/1EvsZKH3s3NPztoIk2EZvNhq3EholrZdMylD58r3rG\n939+xr09rhV0nl36uDKCYEcj2NBo7AiCTXqOVXqOFQErGix8ufUHHu99G4JoRhAtaDAjYEMjlJ1j\nRRAqHm3S+2XvlT6vfK6t9GgpfS6tGr23MZmX+kddo0+1QBAQtAZ0AZG8NP0d/jN7To2+fvjwYbp3\n705JSQm+vr788ssvNGvWjO3btyMIAuHh4ZXODw8PJzOzfJtbEGAWRTGvithLwHW9qMNFkyjMb1Ij\nfVWcR5otCdh43fPqMk5xXmJiYgDJaTl46SBT109l5amVjG4+mo+GfkSMf4zDMuVGKblKoISuV5Pp\n5yeV3BgxQipY+dBDtZPn7iitd3FxMZmZmaSkpHDq1ClOnDjBd999h7+/P40bN2bIkCE0bNiwzt1R\nr5HdRBHOnIH16yWnZetWqabLmDEwfz706welxT9vxvGu0WimO4tVAAAgAElEQVTo0KEDzzzzzGWf\n5eXlkZyczIULF0hOTq70fMeOHSQnJ5ORUTm+wM/Pr9yhycvLY9q0aeVpvdu0aUNkZKQsW3QiIhy7\ng6w08fHxTJgwgYkTJwLSHeuMjAySkpIqPZKTkzl37hzbtm3jwoULWK3WchlGo/EyxyYqKsrti9Ta\nBBvLdWs4EppEiPcYUgsM6ACtCDpROmrsNoTiIsS8DOzZl9AJGnSCBi3S0SAIBGhF/LQi9fQWWhoL\nAS129NhFLdH+FgJ0RxBFHXZ0fx/RYi9/rsMuSkexyuWHKGqwiRpsV95tVo63sRmZphaK2apUGzQa\nEavXLySYRyFoRbRa0GhAo6XC6pS0auTlpyE0VkdojAcGLwPo9AjasodOOuoMoNUj6EpfV0hK1ODj\nj2usYfPmzTlw4AC5ubn8+OOPPPDAA2zZskVOI6iouC2CKF4/3Z0gCB2AvXv37qVDhw41asBmt7Ej\neQe/HP+FpceXcjr7NNF+0cwdPpfbmt3moNquYd++fXTs2BGgoyiK+2r6/drY0V24/35YswbOnpWC\n+B2htnaEumHLkpKS8pWUrKysSs+Li6UUoBqNhpiYmPIil6GhoTW6gKxTf5Pp6bB7N+zaJW0L27UL\nsrKkK4LBg+Ef/4DRo11SlPJG/JssKSnh4sWLlRybqseUlBRsNinvUmhoKG3bti3fyta2bVuaNWuG\nXq+vUbt16m/yOthsNtLS0i5zbiq+vnjxIjExMSQmJsratpx/kw880JstoZ6YrCXc1bAL41ISOK2L\n5pQ2mtNa6ViokSZ0jWhl8KlPSbMYuGT15ILZkyxb5SruAiK/tTtJkFFTemH+94U6ZRftur8v3Cu/\nJx3R6BEFPXb0iIIBUdCXOzeSo6PHjlZygkQtoqjFLmqw27XYRQG7XYPdLmC3lR6l3WPYbSI2q4jd\nasdmtWOz2Muf28vet5S9Lj1a7FTjUuj69tYIhDT0I7xZIJHxQQQ38JMltqg6DB48mMaNG/Piiy/S\nqFEjEhISaNOmTfnn/fr1o379+mVB++OB+UBgxdUXQRDOAh+KovjRldoo+3tqHtkaL0PllP/dm/Sn\nR5MBsvdL5dr8eXID209WXmUxicUcOZ8AFeaOst9u23860b7R1VdQa8L+0/n0emFPpXachSIrLyXW\nEjYkbuCXY7/w21+/kVaYRrh3OKOajWLu8Ln0b9AfD53H9QWpuB1vvAGLFsGXX8IVbgjfdJhMpssc\nk7LnFWtKeHl5ERwcTEhICE2bNiU4OJigoCCCg4Pr3OpKtSguhv37/3ZSdu2SVlkAQkKgSxd49lnp\n2LkzBKuxbnLj6elJXFwccXFXT4Bis9k4f/48Bw4cICEhgQMHDvDjjz/ywQcfAODh4UHLli3LnZmy\no79/9VLA1nW0Wi2RkZFERkbSpUuXK57z5ptvXpaG1t0YHt+OyOZ9+WbTR+zOOsvbD7xGG93fzoSo\n0XHv8hzO5Fi5o2UQU5+Zx5GkDBZvOsC5Pw9B4d/Zyrq3asTjt/WhfZdWLuyR/NhtknNT0an52/GR\nnJ6rOT45FwpJOZ5FQXox6adzST+dy+Hfz6Lz0BLWJIDI+CDqtQrGN1S5xBt2ux2TyUTDhg2JiIhg\n/fr15c5LXl4eO3fu5PXXXy9zXo4BVmAg8AuAIAjNgBhg+/Xaur/nUzQMbapUV1RqQI8mA+nRZGCl\n99JsSTz/+UOuUchJyOa8WO1W1p9Zz7cHv+XXE79SYC6gcVBjHmz7IKObj6ZbVDc0wo0ZDHkzERcH\n48ZJsdQPPQRXqLd4w5OVlcW2bds4efJkpdgDo9FY7pA0atSo/HlQUNBV63jcUKSnS57tokVSZVOr\nFTw9oUMHGDVKclS6doUGDaofNKWiKFqtloYNG9KwYUNGjx5d/n5OTg4HDx4sd2gSEhJYuHBheYxI\no0aNeOmll3j00Udv3mx4dQhr+7tpE9EIw7ZPOZubxqK0FB7vN7b8851nszmTI20zHNGhIXuSMrh7\n2pfY7NIernohAdw1oDNjB3QmNuLGvNGg0WrQaEHn4fgWwILMYlKPZ5N6PItLx7MxFVq4eDiTi4cz\n2f/LKYa/2hW/sNo7MC+//DLDhg0jJiaG/Px8vvvuOzZv3syaNWsAeO6553jrrbdo3LgxDRo0YNq0\naURFRdGvX78yEYXAAmCWIAjZQD4wB/hDzTSmUheolfMiiiIJqQl8e/BbFh1eRGpBKs1DmvNijxe5\nI/4OWoS2QBAEjh8/Lrvjcvz4cZo7UjXRRXKVQAldqyNz+nRo2xYmToSvvqq9PHfkSnqnp6ezbds2\nDh06hJeXF+3atSMsLKzcSalNfYu6aidKSmDZMvjmG1i1iuNA8xEj4OOPJUelVSspY1gtuVnHu6v6\nHRAQQJ8+fejTp0/5exaLhRMnTnDgwAF+//13Hn/8cRYuXMhnn31Gs2bNys+Te/uUnChlz4pxMe5I\nsRWCDV7c2/1Ovt76Pa8tncvZzItMH/0MOq2O+v6e+HvqyC2x8uQPh2ioycJmt9M5vgHP3z2Enq2b\noL3O9idnjSVnjtmatuUTbKRxTyMRzQM5vi6Jk1uSy7ej+QQbMXhd+ZKrpu2kpaXx4IMPkpKSgr+/\nP23atGHNmjUMGCBt23rxxRcpKipi/Pjx5OTk0Lt3b1auXEleXqX4/OcBG/AjUpHKVcDT1VZCRcWF\nOORRlFhLmPnHTFrPb02Hzzuw8OBCxrYYy+7Hd3P0qaNM6zuNlmEty+/Ivfjii7IqrZRMJeUqgavs\n2qgRzJsHX38N1ysMXJfsWZGKeufk5LBkyRI++eQTzp49y9ChQ3n22WcZNGgQbdq0ISoqqtaF+eqc\nnfbtgyeegIgIGDtWWnWZPZsXBw6EpUul4kDt28viuMDNO97dqd96vZ5WrVpx33338d1337Fu3TqS\nk5Np27Yt77zzDmXxk3Pm1CxrkjNRyp5VLgrdDqtN+m2eHfIor972JABfbf2ZR798FavNSlSgkSWP\ndaRrgwBKLHaOmQLwbdqV7p070Ltt0+s6LuC8seTMMVudtkRRpDCzmOSDGRxemcjmTw+y7LUd/LVZ\nclwCo3zo8XALhr/aBU+fK28Rrmmf/u///o8zZ85QXFxMampqJceljNdff52LFy9SVFTE6tWrady4\ncVW9TaIoThRFMUQURV9RFO8SRTGtRoqoqLgIh1ZepqyZwuf7PueO+DuYOXgmg+MGo9de/SJl7ty5\nDivoTJlKylUCV9r1gQdg1Sp48kno2xciI2snz92oqPfhw4c5evQoRqORu+66i6go+VNn1hk7XbwI\nU6dKKy0xMdLy2/33Q+md97kjRyrS7M063t253wMHDuTQoUM88MADvPLKKzz88MNERkby4osvum3W\nI6Xs6e4xQKW+CxqNwFMDxtEguB7PLHyTtUf+ZOWhrYxs159wXw8+vac1X20/z0cbEzEERvDdCRv/\ne2MlA+J8+Oet7QkLvHqgr7PGkjPHbNW2rGYbORcLyblQQE5yAdkX8sm5UIil+PKVt4jmgcQPjiWi\neeB1t1a6+zykouJu1Nh52ZG8g3m75zHrllk81+25an3HmSl93VWuErjSroIAc+dCy5aSA/PLL1cO\nY6hL9qxIRb179uxJQEAAGzduZMGCBbRs2ZJ+/foREhKiSHtuSXExzJoF774LRqOUyvixx0BXeQqp\na+PS3e3u7v02Go2kpaXRp08fIkvvYERe7U6GG6CUPd09VbKHTpqci61SDMvwtn2ZcOEUs9f8ly82\nL2FkO6kQrEYQeLRHLGEGM3PWn+SS1YjF4MPqZFg5ZzsxHsU81rsxt3Ztjl5Xuc/OGkvOaqcox4Qm\nx4vDR86Sc6GA7OQC8tOL4ApZyQSNgH+EFwFRPgTW9yUiPpDAqOpndHL3eUhFxd2osfPy9O9P07Fe\nRyZ2maiEPip1iOBg+OQTuPNOWL0ahg51tUbKIAgCrVq1okWLFiQkJJRXPx88eDDdu3d3tXrKs369\n5KhcuACTJsGrr0JAgKu1UnED9uzZw5YtW1i0aJGrVVG5BsYy58Xy95X3gPiuzF7zX/YkHuZMehJx\nodHln43s1ISRnZpw+lIu7684yM4UMxg8SRY9eW1zBq+tXEZ8kJb7ezRiaKdmlzkydY2SAjNZ5/LJ\nPJdH1vl8ss7lUZxrvuK5Hj56AqN8CKjvU370i/BGq1MTEqmoOIsaOS+J2YnsS9nHb/f8hlZTtycr\nFXm44w7w9YUjR25c56WMsqKBbdq0Yf369axZswaj0Ui7du1crZoyFBbCv/4lBTj17y8V+GmiVlVW\nkSgpKeHBBx+kXbt23Hnnna5WR6UGnEw9yxNf/xuAhiH1Cfe7cgaxRuH+fPpIbyw2O19tPcn3uy+Q\nbdWBdxDHTfDKhnReWX6S5kEa7usex/DOl6/IuBuWYitZSaWOSqnDUphZctl5ggB+Ed6Sg1LmrNT3\nweivlnlQUXE1NbpVsDFxI956bwbFDapRIzNmzKjR+a6SqaRcJXAXuwYGQna2fPLcgWvprdPpGDJk\nCO3bt+e3337j6NGjirbnEhISpJRyX34pZQ5bt65ajktdG5duZ/cquHO/p06dyunTp1m4cGGlQpZf\nf/11rWUrhVL2rJgy3R2xlSZT0Gng5KVz3DF3Eqm5GTSLaMjPEz/G2+Pa6Xv1Wg1P9GvGpikDWD6+\nI3fG+xKgtSAIAoJ3ICdM/kyYPoeOry/nvg+XseXAKeylaZblpia/odVsI/1MLic2JvHn10dZPn0H\nS/65hfWz95Pwy2nO70srd1x8w4zEdg6nw5gmDJrcgbtm9eWwYRM9Hm5Ji8Gx1GsRrJjj4u7zkIqK\nu1GjlZeT2SfpENkBo75mmZUqFuuTCyVkKilXCdzFrhYLV61OXJfsWZHr6S0IArfeeismk4klS5YQ\nFxfHoEGDHN7v73Z2eucdsNvhwIEarbbUtXHpdnavgjv22263M3XqVGbPns1HH31Ey5YtK31eUnL5\nXWx3QSl7inKUZ1eQsnDEIrOZ5795ncyCHFpHNeX7CR8Q7FOzLaDRQd78e3R7/g0kZRfx1eYTrP8r\ni1SLCcE7kMMl8PRv5zAs3sMtTQN4bEhH4uqHytaXq/2GdptULDLrfB6Z5/LIPJdP7sVCRPvlv41X\nkAfBsX4ExfiWHw1elycdctb84O7zkIqKu1Ej5yXAI4BUU2qNG5k+fXqNv+MKmUrKVQJ3sOuFC5CS\nAh07yiPPXaiO3hqNhjFjxnDixAnWr1/P559/TqtWrejfvz9BQUGyt+dULBaIj6/xNrG6Ni7dzu5V\ncLd+m81mHnnkEb7//ns+/PBDJk2adNk5EyZM4IsvvqitioqglD19fasfnO0K/Dy02IE5q7/g6MXT\nhPgEsnD8zBo7LlWJDvQqd2QuPNGdzzYcZ81fORTr9Fj96rEiFZZ+8gdh5POP7g24d3BXjB5XThdc\nXcp+w5J8MxePZJZv/8pOLsBuvXy1x9NXT1CsX7mTEhTrh9Gvejo4a35w93lIRcXdqJHzEmQMIjk7\nGZvdpsa8qHDpkpQ1F6R6hDcjgiDQvHlzmjZtSkJCAps2bWLevHm0bduWXr161diJcRs0Gql2iyhe\nOY2cyk2FxWJhyZIlzJw5k2PHjrF48WLGjh17/S+quAX+HlqO51xgxf6lAHx470uE+so7N9UP8OKN\nOzrwuiiy9WQGn206yZEMC3qfILIJ4v0N51m76wjfv/4EGo3jwe15lwo5ti6JxJ2plzkreqOO4Fhf\ngmL8pGOsH16BHtdNVayiolK3qJHz0i2qG59e/JTVp1czvMlwpXRScXMKC6WsuTNnSply582D+vVd\nrZVrKQvmb926Nbt37+bPP/8kISGBli1b0rt3b8LCwlytYs146CG47Tb49FMpF7bKTUl2djZffPEF\nc+bM4cKFCwwePJj58+ffHFn2biB8PTTkZp4FoFF4c3o0Ue5uk0YQ6Ns0lL5NQ8ksNLNw5zm+2pmC\nR2g0u07v48sV23hsZJ8ay00/ncOxtedJPpRRnq44MNqHsCaB5Y6Kb4gRQaM6KioqNzo1uv3RKqwV\n7SPaM2/3vBo1kpGRUaPzXSVTSblK4Gy7FhdL17JNmsBbb0kF1k+fhqeecq6OzsBRvfV6PT169ODZ\nZ59l6NChJCUlMX/+fBYvXszZs2evujfe7ew0cqTktEyeDDUoOFjXxqXb2b0Kruh3UVER69evZ+LE\niURHRzNt2jRuueUWDh48yJo1a67ruGRfLXuHG6CUPZUKTpcLQRAwiFLfQ/zrse18EWeyzJRcYZuV\no1zJtsHeBp4d0IR/dK4HgE+DNry3eD3nUjOrLddqtrFhzn7W/mcfyQczyC/KpX6bEAZN7sDQlzrT\ncUwTGnSOwC/MS3bHxVnzg7vPQyoq7kaNnBdBEHih+wv8fvJ3Zv4xs9rfe+SRR2qsmCtkKilXCZxl\n19RUmDZNKqj+1FPQty8cPw7/+Q9cb1dUXbJnRWqrt16vp0uXLkycOJHbbruNjIwM/vvf/zJnzhw2\nbdpETk6OrO0pwgcfQJs20g9+yy2wbdt1v1LXxqVb2r0Czuh3cXEx69evZ9q0afTu3ZuAgAAGDRrE\nkiVLeOGFFzh//jwLFiygdevW1ZL9xhtvKKKzHChlz6rj2R0RRRsANpuZArOdA5dKWHmygK3nCmVx\nZKra9mJ6NvN+/YOBby3lvzuTABC0OqyCnsSU9GrLtRRbSTv1t33/u3s2He9qQljjAMW3gzlrfnD3\neUhFxd2ocZHK+9rcx/GM4/xr3b/w8/BjQqcJ1/3O66+/7ohuTpeppFwlUNquCQnw4YewaBEYDPDI\nI1KNwsaNXaujM5BLb61WS/v27WnXrh1JSUns37+f7du3s3nzZho0aEC7du2Ij493Tzt5ecGff8JP\nP8Gbb0Lv3pIjM20aDBhwxViYujYu3dLuFVBCv+LiYoYPH86///1vNm3axM6dOzGbzQQHB9OvXz9m\nzZpF//79adGihUMXh0888QRbarBa50yU+r3dPWBfFEX6x3fhg1Vfcix5L02CBDKKBLJL7GQU2cgo\nsnHgEoR4aannq8ffU4O3XoOnTqj238CzL0zhj4Mn2XzwNGsPnuOi2ROP0BgEbRACoDHl0SVU4OGp\n4+jWslG1dTf6ezB4ckcOLDtD6rEsRsSPY9lrO4jrHkmz/lH4R3or5sQ4a35w93lIRcXdqLHzAvBG\n/zfIN+fz1IqnsNgsTOw68Zrnd+jQwSHlnC1TSblKoJRdt26VtoWtWQPR0fD22/D4444VVa9L9qyI\n3HoLgkBMTAwxMTEMGzaMY8eOkZCQwNKlS1mzZg333nuvrO3JhlYLY8fCmDHw22+SEzNoEMTFweDB\n0vP+/SFYKnJX18alu/99yqVfcnIyy5YtY9myZWzYsAGTyURwcDB9+/blP//5D/369aNFixa1CqQu\nIz4+XgaNlUGp37tinRt3xFxcSNfo9kT6h5KSm05O7l/0a9qRIoudC3kWLuRZyS6xlTsyZWgE8NJL\njoyXQcBbr0G0WUhLz+RMUgoHz6Zw5GI+F/ItmLVe6Lzy0Xh6IwTG41kqI8Jo57Hu0dzZuZfDf1/B\nDfwYMLEd6adzObQikNTj2Zz+4yKn/7iId7An9VuHUL91CGFNAmStdO+s+cHd5yEVFXfDIedFEARm\n3TILvUbPpFWTOJN9hg+GfKBmIKvDiKJUh/Ctt6QQh9at4fvv4a67pKB8FfkwGAy0bduWtm3bkp2d\nzc8//8w333zDvffeS2xsrKvVuzIaDYweDaNGwdq18Ouv0h/MZ59JKzAdOkiOzKBB0KsXeHpeX6aK\nYtjtdvbt21fusOzfvx+tVkufPn145513GDx4MC1btpTFWVFxf/IyL6HRaAj3DyYlN51iiwmQHJMm\nwR40CfYod2QuFVopNNsptojYRSgw2ykw26GwgkBNIL6xgXSIbErDIjPZhWZyikxkF5rJLjJjMZtp\nEOzJQ91i6RhTu3TMFQlt5M+ASe1JO5XDsXXnSTmaRWFmCX9tSuavTcnoPLVExgdRv3UI9VoF4+lT\nu7TMKioq7onDl6UaQcP7Q96nYWBDJq6cyNncs/xvzP/Qa937DpRKZWw26Yb6e+/Brl3QqZN0XXrr\nrdL1qoqyBAYG8o9//INFixaxcOFC7r//fvd1YEByVIYMkR4A58/D+vWSI/PVVzBjhuS49OwJffpA\nq1ZSvZjGjcHN707Xdex2O1u2bGHx4sUsW7aMixcv4u/vz/Dhw5kyZQpDhw4lMDDQ1WqquIC89IsA\n2EoTC2iFyyd3wW7l7OlTrN19lC0JJ0gtMBMaFUd4/WiCQ0II8jES6O1BoJeBAC8DPp56jAYdRoOO\negFeV2w33SSw9VwhPgZNpYe3QYOmFlu9whoHENY4AKvJRurxLC4cyuDC4UxK8swk7U8naX86ggAN\nukTQ/cEWDrejoqLiOIIgdAeCRVFcXuG9B4DpgDewFJgoiqKpprJrfXn6VOen+PWeX1n+13Le3PLm\nFc9ZsGBBbZtxikwl5SpBbXQtLJRSHDdvDnfcAR4esHo1jB+/gNtuk89xqUv2rIgz9TYYDJhMJkJC\nQti+fbvT2pWFmBh4+GH47jtITWXB66/DO+9If1AffQR33gktWkjxMy1bSkt5//43LF4MBw9CNaux\n36zjvTr6nTx5kmnTphEXF0f//v1ZvXo1Y8eOZcOGDaSnp/P9998zbty4So6Lkv1eunSpYrJri1L9\ndvcK6YU5UnavvOICALw8pJXRS1l5fLdmBw+/vYDWD7zG43N/Y+mJfPIj2+PfZhDmoDiSivUkJOWy\n+Xgqe0+lcCkrB4PdRKyPSI8oI92ijLQO9+DAyu+J8NHh56FBW+qXFFtFMopsnM2xcDjNxI7kYtad\nKeS34/msOV3An0lFHLxUQmK2mfRCK0UW+1UzMpZR8TfUeWiJahtK1/vjuf2dntzyYidaDWtAQJQP\nogiJO1OxWWzXkHZtnDU/uPs8pKLiIP8GWpa9EAShNbAAWAe8B4wEpjoiWJZL1Fub3sq0PtN4Z+s7\n7Ezeednn+/btk6MZxWUqKVcJHNE1JQVeeUW65nz2WejYEXbulLaKDRkC+/fL2/+6ZM+KOFvvAwcO\n0LBhQy5duuTUdmVFENiXlgbPPw8rVkBGhlTJdNMmmDNHCvLPyoL/+z8YNw7atgVvbyn39qhRUsXT\nb7+FPXsk77oCN+t4v5p+OTk5fP755/Ts2ZOmTZsyZ84cBg8ezJYtWzhz5gwffvgh/fv3v2oshpL9\nPn78uGKya4tS/bZYLIrIlQtzSRFWm5UL2dL8svbP04yYMpuOj0xn2v92sCPHB6/Wg/GP74kxsjE6\noy9aATrF+PNc/4b88EgHdk7pxa9PduOtkfHc3bEeHaL9CffVE+mrp3GQB+mnD9E92ouBcT6MbObL\n8CY+9G3gRcd6njQLNlDfV4d/qWMjAoVmO5cKrJzOMpOQWsK280WsPlXAshP5rD9TwM7kIo6klZCc\na8FUIRPa1X5DQSMQ3MCPNiPjGPJCx/L3xVokUXPW/ODu85CKioO0A9ZXeH0PsFMUxcdFUZwFTAIc\nqnYsWzTD1F5TWf7Xcp7+/Wn2PLGn0mfz5tWsLkx1UEKmknKVoCa6iiLMnQsvvijt3nnsMSlzWIMG\njsuUW0d3wtl6v/HGGyxfvpycnBysViu6OhpoVMluggBhYdKjb9/KJ2Znw7FjcPTo38fvv5e2oYEU\naDVokJQoYNSom3a8X02/sux1Q4YMYdGiRYwaNQqj0VhruXLw0ksvsWTJEsXk1wal+u3v76+IXLkw\nFxeSlp+F1W4DBD796Q8EBLzj2uMZGlN+XrC3nl6NgujdKIiuDQLx86z+PFTRtoIg4KET8NBpCKry\nZymKIiVWsTyWpuKj0GzHJkKeyU6eqbLXEeylJdJHx3uz5lxTD1OhhX0/nfz7jVokInPW/ODu85CK\nioMEAhXvyPYFVlZ4vRuIdkSwbFdIeq2eF7q/wD0/3UNSbhLR/g7po6IAqanSzp5Vq+CZZ6SgfDf/\nX3vTUFBQwObNm9m7dy9+fn7ceeedddZxqRGBgdCjh/SoSEGBVERo+3YpRfPjj8P48VJGszFj4Pbb\nJWfoJqd+/fq0bduWX3/91dWqqNQBdIIGm610+5RdINjPhw59hrA/3Y5WgEe6xzCgaTDNI3xqFYtS\nHQRBwKgXMOo1hHpX/swuihRZ7BSYJGcm32wnq9hGnslOZpGNzCIbh9NM+Bg0RPjoiPTVEWTUluuc\ntD+N3T/8RUmeGQRoMSQWnUFNJKSi4iIuAQ2BJEEQDEAH4LUKn/sCDi1by3qVNKTREDSChpWnVvJE\nxyfkFK3iIBs2wN13Sxlvf/8dhg1ztUYqJpOJpKQkzpw5w549e9BqtQwaNIguXbrcHI7LtfDxkbJG\ndOoEEydK285++QV+/BGeflqqktqnj5RhomtXV2vrMkaOHMmbb75JUVERXl5XDpZWUSlDp9OydGuC\n9EIQuf32O1h6PA8BeGtkc4a3dI8bAhpBwMegxaeKw1FotpNaYCW1wEJ6oY0Cs51TWWZOZZnx0Ar0\nivXi7NpzHP79LAB+4V50vT+e0EbqXToVFRfyO/CeIAj/AkYDRcDWCp+3AU47IljWK6VAYyBtwtuw\n5+Ie1XlxA3btgpEjoXt3aUeOesPaNRQVFXH+/HnOnTvH+fPnSUlJQRRFvL296dy5M7169arRlp+b\nivBwmDBBeqSnw9Kl8OSTUkzNTey8jB07lunTpzNlyhR1y4nKddHptPz+50FA2s25K0VK7vPi4EZu\n47hcC2+DhkZBBhoFGbDYRNIKraTkW0nOs2CyieSb7OSlSkkTDF46hkzpiMFLzW6oouJipgE/A5uB\nAuBBURTNFT5/BFjjiGDZk+HGBcZxNudspfduu+02uZtRRKaScpXgWrr+9ReMGCHFRP/2W/UdF7n7\nX5fsWRFH9RZFkby8PA4fPsyKFSuYP38+77//Pj/88MTU34UAACAASURBVANHjx4lJCSEESNG8PTT\nT/PCCy8wePBgjEZjnbVTVRQdl6Gh0tKhzSbVlZFLrhtzNf3i4uKYNWsWn3zyiUPZvZTs9/PPP6+Y\n7NqiVL+zsrIUkSsbOg+OnU0FQETkQk4JOo3A6DYRsjXhrLF05+2jqO+np1mIgbK8ZMFeWtrf0RgP\nHz3mIit7/vcXlmJrrdtyVp/cfR5SUXEEURQzRFHsgxT7EiiK4i9VTrkLKW1yjZF9j0rDgIb8eqLy\nPuxnnnlG7mYUkamkXCW4lq4PPQQhIbBsmZSlVg6ZjlCX7FmR6+lttVrJysoiIyODjIwMMjMzy48m\nk3RXMzg4mJiYGHr06EFsbCwBAVcv1lZX7VQVxcbl+PFSOuYPP5T2QHbpIo9cN7f7tfSbMGECa9eu\n5bHHHqNPnz4EBQXJIre2jB07li1btigmvzYo1W9vb+/rn+RC0orBUiFjlyiW0CIiDC8Z40GcMZZK\nrHbueHA8m88WklUsxfD4e2jw1GkgyJOej7Rk48cJnN11iaSEdGI6hNGoRz1CG/kjOBDL46z5wd3n\nIRWV2iCKYu5V3nf4ro/szkuDgAacyzmHXbSjKS2ENaSsoJ2MKCFTSblKcDVdc3Jgxw744gsIDpZH\npqPUJXtWZMiQIYiiSGFh4RUdlJycnPJ6BJ6enoSEhBAWFkZ8fDwhISFERUXh4+NTo/ZuBGTvR3o6\nfPYZQz75RMrzPWiQlHmiXj1ZxLu73a+lnyAIzJ8/nyZNmvD6668zZ861szBVV25t6d69u2Kya4tS\n/fbw8FBErlyYBR2CXYceH8wUYDafwmYPlbUNpWxrstq5WLpFLKPIhn+L3uWOS7BRS4uwv20f0TyI\nHg+35NCKRPIuFZG4I5XEHan4hhmJ6x5Jw66ReAVU/7dy1vzg7vOQikpNEQThZ+AhURTzSp9fFVEU\n76ipfEVWXix2CxfzLxLlFyW3eJVqsHWrlBq5anZalesjiiKrV68mOTmZjIyM8lUUQRAIDAwkJCSE\n5s2bExISQkhICMHBwXh5eTl0V0/lOkydKq20CAI88ICU27tly+t/7yYiPDycV199lZdffplnnnmG\npk2bulolFTdERFphCdLWI9X2F2bTCdIKOl7nW64nNd/CjuRiKpatDPTUEuWno76fHqP+8p3vsZ3C\niekYRsaZPM5sv8jZ3ZfITyvmwK9nOLgskV6PtSK6nbyOm4qKymXkQvnQveLKS22Q3XlpHd4agB3J\nOxjTYozc4lWqwaefSkXNGzVytSZ1D1EUyc3NJSsrq9xxAekiMTIykrCwMMLDwwkLC3P7rSJ1mqIi\nKaPYE0/AO+/UfAnxJsFkMrFp0yYMBoPbF0pUcR1mUwkAftpQUm1/YbNlYrVfu5K9O2CxQ1UtNaX3\nia6mviiKZCcXkHoii+zkAmyWCtvl7CLmYnWcqKgojSiKD1/puVzIHrAf4x9Di9AW/H7y9/L3HAko\nvR5KyFRSrhJcSdc9e6SUyK+8It2wlkNmbahL9gTQaDTcfffdNGnShMmTJ3PfffcxePBgwsPDSUlJ\nYd26dXzzzTd88MEHfPDBB3z77besXr2ahIQEUlJSsNsdK+dc1+x0NWTrR3q6dBwzBoKDb9rxfi39\nzGYzY8eOZcOGDfz222+0rMGqlJL93rhxo2Kya4tS/S4pKVFErlyY87MBEMr+5Ys2/GtQgLI6KGHb\naH89A+O8iQ/1IMBT0v33Zb9yKM3EmtMFbDhTwLH0Es4nF3JmzyV2LzrBr6/+yap3d3NoeSJZ5/NB\ngOCGfrS9LY7hr3ahUffqbzl11vzg7vOQioqcCILQVxCE4YIgBDoqQ3bnBWBEkxH8euJX8kx5ACxa\ntEj2NpSQqaRcJbiSrrNnQ+PGUm0XuWTWhrpkz4osXrwYX19fGjduTI8ePRg9ejTjx4/n5Zdf5qmn\nnmLMmDF06NABvV7PiRMn+PXXX/n888+ZNWsWv//+O+fOnSuPiakOddVOVZGtH+bSbIo7dsgrtwru\nbver6Xfw4EF69uzJqlWrWLp0KYMGDZJFrhysXr1aMdm1Ral+FxcXKyJXLswFkvNisUmrDiJ2/GR2\nXpSyrZ+HluYhHvRv6MMtjX04uO5nfLOLsO5PJX3pSRLe3822d3ay48sjnNx6gaJsExq9hvBWwXS5\nrzm3v9uLW6Z0ouXQBgTUq34copJ9clU7KirORBCEfwmC8GaF14IgCKuAjcBy4JggCA7tBVekIt6k\nrpOYu2su7259l3cHvcsPP/wgextKyFRSrhJU1dVqlVZdnnlGSsgkh8zaUpfsWZGr6a3RaAgNDSU0\nNLTSnW6z2UxKSgrHjx/nyJEj7N69G19fX+Lj42nVqhVRUVHXjIupq3aqimz9aNxYWj78979Bo7lp\nx3tV/UwmE2+//TbvvvsuTZs2ZcuWLXR1oN6Nkv1+7733WLt2rWLya4NS/Q4MdPgGolPQF6YDMaQW\nnwcD6PWx+BvlrYOilG2LckxkJOaScUZ6PBD7DGkLj1Y+SQAhxAtNhDfaBv5oovzI02k4KkBKtoXA\nEjtBRi1BRq2UmayaOGt+cPd5qCoed8fj2aKdq9VQuQr6k3r43NVaAHA3MKPC6zFAH6A3cAz4BngN\nGFtTwYo4L1F+UbzQ/QXe//N9xrQYQ8d67h8YeCOwfTtkZ0v1XVSci8FgIDY2ltjYWIYMGUJSUhJH\njhzh6NGj7Nq1Cz8/P9q1a0fXrl3ViujVQRDgrbfAwwNefRUSE+G556BVK1dr5jKSk5MZOnQoJ06c\n4JVXXmHq1Klun+VKxT3QFaQhetgp0qYB4OERL/vKixzYrHaykwskRyVRehRlmS47z8NHT0hDf0Ia\n+hES509wrB82rUBWsY3sYpt0LLFhtUNGkY2MIlv5d730AoGekiMTaNQS4KlFq1ETrqioKEBD4GCF\n18OBH0VR/ANAEIS3gCWOCFZs9vpXr3+x8tRKen7Zk7nD5/Jo+0fVjEwKs3y5VMevc2dXa3JzIwgC\nMTExxMTEMHToUM6fP8/hw4fZvn0727dvp1OnTnTv3h1fX19Xq+r+TJsGAQHw5puwYIFU3+XRR+Ge\ne8DPz9XaOQ273c5DDz1EdnY2+/bto3Xr1q5WSaUOIRSmowvPxKK1YjT4ozc0INLf9Y5vca6p1FHJ\nIyMxl6zz+ZUC7EG6j+Ff36eSs+IbarzsekIHRPpqiPSVVpREUSTfbCerzJkptpFnslNkESmyWLmQ\nLxWxFIAATw2BRl25Q+OtF9TrlWshqPZxZwTc5rfRARXvPnQHZld4fREIcVSwIvgYfNj2yDaeXfks\njy97nD+S/mDe8Hl46dW7zkqxYoW06qJRJJJJxREEQShfkenfvz87duxg165d7Nq1i/bt29OrVy/8\n/f1draZ7M3EijB8veecLFsCTT0qrMHfdJTkyvXs7lp2iDjF37lzWr1/PmjVrVMdFpcbkm0zY/S8C\nEOI/gBJBR8tI5988sdtFkhPSSUpIJyMxl8LMyxMdGLx1pY6KPyFxfgTH+qF3YJVIEAT8PLT4eWhp\nUFof2GITySmxVXJoTDaR7BI72SVmzmSX6qAVCDRqCfPWEutvQK+9secXFRWFOI20TeyMIAgxQFOg\nYgXjKCDTEcGKXuZ66jz5bORn9NrXix8O/8Azv8tXRfbhh2XPvKaoXCWoqOvFi3DkCAwbJp9MOahL\n9qyIEnp7eXkxYMAAnnvuOfr06cORI0f45JNPOHDgQJ21U1UUG5fjx8Mdd0ge+rlzUjzMtm1SMaNm\nzaS0yikpNZfr5nYv02/WrFmMGzeOwYMHyypXCV5//XXFZNcWpfqdk5OjiFy5OOXphU0wg8WDEkGK\nVWgRUbPg9etxLdtaTTZObEpm+evb2fZ/hzm355LkuAgQUM+bxr3q0e0f8dz6WlfunNmbfk+1pdWw\nBkQ0C7rMcanNb6jXCoR662gW4kH3aC+GNfFhSCMfOtcz0ijQQKBRi0YAs03kUoGVJx59lFWn8jmY\nWkKh2bFMktXB3echFRUHmQfMFQRhAbAS2C6KYsWAtQHAfkcEO2XT61P3PEVekzwmrJjAo+0fpWdM\nz1rLVKoibV2qdFtR1717pWO3bvLJlIO6ZM+KKKm3p6cnffr0oWvXrqxcuZKlS5cSEBBASUkJnp6e\nirXrDJwyLqOiJOdl6lTYskVajZk+XYqNGTZMWo0ZMQL01w9Idve/zzL92rdvz7lz52SXqwTdunVj\n2bJlismvDUr1291jj5JKa1IJRWEgSNlcgr0NsrZxJdsW55n5a3MyJ7ckYy6Utml5eOtp1LMeEc0D\npVUVY80uQ+T8DQVBwNsg4G3QEOUvzRc2u0iuyUZWkY1ufQditcPpbDOns83U89XROMhAkFEr67Yp\nd5+HVFQcQRTFLwRBsAEjkVZcplc5pR7wpSOynbLBaNy4cTzW4TE61+vMU78/VaMUsteSqQRKyVWC\nirru3QshIRAdLZ9MOahL9qyIM/T28PBg9OjR3HrrrQQEBPDZZ59VKoxZF3HquNRooF8/+PZbadXl\n448hNRVuv10aCGvWOCbXjSjTb+TIkWzfvp3MTIdW2K8qVwmGDh2qmOzaolS/jUajInLlIs1XWmXR\nmMMA8DJo0Wvl/fdf1bYZibkse207R1aexVxoxSfUSOd7mjLq7R60G92IiOZBNXZcrtSO3Gg1AkFG\nHY2DPXj72YfoEe1FmLfk8F3Mt7LlXBEnMs2ytunu85CKiqOIovilKIq3i6L4pCiKqVU+e0oUxV8c\nkeu06AitRsuMQTM4eOkg285vc1azNw1//AFdu97wW/9vGERR5OzZsyxdupRVq1YBEBYWpgZBOkpA\ngBQLs3s3JCRAvXrw/vuu1ko2zpw5g7e3t9vf4VdxT+xaLQY0YJWcGKVnmaIcE1s/P4TVZCMw2ofe\nj7fi1te60aRPFDqDg3n8XYAgCIT76OgZ483Aht7ElK7OnMgwUaDgNjIVlRsBQRDqCYLwgSAIl2XX\nEQTBXxCE9wVBqO+IbKfmSuzboC8NAhrwzYFv6B3b25lN39BYLPDnn+DGW81VSikoKGD//v3s37+f\n7OxsAgMD6d27N23btlUD9+WibVt4+GF44QXIz4c6ntWtuLiYzz77jEceeQQfH3njFFRuHoIFDWk2\naetWodmGzS4qkiLYbrOz9fNDFOea8Y/0ZtDzHRwKuHc3/Dy1dIj0pMRqJ63QxuFLJXSLVhMQqahc\ng8mAnyiKeVU/EEUxVxAEX2AqUOOAeKesvGzbJq20aAQN97W+j5+O/YTNbrvOt6onU26UkqsEZbqu\nXQtFRTBggHwy5aIu2bMicutdVFTE2rVr+eijj9i6dSsxMTE89NBDTJw4kT59+nDo0CFZ23MVbjMu\nbTbJqz9/Xl65Tmbbtm0sWLCArKwsJk2aJKtcpdi/36H4S6egVL/NZnm3ESlBiN2KWOq8ABSarNc4\nu+aU2TY7qYDMs3loDRr6TGgtu+PizDFbtS1BEGgWIq1+Xiq0yrIF/krtqKjcIAxFKkR5Nb4B+jsi\n2CnOy8yZM8ufD44bTHZJNofSanexVlGmnCglVwnKdH3/fan8RYcO8smUi7pkz4rIpXdJSQkbN27k\no48+Ys+ePfTo0YPJkyczevRoYmNjy7eJ1VU7VcUtxuX69TBlCjz9NLRsKZ9cF/Duu+/y1ltv8cAD\nD9CoUSPZ5CrZ72++udb/KteiVL8LCgoUkSsnHthBtCOW3jjMN9XuBmJVymyrNUiXFVqdBt9Q+Vcm\nnDlmr9RWbolkt0BP+YL23X0eUlFxkIbAte4gJgMNHBHslLXcxYsXlz/vGtUVD60HW85toV1EO1lk\nyolScpVg8eLFbN0KmzbBjz/KE+8id//rkj0rIofeR48eZdmyZVitVjp37kzPnj3xLs36o0R77oBL\nx2VGBnz9Nbz9trQMOXv2db/i7nYfOHAgq1atkj39sJL9fuedd+jVq5di8muDUv0ODAxURK6caJFW\nCUSrBcGgpUDmlZcy2xpLi1+ai6xkJOYS0lDe7bDOHLNV2zJZ7ZzJtgBQz0++yyd3n4dUVBykGMk5\nuZoD06D0nBrjlJUXL6+/77546jyJ8IngUsEl2WTKiVJylaCgwIt774UePWD0aHlkyt3/umTPitRG\nb1EU+fPPP1myZAlxcXFMmjSJIUOGXNVxqW177oTTx6UowsaNMG4c1K8vpVC+9Vb43/9Ad/2LC3e3\ne5MmTbDb7axdu1ZWuUr2250zbynV77qQaKNsY1vZ1jG5nZcy2xq8dIQ3k5y59bP3k3wwQ5F2nEHF\ntkxWO9vOF1FgtuOhFYj2u34qdkfaUVG5gdgJ/OManz8A7HJEsEtqsWsEDSLy7BW9WbFa4Z57wGyW\nrtO0dSeByw2NKIqsXLmStWvX0qtXL8aMGYNvHQ8Yd0sKC+GDD6QClQMGwP798O67cOGClDr5Bkl+\nMHLkSB5//HEmTZrEnj17XK2OSh0mtzTHmCBKTovc28bKEASBPuNbE9kyGJvFztbPDnJiY5Js8SGu\noNhiZ+u5IvJMkuPSK9YLD51LLp9UVOoSHwAPl2YcCy97UxCEcEEQ/gM8VHpOjXGZ82IX1TSDteHV\nV6X6fD/8IN1wVnEPCgoK2LNnDwaDAR8fH6xWee9uqgAXL0Lv3tIqS+fO0r7JY8dg8mSp2NENxuzZ\ns2ncuDGdO3emR48efPrpp2RnZ7taLZU6Rp4grURqSm8cFluUcV4A9J46+k5oTVz3SEQR9i45yeb5\nBynOc//EBlXJN9nYfLaQfLMdT51A71gv/DzUu4UqKtdDFMWNwNNI2cQuCoKQLQhCFnCx9P2Joihu\ncES2U5yXKVOmVG5UBuelqky5UEqunPzyC8yYAb16TaFfP3lly93/umDPK+Go3r6+vkyYMIHmzZuz\nevVqZs+ezZYtWyguvva2zrpqp6ooPi4PH4Zu3SAtDXbtgu++g759HQ74cne7T5kyBS8vL3bu3Mni\nxYsJDAzk6aefJjIykrFjx7J8+XIsFotDcpVidjVijVyFUv3Oy7ssE6jbkY2IiIhOJ213knvl4LL/\n81oNXe9vTocxTdDoNFw8nMnvb+0k+WC6rO0oycTnX2DzuSKKrSLeBg19Yr3xVcBxcfd5SEXFUURR\n/AxoBPwT+B5YDLwANBZFcb6jcp3ivMTExFRuVAbnpapMuVBKrlwcPw4PPgh33gl33CG/rnL3393t\neTVqo3dYWBi33347EydOpEWLFmzZsoXZs2ezadOmq6ZUrat2qoqi4zI9HXr1gsBA2LFDqucih1w3\npkw/o9HI3XffzYoVK7hw4QJvv/02x48fZ+TIkURHR/PGG2+QmZlZY7lKEBERoZjs2qJUv7Xuvm9X\nFLEhgtaKrjQWTG7n5Uq2FQSB5gOiGfpSJwLq+2AqsLDl00Mk7kq9ggTH21GCfJMNk3cEFptIoKeG\nvrFeeBuUuWRy93lIRaU2iKJ4QRTFD0VRfFoUxadEUZwtimJybWQ6xXmZOHFipdd+Hn7kluTKKlMu\nlJIrB9nZMGoUREXBl1/CpEny6yp3/93ZntdCDr0DAwMZMWIEzz33HB07dmTbtm18/PHH7N27F7u9\nsvNeV+1UFUXHZVYW5ObChx9Kg0AuuW7MlfSLiIjghRde4MCBA+zfv58777yTd999l9jYWCZPnkxS\nUpJDcuXinnvuUUx2bVGq39dKxuEOGMylq3NaMxqN9G9fI3OSgWvZNqCeD7e82InGvaU9zrsXnSDv\nUpHs7ciFzS6y+0Ixw+4bT4iXll6x3orGuLj7PKSi4m64JOYl3CecS4W1yzZ2s2G1SgmV0tPht9/A\nz8/VGqlUFx8fH4YMGcIzzzxDw4YNWb58OZ9++imnT592tWp1i7K7k9W4OL8ZEASBdu3aMW/ePM6d\nO8fzzz/PV199RVxcHA8//DDnzp1ztYoqboKnpXTFV2dGU+qz2O3ODaDX6jV0ursp4U0DsJpsbFtw\nGLvNPWNfj2eYyDXZMWgFOtUzotO4fzY5FZWbCZc4L2FeYaQVprmi6TrLv/4F69bBkiXQuLGrtVFx\nhICAAO644w4ef/xxvLy8WLhwoZpBqiYYjdCiBcycKdV0USknLCyMN998k/PnzzNjxgxWr15Nz549\nOXXqlKtVU3EDPMpXXixoSy/EbS7I/qXRCPR4uCVag4ac5AJyUwqdrkN1SM6T7NUm3BOjXs0qpqLi\nbjhlVB4/frzSazlWXqrKlAul5NaGr7+GWbOk3TIDB/79vhK6yi3THe1ZHZTUu169ejz44IN06dKF\nFStWsHXrVo4dO6ZYe85E8XH588+S4zJkCOTkyCfXTampfr6+vkyePJm9e/fi6+tLv379rujAKNnv\nxMRExWTXFqX67e5ZBfW20sxiGuvfzovMKy/Vta3R3wODl5Q0wJHQV2eM2TK/LiXxL8XbAvefh1RU\n3A2nOC8vvvhipddh3mFcKrhUq7zvVWXKhVJyHWXjRhg/Hh59FJ55pvJnSugqt0x3s2d1UVpvQRAY\nOnQoffv2ZcOGDTz22GOKtucsFB+XzZrB2rVw9iyMGfP3VUZt5bopjuoXGRnJhg0b8PHxYeDAgZfF\nWCnZ7zlz5igmu7Yo1W93zzams0rOi6ixlce62GReeKmubQsyirEUS86e4MAViDPGbFk40Esv/csp\n9WncfR5SUXE3nOK8zJ07t9LrcO9wiq3FFFocXzKuKlMulJLrCNu2ScXC+/aFefMuzwarhK5yy3Qn\ne9YEZ+gtCAL9+vWjX79+dOnS5YZYfXHKuGzTRipEuX49rFoln1w3pDb6RUZG0rRpU4KCgsqDtOWQ\nez3c+UJMqX77u3lRVJtW+v0FuwZ7qcfgJfN2qOrYtii7hPUf7cdqsuEf6Y1/ZM0THThjzMb4GwC4\nZ8oMDqSWYFfYgXH3eUhFxd1wSarkMO8wAC4VOL517EZPlbx3LwwfLtXgW7oUPDwuP0cJXdVUyRLO\n1LtPnz707NmTX375hbS0uh0L5rRxOXw49OwJ06bVavXF3f8+a6PfmTNnWLFiBU8++aSscq9HZGSk\nYrJry82aKtmkl7ZpYTNgsUv/9gOMelnbuJ5t8y4Vsf6jBAozS/AJNTJgUjs02ppfgjhjzDYPMdAq\nzIPQetEk5lj443wRuSXKFfV093lIRcXdcEkkmlFvBKDYeu3CfTcz77wD0dGwfDl4eblaGxUlEQSB\nwYMHY7FYOHnypKvVqRsIAjz2mOTl59Yu7fqNyKpVq+jRowcRERHce++9rlZHxcUUGj2lJ1YPiqyS\nsx/oJa/zcjVEUeTM9hRWvbeb/LQivII8GPhse4z+V7gj5yYIgkCTYA+6RRnRCpBRZGNDYiF7LhRT\naHbPDGkqKjcTLnFekvOk2jRRfvLUargR2bMHRowAHx9Xa6LiDPbu3Yter6d9+/auVqXucOECBAWB\nm2/ZcSYmk4nJkyczbNgw2rdvz969e/FRJ5GbnmJPyXnREIJNBINWINxPeefBXGzlz6+OsOPbY1hN\nNsKbBjDkn53wDvJUvG05iPTVMyDOm/q+UmHPpDwLa08XkJBSTIlVdWJUVFyFU5yXGTNmVHp9MvMk\nPgYf/D0cv+ioKlMulJJbEzIy4Px56Njx2ucpoavcMt3Bno7gTL1TUlKYOXMmnTp1wquOL7M5bVyK\nImzaBM2bXx4MVhu5bkZN9EtMTKRHjx7MmzePDz/8kBUrVly12r2S/f76668Vk11blOp3QUGBInJl\nxWxEZ5D+50YFGGUvUlnVtpYSKxvm7OfcnjQEjUDb2+LoP6k9XgG1c5qcOWZnzJiBj0FLlygv+jXw\nJsxbiwgk5lhYd7qA5FyLbO2oqKhUH50zGikq+ruSrl208/WBrxnRZARCLSbPijLlRCm5NWHfPunY\nocO1z1NCV7lluoM9HcFZep89e5ZFixah1+vp06ePU9pUEqeNy5kzpcJHP/8sr1w3o7r6rV69mnHj\nxhEYGMiOHTuuu4KnZL9LSkoUk11blOq3MzJS1RqTNwEBAdhBkVWXira1We1s/fwQWefy8fDW0+fJ\nNoTGybNC6swxW7GtQKOWnjHepBdaOXSphFyTnd0Xi7mYb6FthCceOsfvBbv7PKSi4m44ZeVl+vTp\n5c9X/LWCU1mneK7bc7LJlBOl5NaEffvA1xcaNbr2eUroKrdMd7CnIzhD71OnTrFw4UKioqL46aef\n8PSsG1sproVTxuXy5TB1KrzyCtx+u3xy3ZDq6Pfee+8xbNgwunXrxp49e6q19VDJfk+YMEEx2bVF\nqX77+voqIldOBIuRgIAAQJl4l4q23fXdcVKPZ6Pz0NL36bayOS5V21GaK7UV6q2jX0NvmocYEIAL\n+VbWnykkpxYB/e4+D6mouBtOjXnJLs5m4sqJ9I7pTbeobs5suk6RlQUBAaBRC/ve0Jw9exabzUZQ\nUFCtViFvGux2ePttGDUKbrsN1H/4zJ8/n6lTp/Lyyy+zfPlyAgMDXa2SirtiMeLrK6UmVrJqfOa5\nPBJ3piII0PvxVoQ08FOsLVehEQTiQz3p28AbX4MGk01kZ3IRJjUORkXFKTjt8lgURR7+9WHyTHl8\nc/s3zmq2TtKxIyQlQR3PmqtyHQYOHMjQoUPZv38/X3zxBampqa5WyX3JyJAyWEybJq24/PQTuHl6\nWqVZt24dEydOZOLEibz11luX1XL5f/bOOzyK6vvD7+xuyqb3QkIooSQ06RBQekeaSLGAgIhKURCl\nKPoDxC4gKsIXBQEpgkhRpHfpIL0FAiQQCATSe9md3x8jGCCElJnZDcz7PPtAdmc/59y7c2f3zL33\nHA2NezAZ8HKSZnfTspRL+3t6fSQA5Rr44V/NUzE71oC7UU+z8o442gik54gcvp5ROpYQamiUclT5\ntrt9+zazDs9iTfgaFnRfQHm38rJoKoFSukWh8b+TUlu3FnycEr7KrWkN/Vkc1PBbEAQaNWrEkCFD\nSE9P58cff2TPnj0PVEMvTSjSb3/8we0aNaQU630BVgAAIABJREFUfOvXw+TJsgUu1n5+Psw/URTp\n168fvr6+xdrsq2S7ExISFNMuKUq1u1SMWZMBXzdp5uV2Wrbs8rdv3yYzNZvoE1IfB4cpU+9HzTFb\nGFu2eoFGgVKildg0EzdScxWxo6Gh8R+qBC8v9H+BcVvG8Xq91+lStYssmoMGDZJFRy3dolCuHLRu\nDVOmgKmAG2RK+Cq3pjX0Z3FQ028fHx927txJ48aN2bJlCwsXLiSplNYukbXfbt6E3r2hWzcGiSIc\nPQrt28unj/Wfnw/zTxAEJkyYQGxsLG3atCE6OloWXTmYPHmyYtolRal2JyYmKqIrGyJgsqFekLTn\n5Vh0MsmZRf+RXRCDBg3CzsEGz3+XiZ1YewmzSf6gTs0xW1hbqf/WftEJ4Gpf9Bsr1n4d0tCwNhQP\nXkRRJOvpLJxsnfiijXzpACdOnCiblhq6ReWTT+DMGViy5OHHKOGr3JrW0p9FRW2/J02aRNu2bXnl\nlVdISEhg1qxZpbJgpSz9lpAA334LoaGwfTssWcLEdesgUP66UNZ+fhbk37Bhw9i1axdXrlyhTp06\nzJkzh5s3b5ZYt6QMGTJEMe2SolS7rX7DvtmAgI4Gwb5U9HQg1yyy7rS865InTpyIoBNoOqg6NvZ6\nbl1M4uS6SFlt3LGjFoWxFZ+Ry4mbUoa9Kp52OBRjP5G1X4c0NKwNxYOXCdsm8HfO38zqPAtXe/ky\njtR9VB5hK9MtKo0awbPPwtdfSyUt8kMJX+XWtJb+LCpq+33HXvny5enevTtZWVlcvnxZVR/koNj9\nlpsrLQnr0wf8/OCdd6RN+WfPwgsvUPdRRY+KibWfn4/yLywsjKNHj/L000/zxhtv4O/vT5MmTfji\niy84e/bsQ9ffK9nu0NBQxbRLilLttrFRp1p9scmVqiLY6HU8W9MHgK+2XGRLuHzLle70rZOXkYYv\nhgBwekMkN8PlXUao5pgtyFa2SeRoTAY7I9PJzBVxtBGo7Gkrux0NDY0HUTR4+eHQD3y6+1O+avsV\n3UK6KWnqsWTYMDhxAvbts7QnGmqRlpbG6tWr8ff3p2XLlpZ2R3nOnYNx46S1kp06wenT8OmncO0a\nzJ8PXl6W9tDq8fLyYtWqVdy8eZN58+bh6+vL5MmTqVatGlWrVuXdd99l165dmApag6rxWGP7b0m3\nC9GxvNKoLJ2qeZNrFhm7+izrz8ifGaZcfV+Cm/qDCHvnnyYzRf49NpYkKjGbzRdTiUyUilQGudrQ\nvLwjBp2WNVJDQw0UC17Cb4czfN1wRjYayeiw0UqZeaxp1w4qVoT//c/Snmgoidls5vLly6xdu5Yf\nfvgBk8lE3759rf9ubnFIT5dmWN5+G0JCpKVhc+ZI9VoOH4aTJ2H0aPD1tbSnpQ5vb28GDBjAqlWr\nuH37NmvXrqVFixYsXryY5s2b8/TTT1v/3gwNRXDSS1nGth85h0EnMKVLCJ2q+5BrFhm35hxv/HqS\nszdSZbUZWMsbgIykbC7ti5FV25KcvZXJkZhMsk0iznY6ninnQL0yxhIVqdTQ0Cgaio22DREbsNXb\n8mnrT5k3b57s+nPnzpVdU0nd4qDTwYABUhHxtLQHX1fCV7k1rak/i4LSfpvNZiIjI/nrr7+YNm0a\nI0eO5OLFi9SuXZtBgwbh4lI6ayM80G+iKM2mTJ0qReMeHtIMy+rV0KyZdHLHxMD330s5wh9S7+ZJ\nGO/5UVz/jEYjnTt3Zs6cOVy7do0tW7YQHh5Ou3btSExMVLTdq1evVky7pCjVbmuvkF7GQZp5mb9u\nN+ev3kCvE5jybFVeaRSIQSew73ICfX8+wvg1Z4lOyCiWjTt9m5tt4vDy8+ycdQIAR097ytb2lqch\nqDtm77d19lYW525Ls0ghXra0quCI1799K6cdDQ2NglEseNkWuY2wsmEYbYwcOXJEdn0lNJXULS4v\nvQSpqbBmzYOvlYZ+tbb+LCxK+r1161amT5/OggULOH/+PLVq1cLd3Z233nqLtm3b4uHhoZhtpbnb\nb9evw+uvQ9myUKMGTJggpTf+/HMpE0Vk5H8zLnZ2hddVyl8rRQ7/dDodrVu3ZuvWrURERNC2bVsO\nHz4sg3f5c+7cOcW0S4pSn3dOTo4iunLhZQvtGlYn12TmwzmrEEURvU7gnVYVWTOkPp2qScHFujO3\n6DbnMF9vvUhqVtGyke3fc5ATay/x1+QDnN8hZb+r9HQZOn3QEGcfB9naouaYzWvrckI2525nAVDD\nx45Qb3t0MhUXtvbrkIaGtaFY8JKUmYSXg7RefebMmbLrK6GppG5xqVgRmjaFRYsefK009Ku19Wdh\nUdLv69evk5oqLdHw8PDA1dWVGTNmIMj0RWhJZs6cCX/9BU89JUXcvXvDxo0QHy8tFxs5UloqVsS2\nPinj/X7k8i8mJoZZs2aRlJREYmIiX375pSy6+TFu3DjFtEuKUp+3q6t8yWiUICsjlYmvdsPO1sCe\nkxH8uefY3dcC3Y181i2UXwfWpUkFd3LNIr8cvEbX/x1izYkbmAsoupiRnM25bVfZ8MUhWtr34dS6\nSNLiMzG62tJi2FM0fDEEG/uSz0zkRc0xm9dW8r+FPf2dDVT2fPQNl+La0dDQeDTyXlXyUM+/HivP\nrVRK/oni5Zdh+HCp7IW2FaD0069fP5KTkwkPDyc8PJxNmzaxYcMG/Pz8CAkJoWrVqvj6+pa+YCYr\nC8aPh+nTpaVh8+eDt3zLRTSKTkpKCl9//TVff/019vb2TJ06lTfffBO7Qsx2aTw+pCYlEOTryfCe\nrZm6dCOT5v1Bq3qhOBnt7x4T6ufErL412XMpni82XyQqPoOP/jrPb0dj+LBDZar6OgFS+YPoY7eI\n2HOdG+cSEM1ScCPoBPxC3CnfwI+ytb0x2MlTSNZa8HYwcCkhh5SsUlCQVEPjMUex4CWsbBjT9k9j\n66WttK7YWikzTwS9esGIEbBqFbzxhqW90ZADFxcXGjRoQIMGDcjMzCQiIoJz586xd+9eduzYgdFo\nJCgo6O7D398fvUxV5RVj5kwpcHnlFfj55yLPrmjIQ0ZGBuvXr2fZsmWsXbsWk8nEyJEjGTduHG5u\nbpZ2T8MCpKYmkp6UwJs9WrJi22GibsaxeON+Xu/e4oFjm1b04PfBbiw+dI3/7bnCyespDFh0nBnP\nV6emuwOHlpwj+sR/KZY9y7tQvoEv5er7Yu9cvFTBpQGXf4tPpmabyTWLWmYxDQ0Loljw0q1qN9oH\nt6fn8p7sGbSH6j7VlTL12OPpCbVrSymTteDl8cPe3p4aNWpQo0YNTCYTUVFRREVFcfXqVXbs2EFO\nTg4Gg4GAgIC7wUxgYCD29vaPFleTfv1g7VppjWONGlLWMC2AUYXMzEw2btzI8uXL+eOPP0hNTaV2\n7dpMmDCBfv36EahAgU+N0oNJNHNg9c+0fOUdXu/egvf/9zurdx3NN3gBqR7MgMZl6VzDhw/+DOdA\nZCLT5x2nWyqYM0zo9AIhrYOo2MQfFxn3s1gzlxOkjfru9nr02mVNQ8OiKLbnxUZvw/JeyynnVo4G\nrRoQmRgpq37Xrl1l1VNat6Q0agQHDtz7nBK+yq1prf35KNT2+449vV5PxYoVadmyJf3792fs2LEM\nHjyYVq1a4eDgwJEjR1i8eDFffPEFs2fP5tSpU6r6WSDe3nR1dIR334X33pM240dGyiL9pI33OxTk\nnyiK7Nq1iwEDBuDr60v37t05efIkY8eOJTw8nKNHjzJ+/Ph8Axcl2z1q1CjFtEuKUu2Oj49XRFcu\nzIKOXUu+JTM1mWeb1sKg13HyUjSXrt0q8H3eTnZ827M6A8w2dLllwpxhwt7HSPuxDajdPfiewEWt\nsaTmmL1jK8ck3g1eQrxtZV/Sa+3XIQ0Na0PRxOQudi789eJfuDZzpfFPjTl8Xb4MN8OHD5dNSw3d\nklK3Lpw/L5XJuIMSvsqtaa39+SjU9vth9vR6PQEBAYSFhdG7d29Gjx5N586d0el03Lx5k5SUFFX9\nfBTDR4yQMoqtWgX790PVqtIm/VsF/0h6pO4TNt7vkJ9/t27dYurUqYSGhtK8eXN2797NqFGjOH36\nNCdOnGDChAlUqVKlyLpy0bt3b8W0S4pS7XZ0dFREVy509vbEX49i3jvP42q0o0pZPwCibsYV+D5T\njplDC87gey0DEdjrIuD1QmXcA50eOFatsaTmmL1jK2/SgqRM+fe8WPt1SEPD2lC8qlKgSyDHvzpO\nebfyNJ/fnD/D/5RFt127drLoqKVbUqpVk0pmhIf/95wSvsqtaa39+SjU9rsw9mJjY1myZAl//fUX\nAQEBDBo0iLCwMBW8Kzx329G9O1y8CB99JO1/CQ6GyZOhmMHWkzbe73DHP1EU2bp1K3369CEgIID3\n33+funXrsm3bNs6fP8/EiROpVq1akXWVwNrOybwo1W5rT4AQULUWtkZHwvdt5teJr6ErxH6N3CwT\nO344ztWjtzALsNpTR3oND56p4pnv8WqNJTXH7B1bdgYdtfykZbpnb2URl160NNKFtaOhoVE4VCkJ\n6+Pow/ZXttOhUge6L+vOzINaWsCiUrWq9O/585b1Q0N9cnJy2Lp1K7NnzyYuLo5evXoxcOBAypYt\na2nXCsbRET74AC5dgtdeg08+AX9/qfLqjh1g1rL2FIb09HReeukl2rRpw8mTJ/niiy+4du0aS5Ys\noWXLluh0WmVvjYLR29kx4OvlCDodB/9YQExkhPT8Q4IYURQ5uPQcN8MTyNHBci8dFx11jG9fqfRl\nQZSJcq42BLgYpBmoq+ncTJU3gNHQ0Cg8qn3rGW2MLH9+OSMbjWT4+uGM3jgas6j9eCksdwqup6VZ\n1g8NdYmMjGT27Nns27ePFi1aMGzYMKpVq1a6fkB4esLUqdJMzLhxsHs3tGwJlSrBpElw+bKlPbRa\nLl++TJMmTVizZg1Llizh9OnTjBo1Ci8vL0u7plGKEEQT1Zt14pUvf8Xg4Eq8SZopEq+fzff4Mzuj\niTx4EzOw3FNPgpstn3QJobK3dS+PUxJBEKjjZ8TLQU+uGfZdTefSv/tgNDQ01EWV4GX16tUA6HV6\nprafyncdv+ObA9/Qf1X/EmvKjVK6JUWvBxsbyMj47zklfJVb01r781Go7Xd+9rZs2cKCBQtwdHTk\n9ddfp1mzZlafLrnAfgsMhAkT4MIF2LVLCmC+/lqqxNq6NVy9WjzdEmDN5+fJkyepVasWqamp7N+/\nnxdeeEG2oFXJdm/fvl0x7ZKiVLszMzMV0ZUL4d9Zzjrte9H5y7WIgg5bUzq/j+3Bvt9/uufYfadi\n+ee3CwDsctVRu74vq4fUp2N1nwJtqDWW1Byz99uy0Qs0DXIgyNUGETh+I5Nzt7Jkt6OhoVEwqgQv\nS5cuvefv4Q2HM7frXBafXMyB6AMPeVfRNOVCKV05MBoh73ekEr7KrWnN/VkQavt9v72rV6+yZ88e\nWrRowcCBA/EuJcUeC9VvggDPPANz58KNG7BgAUREQJs2EBtbfN1iYM3nZ3R0NKmpqSxevJiaNWvK\nqq1kuzdu3KiYdklRqt0Zee8qWSFCniWa+6MSAajiYYsA/PbJMKJOHcJkFpm9O4rpy89gECHRTseg\nIbX4pEsIno6Prt+i1lhSc8zmZ0snCNT1tyfUS5q9Ons7iwtxJQtgrPk6pKFhjagSvCxbtuyB5/rV\n6kclj0pM3TdVNk05UEpXDozGe2delPBVbk1r7s+CUNvvvPZEUWTTpk34+fnRrFmzUrVErMj95ugI\n/fvD1q2QnAzt2kFCQsl1C4k1n58tWrTAaDSyY8cO2bWVbPfnn3+umHZJUard7u7uiujKhSCaADCZ\nzKzceQSAt15/lZqtumPKyWb2e/15bdERZv0dhfO/WzmqV/OkcQWPQttQayypOWYfZksQBEK87ajm\nLQUwp2Kz7qZSltOOhoZG/lhsp6dep2dYg2H8fvZ3MnKs+66VNSCKkJsr/avxeHPr1i2io6Np3rx5\nqQpcSkSlSrB5M1y5Aq+/bmlvrAKj0UinTp345ptvOHPmjKXd0SjFmE1SRHL68jVuxCXh4mBP6wbV\neHHyPHR2RvZWeY1/rqVhb6OjY7CUTUwwa182j6Kqlx1VPKVZqWM3MrmSpO2B0dBQA4umqanmXQ2z\naOZm2k1LulEquHAB4uKgfn1Le6KhNA4OT0bF6geoUQO++w5++w2seOmRmsycORNvb29atGjB8ePH\nLe2ORiklJ1f6UX3+qvRdW61CAHY2Bk5uX8OF0P4k+tXH3iCwoF9tWrevAED0idsk39QyxDyKat52\nVHSXApgj1zO5lpxjYY80NB5/LBq8+DhKGwBj0/Jf567xH5s2gU4HTZta2hMNpXF0dMRgMFh91W5F\nePFFaSP/sGGQmmppbyyOr68v27dvp2zZsrRs2ZLzWq50jWKQmSv9oI6Ilr5rK5f1If56FHMXL+Nq\ntRcBmPxsCCG+TrgHOhFQywtEOLb6IqI23V8ggiBQy9fu7ib+Q9cyuJWmpVHWsFLKmBHLy/OgjOUy\nBqsSvAwcODDf50/HngagjHMZ2TRLilK6JeHmTSmjbM+e/6VMBmV8lVvTGvuzMKjtd157giAQHBzM\noUOHyM0tXV+CJe43QYDZs6WTftCgu+skn6TxnpeBAwfi6enJ1q1bcXV1ZcyYMbLpKsXEiRMV0y4p\nSrU7MTFREV25yDFJwcvxiCsAlPdw4NvBbTlR6SUA+tTxpX3of0lBanWugKATiD5+m7ObrxTKhlpj\nSc0xW1hbwr+b+AOcpTowB6LTSc4yyW5HQ0NDQpXg5WHVY1ecXUGjgEYEugTKpllSrK3SrSjCG29I\nv+lm3lfbUwlf5da0tv4sLGr7fb+9Nm3akJSUxMGDB1X1o6TI0m9VqsD8+dLysalT5dPNB2s/P+/4\n5+bmxieffMKaNWvYvXu3bLpK0LhxY8W0S4pS7bazs1NEVy6yTCZMJjNHwqVAJHzRRE461CLDJQh3\nez1vtQy+53j3ss7U710FgGNrLnL9dNwjbag1ltQcs0WxJQgC9coY8TDqyfm3DkxWbuHuTFv7dUhD\nw9pQJXh54YUXHnjuaMxR/jr/F32q95FNUw6U0i0uixbB6tUwZw7cny1XCV/l1rS2/iwsavt9vz0v\nLy/q16/P1q1bOXToUKlZuiFbv/XsCWPHwnvvwdixvNCrlzy692Ht52de//r27ctTTz3FV199Jauu\n3HTo0EEx7ZKiVLuNRqMiunKRaTYRfvUGaZlZ2Aomci7/w7Xq0nKxYS0q4GRneOA9lZ4pQ3DTMiDC\n7p9OEReVXKANtcaSmmO2qLb0OoHGgUYcbQTSc0QuFjIDmbVfhzQ0rA2L7HlJz0nnxZUvUsOnBkMb\nDLWEC6WCq1dhxAjo1w+6d7e0Nxpq0759e+rXr8+6dev4448/yMl5wjaCfvYZfPWVNPvSqhVcu2Zp\njyyKTqfjxRdfZPPmzVZfV0TDukjJNfHPuUgA3NKiyQyoQ4a9Fw62errU8M33PYIgUL93FXyrupOb\nZWLHzOMkx6ar6HXpxM6gI9TbHoDo5NxSc+NJQ6M0YZHg5d1N7xKVGMXi5xZjZ7Du6XZLkZsLAweC\nkxPMmGFpbzQsgV6vp2PHjvTo0YMTJ06wePFiS7ukLoIA774LO3fCpUtQpw6cOmVpryxKly5dyMjI\nYNu2bZZ2RaMUkSyKbNu9HwDPzOu4PT8ZgJaVPbG30T/0fXobHc2G1MS9rBNZqTls//YYqXFa4Pwo\n/J0N6AVIyzaTkmW5Tc0aGo8rqgQveddo/xn+J7MOz2Ja+2mEeofKoiknSukWBVGEt96SfrMtXAgP\nq3+mhK9ya1pDfxYHtf1+mD2z2cz169cxm814eXmp6lNxUKTfmjZl96xZ4O8PXbtKOcNlwtrPz/v9\nCwkJITg4mD///FNWXTk5evSoYtolRal2Z2dbd30PM3DgXDgATevV4qatlCTn6eBHF6G0MRpoMaw2\nzj5G0uIz2Tr9aL4BjFpjSc0xW1xburzluQpRqsvar0MaGtaGKsHLl19+CUBMSgyD/hhElypdeL1e\nyQrR3dGUG6V0i8KMGTBrFvzwg7Ra5mEo4avcmtbQn8VBbb/zs5eens4vv/zCoUOH6NChA507d1bV\np+Kg2Lj88UdYswaSk6F3b2lqUg5dKz8/7/dPEAS6dOnC2rVrS7QcRcl2L1y4UDHtkqJUu1NLQVrv\nJEEPosgrw0ZzPlbyN8TXqVDvNbrY0npk3bsBzJbpR0iLz7znGLXGkppjtri2EjNNmESw1Qs42z76\nZ5a1X4c0NKwNVYKXX3/9FbNoZsCaAegFPXO7zi1x5fBff/1VJu/U0S0sixbBO+9I+5Rfe63gY5Xw\nVW5NS/dncVHb7/vtiaLI6tWriY2NpX///jRq1KjEY0YNFB2X5cvDihWwYwd8/718ulZMfv41adKE\na9euERtb/PpYSrb7008/VUy7pCjVbveHTY9bE7ocvO1FjD5lycgxY9AJBHkUPtGAg5vdvwGMA+nx\nWRxcGn5PAK3WWFJzzBbX1s1U6eaKp1FfqOu2tV+HNDSsDVWCFwcHB7478B2bLm5iQfcFeDt6P/pN\nhdBUAktWN1+1CgYMkB6ff/7o45XwVW7N0lotXm2/77d36tQpLly4QNeuXSlXrpyqvpQExcdlixbw\n6qsweTLIUMTT2s/P/PyLiYnBzs4O7/vTD5ZQVy6sOfOWUu0uDTcW0OcS6ONBcqb0w9rF3oBBVzS/\nHdzsaP5mLXQGgZjTcVw9euu/11QaS2qO2eLYEkWRq0lScpUAFxvF7GhoPMmoErxEJUYxdstYRjYa\nSftK7dUwWepYvhz69IHnn4cffwSdRVIpaFgDJpOJDRs2UK1aNapWrWppd6yPjz+Wlo198IGlPbEI\nZ86coUKFCui0i4RGUdDnEFjGn5R/g5f80iMXBhdfB6q1k26onPjzkmzuPS4kZZlJyxHRC9LGfQ0N\nDflR5dtvX/Q+skxZfNj8QzXMlSrMZvjoIylw6dULfvkF9A9P/qLxBGA2m0lPT9cCl4fh6ytNTc6e\nLRVBeoK4fv06CxcupEePHpZ2RaO0IZhxcna6WzjRaFP8r3+PIGdASi6jcS935rJ0AuhLwYSchkZp\nRJXg5dsp3+Lr6IuH8dGZTQrLe++9J5uWGrr5kZYmzbRMmSKVtFi0CGwKN8sMKOOr3Jpq9qecqO13\nXnsGgwG9Xk9mZmYB77BOVBuXb74JPXpI+cQjI+XTtTLu9+///u//cHBwYOzYsbLqysk333yjmHZJ\nUardyckFF3C0FsxmkVyzFHEUdclYXm6cSwDAt+p/e33UGktqjtni2HK20yEAOWbIyC1cdGft1yEN\nDWtDleDF08+TW+m3+HLPl7IVbAoKCpJFRy3d+0lLg2efhU2bpCRK48ZJZS2KghK+yq2pVn/Kjdp+\n57UnCAL29valMnhRbVwKAsydC25u0LMnpBeveJ61n595/fvhhx/46aefmDRpEq6urrLpyo2fn59i\n2iVFqXbrS8l0+Y3Y2+j/DVoyc4tXfyQtPpNL+2IA8A/974akWmNJzTFbHFs6QcDOcKePC/d7x9qv\nQxoa1oYqwcuqaasY23QsY7eM5bnlz5GUmVRizREjRsjgmXq6ecnIkAKXw4dhwwbo0qV4Okr4Krem\nGv2pBGr7fb+90hq8qDou3d2lLBdnz8LgwcVaw2Lt5+cd/3766SeGDRvGyJEjGTp0qGy6StC3b1/F\ntEuKUu12dHRURFdWzAaOnr9CkLtU/f1qQgYmc9HGjCiKHPo1nNwsE14VXAio9V/tKbXGkppjtji2\nsk3i3aClMGmSi2tHQ+NJRpXgxaAz8GnrT/mj7x9sv7ydunPq8nfU32qYtko++kgKXNavh6eftrQ3\nGtaI0Wjk9u3bss1UPrbUrg3z58PSpTB6NJhMlvZIVkRRZPr06QwZMoShQ4cybdq00pHZSsPqEEwC\nydlmoi9fxFYvkG0SuZ5UtBsklw/c4PqpOHQGgUYvh6IrwdKzx5XIRKlgqdEgYKNtetHQUARV09V0\nqdqFf4b8g5+TH83nN2fUhlGk5xRvuUdpZts2+OYbLXDReDj169fnwoULHDhwwNKuWD+9e8O330rV\nXbt0gcRES3skC+np6fTr14933nmH0aNH891332mBi0ax8c+MA+CdKd8Q5GYHwOW4wn//psSmc3jZ\neQBqdqqAq38pmG1SmfDbWZyOzQKgoruthb3R0Hh8USV4OXfu3N3/B3sEs2vALr5u9zWz/5lN7dm1\n+f3M76RkpRRbU06U0s2LoyPIsbJCCV/l1lSjP5VAbb/vt/fUU08RFhbGpk2bOHXqVKmZgbHYuBwx\nQlqDuX8/NGoE//wjj66FiI6OpmnTpqxYsYKlS5fy1VdfyZoaWcl2X758WTHtkqJUu3NzcxXRlZP3\nQm3QiSaumt1IunwSgMtxGYV6r9kssufn0+RmmfCp7EZouwdrT6k1ltQcs4W1lWMSOXEjkzO3pMAl\nxMuWyp6FD16s9TqkoWGtqBK8jBkz5p6/9To974S9w7HXj+Hj6MPzvz2P55eetF7Ymq/3fs3p2NOP\n/LF2v6ZSvipBq1ZSAFNSlPBVbk01+lMJ1PY7P3tt2rQhJCSE33//nblz53L+/HmrD2IsOi7btoWD\nB8HODurXl2Zh9u8vua4FePPNN4mNjaVx48aK7CFRst3ffvutYtolRal2W3u2MVtE6unjeKlZNQCu\npUjLK8+fv1Co90cfu0V8VAo2RgNhr1TLd7mYWmNJzTH7KFuiKBKZkM3mi6lcTJCWi1XztiPU275I\ns6TWeh3S0LBWVAlevv/++3yfr+pVld2DdhMxIoJp7adhb7Dnw+0fUmNWDcp9U47X/3yd1edW5zsr\n8zBNpXyVk1q15NFRwle5NdXoTyVQ2+/87Ol0Onr16sVLL72ETqdj6dKlzJkzhzNnzlhtEGPxcVmp\nEhw5IuUdv3gRwsKkoGbnzpLpqsi2bdunGRJfAAAgAElEQVRYu3Yt06dPZ+HChYrYULLd1vxDTKl2\nlzT7m9J4CSJkp/Ph4J6EBHhg1kuzAifWL2blF6PIyXr43hdRFDmzKQqAqi0DcfSwz/c4tcaSmmP2\nYbZEUSQ2LZftl9M4eiOTLJOIo62OxoFGqnrZyWZHQ0Mjf1Qp//qoNIDBHsEMbzic4Q2Hk5GTwc6o\nnay/sJ71EeuZc2QONjob6vjXISwwjCZlmxAWGFaqUyVXriyPjpYqWTksmSo5L4IgUKlSJYKDg4mK\nimLXrl389ttv1KpVyyoLFVrFuDQY4KWX4IUXYOVKqZBSixZSbZgffii+rkpMmTKFhg0b0qtXL8X2\nuCjZbn9/f8W0S8qTmirZWy/dp9Sn3mLeR2/Q+euNAMTalWHnoo8J37+Z/p8vJqDqUw+8Nykmjfgr\nKegMOqo0D3yojSchVbJZFIlOzuFifDaJmVKqaRsdhHjbUdHdFl0xx6s1Xoc0NKwZVYKXomC0MdKh\nUgc6VOrADGZwMf4iGy9uZM/VPfwR/gczDswAIMA5gLCyYYQFSo+6/nWxMxT9jocluHXL0h5olDYE\nQaB8+fKUL1+eWbNmaRu3C4NOJ1WB7dkTvvsO3n4bmjeHPn0s7VmBpKamUqtWLe0z1pAN7zvLvESR\nIF9PGtcI5uD1LOKNZYjzawARh5jatwGdR0yh5Suj0eUJxmzspP+LZhGDnXUHaUqRlWsmMjGHSwnZ\nd9Mg6wQo72ZDiJcddgZVcx9paDzxWF3wcj/BHsEM9RjK0AZSbYMbqTfYH72ffVf3sS96Hx9s+4DM\n3Exs9bbU868nBTP/BjUBLgEW9j5/Tp60tAcapZW0tDRu3bpFw4YNLe1K6UEQpA39+/bBkCHQpAmU\nLWtprx6Kp6cnERERpKen4+DgYGl3NB4DvBEBAcEgLRcr7+vBwesxIOg45NmawZWDiP77d/6YPpbz\nB7by+qz1dxNEOHjYY+9iS2ZyNrcvJ+FX1aMAS48flxKyOXkzkzslcewNAhXdbSnvZqMFLRoaFkKV\nkffFF1/IpuXn5Ef3kO54HPFg18BdJI1L4uDgg3zV9ivKuZXj97O/0+u3XgRODyRoehB9VvThm/3f\ncPDaQbJN2ar6+jB++w1OnSq5jhK+yq2pRn8qgdp+P8qeKIqcPn2aWbNmYWtrS6VKlVTyrGgo1W8l\n1hUEmDABkpPvyURmjedn06ZN2blzJ35+fjRs2JC9e/fKvsdJyXbPnz9fMe2SolS7U1NTFdGVC1ez\n9N2nc3ABICVLyo7m7+lCWmY29q3eoPeHswE4t3cTGSn/pRsXBAG/qu4A7F9wlrT4/PfHqDWW1Byz\nkz/9nBM3pMDF1U5HvTL2tK/kRFWZZ1us8TqkoWHNqDLzkp4ufy2XO5q2elsaBDSgQUAD3mr0FgAx\nKTHsi953d3Zm3JZxZJmysDfYPzA74+/sn6+ukgQGwrPPSomRfHyKr6Nkv1qrnlqo7XdB9hITE1m3\nbh0XLlwgNDSUjh074uzsrKJ3hUepfpNFd+NGKRNZq1by6srMhAkTePHFF1mwYAHffPMNTZs2pUqV\nKgwYMID+/fsTEFDyGWUl252ZWbTCh2qiVLutNYHGHQwi6Bzd0Dt7AXA6RkqC0zK0DJdOwL6TF3n5\nzU4A6AwGjM5u97y/bq/KxF9JIflmOtu+PUabd+pidLk3FbBaY0ktO6IoEhWbTE3Ax1FPk7IOii3l\ntMbrkIaGNaPKzMukSZNU1fR39ue50Of4qt1X7B60m+TxyRwYfIDPW39OgEsAy04vo+fynpSZVoYa\nP9Tgo+0fcTTmKKIoKuLr/UyfDpmZ0KMHZGUVX0ftfrUGPbVQ2++89kRR5MaNG+zZs4eFCxfy/fff\nc+PGDfr06UPv3r2tNnAB5fqtRLpmMyxdCl99BR07gouLPLoKUrFiRSZNmkRCQgJbtmyhQYMGTJ48\nmaCgIMaNG0d29qNnkQtCyXa/8cYbimmXFKXabc1jEsAgiNiVqYogCKRnm7iSIAWYnetWBODQuUhu\nRUsZxVy8/B+oKWTvZEvLEbVxcLcjJTadvybvJ3z7Vcwm891j1BpLathJzjKx50o6z74+DgGo6Vu0\n1MdFxVqvQxoa1orV73mRA1u9LQ0DGtIwoCFv8zYA15KvsefqHtaeX8t3B7/j410fU96tPM+FPEeP\n0B6EBYah1ymzOdHfH1avlhIgDRkC8+dLq1o0nlzS0tK4ePEily5d4uLFi6SmpmJjY0P58uVp27Yt\ntWvXxs6udCSksCp27oR334XDh6FrV5gxw9IeFQmdTkfr1q1p3bo1M2fO5Pvvv2fSpEls3LiRRYsW\nUb16dUu7qFEK0AMG9zLAvbNE1cv74uHiSHxyGrv2HgDAv1KNfDUcPexp9VYddv94ksTrafzz2wUi\ndl+nXq/K+IU8Hvtgckwi4beziIjPRkTalF/T1x6XJzRRgYaGtfJEBC/5EeASQO/qveldvTc5phx2\nRO5g5dmVLDm1hGn7p+Hr6Ev3kO6MDhtNZU+ZchvnoXFj+PlnePFF8PWFjz4CJyfZzWhYMSaTid27\ndxMeHk5MTAwAvr6+1KpVi+DgYIKCgjAYntghWnxEUSpO+dln8Oef0KCBFMQ0a2Zpz0qEq6srH3zw\nAZ06deLll1+mXr16vPfee3Tu3Jl69ephY2NjaRc1rBQDYHCSAgx7m/9+iGeboHH1YNbtO8GeUxG4\nAEE1GjxUx8XXgQ7jG3BxTwwn/rxEUkwa2749hldFV/yreeBX1QPP8s7o9KVjI3uOSSQx00RCponE\nDBO30k1km6Tgzs/JQC1fexxtS0dbNDSeJFT5ZXT79m28vLysVtNGb0Pb4La0DW7LpEaTiMiMYNXZ\nVSw9tZR5R+cxvOFwPmz2oSy28vLCCxAVJe0j/uknqQzF8OHSzExhsPZ+VUJPLZT222w2s3r1as6c\nOUP16tWpUqUK9evXx6mUR7BK9VuhdNPTYckSmDkTjh2TClYuXQq9e0tpk1X0Vy7y869OnTr8888/\nfPDBB3zzzTdMmTIFJycnnn76aVq0aEGLFi2oV69egYGvku1OSEhQRFcOlGq32Wx+9EEWJBfQO0vB\ni14n4OVoy+20bE5cS6ZF3aqs23eCg/G2tEKHXl/wzwKdXkflZgGUq+/DyXWRnN8Rze1LSVw+fQVn\noysGOz0+ld3wC/HAL8QdV39HWZdcFfczzDWLJN0NVMwkZJpIzX7wc3O0Eajla4+fsw23b9/GUYXr\ng7VfhzQ0rA1VbikMGjSoVGgCDH51ME3KNuGrdl9xYcQFJraYyI9HfqTSd5VYenKp7PbGjYNLl2Dg\nQPj2WyhfHl59Fc6cefR7S0O/KvU5KY2SfpvNZv78809Onz5Nz549ee6555g2bVqpD1xAuX4rUDci\nAkaPhoAAaR1mYCCsXw/h4dC370MDl0fqWgEP88/e3p6pU6cSHx/P/v37mTBhAqIo8vHHH9O4cWPc\n3d3p1KkTX375JQcPHiQ3N7dQunIwefJkxbRLilLtTkxMfPRBFiRVFNA7ed79u0M1bwD+OHmTHs3q\n4ePuTFKugSjnaoTv21woTVsHG+o9X5muk8No+GJVfjn6LXaONuRmmbh+Ko4jKy6wbspBVo3fw96f\nTxOx+xq3LiaSmVqy/VoFfYaiKJJtkoKUGyk5XIrP5sj1DLZeSuXP8BR2RaVz8mYWV5Nz7gYuDjYC\nZZwNVPe2o2mQA60rOuHnbPNIW3Ji7dchDQ1rQ5WZl4kTJ5YKzft1jTZGxjQdQ5BrEIP/GMzXe79W\nxGZQEEydCh9+CHPmSMvy582TVrkMGCDV2ctvP2hp6FelPielKYnfoiiSkZFBQkICiYmJJCYm3vP/\nxMRETCYTPXr0oFq1aiW2Z00oOi4zM6Wo/sQJqVjSyZPS/2/eBE9PKXB54w2oUMHi/srFo/yzsbGh\nUaNGNGrUiLFjx5KTk8M///zDjh072L59O5MmTWLs2LF4enrSrVs3nnvuOdq0aaNou4cMGcKuXbsU\n0y8JSrXb2jfsx4kCeif3u393q+XLokPX2HEhjoi4QF7v1oKP5//JWffGlDuxiOhzxwgMqV0obUcP\neyo9HcC386ZSp3YdEq6lcuNcPDfOJXArIpHM5GwiD90k8tDNu++xdTTg4uOAi68Dzr4OuPg64uLr\ngJOXEb3Nw2825JhE3n3/Q26m5pKeYyYj10xGjvjfvzlmTAUkfrPTC7gb9bjb63Ez6nC31xeY8lit\n64O1X4c0NKwNVYKXunXrlgrNO7pm0cyeK3v49dSvrDi7gti0WCq6V6R5neb8zM+K2AVwc4MxY2Dk\nSKkWzPz50izMiBFSADNggBTQ3LmRXBr6VanPSWke5Xd2dvbdgCS/ICVvNihbW1vc3d1xc3OjUqVK\nuLu7ExAQQGBgYKHtlRZkaYfZDJGR9wQpdU+cgAsXpNcAKlaEmjXhtdegTh0pi5jRaBl/FaSo/tnY\n2NC4cWMaN27MuHHjyMnJ4dChQ6xdu5bff/+defPm4ezsTOfOnXnuuefo2LGj7DN+oaGhsurJiVKf\nt7XvNzom6tAZ/8uyV8XHiXah3mw6e4sxq8/y84sNmb9uD1dj4aRrIxaN78e7yw5jsC18kpA7fetR\n1hmPss5Ua1sOU46Z25eTuHE2nrioZJJj00mPzyI7LZfbl5O5fTn5XhEBjB722HkZsXW3R/CwB1c7\ncl3sybLTYxIFcK3K3qsFpxa21QsYDQJGGx2udjrc/g1YjAUERgW1SWms/Tp0P1m/niHDO/fRB2pY\nhGzTVUu7oDjabmDALJq5EHeBw9cPsz96P6vOreJayjUCXQLpV6sffWv0pZ5/PY4ePapo8HIHW1t4\n6SXpceUKLFwoBTILFkg3lQcPhmHDwNVVcVc0kGZSTp48yfnz5+8GJ3nz8uv1etzc3HB3dycoKIha\ntWrdDVbc3d2xt1c2zWapx2yG7duliP3YMamCa1qa9JqHhxSktGsnLQ2rWROqV89/KlLjAWxsbGjS\npAlNmjThk08+4cyZM6xcuZKVK1fSu3dv7OzsaN++PYMHD6Zz584PpMjVeDyIEPVEpCRSPc9+yo86\nVOZsTApXEzP5aH0EHw3uwWufzuWiax3Co37hj+njeG7s9BLZ1dvo8K3ijk9lN7JNIuk5IilpOSTc\nSCfpZjqpselk3s4gOy4Dc0Im5JjJiMskIy6fWkG2enSeRvTeRuz9HHHyd8KljCNORsPdQMVoo8No\nENDrHu/r7ezZs5k1axaRkZEAVK9enY8++ogOHToAMHDgQBYsWHDPezp06MCUKVPu/i0Igh0wDegD\n2AEbgaGiKMaq0QYNjZLwxAUvoihyOfEyh64d4vD1wxyOOcw/1/8hJVsq2hXsHkyPkB70rdGXsLJh\n6ATLfpkHBUkb+j/4APbskTKUTZ4MX34pzdC8/Ta4uz9aR6N4JCcns3btWi5cuEDZsmXx8fGhSpUq\n9wQnTk5OWnBSHC5f/i8qj4qC4GBo0gR69pSClFq1pOwVWt/KgiAIVK9enerVq/Phhx9y6dIlVq1a\nxbJly+jatSuVKlXirbfeYsCAAVa/DEqj6PRf/Blr3v6BQA8/AJztDXzVoxoDfjnGgchE4tIcaPhU\nNQ4eP8MtYyA7F32Dd7nKPNN36CO1zaJ4d/lWeo6Z9BxRWtaV5//mvMu59AYo4wJlXBCQfjmLoog+\nMweb5Gx0SZmIiVmY4jPJjssgMyETsk2YY1Ixx6SSc+IWKcANnYCLrwPugU64BzrjXtYJQ4ATemfb\n/B19TChbtixffPEFlStXRhRF5s+fT7du3Th27Njdmc+OHTsyf/78u6mx7ezsuHjxYl6Zb4COQE8g\nGZgJ/A48o2ZbNDSKgyrBy9y5c3n11VctohmdHM3BawelQOXfR0KmlA2nnGs56pepz/vPvE/9MvWp\n51+PlUtW8moneX2VA0GAp5+WHlOmSPX2Pv10LtOmvcqIETBqFMiRrETuz0qJz14NfvrpJxo0aMCG\nDRswGAz07duXqlWrKmavtPbT/TyyHenpsHKltKlr+3YpP3ifPjBoEISFPTRQUap/rL3flW736NGj\nGT16NPv372fGjBmMGjWKCRMmMHjwYEaMGEH58uWLrL169WrZ/ZULpfrT2iuk+wsQk3Sb3j+MYsXw\nGZRx8wEg1M+JuS89xcjfTxNxKx1bYzAGpxuUq/wsbDjO75+NwN0/iBrNnwUgM8fM7XQTSVkmMv4N\nSqS9JyJbfl9Im579C/TD3iDgYKPDwUaaKXEwSP93+HfWxEaf//g35ZhJuZVOQnQq8+f/TPOQDiRE\np5KVmkNSTBpJMWn37KkxutnhHuCEe6AT5Rv54ernWKx+U+v6UFQ7nTt3vufvKVOmMGvWLPbv3383\neLGzs8Pb2/thEo7AIKCvKIo7AQRBGAicFQShoSiKB4veCg0N9VBlWuHIkSOqaqbnpLPw+EKaz29O\n2ell6bm8JwuOL8BoY+SdsHdY/9J6Yt+NJXJkJCt6r2Dc0+NoU7EN7kZ3RXyVG39/mDYNXnrpCG+8\nIW3wDwiQ9sX88QeUpPi23O0vDf2ZH3///TerV6/G29uboUOHKhq4QOntp/t5aDtMJikfeHAw9Osn\n1WJZsABu3JCeb9KkwBkWpfrH2vtdrXY3btyYpUuXcvnyZYYOHcrPP/9MaGgoe/fuLbL2uXPn5HJT\ndpTqz5ycHEV05WKMpwtlPfyIvH2NNl8OZPWRrXdfq1HGmcUD6hDq50S2qMMlJIwk39o06jEIGxdv\n9uz+m6MxGWy+mMr6iFQOXc/gfFw2V5NziMswkZEr3dm/dOY4jjYC3g56glxtCPGyo66/PU8HOdA2\n2ImuVZ3pWNmZ5uUdaRDgQA0feyp62OLnbIOLvf6hgQtIy8/cyjhRoaEft4VoWr1Vh+e+eJrunzal\n+Zu1eKprRYLq+uDsI+17y0jM4vrpOE5vjGL9pwc5ue4yptyip7NW6/pQEjtms5lff/2V9PR0mjRp\ncvf5HTt24OvrS0hICEOHDiU+Pj7v20KRbl7fPRFEUQwHrgBhxXZGQ0MlhLzVdh96kCDUBf75559/\nrHZjmSiKHL5+mLlH57L01FKSs5JpVaEVA2sPpFWFVpRxLlNiG0eOHKFevXoA9URRLPLVRql+vH1b\n2hfzyy/SlgFPT6mGTP/+UL++9a26KWk/gvLnpMlk4rfffiMiIoLevXtTpUoV2W3IgbWek/ewYQO8\n9560l+XFF2HSJKkGixVRGs5JNUlLS6NTp06cOXOG/fv3ExwcXOj3lopzUkY+/vhjZs2axfXr12XV\nlfOc3DDxJUKHf8lrP3/EyejzAHSp3ZLPer2Dh6O0eTI928SIX4+RiQ3lPB2p7W/ExvhgMgdXOx0e\nRj0OttLMifHfmRN7g2AVy2dzMnNJvJZGQnQK107eJuaM9KPdLcCJRi+H4FnO5REKpYNTp04RFhZG\nZmYmzs7OLFmy5O6el+XLl+Pg4ECFChW4ePEi48ePx9nZmZkzZ1K/fn2A94GPRFG8J8uJIAgHgG2i\nKI7Pz+ad82nK87Oo4G2d34kaEGu6yqg5AyDPtePOZ7d7aV1qh8qzLPjY2RSefuHIPXbU4rHY8/Jn\n+J98sO0DTsaeJMA5gLcavsXAOgOp6F7R0q6pgpcXvPOO9Dh5UgpiFi2C77+HqlWlQKZ7d2kLgRV8\nt5QK9Ho9vXr1YsWKFSxfvtyqAxir5epVKRvYxo1SmryDB6Vq9xpWj6OjI6tWrSIsLIyOHTty4sQJ\n7O3tLe2WRjGx8QwkyLMMa0fNZsamhczY/At/HtvOgUvH+brPWNpUDyMiPodnG1S+532iaMaUcJ2q\nlSri7aDH08GAbQEzJNaAjb0B72BXPCu44B3shihGcONsPInXUtn05WFaDK+Nf6iHpd0sMSEhIRw/\nfpykpCRWrFhB//792bVrFyEhIfTu3fvucdWrV6dmzZoEBwdz+PBhWWwv2vMDDrb3BrZhlVvRpHIr\nWfQ1Cs/eC9vYd2HbPc9liRkW8kY9SnXwkmPKYfzW8UzdN5W2FdvyeZvPaR/cHr1Ob2nXLEbNmtJm\n/s8+g23bpEBm+nSYOBHKlZOCmO7dpb0zBRTg1kAKYJ5//nlWrFjBsmXL6N27t+LLxx4b1q2Tpv4c\nHGD1aujaVYucSxk5OTnodDpSU1PJycnRgpdSjMFF2vtgozfwbsdBtK3ehLcWf8KFm1H0/3EsvRt2\nonGNAdjZOJCdkcbBiBtcTROIiksjNzWeZ08c54PX+lht4CKKIunxmcRFpRAXmUxcZDLxV1PIzTI9\ncKwp+8HnSiMGg4GKFaUbtHXq1OHgwYPMmDGDWbNmPXBshQoV8PLy4urVuyl04wBbQRBcRFHMm6/a\nF7jxKNsvNx2qzbxYCU3yCRrzzLw8tpTan6/RydH0WdGHg9cOMr39dN5u9LZVTFlbC3o9tG0rPbKz\nYedOWLMGVqyQ9sh4eECXLlIg066d9BtT40HyBjB3ZmC0AKYAcnOlaquffw7PPivta/Eo/Xc5nzRu\n3bpF69atSUpKYteuXVr2sVKOzu7eC/xTQSFsGP0TX677kTk7f2P5wXVsOXOYEZ3eZ1DDWqxYtZrD\nV1NwCaoGRldWJ7qy4+vNjOxQi041fAss7Kg0dwKVhGupJFxNJS4qmfioZDJTHtx3ZLDT41nOGc/y\nLniWc8GzgisOboWvXVOaMJvNZGVl5ftadHQ0cXFxeP2X1ecskAu0BlYBCIJQFQgC9invrYZGyVDl\nCtS1a1fZtExmE98f/J4KjStwJekKuwbsYmTjkbIFLnL6qjSF9dXWVgpivv9eWslz6BC8+SYcPgw9\nekh7ZLp1k9Iwd+ggb/tLU3/mJa/fdwKYypUrs3LlSgqzT6wk9kotmZl0DQyUUuF98YUULcsUuCjV\nP9be75Zo95kzZ2jatCm3bt1i27ZtVCri/qRRo0aV1D3FUKo/79sMbXUItg/enTLa2vF/3Yfz+/AZ\n+Lr6Ep8ay/xtM7AxGJj9bj98bbKJO7Edrh7DJj2ORNHIxPUXaD/zADN3RXIr9d4fykr0rSnHTPzV\nFC7ti+Gf386zZfoRGlR6mjUf7mPX7JOc/Osy10/FkZmSg6AT8AhypvIzATTuF0rnDxvx/NRmtB5Z\nl9rdK1G2jk+RAxe1rg9FtfP+++/z999/ExUVxalTpxg/fjw7d+7k5ZdfJi0tjTFjxnDgwAGioqLY\nunUr3bt3p0qVKoSF3d2LnwbMBaYJgtBCEIR6wDxgj5ZpTKM0oMrMy/Dhw2XRORB9gDf/epNjN47R\nsW9HfnnjFzyM8t7VlctXNSiOr4IgbeKvX19KuXzhgvQbc/VqkDI1Dqd5c2lGpls3qZC52j5aA/f7\nrdfrCQ4O5sKFC4rM8JXWfrpLejp0787w+Hgp5V2nTrLKK9U/1t7vard75cqVvPLKK1SoUIH169cX\naaP+HXr37s2uXbtK6qIiKNWfjo7FS8WrFjrbhy/5axxcm0VvzKTtF88TdfsysSlJ+Li6svCjwQz8\nZB5R16Owib1GOWM26eWakoAPc/ZcYd6+q7QL9eal+gHUKONc4r7NSs0hITrl7oxK4rVUkmLSEM33\n3ixqU60bgk7A1d8RtwCnuzMr7oFO6G3kXTKu1vWhqHZiY2N55ZVXiImJwdXVlVq1arFp0yZatWpF\nZmYmJ06cYOHChSQmJlKmTBnat2/P5MmT8y4bAxgFmIAVSKV2NgDD5GqThoaSqBK8tGvXrkTvT8tO\nY8zmMcw6PIvafrXZ9+o+GgU2ksm7eympr2oih6+VK8O770qPmzdh7dp2rF4N48dLCQBq1pT2XA8e\nDEbjo/WU8NES5Od3bm4uADExMfj7+z/wutz2Sg2XL8PLL8Px47TbuBFatpTdhFL9Y+39rla7r127\nxmeffcbMmTPp3bs38+bNK/YP8jx3d60OpfrTzs66lyLp8pl5yUs1P298XctwM+k6m86c5OVGT1Ol\nrB/rvh7FyBlL2HzoDBEpOsofmEsF22ySGg0hxsafdadjWXc6lgblXBnWrGjfybnZJmIjErlxNp6Y\ns/EkXU/L9zgbo0EqQlnWGfcAJzoGNsDFzxG9jfILR9S6PhTVzk8//fTQ1+zt7dmwYUO+r+UNXkRR\nzAJG/PvQ0FANQRAMgL0oiqnF1bD6PS9HY47ywu8vcCXpCtPbT2dYw2EYdFbvdqnE11eafXn1VUhN\nlZJELV8OI0fCp5/CmDHw+utP7v6YcuXK4eLiwpw5c6hYsSJNmjShYsWKT+5eq5yc/7JBeHrC5s1S\noUmNUkNERARffvklCxYswGg0Mm3aNEaOlG8ZroZ1INgUXHE+x5RLelYKABmm/75fXZ2MzB0/kJm/\nb+OrpRuIdKxGYlYsjVcN4fWJv3BIqMLGs7c4FJXEgF+O07SiO0OfKU+NMg/ukRLNIonXUok5F8+N\ns/HERiRhvq/2ipOXPe6BzrgFSgUm3QOdcXC3085HDY1SiCAIXQBPURTn53nuA+BDwCAIwjagjyiK\nCUXVttooQBRFpu6byvtb36eGTw2OvH6EEK8QS7v1xODkBD17So+ICCl72Zgx0j7s0aPhrbfgSUs+\nVKZMGUaMGMGZM2fYu3cvixYtwtfXlyZNmlCzZs0n6wv28GEpyj11SjoZJk8GbVN3qeH06dN88skn\nLFu2DG9vbyZPnsybb76Ji8vjUQND4z70BX/V7wo/TEpmCq4OHvh5hCCK4t3rmU6nY0SvNtSuEsSw\nqYuIT/Zha+DLmL+fyMyV2xnevDw/7rnCmhM32HMpgT2XEmhR2ZPRrSoS6GbPjbPxRB68wY1z8Q9s\nqndws8Mv1AP/UA98Q9yxdyo4yNLQ0ChVvIO0LBEAQRCaAJOBj5CSRnyCFMi8U1RhVTbsr169usjv\n2Xt1L+9tfo9hDYax79V9DwQuxdEsDErpKoESvuanWakSzJ0L589Le2HGj4d8sjEWWq808DC/dTod\nNWrU4LXXXqN///44OTmxatUqzhy2/gAAACAASURBVJ8/r4g9q6VbNxBFqXbL9Ol3A5fSNi6tvd+V\n8q9Zs2b8/ffffPfdd1y+fJmxY8fKFrhs375dFh0lUKI/Dx06RGxsLK6urri6utKkSZN7lu2sWrWK\n9u3b4+XlhU6n48SJEw9otGjRAp1Od/eh1+v57LPP7jlGEAR3QRAWC4KQJAhCgiAIPwmCUKi1fYLO\npsDXfz3wFwB1KjYlV9SRmftgUpJnnqrC+qmjeKpSIDl6ezY7NGfarJ8o42rP/3WqwtDAGLrU8EEn\nwMFzt/li6kGWjvubHTOPE3noJpkpOehtdZSp4Um9XpXp/GEjun3ShMb9QilX37fQgYuaY1YtW9Z+\nHdLQKCbVgb15/n4e2CyK4ieiKK4ERgNdiiOsyszL0qVL6d69e5Hek5wlpR5/r+l72BkeXE9cHM3C\noJSuEijha0GaFSrA//4H69dDQiEn+UpTf+blUX4LgkCFChUoU6YMn3/++d39MErZszqSkuC990Cq\nAH6X0jYurb3flfIvNTWVMWPGMHToUNm1N27cKLumXCjRny4uLuh0Oo4cOYIoisyfP59u3bpx7Ngx\nQkNDSUtL45lnnqFPnz689tpr+WoIgsCQIUP4+OOP72YzPH/+PCtWrMh72BKkOhytAVtgPvA/4OVH\n+SgUUNTralwMG07uBqBVjY4AZOaKGPOJdwK83Vn52Qj6vvkeh27rmLX3OnZLNzC6b3s2/7mS76a0\n45noLG6dikP3b/yToxcIrO9DjbAyeFVwLfFeFTXHrFq2rP06dD/zffQ4BDy59fSsHddUq1kF4oxU\nU+gOTwO/5fn7NFCmOMKqzLwsW7asyO/JzM2UXbMwKKWrBEr4WlhNs/nRxxRFz9ooqt/Xr1/HXNhO\nkcGeRUlKkva75ENpG5fW3u9K+efk5KRIym+Azz//XBFdOVCiP6tWrYqXlxfBwcFUqlSJKVOm4OTk\nxP79+wF4+eWXmTBhAq1bty6wzx0cHPD29sbHxwcfHx8c8mwuFAQhBGgPvCqK4mFRFPcibbTuKwiC\n36N8FArYJ7pw7xrMoplnqtQn2Lc8AJm5D7+W2dkYeLtFeULipfZ9s2wzH85cyRvNxrNl+lHiTkqB\ni+Bjz1YfA9/66Rh7M56DWdmybLJXc8yqZcvar0MaGsXkGhAKIAiCE/AU987EeALpxRG2yj0vmbmZ\nTNw5kere1fF19LW0Oxr3ERICu3db2gvrwNbWlrp167J3717Cw8Np2bIl1apVe3z3v9y8CR06SFkb\nrDxTl8bD8fT05ObNm5Z247HDbDazfPly0tPTi5x1bfHixfzyyy/4+fnRpUsXnn322bwvhwEJoige\nzfPcFkAEGgFrChTXPfwu+cZ/Z11eCnuWHJMUXBl0BV+/rp4+TPWEvdSsXYdDN/wpc9KeGH08OoNA\nhUZ+VH4mEI8gZ1qlZPHx+gv8fTGeCWvDiYxPZ1iz8uge1+vjk4IgSA8N68R6PpvfgG8EQfgU6ATc\nAPbneb0+EF4cYasMXsZtGUf47XAOvnYQfQEXXQ3L8PLL8MorEBUF5cpZ2hvLIggCXbp0oX79+mzb\nto0VK1bg7+9P27ZtqVChgqXdk5fISKnaaVoa7NoF1apZ2qP/b++8w6Mq1j/+eTed0AkQSuhVASlX\nhIuCggi2qNcGiiA2vILlomL56cWuYAXkKooINuw0BSl2pAkICBJQWgKEGkpC+u78/pgNLiFls3vO\nFpjP85wn2XNmv/Oed+fsnvfMzDsGH2nTpg2bNvn0m2EogYKCAqpUqUJubi5VqlRhxowZtGnjfYKZ\nG2+8kcaNG1O/fn3WrVvHqFGjWLHihLUCE4F9njuUUk4RyXAfK5PSHqbszNjDX/tSiXBE0KPVP/gp\nVQcvVWNK7yHJPnqYtQv1cLbruw/g7MX5oGB/YRYZLQoZcOPfqdLrVolh/LVnMvGn7UxeksbkJWmk\nHcplzBVtTt0HPAaDoYingAbAeHTgMkgp5fQ4PhCY44twhfpwL7nkEpKTk0/YunfvftJkswULFpS4\nYuzw4cN55513Tti3evVqkpOTOXDgAKAn6o9bPo5e23oxb+q8E8qmpqaSnJxMSkrKCfsnTJjAgw8+\neMK+7OxskpOTWVysi2D69OkMHTr0JNuuv/76E85j+vTpdO/encTExOPnatXK0YHwYxGjR49mzJgx\nJ+zz149XXQUxMdNJTg6uHyF0fHnkyBFuvPFGbr75Zp2d5+67GTnyxAQaYd8mhw9nQWYmyWecoRcA\nwvNQcNskhIYfIXTaZFm+jIuL48CBAyHty3DwYxERERF07dqVSZMm8e9//5vBgweTkpLitR/j4+P5\n73//S58+fZg+fTpJSUl8++23ZXinYpTmy6kfvQ9AYrUEdmVFs+aXbxkzYgAxkSfeGnj6Mv2v9RTk\n5bI/F0Y8PorM7CMcic9n/P7FTPtlKY/+32Mn+NIhwhVNI4id/yyFB1KZv3E/f+7Xa7rYcX1DaLSJ\nYJ/H9OnTSU5OpnXr1pxxxhmWf88ZDOWhlMpRSg1WStVQSrVVSv1c7PgFSqkxpb2/LMSbcc8i0hlY\ntWrVKjp37lzhSoYOHcq7775bbjmny8k/3v4HkY5Ilt26rMxeF281K0pZuqtXr6aLnqDcRSm1uqLa\n/vqxOHb4wFvN++/XGchSU6GsJEUl6fnrR7Del8Xxx7e7du1i8uTJ3H777dSv791cNF/rC1ibPHoU\nEhLgxRfh3ntLLRaM69IK3VBtk3ac9+HDh0lISODpp5/mkUcesVQbIDk5mTlz5kCIfE96Yoc/n376\naZ5//nmys/8eut23b19atGjBGx5pGXfs2EHTpk1Zs2YNHTp0KFMzOzvbc15SF/RY8ZeUUrWKyohI\nBJALXKOUKnHYWJEvV65cWdS+T+BwdiYdHkum0OVk9IBJ1KnWgK4N4mhQtfTsZC6nk0nDLyXll/m0\naj+KGtX7kVZwmKfm/5enxrzM/QP7lfrei/+3nN1H8vhgSEfa1/ctu51d3wXBrCtQ9Vj1e9Fi+NtU\natDKcvsM1lAtawc/PzcYPD7nos9u8fTOdGxrzbIGazZmcu7A1SfU4w0i0guIB5b6ssYLBGjCvrer\nx05ePZk1e9Yw8ZKJ5Q4XO11X3PbEDlu91Rw5EnJydABjhV6o4Y/dNWvWBDjpSZ5d9QWEBQv0JP1y\nMuKE23UZ6n632r78/Hwee+wxXC4XQ4YMsVS7iG7dutmiawV2fd4xMSdmxHS5XOTl5Z1UztuhUr/9\n9lvxskuB6iLSyWNfH0CA5eXpqYKSE+BUr1SFrs215Npty2iTEFNm4ALgiIhg8JiPqNWwGSu3zSbP\nVUhSVHWuOvti/nN931Lfl7I3i8M5OiujP3NeAnnNBqquUP8eMhh8QUQeEpGnPV6LiHwDfA98BWwU\nkTN90Q5I8DJw4MByy+Q783n252cZ2G4gXRt0tUTTF+zStQM7bPVWs0EDPXF/yxZr9EINf+xeuXIl\nIkJiYrlD0S2pLyC4AzJ27y6zWLhdl6Hudyvt+/XXX+nSpQuTJk1izJgxXvcKVpT+/fvbomsFdnze\nCxcuJCIigh07drB+/XoeeeQRfvzxRwYN0hmMDx06xNq1a9mwYQNKKVJSUli7du3xhAlbt27lmWee\nYfXq1ezYsYPZs2czZMiQE3qdlFIpwHzgbRE5W0R6ABOA6UqpPeXZmJde8jpUTpeiaaKuZ/uetbRJ\n8G6tlfhqNbng0an8WLsPCzK19iV1L+bXjzbhcp6cqWzG2j0Mfm8N2flOGtWIo1Udr5anKZFAXrOB\nqivUv4cMBh+5Hljv8foaoCdwHpAArARG+yIckODFGz76/SPSjqbx6HmPBtsUg5eY+ZYnk5GRwY8/\n/kj37t2pU6dOsM2xjl69dMQ6bVqwLTFUkIMHD/LAAw/QrVs3YmJiWLly5Unj8w2+c+zYMQ4fPkyb\nNm248MILWbVqFQsWLKB3794AzJ49m06dOnH55ZcjIgwcOJDOnTszadIkQGcsXLRoEf369aNt27Y8\n+OCDXHvttbz66qvFq7oBSEFnGfsK+AkY5o2NuX8uKXH/hn15NEnUQ9hSdm+gwOndelUHDmcycur3\n5DtiSDm8nC1/TUApF1uWpPPjG+twOV0opVi78ygPzdzIE3M3k1fo4rzmNXl/cEeiIkLm1sNgMNhH\nU8BzVd5LgM+VUr8opTKAZ9CZFCtMyGQb+yX1F+pVrkebBO8ztBiCR04OpKVBtWrBtiR0UErx9ddf\nU6VKFXr16hVsc6wlIgJuvx2eeAIyMvTcl9M91VwIU1BQwPz585k6dSqzZ88+vmL7yJEjiSxjwUJD\nxbnyyitJT09ndym9kkOGDClziF7Dhg354YcfTtq/evWJQ8iVUofxYkHKksja8Av7vniGhMsfwBEd\nC4BLKbYdzqdKXHUAcgvyyDh2hMRqCeXqzV36O+kHj9CkXgKT/30jH953GX+lZNCy7WjS/8hg8jdb\nmJN2iNRDeriaQ2B4zybc0j3JpEk+Bejyze3UiQu2FYbSKKzRiJ/LLxYIIgHP8bPdgdc8Xu9G98BU\nmIA8/iiebaMkhncdzp6sPUxePdkyTV+wS9cO7LDVW81p0+DwYbjlFmv0Qg1f7P7999/ZunUrl156\nKdHR3g2/8Ke+gPP44/Dee3qRnzZtYPRonTbZg3C7LkPd7xW1b/369TzwwAMkJSVx+eWX89dffzF2\n7Fh27NjBqFGjjgcudp73b7/9Vn6hIGHXeefn59uiayWZK2ayc9wAjm2YR376OjIP7salYPmmRQB0\nbNTGq8DF6XSRti8DgB7tW9KgVXuufPV7tlfTQ9ePRMDEtbtJPZRLbJSDy9rVYdpNHbntn40sCVwC\nec0Gqq5Q/x4yGHxkC3qYGCLSCGiF7jEuoiFw0BfhgDyCGzt2LOeee26ZZTomdmTwWYMZ/cNobmx/\nI1Viys6G4I2mL9ilawd22OqNplLwyivwr39B8+b+64Uivti9YMECzjzzTFq0aBGQ+gKOwwE33aQn\n7T//PLzwAkyeDLfeCoMHQ4sWYXddhrrfy7OvsLCQZcuWMW/ePL7++mvWrl1LQkLC8bTdHTt29EnX\nH9577z1bdK3A1/N2Op2kp6eTlpbGzp07SUtLO76tXLmSrKwsG6y1jmrNY3HkC3kZe1i74EtWVG7M\nKids3LeZ3RnbAbjk4O9sfbYHB12x7C6sTFphXdLza3OkoAZ5rqqIiieKOGIlhspEcW+ji4nfKHx5\n/89EKVi3Zg1961/DH5Wgxp5VXNnGwS39z6BSzB5wHMS5LxocepOIKPf/UeCIQiLc/0dEo5OolU4g\nr9lA1RXq30MGg49MBF4XkfOAbujsYn94HO8N+PS0KyDBy8cff+xVuWd6P8MnGz5h7C9jebr302WW\n9Vazotilawd22OqN5qpV8Oef4JEF1C+9UKSidiulqFSpEgUFBQGpL6hUqQLPPQe33aYDmHHj4Omn\noUcPPh4wAI4csXw84el6vZdk365du5g/fz7z5s1j4cKFHDlyhISEBPr168fo0aO96vmz87yfe+65\nkL0RK+m8XS4Xe/fuPR6MFA9Odu7cye7du3E6/15bLT4+nqSkJJKSkujdu3fInm8RK+tezOcOYc3e\nPWxP/QuXOnGB0gaqGXszr+bLzDjilRDvFGoCNStQx7C+j3Ko8ACRS0dzgWs7vaq1JHdeFfIiBEek\nIJHov+7XjggBRwkZ2MRRQpATDRFRiCOKqfc0InfJqL8DnuPHPAIgR1nHSt6P48RjSGTAvh9C/Xuo\nOHf/uwsdm1uTbtdgPWvSK/HGz6nBNgOl1Nsi4gQuR/e4PFmsSH1gii/aAQleKlWq5FW5hlUbMrLb\nSF5e+jLD/jGMhlUb+q1ZUezStQM7bPVG8/PP9ZIf3kzrCCd/elJRu0WEf/7zn8yaNYu0tDSSkpJs\nrS8kaNYM3npLBy8zZ8K0aVS691548EHdOzNkCPTtq+fL+Mnper0X2ffHH3/w3nvvMW/ePNatW4eI\ncM455zBy5EguvvhiOnfuTEQF/GznecfFheZg+IMHD/Lxxx+Tmpp6QmCya9euEx46xMbG0rBhQ5KS\nkmjZsiW9e/c+HqgU7a9evXpYrRA/5sd5RNWpfPx1LVWDFq6mtFTNaO5qQhUql/i+PFFki5MclU++\nysXpykRcR4h1HSDOdYAq6gDVZR81oo4SH+skLjqSft0qIXIm5ENm6snpok9A3AGNO5hxRAkRsQ4i\nY3OJjHMQEesgIkaO+1oBsYDrWJmqFiHgiCLbHSSdFABFRCMxtYhuPwKJrUiYdzKh/j1kMPiKUmoK\npQQoSqm7fNUNuZmbD537EG+uepNXl77Ky/1eDrY5hmI4nTB9uh4yZub9nkj79u355ZdfmDJlCo0a\nNaJTp06cccYZFZ7/EnbExcHAgXrbvRs++EBPirr4YqhXDwYN0oHMmT6lcz+tOXLkCE888QQTJkyg\nVq1a9O/fn0ceeYS+fftSq1at8gUMx5kyZQqjRo2iadOmJCUl0bhxY3r06HE8MCnaatWqFVaBiTfE\nqVjaOdvRUjUlSTUlVqqRLYXkOQrZHZmPI3I/sZUUNatHUi8xnvr1q9OgcR2q100kptLJaY2VUqiC\nXFzZR3HmZuLKycKVm4krJ/P4X2eO5+ssd7lMXLlZuHIyQblAgatAQYHCWYLdAEREElW9NpHVaxNV\nrRaR1WsRVaUakVWr4oiLRVQhOPNRrgJwFYAzH1wFKFf+8df6WL77f/d+z2Pu96A8s60p/R5XftEr\nzyPHcTbsQ2S9Hn5+QmGGyCl3jZxKnA6fTMjdflaNqcrQjkOZumYqz/Z5ltjI2GCbZPBgwQJITS1/\nov7pSEREBMOGDSMlJYXffvuNWbNmMW/ePNq3b0/nzp2pV6/eqf+FX78+jBqle19WrdJBzJQpOjtZ\nly46iBk4UHfdGUpFKcUHH3zAgw8+SFZWFs899xz33XffqR8I20hhYSG1a9dm69atwTYl4NzW+kb6\nXdSTNm0aUa2m/0M6RQSJjsMRHUckdSv8fuVyofKzcRYLegqPHqDgQBoFB1Pdf3eCs4CCg+kUHEwn\np7gdUTFE1UoiKiGJqITGRCUkEV27CdH1Wx/PqlZi/QVZuA7/iSsrDXVsJ66snaisnajsdFClhlEQ\nGY+jckOkcpL+W60FEXVDd1FWg+FUJSDZxiq6psDQjkM5mHOQBVsWWKbpLeG0/oEdtpan+dZb0L49\ndC1/HVGv9EIVX+2OjIykXbt23HTTTdxzzz1069aNzZs38/bbb/P6668za9YsVq9ezYEDB1Dq7+d3\n4eqn4hw/DxH4xz9gwgTdG/Pll9CwIYwcqQOcm26C33+vuK5d9oYQmzZt4vzzz2fw4MFUr16dlJQU\nRo0aZWngYud5v/baa+UXChJ2TawPxXbkyWXJ3Tnnn+0tCVxKoyI+EIcDR2xlomokElOvJXHNOhN/\nRi+qdbuahMvuo96QV2h0/2c0e2YxjR6aRb1bXyfhilFU6zGQl9a6iKqVBI4IVEEe+Xv+4tj67zn8\nw1T2f/40u964lW2je5E27kb2z3ieo7/OInfLjxRsm03eb2PJ+W4oOXOvIG/J/RSse43CLZ/j2rsM\ndWynDlwiYpCqzYio15PHZkUR3WkUMeeOJ67/l8RdMpvYXm8Q0+VRoloPJjLxn4j4fxsV6u3HYAg1\nAtLz0qhRowqV33xQr9jbtHpTyzS9xS5dO7DD1rI0t2yBWbP0RH1vOxDCyZ+eWGF3jRo1uOCCC+jV\nqxdbtmxh8+bN7Ny5k7Vr16KUIi4u7vgY+vj4eAoKCoiKirLA+uBRot+io+Gqq/S2fz+8/z689poe\nXnbJJfDww3DuuWU2qtPhei8oKODFF1/kqaeeomHDhixatIg//viDhg1Ln/vnK3aed2Jiom3a/lKR\neUEVIZTaUbCwwwfiiCCqZgOiajaAVrqH44wd0TS6+26Us5CCQ7sp2J9KwYFUCg6mUXAglfz0zTiz\nDpG/exP5uzcBX2itCIiqHEF0lQj9t049Imu10D0o8Q3dPSoNkdiE4wFJ0+UTiGzU3/LzKk64tZ8D\na4+RvleVX9AQFNzLK53SBCR4ufvuuytU/u3Vb3NOg3NoX7e9ZZreYpeuHdhha1mar76qR/sMHmyN\nXihjpd0Oh4OWLVvSsmVLAPLy8ti1axepqans3LmTxYsXIyK88MILJCYmkpSURLt27Wy5abWbcv1W\nu7bufbn7bvj4Yxg7Fnr2hO7ddeaynj190/WRUGmfmzdv5tprr2XDhg088MADjB49mri4OPr06WNL\nfXae94ABA3jxxRdt0/cHu5IJhEo7CiaB8kFRPRIRSXRCI6IT9I1/wdYZFP71G66EQlz5lcnPdFKQ\n5dR/jzlRTsg/4iT/iHtYWMpWImvmUbNvD6q0uzQkzslgMHhHyM15+WrzV8z7ax7vX/V+sE0xeHDw\nILz7rp7OEKLJhMKGmJgYmjVrRrNmzQCdqnX//v3Hg5mUlBSWL19O586dufDCC0M2e5NfREXpoWOD\nBsHcufDEE3DFFToH92k4H2b+/PmsW7eOc845hxEjRpyan7nBYBNKOSnY+A4UZiMSQWTtJkS3aktE\njbY4arSFSvUp2LuN3NT15KWtJzd1PQX7t1OYsYuMhW9RpXPJwYvBYAhNQip4Sc9MZ+isoVzW6jJu\nbH9jsM0xePDmm+BywV0+J7YzlIbD4aBu3brUrVuXs88+G5fLxapVq/j2229JSUmhX79+tG/f/tSc\n7C8Cl16qJ1G1bAmPP+7dAkKnGCNGjCAxMZF77rmHtm3b8uyzzzJ8+HDbhjkZDKcSKjMVCrMhIpa4\nfp8hUSdnSItp0IaYBm2g+zUAFB7ey47nL6UwYxfOnCwi4kpOF20wGEKPgEzYT0lJKbfMxv0bufSj\nS4mQCN5JfqfcGzVvNH3BLl07sMPWkjQLC+H11/Vwsdq1/dcLBwJtt2d9DoeDDh06cOGFF5Kbm8uM\nGTNYsmRJQO3xFZ/9Vr26HjL21luQnm6dbjmESvsUEa699lpSUlIYPHgw9913H23atGHEiBFs3rzZ\n8vrsPO9t27bZpu0vhYWF5RfygVBpR6WhlD3n7UmgfFBSPa7M7QBIbAJEerdmiiOuMhKlM5IVHCx5\nQb9gnpPBYCidgAQvo0aNKvVYoauQMYvH0GlSJ7ILsvn6hq+pE1/HL01/sEvXDuywtSTN77+HPXtg\n2DBr9MKBQNs9atQo9uzZw+LFi5k2bRpjx47l66+/pnr16nTt2pU2bdoE1B5f8clvS5ZA5856+NjI\nkVD35NSrp8v1Xq1aNSZOnMjy5cvp0aMHb775Jq1bt+bss8/m1VdfZffu3ZbUY+d5jx8/3jZtfzl2\nzJ7VDUOtHZ2Ee60SOwmUD0qqx1GjLTiiUcd2Urh9drkaSin2f/EsqiCXyGp1ia5TcnKgYJ6TwWAo\nnYAMG3v99ddL3L9x/0aGzhrKr7t/ZWS3kTx1wVPERXk31rs0TX+xS9cO7LC1JM2PP4YWLaBTJ2v0\nwoFA2b13716WLVtGhw4dmDRpElFRUTRt2pR+/frRokULatb0b+XmQFMhv6Wnw+jR8PbbetjYypXQ\nsaP/uhUgVNvn2WefzdSpU3n00Uf5/fff+eijj3j44Ye5//77ueCCC7j++uu5/PLLqVevnk/6dp73\nqFGj+Omnn2zT94fKle0ZGhSq7agIpcpZ6d4CAuWDkupxVEok6ozbKVg/kYINk3Ad+YuIGmfgqNEW\nqdIIEQeuvGzydm0kN3U9udt+IztlMTgiqHvj8ziiS77vCOY5GQyG0glKqmSny8nLS1/mv9//lybV\nm7B46GK6J3X3S9MqwillYaBSJc+fr9cV9GXKRTj505NA2L1jxw6mT59OXFwcPXv2pEWLFjRq1IjI\nyJCailYhvPLbzp0wZowOWuLiYOJE3a1XxvyO0/V6b9WqFa1ateLqq6/m8OHDzJgxg48++oi77rqL\nYcOG0bVrV5KTk0lOTqZdu3Zez4uy87x9DagCwWmbKtlpf+7UQPmgtHoim12Fc+8yXPtXUbj9K3L/\nmK2zjR0TCrIdFGZmgzoxvW+ti+8mtnGHCtdlNSHffoqR0KESic2rBNsMQynsST/1E74E/C7Jn94W\nQ+DZuxd27fJ+UUqDd/z55598+umnNGzYkAEDBhATExNsk+xnxw6dDnnKFIiPh8ce0ymTq9m3cN6p\nRPXq1Rk6dChDhw4lIyODuXPnMnv2bF544QUee+wxmjRpcjyQ6dmzZ9ivGWSwDuWyZ3HOUEA5CynI\n2En+3q3kHU4iJ3Un+Xu2owoLTirriBaiK0cQXasmsY3OJDapCs6D63FUbYJEmQn7BkO4ENDgZW/W\nXv7x9j9IqprkU2+LIfCsWaP/+jJkzHAy+fn5/PTTTyxdupSWLVtyzTXXhHVPi1ds3QrPPw9Tp+qJ\n+U8+CcOHQxXz5M5XatasyaBBgxg0aBB5eXn8+OOPzJo1iy+//JLx48dTu3Zt7rzzTv7973+HdE+I\nITCoQnvm+gQS5XJSkLGLgr1byd+7hfy9W8nfu5WC/TtQhSfP6ZHoOGIatiWmbkOiqsYSFZON5G5D\nZaUBuZCzioJ1q/4uH5uAVGmCo2oTHFWa6v+rNEaivEsAYDAYAkdAJuyPGTMGgNXpq8kuyGbejfP8\nDlyKNK3GLl07sMPW4popKRATA+4lSfzWCxestlspxYYNG45Pxu7ZsyfXXnvt8cAlXP1UnBPO488/\nYehQaNUKZs/WAcy2bfDwwxUOXE7X690b+2JiYrjooouYOHEiqamprFq1igEDBvDKK6/QuHFjBg8e\nzOrVqyus6ytTp061TdtfsrOzbdEN9XaEy/7gxSofKJeLgoM7OfbHjxz6/l32fvw4aeNuYNvjPUl7\n8V88OXwQGfPfIGvNfPLT/0QV5iNRscQ0aEuVs6+g9tWP0fC+j2n65A80GPYWCVf+l2q9R1GpxxPE\n9ZlG3MUzien2ApGtB+Oo8jVP4gAAIABJREFU0xWJ1Sk0Ve4BXPtXUrjlc/LXvEjez8N55rb25CwY\nSO6yR8jf8BaFqQtwHd6MKrR2GF7It5/iiCBmC90t2O0jAATkkW/RD0bKgRSiHFEkVUuyTNNq7NK1\nAztsLa65ebNefsPhY5gbTv70xEq7c3Jy+Oyzz9i2bRutW7emX79+1KhRw7b6gkl2djYcPaqHg33w\nAdSpAy+9BHfcAZV8f4J5ul7vFbVPROjcuTOdO3fmqaeeYsqUKYwfP57333+f8847j7feeos2bdrY\net65ufbPr/AVVWzOg1WEejvCaf+wMV99UJh5gNwd68jdvo7cHevIT9+EKig5wYBExpAfW4PKnS4m\num5zous2I7puMyJr1Ee8/JGS6KpE1O1KRN2/x0KrgixcmdtRR7fjytyOy/03J28bKmcvKmcvrr3L\nPVWQ+AY4ap6Bo+aZRNQ8E6nSGBHf5lSFfPsxGEKMgAQvTz75JADNazan0FXIxR9ezHtXvke9Kr4P\nZyjStBq7dO3ADluLa27dCs2bW6cXLlhp9+rVq0lLS+OGG26gZcuWttcXTJ587DG47DJYtgzGjYNb\nb9WT8v3VPU2vd3/sq169OiNHjuSee+5h9uzZDB8+nJdffpm3337b1vO+8847efvtt23T94f4+JMX\nL7SCUG9HSp08/8NqvPGBcjnJ37NFBys71pK7Yx2FGbtOKieR0UTVbnI8ONFbcyJr1uc1h/VJFySq\nMhE120HNdifsf7b3keOBzPHAJnMb5B9FHduJ89hOnGkLKACIrISjRtvjwYyjRluv59GEevsxGEKN\ngA62T26dzPxB8xk8czBnvXkW066cxsUtLw6kCYYKkpYGvXsH24rwZvPmzTRv3rzUwOWUQSnd4/Ld\nd/DNN9CnT7AtMgCRkZH861//4ssvv2Tjxo3BNscQBESig1Z3XvqfHPv9Ox2spK5H5RfrZRAhum5z\nYht3ILZxB2IatSOqZkMkIvhzASW6GhEJZxGRcNbxfUopyDuE68hmnBl/4Mr4A9ehP6AwG9f+VTrb\nmX43UqWJDmQSOhJR71wkInifg8FwKhHwb4e+zfuy9s613DzzZi756BJmDZhFcuvkQJth8JLUVEjy\nf5TfaUteXh5paWlceumlwTbFfpYuhUmT4J57TOASoqSmlrySuOEUJ8DBi1KKnL9WcPjH98n5c9mJ\npsTEE9uonTtYOYuYpHZExIVPpi8RgdiaRMR2I6JuN0D3KKnMbTgzNuBybyo7HZW5jcLMbbDjK4ip\nQVTTK4hskozEVA/yWRgM4U1AgpcDBw6QkJBw/HWd+Dp8dcNXXPnxldwx5w56JPWgVqVafmlahV26\ndmCHrZ6aR45AZib4k4I+nPzpiVV27927F6UUDRs2DEh9QaVLFw5cfDEJEydCly4weLBl0qfr9W6V\nfVOmTOHDDz9k/PjxluqWxKFDh2zRtQKXy2WLbqi3Ixz2p80+cOAAtWpUJ2vdIg7/9B75uzfrA+Ig\n/sxexLU8h9jGZxFdtxnix9CvQPra27rEEYFUa4GjWgtoegUAKjcD56E/cGWsx7nzO1TuAQpSplKw\n+UMikvoS1exqHFWbVqgeg8GgCUi2sVtuueXkisXBpMsmkefM495v7rVE0wrs0rUDO2z11Cx6SOtP\nz0s4+dMTq+zet28fIkKtWmUH5+HqpxOIieGWiAi4+WYYMgReftky6dP1evfXPqUUn332GXfeeSd3\n3HEHI0aMsES3LJ566inbtP0lMzPTFt1Qb0eI/cHL0ME3kfbq9ez7+DHyd29GomKp1mMAjUbNIPGm\nF6nW7Rpi6rX0K3CBwPran7oktiaR9c4l+sw7ie37EdFd/g9H9dbgKsC5Yy65399K/oY3/a7HYDgd\nCUjPyxNPPFHi/npV6jG+/3gGzxzMtWdcyxVtrvBb01/s0rUDO2z11Ny2Tf9t0sQavXDCKrtjY2NR\nSrFnz54ye1/C1U/FeeLJJ/WiQHXrwgMPwL59emFKL1d+L1X3NL3e/bFv+fLlPPDAAyxevJgrr7yS\nCRMm6CEvfuqWxx133MFPP/1km74/VPIj411ZhHo7CsSwsXvOa0DB/jU44mtQ/dwBVO12DRGVrF+A\nNpC+tqoucUQS2bAPEQ1648pYT+GWz3Gm/0zhX58SUeus0G8/BkOIEZCel86dO5d6bFCHQVze6nKG\nfTWMg9kHLdH0B7t07cAOWz01N2/WC6H7s8ZdOPnTE6vsPuOMM6hTpw6LFi0qM01ruPqpOJ07d9aB\nyrPPwquvwtixOuNYYaH/ujYQ6n73xb4tW7Zw/fXX061bN44ePcr8+fOZMWMG0dF/38Daed5t27a1\nTdtfoqLs6YEI9XYkjhhb9bP/XE6zw2tAhHq3jKNG71ttCVwgsL62ui4RIaJWe2K6Pklk82sByFvz\nMp3atbC0HoPhVCcgwUtZiAhvXvamz8PHDPaxZQu0aOH3Q/PTGofDQd++fdmxYwcLFy60bcx9SHLf\nfXqtl/ffh8cfD7Y1pzxKKSZMmMCZZ57JkiVLmDp1KqtXr+aiiy4KtmmGYOOwt+fl6LIvAIg/8wJi\nG55ha12nClFtb4HoqpCXQeGuH4JtjsEQVgQ9eAGoX6U+4/uP58PfP2RWyqxgm2Nwc+QI1KwZbCvC\nnxYtWtCvXz+WLVvGp59+Sl5eyQuwnZLceKMOXF5+Gf78M9jWnLLs27ePyy67jHvuuYdhw4axadMm\nhgwZQkSE9WtiGMIPu1MlVzqjJwA5fy7HmRW6CRtCCdehFMg/ChJBRO0uwTbHYAgrAhK8vPPOO+WW\nGdRhEJe1uoxhXw3jUE75X37eaPqCXbp2YIetnpqZmVClinV64YTVdnfr1o2BAweybds2pkyZQnp6\nuq31BYsSz+PBB6F+fbj/fmt1LSDU/e6NfUuWLKFDhw78+uuvfPXVV4wbN67cuR12nvfMmTNt0/aX\nnJwcW3RDvR3Z3fNSpdMlfJkaiSvvGPu/fBZXgX0PaALpa7vqUnmHyP99AgCRjS/h3U++saUeg+FU\nJSDBy+rVq8stIyJMumwSR/KOMGHFBEs0fcEuXTuww1ZPzfR0qF3bOr1wwg67W7Zsya233opSirfe\neos5c+Zw7Ngx2+oLBiWeR1wcPPkkzJnzdxYIK3QtINT9Xp59y5cvp3///rRq1Yp169Z5vZ6Qneed\nkpJim7a/FPo596o0Qr0d2Z1tTBwO/opsDI4Ijm34gd2T7qDw6H5b6gqkr+2oy3V0K7k/3oU6uhWi\nqhLZ6qbQbz8GQ4gRkOBl4sSJXpWrX6U+d3S+g9eWvUZmXtkpLb3VrCh26dqBHbYWaSqlJ+y3bm2N\nXrhhl9116tRh2LBh9O/fnw0bNvD666+zfPlyJkwoP2APB0r12zXX6OwPH3xgra6fhHr7LMu+1atX\n069fPzp06MDcuXNJTEy0RNdfHn74Ydu0/aWKv13JpRDq7Qix/6d+0vufUO/W13HEVSUvbQM7Jwwm\nd8c6y+sJpK+trqswfTG5P92NytmLxDck9rzxOOISQr/9GAwhRkjMefHkwR4PkpWfxRsr3wi2Kac1\nO3boYWP+Bi+Gk4mIiOCcc87h7rvv5owzzuCbb75hzpw5ZWYjC3vi4+Haa2H8eDP3xU+UUkybNo1e\nvXrRpk0b5s6dS+XK4bNCuSHwSIB+6iu1OJuGI6YRVacpzqP72fXGrRyY8wqufHuG64ULKu8Ieaue\nI3/Ff8GZgyOhI7E9X8dRxY8VoA2G05iQC14aVm3IzR1v5uWlL5NdkB1sc05b5syBqCg4//xgW3Lq\nEh8fz+WXX85VV13FmjVrWLJkSbBNspexY6FWLejbF3btCrY1Ycnhw4e54YYbuPnmm7nmmmtYuHAh\nVatWDbZZhpAncCkjoxKSaHDXu1TudDEoxZHFH5H26gCy/1weMBtCBaUUhbt+IOe7oTh3LgIcRLa4\njpjuY5Foc90aDL4ScsELwMPnPszB7IO8teqtYJty2jJjBvTpA+a+yH46dOjAeeedx6JFi9i6dWuw\nzbGP2rVhwQJwOuGii0wAU0FSU1Pp2LEj8+bNY/r06bz77ru2DYMynGIEYNiYJxFxlak74GkSh44j\nslpdCjN2kT55OHs/+S+FWRkBtSVYuLL3kr/icfJXPgX5h5EqTYjpOYHoM+9EHAFZH9xgOGUJyDda\ncnJyhco3q9GMoR2H8uSPT7Lv2D5LNL3FLl07sMPW5ORk0tLghx/0NAUr9MKRQNv9wgsvAJCbmxvQ\neq2mXL81agQLF+o83OecA7/9Zo2uj4R6+/S0b9y4cWRlZbF27VoGDBhgma7V/Oc//7FN21+OHDli\ni26ot6NA/NSX5IP4Nj1Iuv9Tqna/FkTIWj2XtJeu5sjSz1Eup2X12IUvdSlXIQV/fULud0Nx7lkC\nEkFk68HE9nqTiBolL+Aa+u3HYAgtAhK8jBgxosLvef7C53GIg1ELR1mm6Q126dqBHbaOGDGC99/X\nCaKuu84avXAk0HZ369aN6tWr06ZNm4DWazVe+a1NG1ixAhIT4dxzYfZsa3R9INTbZ5F9OTk5TJ06\nlaFDh9K4cWPLdO3gOiu+OGwiLi7OFt1Qb0eB6HkpzQeOmHhqX/kQDe56l+j6rXHlZHJg5gvsmjiU\nvJ0bLavHDipalzPjD3J/vJOCDZPAmYujZntiz3+L6DY3IxGlp6sO+fZjMIQYAQlefFnhOaFSAi/0\neYFpa6exOv3kNIJ2rRodTqtR22HrRRddxCefwFVX+b/GS5FeOBJou+Pj44mNjQ37nhev/Va/Pvz0\nE/TvD1dfDZs2WaNbQUK9fRbZ9/nnn5ORkcEdd9xhqa4ddO/e3TZtf4mOtme9k1BvR2D/YqXl+SC2\nUTsajphGQvIDOGLiydv5BztfH8L+WWNx5pSdXbQi9ViJt3Wpgizy175K3s93H0+BHN3xQWLOfRVH\n1aaW1WMwGDQhOeeliKGdhtKiZgue+emZYJty2nDgAKxbB/36BduS04sBAwZw9OhRJk+ezP799qyP\nEHJUqgQffqgDmUcfDbY1Ic2kSZPo06cPLVu2DLYphnBEAjdhvywkIpJqPQaQ9MAXVO7YH5SLo0s+\nJe2la8j8bV7YZVxUSlG481tyvh1C4fY5gCIiqR9xfaYS2fhiJMBzjQyG04WQvrIiHZE8eu6jzEiZ\nwYZ9G4JtzmnB4sX6b69ewbXjdKNx48bcdtttREVFMXnyZFauXInT6duY8LAiNhaefhq+/BJWrQq2\nNSHJpk2b+OWXXyzrdTGcjoTWT31k1QTqDnyGerf/j6jajXFmHWTfx4+TPnk4+QdSg22eV7iydpG3\ndBT5q56FvENI5UbE9HiFmM4PITHVg22ewXBKE5BvtJkzZ/r83kEdBlEtphpfbPzCMs2ysEvXDuyw\n9dNPZ5KQoOdVW0E4+dOTQNs9c+ZMatSowS233ELbtm35+uuv+d///seGDRvC6mmkT34bOFD//f13\na3W9INTb58yZM6lUqRIRERHs21dy8hJfde3i+++/t03bX/Ly8mzRDfV2JAHoefHFB5VadCXpvunU\n7HcXEhlDzl8r2PnqAA599w6qsMCyenylpLqUM5+CTe+T+/0tuPavAkcUUW2GEnv+W0QkdLSsHoPB\nUDoBCV7GjBnj83ujIqK4qPlFzP1zrmWaZWGXrh3YYevChWOwcmRKOPnTk0DbXVRfTEwMV155JcOG\nDaNmzZp8/vnnTJ48me3btwfUHl/xyW9RUeBwQBk3lqfr9T5mzBiSkpK49tpreeWVVyzrjbPzvKdO\nnWqbtr9kZ9uzdliot6NA4KsPJDKaGr1vIWnkJ8S1PAdVmE/G/DdIG3cDuWnrLavHF4rX5cxYT+4P\nt1OQ8i64CnDU7kLsBVOIan1TmRPyK1pPqLNw9UHLNT/9aa/RNHhNQIKX2rVr+/X+C5tdyIpdK8gt\n/Hsys7+apWGXrh3YYavTWdvS4CWc/OlJoO0uXl9iYiI33ngjQ4YMQUSYNm0aM2fOtO3myyp89lvl\nynDokPW65RDq7bPIvttuu41t27axfv3JN3P+6NpBzZo1bdP2F4fDnp+8UG9HgcBfH0TVaki9W1+n\nzoBncMTXoGDfNnb971YO//g+yuWyrJ6KUFSXUi4KNn9E3uL7UFlpEFOD6C6PEdN9LI7KDSyrJ1xY\n9Jv1a/V89rP1N/Cns+apTmgNhC2FpKpJKBT7j50mE5mDyLFj0KJFsK0wFNGkSRNuvfVWkpOT2bRp\nExMnTmTdunVhNZTMK9q3h7Vrg21FyJKZqbMxJSYmBtkSg8E+RIQqnfrT6IHPiW9/IbicHJw7jj1T\n78OZVfrDDTtRuRnkLX2Igo2TQbmIaNCbuD7TiGzYOyDD8QwGw8mERfBSO14/ldifbYIXOzlyBPLz\nTfASaogInTp1Yvjw4TRt2pQZM2bwySefkJ+fH2zTrKNzZ732y6kWlFnE1q1biYuLo06dOsE2xWCw\nnYhK1ah74/MkXPUIEhlD9qYl7Hx9MAUZuwNqh3Lmkvvjv/XclogYojs+SHSX/0OiKgfUDoPBcCKR\nwTbAGw7l6CcuVWOqBtmSU5u//tJ/TTbW0KRy5cpcc801tG/fni+//JL333+ftm1LXrE57LjmGpgw\nAT77zJrVUU8xli5dSqdOncyTXsNpg4hQrdvVxDY+i73vP0jBwTR2v3UnroLArIXlOrYbV8YGVG5r\npHISMWc/iaNqk4DUHfLEgmrsKr9cRYgzmlahCk/9h4DeBi+xABs3Vnw1XIAVK1awevXJC016y7fr\nvyVyTyQZWzNYvX21JZqlUZaux/nH+ijvlx+LY7UPFi4EWEFW1mqski3JRgv8ePy9VvmyOHa1L6vq\n69y5M3PnzuXnn38u2hXebbJyZTj3XLj/fmjcWE/it0K3HIp0Q7VNrlixgpUrV7JgwQKuu+46y3xg\nZ/v2mJcTEm2yiF27dlFQUBDw3w1fCdU2WRp2tqnCbiPY/8WzFG78i+WLt7DihwVEVk2wpS4AV84B\n8te8xMqU/axJ70TMWTcjf2UA1s/1gMD93lh1D5OV7WTNRu8XFvWGI1mFRtMiNu08nqnvpM9501br\n5s1aqVVhlFLlbsANgDLb8e0Gb/xm/GiPH40vrfOl8aM1fjS+tM6Xxo/W+NH40mxlbObaPD22Gzw+\nu0bAMRvqOAY08vU7ytdN3CdVJiJSC+gHbAcC02cbmsQCTYD5SqkK5wo0fjyOX34E40sPTJu0BtMm\nrcO0SWswbdJgNebaPD0o8XMWkUaA1V2WB5RSAV9Z1qvgxWAwGAwGg8FgMBiCTVhkGzMYDAaDwWAw\nGAwGE7wYDAaDwWAwGAyGsMAELwaDwWAwGAwGgyEsMMGLwWAwGAwGg8FgCAtM8GIwGAwGg8FgMBjC\nAkuCFxEZLSKuYtsfxco8JSK7RSRbRBaKSIsSdM4TkdkissutkVxCmTJ1RCRGRCaKyAERyRSRH0Tk\nm9I0ReTdEmyfW47m5yJSxz+vlY+IDBeRbSKSIyLLROTscsqfLyKrRCRXRDaLyBB/NEWkVwm+cYpI\nHW8+K1/sCzYV9bmfdZV73YQaVlyjpeg+IiIrROSoiOwVkRki0spfbRG5U0TWisgR97ZERPr7a69d\neGOvhXU97P4MX/FTx9J2bPU16Mt3lZe6XrVZH3QD1gYMBoMhHLGy52U9UBdIdG/nFh0QkYeAEcAd\nQFf0ojbzRSS6mEY8sAa4C734zQl4qfMacClwNdATqAO0LU3Tzbxitg8sdry4Zn3gi1K0LEFErgde\nBkYDnYC16HMtMUe3iDQBvgK+Bc4CxgGTRaSvr5puFNCSv31TTym1j3I+K1/sCzY++sdfSr1uQhQr\nrtGSOA+YAJwDXAhEAQtEJM5P7TTgIaAz0AX4DpglIm39tNcuyrTXKtwBwR3oNm4FlrRjm67BCn1X\nVYBy26yPBKQNGAwGQ9hixUqX6B+a1WUc3w38x+N1VSAHuK6M97iA5IrouF/nAVd5lGnt1upaiua7\nwJdl2FGmpl2rhwLLgHEerwXYCYwqpfwYYF2xfdOBuX5o9gKcQNVybD3Jr77YF+ytov6xoL4yr5tQ\n33y5RiugneDWP9cG7YPAUCs1bfbzcXst0qsMbAJ6A98Dr/ipZ1k7tvsa9Oa7yg/tk9psqLYBs5nN\nbGYL583KnpeW7m75LSLygYgkAYhIU/STuG+LCiqljgLLge7einup8w8gsliZTUBqOXWd7+72TxGR\n/4lITY9jXXzU9BkRiXLX61mnAhaVUWc393FP5heV91ET9M3DGvewmgUi8s+KnY139gUbP/zjLyVe\nN+GIVde6m+rop+QZVmmLiENEBgCVgCUW22s5xexdaqH0RGCOUuo7CzX9bsdBvAat4oQ2awU2tgGD\nwWAIWyIt0lkG3Ix+mlcPeAL4SUTaoW8OFLC32Hv2uo95izc6dYF89w2It3XNQw8B2wY0B54H5opI\nd/cPZ6IPmv6SAERQ8rm2LuU9iaWUryoiMUBNHzTTgWHASiAGuB34QUS6KqXWeHEeXtunlMqroJ7V\n+OJzfyn1ulFKHbOpTjux5FoXEUEP1VyslCqaO+Gztvt7aCkQC2Sie1E3iUh3K+y1mlLsTbFIewDQ\nEf2gxyqsasfBuAYtoZQ264+ebW3AYDAYwh1Lghel1HyPl+tFZAWwA7gOCOkvXKXUpx4vN4jI78AW\n4Hz0kIrTFqXUZmCzx65lItIc+A8QcpPtw41yrpt3g2NVSPA/4Aygh0V6Keh5VtWAa4D3RKSnRdp2\nUKK9/t68ikhD9A32hUqpAv/N1Jh2DASozZ7uAYyIPA30U0p1DbYtFUFEIoAC4DKl1NzyyhuCQ7i2\nr9MRW1IlK6WOoG96WwB70EOP6hYrVtd9zFu80dkDRItIVV/rUkptAw6gbbdE0wcOoOeaVMRne0op\nf9Tdq+GLZkms4G/fVITy7As2VvnHZ4pdN+GI39e6iLwOXAKcr5RKt0JbKVWolNqqlPpNKfV/6Eng\n91phrx2UYa+/dAFqA6tFpEBECtDz2u4VkXx374Hf+NGOg34N+kIZbdZnbGwDtiJ/Z+90yokZKptZ\nVMXzQD+LtE5CRJ72sLlAdNa7l0Skkl11GiqGzW3M1vZlsA5bghcRqYz+4drtDgb2AH08jldFZ2hZ\n4q2mlzqrgMJiZVoDjfByvLD76WQt9JApSzQrivup6KpidYr7dWk+W+pZ3s1FRTb6qFkSHfnbNxWh\nTPuCjYX+8RmP68aSG6BA4++17r4JvAK4QCmVaqV2MRxAjMWaduJAD9v0l0VAe/Q1fJZ7Wwl8AJzl\nHibrN76241C4BitKWW3WYqxqA4FgHn9nnUtEDyXcZoWwUipbKXXICq0yWIO2uwnwMPBv4IXSCrt7\nVQyBxZY2FqD2ZbACK2b9Ay+iUwg3Bv4JLESPU67lPj4KnS3lcvSP50zgTyC6mE48+ge1Izpry33u\n10ne6qC777ehh311Qd8cry5J013fWPTNSmP0j+RKYCMQVYbmL8DPdmZSQA+5yAYGA22ASe5zr+0+\n/jwwzaN8E/TY6DHo8eF3AfnoISK+at4LJKPnAp2JHnJS4PZDeZ9Vhe0L9laef2yor8zrJhQ3K67R\nUnT/BxxCp5+t67HFepSpsDbwnFuzMdDO3S4Lgd7+2Gujf8u014b6rMg2Zlk7tuMaLK/N+qFbbpsN\nhzZgcXsqL3vnJcBit98OALOBpsXKJAGfuD/3LHQCjS7uY08DvxYrPwz9m50DbADu8DgWDbyBziqY\nA2wFHijDvqeBFcX2TQZ2uP+/0N2G+qED7Tzgn+5jw9FDznOBP4CBHhoR7vfdgU5Uk+3+nrky2J9Z\nuG1ltbFQb19ms7AdWNSYpqPTWeags3B9VEKDecL9AWe7L94WJej0cl/gzmLbFG910E+nJrgbbib6\nx7lETfRkyG/QT19z3Q3vDYr9UJag+RlQx/YPR9/gb3f7dSnwD49j7wLfFSvf0/2FmuP+YrzJH03g\nQbfOMWA/OgtQT28+K1/tC/ZWln9sqKvc6ybUNiuu0VJ0S9J0AoOLlauQNvrGY6vbx3uABRS7CfTF\nXhv9W669Ftf3Hf4HL5a2Y6uvQW/arI+6XrXZUG8DFren8oKXq9E9VU3RAeQcPNJso9N4b0P/1nRz\nl/sXcLb7+AnBBXruZSr6IVtj4Cr0TelA9/GH3b7sjr5p7UHZSzSUFLy8DqS7/+/j/txXARe47asG\nXIu+h7gN3ev4ADrg7OF+X1Hwstdtc0vgWfQDvObB/tzCaSurjYV6+zKbdZu4PwCDwWAwGAwGnxGR\nd4FB6Bv5IuYqpa4vpXwi+sFBG6XUZhG5C3gGaKyUyiyh/AkTqkVkG/pJ9xceZUajh/GdLyIT0cFB\nfy/tL67/D/QDzm+UUoNEpA+6Z/ESpdQ3Hu9bhn5if7fHvi8Ah1LqKo8J++OVUvd5lPkV+MVzn6Fs\nKtLGQq19GazDqlTJBoPBYDAYDN8Bd6KTYYDuuQdARFqin253RafGFnS68kboJA9nAatKurEsjnt+\nWmNgmohM9TgUgR4lAfop/QIRSUEHIXOUUt9SNp1FJBN9fxSJHnrkGVwodM+LJ22BccX2/YIeJubJ\nsmKvl7rfa6gYJbaxMGlfBgswwYvBYDAYDAarOKZ0MoyS+Bp9E3kLOqFDNDqTWrT7eE4F6qns/nsz\nel6rJ04ApdRKEWkMXIyer/KFiMxVSt1Qhu4G4Eq3xm6lVGEJZcJxHa5TidLaWDi0L4MF2JJtzGAw\nGAwGg6EIEamDng/ytFLqB6XUJnRmT0/WoXs+ii9NcBJKqd3oOSTNlU4r7bnt8CiXqZT6VCl1B3AD\ncL07I15p5CmltimlUksJXEpiIyev8dMDPXHfk24lvN7oZR2GMgij9mWwANPzYjAYDAaDwW4OorNA\nDROR/ejJ0i+gh/UU8QF6EvQMEXkMnbCgMzrb18oSNJ8AXhKRLHRig1jgbKCyUmq8iNwPpKHTH4Oe\nWL9LKZVl8bm9CHydMGXhAAALCklEQVQgImvRSYKuQk/yLr4Y7gAR+Q2d+nsIOgPejRbbcrpyKrcv\nQzFMz4vBYDAYDAZbUUo5gevRSxOsR9/wP1CsTD56+M0h9Foe69BZL52laE5Cz3241V32O/Rk7qIh\nRVnAI+glEJYD9YFLLTytIju+AO4HHkKf21BgkFLKcx0zBfzXbd9aYAA6M9WfVttzOnIqty/DyZhs\nYwaDwWAwGAwGgyEsMD0vBoPBYDAYDAaDISwwwYvBYDAYDAaDwWAIC0zwYjAUQ0RGuydVGgwGg8Fg\nMBhCiJALXkSkroiME5E/RSRHRNJF5GcRuVNEYt1ltouIy70dE5F1InJrsG0PVUSkl9tX5aYHDGdE\n5F33eTpFJF9E9ojIAhEZKiJSvsIJHJ8M5tb90gd7hnjY4xSRNBGZIiK1Pcq4RCS5lHP5srTXwaaY\nr/Pc1+vjIuIoq72JyDYRuaeM10XXdtdi73tVRL73eD3ao/4CEdkvIj+KyL0iEs0pThn+j/Dwv9Pj\ne7LodZ1g224nIjLVfa6jiu2/QkRc7v+L/HOweFsRkX8U+crL+izTMhgMBoN3hFTwIiJN0SnnLkSn\ns+sIdAfGojM4XOguqoDHgETgTOB94G0R6Rdom33B80bU/WNb6k1psUAt232z94mIXFDBai3PzCAi\nt4vI9yJypIyb1Roi8qG7zCERmSwi8Vbb4sE8dLtoDPRHZwcZB8wRkWC09yNuexoAt6EXs5oWBDvs\noMjXLdCZXUbzd3YXX9ubQi8kNqaUY56sd9efBJwPfIrO/LLE5jYWKpTk//vdxxTQyn28aKunlNoX\nBDsDSVH7eUhEqpVwzJNMdEpbT24FdlBxrNQyGAwGQxmEVPACvAHkA12UUl8opTYppbYrpeYopS5X\nSn3lUTZLKbXPffxFdI7vvkGx2j/Ku8nzDNRaATcBh4FFIvKIzbaVRxz6BupZSj+Pj4C2QB90ANoT\nmGSjTXlKqf1KqXSl1Bql1AvAFcAl6JVyEZFq7iBqnzuoWiQiHUoSE5HR6Hz8V3g8ve7pPvaCiGwS\n3fu3RUSeEpGIYhLKbc8epdR8dCDVV0RibDr/QFLk6zSl1FvAIrSv/eUtoJuI9C+nXKGHbzcopSYC\nvYB26JSlpzrl+X+/+zvy+BYkOwPNIvT6DY+WU24aOsAAQHTP/gB8e7hgpZbBYDAYyiBkghcRqYkO\nPl5XSuVW4H0iIlcDNdGBz6lIUaC2Uym1WCk1DHgaeEpEWvoiKCJXi8h6Ecl19+aMLHY8UUS+dvf2\n/CUi1xUf4qOUGq+UGovOb15SHW2AfsCtSqmVSqklwN3ohboSfbHbF5RS36Pz6v/Lvetz9Mq7/dAL\nVK1GB4PVS3j7S+gn+t8AdYF66AXGAI4Cg9HB2T3onpX/lGNOHvq6i/LxdEKZXMCKIVvbgDfRC4xV\nCPeqyvP4+7M+nSju/4oOlTxVcKIDl7tFpH4pZRS6x/48EWno3ncNuu1VdL6blVoGg8FgKIeQCV7Q\nQx8E2Oy50z2WPdO9Pe9xaIyIZKJvBj9D97xMDpi1wWcc+vOr8JNuEekCfILuFWmHHm7ytIgM9ij2\nPrq3pyf6h/jfQG0qRnfgkFLK8wd8EfrH/pyK2u0nKUATEemBXiH3OqXUb0qpLUqpUejhXdcUf5NS\n6hh6GErRU+59SqlC97HnlFLLlVKpSqmvgZeB60ozwB1oDgN+LbYC73SPNp7pbtc3WHTeAUFELkQH\ng98W7QJ2lnBeSV5KPgs0FRFfVp9OAZr48L6wpRT/pxXz/+/BszCwKKVmoYcgP1lGsX3oQPdm9+uh\nwBQfq7RSy2AwGAxlEBlsA7zgbPRN+keA51CbF4Gp6CfhLwL/U0ptDbh1QUIpdUhE9uHbTdp/gEVK\nqefcr/8SkTPRK82+5+4x6YMevvcbgIjcBlR0JeBE9I+6p91OEclwHwskgg6azgIqAxly4hz+WKB5\nhQRFrkf3JDV3a0aigyBPqovIUSAC3X5/Bm4vVuY+/r7pLGIsofVwoSQudwckUWj/foi+WeyK9vW5\n6BWIPfnRG2Gl1AEReQndu/hJBe0q+qxPdSrq/4KAWxhcHgK+dbej0pgCvCYiHwLd0A8wevpYn5Va\nBoPBYCiFUApe/kL/4Lb23KmU2g4gIjnFyh9wBytbReQ64HcRWamUSgmEsSGCrzdpbYGZxfb9Atwr\n+o6+FVDg2WOilNoiIod8tjT4tEUP46gM7EbPjSg+rOawt2Ii0g34AHgcWIAOWgYCI4sVPQp0Qn9O\n6UqpvBLk9hYPvN03pcUnHIca3wF3om+KdyulirI5FR3frpQ66vkGESmsgP4r6B6/4RW0q+izPtWp\nsP9PJ5RSP4vIfPTww6mlFJuHnmP1DjDH/VDI1yqt1DIYDAZDKYRM8KKUyhCRhcAIEZmglCoerJT1\n3p3up7MvAFfaZmQI4Z4jVJvQvknbA5yQmtU9ob2m+1hAEJHeQHv0sK7d6F4fp1Iq1UuJfHTPiSf/\nRN8cHp+XISJNSnivSykVyp+RPxyz89yUUsdE5BngCWC2N+9x9xr2Rw87O9Wx1f+nCI+gh49tKumg\nuyf4PXSvc3kJIsrESi2DwWAwlE6oDUu5Cx1QrXRPEG8jIq1EZBDQBijrqe049DCKzoEwNAS4Dz0x\ntXgPijdsBHoU23cusFkppdA/9JEi0qnooIi0AGpUsJ6l6GFTnTz29UH3eJQ4yd8CYkSvFVRfRDqJ\nyKNoH80G3ldKLXLbNVNE+opIYxH5p4g8U0bb2Q50cLfFWiISiR5C10hErheRZu5EBqdF4OwlVj1y\nfgvdq1XSHKBI92ddT0TaicjdwA/oBAxlDRU6HRCgrts/nlvIPLAKBEqp9ejhdPcUO+TZPh8Daiul\nFvpYjZVaBoPBYCiHkPohU0ptdd/oPgo8BzRET8j/A/e8lqKiJbx3o3uIwFPAZYGx2DKqi8hZxfYd\nVErtdP9fRUTqose2N0WnS74FeLgC83w8f2BfBlaIyGPoifv/RA/NuRN0xiYR+Ra9ds6/0UHjS0A2\nJy7eWBfdi9HSrd/BPdwpVSl1SCmV4v5MinSigQnAdKWUXT0v/dG9K4XAIXSWsRFKqfc8ylyCfjI/\nBd17tQf4Cdhbiubb6GFmK4F44AKl1BwReRV9PjHA1+i290QF7T1V52aUdl7F95f5WilVKCKPo29A\ni5c9E/1ZO9EBzh/oz/VNpdTpNr+jOAqduKCIoiGm3YEVQbEoePwXuJ4T28/x/90JODL80LdSy2Aw\nGAzlIPpBuyGQiMi7QFWl1NXu/weXUOwdpdQdIrINaOTel4++0V4GvKGU+snL+nqhx8fXKBoDLyJX\noW+2WwLpwHil1Kse76mLHrvdm7/XTHgNeFwp9ba7zGh0prLijWhoUbDgTj/8OnA54EKnKb5XKZXt\nje0Gg8FgMBgMBkMRJngxeIV7/YJUoI973RSDwWAwGAwGgyGgmODFUCIicgE6M9fvQH106t5EoLVS\nyhlM2wwGgyEQiMhc4LwSDingOc+EHQaDwWAIDCE158XgGyLyBjCohEMK+EApdZcPslHoeUdNgUx0\nKuWBJnAxGAynEbcCcaUcM3NbDAaDIQiYnpdTABFJAKqWcvioUupAIO0xGAwGg8FgMBjswAQvBoPB\nYDAYDAaDISwItXVeDAaDwWAwGAwGg6FETPBiMBgMBoPBYDAYwgITvBgMBoPBYDAYDIawwAQvBoPB\nYDAYDAaDISwwwYvBYDAYDAaDwWAIC0zwYjAYDAaDwWAwGMICE7wYDAaDwWAwGAyGsOD/AdiDJLA4\n/HcTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# CLDNN model Prediction\n", + "y_test = model_cld.predict( X_test , batch_size=n_per_batch, verbose=0)\n", + "predictions_cld = np.zeros((len(y_test),1))\n", + "for i in range(len(y_test)):\n", + " predictions_cld[i] = np.argmax(y_test[i]) + 1 \n", + "predictions_cld = predictions_cld.astype(int)\n", + "# Store results\n", + "train_data = pd.read_csv('train_test_data.csv')\n", + "test_data = pd.read_csv('../validation_data_nofacies.csv')\n", + "test_data['Facies'] = predictions_cld\n", + "test_data.to_csv('Prediction_StoDIG_5.csv')\n", + "\n", + "\n", + "for wellId in well_names_validate:\n", + " make_facies_log_plot( test_data[test_data['Well Name'] == wellId], facies_colors=facies_colors, y_test=y_test, wellId=wellId)\n", + " \n", + "#for wellId in well_names_test:\n", + "# make_facies_log_plot( train_data[train_data['Well Name'] == wellId], facies_colors=facies_colors)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/StoDIG/Facies_classification_StoDIG_5_CNN.ipynb b/StoDIG/Facies_classification_StoDIG_5_CNN.ipynb new file mode 100644 index 0000000..1bbcc82 --- /dev/null +++ b/StoDIG/Facies_classification_StoDIG_5_CNN.ipynb @@ -0,0 +1,891 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Facies classification using Convolutional Neural Networks #\n", + "## Team StoDIG - Statoil Deep-learning Interest Group ##\n", + "### _[David Wade](https://no.linkedin.com/in/david-wade-79918023), [John Thurmond](https://www.linkedin.com/in/john-thurmond-098b774) & [Eskil Kulseth Dahl](https://www.linkedin.com/in/eskil-k-dahl-87a94679)_###" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this python notebook we propose a facies classification model, building on the simple Neural Network solution proposed by LA_Team in order to outperform the prediction model proposed in the [predicting facies from well logs challenge](https://github.com/seg/2016-ml-contest). \n", + "\n", + "Given the limited size of the training data set, Deep Learning is not likely to exceed the accuracy of results from refined Machine Learning techniques (such as Gradient Boosted Trees). However, we chose to use the opportunity to advance our understanding of Deep Learning network design, and have enjoyed participating in the contest. With a substantially larger training set and perhaps more facies ambiguity, Deep Learning could be a preferred approach to this sort of problem.\n", + "\n", + "\n", + "We use three key innovations:\n", + " - Inserting a convolutional layer as the first layer in the Neural Network\n", + " - Initializing the weights of this layer to detect gradients and extrema\n", + " - Adding Dropout regularization to prevent overfitting\n", + " \n", + "Since our submission #2 we have:\n", + " - Added the distance to the next NM_M transition as a feature (thanks to geoLEARN where we spotted this)\n", + " - Removed Recruit F9 from training\n", + " \n", + "... and since our submission #3 we have:\n", + " - Included training/predicting on the Formation categories\n", + " - Made our facies plot better, including demonstrating our confidence in each prediction\n", + " \n", + "... and since our submission #4 we have:\n", + " - Added distance to the next Formation transition as another feature\n", + " - Used our facies probabilities plot to better understand our predicitons" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Problem Modeling\n", + "----\n", + "\n", + "The dataset we will use comes from a class excercise from The University of Kansas on [Neural Networks and Fuzzy Systems](http://www.people.ku.edu/~gbohling/EECS833/). This exercise is based on a consortium project to use machine learning techniques to create a reservoir model of the largest gas fields in North America, the Hugoton and Panoma Fields. For more info on the origin of the data, see [Bohling and Dubois (2003)](http://www.kgs.ku.edu/PRS/publication/2003/ofr2003-50.pdf) and [Dubois et al. (2007)](http://dx.doi.org/10.1016/j.cageo.2006.08.011). \n", + "\n", + "The dataset we will use is log data from nine wells that have been labeled with a facies type based on oberservation of core. We will use this log data to train a classifier to predict facies types. \n", + "\n", + "This data is from the Council Grove gas reservoir in Southwest Kansas. The Panoma Council Grove Field is predominantly a carbonate gas reservoir encompassing 2700 square miles in Southwestern Kansas. This dataset is from nine wells (with 4149 examples), consisting of a set of seven predictor variables and a rock facies (class) for each example vector and validation (test) data (830 examples from two wells) having the same seven predictor variables in the feature vector. Facies are based on examination of cores from nine wells taken vertically at half-foot intervals. Predictor variables include five from wireline log measurements and two geologic constraining variables that are derived from geologic knowledge. These are essentially continuous variables sampled at a half-foot sample rate. \n", + "\n", + "The seven predictor variables are:\n", + "* Five wire line log curves include [gamma ray](http://petrowiki.org/Gamma_ray_logs) (GR), [resistivity logging](http://petrowiki.org/Resistivity_and_spontaneous_%28SP%29_logging) (ILD_log10),\n", + "[photoelectric effect](http://www.glossary.oilfield.slb.com/en/Terms/p/photoelectric_effect.aspx) (PE), [neutron-density porosity difference and average neutron-density porosity](http://petrowiki.org/Neutron_porosity_logs) (DeltaPHI and PHIND). Note, some wells do not have PE.\n", + "* Two geologic constraining variables: nonmarine-marine indicator (NM_M) and relative position (RELPOS)\n", + "\n", + "The nine discrete facies (classes of rocks) are: \n", + "1. Nonmarine sandstone\n", + "2. Nonmarine coarse siltstone \n", + "3. Nonmarine fine siltstone \n", + "4. Marine siltstone and shale \n", + "5. Mudstone (limestone)\n", + "6. Wackestone (limestone)\n", + "7. Dolomite\n", + "8. Packstone-grainstone (limestone)\n", + "9. Phylloid-algal bafflestone (limestone)\n", + "\n", + "These facies aren't discrete, and gradually blend into one another. Some have neighboring facies that are rather close. Mislabeling within these neighboring facies can be expected to occur. The following table lists the facies, their abbreviated labels and their approximate neighbors.\n", + "\n", + "Facies |Label| Adjacent Facies\n", + ":---: | :---: |:--:\n", + "1 |SS| 2\n", + "2 |CSiS| 1,3\n", + "3 |FSiS| 2\n", + "4 |SiSh| 5\n", + "5 |MS| 4,6\n", + "6 |WS| 5,7\n", + "7 |D| 6,8\n", + "8 |PS| 6,7,9\n", + "9 |BS| 7,8" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup\n", + "---\n", + "\n", + "Check we have all the libraries we need, and import the modules we require. Note that we have used the Theano backend for Keras, and to achieve a reasonable training time we have used an NVidia K20 GPU." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: pandas in /home/dawad/anaconda3/lib/python3.5/site-packages\n", + "Requirement already satisfied: python-dateutil>=2 in /home/dawad/anaconda3/lib/python3.5/site-packages (from pandas)\n", + "Requirement already satisfied: pytz>=2011k in /home/dawad/anaconda3/lib/python3.5/site-packages (from pandas)\n", + "Requirement already satisfied: numpy>=1.7.0 in /home/dawad/anaconda3/lib/python3.5/site-packages (from pandas)\n", + "Requirement already satisfied: six>=1.5 in /home/dawad/anaconda3/lib/python3.5/site-packages (from python-dateutil>=2->pandas)\n", + "Requirement already satisfied: scikit-learn in /home/dawad/anaconda3/lib/python3.5/site-packages\n", + "Requirement already satisfied: keras in /home/dawad/anaconda3/lib/python3.5/site-packages\n", + "Requirement already satisfied: theano in /home/dawad/anaconda3/lib/python3.5/site-packages (from keras)\n", + "Requirement already satisfied: six in /home/dawad/anaconda3/lib/python3.5/site-packages (from keras)\n", + "Requirement already satisfied: pyyaml in /home/dawad/anaconda3/lib/python3.5/site-packages (from keras)\n", + "Requirement already satisfied: scipy>=0.11 in /home/dawad/anaconda3/lib/python3.5/site-packages (from theano->keras)\n", + "Requirement already satisfied: numpy>=1.7.1 in /home/dawad/anaconda3/lib/python3.5/site-packages (from theano->keras)\n", + "Requirement already satisfied: sklearn in /home/dawad/anaconda3/lib/python3.5/site-packages\n", + "Requirement already satisfied: scikit-learn in /home/dawad/anaconda3/lib/python3.5/site-packages (from sklearn)\n" + ] + } + ], + "source": [ + "%%sh\n", + "pip install pandas\n", + "pip install scikit-learn\n", + "pip install keras\n", + "pip install sklearn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using Theano backend.\n", + "WARNING (theano.gof.compilelock): Overriding existing lock by dead process '25622' (I am process '28703')\n", + "Using gpu device 0: Tesla K20c (CNMeM is enabled with initial size: 80.0% of memory, cuDNN 5105)\n", + "/home/dawad/anaconda3/lib/python3.5/site-packages/theano/sandbox/cuda/__init__.py:600: UserWarning: Your cuDNN version is more recent than the one Theano officially supports. If you see any problems, try updating Theano or downgrading cuDNN to version 5.\n", + " warnings.warn(warn)\n" + ] + } + ], + "source": [ + "from __future__ import print_function\n", + "import time\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.colors as colors\n", + "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", + "from keras.preprocessing import sequence\n", + "from keras.models import Model, Sequential\n", + "from keras.constraints import maxnorm, nonneg\n", + "from keras.optimizers import SGD, Adam, Adamax, Nadam\n", + "from keras.regularizers import l2, activity_l2\n", + "from keras.layers import Input, Dense, Dropout, Activation, Convolution1D, Cropping1D, Cropping2D, Permute, Flatten, MaxPooling1D, merge\n", + "from keras.wrappers.scikit_learn import KerasClassifier\n", + "from keras.utils import np_utils\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.model_selection import KFold , StratifiedKFold\n", + "from classification_utilities import display_cm, display_adj_cm\n", + "from sklearn.metrics import confusion_matrix, f1_score\n", + "from sklearn import preprocessing\n", + "from sklearn.model_selection import GridSearchCV" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data ingest\n", + "---\n", + "We load the training and testing data to preprocess it for further analysis, filling the missing data values in the PE field with zero and proceeding to normalize the data that will be fed into our model. We now incorporate the Imputation from Paolo Bestagini via LA_Team's Submission 5." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "data = pd.read_csv('train_test_data.csv')\n", + "\n", + "# Set 'Well Name' and 'Formation' fields as categories\n", + "data['Well Name'] = data['Well Name'].astype('category')\n", + "data['Formation'] = data['Formation'].astype('category')\n", + "\n", + "def coding(col, codeDict):\n", + " colCoded = pd.Series(col, copy=True)\n", + " for key, value in codeDict.items():\n", + " colCoded.replace(key, value, inplace=True)\n", + " return colCoded\n", + "\n", + "data['Formation_coded'] = coding(data['Formation'], {'A1 LM':1,'A1 SH':2,'B1 LM':3,'B1 SH':4,'B2 LM':5,'B2 SH':6,'B3 LM':7,'B3 SH':8,'B4 LM':9,'B4 SH':10,'B5 LM':11,'B5 SH':12,'C LM':13,'C SH':14})\n", + "formation = data['Formation_coded'].values[:,np.newaxis]\n", + "\n", + "# Parameters\n", + "feature_names = ['Depth', 'GR', 'ILD_log10', 'DeltaPHI', 'PHIND', 'PE', 'NM_M', 'RELPOS']\n", + "facies_labels = ['SS', 'CSiS', 'FSiS', 'SiSh', 'MS','WS', 'D','PS', 'BS']\n", + "facies_colors = ['#F4D03F', '#F5B041','#DC7633','#6E2C00', '#1B4F72','#2E86C1', '#AED6F1', '#A569BD', '#196F3D']\n", + "well_names_test = ['SHRIMPLIN', 'ALEXANDER D', 'SHANKLE', 'LUKE G U', 'KIMZEY A', 'CROSS H CATTLE', 'NOLAN', 'Recruit F9', 'NEWBY', 'CHURCHMAN BIBLE']\n", + "well_names_validate = ['STUART', 'CRAWFORD']\n", + "\n", + "data_vectors = data[feature_names].values\n", + "correct_facies_labels = data['Facies'].values\n", + "\n", + "nm_m = data['NM_M'].values\n", + "nm_m_dist = np.zeros((nm_m.shape[0],1), dtype=int)\n", + "\n", + "for i in range(nm_m.shape[0]):\n", + " count=1\n", + " while (i+count" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Set parameters\n", + "input_dim = 11\n", + "output_dim = 9\n", + "n_per_batch = 128\n", + "epochs = 100\n", + "crop_factor = int(conv_domain/2)\n", + "filters_per_log = 7\n", + "n_convolutions = input_dim*filters_per_log\n", + "\n", + "starting_weights = [np.zeros((conv_domain, 1, input_dim, n_convolutions)), np.ones((n_convolutions))]\n", + "\n", + "norm_factor=float(conv_domain)*2.0\n", + "\n", + "\n", + "for i in range(input_dim):\n", + " for j in range(conv_domain):\n", + " starting_weights[0][j, 0, i, i*filters_per_log+0] = j/norm_factor\n", + " starting_weights[0][j, 0, i, i*filters_per_log+1] = j/norm_factor\n", + " starting_weights[0][j, 0, i, i*filters_per_log+2] = (conv_domain-j)/norm_factor\n", + " starting_weights[0][j, 0, i, i*filters_per_log+3] = (conv_domain-j)/norm_factor\n", + " starting_weights[0][j, 0, i, i*filters_per_log+4] = (2*abs(crop_factor-j))/norm_factor\n", + " starting_weights[0][j, 0, i, i*filters_per_log+5] = (conv_domain-2*abs(crop_factor-j))/norm_factor\n", + " starting_weights[0][j, 0, i, i*filters_per_log+6] = 0.25\n", + "\n", + "def dnn_model(init_dropout_rate=0.5, main_dropout_rate=0.5,\n", + " hidden_dim_1=24, hidden_dim_2=36, \n", + " max_norm=10, nb_conv=n_convolutions):\n", + " # Define the model\n", + " inputs = Input(shape=(conv_domain,input_dim,))\n", + " inputs_dropout = Dropout(init_dropout_rate)(inputs)\n", + "\n", + " x1 = Convolution1D(nb_conv, conv_domain, border_mode='valid', weights=starting_weights, activation='tanh', input_shape=(conv_domain,input_dim), input_length=input_dim, W_constraint=nonneg())(inputs_dropout)\n", + " x1 = Flatten()(x1) \n", + "\n", + " xn = Cropping1D(cropping=(crop_factor,crop_factor))(inputs_dropout)\n", + " xn = Flatten()(xn)\n", + "\n", + " xA = merge([x1, xn], mode='concat') \n", + " xA = Dropout(main_dropout_rate)(xA)\n", + " xA = Dense(hidden_dim_1, init='uniform', activation='relu', W_constraint=maxnorm(max_norm))(xA)\n", + " \n", + " x = merge([xA, xn], mode='concat') \n", + " x = Dropout(main_dropout_rate)(x)\n", + " x = Dense(hidden_dim_2, init='uniform', activation='relu', W_constraint=maxnorm(max_norm))(x)\n", + " \n", + " predictions = Dense(output_dim, init='uniform', activation='softmax')(x)\n", + " \n", + " model = Model(input=inputs, output=predictions)\n", + " \n", + " optimizerNadam = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)\n", + " model.compile(loss='categorical_crossentropy', optimizer=optimizerNadam, metrics=['accuracy'])\n", + " return model\n", + "\n", + "# Load the model\n", + "t0 = time.time()\n", + "model_dnn = dnn_model()\n", + "model_dnn.summary()\n", + "t1 = time.time()\n", + "print(\"Load time = %d\" % (t1-t0) )\n", + "\n", + "def plot_weights(n_convs_disp=input_dim):\n", + " layerID=2\n", + "\n", + " print(model_dnn.layers[layerID].get_weights()[0].shape)\n", + " print(model_dnn.layers[layerID].get_weights()[1].shape)\n", + "\n", + " fig, ax = plt.subplots(figsize=(12,10))\n", + "\n", + " for i in range(n_convs_disp):\n", + " plt.subplot(input_dim,1,i+1)\n", + " plt.imshow(model_dnn.layers[layerID].get_weights()[0][:,0,i,:], interpolation='none')\n", + "\n", + " plt.show()\n", + " \n", + "plot_weights(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### We train the CNN and evaluate it on precision/recall." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train time = 22 seconds\n", + "Test time = 1 seconds\n", + "\n", + "Model Report\n", + "-Accuracy: 0.661833\n", + "-Adjacent Accuracy: 0.924797\n", + "\n", + "Confusion Matrix\n", + " Pred SS CSiS FSiS SiSh MS WS D PS BS Total\n", + " True\n", + " SS 223 36 9 268\n", + " CSiS 102 556 278 1 3 940\n", + " FSiS 6 123 637 2 1 11 780\n", + " SiSh 3 2 192 6 59 1 8 271\n", + " MS 5 7 45 78 88 2 71 296\n", + " WS 2 38 40 371 6 124 1 582\n", + " D 1 14 3 12 68 43 141\n", + " PS 12 4 22 124 2 515 7 686\n", + " BS 3 15 34 53 105\n", + "\n", + "Precision 0.67 0.77 0.67 0.65 0.52 0.55 0.86 0.64 0.87 0.67\n", + " Recall 0.83 0.59 0.82 0.71 0.26 0.64 0.48 0.75 0.50 0.66\n", + " F1 0.74 0.67 0.74 0.68 0.35 0.59 0.62 0.69 0.64 0.65\n" + ] + } + ], + "source": [ + "#Train model\n", + "t0 = time.time()\n", + "model_dnn.fit(X_train, y_train, batch_size=n_per_batch, nb_epoch=epochs, verbose=0)\n", + "t1 = time.time()\n", + "print(\"Train time = %d seconds\" % (t1-t0) )\n", + "\n", + "# Predict Values on Training set\n", + "t0 = time.time()\n", + "y_predicted = model_dnn.predict( X_train , batch_size=n_per_batch, verbose=2)\n", + "t1 = time.time()\n", + "print(\"Test time = %d seconds\" % (t1-t0) )\n", + "\n", + "# Print Report\n", + "\n", + "# Format output [0 - 8 ]\n", + "y_ = np.zeros((len(y_train),1))\n", + "for i in range(len(y_train)):\n", + " y_[i] = np.argmax(y_train[i])\n", + "\n", + "y_predicted_ = np.zeros((len(y_predicted), 1))\n", + "for i in range(len(y_predicted)):\n", + " y_predicted_[i] = np.argmax( y_predicted[i] )\n", + " \n", + "# Confusion Matrix\n", + "conf = confusion_matrix(y_, y_predicted_)\n", + "\n", + "def accuracy(conf):\n", + " total_correct = 0.\n", + " nb_classes = conf.shape[0]\n", + " for i in np.arange(0,nb_classes):\n", + " total_correct += conf[i][i]\n", + " acc = total_correct/sum(sum(conf))\n", + " return acc\n", + "\n", + "adjacent_facies = np.array([[1], [0,2], [1], [4], [3,5], [4,6,7], [5,7], [5,6,8], [6,7]])\n", + "\n", + "def accuracy_adjacent(conf, adjacent_facies):\n", + " nb_classes = conf.shape[0]\n", + " total_correct = 0.\n", + " for i in np.arange(0,nb_classes):\n", + " total_correct += conf[i][i]\n", + " for j in adjacent_facies[i]:\n", + " total_correct += conf[i][j]\n", + " return total_correct / sum(sum(conf))\n", + "\n", + "# Print Results\n", + "print (\"\\nModel Report\")\n", + "print (\"-Accuracy: %.6f\" % ( accuracy(conf) ))\n", + "print (\"-Adjacent Accuracy: %.6f\" % ( accuracy_adjacent(conf, adjacent_facies) ))\n", + "print (\"\\nConfusion Matrix\")\n", + "display_cm(conf, facies_labels, display_metrics=True, hide_zeros=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### We display the learned 1D convolution kernels" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(11, 1, 11, 77)\n", + "(77,)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAMyCAYAAADg3PHGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXmYHVXVt32vhCGSQIIkJDJIAJkRMIDNGOZBFBBQRgVF\nDDzAI2/wkVFF4H0U8TMhMjjiByKCUdQEQQKESRLpQCIJhEEEwhQJJJAgYRCS/f5R1enTp36r+5yk\nq7tPs+7rOlefs3rvqr2rdtWu2vu317KUEkEQBEEQtE+f7i5AEARBEDQC0WEGQRAEQQ1EhxkEQRAE\nNRAdZhAEQRDUQHSYQRAEQVAD0WEGQRAEQQ1EhxkEQRAENRAdZhAEQRDUQHSYQRAEQVAD0WEGQRAE\nQQ2U1mGa2Wlm9qyZvW1mD5jZjmXtKwiCIAjKxsrwJWtmRwHXAqOAacBo4PPApiml+VVp1wIOAOYA\n73R6YYIgCIKgffoBw4FJKaUFXqKyOswHgOaU0hn5bwNeAH6UUrq0Ku2xwPWdXoggCIIgqI/jUkq/\n8f65UmfvzcxWBrYHvttiSyklM7sT2FlkmZP9+T6wEXAJcE5mWmujYur1dQf/jV9cXLD94FvfLiZ8\nzHlAeO5GYfywTttS5ErOOFknvTzf39LR0Gds/v2fIuGazr4mCNsBTtpbhG2IsL3q5F9V2I530v48\n/3sbcGC+q1E66auThfFpYXPy876w3eukfU7YVL32dfJPrfg+HjjSSQf6OKp9AWwibGsI2zQn/2bC\n9pqT9l8d5L8a+Er+/UlnG9Ws59iX1Lj/zuBjwrZXxfczgTH595+LtB7qnKlz09/J/6KwqesOdFtW\nrF/x/Srg1Pz7DJFWHRdgx72LtgfV+QKG9C3aXn1TJGzW+XmjaBpxmE4642f5l4p7h3u83nLs1Qx3\n7O8K20cLlpEj53HffWeAvLm30ukdJjAY6AvMq7LPQ1/1+TDsRsCWwOr5X2DlLYupB+gOb/0Rg4vG\nD48o2vp5b9RThG1tJ604CeuJfQFYy/4GgbWkWbmOfT0obFs7adXFtI6weaf9Q8Lm1IuP5H/7tX5f\nxUv7rLCpC8HL/56wvVBHWlWvjzv5X6rKtwHgtRl1HNW+QN/U1EOSuvl6+asvsfbYuOJ7/4rf4kYn\nGe7Ya+0AOgPxAN2mzQys+P0RkdZDnTP1sLy6k3+psKnrDmo/XpXnuz+waf5dPYyo4wKsoa4nZ/+r\nqLas2ob3sP160bR6HfcO93ipTlvhPDTwtrAVH14HDVp2btudFiyjw1xOLiFrkI8Ap2Wmt0fBh47p\nxjIFQRAEvYu/5J9WmptVx1qkjA5zPtk4zdAq+1DgZT/bOWRvlqcBV2amD4k3zCAIgiBYbj6Vf1pp\nanqRiRM/3WHOTl9WklJ6D5gO7NNiy0U/+9B2gigIgiAIGoayhmTHANeY2XRal5WsBlzjZbjwwZ8w\nfMSa/O2Gt9j5mAsAOGGr3xUTbq7z78Zfi8ZZxbmnwY89L/PP7yteyfc4Su/s3guLtvedea4lLWlX\nrvi+p0jozCVtf17RNt2beFcMF7ZXas++lmn7MuF1xXzqAift9kcUbdMfFQk9Ic89wubNFSr7Z4qm\nvo6IZUnlHObHaDunWcu+9nDSqjnTX7Wz7WrUHPcTdeSfW/F966rf1SjBy3517Osnjn1jYVNt8d86\n+66HF20LK74vOgYG5m1wtl+6Imo4Tgmq2msL1Xjzd2quTdX36orv69H6ruEJEYtsc3vxPjGrr6OV\neOmGou0Mce8Z57WD8QXLmnfo4/X6Ki3fKrUYnqhsjrCpeVhvSHWDGre52MnfllI6zJTSeDMbDFxE\nNhT7MHBASsmbMV7GzscUFUy9A09k0uj01npB761bL/UhMrC36h227e4ClETjXV+liX5SSleR6aGD\nIAiCoOHp9DlMMzvXzKaZ2RtmNs/M/mhmm3acMwiCIAh6LmX4kt0duBxoIlsdvjJwu5l5k05BEARB\n0OPp9CHZlNJBlb/N7EtkM/vbA/d7+S6Y8X14s2qi/HUhpLlaCG6A/j8TC+H3L5rmXbuhzN+Xoqcg\nhC+EDOF44EovreIeYTtFJ50uBBT7OGkn31a07SEm6e9VDg5ATpwvuNZJK/iVI3w6Ugma1hU2b26t\nn7D93UmrtiE8XS2pXvXUglKVeeIaJfAR58C17yJs/3Hyq/p63qHU8VaCG9DODwYIW1HUkaEEGN4C\nf+XdSdVBOfYA5glR2bZOm6tL9KNQIpLTnbQ/FTZPWKfqIObyZnq3ZmVXnsNg1u1CJMUf9Ga3EwKf\nlURZ11KCMGBB0f76FHWNe3jHazVhGylsQiDqbvcrwvawk78tXRHeaxCZqxTPj1cQBEEQ9HhK7TDz\n9ZeXAfenlB4rc19BEARBUCZlu8a7isx9z64dprxyNAwY1Nb29tHhGi8IgiDoRH6bf1ppbq7Np3Jp\nHaaZXQEcBOyeUuo4fMFpY2HTqjnMo0spWhAEQfCB5aj800pT08NMnNjUYc5SOsy8szwU2COlpF3r\nBEEQBEEDUUY8zKuAY4BDgMVm1iJHXJRSckOnbDbiYVYb0VaZ9ncZvehYmf+3KgzM5KLKq+98L7zO\nD4qmm5ykCtetvFpNo5SBnlu4TxRNk2uNEQfcq+IrOko3Fdlm4xN00qeFWtkLaSdVm0K9dr5SxAH/\nqxSm4rgAcJ+wKeWrFw7oz45d4SliFcqlmWrgXjgjZd9H2EC7vXOUpxLhEnJdp828dIcw1uMyWoSF\n8kI9/fPHRdvXHcV4PdeuvA0qm1LDgg4p54WEm1U0fUmoZEd7rt7UsXEUpp9S9wlHHf6w0GQ+rOrl\nqaXFfeLLTlKJF7JQhTf8k7B5CmZ1v1fXgogHKihD9HMK2R35HrIrt+XTXiTeIAiCIOjRlLEOsyuW\nqgRBEARBl1J652Zm55jZUjMbU/a+giAIgqAsyl6HuSMwCphZ5n6CIAiCoGzKXFYyAPg1cBLwrY7S\nb22zGWKL2tj+vuvoYsKX9GT6F7iuYPv2y0Uhz5Tp28v8u147tmgUYRwBLSjwvM1to9ynCYHP0K/q\n/CrEpOfVTbrTutNJrBDClKc9MVKRbUbqOJ2z2EJYhejmf6XKCy1uUfE0Qbs0U/EGn3PyKxdyXhxE\ndXJE7E1ACw2Eyz5XjKRCIf3RSavw6qsQ18JLnlBMCUNWFC9WpxB2KK+JgL61eYI/ZVfxGT2hmToP\nnqs3Ia4Z/ayTVtFeHNMq9hEiusle+1LXnrqWvHivos3scYFOOkcJIb3r2QmAXOAKx67uPeparG0d\nZplvmFcCN6eU7ipxH0EQBEHQJZS1DvNoYDtghzK2HwRBEARdTRnrMNcj8x+7b0qp5vGaqaMnsMqg\nqvGVV4fBkHCNFwRBEHQW91A9Ldbc7A3Xt6WMN8ztyZawz8idr0O2KnSkmZ0OrJpSKkxE7jL2UIaM\naDtv8JPdo7MMgiAIOpM9808rTU1vMHFix75Yy+gw76SoULgGeBy4RHWWQRAEQdDTKcNxwWKgTSgv\nM1sMLEgpPe7lu+mLx0H/KufrD6l401pDtNEuwr/7y9cUTJP6eoFC7xGF8gIaC5XXNk5SeYiF+mze\nFCe/UGi+7MlklWpTKft0wFmpkh3oqOIW3VMwzVppRDEdwKeFKu0WVa6rnXKpQMueolYdm7WdtArl\n+tgL1KyUkJOctEqFpxSAylUc6CDWjls4RNBxeQwB5gibckJ9oJN/urAp94Sg1c5KWe0oQddaq2hz\n3a/VNsTmo9rX5DryeypZ0Q5OEEHtr/VUyaotOqGGJwv3lS5K0arOrRe4XbSva1U7BK2+9Wbv1HWj\nApHX4/pRuRes7T2uq7zyxFtlEARB0NCUHQ8TgJTS3l2xnyAIgiAoi1LeMM1sHTO7zszmm9lbZjbT\nzJzxuiAIgiDo+ZSxrGQQMIVswP8AYD6wCf7kTBAEQRD0eMoYkj0HeD6ldFKFrUO/XA+euAMjNmor\nWuk7bUkx4Uu7yvzfu/b/FGznjr+sYLtgyxNl/ou2FS6UnndewD+qJqKf0mmlyyflnkrXS4qR8OJh\nqolzJT7wBAXrFk2LvuukFZPsyTnNtyjRjXp+OsDZlxIpre6kVQIIJeAY7uRXggCv+SoXX85AylpC\nPLVAuBNzXYGpc+uJKhRefEWF0uZ5rsPUsfXS1uPKTyC8PNrQxTJpWkeJY+p5ZlfndgMnrRKheCIr\n0T6lOMY7hsq+r056n7injPS2e72wHVc09deuRVn8i6LtAkeUdmE9YiR1rxogbF6oZSU0U3FNV6mp\nNGUMyR4MPGRm481snpnNMLOTOswVBEEQBD2YMjrMjYD/Ap4E9gd+DPzIzL5Ywr6CIAiCoEsoY0i2\nDzAtpdQSoWSmmW1NtmisGFIk58z/HwauVrX65CM3wJbh7ScIgiDoLGZQvZ60ubm2d8cyOsx/UZwE\neRw4vL1MY76MmMOMzjIIgiDoTEZQrTVoalqFiRP/u8OcZXSYU4DNqmyb0YHw5//u+Q0Gj1i/rfEI\nJXRQMQTh3B3GFY0/KXq+6XuyEBIB0jvJIV6wPSF4adpEJ21W5RX5t3V2NXOqMH609nJJEYwnAFEC\nDi8G4LSiaWMn1p7SRPAXYRvu7Ksevxe1pvU8i9RzSajj6IgqFvyhxvyeJ5XP1pFWUU9adQyUGMqz\nex5xahXSKK9GwIhim0snfNLZ14qK8tV143l8Uufcud1tcKRIqq6Fvs6+lAejR3TS65WQcLxO20/I\nTITmh6vFde+VyzmN9aHuKaoMXjtQQjMlrFMxc4uUMYc5FtjJzM41s43N7FiyINJehM8gCIIg6PF0\neoeZUnoIOAw4huzR53zgjJTSjZ29ryAIgiDoKjq9wzSzPsDOtC6WWRV/PCcIgiAIGoKyHBecDBxP\nFrVkB+AaM1uYUoph2SAIgqAhKaPD3BmYkFK6Lf/9fD6P6c3KBkEQBEGPp4wOcyrwVTPbJKX0lJlt\nS+b3bXR7mT5nv2dza6uiu5rTRErHJdp6RVOfu98s2D689gKZff7oGUXjeU4sSCF0o9mLMameE4TK\na+bNTn7hLm4Dxz3Vc8rllFLbeQpRpTD1VHGC0x376HuFUSkmlRsrgNuEzXONp5q0iBPa13E+teS3\nwui5RFP7Eu0IoL+IN7j4DpFQqaJBSw69GIBqBsRTeM4RNqUQ9cpVj8s9lbYOKeURxWtpr6tvkUnv\nvqb2zerzqNSor9axzY21+Tl1LSj3b59ytquuR6d9zlFGJ06oUulfLXwRurFlhZrVCw0r8VYk/FnY\nVH0dpbBU+Yu4v7zg5G9LGR3mJWQt4AkzW0I2T3p+iH6CIAiCRqaMDvMo4FjgaLI5zO2AcWY2N6Xk\nevoJgiAIgp5MGR3mpcD3Ukq/y3/PNrPhwLm04xpvzOh5DBhULdq9gWx1ShAEQRB0Brfmn1aam2ub\nWiijw1wNqHans5QOlrCcOXYom49oO6+1Y5/oLIMgCILO5KD800pT0wtMnOjNG7dSRod5M/BNM3sR\nmE3mtG80IAKmtfLFCb+Dh6tiCX5dJPyhjhf4h8OKlT38QOFyapIW/chYkErcA8jDtpXjFm62mvxX\nJ8Yp18lrFW1qHhzQIpDhwuaJfooiKRjppP1d0bSbENcAjBHiqTPvEQnVZDzAS8Lmia6VKEEcsCVe\nO1ACDO8yUbFOnVijMmyjcsd1oLOvOcLmCXmUsMOLgVornotEtV0lFgFdLnW+HGHKTUX3gnf/wXNR\n/bywqdiw7eyvwGccu3J/6bjm+6WIXXniYzXuH3QdHLduXxDiwEmOsK5ZCeuEq8z7nNibIy8t2v7g\npN1bGZ17Byqmpoof6p1D1T7Vdfuuk78tZXSYpwMXA1eSXQ1zyUJ8XVzCvoIgCIKgS+j0DjOltBg4\nM/8EQRAEQa+gbtd4Zra7mU00s5fMbKmZHSLSXGRmc83sLTO7w8yc8cogCIIgaAyWx5dsf+Bh4FTE\nSnczO5tsWHYU2UTTYmCSma2yAuUMgiAIgm6l7g4zpXRbSunbKaUJ6JnaM4CLU0p/Tik9SuZTdh10\nQL8izTfUW6QGobfWy/Ow0Ru4p7sLUBJevMoG5/7eeo1N6O4ClETj3Ts6dQ7TzDYEhlFxRaaU3jCz\nZjIfs070Unjw9zswor9x6FOJCX//AgB9f7S0mPCHW8r8o21s0fhqsT+ff70XfPn2ommok3SeWLPj\neFpj9EX5lxuAp/LvSiW7o86v3Eu95KlcFVsI2xQnrVLguZLcnEeBj2dfr3GSXKmMShH7jrOBbwub\ncjEGujMQbvj6CvUxwJJK12MTyFZJ1YMTQFq5Hpv5cWHUAdJBuWlUAb9Bn8dKVfH9wOfz7zW6EpTK\nQsjiLFTjnRslO1eKWkfx+ORhRdtZFd8fuBGeW56laMrNolKce+4vFUrZDZz4XWFUSuFK5evVwH/y\n7077Ukivg0LdDiy7hitZ64SibeRTRRsgr2fPe+UyKu4diHMLwONF01ZCOTtbuQUFff/y3Pt1TGeH\n9xpGNkxbfSXPy/8XBEEQBA1JGctKloszX4CBfRMPLoZDn8qnRm+/AfYP5wVBEARBZzGNaif2zc21\n5ezsDvNlsvGcobR9yxwK/L29jGPWp3VIdpNsSKhvdJZBEARBp/JJqh2fNDXBxImjOszZqR1mSulZ\nM3uZLE7TLAAzWwNowpnJIo/r8sTbAIlFS2DG4vwN80kVKkmFoIJ3Z8wpGt8Sc41zdH54rmh6zwnV\nxL+Kphc6SvtOxXc1uaDCcAHvqvkkz6vFXGETcwDSCwpo7ySrOmlbPGNU1OtV7xioY67C6cx08itv\nHf9w0jpzR9WkWs7tO8hzvTy8pfanzoO3P1VfLySR8vzyeNX/W36rNqPanNcOHhY27xzMFjZ1DP4j\nbMBscQwXVpT1vYWwsCWN2q7jfYdFwlbPrbGeNqJChCk/pm9VfH8HeDH/Ll1Gaf6l2pw63yDn6t+v\ntc2CvH8+Uc89UbWjyrQVvK2Ol3cO1Hks5l+4cNlXL84YAJaS14E4Gcz6kwU/M7Lgf2cCdwOvpZRe\nMLOzgLOBL5H587oY2ArYKqVUuBLy4NLX11WIIAiCIOh8jkspecq75eow9yDrIKszXptSOjFP8x2y\ndZiDgL8Cp6WUpMTMzNYii5I8B18mGQRBEARl0Y/M8faklJLnaLr+DjMIgiAIPoh09rKSIAiCIOiV\nRIcZBEEQBDUQHWYQBEEQ1EB0mEEQBEFQAz2mwzSz08zsWTN728weMDPHuWrPpbeGPjOzc81smpm9\nYWbzzOyPZrapSNdQdTOzU8xsppktyj9TzezAqjQNVSeFmZ2Tt8cxVfaGqpuZXZDXo/LzWFWahqpT\nC2a2jpldZ2bz87LPNLMRVWkarm75Pb36nC01s8sr0jRMvXpEh2lmRwE/BC4APkG2gn2SmQ3u1oLV\nT28NfbY7cDmZA4p9yTxT325my7yaN2jdXiBbMzwC2B64C5hgZltAw9apDfmD5yiqvEI0cN0eJfMc\nNiz/7Nbyj0atk5kNIouI8C7ZErstgK9T4WmhUesG7EDruRoG7Ed2bxwPDVivlFK3f4AHgHEVv43M\ntcVZ3V22FajTUuCQKttcYHTF7zXI3E4c2d3lrbNug/P67dYL67YA+HJvqBMwAHgS2Jts7fSYRj5f\nZA/UM9r5f8PVKS/nJcC9HaRpyLqJelwG/KNR61XaG2atQ6xmtjLZ031lSLBEFvdn57LK19V4oc+A\nltBnjcQgsqfE16B31M3M+pjZ0WQ+wqb2hjqRuaO8OaV0V6Wxweu2ST7l8bSZ/drM1oeGr9PBwENm\nNj6f8phhZssCBjZ43ZaR3+uPI4tX1pD1KiVaScUQ6ygyt/CjyV6zN00pza9KvgmZI9Uh1WP2wMbC\n1khsVFH+j5N1MmtX1eldYIsGq+dlZEPP/fJyN3LdNiaL5LkKmQPP/yEbWt+Jxq0TwP5kN50v5GUd\nQGtdGvV8zQcuJHNcOpgsGOcDZvZ5svtII9YJsjZ4KvBr4GvA1sDlZjYMuJXGPV/V7Ef2sD2jB7bD\n7vP0Y2YPAM0ppTPy30Y2X/SjlNKlVWlPxXfMHgRBEARdRbu+ZDv9DbNiiHVZaPGUUjIzb4j1EQBG\n/Ro+sjncMBqOGZv958Kf1bFnNeL7YNE00AnhsugaYXSiJijOcLY77pf5l1uBg7KvY08sphtdT10/\n4thVJAQ16l5HvdzjdXX+paJeLKl9u12KirRxlE466kOt328bDQeO9a+SAeJh89J6zuOhwnabTjri\nhKJthrOvTcQ5e+r2ih+/Ao7Pv6voFyoajoqAAjrKzmZOWtU+VPQLb19bCVul++lryGI+QDbFXs2H\nne2uJ2xTha2/k3+OsG3opFWRd9YRttUrvn+LLIYF6GPoRepQx/ZFYYNsMLCah4Rtls5+pLinjXfa\n54fzff17NKye3+tf8yLcTBO2tYqm74/U2c9WZfhswTJy5PPcd98poE/mMsoYkh1MdhXNq7LPQ19J\n2RX7kc1h+AhYbVD2NzPWsVu1adE4VvLe8u8Qtjp8wa/nbbflBtiPZRfGx1Taeuq6gWNfWdjUDa2O\nernH6y/534p6uWHHupsPCdsndNJ1KsIc9RsI64zwr5KBanSmnvP4cWF7RCddvY42s5pK+1RlAlpv\n6G+ItOo8eqGx1MHZxEmrtquOobcvtdqgMgzWasBG+XfVsQx1truxsKkb+OrCBq2h7irxOkzVaQ8X\ntjUrvq8BbJt/V8dQdcKgH5a9h1rVZlTbqJ5RyxlSR/tcOU9rg1q/t6lvJdXdCMjzuJF3n1JlKF53\ngwYti+rV7s2xlDnM5eKG0Vln+cw0GNfy5L0y+qYSBEEQBMvDn4AJbSzNzbXFGS2jw5xP9hhT/Rgw\nFHjZzXXM2OzNctyhcEZemS9fWELxgiAIgg8un6V6WLap6SkmTty7w5yd3mGmlN4zs+nAPsBEWCb6\n2Qf4kZtxXF6aN4BvtFc8b9hPDQOJeQhX/6SG7WofujzuzF9I+/VXn5d9ebEZ1su+n3LQ2EK6n9S8\nJ6jvtK1YvVig69V6HlLF97WdtLUO+5U1pKsitDu8UPH9nfz3k07adZe/RBmv1Z703inC6AzFzbxT\nGCuHM/tX/H5FpH1K2N5zCjZA2NT8H+gpA4Vqs6Dr+8mK778A9sy/Ty4mdS/+t4RNHZfDnPxzhc27\nRlXdlK2yritV/C7eO/whWdW+vGOrrlF13TjzwFeqY+vsq2U69goylwUAo9T5An0eRH2dqX/NtcLm\nzU+3pawh2THANXnH2bKsZDWyWfn2WfXokorUzazRS+vF1t1dgPLY6JjuLkFJHNDdBSiJw7u7ACXh\nCNQanU823j2xlA4zpTQ+d2t3EdlQ7MPAASklJeNsy6q99Ca1Ri+tV2+eY964t56z6DAbi97aYTbe\n9VXGspJzycYuNid7p78NODul9I/O3lcQBEEQdBVluMbr0FF3EARBEDQaZYh+Dqr8bWZfIpu53R64\nv7P3FwRBEARdQVesw2zjqNtlINka+Ermm0iovGKAlkkJ1eXZTvbvK4VmdYH87X7LLhbp4PrTTirY\n5ppaTOsspJdOCjy1oVJHPidsXr2UetYLTVeHwlNut7uXAF+qzc99p2jb3tmEEtvVhXJS4CmF1Yos\npWwEfW6UEhTg78LmLSJXvFlHWqW0VcpqpYwEqdrsL7y+APQ7smhb4C1Tq1W5+kcnv8JTZu9aNClH\nVO9651a1Dy/tEGFTil5gV6E8nfKESPgZZ1+PO3aBuq275/zzRdPGYkXEP2vf/YpQajzMfDnJZcD9\nKaXHOkofBEEQBD2Vsh/zrwK2RD5WBUEQBEHjUFqHaWZXkHnl3j2l5HkHbuWV0dBnUJWxH60+FIMg\nCIJgRZlJ9XRIc7PyuV2krHiYV5CFYtgjpaRc5hdZeyz0q3Kg++R3ddogCIIgWC62pfpFrKmpPxMn\nju4wZxnrMK8CjgEOARabWYtP2UUpJd8n23OPUhQFKJGAM8kvRTPCndj3lTAGlDBlryXbyJR39y0u\nKd301BdESrj2qqL44Of21YLtq0t02Jyfz9yzaBzhufgaLmxK9ONELNjqgqJttieUqEcYUo+LQ4US\nKXlN6TxhUw9ejjuxOcJ2kRMzdty9ThlqRSkVPEGX55+v1u16YrkVxXOZVyue2EMhhDjDnKRPO2Go\nJEqgo2yeuEa1zzpUKO8qt4fKBvp4K/eEUFdkkynja9zX086+5jh2QfH2h98Vif09vWnRtsiL66y2\nq+qlwsEVKUP0cwrZWbmHTJLV8hGytSAIgiBoDMpYh1mq8jYIgiAIuoPSOzczO8fMlprZmLL3FQRB\nEARlUfY6zB2BUWSypCAIgiBoWErrMM1sAPBr4CRgYVn7CYIgCIKuoEzHBVcCN6eU7jKzb3WcfC7a\nR1QVTU4In2bl6kwFO13d2XBRZfWXNw6VKfvdXlSf2W/+R6b94ld+X7D97eqdCrbNV9L5//D+Xwq2\nwzlVph25pKiwvE8uL9Kn/cRZVxZsv+zrqDY3/lrR9vTlOq10M/ZvJ+0KMkOUd0TR5Db9p4sOqQY3\n6eCy81FKzC30dvcQmrd7lQLZU7MqtbN3+SrFoMrv8Xod+yor6LdCtCNPtCmDYK8onjK8jgDlXxG2\nq5V7wHrUx+p8gb7uvPal6iAipO96oM4+RSnRHbeaA4VtkdeOxDV2qCjDhGYnv9quasu1vTuWtQ7z\naGA7YIcyth8EQRAEXU0Z6zDXI/Mfu29KqY7HpF8Bq1XZhtOrAxQHQRAEXcwsqt9cm5tr6wrLeMPc\nnsxN/ozc+TpAX2CkmZ0OrJpSEmNGxwMbVtmUt/wgCIIgWF62yT+tNDUN6B5PP2QxpqpfC68hi/9y\nie4sgyAIgqBnU4bjgsVAG+WEmS0GFqSU2gmatgZFkc6exWTF8JIZzZsLo4j1t5azgQVFcc3K/3T6\n9o8WA7p9+pe/k0l/lb5YsP10y+KTzPsf06Kfr9neReNfD5Zp73tejYCLyfAvnSXz/2npS8LqBH3c\nTthcAcaKin7qiKc5wnPlV40TzzMVXYTN3164DMwSC5vTxO9VLhmVoMpziPUDYfMEbEroUM/xrscV\noWJFBUKHhUaNAAAgAElEQVSO0GywUG+dL4Mrwu+PKNqmPFrj/j0+5dj/UPsmrlZGEd/RPbeewKdW\nmupIK0Q7UzyXfco9n3ONKXeGi7zZu32KpgkqnYqH7KHaYfe5xlPEW2UQBEHQ0HRJ2PuUknhNCoIg\nCILGoZQ3TDNbx8yuM7P5ZvaWmc00M7kaLgiCIAgagTKWlQwii00zGTgAmE82SL+ig+9BEARB0G2U\nMSR7DvB8SqlSXVODm5FZwKsdplrpUBX3Et7/qhKWCBaMrS0dYI5G4MYTih6Ajp72J5l28ieLopn0\nRFGocJGjXbh08TkF25UHfUOm3Wvh7QXb3WxQsO33y4l6Z2Km+Q6viewmbDd5QgUvjuCKUOP5BrTg\nxfFYgohx6a4mFkKYAx2B0ChhO3yGMP7Z25mgM55B1fmtR+Cj8MQ9qn2og+vEa50vvHmN9vY10rGv\nCI84diWkcWKlDhI25fnmOe/crqggSwghAZgnbCJ2ZtMJOnuzEgM5dZChXb04sNVr8wHlgG2C54Wp\nc9/TyhiSPRh4yMzGm9k8M5thZp62NQiCIAgagjI6zI2A/yJ7jtgf+DHwIzMrrq8IgiAIggahjCHZ\nPsC0lFKLw/WZZrY1cApwnZ/tNorDDVsTrvGCIAiCzuMRoO18W3e6xvsXxdXbjwNOmJEWDgQ+UkJx\ngiAIgqCFj1P9ItbUtAYTJ369w5xlDMlOATarsm1GffGFgiAIgqBHUcYb5lhgipmdC4wnk5CdBHy1\n/WxrAtVx4V4ppNp9rb/K3HfzUI3F8xzsfqdgeeYE5cMJjp4pfDOdrmWuR+0rFKlCqPvKGf+fzH9h\nEgrPf2s3Z3f33VZYi2q9O57WrvX4hqqD4wD/FmV0YkFKt1UrqvbzXL3tImwPCpv3/CbUdrNVrD+Q\nSt3bHCXlyWpqQcUg9BTFKo7hXCetwlMVq+0ql2adoTZU50zdgjzlq2ozHkq5OrmO/Eq16R1DpfRV\nsXiBhaJuR4hjIF3oAawlbCqeJui25HknFYpYJZtvrtX1JPjHqx7Hb6IOL6p0/+3kv0jY1PGq7d2x\n098wU0oPAYcBx5ANFp8PnJFSurGz9xUEQRAEXUUprvFSSrcCt5ax7SAIgiDoDjr9DdPM+pjZxWb2\nTO4W759m9s3O3k8QBEEQdCVlefo5mSwi9GPADsA1ZrYwpXRFCfsLgiAIgtIpo8PcGZiQUmpRejxv\nZscCn2w/2+eBav/sRbHF3XNFfDQAKfpRu1zg5C+6YDrYtJuy07Ypxia88iFHkPA9MRm9f1H88OM1\nz5TZBx71ctG4leOCbvaPhVFM5s9x/PD9Sbnz2kbYgOPENv7mxNpbrEQ/K+p+zUOVYWrRNNSJOznv\nF8L4WWdf04TtZp30i0r0o9x5KSEQ6PXInjhG2b31zKoOXhlqxRN7qHZbFPb5btL2EDZH+HSG2MY4\nZ7MSJeTx6lXPMRS3XBnfUYnXoHr9YPv7UsfRESMp0Ux/kWyxJ4D7irDd4aRV4ivH/+RauxZt0y8X\nu3dEP1I8pa4Pr821pYxlJVOBfcxsEwAz2xbYlZjTDIIgCBqYMt4wLyF7rXnCzJaQdcrnh0o2CIIg\naGTK6DCPAo4Fjiabw9wOGGdmc1NK7bjGG03RlX8/QK0tDIIgCILlYTrQNlJQc7MzTVVFGR3mpcD3\nUkq/y3/PNrPhwLm060t2LLXMYQZBEATB8rN9/mmlqWllJk48tcOcZcxhrkYxoN3SkvYVBEEQBF1C\nGW+YNwPfNLMXgdlkr42jASU/bOVrwHpVtrOEC6P9PPdYyrWTUFg94yjdNqp+u4XHryzaAF4/VUWB\ndV6e9xPK07WE2u9LIjgusOjOs4pG10OYOgYnF02bvevk31HYfidsQJNwb7W4GCy7PryKqeGSdZ20\nyh2YUMDN81zQKeXqfU5adflsrZO++ZQwriJsxYDfGcpFoVKYeuzp2IWCmPOEzfPV9nlh81aPqbop\nhac3PKbUjSoINzBOB5pfMTyFaR2u3oaLuu0q8l+vAjqDPl5e8GTVPp37n7qcXqrHhZ3arnYtqt0x\nOixWRnFfdl0JKpRrPO+e2JYyOszTgYuBK8lKNpcsJubFJewrCIIgCLqETu8wU0qLgTPzTxAEQRD0\nCuqeVzSz3c1sopm9ZGZLzewQkeYiM5ubu8a7w8w+1jnFDYIgCILuYXmEOP2Bh4FTEYP3ZnY22bDs\nKDJXO4uBSWamJmyCIAiCoCGoe0g2d3l3G4CZqdn5M4CLU0p/ztMcD8wj8y823t3wMGB9YMoNsOsx\nuXFoMZ3wFJeh3G6JuH7Nw3X2zfYt2hwNy/un1nPYNs7/TgAOzb4uUAKfzXX2Xws3UJ/2Yr+J+g4u\nnqKd1lVCD3iA4cLqCB0W5du9/QbYPz9fB5yg005SMfSUwMdzT1WHK6t1q5VjwEvC7dYYJZACzqx0\nW/gAsBN+jEolwPDcp70kbModmBfns55YkIpZFd//Anwq/64EGGo5l1cvJUb6jJNWiadUDFXPfaVq\nt5Xlephs2TcUFYT1ourruG+TbdFx/ThHiHneVyKU5yu+z6R1PboqgyeAU2mf1EkXi1v5ViLdbGdX\n8ng5sWGXxeScTvXyjgJHCJsriKoV1Wad+0EVnbrUw8w2JOv6ljkLTCm9ATST+ZjtmKm91SGQdBjZ\n+NxxQ3eXoESUj9DegPLt2xuY2d0FKAmv42l0HIVzD6az10YOIxumrX4EmIevMQ6CIAiCHk8pAaSX\ni1+NhtUGwdPT4Af50CWbAiO7s1RBEARBr+IRqqO+NDfX1hV2dof5Mtmq46G0fcscCvy93ZzHj4UN\nR2Sd5Tfy4ctjnFBJQRAEQbBcfJzqcHdNTWswceLXO8zZqR1mSulZM3sZ2IdcZWBma5AFKbzSydYP\nYK/3n2DN92BqWsgu7+Vj24e/VUy9qjPu/a7SHz1TNL0nhDEAuwvbqjrph2YsKtjePlx5/wH4JwBT\npy5ml13+mdtUoDlRV0B6g/mYcwxWFcKnDxXTrjPjdZl9ncOVZw+nXK9k25367iJ2yb+zteMZpL86\nNqrpeTMES4XtPzrpAHFs3hT77+ccw4pjMHVqYpddEvp8gW4g1V4hW1DHXAnHnXpJbzJem1O0io6m\nTn2bXXZp+V3rdr1bhRLo9HXSKuGSEjmp8+3lbz2GU6f2ZZddWs6VOr/1HC9VX09xqAQv3jEQopvV\nXyza/t16LU+duhK77NLyWx0b796h0jqxdNV9dXXRNjZz8vOwsHlCtew6nzrV2GWXlvPnnJuNRLkO\nV4Iqbz60tnM+ZMiyY9iuus5Sqsf9EZhZf+BjZG+SM8gcFNwNvJZSesHMzgLOBr4EzCHz8LMVsFVK\nqXA3yINLX19XIYIgCIKg8zkupfQb75/L02HuQdZBVme8NqV0Yp7mO2TrMAcBfwVOSyn9E4GZrQUc\nQNa5OlrsIAiCICiNfsBwYFJKyVvXVH+HGQRBEAQfRCLkVhAEQRDUQHSYQRAEQVAD0WEGQRAEQQ1E\nhxkEQRAENdBjOkwzO83MnjWzt83sATPbsbvLVC+9NfSZmZ1rZtPM7A0zm2dmfzSzTUW6hqqbmZ1i\nZjPNbFH+mWpmB1alaag6KczsnLw9jqmyN1TdzOyCvB6Vn8eq0jRUnVows3XM7Dozm5+XfaaZjahK\n03B1y+/p1edsqZldXpGmYerVIzpMMzsK+CFwAfAJMi/Kk8xscLcWrH56a+iz3YHLyRxQ7EsWnuF2\nM1u2YrtB6/YC2ZrhEWRhE+4CJpjZFtCwdWpD/uA5iirP5A1ct0fJPIcNyz+7tfyjUetkZoOAKcC7\nZEvstgC+ToW3i0atG7ADredqGLAf2b1xPDRgvVJKpXyA04BnyWIgPQDs2E7aB4BxFb8NeBE4q6zy\nlf0hc7NxSJVtLjC64vca+fE5srvLW2fdBuf1260X1m0B8OXeUCdgAJlrmb3J1k6PaeTzRfZAPaOd\n/zdcnfJyXgLc20GahqybqMdlwD8atV6lvGHW88ZoZiuTPd1XhgRLwJ3UGhKsAeiU0Gc9h0FkT4mv\nQe+om5n1MbOjgdWAqb2hTmTuKG9OKd1VaWzwum2ST3k8bWa/NrP1oeHrdDDwkJmNz6c8ZpjZSS3/\nbPC6LSO/1x8HXJ3/brh6lRWtZDTw05TSryCbKwI+DZwIVEdP3oTM8eKQ6jF7YGNhayQ2qij/x8k6\nmbWr6vQusEWD1fMysqHnfnm5G7luGwPXkDklfQv4H7Kh9Z1o3DoB7E920/lCXtYBtNalUc/XfOBC\n4DmyUY6TgQfM7PNk95FGrBNkbfBU4NfA14CtgcvNbBhwK417vqrZj+xhe0YPbIfd4+knf4p4Czgi\npTSxwn4NMDCldFhV+lPxHbMHQRAEQVfRri/ZMt4wB5O9Maog0puJ9Hk48dOBdYFfAcdnpo32K6Z+\n5tGiDYBpwvZpYfuXk399YbtbplznoU8UbHN3mK83e1ZT9vem0XDE2Oz7pTcW0+1+tJNfRL842IuE\n8FDB8rnpTxRsn+d3MvfktE/B9rMddnD2tUv+dzSQ1avfXxfKlO/8ac2i8eNFk+uCX53ynZ0HvT/8\nXhg/ImyznZ1VchtwYIep2rDHydr+mCjvqyJ83aCCsDpjgMj/4i+dQqjoGZVRQSrrpW4BKnSPvhbg\nCGG7w0lb677UtQzwatG094mt32eNhm3ya+yu50X+25ztKrYtmr7bpJOed40welFn1PH6i7BVXvd/\nBj6Tf1ft3tvXVgXLbQ+dL1MeuMNXhXVDYVtD7+rMrYu2MdVdQAst9a2slxehRpwHNha2W2Tu/lMP\nKNgW7/KHgm3kyP7cd99YyHyau/SEANKLsz+TyaaP5gL5Te8/H4WBx1Qlf8/ZjAiRI+/KzglHKZmf\nlilXHbGlsDod8fr5qMKHBrV+Z0ox3UBn9GHr94XRO21vFCxDRrxZsG3pxC17LA0TVk/h3VLeQcu+\n993OeWiYPqRoU49OH3Z2pYo7xBsZUTfbDYTNCfPWhn7ozrYdBjnncRVV3keKppWc/Kuq/F4HMEDY\nKsOLVdZrZZF2C2ErPnhlbFNHWrUvdY16N1qRf82K47XyoIrfKgzVTGHz2KRo2tAbIVQPCF4cCXW8\nRDug8rrvR/YyAbrD9PZVvHa3GeE9bK9XU373Il1fHRt1T4Y88iPZg11LvbyweIXVa2Qj1tXoc9v3\nE+p4/4zqp/Ann1x2T203AEgZHeZ8stoPrbIPxQ8oR/ZWuSHwA+AbmWngkSUULwiCIPjgsvwBpDtd\nJZtSeg+YThZEGgAzs/z31M7eXxAEQRB0BWUNyY4BrjGz6WRjZKPJxluv8bM8S/Y2/G/g8cw0Ww2v\nFYcdM9RQrRg+GKaGHii+DwPM1ENDn+Omgu0HctgPmJD/fbniO2KY9ZafyOyDJxbnYedvpeZbgdl7\nFEw/+WLRdsVO35DZv3vUecL6nN7XBZb9vQE4Jvu++CbHz8TC4jCSDS9GiU979tf5HxXDUD/1Iqyr\n+Ts1XOTlV0PgdTCh2fmHaktziibVDsGZHfAuX3UMKoczVwXWzr+/ItJOFjaHgaLAiz5TtAH6mKt9\nedMmuxZNN1UKGv9T8VsNV6thWg9R1i/v66RVQ5ee1mKWsKk2V2lLFb/VOVfnGzLtZVvOKixSaGGg\nsImpFObq7KN/IYxvO/tqqcvSiu/edbe5sP1d2PRU3Rv7qWmm5aeUDjOlND5fc3kR2S3gYeCAlJKY\nta9GjU/3AoY5op5GZ+vqOebeRC9ti3hCrkbn8O4uQEmoed7egJpf7NmUJvpJKV0FXFV/zl7aOIb1\n0o7l4720XkCvbYvRYTYYSinaG2i8DrPT5zCtRkfdQRAEQdBIlOEar0NH3UEQBEHQaHT6kGxK6aDK\n32b2JTJlwfbA/X7OIyi+oiuhhCeqUIgF+vucoJNeryatiwv5Af7Ng8LqCAoOFbY7hXApHSuzD+WF\ngm3+jx3Rz8iLipvd/IJi/lO1uOa/0+UF2xhHhXLgt/9ZsN3W5AyJCZ1V+tZqReMvvq/zc4qweetx\nXxI24SBAiglAizW8y0TZ1SL0Opj9W+cf9SyxUusdveVlahG4Uhg563EXKdHQcGdfSuCj1sM6ziJW\nFW3x3X8XbUDmCKWaa520SsgiBIPvPFa0Ab7AR7C9cMYyvXgttXU0UYlqc177LJbreXbSSccWF/hz\nhUj3tOn8Vx1ctJ3qrcP0zoNCealT4jFnfWg7Pc7y0BXhvdo46g6CIAiCRqTUDjNff3kZcH9KyXs8\nC4IgCIIeT9mu8a4CtkQuoKrmAorrr/YCPtXphQqCIAg+qDxC9XB1c3NtXWFpHaaZXQEcBOyeUvI8\nnldwIbXNYQZBEATB8rL8rvFK6TDzzvJQYI+UkgobEARBEAQNRad3mGZ2FXAMcAiw2MxapG2LUkq+\nJ/gt1oLVqlRwKwlVXPOfnQ2oVSsi/55O9uuLLuR0FAH4ixwmduRYNUcU0q7xZh9RVLke+Ps/6l1t\n/e2C7ffnFV3rXW5KQQgvqBBnLzjqTLu1aHvoxzrtQ0I9e/baRZvrEk3Z9bnRTVopDvs5+VU7UmUF\n7TbQc7+myvAVYfMazNiiqeksnbRZuT/7pLPde4VNlctRgq4njo2KYAUwTinBlarZOYbvXiiMnru6\nXYTNcfMoUSpsFaUI4PPC5riQe1IZVXQYbzWAuoV6ivGiWvq+DYQaFnRAn6fVCJ9z3f1IuZ/8lVMu\npVD3lMaqfSgVuKOsPk7YvDCCNVCG6OcUsjvcPWStpuUToUeCIAiChqWMdZhdsVQlCIIgCLqU0js3\nMzvHzJaa2Ziy9xUEQRAEZVH2OswdgVHUF+o8CIIgCHocZS4rGQD8GjgJ+FaHGU4HNqmy7a8ECQOc\nDbwubHOKpocd106FnQP8RqZ8bpJyATdfb/YWJVRYU9je1PmFF7slffrKpJvMLMbaO3xk0VXb1vfp\nCfam/xSFBqesq4U8c6RKwFkG1F8IQ76vXF45sU6VBuVq5ZINtABiHWGTASYd6hGLeC7NhOuu7YXP\nwOlKPAF8WthvmeLsS8U7vcxJ+wlhu1rYHHGN8n42zrvGhDtEnhA2LzZiUQAH33XSqli6Hh3FD83R\nlx0sUULEdXVauQ0VFcdzK6dEMN5tXNxnXlT3I+g/+7SCbfGOQjT5pBPj8gkRs9ZF3T/V/Rs4QrgS\nvGlq7bu6fgUUPoIy3zCvBG5OKd1V4j6CIAiCoEsoax3m0cB29N7Ae0EQBMEHjDLWYa5HNv6zb0rJ\nWyBU5Cejof+gKuO2eBFDgiAIgqB+epZrvO2BIcCM3Pk6ZCP3I83sdGDVlFJxwPuUsbBJ1TyNnMMM\ngiAIguWlZ7nGu7NQGrgGeBy4RHaWQRAEQdDDKcNxwWKgTSgvM1sMLEgpPe5m/AtC2KaUp46aSjK8\naLrX66/riD72qWeFUQXHBVDuwJT61nELN6GoOLzj/kN02i8WTX3mLC0a+zrHYGBxXz9ZpANbs5UK\nLO0EGb5Y2M5Uaj+lVgSuVsdbKV8hi1VezfCCZdclw2TuKZ8UatDpTzn7ukfYHJdoKhzsdOXCzlGj\nni9st3ghZlX7Usps0OVVKltP/avUqCrAL+j2oWZtlKs4kKp3HFdvslyOwlPeBoXie4mnXFXXrlIf\no73CNQtVcn/H7eFi5UJTBQEHec4O+KpMedCAohu7iX/7TMH27ocdJftvhDL6WG9Fg1BsXzVaJz1V\nqXrrUIEPPa9om6eVwrXQVV554q0yCIIgaGjKjocJQEpp767YTxAEQRCURSlvmGa2jpldZ2bzzewt\nM5tpZs6K7CAIgiDo+ZSxrGQQMIVsUu8AsonITahv8jEIgiAIehRlDMmeAzyfUjqpwtahb7HdLriT\ngSOeaWO7Zc7nignv9eKmKYQ7MjU5DfApEevuJUd8sNmGRduTKiYe1Byn0xMJCIHObrveIZN+4+mi\niOTQ4+8sJnQ8qq37zD8LtnWSFrE8OEnU4SDHHdlvti3a9timaLvXcXl1qDjeE0S9AC3sKD6rTTng\nYJ19+i+E0REjuQIfhRC8bCaC9T3pCEt2mSOMnvBJCWlUvFdgsHDPVwyhCtc+6OxriLA5LhJl3Ejl\nVs4T5wwXNk9gdJKweW701PES9w7P3Z2s7ySd9AbhgnMjEbtzsRcXVYluvHMjbu+TlNgObn93/4Lt\n3Q+rY+DcE49V7baOd6RTvfi2Ko7r74RNCYGAeT3fNd7BwENmNt7M5pnZDDNTrTcIgiAIGoYyOsyN\ngP8iiy2+P/Bj4EdmJhY9BEEQBEFjUMaQbB9gWkqpJULJTDPbGjgFuM7L9NiZ17LSwKpoBq+8B2sf\nU0IRgyAIgg8mPcs13r/IvPpU8jg6pssythxzAgNHbNTGdsveYg4zCIIgCJabnuUabwqwWZVtMzoQ\n/rxsQ3nDqgQI96qJ5NWdLShPJFsXLBtuPVvmfvZoIfr5YVEEA2SDzQWcSX6OFzYllHA8BS0qxuVb\n4gTm+8xZYhvX31S0mXI3AvtwX8H2K6+FHDVSGLWggJeF7WIhvnrgFJ1/gvK086pTMIUQhuzjiH7u\nVCKDP9axLxFHEZBClieVPw8ltAD4qbA5K7VOFs+mP1UeYoANxDG/9qKi7exv6/zfv18YRfxTAIre\nZHR9izFcM1Q8TU8som43XmNWQkDlvcfzdqRwhGLvqvah9u8FnSjGvM2CCSuE4CXdLFN+atVVC7Yb\nz/9yMeH/Op5+5PHyjreId9qkYoICDwn7knr84HjlXT7KmMMcC+xkZuea2cZmdiyZZO2KEvYVBEEQ\nBF1Cp3eYKaWHgMOAY8ge/84Hzkgp3djZ+wqCIAiCrqLTO0wz6wPsDLR43l0Vf8FYEARBEDQEZTku\nOJls8u4xYAfgGjNbmFKKYdkgCIKgISmjw9wZmJBSanFV8Xw+j6nUFEEQBEHQEJTRYU4Fvmpmm6SU\nnjKzbYFdASfgWcZPOIVtq0aIh7BQpPRi5Qm3bIOLqrq/sbPMPeyHDwmro8i9SthOddSNZ6xVtI1r\nEgkdxWP6e8H0wPTDZNIZP1RWETMxCZUa8GluLdh+lbbX5ZJewpyYnkWxMiwQtisct4VDhTuxcSLO\nHcBkFetOHK9zL9f5vTrUjKfgEwriDUR931RKUGCBUvvdo9PepNzgObEzp08XRnFb+L7jTxHlztBz\nbadQ9RKu4ty0ys0ksI9Q/07+kbPdJY69Gs/ln+ItaT1z0/8t2MaoNjdmV73ZM9Wx9Y63up6Uah8O\n4MSC7cb3hUrWUwpvJeow24mPyxNFk74lwRLl+lDdfByFvuvWcvkoo8O8hOyu84SZLSGbJz0/RD9B\nEARBI1NGh3kUcCxwNNkc5nbAODObm1JyPf0EQRAEQU+mjA7zUuB7KaUWl/KzzWw4cC7tuMb71uj3\nWGNQtfW3ZP1vEARBEHQGPcs13moUJwWW0sESlovHrsy2I6rmMPtEZxkEQRB0Jj3LNd7NwDfN7EVg\nNpmaZTSgAg0u42eMYu3qydx9hBupyR2G1mzlM0XT/+V8J7GaoHYERr9URmdyeSdhGydmuPcRMR8B\nJhePwbojtMs+HSFyeNH0Oe2G6tBFKjbhfrpc0hOg44ZqcFEIs8GZxYn/bdPDMvvEvsVYfezjuZBT\nvCJsjhs+lDvGOXXsy1MvCJ4bK4ztauOqGK7N85Xw6GRnG/fUuC9HNMQGwlbPbUXFt31HJ+17RNG2\nxBFvKaHZZK/NKKGXiuXo5VcilM/KlD94tShSGsP3ignPdHYl7zNKQQdSpPQ5LSpbnxeKRnXv8s6t\nPGUqzqjDSY7g730hhlTn9jZH/LVA3eu8uKgdU0aHeTpwMXAlmVPJuWQhvi4uYV9BEARB0CV0eoeZ\nUlpM9nzkPiMFQRAEQaNRt2s8M9vdzCaa2UtmttTMDhFpLjKzuWb2lpndYWbegpwgCIIgaAiWx5ds\nf+Bh4FTEKm0zO5tsWHYUmXefxcAkM1tlBcoZBEEQBN1K3R1mSum2lNK3U0oT0K4kzgAuTin9OaX0\nKJlriXXwZsGr+McNWvjR8Ey5obtLUA4Le2m9AJjY3QUoiT90dwFKQnkt6g301mvMi2Xac+nUOUwz\n2xAYRkU05JTSG2bWTOZjdryXd/zNJ8AjI2Dcodz+n7My4+THRMo63FMNLvbnV8w8S6fdSth0rGkt\nDHzIcU81PP975Y1w3DH5D6F0m3yvzn9d0c3Z6qbcRXkOsoRS7aZrZcqVRdxgVx35aMvgwg3w4tH5\nd+kvTwqQpwr3Z+v2c/b1zaJpxwuLwa4BHuyrghc/Lmz6GNK/on28cxf0OyMbI5GoYMA7OmmVCznl\netG7RNSlOsdJK1yPtVEKXwtsmn9X6sLnhc1RIcqL4TZhA1BBx5VK9kCdfYm69itdtU1jWb32FEnH\nKeUr6GDk9QQeVu1W1QteH1IM1Cyv3OMqvt9zI+yZ3zuuF2mP2lIX67dC/TtHJx1vRxZsOx5SvMYe\n5CS9gaeV0VsW2KJSfZRlyzv+20m6nXgn21ykG69dUt67pHif2aOvWD5RI50d3msY2TBtdcuel/8v\nCIIgCBqSMpaVLB83jIbVBsEz02Dcoblxd+Cg7ixVEARB0KvoOZ5+Xiab1xxK27fMoUAx7EYlx4yF\n4dmQLGdMyGxfVkOyQRAEQbC89BBPPymlZ83sZWAfYBaAma0BNJE5MlD0A+Bf+bzLWwthTsv80jMi\n+b9qL9A8MU/1uBN+SU4APqXTvq48fszRaZ/My/Dmwtbv0jOHk39OcZ7r7Rlqjso7MsIrUNJzhTPk\n84l3vFvqsqjiu+OFaW7xPDwyQ3jESc68oijC4hn/cMql5t9U+KZ3dfbKcEJpYf7bOwbq8nHajNyG\n8go0wMk/V9i8sFTqRFae8zeBluOnZmWUtyPd5rLzX80cJ626btRx8Z6t1b4qj8s7rb+fVm1JeLMB\n9HFUE9cznfwqtJRunzNnLBVWcQxeqyj/ewsrfneQtg3iPC7WaefPKB6bxUv7i5Re+1R4Xq9a6vBO\n695cTGYAACAASURBVHfv2lenQV0KSd/X/zFDhVkrHsOFC5fNWffTBcmw5OzIzWDWn0zGYWR3yjOB\nu4HXUkovmNlZwNnAl8iunIvJJDVbpZT+I7Z3LHB9XYUIgiAIgs7nuJTSb7x/Lk+HuQdZB1md8dqU\n0ol5mu+QrcMcBPwVOC2lJB2gmtlawAFknavjRDIIgiAISqMf2ZqGSSklzzlv/R1mEARBEHwQ6exl\nJUEQBEHQK4kOMwiCIAhqIDrMIAiCIKiB6DCDIAiCoAaiwwyCIAiCGugxHaaZnWZmz5rZ22b2gJl5\nXqx7LL01VqiZnWtm08zsDTObZ2Z/NLNNRbqGqpuZnWJmM81sUf6ZamYHVqVpqDopzOycvD2OqbI3\nVN3M7IK8HpWfx6rSNFSdWjCzdczsOjObn5d9ppmNqErTcHXL7+nV52ypmV1ekaZh6tUjOkwzOwr4\nIXAB8AkylxqTzGxwtxasfnprrNDdgcvJPDbtSxam43YzWxZ2pUHr9gKZk40RwPbAXcAEM9sCGrZO\nbcgfPEdR5aamgev2KJmrzWH5Z7eWfzRqncxsEDCFzP3UAcAWwNeB1yvSNGTdgB1oPVfDgP3I7o3j\noQHrlVIq5QOcBjxL5nTuAWDHdtI+AIyr+G1kfp3OKqt8ZX+ApcAhVba5wOiK32vkx+fI7i5vnXUb\nnNdvt15YtwXAl3tDncj8mD0J7E3mbGRMI58vsgfqGe38v+HqlJfzEuDeDtI0ZN1EPS4D/tGo9Sol\nWknFG+MosiB1o8meGjZNKc2vSjuU7On+pqohiBnAgWZ2Zxll7CI2qqjTOmRPWHOr6jkbONTMpCek\nHsp6ZE+JQ/O69Ia6GdnTb39goZl9hsav04VAM7CQrPNcu8HP10eAzczsFbK3sVnAFWSBHhq1TgCf\nB6aa2e1k98JXgN8Bf8r/38h1q2Ql4ATgVz2wHXafpx8zewBoTimdkf82suGvH6WULq1Keyq+Y/Yg\nCIIg6Cra9SXb6W+YZrYy2VNSS1htUkopf1PcWWTJ3eR/DhgC3EprDEwRRWCtUXrHvxHhRg6YLRJ6\nEQdUxIKNnbTKA/4rwla53dtojSRfjEDiR55QUTW8tKsJmyhrH+cYLr1BGP8tbNB6bK4h87MPOnI9\nqCgVD/3svILtsBG6nf7x3mMLth2+/l2REvxIGdV4Tb+yiY4hiy3gtJkzjy7axtzrbPdZYSvEIugi\nKtuioq+weW2uDFSUDIAtha2yff8c+Gr+/UmR1pNs1HoePuLYVRQVdY9YXirPlzpv9QzCrenYVQSj\nOs75RuKe8sxkJ/HT+d+O7omgw0ipl7x62mfxfjRyZB/uu++70MENpIwh2cFkV9y8Kvs8YDORPk83\nhOwNvV/+F2R4mJVHFG2AbVOMA5N4T6T0buoqFM1GTlrViXiHsmW7/Wi94FSj9ULhqAbjpVWNTpTV\n9DGE+4XtdWGD1mOzWsV3LzLO2gXLiILGFvqN2ELmHqGiTbGhsy8nbFeBlR375hXfB+S/dTg01lfH\nURYWfVPurlgDlW1Rodqy1+bKYA3Hrm4fle17NbJAStX2FtSDANR+HjZw7Kp9eA+ay0Pl+dpK/L+e\nuMFD2tlHNXWc8w+pa0E9JELrw0RH90TIQtFVozrMetrn0IJl0KBlD1PtNoZS5jDrJK/prWQH8EXg\n1/m/tqI60GcQBEEQLD8PAg+1sTQ3W005y+gw55O9H1d340OBl/1sB5G9Wf4a+EJu68qn2iAIgqD3\ns2P+aaWpqQ8TJ57SYc5O7zBTSu+Z2XRgH2AiLBP97AP8yM+5hKyDTLR2lGL96ss6MndaWOvwmNcJ\nizfZDQ7XSZ97QxgvFzYPNcy5j5NWldebJ1PDQGLoccm1Tn5v+FXxfP737YrvXnM6smB5buTXCrbz\n7Hsy9zkHX1A0Nh2ld9V8oTCq4SZv5OW+iu8L8t/qfAPfUsbhznb/LmzrCJsz/CvnaLzhNRWSvvIY\n9K34rY5DcY7Hn6MvDrf7aWsd6nWOd+uSywruqPjex9lHC6peoI+XwmszahRsmpNW1Vcdw8prsQ+t\n1/HjIq0n3FT7qucY1HHdKLmIe69tqe+qFd+9IewBwlbPfUoN9VbPFoI/DdCWsoZkxwDX5B1ny7KS\n1cgUIh2wdUlF6m56a70+0d0FKJHeWrdtursAJbFndxegJHrrtNQO3V2Auimlw0wpjc+99FxENhT7\nMHBASslT3FTQWxtHb62XJyDqDfTWum3X3QUoib26uwAlsW13F6AkosPEzM4FDiOTF75Nph0+O6X0\nj87eVxAEQRB0FWX4ku3Q72gQBEEQNBpliH4OqvxtZl8iUwFsj17oFwRBEAQ9nq5YhzmITMblyf/a\nQb2U6gWup236g4LtyrqqJ9wW/h8n6WihUh14vk67SKk21aJ57wX8z45doeqrnDfMqWObHkrJuG/N\nuTe4rzidffyzv5Np+65cVIjuNPVumfaBjYSi9rlLizbXs4iql3Nu3vyJMHqL25XisFZlIujzWKu6\nE+pzkuCpXBX1LNBf0WVifxA2dVw8u+esQqGuJe8WpvblXc/qeKnjotSh0OolpxKlsgW96L/JSfuo\nsNVzvtTqhaKDgIwnhM1zXKDU4aq+nrJatXu1r9raRqnhvfLlJJcB96eU6nFHEQRBEAQ9irLfMK8i\ncwC5a8n7CYIgCIJSKa3DNLMryNz37J5S+lfHOW6jOBy1CL1YOQiCIAiWh+lUDyE3N9c22FpWPMwr\ngEOBPVJKz3eUPuNAig6he+vaxSAIgqB72D7/tNLUtDITJ57WYc4y1mFeBRwDHAIszgNEAyxKKbWj\nPBgCrFtlU8IM5WIMrpzxDWFVIaC8yWXhbmm0F0dUCIRqDZIBaGHH1Ho24KAm6etxC7eC7OSMvIt2\naI+IdFc6Lr7Eabj/QC0wWumzQiQwTkV88Vxh1RjxxeOAT2n7JOUqTQlDPNGPOmfe5buil3U97UMJ\nMJ5z0tYaEcNzhK3cuqlz61GPS7V6BC//LWxK7Oeh2r1X1sOE7TYnrapDPSJCld+7fyrRTz2CME8k\npYRtnsBHMFCIABf9WCSs7Q2zDNHPKWR3o3vIatvyKToUDYIgCIIGoYx1mKUqb4MgCIKgOyi9czOz\nc8xsqZmNKXtfQRAEQVAWZa/D3BEYBcwscz9BEARBUDaldZhmNoAsGvRJwMKy9hMEQRAEXUGZjguu\nBG5OKd1lZjLUblteFcV5SaQ7T2ff8S1hVC6rPPWZUE1+ei2d9JbNi7Z3PEdGSv11oLDpwNi6Dp76\nTCk8leJwizr2pVxmQVHRDPZHdQ4gLVytuKdhxXQrPeTs6tp7CqaLhziK2ueEwnOcSugp7dQx9C4T\nodD0PJpJhahSeHoqWc+Vn0KVV7lJ8/an1JGearQelapqd3Pq2JeSVnuB19X1VIe6UlJbkOH6qUe9\nq9zKeedAuXtbDg+lbfB80Kh7kqf8V4HTlQs8yIJeVTNH2Bxld9FjKoxSaVdx9t+WstZhHk0WdK/x\nAp4FQRAEgaCMdZjrkfmP3Tel5HlGFihPP1sTzguCIAiCzmMG1ev5u9PTz/ZkXghm5M7XAfoCI83s\ndGDVlJIYT1OefoIgCIKgMxmRf1ppalqFiROVA4q2lNFh3knxtfAa4HHgEt1ZBkEQBEHPpgzHBYuB\nNgoYM1sMLEgpPV7f1lRsQccN1NkHF23f/6RIqFyUgXS7dYsn5FHu+bztKlTcx84QFCixRO3uBeuj\nKMhKTxfFPYCco//5sScUbKdN/6Wzr/EFy7d16Ewu/OhSYVUiAy+WZFHM5IushFu4m6530g4XNiXg\n8NzCqWvBE2QpodknnLRKSKPEIs65dV2aKZTgRAlevG0q13i1i9JgnpNWUY8rwhV9B6jHHaNymPb9\nFdw/+HFFq/Fc6+0ibN55VG4tnQtaCprqcN04Shk3FrbFNW2uq7zyxFtlEARB0NCUHQ8TgJTS3l2x\nnyAIgiAoi1LeMM1sHTO7zszmm9lbZjbTzEZ0nDMIgiAIeiZlLCsZBEwBJgMHAPOBTahvdW4QBEEQ\n9CjKGJI9B3g+pXRShc0LkBcEQRAEDUEZHebBwG1mNh7Yg0xOeVVK6Rf1b2q9gmWlV5TyFd4fqaxK\nVechVGLTttRJP3mvMHqHUikOXxG20U7+6cLmKdVUcFdPDarYWtg8FWJxX1N37ytTXrTk9wXbXxEn\n7FBnhuDVojLwtaOP0WmPEmrO39YTDFg923mux4TrxqNEwFrQHtxG1RPgXOG50VMaO08Zrc6ZUiF6\nrvlUW/ZQx1FdN97x/piwefWqxwVcrYG8nXINFcpmV5CrtluHfxduFrZ6lMr1BHVWnO7YlcrVazMP\nCpt3ztW1q1yLTtbZ+wvbYnVP7L4A0hsB/wU8CewP/Bj4kZl9sYR9BUEQBEGXUMYbZh9gWkqpxeH6\nTDPbGjgFuM7Pplzj/QfYq4QiBkEQBB9MHgTaRnpobvbWP7eljA7zX2RefSp5HDi8/WzKNZ7nGT8I\ngiAIlocd808rTU19mDjxlA5zljEkOwXYrMq2GSH8CYIgCBqYMt4wxwJTzOxcMp9mTWRBpL9a/6aK\nM+dLlzhFVl7G6kIIOLS+CO0mzJt4Vy7N6nl2qGeSXomc1GS6t8LnSWHzRCjFyfidmrVDpyVCWHLj\nll8uJnzCcQi1Q3G4ZJe5jthDeehaYWGKd26HFk07OUM7k1TdhgibF7dSLWOuXZBVn6hC4Q1ZKWGH\nt0117art1iMWKcuJ2HBhc24yIrarL/pRgioV89HZV3/hAnTxhc6+VDuoRwCnBEpXOGn3EDZPeKXu\nU57XVNVm1LFx+oXFSiSlRFZKnFmk098wU0oPAYcBx5A5qjwfOCOldGNn7ysIgiAIuopSXOOllG4F\nbi1j20EQBEHQHXT6G6aZ9TGzi83smdwt3j/N7JudvZ8gCIIg6ErK8vRzMnA8WZivHYBrzGxhSskb\nAA+CIAiCHk0ZHebOwISUUkvgyufN7FjakdD4FIUKSx924vKpFShT6vH2oSZ9PedESkDhiQ+c+J0F\nLnXsKpajh6pDPS58BwibJxIoTpzftcPOMuUdFx5SND6hhAraM9Pg5s8WbE+ttK0u1kHKqJq5Vy8l\nlKjjGP6v0w7m3ymMyuOIFxdVCV48VHm9dqTKIOJ8ugIOdbw8zzWqfSphiSd0+7awqeMKMFXY6oln\n+bSTVqA0OzNrzw4fFzZH9CPDNnqxToWQ0aXWmJxe+1RpvXtiPaJHda99o478ysXW8r+3lbGsZCqw\nj5ltAmBm25J1ZzGnGQRBEDQsZbxhXkL2GPKEmS0h65TPD5VsEARB0MiU0WEeBRwLHE02h7kdMM7M\n5qaU6nSNN5LlGskNgiAIAsnDVI+ZNzfrwBHVlNFhXgp8L6XU4r5+tpkNB86lXV+yyjXeup1fuiAI\nguADzHb5p5Wmpg8xceIZHeYsYw5zNWBJlW1pSfsKgiAIgi6hjDfMm4FvmtmLwGwyn16j8SWn7SAU\nWcKjGgAvKzWqGs6d5mxAKfuUWzvQSrF/OmlrLcMWTn7hCgvPFZZSISrlqffmrvzje/sqSgOv5is6\nqWxlSlqo1W8T7NCCbdfkqIq327dou6Ued2Dq3Doq2aEnFG3zPAXfizXu33Nhp7a7sZNWKTy97aqT\no+pbT8xGz82Yuhb+JGyOEnNX4UZvSj1KUK8dqP0p1ajTDuq6i6rrsR7XjereoeKEgvbP58VQrdUF\np3fvUMpqpVQGrcb3UOehnhiqf6xjXx1TRod5OnAxcCXZUZxLFhPz4hL2FQRBEARdQqd3mCmlxcCZ\n+ScIgiAIegV1zyua2e5mNtHMXjKzpWZWWJVuZheZ2dzcNd4dZuaNGQRBEARBQ7A8Qpz+ZLrcUxGu\nHMzsbLJh2VFkkxaLgUlmtsoKlDMIgiAIupW6h2Rzl3e3AZiZCmZ3BnBxSunPeZrjyWafP0sWH9Nh\nVbK4gw/TKvkVk9be3G5VBO2MPwubF2tP4U1af0bYvIn7lkn2+4Hd2tmXJzBqbidPNUpIo0QCw538\nStjhxYJsEVD8jcwbItzwsxN10gnKqFx/aUHCUF4W1hl6X/cL0c9y8wCwE54I5dNzf1+w3dJ3dh3b\nr+fyq2eQRol+KmN3TqHVl2Stbv9U24L6AtGq61G1OUdgNEjcbvp+qfX70hugzzHZ9yXfFRtQ1y3A\nZGFTAjjn9nWLs1mJEh6pc3tvxfdHaHWfp4RTTzn7Uuf2U05a5WJQtU8nbuW6RxZtL3n3z5a2eB/Z\nWnuoL4ZqPTGC1f1LuctT95ginbrUw8w2JAunuqwFppTeILvra0ejBepywthA3N/dBSiJv3V3AUrE\nU1Q3Ot6NrMHptc7EvEDhjc5fu7sAddPZayOHkQ3TVr8azkPHJQ+CIAiChqCUANLLx5/JhuReAK7N\nbTsC23dbiYIgCILexqT800pz87s15ezsDvNlwMgGqSvfMocCf28/62fIFsVeC7QsCPfmz4IgCIJg\neTgg/7TS1PQyEycqJzFt6dQOM6X0rJm9TDarOgvAzNYAmsgcGSj6AeywQx9WX70vs2YZ22zT4ghX\nxFPr54g93lGB4tRTQz2j0J5XDOVdROmfAN4EYNasJWyzzZvtbPcFJ78SQHjlUt6GVNpFTv6Hhc1z\nSpypr7J65Uqs951zs6Wwra7KpZvj0zOKQoe99nLKtbEoQx/veCla20xWt3fxzu0GM94s2Pbaq559\n1dMW64lrqsrQen1k9VrcTlqFDMRYR37QbamO/BuIc7tn6z1i1syFbLNtnmap8jbkXWPq/Kp5Q0eM\n9CFRrre9eql9/UPYWvPPmtWXbbZp+a2usfnOvtTx9o6BaosqnqVTr4GiXJt698Ts/jNr1ntss03L\nvWipk1Ydc1XWejwYFe/fa665LC5suw3SUvKCfDoZzPqTybqM7OydCdwNvJZSesHMzgLOBr4EzCHz\n8LMVsFVK6T9ie8cC19dViCAIgiDofI5LKf3G++fydJh7kHWQ1RmvTSmdmKf5Dtk6zEFkUqjTUkrS\n2aqZrUX2fjwHeKeuwgRBEATBitOPbL3dpJTSAi9R3R1mEARBEHwQiZBbQRAEQVAD0WEGQRAEQQ1E\nhxkEQRAENRAdZhAEQRDUQI/pMM3sNDN71szeNrMHzEx5U+/R9NbQZ2Z2rplNM7M3zGyemf3RzDYV\n6RqqbmZ2ipnNNLNF+WeqmR1Ylaah6qQws3Py9jimyt5QdTOzC/J6VH4eq0rTUHVqwczWMbPrzGx+\nXvaZZjaiKk3D1S2/p1efs6VmdnlFmoapV4/oMM3sKOCHwAXAJ8g8sE8ys8HdWrD66a2hz3YHLidz\nQLEvsDJwu5ktc8XUoHV7gWzN8AgyH4x3ARPMbAto2Dq1IX/wHEVVVIMGrtujZJ7DhuWfZSGAGrVO\nZjaILITMu2RL7LYAvk6Ft4pGrRuwA63nahiwH9m9cTw0YL1SSqV8gNOAZ8lcwjwA7NhO2geAcRW/\nDXgROKus8pX9IXNdcUiVbS4wuuL3GvnxObK7y1tn3Qbn9dutF9ZtAfDl3lAnYADwJLA32drpMY18\nvsgeqGe08/+Gq1NezkuAeztI05B1E/W4DPhHo9arlDfMet4YzWxlsqf7ypBgiSxAW40hwXo+nRP6\nrMcwiOwp8TXoHXUzsz5mdjSwGjC1N9SJzB3lzSmluyqNDV63TfIpj6fN7Ndm9v/YO/84q8pq/78X\nqCAQkr9ATCWR0MRU0KZMxfIHpqn9NNRultfM1PRi3dS0TL2Veb/5W7tWdvFHWZR1Gcskf6Sm5qiQ\n+JuSQEUEAwMTlRSe7x97D3Pm7M+aOQdmz8yZ1vv1Oq85Z8169n6evZ+9n73389lrbQUN36ZDgIfM\nbFo+5THLzI5t/WeDt20N+bn+KODq/HfDtausbCVTgKtSStdCNlcEHAwcA1xQ5TuGLOjhZtXP7IHR\nwtZIbFtR/53IBpnNq9q0Etihwdp5Mdmj54F5vRu5baOBqcAGwKvAl8kerb+Hxm0TwAFkJ51P5XUd\nQltbGnV/LQHOAZ4he8rxeeB+M/sE2XmkEdsEWR88AbgeOBkYB1xmZiOAm2nc/VXN/mQX27N6YT/s\nmUg/+VXEq8DHUkrNFfapwEYppY9U+Z+AH5g9CIIgCLqLDmPJlnGHuSnZHaNKIj1W+D8KgF0Ptj2s\nngL9Lsr+s/p+4f6Is1q16EKsd7KLHMXtwjbf8V3l2BWj879TyeLRA7ws/P5W8xKHPVQQ3wKwbNoW\nReMF6oLoGmEDjju6aPu+DAFMdjEG2Q3Z/8u/z3R8Rb24RdgGOOWVaM6rl2gDv6h5XZvP3HnN92VT\nvsWwi77KSVwufW9LHyjY7t7tWadeQ4VtK2F73Ck/uMbyIA/rHfZo+/7cFNgqP8aeLGZc0ZlJ1P4C\n2FjYxjm+qh9cW6MfwIvCVnks3gK0ipw/Lnw30YvdSBwjy/8qHOfo8gM/WLS9fkfRBvDeYp/hjyKE\n9piKpBkLp8DIfH/95Wax0EV6XYoRx2j7omXCKM61A/fW5V//nTAu8CqR//0x2RNacLPxnPepou2H\nYn898xdnXb8XtuKxtPfe63P33ReAf9IHekcC6ezoTFdBGgb8GVafk/9rR+D9Ve7ewDJa2FQsd+8u\nf56wqQEX4E3Hrtg2/zuo4vtLwq/2XbHe+J30P/64tTCqAfM2XX4LtW1UmiSA7fO/G5FNU4O+EADY\nRthmC5uX/1QNmK85vqoND9S8rg3G77jme7+N3sIG43dkFG+VvsPS24XVSQElBxbVLtU3QA+4qs+D\n3GeDKrZL/2EVv9U+U7ZHnXUNFzaVzw10P7i1Rj/Qx0jlsTiQtsH2XcJX1RVYr9Y0Vk6S4f6qz83X\nvkOVr+jLgyr6Z7v99UTRtx4pygDv/KeeQooLJ9lWADVgeSm7Ws9Tg2i78FYXhMAosb6Ban9558+n\nhO1pqtMzz5mzZht2mACkjAFzCdllX3XvHE5Hl0L9LgIbD6sOg/7TM9sqdTAFQRAEwdoynuoL66am\nDWhu/mKnJbtcJZtSeoPs2dy+rTYzs/z3fV29viAIgiDoDsp6JHshMNXMZpI9D5tCdv891S2x+hqy\nR4VPw6pcSDv8K8LRmYNcfFnRNkFcMXjTbOwjbN7jyOrpWfAfEbZm8l5Z8b2eLPVFljwzQv/jTfWo\n4iZh+4iwAdurDOnO419a8r/LacsCr7LBA2zu2KvxuuOfhE094oTdV91dsD3Y/y1Fx12OlOUfXdX2\nKOyI9AY3rNqJq/ofJ31fk4+R/l36ysec/cWjy1XbF22A3o9POr5iTm12xb5dVfF7uHjUu1g9sp/o\nrEvN/XuPb9VyVV983imv5jAPr/h+N5Dv19Giz839gV7sqM8VbePEvrnLmZ+WT2rVI3ScKWrR72f/\nsuLHCxW/vTnyGpf7jHcCVPcyJxVNXgye2erRpzfF0jqttrLiuzOds6J4TlvvD0XfNzf/lbMuhZqH\nrW0euJQBM6U0LX/n8lyyR7EPA5NSSjUoW3bu3KUhaRTld714IqrG52OTe0UgrK7HjujpGpTEh3q6\nAiWxZ+cuDcmunbv0MkoT/aSUrgSurL/kLl1el97BhJ6uQEkc0NMVKI2PT+7f01Uoh34xYDYWfXXA\nbLybiC6/hLYaA3UHQRAEQSNRxjOnTgN1B0EQBEGj0eWPZFNKB1X+NrPPkM3WTwDu8UuupCCcUe9P\nv+K8AzlOCHxOE36HO8KU9cTjgYk6QAC3qxf/m7QvdwrbQmEb6ZQX077PO2KkfZVRtdcRi4xTIqt7\nta9crvf+nBJJKSGQEh2BFh49KD2XmHo5/bmiaT29roGvFd+9/c/5OhDV6XZpwWYLVaeFtNXbikYZ\n/8J7x1e92D3K8RWPkt9sKdoAFqt984ywKVEH6PdOPTGSQok1vGtrJRBSdQUmjynavukIsj4jbLeI\n/tF0YNEGWbC3amY4wqdN9ivaFlwkHL35Pe89X8WWRdPnnamhq2YI48+Lpv89vGgD5+mqJ4RU7zU7\noh9xOHxvky8UbJ/De4ipRHTqwPPeGW1Pd6ga2gXqDoIgCIJGpNQBM3//8mLgnpSSClERBEEQBA1B\n2aHxriSLk/W+zl1vofB+4hvvgPX7qqIvCIIg6H5+l3/aaGlxwh5WUdqAaWaXAwcBe6WUXui8xIEU\ngi7HYBkEQRB0KQdQ/TpcU9NimpsP67RkKQNmPlgeBkxMKdUTmiIIgiAIeiVdPmCa2ZXAEcChwAoz\naw3Cvjyl1EEk+K0oqP7OFkq1HztVFlGv3rpzMcTW3z3V55ujirZFOvyaVCFKtR/oVEdK8ehkUlCK\n2ju15+CTi4pardl02EmlcHLS+XCXsHkvIiulmgrF9XWn/FWOvci8STsWjd8r2rY9TqfRGvBHYXzC\nyRn7+aLC9M0HtNr53H/+Z8F2Tn8VZ8wJWyjxVIhK8ehlkhHhz2TmnnrUmeuK1y51PDrHqMoMyFzt\nO0XshzdFGL8fOFGtLlf9QyhUAb4nbHsoZbS3DepBBHLwMq9JZXKxL79vZ53p6F5Z/hPOuoT61lN8\nTy+ahp7wD+HohTHdSNjUMfqqU749ZYh+jicLpHgn2dm+9ePokYMgCIKg91PGe5h9NABnEARB8K9M\n6YObmZ1uZqvN7MKy1xUEQRAEZVH2e5i7A8cBs8tcTxAEQRCUTZmvlQwBrgeOBb7WeYnnKMRBem9x\nMn34l5QgQbP4q28XVjVhDJwmxAOvOAt+XE3Ie+G81EJGFU3bOGH4nhlUtN2mw7qtOHgzpw7VOAKj\nSSL01wyRZxRQ7V3vRZ078839RW7A2UVxy9mrvirLn9P/DGFVoiOyRHJV/O+MyQXbSBmeEEykd0yO\n5oc0v2C6+t3a+etHX1CwncP5Rcd9VWg/4HaR09MVKjh9XHKtsHkCoXVF5YHtQAdYzWCxbVY4/WDF\nPkXbZJ3McesfzynYnv33Ygi7tx6t83T+/QwlItGinbc3FcVm86SgyhENydywDvsVt9dPT9Dnz2FJ\neQAAIABJREFUmclfFBlRDiy+Pj/VRIhHYAwqZ+wop2LqGJmvXZ9WS1W+TkaXn4hz2pFevtXOKfMO\n8wrgppTSHSWuIwiCIAi6hbLew5xMlthytzKWHwRBEATdTRnvYb6NLH7sfimlOl7eEqHxbn0H7B/R\nfoIgCIKu4v+ofsGzpaW2N9bLuMOcAGwGzMqDr0P2pv/eZnYSMCAlNSskQuPFYBkEQRB0KR/OP200\nNf2F5uYPdFqyjAHzNooJDKeSJck7Xw+WQRAEQdC7KSNwwQqgXSovM1sBLE0p1ZNZFi4vmhZvs0XR\nCHCEUODdU4fab4lQnl5dz9juqWRVUmWh7FN5fAEZ+utbTr12dRSDBY7W5hkPCKO3DYpP29/cXIW7\nA626LHaFc+7+tlP+l8KmVKPAkjsLpufYqmD77Mif6vJqN/7M2QbfKCYSP9bJszx9uwOKxqli3+6j\ny3O7Ur4626AuNeq6hmBTdfCOhXVMifvfwnaCExrvb2Kf3T9Nuj77pghCdmPR1HS1TsJ9yxIRgs4J\n2TfvYBG6kV8Lm5Br18vtxVCXPzcv4JoI1ykiLJ6Mp5pXCbO9vqXC2Dn9c9+iaeLy3wtHpfYGceij\nz0fFxPGK7orKE3eVQRAEQUNTdj5MAFJKnT8cDoIgCIJeTCl3mGY20syuM7MlZvaqmc02My+VRRAE\nQRD0esp4rWQYcC/ZQ/hJwBJgDDqnVRAEQRA0BGU8kj0deDaldGyF7Zm1WpIQUPz3ll+Wrv+5/RVF\n4+EiJNvJzquhA9U0qzf1qiaoN3d8lRBHTHoXo1Bl3C4m0/fwcr+9VdhU2K6bnPJq4tuLD6jEHmMd\nX7EfhOjHTZ+nBAWjz9auzxT32Vn7F2cE/uOvF8viQ08o9o+zJ6jQfHAOxbBb9gVdrUPH/E5YRa5R\nlcoSgInC5okqlHjLY13zXKpjwRMYqX6rjhun/AmiXRPerX1nCoFRsyN4OVUI/rYs9qOxVgyhB3AL\nhwirEgIBH1MLUO31BF118Gyxz5zJLtL1Ror5Whlc3C5HcZ0s/1u13AdEWE+Ad6u2OeEcry7Gxhty\n1QYF2+tOOMft9nikYHt67LuKjpvWJn4r45HsIcBDZjbNzBab2SwzO7bTUkEQBEHQiyljwNwW+AIw\nBziALMf4pWb2byWsKwiCIAi6hTIeyfYDHkgptWYomW1m44DjwbmfB2RovL+/A94a0X6CIAiCLuLl\nG+Dl9u9ht9y6rKaiZQyYL1CcoHoS+GjHxURovBgsgyAIgq5k6BHZp4Km982i+Ued5wop45HsvRTV\nH2NZW+FPEARBEPQCyrjDvAi418zOAKYBTWRJpD/XcbHBFNSUs4vqyEs4RRcXIZRUMmGt1CMb5gvc\nrX1RyrxiGKoMtYmF7fYFTnkVM2+54/ugsE0qmrZ8py7+/LeEsR4VpRf6zNuOVSzRocvkPpu71PEt\nLsNOKHoNvmi1Lj68qAw859si0TPAbkUlZTpHu76pIqJdJbatWD8Ak/Yp2mYUk1J3DfWE1vu0sDnh\n6qR61wunqBAH6UxHJVudjB5gfWfbzi3ux8lv/m/BdslvTnfW9WNhU8pw4HPqRKWoJwm4w1XFEIV/\nPVcn0QaRVPmVcwumT31ThakEKPpyrbO9h4uhYLFz4KRZBdOS/nuohcriT08Sitg5YtuOXanXX0WX\n32GmlB4CPgIcQfY+wJnAKSklJ3hnEARBEPR+SgmNl1K6Gbi5jGUHQRAEQU/Q5XeYZtbPzM4zs7/m\nYfGeNrOzuno9QRAEQdCdlBXp5/NkkxtPALsBU81sWUpJJOwKgiAIgt5PGQPme4HpKaVWFcyzZnYk\nWilTwQAKefRScdJ6wb3OpPUXhW2JctxSl/93tUw1uQxwtWNXCPEBajJ8fh3LdNogc+gtLJqGOKIf\nhghbMQxVhgjrxs8dXyV0UMKl+U551U2d/HdsXzRtVDTZZk7Ywz8K22TtunXLnwu2/uNWSd9NH3tW\nWIVYZIVel9bceOEY11WQruI0esItIeTp77xBtkqJgVToRtFnAd0/HbEIxfPEgKaDpOfKVBSAPWHi\nGPmIsypeFLZNHN/53kKq8PatyjXqhOn+r+J55uN3qtybIEU76rj7mnfPI4R5l3/P8R3n2BWjhU0J\nIZ2EwrfdJoz7CduAmmpTxmsl9wH7mtkYADPbmewIjDnNIAiCoGEp4w7zfDJN9VNmtopsUD4zVLJB\nEARBI1PGgPlJ4EiyB1lPALsAl5jZwpRSB6HxfkHxccPruFH/gyAIgqBubgCqQuO19FxovAuAb6eU\nWie0HjezUcAZdBhL9uPA1lU29aw5CIIgCNaWI/JPG01Ns2hu7jw0XhkD5iCgWvmwms7mSzf+OKw/\nvr1NRX/Y62hnASqfmRd5RiC3hBd5pr+w1ZOjUtX1T055NcnvrUswXFx0zClGz8gYJWz1RO9REWI8\nX0X1BVMrSgSitisoUcWsDxSFQLveL5KtAvy6uWhbovIdwrz5RWFI/ye18OlvY5UQRuQFHO2Ika5Q\nogYd3URvL6VqA5kb9bA9i7bpXr5AEalne5X0EVggoq4sL+Yr9KNLKQGdF1VIiH42VPleYeV/FLfj\n99i/YNvz2T/I8mmkqu9fnHptJmzq5ONF+lECH+80fmnRdI/XD9TxpNbl1UttA52jEsYLm3eOUJGg\n6jivS18lunSiElVRxoB5E3CWmS0AHifbOlOAH5awriAIgiDoFsoYME8CzgOuINNGLyTLiXleCesK\ngiAIgm6h7tdKzGwvM2s2s+fNbLWZHVr5/5TSCuAVshdbjOwZ2XUpJfU8JQiCIAgagrV5D3MwWR6Q\nE4DChIuZnUZ2l3kcWbCCFcAMM/PegA+CIAiCXk/dA2ZK6ZaU0tdTStPRM6WnAOellH6dUnqMLETe\nSODDNa3gtRvqrVKD8FBPV6AkVEqxvkKtYqVG41c9XYGSmNnTFSgJmaewD+CJKnsvXTqHaWZvB0ZQ\nEaMtpfSymbWQhczzt9BLr5Cpqq6Dlw/OjSoE3HxnAcXcmTpenqMwHaGMjmJRxilT6jeAv+V//0hb\nmCe12b1QWErl5YWgE22Te9jLJamUo15Ew1aF5w1kDxvAzwmqnsar/eCpPtU2UOHIQCmQL+Okgu3q\nzxdtAJxVqSC+CRgCb2iV7Llnqf6hwsrhdFvRv3+ji8ttcPYHtes5Ku/kNVXfWxWMYt9MV+3ywu0d\nWTQ9/oTju4OwqX2ulOGgFZqVtlnAhOzrsKaC58gBWon+8nuKdXiYnQu2dOpgp15KQeypilUdOguf\n+TAdh5PzZrvUdpzv+Cq1sVLJegrmeoaS1vB8V5C9VAFSMQ7QX5zDV6lwiN7580lh+62weYre9nR1\naLwRZKNMtQZ+Mc6QFARBEASNQBmxZIMgCIKgz9HVr5UsInuWMJz2d5nD8d/Mz/kqWQjambSlh3gb\nnSY5CYIgCIKauRO4q52lpaW2lzi6dMBMKc0zs0Vk+ZweATCzoUAT2QNrRR4e5jPAO8gGztPzf91K\nce6kmIon4zlhUxFtnAgvc9WmmO+sSz3v9tLDtM4DvE5bBBYVKUhHIdFpsLxtsFIsVm0DLwrJ88JW\nTGGV0Tqf8wpt29RLy6RSXqnt7dVL7VtvexW3wdJZxTnnWW7oyBcqvr+e/X5VR0Z6QVpV5BogqXRP\nfy2aVnpRmOaJCnjzZKpmlf3zddr2tdo3qg7eHObjwqZTnOl5PbXPvRxnr3bi+xpr+sqbxTa8Pss5\n9ucV52yfnSXm+V/y9o3uCRp1Yv6bsFUeH5XnjnpQ23uY4ztf2OpplzqnecNL6/Z+lbZ+7egqktrm\nql4y/x16HnYccFQ7y9ixK1i8eCb44coAsJQ8YYtTwGwwWdwpIzuyTgV+D7yUUnrOzL4CnEY2As4n\nC1iwI7BjSqlwlstzZYrEgEEQBEHQrRyVUvqJ98+1GTAnkg2Q1QWvSSkdk/t8g+w9zGHAH4ATU0pP\nO8vbBJhENrh6lwlBEARBUBYDyYJpz0gpea8R1D9gBkEQBMG/IqGSDYIgCIIaiAEzCIIgCGogBswg\nCIIgqIEYMIMgCIKgBmLADIIgCIIa6DUDppmdaGbzzOw1M7vfzHbv6TrVS2e5QnOfc81soZm9ama3\nmtl2PVHXejCzM8zsATN72cwWm9mvzOwdwq+h2mZmx5vZbDNbnn/uM7MDq3waqk0KMzs9748XVtkb\nqm1mdnbejsrPE1U+DdWmVsxspJldZ2ZL8rrPNrPxVT4N17b8nF69z1ab2WUVPg3Trl4xYJrZJ4Hv\nAmcDuwKzyXJobtqjFaufvpordC/gMrKITfuRpRr5nZmtSYfQoG17jizIxniyNBd3ANPNbAdo2Da1\nI7/wPI7smKq0N2rbHiMLtTki/+zZ+o9GbZOZDQPuJQtTNYksrcuXqAhT06htA3ajbV+NAPYnOzdO\ngwZsV0qplA9wIlnco9eA+4HdO/C9H7ik4rcBC4CvlFW/sj9k8esOrbItBKZU/B6ab5/De7q+dbZt\n07x9e/bBti0FPtsX2gQMAeYAHyALNnJhI+8vsgvqWR38v+HalNfzfOCuTnwasm2iHRcDf27UdnV1\n8HWg3R3jccADwBSyq4Z3pJSWVPkOJ7u6v7HqEcQs4EAzu62MOnYT21a0aSTZFdbCqnY+DhxmZjIS\nUi/lbWRXicPztvSFthnZ1e9gYJmZfYjGb9M5QAuwjGzw3LzB99cWwFgze5HsbuwR4HKyRA+N2iaA\nTwD3mdnvyM6FL5Ilvf2//P+N3LZK1gOOBq7thf2w5yL9mNn9QEtK6ZT8t5E9/ro0pXRBle8J+IHZ\ngyAIgqC76DCWbJffYZrZ+mRXSd9qtaWUUn6n+F5RJE8v8AlgM+Bm4KD8X0cXvfupqPjAahWG9g/C\ntr8uz/cde604GcPXZFiobJeXzaFG1j9O29/4kTCqrOsqc73HZo69NcPCLcCBjk9PILLGjBP96DG1\nraD9tP6vgQ/hZ0bZQticDA8fFPvstyJbCXfq8r89qmA6d7OvSdev77aXXsYabgCOyL+r+h4jbD9z\nlrWzsN3n+Kp6qQwi3vEhjt0PbtT2feYUmHBR9v23vy36jvmgXqxKmPL/hO3LKpsPwAxhU8cdyExD\nuxf3LQ9Wno8qjzF17P/KWdfbi6Z+uzjVUul71H6421mXSsP4hLABp+T7sXkKHJrvr0u84/Gjwjat\naNrfOSfeeo2z3PbsvfcA7r77/4GfogooYcAkm9/qT/t8mOS/xwr/3G8zsjv0gflfyPQ/VZhXZZX6\nZ4GwjRc20Ce/enirY28dnCrbVVvuNZd+XhtuEbYhwqZS3niMdOyt+2Eg677tuhJxohqstpfaVtA+\nTdGGwJb4OQG2qb1aG6s6qExCTjq1nYrHwqiRXp8bJWyVT5IG0XHdxXHHvY6vOqRFKjIAthc2ddx6\nA6YYnDfeuO37+sMqtvOTRd9B3nEjGK2M3vZ+VNjUcQeybUNVvSqPqcpjTPl6acfEvjFvG6inkOo8\n5aV5GydsTvq5t+V12HBY23f3eFQXZOJGSB5fALXN6A0btua80WECkFLmMOsk3ys3k3WMBcD1+b+2\npi2ZdBAEQRCsKw9TJRqnpcV5cllFGQPmErLLqOFV9uHAIr/YQWR3M9cDn8ptMVgGQRAEXcku+aeN\npqYNaW4+pdOSXf4eZkrpDWAmsG+rLRf97Is/uREEQRAEvZqyHsleCEw1s5m0vVYyCJjqF/k02dzJ\n1sAn/eq5ehk1Flff5GoTAIvVpljHucZ2y9ixk+V5u8KKpmGO6+I3hPEQYfNEYKp+nQmE1NxFTyLm\nTeRm98RMCyu+70DHUxqfEbZztKt8tjJX2NS8Jpw+8tsF26YsEZ4ASpxS2Te2xZ+LAni5k/KVKNGO\nJ4Cr9XpZzXVCFjujih/vW/FjV/jxPfl30b5vi2MJ4CDxpsB85ajEPaC3jffe/fFFkzqEbq+Ym+U9\nQOvvm4q+w4/Vq6pWkQDv+efvpev9499fNKru9fxLel0ThcDoLud81zqtuN7kiinGD2lfNhG2oUVT\ni1Nc7htVr/W9BbSjlAEzpTQtj9JzLtkQ9TAwKaX0t45LQttg2dfYqacrUBJ9tV3Qd9vWV9u1X09X\noCQm9HQFymGLIzr36WWUJvpJKV0JXFnW8oMgCIKgO+nyOcxaA3UHQRAEQSNRRvD1TgN1B0EQBEGj\n0eWPZFNKB1X+NrPPkMVGnADco8oAsMV6MKBq4vUwMUn/Q6f8CjV/IQIXLPZCAa6rwMcLBqAEEEpI\n461fXGd4b9tcImybiMn4pY74QXYHT/SjxCmeQKbWbtYVIivBbsI205vvUoIop14iqBArncXKTaAE\nCVvK4luKqCmTvniXs7J9hO3fHd+rhU1tA0ctt72IotTkrOqaR4TxTmH7k7MAhdc/xXH3gOOqzjNX\nqfNEbe/qZXh9XojS7lL3Es5L/0oQtdgLuVq033+RE5VLnRP2FNvgZ4445i4V2MLZ4OOmFG0zvPsp\ntQzhO3+mU16d69S5q7ZzVHek9xpGFmbEkVcFQRAEQe+n1AEzf//yYuCelJITWDAIgiAIej9lh8a7\nEngn8L5OPV+aAv2qXjCccwSMbTzpcRAEQdBbeZgsM1wbPRkaDwAzu5ws3t1eKSUnhUMFG18EA6oC\n6I715tqCIAiCYG1QofEG1RQar6wE0pcDhwETU0rP1lKm/3UrsHe1n8B/80Yxcb9CRSEBmfLlYyIC\nxsNO8bkq0sSvHed66DD4fQ0Iwcl2dRSXqVC93V5Pd6gnRVhJYp5a+Zm68BJiKECLtBxBlxJfedmE\nZqh+q8QaOiPGB7m5YHvzPGddMrusd9woAYTat44I5SmxbVXwH4CD31W0/UYIl8Z+RZef8y1h9FJu\niT53uSP4WyLaNkGJULwwYQuFzZNsiA4ySUT/edjZ3hPGFG0zvX0rUq582anX20REnQ8Lv595YiR1\n3OwrbDiRyjZWRvyoZNWIvgXoc3g9kZnaU0Y+zCvJku0dCqwws9ZetjyltK6jRxAEQRD0CGWIfo4n\nC/Z3J9mlV+vn8BLWFQRBEATdQhnZSvqllPq3foAzyV6GcVJ9B0EQBEHvp+zXSnYHjqM6W2cQBEEQ\nNBilDZhmNoQsG/SxwLKy1hMEQRAE3UGZ72FeAdyUUrrDzL7WmfOFw05lu03bK60Ovu0O4SnywQEy\n9Ncvi+qxY968Tpb+Uf8RndRwbfFC8VXj7Qqh6FKh3lxUODIvt6FSwI10fOtRyfYw+4p9cKOUDyPD\nbnkqWZWJzlPJyn8o9bB+ZXkP+2PB9sGNisrZjOJ+/Nyq24Qf/KD/Z4R1ak3LBOAnYtseOV+62g82\nL9jSO79YdPQOxTlKSTnKcd61aFqiwreBzK94mUiBtsdjTnmFpyYVytHvqL7ohKBTKVRdBbQIMdg0\nUbtuKvbjEepc6yhfZXtv0a6PKUWrJ60+W9guELb5TvmupazXSiaTzVnWdWoPgiAIgt5KGa+VvI0s\nHN5+KSXvViYIgiAIGooy7jAnAJsBs/JYspCF+d/bzE4CBqSUCvf/P5jyNIOGVVVn8Q2wVYTGC4Ig\nCLqKR4H2j9dbWmobCssYMG8DqicApgJPAuerwRLgcxdtx3bjq+YwPxGDZRAEQdCV7ET1ENXUNJTm\n5i91WrKMfJgroH3yPjNbASxNKT3plTvlwv+Bzatiyd6oJo29EErXioUWc/VNffEzTnkVhKieSX4V\nGspDCWa8fHCiXvfXsSruE7ai+CJDhfjy8nyqrlNWCLx1XNc+wnbjVY7zHsKmtgtw0P/UXgcp4hDC\nFDaSpV+0Ysi8a9ycBkWxxsHrfV16/uDSk4vGk5Uow5ldOfJRYdSClzRS2cWx0PJuvS62ETYvNJ7K\nd+qJfkR7DxKiH4Y45V8RNtWPnHVxubA5p+ZlPxZG79whtk1LPbNks4TtE47vDGETYiqAn80TRtWP\nvDqMcnwV6rhT+6a27JPdkQ8TapeKBkEQBEGvpOz0XgCklD7QHesJgiAIgrIo5Q7TzEaa2XVmtsTM\nXjWz2WY2vvOSQRAEQdA7KeO1kmFkkwW3A5OAJcAY/MmwIAiCIOj1lPFI9nTg2ZRSZTLKZ0pYTxAE\nQRB0G2UMmIcAt5jZNGAimVTrypTSDzsq9OCY3Rm/TftktP3PXlV0POccZwkiq7JIFv3Gzlq51X9L\nsS5PgCfxQsWpBL31lC/qpc45+T+l59lTlIpvcY3r99jesYuwWy7rqqhdR/XtF1XoMZUwHHRdnTBl\nO4rEv497/fOfBctfVhUTnI/Z2Ol0y1WYMk90XlRNDtJvc3Hfyf0Ltj3wFMQKpSD2+pw69oRy9nUv\n1JtKuO2pG1UdnHB1ww4s2ooCe7jkg866VJJjVVdg0j5F2wylWveyxCv17nzHV21HRyl8qQhBd7JS\n1HrHojr3KPUw6OTtezu+6k2FHYRNJNYG9FsVqs/Ulqq5jDnMbYEvAHOAA4DvAZea2b+VsK4gCIIg\n6BbKuMPsBzyQUmoNuD7bzMaRJZbWkc+BU2+AjQZVXQVvewPsFMELgiAIgq7invzTRkuLeMIoKGPA\nfIHis6IngY92VOjCIyg+kn0mBssgCIKgK9kz/7TR1PQ6zc2f6rRkGY9k7wXGVtnGEsKfIAiCoIEp\n4w7zIuBeMzsDmAY0kSWR/lxHhZo/NInZ46smaD+tPJ1wS4iJe3HB8IvPHqyLK53DCc6qJN6mXNdw\ncVaw/NwOd3yLORP1+uvJZVmPaMgLD9jDuTP33aRou927flOT/06Ys8d/ubY1AuC69RYVjds6zsuV\neMzLuVhMP7vfC1/Wi91GiIH+qfpMURyU4Ql0FOoY2UzYVDi0Ohk7vGib44SQ+5iwXaLCHh5ZRwUc\noZi6iZmh9qMStoAW26kQi+CHAhRspYyDiqaxKrQfMEeFMfXOfSq8nxcOUYngVE7OJ4QNtMBHbe8N\nnPLt6fI7zJTSQ8BHgCPIAgSeCZySUvppV68rCIIgCLqLUkLjpZRuBrx08EEQBEHQcHT5HaaZ9TOz\n88zsr3lYvKfN7KyuXk8QBEEQdCdlRfr5PNkM5BPAbsBUM1uWUlJ5bIIgCIKg11PGgPleYHpKqXUW\n+FkzOxJ/VheA8/73mzCjKj77J4Xjjz2RwV1F0/TimywbHvOqLl7U1tSJl2NSTf6rSWcv1G4xB+Bj\nz6toHwB/FbanHN9a+VsdvvXk2lOUJJxapoyivwC6DZ64RuVn9Cgu46tLi4Kbcw9xis99sOY1vWtV\n0bf/pvo9s0deExFS+iuhxGhnbU6uUIlarjpuvO09UtgcIc+cacK4pfZtEQf/RiKK03IlVvFw2rCp\nMqo2eJG0JhZN6jwJ8DMlYPuI9v2IOsaE2O0zzrrOUKI075ym9oPK2wtyO54mRHzf8QRO6pyiohLV\nNgCU8VrJfcC+ZjYGwMx2Bt5HzGkGQRAEDUwZd5jnk7378ZSZrSIblM8MlWwQBEHQyJQxYH6S7IWl\nyWRzmLsAl5jZwpSSGxqPm6fAwGHtbQdPhokR7ScIgiDoKh4A2k9btLTUVrKMAfMC4NsppZ/nvx83\ns1HAGXQQS5aDLoKRVXOYzjuyQRAEQbB2vJtqSU1Tk9HcfFynJcuYwxwEVCsMVpe0riAIgiDoFsq4\nw7wJOMvMFgCPA+OBKUCH+TBHHDOfDcYPbmd79rvVIWnBDTm1m4jtfkxR+XTonNt0+WHKWI9qsx61\n4FuFzVOYihBu3/VybHZnuF5VBy+nXK2+6xpG0OE9wjbTU2J+VdgecXxVODCPYuitgY+vLrrN8crr\nfJaKRyY1FY1/v0z67nTmX4T1YmHzjgWlFPb6oeoHLzq+CqXY9uql7E5IyWuFTamVl3vHqFqXE1JS\ndhmh+mR3XX5foea80esbSk3vnadEjsoPiVCXo5ziMvflOMdXqaW9sIMXFU3fmSf8HLW0RNW1ttB4\nZQyYJwHnAVeQacYXkuXEPK+EdQVBEARBt9DlA2ZKaQVwav4JgiAIgj5B3fOKZraXmTWb2fNmttrM\nDhU+55rZwjw03q1mtl3XVDcIgiAIeoa1EeIMBh4mS35VeHhuZqeRPZY9jkyKtAKYYWa1PSQOgiAI\ngl5I3Y9k85B3twCYmYondApwXkrp17nPp8lmwD9Mlh9Tsuj7o2DkWHj0Btgpf/dSRp51Jt4XiKr8\nTPgtcSpw2wJh9EQoarN5vq2hvx4iC6sL9YWQ27houtjL/bauoemUKEOHVGsTX/2Jtnx8nuhHCbU8\n3xK4YqkweqEMK7mBLEudEilAfdtbiGP2En12Z0fAsUTlGnX2zY/Ett26MszZDGBS9vV8dQirds3V\n65Lb0RNgbC9sKgScJ2pTfaayro/SJnR5VPgKMRTABNHe8aOKtuc9gZI69kU+TnAiMioRYGVIy1tY\nk+93qwlF11lOWLdd9ynaVs3Uvkwtmn7z7wXTwdN1wLbfHKH6jLMNuDv/OxvYOf/uRU5V4jyljFvu\nlFf7Rh1Ltd07dumrHmb2dmAEcHurLaX0MtBCFmO2cx7tqwGBHurpCpSEF/OyL9BX++KMnq5ASTzW\n0xUoib66v9RFTe+mq9+NHEH2mLZaU704/18QBEEQNCSlJJBeK27JQ+M9/wD85LDMtnIyDIjQeEEQ\nBEFX8RDVT/x6KjTeIrI8KcNpf5c5nM6e3R2Yh8b7yWFw5PTMFtkzgyAIgi5lN9r0JBlNTf1obv5C\npyW7dMBMKc0zs0XAvuThUcxsKNls+xVOsYEAY3mKQQnmsozRaVb2nx2EtwrSALDRrKJtqPDr54gq\ndvVytylEhBaXbNJ67txVjB7dOoHtCWkUKn+nyntZb70UaoLciyKSTfLPnZsYPboz8cu6ipHWlceF\nbYXj29aP5s5dxujRs/Cjo9SzvZVwSPTZrZzt3W9l7eufM7to2/X5NV/nzn2N0aNbo/EowUg9EZf+\nUUd5T3G3LutvY+5cGO2l7QTc3LAmjsetxf5aXU+9nLy7W4l9bs8Jx/5rvrXbX0PE/lI/Ur42AAAg\nAElEQVSBbwB2EX1ptReFSQiqrNiPNp2lBXC77qqszysjrf02O3e09mE3xJVAia+8yF3qGCn6brjh\nGpunOAPAUqo95BaAmQ0GtiM70maRBSj4PfBSSuk5M/sKcBpZqtH5ZBF+dgR2TCn9UyzvSKCezKxB\nEARBUAZHpZR+4v1zbQbMiWQDZHXBa1JKx+Q+3yB7D3MY8AfgxJTS087yNiHTuM+nW981CIIgCAIg\nu7McBcxIKan30IC1GDCDIAiC4F+RSLkVBEEQBDUQA2YQBEEQ1EAMmEEQBEFQAzFgBkEQBEEN9JoB\n08xONLN5Zvaamd1vZk7K8d5LX019ZmZnmNkDZvaymS02s1+Z2TuEX0O1zcyON7PZZrY8/9xnZgdW\n+TRUmxRmdnreHy+ssjdU28zs7LwdlZ8nqnwaqk2tmNlIM7vOzJbkdZ9tZuOrfBqubfk5vXqfrTaz\nyyp8GqZdvWLANLNPAt8FziZLfTGbLCXYpj1asfrpq6nP9gIuIwtAsR9Z+pHfmdmatBQN2rbnyN4Z\nHg9MAO4AppvZDtCwbWpHfuF5HNkxVWlv1LY9RhY5bET+2bP1H43aJjMbBtwLrCR7xW4H4EvA3yt8\nGrJtZCF1RlR89ic7N06DBmxXSqmUD3AiWQyK14D7gd078L0fuKTitwELgK+UVb+yP2QhJg6tsi0E\nplT8Hppvn8N7ur51tm3TvH179sG2LQU+2xfaBAwhC6HyAbJ3py9s5P1FdkE9q4P/N1yb8nqeD9zV\niU9Dtk2042Lgz43arlLuMOu5YzSz9cmu7itTgiXgNmpNCdYAdEnqs97DMLKrxJegb7TNzPqZ2WRg\nEHBfX2gTWTjKm1JKd1QaG7xtY/Ipj7lmdr2ZbQUN36ZDgIfMbFo+5THLzI5t/WeDt20N+bn+KODq\n/HfDtausbCVTgKtSStdCNlcEHAwcA1xQ5TuGLHDiZtXP7IHRwtZIbFtR/53IBpnNq9q0Etihwdp5\nMdmj54F5vRu5baPJsuduQBYA9Mtkj9bfQ+O2CeAAspPOp/K6DqGtLY26v5YA5wDPkD3l+Dxwv5l9\nguw80ohtgqwPngBcD5wMjAMuM7MRwM007v6qZn+yi+1ZvbAf9kykn/wq4lXgYyml5gr7VGCjlNJH\nqvxPwA/MHgRBEATdRYexZMu4w9yU7I5RJZEeK/zztNsfBzYju6A6KP+XyCKw7XF6rX+9SRhfFjYv\nnYEK+V+IFZ/TX9ic7AS0zl3/GvhQB8vdwik/QNi8CyCROUJtr7/+yCn/VmHb2PFtzS5wC3Cg49OK\n6maDhG0zp/xcYdvP8f2DsI0SNi8DSeU2bG2b2t+gs844h9RhxxRt078vHPfW5cdsX7T95VmnXncL\nW2X/rNxnYrnyMHWy+ZwkUgotcKq1g7g4/7bKfqH6IWTHUDWV6Yt+BbRej6vjsZ4sQYq9HLvqc4Md\nX9WXVFqlymw6NwIfy7+rjCkqYwxkOTKqOOYD2vVHKv+FEqtOcNalyju+G4/L/v5jCrzlouz7S+pY\nAHi7sCk9kDrXQ5b3o5o/Fix7770+d999AWQxzV16QwLpvGc8SHZXvIRMrAhZY3dq772hd5f+iLCp\ng3yMU151RC8WvNpsXqdtzRazIbBlB8sd1Un5StRgA7K9cnvd4pTfvEYbtHXQgfiDfSvrC9tbhG2k\nU16d/N7p+KrUZ+oiyRsEK7dha9u8w0T1GdVWYFO1H9R2UwMYMEiVV9sQ9Dao7J+V+0xtm52ETaVU\nArYU9fIOm63V0yy1XO/C6VFhqzxRbghslX+vJ+1YrTj7BpVXQg2CoPuSukCorP+GwNb5d5Uqz0tN\nuG3RtIV3/rxL2NS5UubxAu4UNmd7rZ/XwYa1fXfPIWrAVOdEbxuo88R0qtMzz5mzRs7TYQKQMgbM\nJWSXcsOr7MPJEkw7HER2wrwe+FRuW9cOHgRBEASVjM8/bTQ1bUBz8xc7LdnlKtmU0hvATLIk0gCY\nmeW/7+vq9QVBEARBd1DWI9kLgalmNhN4gEw1O4hMjegwiOwR03q0PWoSt9mPe+VVJnH1SMCbu1J4\nWbzVYwknm/sa3+m0XdWo6wYvsNEmwvY/jq9Abi/1WAd0hvSJju+fhM3rTmp96pHZY055xf/VsS41\nBzrEKa8e7Ygs94B+NOQ80ZmvjOqxnfNIVz5s8QKiKOfKx37rV/x+UviqR+Mz9KpGiHmqlU61ZBgS\nNeHpTQOoY7ySN2jbfyWc2jZy5uSWq7nVeubj1TxuJStpe3StHt86fYZDiib15BWAPYRN9OWNnHUt\nV3ZHL7I8//tmxXcXdU56t7Dt45RX50p1XvceobenlAEzpTQtf+fyXLJHsQ8Dk1JKf+u8dKMopOtl\nn56uQEmM6+kKlEhfbVtfPcb66v7qo+3qP7mna1A3pYl+UkpXAlfWX9JTYTU67+/pCpSEEoj0Ffpq\n2/rqMdZX91cfbVf/I3q6BnXT5XOYVmOg7iAIgiBoJMoIjddpoO4gCIIgaDS6/JFsSumgyt9m9hmy\nGesJwD1dvb4gCIIg6A66I3BBu0DdPv/Af/m0gi0duxJTSXXjNs4C1Evgtzm+SiHq8WCNfo4KcU10\noFoQN/FHC7drlLoTpCquvxPoQQZN8d6bVeurI0qOXK4nhOjs5fZWPKWwwvOtYxnLlFFE9RnozFcd\nKPryKGddv1EHiffSveifTWKOs0WXXu9DxW375p2O4nCEaIMK6NCki/Mb9ZDK68tKCbmO73Xv6dh/\no4xeIBOF6vdeXWs4R65BSGKPciJk3XO7MIo+s3yWsy6l8nfOfQNEZLAOwwVUo1TU6rgH/UaD6hsr\nhK1Iqfkw8/cvLwbuSSk90Zl/EARBEPRWyr7DvJIsNtH7One9heLV4jj6rEIsCIIg6AHupjr+b0tL\nbXGGSxswzexysnh3e6WUXui8xIF0HpM0CIIgCNaFvameDmlqWkFz81GdlixlwMwHy8OAiSklL6VC\nEARBEDQMXT5gmtmVwBHAocAKM2sNwr48pdTB1O5bKU7mikwG1UnDOmS+sHmin3qylSi8zBG1Tv57\nAhI1Ge8hJrPPFBkirvFCvYlUXsMcVzfFqkJtR0+soVD7xgujp9KRKaGEt361HzwBhtrnzv6eqWKS\niXW97mQFmVydywCdIALgN8IXkYYLkGHVdhNuLTrN2083KUZr+cPHdBqsxYV8DPDTU0TasyFOjt7f\nKLGGF75yXU9tQmA0v57y9Yhz1Lb12lUPDxRNV3lp8T4vbOrcM98przSdznGzXGVL8kLTqfO1EiJ6\n5a+ucZm1CcLKEP0cT1b7O8kCt7Z+Di9hXUEQBEHQLZTxHmapytsgCIIg6AlKH9zM7HQzW21mF5a9\nriAIgiAoi7Lfw9wdOA6YXeZ6giAIgqBsynytZAhwPXAs8LVOC7z3EzC0KurHjHOKfl6kH5kqT0zk\n7uuEEbl9ZgeVq4V6IscovFC7SpziCZeKQoPJo6cWbD916yqEBp9yXC+pJzpJrdQjsurv2GsVW3h1\nVXbvMKmnvn8pmjY6tmjz8gOqSFaTHPHWOULY8X1nuce9q2Da9dJ7C7Y/LVL5EuGj3/5t0TayaAPg\ngKLps2f+b8G2c9LX1yOmnCqsKncn1Jf3ViGOhc7ScbbDO8aUOOWjwvYzp/wrdaxLoPRgLq8Kmydi\nrDXnLbDJ8UXbUieUlHoPf0fR75c5DXt+Xc/L7SnzDvMK4KaU0h0lriMIgiAIuoWy3sOcDOyCFqgH\nQRAEQcNRxnuYbyOLH7tfSqn2++GnpsB61S/9rU+ExguCIAi6jj/mnzZaWpx3f6so4w5zArAZMCsP\nvg7ZhNPeZnYSMCClVKzd9hfVNocZBEEQBGvNe/NPG01Nb9Lc/NlOS5YxYN5G8bZwKvAkcL4cLIMg\nCIKgl1NG4IIVQLtUXma2AliaUnrSLfgqtUmQnqknJpt4Inz7BXWU93IuemHZ1gUvFFY9efX+WbA0\n2ZyC7ads5ZQvXsus+rJWo/a/5Ot11Et1s3oUpkopXE95pUzc2vF9uo51vVXYPJVuMeTd218qZryb\n13+uLL3xwcW8kT/r/0np+6FnbyrYVn5L1RUGPlsMaTbzoGJou/Qprcg9/KhrCrYfrhLqX2DffsX8\nsh/qP7Fg26/zGNgVeGrYElTcr9SjuPRU78qu4n16ctZRwjbf8RWKWi/truz39YQiVDkqneNm6f94\nlRAMKpqeF/dcy7yYqSL0owzjp/yKdFdUnrirDIIgCBqasvNhApBS+kB3rCcIgiAIyqKUO0wzG2lm\n15nZEjN71cxmm1nxmVIQBEEQNAhlvFYyDLiXLDfMJGAJWT6WevLdBEEQBEGvooxHsqcDz6aUKmf+\nOw8q9QKwQbVRTZB7k7O1TvL/u1P+TmHzxD2qDt4k/cvCpibDvXyayu5NvBeXO+XUs4XfZU75osDo\njJH1iHu8faPCl6lJek9cU4/AR6H2QVEMlaHEMd7667kGLIqMtrOi0GIeOnTjSyOL/euAA/8gfU+7\n5hsF2/mT9Ctahw+bVrBN/G0xX+Fddxwoy/9i638r2tYr2oDsZbMqtnnz2oKt/y8d1c/152q7RImU\nlDAFaheBKD8PL2Sf6kvzhU2Lv2CssHn9ULVBrQt0zFHl621DJaxzcrsiQuPhvUIoznWb1BEaj5OE\nTYXh82JStqeMR7KHAA+Z2TQzW2xms8xMy+aCIAiCoEEoY8DcFvgC2SX8AcD3gEvNzLnsDIIgCILe\nTxmPZPsBD6SUWjOUzDazcWT34de5pZZNgX7VofEGk4WkDYIgCIKu4PdUT8G1tNT2jm0ZA+YLZFF9\nKnkSncOmjWEXwQZVQtoF9QQZCIIgCILOeH/+aaOpaTnNzYd3WrKMR7L3UpyZHkud2eSCIAiCoDdR\nxh3mRcC9ZnYGMA1oIksi/bkOS734JMWAQEoNWlTwZdQa9uonjl2tS4VkA61087Kq1BpyyrueUAq4\nOkJ0vaDUgrWrOy+YpVS2oFVtXZusde1Y1y6tto0OK6eT+XoqwncWLLfepV5NdsKGbfCFgik5h8Kj\nqi9+RftOv+/DBdvyY0YUbJOvLyZ6BmCBsG2iXZn/aMH0y7EiQ7k6ZFy8/a1COnqqTYU6n3jh7hTe\nMabUs08Jm5ckXqmovXap81QxOXiGylAu2NnpSLOV8tRR86tds0qpbB1UxFJPVCy3jVIEr65p1V1+\nh5lSegj4CHAE8ChwJnBKSumnXb2uIAiCIOguSgmNl1K6Gbi5jGUHQRAEQU/Q5XeYZtbPzM4zs7/m\nYfGeNrOzuno9QRAEQdCdlBXp5/PAp8nSfO0GTDWzZSmly0tYXxAEQRCUThkD5nuB6SmtkSQ8a2ZH\nAu/uuNgfqU1I60l/vdBK1XjhrTYWNi+8lQqZ54VPU2Kgn9e4foB9aywPMhTWXcpvtFNezJzf6bjW\nun5A5/RUk/yecEvZvXUpoZZavyfkUetS4h7QWetqFE8AXKFEP45Q4vmZRZvpbXDXimKOSf6k81ku\n378o8GFB0Xfat47W9UK8+rX0i46vOBaeVmELi/k8fbxT2DrmvpT9qx7Rj9e/asylu4kTHnCpl/dR\nobbtOub0dEeMB2pfrOhyPK/qCvBI0TR9TNE2Wvdv2K5omjtP+PVcPsz7gH3NbAyAme0MvI+Y0wyC\nIAgamDLuMM8nu314ysxWkQ3KZ4ZKNgiCIGhkyhgwPwkcCUwmm8PcBbjEzBamlPzQeNxM8XHaO/Hf\nbwyCIAiCemkGft3O0tLyak0lyxgwLwC+nVJqnWh73MxGAWfQUSxZDqI4Z9gbXoQPgiAI+g6H5p82\nmprm0dy8X6clyxgwBwGrqmyr6XS+9E1qGyDFJHBd1DNxv6djVxP3XoSXhcJ2pLD9ySlfTw4+0bZF\n1wi/+bWX/04dq3cRE+8yH6Yn1FD7TAhbgNpVSp5IQK1LiYagvsNHRBz5hervXv8U5dMe0nP9Aaq+\nd+rFLtjHWV8VKhgNAEoM5ITq2VI8LXpe9XsvwpZiXXOl1kF/RxiiotRsJCIYASy/XhiF2G6g0z8H\ni7yPK7x+qLajd45Vx977iqbtneIz67i5UalVr/aci9GhYJ+iabkTXkoFRpr7N2Fc4VWgHWUMmDcB\nZ5nZAuBxYDwwBfhhCesKgiAIgm6hjAHzJOA84Aqy266FZDkxzythXUEQBEHQLdT9WomZ7WVmzWb2\nvJmtNrN2D4NTSivIXlwbQPbcaz5wXUppXV+MCoIgCIIeY23ewxwMPAycgHhz28xOI7vLPI4sWMEK\nYIaZbbAO9QyCIAiCHqXuATOldEtK6esppelo5cQpwHkppV+nlB4jC5E3EijmEZKoSd6+wO09XYGS\n6Kv7C+Chnq5ASURfbChevaGna1AOcxuvXV06h2lmbycLfLTmiEwpvWxmLWQh86Z1vpTH6PjdS1eu\nJ1DN854MK/nX0jrWpdSwlXX4PTAp+zpYhHZacZ9T3gmVJplUo5/XLqGuHNDZsir3l9ed1DtO9eQT\nV9vA2y5KZar2uad8fUvF9wfJXiP2QiR6+1yhrheV6lIl+/PWpRNi/r1FhY+szAF4IXBu9nWJcFWb\n60anWrIOnrJbHdd/ETalqq6Fyr6otu0Qp5zqS0J9u0rVFaTydPmTjq8KhyhUss8vqvgxFf7+/vy7\nCkHn5d5UCuJ6+vKsommcUM4C+nhyVMXL8r9zfgqbHNGxr8pdebQII/qYClMJ/Eade9S+6Zl8mCPI\nHtNWvzOwGB1BMAiCIAgagjJiyQZBEARBn6OrXytZRDavOZz2d5nD8d/Mz7mF7EXb54HWZ9vjiNB4\nQRAEQddxP9DSztLS4jzSraJLB8yU0jwzW0SWk+oRADMbShZv4QqnWB6OYjdgU7KBc5+Kf7+g3QtU\n+wH0FzYvwouan1hex7r+7Pi21uEVYE72dZWaZ5vvlFcRKNT6IQvdWwsLHLt43v9PMY/Rrg6vV3z3\nJjzVNvfaUCve9n5O2NQ8htcPBlV8fy1fntcuFTHEQ+0bNcc0xymvJhsd5nj7rJVlrJmfWiW2g5zO\n8U4o84XNSdUk+5Kay/bmkzrrM5V9UZ3avChKK4Xtn8L2uFNepXTzjkW1HVW7KiOavVzxW8x3uinl\nVLs8DUeN0W+e7+x8UIkzvPw9X8Yby9q+u3oAMT+8VNTBDQWrjrERwGHtLGPHJhYvng2dhJmylGob\nWdcUMBtMNitvZEfdqWSKlpdSSs+Z2VeA04DPkB1N5wE7AjumlAq9MM+V+eO6KhEEQRAEXc9RKaWf\neP9cmwFzItkAWV3wmpTSMbnPN8jewxwG/AE4MaUkA0ya2SZk8s75dGtgyCAIgiAAsjvLUcCMlJL7\nekTdA2YQBEEQ/CsSKtkgCIIgqIEYMIMgCIKgBmLADIIgCIIaiAEzCIIgCGogBswgCIIgqIFeM2Ca\n2YlmNs/MXjOz+81s956uU710lis09znXzBaa2atmdquZrW2k6W7DzM4wswfM7GUzW2xmvzKzdwi/\nhmqbmR1vZrPNbHn+uc/MDqzyaag2Kczs9Lw/Xlhlb6i2mdnZeTsqP09U+TRUm1oxs5Fmdp2ZLcnr\nPtvMxlf5NFzb8nN69T5bbWaXVfg0TLt6xYBpZp8EvgucDewKzCbLoblpj1asfvpqrtC9gMvIIjbt\nR5Za4HdmtiZ0SoO27TmyIBvjgQnAHcB0M9sBGrZN7cgvPI8jO6Yq7Y3atsfIQm2OyD97tv6jUdtk\nZsOAe8lC80wCdgC+REUakkZtG1kItxEVn/3Jzo3ToAHblVIq5QOcCMwjiy92P7B7B773A5dU/Day\n+G1fKat+ZX/I4nsdWmVbCEyp+D003z6H93R962zbpnn79uyDbVsKfLYvtIksn9Uc4ANkwUYubOT9\nRXZBPauD/zdcm/J6ng/c1YlPQ7ZNtONi4M+N2q6uDr4OtLtjPI4sgdsUsquGd6SUllT5Die7ur+x\n6hHELOBAM7utjDp2E9tWtGkk2RXWwqp2Pg4cZmYyElIv5W1kV4nD87b0hbYZ2dXvYGCZmX2Ixm/T\nOWRRppeRDZ6bN/j+2gIYa2Yvkt2NPQJcTpbooVHbBPAJ4D4z+x3ZufBF4OfA/+X/b+S2VbIecDRw\nbS/shz0X6cfM7gdaUkqn5L+N7PHXpSmlC6p8T8APzB4EQRAE3UWHsWS7/A7TzNYnu0r6VqstpZTy\nO8X3iiJ5eokLgdHAfwFn5f8SWbz3316v+NbvC6No3nnH6PJfu0sYncwRQ44r2l75kfZlaP73F8DH\n8++b1b4uPidsKgsBMEYE2v+L2C4jRP0BFqltuIX2fe8h2d+npsD2F2Xf//gr7bvDR4q2J9X2GiRs\noLeXykoCOsvEgcJ2i1O+2udA2MbZXs/cIIwq8zzoQ031xZud8i8Km2orwPuF7ZWK75eTTRuBzro3\nVtjmOety00TUyB7CVp1/vhWVUaMyI9GNwMcAmMp3Cp6/e+gEudSTX7myYHvPPjOLjus7NxdvqONm\nqLABFx1RtF0nljvr3oofP6DtPLBKLFRlZQL/nKJQfVH0ueM218W/r/JnfMxZV+t4dDNwUP5dZwQa\n+dB7CraFu6ljbGNnXbUc57D33oO5++6LwE8bBZQwYJLNb/Wn2OsXo4/E3G80Wf7LoflfqJjzbmPj\n8UUboE/s6xdNo7zyKuWVk6aov1qGt2Nad+SGwNb595G1rwu1LidG/SCVvkhslwH1bMNR2nVovoz1\nhrV9x0n9M6jW7fUWp15qe3kpoNS22VHYZgtbNQOBLWCgt73uETbRZwHZF+W+9dJCqfJeroIdhK2y\nfw2m7VBUg5MSKYo0S4B/gVAr6pQw2PFVmZcqT2Ftx5ha6sPjt5RL3VVm8RP7pp/3NE4dN84JfDux\n3Leo5Vbul0G07ROVnss7jdezb1RfFGnDttDbENQNxy6O753534G0Hds69dqA8e8U1mXC5gzkNR3n\nMGzYmgucDhOAlDKHWSd5D/gvssFyNtnUJ2RXyuruIAiCIAjWhkfJxNZttLTUNhSWMWAuIXtuMLzK\nPhxY5Bc7i+zO8jig9RGHd7UeBEEQBGvDTvmnjaamoTQ3f6nTkl3+HmZK6Q1gJrBvqy0X/ewL3NfV\n6wuCIAiC7qCsR7IXAlPNbCZtr5UMAqZ2XJX1gQ/TNl8jnu3/7FtFm4t43v5vrzm+HxQ2JYgAlqs6\nvNVZbutcxBh8MQO4IgF+XTRtdIh2nX2ZMIp5n2fq2YZq/hCYkQt9GFrxfYr2nflLYRwtbI7oZ4Bo\n70pvru/nwjbG8e2MfC7d1U6oJyCOKE3O0ag53+oHM63M9SohUNelu1Z8n0TbMTZE+D4gbN78sppX\nrCcP/O3C5s2XqnmqyuP5XWt+q6O8vxTMwAI13fip4rln+2v0HP1TUnPzkvTlm8KmtEztzj3bVPxW\n28BZF/8pbI4AVE1NPl8cHrb7up4TfPococEY4BzPK1v7zATa+o/WcMybqfQH6q2PJ/W62EbY1LqU\nRqBIKQNmSmlaHqXnXLIzwMPApJSS7BrtOayMKvUCdurcpSHxBDF9gb66zw7o6QqUxK6duzQkO/d0\nBUqi8fZXaaKflNKVQFGvHQRBEAQNSJfPYdYaqDsIgiAIGokygq93Gqg7CIIgCBqNLn8km1I6qPK3\nmX2GLGTEBPSb3jmPU5yqf5fw+7xT/nJhO7pomuAUn+kFDlCoWX4VicVDRWjxxEhCKLRcBVkA/aKy\nElA4Qh4WCtszjq9qwzmOrxIqqO11vC6+UkWZqUdwrbaBJ84R4ppTHNdLlHDJE+coVcXbhG0/p7wS\nnHhCBSUu8144f8WxV1PPS/Detn1K2DyBj0L1GX0K20dUYZ+zvi59f6viBpxWNM1/eZRbs5p5Q6xs\nbj3hspX4yhGKjRX9Y444JwL8hxVtjxWX+/QET5T2f0XTMMd1sepLjujxMWWs51yrzl/q3k20X9Ad\n6b2GkcldPSlXEARBEPR6Sh0w8/cvLwbuSSl57wEEQRAEQa+n7NB4VwLvBN7Xuev/UowheSTwoS6v\nVBAEQfCvysNUx5htafEC2LentAHTzC4nC0W/V0rphc5LfBbYtsqm5jCDIAiCYG3ZherA8E1NG9Lc\n7IkV2igrgfTlZBEIJqaUnq2t1HKK05xqMtyLSq8EEGKCfaacRcZPkaNQkUy8TamyC6gIMV6kIDX1\nW49QQtVLiXs8VKQM0CIQT1iitoHCExSoFFKeCEX0g4nCdpcSoIAUH7i6GCXwGSdsUHtUoKud8ipK\nzUaOr8o24uXiracv1Uo9/aseVF92jruDiqZHnQBXB6psaCcXTa9/3ztGFc5LAUrTNVNFVvL4pLDd\nK2y0ZROs5JsXCCPwY6Fy+pYQwvy4jvzJDzoRn7ZWRmd7fVaJ3eYLmydOVPtMnY9qm50sIx/mlcAR\nwKHACjNrPQsuTynVEzMrCIIgCHoNZYh+jie7TL+T7FKz9XN4CesKgiAIgm6hjGwl/VJK/Vs/wJlk\nL7l42USDIAiCoNdT9mslu5MluKwt7XUQBEEQ9FJKGzDNbAhwPXAssKys9QRBEARBd1Dme5hXADel\nlO4ws6917v4qReWjCuH2vFNehYxS4Y5USDeQeSfrwssXWKsiVvmBVJ5+6e3a9btlKB69EHSiXtt8\nSrs+44XMq2aaNm8ipr+X1hHKcDdhu8tzFst1RIgaT4WtuFbYOsqZWquvsnvvMyt1uTruPBViHeEB\nNzm7aFuqEkR6qmqlpNRq6W3+u6iCvu1CHbLv6NuvKtjOSV8p2M5+n6MwlTihLr+jjgV1Gva2wS3C\nplTksPe5Mwq2u7/pLPeyovp1+B7FkJSL39Q5ReHAgmX/LX8nPW+VVpWUFOSbDjLEYj1DmfLtIZUs\ngJlNJpuzVKeqIAiCIGg4ynit5G1k4fD2SymVccsTBEEQBN1OGXeYE4DNgFl5LFnIogLsbWYnAQNS\nSuI+ezowsMr2AWqKqhcEQRAENTGT6uw/LS0990j2NmCnKttU4EngfD1YQhYYqCRb9hcAACAASURB\nVDrdkZeGKgiCIAjWhglU53lsalqf5uYTOy1ZRj7MFUC7zCRmtgJYmlJ60i85gmLMJCWg8ELjKdQE\ne3FyOqOeiXeFJ9pR1BPwSIicpnu+ZVz/eNugGLJv97/eLT0f/I4Qe3xV7RtHKLFUdRsvBF2xz+x/\nQXPBdut3neIqXN1TnupHhQ30stgpcc0QYXOEPNeKbfjpy5x1qT7uHXpq1kSFtvP6lvJ1chsuVeIU\nFcbPCVv4vlOLNmfXLPhY8bp8uzO07/X9xhdsX5e5WXfWC5B4ISWVeKqe84wSWY2Snndvo/qc84bf\nXkXTYn4uHL28vcVco7du4+WYFPt3tBPXZu5vhbGemb6ieAuUeKv35MMELXUKgiAIgoah7PReAKSU\nPtAd6wmCIAiCsijlDtPMRprZdWa2xMxeNbPZZlZ87hEEQRAEDUIZr5UMI5tZuB2YBCwBxlDfJF8Q\nBEEQ9CrKeCR7OvBsSunYCpsXJiQIgiAIGoIyBsxDgFvMbBowkUzmeWVK6Ycdlpq4Lwyremo7XSW9\ndRIHTxRqqLuK6kg/BFM9SrV1pR6Vl6jvpY7rQbW2wUuEqx4COIldhf3BJ/fWrpNFe7+qQgl6Cjyl\nOLzJ8S1ur1u3PFT4/ckpX/1GFBRfd2pFvSN8oeOr+m0dr03JS05ve/1E2BzlqkQlU/dCoinVphce\nUCmAVRu0RvDcP/xnwfb7tI/0/f2Qgwu2w29UoQiBbxcTOH91aLEO577snS7rSdKu+r06xl50yt8u\nbM6bAws+Koxen1GKa89XcbFY/w6Or9hecy+qY13q/OWpXJWMWh3jXkL69pQxh7kt8AVgDnAA8D3g\nUjP7txLWFQRBEATdQhl3mP2AB1JKrQHXZ5vZOLLE0te5pR6bAusPqzIOItJoBkEQBF3HnVRnX2hp\n8Z6gtKeMAfMFim9JPwmo5wNtjLtIPJL9TlfWKwiCIPiXZ5/800ZT0z9obp7cackyHsneC4ytso0l\nhD9BEARBA1PGHeZFwL1mdgZZgsMmsiTSn+uwlMxPqMJmOYICFQbwLjXxriZ8ob4clesaRq8eXxFq\n7YQ6isu6vuL4KvGBJ0z5W9G0u+P6iKrDRGFTggaAXzl2hVjXov+pzQ/QeVE94ZMKPVabeCDDE3YI\nvrZUGOsRZShxDmjx03Bh8/LQ1pP/U4Va8+pVZJAVQ+ttxXPa+bVZBdONf3bytfK9guXkvwsRSn+v\nz6jjuTqRRCuqfyghkHfcKdGiEkcCXCNsXl9WbVNt8MJ6qnO1F4Z0ubB5uV3VuUqJJr18r6ovq2O8\ntnvHLr/DTCk9BHwEOAJ4FDgTOCWl9NOuXlcQBEEQdBelhMZLKd0M3FzGsoMgCIKgJ+jyO0wz62dm\n55nZX/OweE+b2VldvZ4gCIIg6E7KivTzeeDTZGm+dgOmmtmylNLlJawvCIIgCEqnjAHzvcD0lNIt\n+e9nzexI4N0lrCsIgiAIuoUyBsz7gM+Z2ZiU0l/MbGeyGGJTOi72GEX107O1r/XwmcKolFeeMrGe\n2PBKFScSDwM6Ga66diiG58oQSsz58xxfxbqG/PNCqs0tml7TIf9syD8LtqRUtjJpL8DVwuYpRJXq\nUikTBznlPy1sDzq+1W9PATjh1ySjhM3rn5vUsVyl3hX7y0XVQS0TtMLTO5ZUCDelZNdhzm5n34Lt\nCd7prOvOoum9XsKkYnu/f6VI2C0T0nt4L8KfJGy/FDZvG6rjxlO+qhCD3nFT3Lb6uJGvM5BFRK3m\nXMe3mGwafub41npeVspX0Gp8NS7UFjqyjAHz/HztT5nZKrJ50jNDJRsEQRA0MmUMmJ8EjgQmk81h\n7gJcYmYLU0p+aDwuBoZU2bYBIo1mEARB0FU8SvX7wy0ttQ2FZQyYFwDfTim1vqX8uJmNAs6go1iy\n/AfFR1z3dX3tgiAIgn9hdqI6gE1T01Cam7/UackyQuMNovgAf3VJ6wqCIAiCbqGMO8ybgLPMbAHw\nONkz1SlAx/kw2R7YtcqmRCRe+LS7hU1N5NYTGsoTzChfJe4BLZZQj5k90Y8KkeUJS5TgRYk9vHyY\nKuyVCnkFOiSaCkEH6ZtfFNbq+PwAmznrUuIFr+vOETYlTPFykqr+JcITArDAsdfKy3X4qjBnStAA\nOgegty7VF5QwxBOxKLva3qDDSav+rcKZwbNp6+IST/bEdkJIo3QtADcW82yyRDnu4SxAPQnz+pc6\n/6i8kd55Tgmn6gnh6YXsU6KZenKoKkGUl3tY4Z0/VR3EcgccrYuvvLGOOnROGQPmScB5wBVke3ch\nWbDG80pYVxAEQRB0C10+YKaUVgCn5p8gCIIg6BPUPa9oZnuZWbOZPW9mq83sUOFzrpktzEPj3Wpm\n3nO9IAiCIGgI1kaIMxh4mCzJVGFyycxOI3ssexzZG/orgBlmtsE61DMIgiAIepS6H8nmIe9uATAz\nFZLjFOC8lNKvc59Pk4VW+DBZfkyHmWTChN8D789tSrzgCQqUUEFNsHfFqypKDOTlfmuNEPgoa6TM\nWwpRg5dusK4IRLX6ejnt1Db0tldr13mY7FVbACXuAa5XRiFCuXCCLn+qirTjRL4ZLCb/V1wqHD1B\nV6WwYzpwGH50FJWns56ciUqQ5QklPiJsXmjmzqI7VfTFmvMN1hPJykMJ4FR7dY7Nx6ftVjTuXPG9\n5QZoOiL/IaJp3aUjCPHfIurTJcrRi/ikhEtezlmVf7SzHKqV+0ttw2qxZCuqL6r1Q/bOezVKpOWd\nf4U4Z71jtWurNvHlG2Bovr/meAI2FVlIREta6UU/UxG9VFtXO+Xb06WvepjZ24ERVEi8UkovAy1k\nMWZr4PddWaVeRD2JdhuJ2T1dgRKZ3tMVKIk+2hcf7KvBxPro/nq58fZXV78bOYLsMW11sL7F+f+C\nIAiCoCEpJYH02vE/ZNOjc2gLzjuS6ogMQRAEQbD23E/1e+8tLepd7yJdPWAuIks1MJz2d5nD8R+e\n5xwPjCEbLFuj3Ks5zCAIgiBYW96Tf9poalpNc7Mz51pBlw6YKaV5ZraILKbGIwBmNhRoIgtkoBgI\nsOWWLzJgwIYsWvQ6I0a0RlDxxCkKJXRQtpVO+XqimyjmO/asDYsWrWbEiLw9m8wqug3w2qqECp6v\niuaifL0J7mIaLl9ItAKARYveZMSIFblNtAuyBwfVbCzq9Q+n/LbLhPFV7TtALGOlElV42/CJNd8W\nLfoHI0Y8gR+1ZYWw1RMRR/VP70r3EWHzxEgdi37a9cWajxuVVgrW/RhVqZacZb4o9m2F66J/LmPE\n33OfbUUUpqFO/3pFbPMthN8G3vZWx4i3XZSQRi23rXz7/aXW5YiZ5Iyb6rMASzusQ+eI/t3f2d55\nsKJFf1vGiM1znzeec5ar6vCwsMnQTOj0ccXzidma9XihkDK/lGq7FW1bsA0mi5dmZGfIU8mUOi+l\nlJ4zs68ApwGfIRtFzgN2BHZMKRXOyHly6R/XVYkgCIIg6HqOSin9xPvn2gyYE8kGyOqC16SUjsl9\nvkH2HuYw4A/AiSmlp53lbQJMIhtc67mkCYIgCIKuYCBZRvcZKSV1uw2sxYAZBEEQBP+KRMqtIAiC\nIKiBGDCDIAiCoAZiwAyCIAiCGogBMwiCIAhqoNcMmGZ2opnNM7PXzOx+M9u9p+tUL3019ZmZnWFm\nD5jZy2a22Mx+ZWbvEH4N1TYzO97MZpvZ8vxzn5kdWOXTUG1SmNnpeX+8sMreUG0zs7PzdlR+nqjy\naag2tWJmI83sOjNbktd9tpmNr/JpuLbl5/TqfbbazC6r8GmYdvWKAdPMPgl8FzibLPT+bLKUYJv2\naMXqp6+mPtsLuIwsAMV+ZCkTfmdma9LBNGjbniN7Z3g8MAG4A5huZjtAw7apHfmF53FURclv4LY9\nRhY5bET+2bP1H43aJjMbRhbWbCXZK3Y7AF+iIkpBo7YN2I22fTUC2J/s3DgNGrBdKaVSPsCJwDyy\nMBb3A7t34Hs/cEnFbwMWAF8pq35lf8jC6RxaZVsITKn4PTTfPof3dH3rbNumefv27INtWwp8ti+0\nCRhCFpz5A2TvTl/YyPuL7IJ6Vgf/b7g25fU8H7irE5+GbJtox8XAnxu1XaXcYdZzx2hm65Nd3Vem\nBEvAbdScEqz30zWpz3oNw8iuEl+CvtE2M+tnZpPJEujd1xfaRBaO8qaU0h2VxgZv25h8ymOumV1v\nZltBw7fpEOAhM5uWT3nMMrM1gU0bvG1ryM/1RwFX578brl1lZSuZAlyVUroWsrki4GDgGOCCKt8x\nQH9gs+pn9sBoYWsktq2o/05kg8zmVW1aCezQYO28mOzR88C83o3cttHAVGADsgC1XyZ7tP4eGrdN\nAAeQnXQ+ldd1CG1tadT9tQQ4hywg66bA54H7zewTZOeRRmwTZH3wBLJU6ycD44DLzGwEcPP/b+/N\nw+yoqv3vz0qYISHKEGQMQwgISgjBKMggoKBXQUSBwBWVHyKCV95crwKiPxVekYtXJiHO90VBw3AV\naRRBAWXKJQitYY4yhCGBaEAChlGy3z+qmj459V3dVelT3V3t+jzPefqc1XtX7V21q3bV3t+9Fs09\nX+28k+xhu3sYtsOh8fSTP0U8DxyUUupqsV8ArJ1SOrAt/bH4jtmDIAiCYLDo05dsHW+Y65K9Maog\n0pNE+ruyPx8hezv/KXBQ/i8VZWJPZ7fXCpuq3gec/Jc6dsUBwvYLJ22PF/+rgR4B5utEOi8qyNHC\ndrmTdhthu61oWu8jOvtfLxBGFcEEeo/tVcB78u/eKMrDwvaksHkzBKoMuzhpZwvbGsLmRDtZjp5z\nNtr5v4rQ8AmdVD2YLvuuSKjaBujyvtdJe6OwtYaM+RFwRP5dRPWQ9fUerNW5GeOkVddzJ2m5xqaL\n62bWRU4+dWzVefCiwKh66VvrWrMLwnkO22W/gm3r23vDT/33jHkceVZ26/yPqecV0q52k753vLjb\n1cLqRVxR51yFGfJe+srefyGbpgT4H+CDTpqMcbe/vWB7ZurNIuVuzhZ+KWzFuu6++6rceON/gR92\nChgeAaTzeDO3AKuT9atX5f/aBtihLfkbnc3cI2wrC1v79nq4qa8ytqGCWjuhbF67yFajN2bQ+iKd\nF1VGNVBvX6rDXFA0reI1+t8Im+cPv+fYrkYW6NvbP+ibreocvY5JlUE9e4HunNUNvMzNu+eceZeJ\nuIG6o0jqGKgYUqptgC7vm520KoRU6zFYA9g8/65Cvan6eh2mOjdep+89FHaKlmtsfXUefufkU8dW\nnQcvzJuql7r3wOgdi+dMtYItp4x97fua41Zq+V2s1+jJXug1dU/8u5NWnfOxwjbQ+y/A6/O/qwOb\nOmnyUk3ZXlgfFTZ1TwYdhvlu2kTjzJv32r2nzwAgdXSYi8kevce32cejXytyDiI7eN8mCyYN9V9g\nQRAEwT8Xk/NPL9OmrU5X1/H95uy4Sjal9ApwB1kQaQDMzPLfarwsCIIgCIY9dQ3JnglcYGZ3kE2i\nzSAbB7rAz/Ic2RvlK/T5ZrmZMySgRqEkP3Lsb1E7c9KqeYDVha2VlegdFlOH3Rm+2E7Y7vGGE9Uc\niyjXghuc/MrBhhjSBXpHLoze+sx30qohFDUH6Tn4UHO2au4N9PDrig7J9uANLYm5UU9E9+o3hfEw\nYfuVsy9v7kmhzlnrgE/rNbaeSKuOjTdS5Q3DK1QdBhoCt7V9j+79fYVK651zdT2qe1CV26W+Hzx7\nd/vAG/zf04vp1lzSqzt5+ZXDmb7kx/mvKiJNNfzqDSsru2r3aoizKj1tbpWW72q+FF59VU3TqOvZ\nq1dZvYiamihSS4eZUro0X3N5CtmV+kdg35SSN9jegjcW3XR2HOoC1IQ3JzwSUPMnI4GpQ12AmhiZ\nbXH0QZ5QsekUBT3DndpEPymlmcDM6jlHZqMfuR3m5P6TNJaR+vDWODfNJRmZbXH0Bw/qP1EjaV6H\n2fE5TCvpqDsIgiAImkQdrvH6ddQdBEEQBE2j40OyKaX3tP42s48CfyHzF6tWnAZBEATBsGcwHBcs\n56jbZ3Uyd5etCDVTaTUsaOWUt6haeMSRNo/XO3alvr2v/GYfVMZnncT3C5tyiHCnk7+KByI1J+sd\nA1UJdW4uc/JvJGwTnLRKkVtFYaoWa+/rpP150bSBk3SBWgiv2leVtccV2pF7+anzqJSQngpRtTlv\nMGlCyfwe6nbleN+Z7ynBFWobA1VW62s0HW0F29G3n1uwvfhR51p6uFjWpQ8opTP450yhVgQsFLa/\nOPmL3ooyz0uKu4XtSzLl376trEopfI2zL1Ve1eaXOvmXp9Z4mPn6y7OBm1NK9/aXPgiCIAiGK3W/\nYc4k86W0a/9JL6f4ZDqJkatUDIIgCAafG2l3hTpnjvALLaitwzSz88i8cu+WUnqi/xwHApu02cI1\nXhAEQdBJds8/vUybtpSursP7zVlLh5l3lgcAe6SU1KRSEARBEDSKjneYZjYTmA7sDyw1sx5fUEtS\nSn34wXqBoisnIcBY28m+RBmV+GBbZwPeZHZZPFGFN/HdjuN+7UUVy9RzR6YUURsKW5UVPp5bOLUv\nT/SjRDdq4n9vYQPtgtgLIaXEFkrQ4I1eqLJ6oduqoPbXLnKrihKUASjBy5ZOWuVGr4pYRAnFvPZV\nVuBTITqMx/g9irZFv3MSe22pnQ6Ua5ei6OcHZ3yqmO6in8nsG/+wOEX1lk21OFFvwcO7dttxVG3H\nTyvazrmuwr6cCEz/ptrSnuXzF6JMgha1KbFfkTpEP8fke/8dmcyq53NwDfsKgiAIgkGhjnWYtSpv\ngyAIgmAoqL1zM7MTzWyZmZ1Z976CIAiCoC7qXoe5M3A07eGtgyAIgqBh1LmsZC3gIuAo4Iv959gA\n2LTNJuK5LakSD04JVryYi1U8gyjvOR5l4/15woMHhK2KdxQlUvZEGao5tJ+THpQXEC/6wI3CdoSw\nnefkV3jCFHXOlcjAcxmlxDGeoEsIxbYpijoAWHCMMP5Z2KRrJwfveKnz64ka1P6UUEydb9DH2zkG\n8pzfUrJMoK875/padIezDYUS7Sib8jgFldyPqeqqUKlJX6NH23cLtu9ytLMz1W49T2eqDiL/Vh/V\n2eVpqCAuHD9F2xcp6ZISqnniROWBSAmBht7Tz/nAlSml62vcRxAEQRAMCnWtwzyULDjdSI1UGwRB\nEPyTUcc6zI3J/Mfuk1KqsKDrx8AabbbJjNxgt0EQBMHgM7xc4+0ErAd0587XAUYDu5vZp4BVU0pi\nIvJwitEMxBxmEARBEKwww8s13rUUPaZfQBaL6HTdWQZBEATB8KYOxwVLgeVCeZnZUuCplFIfAfwe\nB9pfi5XKylPgKZWU6pt/4uSvEGtPlqtKzEWlVKsSa89T1KptqFFx77SPFrYq6khvBF65vFNus8q6\nKAN9br0yVAmiqhTIFcp13Ve0fV8R7+/miUXbUkfNesiMou2SM8qXy42hqtpClbZYxaWk2q5ScXsq\ndCHF3EzHUeSRH5YsE+hrVymFq9TVUaP+8ctF227qWvqEzP6mdE7BtnjJOk4ZlErWO7eqvKLdP3CW\nzj5TtM/vqPsJyLbobJbD1PWoXEo67XtV4bLvpcdFQrUaochgeeWJt8ogCIKg0dQdDxOAlNJeg7Gf\nIAiCIKiLWt4wzWxDM7vQzBab2fNmNtfMnJWpQRAEQTD8qWNZyTgyfxbXAfsCi4GJRDToIAiCoMHU\nMSR7IvBoSumoFlsJ1cVoURw1Ge9FeVNiDzXpXNZVXV+obezqpFWT7CoemyeYUZPRVSbu1XNKMaZe\nhhIzVXEZ6LinOkhMvP9U2Pips11VB8/FoYofqmJveqhjWGV5kyNYueYSYexDA9fOHGX0Ll/VPjx3\niqq8VUQ/VW4hKq6oukYruNZz7ywDlU0osZsTS/cgEblwXWez3xGisD0+X7TdoIQp8KAVXTeuP1aL\nkR6V58a7z6hrrMIy+l8qo3fdTC+aPI997CJs6rpx1lF+W7SlWzcu2jb8C3R5ZeiljiHZ9wG3m9ml\nZrbIzLrN7Kh+cwVBEATBMKaODnML4JPAPOBdwLeAc83swzXsKwiCIAgGhTqGZEcBt6WUeiKUzDWz\n7YFjgAv9bFdRHB7aDn/4MAiCIAgq8sAseODi5UxzVnumVNY6OswnKA4y3wd8oO9s76G4WNhzHBAE\nQRAEK8BW07NPC9M27KbrS/3HCqljSPYWYFKbbRLV3K0EQRAEwbCijjfMs4BbzOwk4FJgGlkQ6Y/3\nnW0sxUC/Sv2lVJAeSjm1vZO2ipJSqXc9F3JKaaZcO3mrblR+z3WYeiNXytVybqAyvOM1T9iu1kkP\neXfR9lOlYvRGFFQ7EEo3gNMOKto+r57VPCXoPsLm1EueR08ZOF/YyroMxCmuCoztJa7iTlGl9Vw/\nKkWrd1sp62LQaweiza25uU66VClaB/rMrlXNm11WLNdmab5Me+N3hPHt4hgeo9v3f6XPFGxPfmYL\nmbbaCN0AVcUTlNFpBzeJc+aOiCo1vFploK4lpwhvFcd7mafMXp6Ov2GmlG4HDiTTDt8FnAwcn1K6\nuM+MQRAEQTCMqcU1XkrpKjIVTxAEQRCMCDr+hmlmo8zsVDN7KHeL94CZfaHT+wmCIAiCwaQuTz+f\nIHPLcS8wFbjAzJ5JKZ1Xw/6CIAiCoHbq6DDfBlyRUupRSjxqZocBb+k7298oilmUYMWJFyhFN0ow\no+LvQbV4mIo9HLuKy6fEGp6AQ03+e+IFtQ0l1lBx8rz83jFQx9aJSae8GR4kJtkfP0Tnn3Na0bbn\nfjKpfXRpwZY+r1z+eS4SVX03c9KqNrejk1a5OpstbI57QaW9uqGKe+YqLiFVWk8UUSVupBL9qLbo\nlXV3x65QwpAqqPuBvl0eKBr46c/qQbXVuLxoPO3hYrqn9X1uHXG8nvz0JjItZyuj64NOoNrieJ10\nhrr29b3jrbv8tmC7dbN3OGUQx0vdZ6a+WWd/UNiUVm9VZ/dt1LGsZDawt5lNBDCzHcgcrcacZhAE\nQdBY6njDPJ3sNfB+M3uVrFM+OVSyQRAEQZOpo8M8BDgMOJRsDnMycI6ZLUwp9eEa72qKQ7I75J8g\nCIIg6AB/mJV9WpgzakmprHV0mGcAX0spXZb/vsfMJgAn0acv2f2AN7TZnPmcIAiCIFgRdpyefVqY\ntmo3Xf+2U79Z65jDXIOii51lNe0rCIIgCAaFOt4wrwS+YGaPA/cAU4AZwPf7zrYxRf9KSuLkKfAU\nSpXnKDkHjKMekypVFYHFc7+mlJBK9QnaP5Xnsk+hFIueolbhHFslEC3GwdWnG5CK3Ht0ykvHF5W2\nH+I4kdJrR1XcpymlsKfOVApkpahVylmcYnkBftcXNs+1ndpGeYVotWDTqi0qJaVXLyH7XPoJJ+2i\nckUCyt8G9TE8c+4pBVtym5FQvf9oQsE0c20RZBk48vpZBdvO79BB3n8vrZ6yWo3mqfPgqaW7hU27\n29vFim381u0clezj6l4n7p9KdQ/ak6pyw6cuGUEdHeangFOB8/NiLCSLiXlqDfsKgiAIgkGh4x1m\nSmkp8O/5JwiCIAhGBJXnFc1sNzPrMrMFZrbMzPYXaU4xs4W5a7zfmJlyOR8EQRAEjWFFhDhrAn8E\njkUMUpvZCWTDskeTefdZClxjZquU2/z/rkCRmsBdQ12Amhip9QK4cagLUBMD9YIzXFEupZrPrbNG\nZijh+2fdOdRFqEzlIdnc5d3VAGamZlqPB05NKf0iT3ME2Qz8+8niYzq8SiYA+F9g5z5K4IkXyrq2\n82JJKndcnks00YC3dCadH/xS/uUAIP++kUi3wBP9KGGIEzPRda9XFjXB7rl665nkv4/e8+UIQG4W\nk/+TxPFyQtpxibAVdRYA7GK3COt7hc1bstRa32+SNefLnLSqvp9y0qptVBCgKW3LSZ6bM3WNtJb1\n9/TGGVQu2MoKlEDHiPTcKaqBJqUI82LTKhFf675+CvQMeCkVhyf0UuUtf2s05cPsVi+1aJ9bTSmY\nPvKb3lvlz76Z+Mi6cwCYsftZhbRb25/lnrToxxMMlnVx6IgAx+9ZtC3SYqSf80EAnrz4Ou6f/v7M\n+C1H6LWFEg7dXzR5IX7vLOYfe2NRELbqneXEax1d6mFmmwMb0HJHTyk9C8wh8zEbBEEQBI2k02sj\nNyAbpm3vwhfl/wuCIAiCRlJLAOkVYxaZz4OHgHNz2xboNYtBEARBUJ1XLrmcVy77+XK2m5/9e6m8\nne4wnyRb2Tqe5d8yx+MrDfJJxT3JXOPNIpvvA3gi/7TixWEpOw+hF9PCy45d0V4m4CW1cLd1f8/w\n2ryf3JXYJgDzKqQVY/tuWoU6tioWDsCC/O8LLd+9eUFxbBaLOcznvXMj6vCoPt53dbc7mQId0s2b\nP7yrLc1d6Hk2yPRs7cx10qoyqHkT53wtUPX1QtWp+fjn2v7fsx91HJTNm/svhqYqOvrqy64cDHht\nVh3vVuHIsy2/1bGpEg5ttLDpudnuBUVbUovjAXisaJpXPLfdf++9Fpb8Hbr/nP1+dUxRKPP0Kp4o\n6K/C5t0/1U1JzVc698lXVPvU5/Gl7nsBWPbMc699Z6E6t1D6PC527r9Li/eUUVtvyaonf2Y523Z/\nfoQnbpoNfkMHwFLyblL9Y2bLgPenlLpabAuBr6eUzsp/jyW7Ko5o8S/buo3DgB+vcCGCIAiCoDMc\nnlL6iffPym+YZrYmmdyt5xVhizzm5dMppcfI/Fd9wcweAOaTefh5HLjC2eQ1wOF52ipRboMgCIKg\nE6xG5lv0mr4SVX7DNLM9gN9SHNv8YUrpyDzNl8nWYY4DbgKOSyl5wt8gCIIgGPYMaEg2CIIgCP5Z\niJBbQRAEQVCC6DCDIAiCoATRYQZBEARBCaLDDIIgCIISDJsO08yOM7OHzewFM7vVzPrywD4sGamh\nz8zsJDO7zcyeNbNFZna5mW0t0jWqbmZ2jJnNNbMl+We2me3XlqZRdVKY4cuZ/gAAIABJREFU2Yl5\nezyzzd6oupnZl/J6tH7ubUvTqDr1YGYbmtmFZrY4L/tcM5vSlqZxdcvv6e3nbJmZfbMlTWPqNSw6\nTDM7BPgGWTiPHcncpVxjZusOacGqU3PosyFjN7LQHdOAfchc+vzazF4LfdDQuj0GnABMAXYCrgeu\nMLNtobF1Wo78wfNo2lwQNbhud5N5Dtsg/7y95x9NrZOZjSMLY/ISsC+wLfAZWlzaNLVuwFR6z9UG\nwDvJ7o2XQgPrlVKq5QMcR+Y36wWyYDc795H2VuCclt9G5uzgc3WVr+4PsAzYv822EJjR8ntsfnwO\nHuryVqzbunn93j4C6/YU8LGRUCcyv4bzgL3I1k6f2eTzRfZA3d3H/xtXp7ycpwM39JOmkXUT9Tgb\n+FNT61WL8/WWN8ajgduAGWRPDVunlBa3pR1P9nT/07YhiG5gPzO7to4yDhJbtNRpQ7InrIVt9bwH\nOCD3jNQUNiZ7Shyf12Uk1M3Inn7XBJ4xs/fS/Dp9hSy03jNknef6DT9fbwAmmdlfyN7G7gTOI3O9\n2dQ6AXwImG1mvya7F/6FLIBqj4fwJtetlZWAjwA/Gobt8DVPPymlp7xEtTguMLNbgTkppePz30Y2\n/HVuSumMtrTHAud3vBBBEARBUI3O+pLtDzNbmewp6bQeW0op5W+KKoj0YwDjLvo6K2+zJUtmnMba\nZ30egL9OVRG/HW/5b9ulaPvfXxVt//Vunf8/Cn7h8aMbbCxsLzlpe+yXAwfm39VDihfx+w3CtpuT\n9lJhO1rY7nDyv07Yljhp57fs8+D8+4E6KSp0w8+EbZKTX0WU96LLqDqoKBlr6+w7tLSPh2fA5mfB\n3O86+6rC64VNRcRQ6QAeFLb1nLTqumk9BlcDPdomtY23CJsXjUe1z2JEjYwPCNs9JW2Qjda1M6Hl\n+7eBY/opg0JNl6n2NUHYQEYgcSO2FI/X62/fsWB7euqtLb/+B/hg9vX9HypucgdnV98Qtu/pF6Q3\nTfx9wXbX74u6y9W212FYXpwprrvZzsvYIz3XU2s7PEKnldFwbhO2KlGo9ipYdt99ETfeeDz03tgk\ndQzJrkt2J1BBpNUdcRHAyttsySpTtmPUuDGsMmW7/F/jRHLHP/vYKcJ4X9G0pUoH2chVO16klwnC\n9oKTtqe8qwOb5N/VyfU6Z7Uv7wq5SdhUfb3OWd08VYgf6K3D6sBmfewLsmnBdm4VNk8c97yweX76\n1xc2FZbJ6ZjWaqnD6HH5b9UpVGW8sKnLT5UfdPva0Emrttt6DFajt04bibTbC5vXDjYTtsXCBrrd\nqgdNb1/qnE1s+b5Wy28V2spDXeeqfW3u5Fedow4Fpq7nlaeo472w5fvqwKbZ13XFNVbcZIZqBtvq\njmXNN4sH42eK+xo92Tm364t7x2peJ9bT9lrb4WQnrQpHJuKpuR2mOo/bFizjxo3pK8NrDIcA0v8A\nWDLjNEaNG8PLt93JUwf0PCXuAuw9dCULgiAIRhi/yj+9zJnjvfAsTx0d5mKyR672R+rxZAGmJWuf\n9XlWmbIdTx1wDOtc8W0AFoxSTxJBEARBsKK8O//0Mm3a43R1/Uu/OTu+DjOl9ArZJNlrr4a56Gdv\nYHan9xcEQRAEg0FdQ7JnAheY2R30LitZA7jAy/DXb20Kb5gIo49iwf/N5yE2mlhMuOC0og1gn/2K\ntmvEXMj8Psvdhnd4lADDGzq+Lv+7Nb1zM+8V6X7h5J8vbO3Tw32gps4W/a58fneCpOftf6uW73c5\nad9UbldrO4KsJWqS30MJXnYVtn109lY916uH5r+3cfZ1v7Ap0RFogY+aS/bmcV8RtkectP3ROmem\nRnH+IGzznW15dsV5wuaJnBTqeLVe41Nbfo8Rab25+4HGrVfzlWpeEtTc6qJHNhHpWs/3jr2/PyGS\nruTM3y25oWD67JuLNoB77Y0F2zbvKLaD+7cqCpQAjnygeG7/++fH6XK9RusxUtcS6HMj7vXu/XNl\nYVN6lXLU0mGmlC7NvfScQnbL/iOwb0qp/5n47afXUaRhQMlOo3GM1HoBm0VbbBbqwWgksNNQF6Am\nmtcOaxP9pJRmAjPr2n4QBEEQDCYdn8Ms66g7CIIgCJpEHc7X+3XUHQRBEARNo+NDsiml97T+NrOP\nkikxdgJudjM+QHG984JbREJHgPHZx4VRrK1xpznUAm4lIAE9kVz0lOHjTVCXRXkaqpB0kSo/ZAuk\n21EL00GLPdZy0iqvK0LEMsHJPtexS9TCfyVGcgRKl8wQRk+QoPblCUjUMVfHu4KgqzaUEMd73hUe\ntrjbSbulsKn6ercldT0qAR5okdRA8RwqKJTaDqSDksdV21D3I7S/j0+bTnv4HgXT2U9r0c70dYre\n4J4atU7BtuuD2rX3w+o+8ciPdbkUOzhOT/4ubA+eIYyeyEq1RSXSKvfuOBjhvcaRuWGo0tqCIAiC\nYFhRa4eZr788G7g5pXRvf+mDIAiCYLhSt2u8mcAbKaP3vnsGrNzuO3YK7nq5IAiCIKjM74Hbl7PM\nmeMMa7dRW4dpZucB7wF2Syk90W+G7c+CcW3j2FeoOcwgCIIgWFF2zj+9TJs2iq6uY3TyFuoKIH0e\ncACwR0rp0Tr2EQRBEASDSR3xMGcC04H9gaVm1iMXW5JS8n1QrYEQWaq4fGc5G1Cx9oT6bKlXAOUO\nzFOTqjBYC4XN28b7hU3F4wStWFSKYIc7VIxMzx2Zqpfn7k6oJjdwwh8pwd8dVxdtc71A51Waqads\nbsdR5SkPdl5oQ6mIVRuA8m7sqqhkvePihZYqiwp070Vz8NzNKVQ8S+Waz9umUsg7alKUCzjvuPQX\nDq2HYlgoP61XB3Ec5V3RCTyh2qLnoVuEFX31H7p9/ikVIy/e+qN3FBPuqdXHh256UdF458d0ud78\nlaLN9UJacvVD6esetILau9cvTx2in2PIrozfkfUiPZ+D+8gTBEEQBMOaOtZhDsZSlSAIgiAYVGrv\n3MzsRDNbZmZn1r2vIAiCIKiLutdh7gwcTUVfLUEQBEEw3KhzWclawEXAUcAX+83wK2VUghPligv+\n5dX/Kdh+OVpM0ou56YwNhc0T8qgoZSp/X9soixAP7FuMXQfANWri+nlh85wuqcl0T8Qi0m7grGWa\nIOL13SHyb1d0xQXAPVVELEoYokQsjpjpo+8r2n7gxbhUCgynDvybsJ0ibEroBllY2XYGKu7xUIIT\n5dYOdLk8hNBLii08t3YqHJQnrlG3Nu92VzYepieAU9dT0S1dhhAXyrujI2aa8XDRdqcjthOeKh9b\nX8XehI1+Iupwt7ieJ+ljuPXmRxWNn3ZEP4r9nHvHk8K354IjREJPNKnakqpDuXWYdb5hng9cmVK6\nvsZ9BEEQBMGgUNc6zEOByWQh0IMgCIKg8dSxDnNjMv+x+6SUKoQMmEHmp72VacB+HStbEARB8M/O\n7RRd45XLWccb5k5kK+C7c+frkE2E7W5mnwJWTSmJSa2zKC4m766heEEQBME/L1NpH/zMXON9st+c\ndXSY11Kcnb8AuA84XXeWZE401miz3aEEK9qtxS9HK7FHscMd/92tZf5FP1BCHg8lAlGB20CLGu6r\nsC8hdPDCTsoJbiU68gRKZfOD9Nryxzt00s8Irzo/Fenu0bH2NKs5dhW7UnmY2Vtn/4HyjOQJApQg\nyvHQwnnCpuJpKo9TwwEv7uQYYaviqWe+sHkDU0rY4XmtKivkqYKqq2e/zkkr6iZ1dY547PAJRduT\nzq7+o9huN7rbEfytLdr42eJW/V8/lNlnrFJMe8o5nueu4j1x/1NmyZRdX31IWNV1U2Ew8wTRMb6+\nG7r6z1qH44KlwHKhvMxsKfBUSqlKTxEEQRAEw4bB8sqj3yqDIAiCoCHU0mGa2YZmdqGZLTaz58nG\nF9wVkEEQBEEw3KlDJTsOuIVsEH9fYDEwEfhbp/cVBEEQBINFHaKfE4FHU0qtrh/KxjYKgiAIgmFJ\nHR3m+4CrzexSMv9QC4CZKaXv95nrvocpxFg8+e3FdF91gr+N379oW1RUeC7abgunAEqqVkF55U7T\nqm1MFLa7nfzziyYR585HKWK9l/0qU82iXls6MSY//KwwCvXwmvvo/EuV+tZTQX5I2NTyJOcZbk0R\nhW6piN8HaNWnU651PlK0PXWGSOhJoAdzgKZsfMiqjBc2pWr2bktKrVybd0/Bux37D4RNxIv12EAZ\n5+u0z+xZtF2nr9t3PlqUff6BHWXaxV1Fl3nveOmXBdtvfy3aMTD2+iOLxh0dpe9hxXvHzct202kR\nMTklP3bsot3+p+iKRPehqGMOcwvgk8A84F3At4BzzezDNewrCIIgCAaFOh7PRgG3pZR6XArPNbPt\nyQJLX1jD/oIgCIKgduroMJ+guDL/PuADfWc7ncIC4Hs+DttN71zJgiAIgn9ybqM9ys5Qusa7BZjU\nZptEv8KfE4G2sFXbifBcQRAEQbDCvIX2MHrTpkFX19H95qyjwzwLuMXMTgIuJfOgfhTw8T5z7bU5\nvK6tg7xEJXQm02VNhBuo/3b2v8uuwnijk1i5wvqLk1axqEJaIY5x66BcwCk8YYly4+e5OROT6Q86\nvn9XFWKgl4RLs6Wea7ythM0TSV0jbMp9mhIiAROE7R4vFqQSrDjt8ykVC1IJadQ5qIrnNlCh9qfi\nonqo+npiORU7s0ocWhUj8v84aU8TtoEKl+6skNYTpQnhkzxdTjt6sSjw2fS0eTLptWcUY7vecYJ+\nCfnW/scWbD/n/cWEC7TsZfQHlhWNyhukw9PXOvE/eVzY5pffsETE7izpt7zjop+U0u3AgcB0soir\nJwPHp5Qu7vS+giAIgmCwqEWTnVK6Criqjm0HQRAEwVDQ8TdMMxtlZqea2UNm9ryZPWBmX+j0foIg\nCIJgMKnL088ngCPIopZMBS4ws2dSShVGtYMgCIJg+FBHh/k24IqUUo/K4VEzO4x2WVIQBEEQNIg6\nOszZwMfNbGJK6c9mtgOwKzCjz1xPGDzb5vpqI+Hy6QFHRXiosH1DVO/zXgGU6tJT+1VRESoc934S\nofTdy0urlJ9KIeopMR3lqESp+Bylm/IgN1ftaxdnXz8SNk8RrHam1JlO4OF7VNDyR519qfLe5aRV\nC72Uq7jNnPzqeHlKzCrBk1XaKrcFdS14+1fqck8Rq1DHRp3buvBUtiqgvIc4BlIlq9oG8PWi6dEH\nt9Zptyq6Erw0HSKTfu+Hny4aTxEJd9Bu+P58ZPHan/iCE0xdeLHb/V1K3Q43MlVYlXLfa3PiHn64\ncLE4wYYmgDSZB4KxwP1m9irZPOnJoZINgiAImkwdHeYhwGFk73z3ApOBc8xsYUrJd4332AwYvfby\ntg0PhfXD008QBEHQIebPyj4tzFljSamsdXSYZwBfSyldlv++x8wmACfRly/ZTc6CNdsWuK9ZJXpG\nEARBEPTDhOnZp4VpE7rp+upO/WatI1rJGsCrbbZlNe0rCIIgCAaFOt4wrwS+YGaPk0VunEIm+Ok7\nHubzCZa1vVHertwiOW7lnlRGIUxx5tKruasbaGzCKvEGRdrDnaQqLB8vC9tfnQ0o1nfsyhWgECgB\nrKUOuhIeeQIOdW480c8DJfflueKq4upNlcs7jyoO4R9KbhP0eagi7qlCJ2JfKpRYQwlmvOvr98Lm\n3cLqqoNCXQuegE0I/uRpdFzj3SMEK+2eu/vY7iS0Gz0mi+0+VxzhO/9nH5PZj1CDhyUdmgPceNW+\nzn9UnMs9hM1zWyiuXbXJkvEw6+gwPwWcCpxPdpUvJIuJeWoN+wqCIAiCQaHjHWZKaSnw7/knCIIg\nCEYElecVzWw3M+syswVmtszMCi+zZnaKmS3MXeP9xsxUuIkgCIIgaAwrIsRZE/gjcCxQGOQ2sxPI\nhmWPJvPusxS4xsxWGUA5gyAIgmBIqTwkm7u8uxrAzMRMMccDp6aUfpGnOYJMyfB+sviYmkcuJos9\nfQfQI++dJhIqGzqOoRJ7XOLFXKyCEhSouH7Q68nkLuBNfeT3EJ5UVBhGFyWO8byrKKFBf16NWuvl\nePa4RTUz5bnmhn721V/+Kqyjzfu2NOknZsEbpusQmwA8KGzbO2mVwEd5G/o3J/9XhM2Le9kuUm9P\n+wd6RUhKiKO8Jc139lVFeKTiiqpj6KHaUes2bwbenn/34qUOBM+7pxKrvdNJK9qBvJ5bvRpdThYx\nkex1pR0p9oNTZn62YDt46WUiJXzsGyL4sAibe8wPlNctOG7u/1c0HqTL1UvLvUNp9QA4WNiUMM7z\nXiba57+IZBO9/S9PR5d6mNnmwAbAdT22lNKzZHqpt5XbSrlAns2jjgt4ODBS6wU8MVKdU6nOeyRw\n81AXoCZ+PtQFqInm3Ts6vTZyA7Jh2vZHgEX5/4IgCIKgkdQSQHrFuJxsSPAR4Hu5bQnwriErURAE\nQTDCWDALFra5xrtvaFzjPQkYmXuA1rfM8fQ7DnQgsAlZZ/nx3ObMVwZBEATBirDR9OzTwrRtuun6\nRv+u8TraYaaUHjazJ4G9yV0vmNlYsp7vfCfbagBjx/6NlVZajeeee4kxY3o80aiZYCVSAJaIuc/X\nq8lhr8pVvPeobSzrc7vPPfcKY8YM1ENQzihnnvf1avtKiOOVQwl8vFH7LAzW8vWa32facmUYLB7S\n5tQbfuk5nmFM6naOq4fyTgW6vkqc483hq/yrOmnVdntF6s899zJjxizOf6lzo9qM48VJ7ssTtSmx\nWZVjq9pn7zF47rkXGTOm5/jX0b48bzJqX955FMdxZXXv6t3mc889y5gx+XzfY+IYPq99bv+tu3iv\n/MOLOqzd618WZVi9uN3uJ538S0V+5xLrqdty947F3j1NtSV1vBcLG8j2vay4r5f/dl/PV09JB4Cl\nVM3BuZmtCWxF9ibZTeag4LfA0ymlx8zsc8AJwEfJ7qCnAtsB26WUCn7a8uDSyllREARBEAwmh6eU\nfuL9c0U6zD3IOsj2jD9MKR2Zp/ky2TrMccBNwHEpJSkcNrN1gH3JOte6nGMGQRAEgcdqZIsTr0kp\nPeUlqtxhBkEQBME/IxFyKwiCIAhKEB1mEARBEJQgOswgCIIgKEF0mEEQBEFQgmHTYZrZcWb2sJm9\nYGa3mtnOQ12mqozU0GdmdpKZ3WZmz5rZIjO73My2FukaVTczO8bM5prZkvwz28z2a0vTqDopzOzE\nvD2e2WZvVN3M7Et5PVo/97alaVSdejCzDc3sQjNbnJd9rplNaUvTuLrl9/T2c7bMzL7ZkqYx9RoW\nHaaZHQJ8A/gSWRiFuWQhwdYd0oJVZ6SGPtsN+CaZA4p9yEID/NrMXgtv0tC6PUa2ZngKWYic64Er\nzGxbaGydliN/8Dya7JpqtTe1bneTeQ7bIP/0hCdpbJ3MbBxZqKaXyJbYbQt8hpYV+k2tGzCV3nO1\nAVkYl0Qeuapx9Uop1fIBjgMeJnPPcSuwcx9pbwXOafltZC5TPldX+er+kLn+2b/NthCY0fJ7bH58\nDh7q8las27p5/d4+Auv2FPCxkVAnsgBN84C9yNZOn9nk80X2QN3dx/8bV6e8nKcDN/STppF1E/U4\nG/hTU+tVyxtmlTdGM1uZ7Om+NSRYAq6ldEiw4U9nQp8NG8aRPSU+DSOjbmY2yswOBdYAZo+EOpG5\no7wypXR9q7HhdZuYT3k8aGYXmdkm0Pg6vQ+43cwuzac8us3sqJ5/Nrxur5Hf6w8nj+DZxHrVFa1k\nBvCdlNKPIJsrIgvbeSRwRlvaicBoYL32MXtgS2FrElu0lP9NZJ3M+m11egnYtmH1PJts6Hm1vNxN\nrtuWwAVkzlafB/6DbGj9rTS3TpCF+Xkb8K95Wdeity5NPV+LySJpP0I2yvEJ4FYz+xDZfaSJdYKs\nDR4LXAR8miwK+TfNbAPgKpp7vtp5J9nDdvcwbIdD4+knf4p4HjgopdTVYr8AWDuldGBb+mPxHbMH\nQRAEwWDRpy/ZOt4w1yV7Y1RBpCeJ9Hdlfz6QZ70a2E8k6xQTHPv8GvcJK16vNwtblcgR6mGp4AN/\nBehpOlcB78m/j3bSbixs84VNlR9aI230UqUOrxO2MtEses7ZWOf/OwjbTU7aspeaKivAX4XtDU7a\nJ/rZR2tbVBFP1EN0lePt6TU60e76orVeW4r/e+d8grDdUzIdZNPEJfnW0QXTO3b+VcH226mt1/3/\nC3wh/67a16HOzr4rbF6Em7cI22PC9hcnv4p60x8t52vl4nEB+PgrUwu2761+e8H2nZs+IvN/Yupn\nhfXugmX33VfixhtPh346guEQQHpp9mddshvAavg3gk6wuWN/qcZ9worXa6KwqbBloMMqqWg1nfBx\nv3LL9jfMv3vNaQthUzdPLyzUQOuwfsltqjRvAHRII9hG2GSMAXqPV3+s59jVsd2s5DbbaW2Lq4v/\nqw6zyvH2jm3dsRVa66XanHroACiskAKeETbVCQM820+5WphYHGV83ZT7RMLtW76Pbfk9X6T1Ri7V\n/Uadb9BtWbU572HICbvYJy3na5Sug7xjji6m3XrKms4+1DtaMVj0uHGvXZ99NtI6OszFZK8K49vs\n48kCTDtcTXYAFwA90bC3JxvmDoIgCIJOcAft8UrnzLFSOTveYaaUXjGzO8iCSHcBmJnlv8/1c+5H\n9jwxC5juJwuCIAiCFWan/NPLtGkr09V1bL856xqSPRO4IO84byNTza5BpkZ0WAMYkxepJ+q9es33\n5njKRljvRJXVNrztlh2G8obs1HzlgyW36dGJIbOe+lrLd+/cqDkeNTS0IsM67YwRthcq5G8t1+j8\n94ZO2l8Imxr+BX1s1fHy5ogUXlp1bFvP+cot+y573VTBa0fqGvGG4cvSet2Mavmtzrk396+mOFS5\nBnrdUeH20zpvvlLLb1WvxysUwLsWrhE21ZY7cf/saYuje7+/9FWZ8ghhO2XpVwq2D3Ohs687hU21\nA0+nsDy1dJgppUvzNZenkA3F/hHYN6XkTSK0sGMdRRoGbN9/kkaihC8jhZFat6asQqjKSJ2++cBQ\nF6AmlKBxeFOb6CelNBOYWT3nSO0wR+rFPHmoC1AjI7VuO/WfpJGM1AeckdphNu/66rinHyvpqDsI\ngiAImkQdrvH6ddQdBEEQBE2jDpXse1p/m9lHydQJOwE3d3p/QRAEQTAYDIbjguUcdQ+cgS5+9tSo\nVRbHKwVdFbWfOuyvOGmVest7WVcKUbXdTqhRFd7xUovxq5RBbddT+qrtKpWrt391bNdw0io81ak6\n50rl6tVLqRs9VfJCYfPap9qGOjZV2rdaBA++U4eyDPQa9W536tiqtN65UY4LnPvMJ4vr/X525uHF\ndJ5PirU+V7Qpp0SAroO33nBvYbtL2CY4+au0GVWGk2TKzT/9xaLx3C8VTI+PetjZV5Vrt39qjYeZ\nr788G7g5pXRvf+mDIAiCYLhS9xvmTOCNwK79J+2i+AS3DSNXXRoEQRAMPnfR7k92zpxyXWFtHaaZ\nnUfmlXu3lFJ/3qCB/Sk66a5r6DAIgiD45+RNtL+ITZs2lq6uz/Sbs5YOM+8sDwD2SCk9Wsc+giAI\ngmAw6XiHaWYzyZzB7g8sNbMeJ+xLUkodCFfgiWPKogQRoMUD3uEZqDsvJSzx6nW/sFURewyUKiIU\nT1Cl7AONflHlHPxd2Lyyqu16IivlZKMYOsjf7lrCVsVVnRdFRbWDTZ20HdLiLYdqs51AtRnvPKq0\n3vFSYrlHhM0TMynxlnM9K23Ku4UIZg9nVzcI2yFOTONLVJvzjtdsYVNiJs/14zrC5kXeEQ7fJms5\nzb+e9f2i8Vxh4zBnX9cJmzq45a6DOkQ/x5BJO39HduX2fA6uYV9BEARBMCjUsQ6zVuVtEARBEAwF\ntXduZnaimS0zszPr3lcQBEEQ1EXd6zB3Bo4G5ta5nyAIgiComzqXlawFXAQcBQh3De38g3KCHjVB\nD+XFEs+XTAcDF/d4KEGCV3flFWOik1aJD6p4PFFpq4hzlEjAsyvxgVeuV4XNE+KopUheuRRKYKSU\nFgC7CJt3HtV2BxqLcrxjV8Ij73jVEQ/TQ4nVBrp/73irc+5dz2U9Lv3ByV8hPu6LJQfabnAkH19r\nX3oHXFtukxne8VJteb6wOTFB95hRtN1wgbOv4rkZf4f21DPrxiOF9VvCdp7e1UHCM5IKY7tSt87f\nRp1vmOcDV6aUrq9xH0EQBEEwKNS1DvNQsmBnU+vYfhAEQRAMNnWsw9yYzH/sPimlCosmf0Fx2Ghb\nwjVeEARB0DFenQXLLl7ONGf2M6Wy1vGGuRPZitXu3Pk6wGhgdzP7FLBqSkmstH0vsFGbrQN+DoIg\nCIKgh9HTs08L03bpputn/Q+I1tFhXkvxtfAC4D7gdN1ZBkEQBMHwpg7HBUuB5UJ5mdlS4KmU0n1+\nzpcp90Y5mKo+jyqHTSnzBure7/EB5u+E+lepXHd20iq3W+q5ySuX2leVY1gljqJS2XruwJRisIrS\nV6V1jsHJxRiAfPUsZ18K5cqwLjz1rgryeFuF7ZaN9wqVjm3p2JcqNi1ola3nhk+lVfxMm7/x6aJt\n35KbBHzXeAuETZXVaUeHCpsnLhfX/tdMx8M88h0fKFkuzUaXFmOwLjhYrDLYyosTujyD5ZUn3iqD\nIAiCRlN3PEwAUkp7DcZ+giAIgqAuannDNLMNzexCM1tsZs+b2Vwzm1LHvoIgCIJgMKhjWck44Bay\nuCr7AovJXNMMh8nHIAiCIFgh6hiSPRF4NKV0VItNBZdrYw2Kk/pKgOG5xlNp1QS3J+BQ+T3qcpmn\nUPX1ylrWDV4nyq/EFl4sSMVbhE2JgzyqxEGsEo/zs8L2q1IlyvDc8CkRiSqXI2iQp8yLi6rcP3px\n3MuWy2tzKr8XW1DZlcs+TzBzVNG0q5P0lnOF0RMIKXuVa2TvomnLt+ukD35FGNUxmKbzt6+8A/il\nUyx5HlUMVtBtpoL0ROoQnbY8+YSC6et4runudeztaNePu4wq3lP9jRZgAAANCklEQVRGX3ZTwbZF\n9zK6/rP/vdQxJPs+4HYzu9TMFplZt5mJlh4EQRAEzaGODnML4JPAPOBdZJ5yzzWzD9ewryAIgiAY\nFOoYkh0F3JZS6olQMtfMtgeOAS70s3VRHN7ZhnCNFwRBEHSKR2bN4ZGL5yxnu6OcZ7xaOswnyLz6\ntHIfoFagtrA/0B66psq8YhAEQRD0zWbTp7HZ9OXniLfoXsZpUz/eb946hmRvASa12SZRSvgTBEEQ\nBMOTOt4wzwJuMbOTgEvJ5F5HAf10389T7o2yylunUr/9tUJ+D6Vc9dS7C4Wtiqs2dYrUNqF8gF6v\nrOp4eeVSCjwl4QNOEMFl//N3znYVqlxOQORdhQu5W0rI317j6+X3JfHUlco1XgUl5n8qxaLn7q6K\nwnPDkuk8hanal7d/pVBXdVBu2kC60VtXqa0B/u7YFeoaq+C68V+EIta7bGT8ZXEt/R+nXj8W5Xrx\n+87OVB281X0DXPX31fJK49fdVrx/3Xe+t0z/ypIFEIGigdu4v2AbZ8Xx17FWzt1ex98wU0q3AwcC\n04G7gJOB41NKF/eZMQiCIAiGMbW4xkspXQVcVce2gyAIgmAo6PgbppmNMrNTzeyh3C3eA2b2hU7v\nJwiCIAgGk7o8/XwCOILMTcNU4AIzeyaldF4N+wuCIAiC2qmjw3wbcEVK6er896NmdhjaF9oK4BW5\nrNBhdAfKoIRHVcRIZeJ+9qBESko0BOUn7r39q4n7Kq4EHbGGXOOkxB7evtSEvCNcmquMVVzj7Shs\nf3DSbilsUtUBrCdsFdrMZiJe3yPl4wL6KAGZcp/WieOl6lvlFiTKdcWdTtoq8VLVvaO8S8o3Xzmn\nYHsu6fb58OjDhHVC0XS3E5/xH0rIs5VO64qnFNsIm3Jl6LS5SeIam6fPwS4rFd3V/fLJDzrlUq4q\nhTDvrTr3s/8oxjB9ZE6xrpv91XPNtzx1LCuZDextZhMBzGwHMo+PMacZBEEQNJY63jBPJwtNfr+Z\nvUrWKZ8cKtkgCIKgydTRYR4CHAYcSjaHORk4x8wWppT6cI13NcWhxu0J13hBEARBx/jNLLh2+fe3\nOS+X841XR4d5BvC1lNJl+e97zGwCcBJ9+pLdD3hDDcUJgiAIgpx3Ts8+LUz7azddB07tN2sdc5hr\nUHRrsqymfQVBEATBoFDHG+aVwBfM7HHgHmAKMAPw/DflvI6iSlIpsgaqknXctw3UNZTLQAM4KxVi\nOUWXv39PQajUpJ5bOHW8nHqpWLrfUYpY4foM0HXQar39llxesF09ukoQ7ipBx6u4WfTcGZbkkVuE\nUSkuAX5SYcOqLawibEoRDDpgttdmyrpu9Nz1XSZs3r6quJ8si1ann2PHF2x38maZ9ni+WzSK62PV\nLh2E+6VNRHDtVfeUaVl6g7ZLlGpdXWNOcO95NwujDkC9P10F2y8f+JDe7ug1ijblZfLrWlX8t28U\n29LY4xcVbKveWc6VYh0d5qeAU4Hzye40C8liYp5aw76CIAiCYFDoeIeZUloK/Hv+CYIgCIIRQeV5\nRTPbzcy6zGyBmS0zs/1FmlPMbGHuGu83ZuatrA2CIAiCRrAiQpw1gT8CxyIGqc3sBLJh2aPJvPss\nBa4xMzUxIrh9BYrUBDyPJE1HutYZIfxuqAtQE3cNdQFq4o9DXYBaePWnPx3qItTCbbMeHuoiVKby\nkGzu8u5qADNTM63HA6emlH6RpzkCWAS8nyw+psPfyCbVbwE27aMEA524f3SA+VeUO8ERAvRNcYLa\nFw0pcYs6Xl48TJXWc7/WIxaZC7wx/150QwXAh5WLrgnOdhWqvsqVF7zR7i3YrsZxMyZpjZ/3S2AD\ntPAKQIkqqojSVB2cOOuTdi3apNACtEip9TzeTe/6ZpW2SrxX1T70uUHEJtQiqyq0PrPPBXbIv1cR\n1imUKEyLvx5KWxRsnzrxBzLt8ZO/VzQeUDS9tKBFIPXjK/nHW4/Kvk8WG10sdwXzHLvEaXcFtBiJ\nSUK5NO9amfRhNgfghovnsN70vTLjcVogxCXqGiumvWjXA2X2f73iZwXb6JWKqiEzZ/9tdHSph5lt\nTnaHua7HllJ6FphD5mM2CIIgCBpJp9dGbkDW/be/Fi3K/xcEQRAEjaSWANIrRo9rvAXArNwWrvGC\nIAiCzvHyxT/n5UuuWM5285KlpfJ2usN8EjBgPMu/ZY7Hj/mTrwaeCqxL1nHu2fLvJzpcRLXQGjJt\nUh30hBN7kd7F62rlbRW8Y7JE2F4WNk9/pdJ64dBeyv++2FIe79gqkYkqQ5Vzvaq0LupWDgLUHKY3\nx9VahxeBx8l0bgpVXu94qXOu6uAcgxeVswpvkkrN07c6CGg9Z2reWoX3EgvIAT2n5TmFUHPZ6hbk\n7Us5imhtRy+07EMd74Fed1o/8Uh38Rh0P+nMiT0vzuPjIt29LfmfewbuzfP9XbTlF735t07fO/tA\ntk+9/ye7s/K+9MxLPNmdp5nnOWP5U6ntPtzt+IJdVNzuqK23ZLUvLr/qcbt5j7Lwptngx04EwFIq\nN9kpM5stA96fUupqsS0Evp5SOiv/PZas8zyixb9s6zYOA368woUIgiAIgs5weErJdZVV+Q3TzNYk\ni1ja86izRR7z8umU0mPA2WSu8R4A5pN5+HkcuEJsDuAa4PA87UAlsEEQBEFQldXIpPvX9JWo8hum\nme0B/JaitveHKaUj8zRfJluHOQ64CTgupfRApR0FQRAEwTBiQEOyQRAEQfDPQoTcCoIgCIISRIcZ\nBEEQBCWIDjMIgiAIShAdZhAEQRCUYNh0mGZ2nJk9bGYvmNmtZrbzUJepKiM19JmZnWRmt5nZs2a2\nyMwuN7OtRbpG1c3MjjGzuWa2JP/MNrP92tI0qk4KMzsxb49nttkbVTcz+1Jej9bPvW1pGlWnHsxs\nQzO70MwW52Wfa2ZT2tI0rm75Pb39nC0zs2+2pGlMvYZFh2lmhwDfAL5EFhpiLllIsHWHtGDVqTn0\n2ZCxG/BNYBqwD1mIiV+b2eo9CRpat8eAE4ApwE7A9cAVZrYtNLZOy5E/eB5NWxy2BtftbjLPYRvk\nn9fCZDS1TmY2jixM00vAvsC2wGdocc/U1LqRuXDboOXzTrJ746XQwHqllIb8A9wKnNPy28icHXxu\nqMs2gDotA/Zvsy0EZrT8Hkvmz+vgoS5vxbqtm9fv7SOwbk8BHxsJdSLzcTcP2Its7fSZTT5fZA/U\n3X38v3F1yst5OnBDP2kaWTdRj7OBPzW1XkP+hmlmK5M93beGBEvAtYygkGAjLPTZOLKnxKdhZNTN\nzEaZ2aFkjkxnj4Q6AecDV6aUrm81NrxuE/MpjwfN7CIz2wQaX6f3Abeb2aX5lEe3mR3V88+G1+01\n8nv94cAP8t+Nq9eQd5hkbyujGfkhwUZE6DMzM7KnxJtTSj3zR42tm5ltb2bPkQ2HzQQOTCnNo8F1\nAsg7/8nASeLfTa3brcBHyYYtjwE2B27M3XU2tU4AWwCfJBsNeBfwLeBcM/tw/v8m162VA4G1gR/m\nvxtXr2EU3itoCDOBNwK7DnVBOsT9wA5kF/IHgR+Z2e5DW6SBYWYbkz3U7JNSemWoy9MpUkqtfj7v\nNrPbgEeAg8nOY1MZBdyWUvpi/nuumW1P9lBw4dAVq+McCfwqpfTkUBdkRRkOb5iLyeLujG+zjycL\nFzZSaA191kpj6mlm5wHvAfZMKbXG2Gls3VJK/0gpPZRS+kNK6WQycczxNLhOZFMc6wHdZvaKmb0C\n7AEcb2Yvkz3BN7Vur5FSWkIW/2krmn2+ngDua7PdB2yaf29y3QAws03JBIPfazE3rl5D3mHmT8B3\nAHv32PJhv72B2UNVrk6TUnqYrBG01nMsmfJ02Ncz7ywPAN6RUlou4GLT69bGKGDVhtfpWrLI65PJ\n3p53AG4HLgJ2SCk9RHPr9hpmthZZZ7mw4efrFmBSm20S2dvzSLm+jiR7ULuqx9DIeg216ihXRh0M\nPA8cAWwDfIdMrbjeUJetYj3WJLs5TSZTkf4/+e9N8v9/Lq/X+8huaD8H/gysMtRl76deM8kk7ruR\nPf31fFZrSdO4ugGn5XXaDNge+BpZZOm9mlqnPurarpJtXN2ArwO75+drF+A3ZDfhdZpap7zcU8nm\n0E8CtgQOI4vCfWiTz1dL2Y0sfONXxf8aVa8hL0DLgTs2P6gvAP8LTB3qMq1AHfbIO8pX2z7/3ZLm\ny2RS6ufJYq9tNdTlLlEvVadXyYKCt6ZrVN2A7wMP5W3uSeDXPZ1lU+vUR12vb+0wm1g3YBbZcrMX\ngEeBnwCbN7lOLeV+D3BnXu57gCNFmqbW7Z35/UKWt0n1ivBeQRAEQVCCIZ/DDIIgCIImEB1mEARB\nEJQgOswgCIIgKEF0mEEQBEFQgugwgyAIgqAE0WEGQRAEQQmiwwyCIAiCEkSHGQRBEAQliA4zCIIg\nCEoQHWYQBEEQlCA6zCAIgiAowf8PMj4BWrTrUBgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_weights()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### In order to avoid overfitting, we evaluate our model by running a 5-fold stratified cross-validation routine." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cross Validation time = 110\n", + " Cross Validation Results\n", + "[ 0.57493857 0.54914005 0.54176904 0.47788698 0.46617466]\n", + "0.521981861451\n" + ] + } + ], + "source": [ + "# Cross Validation\n", + "def cross_validate():\n", + " t0 = time.time()\n", + " estimator = KerasClassifier(build_fn=dnn_model, nb_epoch=epochs, batch_size=n_per_batch, verbose=0)\n", + " skf = StratifiedKFold(n_splits=5, shuffle=True)\n", + " results_dnn = cross_val_score(estimator, X_train, y_train, cv= skf.get_n_splits(X_train, y_train))\n", + " t1 = time.time()\n", + " print(\"Cross Validation time = %d\" % (t1-t0) )\n", + " print(' Cross Validation Results')\n", + " print( results_dnn )\n", + " print(np.mean(results_dnn))\n", + "\n", + "cross_validate()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prediction\n", + "---\n", + "To predict the STUART and CRAWFORD blind wells we do the following:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "#### Set up a plotting function to display the logs & facies." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# 1=sandstone 2=c_siltstone 3=f_siltstone \n", + "# 4=marine_silt_shale 5=mudstone 6=wackestone 7=dolomite\n", + "# 8=packstone 9=bafflestone\n", + "facies_colors = ['#F4D03F', '#F5B041','#DC7633','#6E2C00', '#1B4F72','#2E86C1', '#AED6F1', '#A569BD', '#196F3D']\n", + "\n", + "#facies_color_map is a dictionary that maps facies labels\n", + "#to their respective colors\n", + "facies_color_map = {}\n", + "for ind, label in enumerate(facies_labels):\n", + " facies_color_map[label] = facies_colors[ind]\n", + "\n", + "def label_facies(row, labels):\n", + " return labels[ row['Facies'] -1]\n", + "\n", + "def make_facies_log_plot(logs, facies_colors, y_test=None, wellId=None):\n", + " #make sure logs are sorted by depth\n", + " logs = logs.sort_values(by='Depth')\n", + " cmap_facies = colors.ListedColormap(\n", + " facies_colors[0:len(facies_colors)], 'indexed')\n", + " \n", + " ztop=logs.Depth.min(); zbot=logs.Depth.max()\n", + "\n", + " facies = np.zeros(2*(int(zbot-ztop)+1))\n", + " \n", + " shift = 0\n", + " depth = ztop\n", + " for i in range(logs.Depth.count()-1):\n", + " while (depth < logs.Depth.values[i] + 0.25 and depth < zbot+0.25):\n", + " if (i" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAQOCAYAAADSegctAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4FFX3wPHv3fRCCEkIvQuE0JsIhC5SBGwooIiviAXE\ngr2LXbG8/FCwgaK8FsSCCAqK9CKg9F6k11BCet37+2M2sISU3WRnC5zP8+yzSWbmzJmb3dk9M3Pv\nKK01QgghhBBCCOHtLJ5OQAghhBBCCCEcIcWLEEIIIYQQwidI8SKEEEIIIYTwCVK8CCGEEEIIIXyC\nFC9CCCGEEEIInyDFixBCCCGEEMInSPEihBBCCCGE8AlSvAghhBBCCCF8ghQvQgghhBBCCJ8gxYsQ\nQjhBKXVIKbWzwN/uUkpZlVK3eiovIYQQ4nIgxYsQwmcopdrZioRfi5g+3jZ9axHTH7ZNf6kMaWgn\n/14qSqk2SqnPlFI7lVKpSql0pdRupdQXSqnuBeZ9xbZd9o9UpdRG27RwB9b3sm25TKVUTBHzLLLN\n06yQaZXs1j2gkOl+SqkU28PP9rd7C8nb/rGiiDx6KqVmKKUO2vI9qZRarJQarZQKLGKZvwrEzlNK\nnVFKLVFK3VnEMr0KWSZZKbVfKTVHKfWYUqpSce0qhBDCtfw9nYAQQjjhbyAV6KiUsmitrQWmdwWs\nQEOlVKzW+kQh0zXwp9mJlpZSygL8F3gAyAYWAD8DOUAdoC8wVCn1jNb6LbtFNTADyC/cKgPXAs8C\nfZRSV2mtc4tYpwLuwGi7AOB2Ww4FLQA6YbTjxgLTutmerbbpswpMbwuEAXO11nkFps0F/ipkfYcK\n5OkPfGrLNQWYA+wFIoFewATgPqXUtVrr/QViadvjTSAL8ANqAzcCCUqpZlrrMYXkgC23ubafQ4Eq\nQEegDzBWKfWI1vqTIpYVQgjhQlK8CCF8htY6Tym1FOiN8WV4Vf40pVQU0BT4EeMLaTdgut10hfHF\nO4vCvyh7izcxCpc1wM1a6wP2E5VSQcBooHwhy36ntf6xwLxrgJbAIOCrItbZC6gBfIhRuNxF4cXL\nQmAsRttOKDCtG5CM0bbduFhXjOJhUSHT5mqtC8YrzH8xCpdlwE1a68T8Cbai71XgKWCOUqqt1jqj\nkBhvaa2T7ZZ7A1gLjFZKjdNaHy1kmb+01i8X/KNS6gaMYupDpVSK1vobB7ZBCCFEGchlY0IIX7MQ\nUBhfhu3l/z4BOMPFX6CbAxWAlVrrbPsJSqm6SqkpSqkDSqkspdRh2+/VXZ59MZRSDYBHgBNAn4KF\nC4DWOktr/S7wSknxtNZZwNcY7dW6mFnvwigsPgJ+ABoppdoVMt9fQAZGEVhQV4yiYgHQVClVocD0\n/P/HwpLyLoxSqjEwCjgOXGdfuABora1a62cwitdGwEOOxNVabwdWYHwetnQmJ631T8CtGO37dlGX\nrAkhhHAdKV6EEL4m/8tvweKkG8YX67+ApUVMt18eAKVUe2AdMBRYjXF0f5nt9zVKqRqlTVQp9aqt\nr8QzDi4yHOOL8CSt9eniZtRa5ziZTlGXjEUD/YENWutNwJe2HO4qYp0rgApKqRZ2MaoC9THOqizG\n+GzpajfdH+iAcanXP07mnW+47Xmi1vpMMfO9Yst/eDHzFKXQNiqO1vp3jLNbVSi8qBNCCOFCctmY\nEMLXrAPOAh2UUn52/Se6YFzek6OUWgwMUEpV1VofsU3vhnF24VzxYjtSPh2jn0YrrfUWu2mdbPOO\nB24qZa75/Swc1cH2XKqzEwUppUKA22w5LCtitmFAIDDN9vsi4CAwSCn1sNY6vcD8C4HuGMXJetvf\n7Nt2PZBm+9tPtun5/V3mFNJPCYw+OQXP1AC8b1fEtbc9LyhiOwDQWm9QSp0C6imlYrTWJ4ubXykV\nj9HumZS+sFoEtMHYTq/tTyWEEJcCKV6EED5Fa21VSi0B+gFXAitto2M1Br6zzbYY4+h7N+ArW3+X\nBIwzM6vswl0HVAeeti9cbOtZqpSaDfRXSoUW8iXeEf/FKAoSS5rRprLt+VCxcxVOYRQcTW2/V8Jo\no2rADK11wQ70+e7COOPwNYDWWiulvgKeBG4BphaYP/+yvW4YhR22n1OAtbblV3Dhma+uFCgcC7jG\n9ijoGyC/eMlvm4NFxLB3CIiyLVOweHlaKZXJhR32A4HRWutTDsQuzBGMNil0lDYhhBCuI8WLEMIX\nLcK41KkbsJLzX5QX2Z7XY5yd6YbRSb0FxohUfxQYcasdxpfqeKXUi4WsJxbjS+4VXDy6VolsZw2K\nvfzLxQYW8rdvtda3FTazrV9LPPCb1vq43aQvMTq+38XFxcsajDMrnZRSSmutsfV3sf0MRvH4ilKq\noq1vSkn9XR7WWr9f7Ja5hgKeKPA3DdyrtZ7ihvULIYQoI+nzIoTwRflfgrvaPWdiO6ti+xK9jPNf\nmvPvi1LwkqMojC+0Q4EXCnnkFzdhLs6/KMdsz9VKsawGBmqt/TCGO24K/AEMUUq9UMQyI2zLTbP/\no60T+98Yl+bVLzAtF1iOMdpZS9ugBnUxCpZ8+We+utr1d0nSWq8rIg/lwPblt40jfZDyB1ooOHKY\nBiJtbRQGXI1xlmaiUqqLA3GLUtUW29EzbEIIIUpJihchhC/agDGiWAelVABG8fJXgU7si4DaSqma\nFH3ZUrLt77211n5FPPy11itN3p58yzG+yPco5fIKzo28tRW4HvgXeN7ucjJjRqVCMS4LA/i64A0i\nMfpwQCEd97lw0IT8/i6L7KavxrhErxvGpX2hXFjclMYKHGgbpVRzIBrYU8RlYPltlKm1XohxBs8P\n+Nz2WiqNrrbnNaVcXgghhIOkeBFC+BzbmZXFQAgwAGNo3EUFZsv/stwTo79LKsbZBHurML7MdsA7\nTMUYPOC+Ijqwn+PIsLxa60yMy6T8gDcKTB4ElMMYAGFyEY9sYJjtHir27Ier7kqBUcRsRWT+5Xxd\n7ZYpi6m255FKqcLucZPvOYxiyqHLwGwjrH0K1ALudzYppVQvjI76hzBGuRNCCGEiKV6EEL4q/wv0\nixR+88O1GAXLQxiXOC0tZKSrHzG+dD6ulOpYcAVKKf/C/u4opVS0Uqqh7QaaJdJa7wDexehsP1cp\nVauQmMFKqSeA5x2M+SPGmao+Be7dkn9vlwe11vcU9gBmcb7jv71/MAqWThhnQpYX0raLgYbAYIrv\nrO/QaGxa680YN9GsDPyilKpoP10pZVFKvYoxMtxWLr6JZnFeA3KAJ20jtDlEKXUjxkAHGni8FMNX\nCyGEcJJ02BdC+Kr8L8NNOH9/l3Nso5ItB3pTxJdnrXWWUmog8CuwVCn1J7DZNrkm0Bmj30QzB/Ip\nrN/GGOAZjLMBrzsQA+BpjNGvHgR2KKUW2HLKA+pg9NOogDEaWEnrz/cSRqH2MtBLKdUQ42zTLq31\nimKW+xy4GaPQOTdamdY6Tym1FOiLcfZmYiHL5p/5agKctBUfhXGkv0u+h4FwjD5Ku5VSc4C9GIMx\n9MLoe7MFuFZrneFoUK31YaXUZIybYD4AjCswS3u7AR2CMfq4JGD8P1KBEVrr7xBCCGE6KV6EED5J\na71ZKZWIMTztyiKOei/G+FJb5JF/rfVqWz+Jx4E+QEcgCzgMfA98W9hiTvzNqXu92M5gjLENV3wf\nRgHVGeNM+RFgDvC51nqRA+vPjzlTKbUe6KGUSsDo56G5eCSxgn63rbO3Uqqy1vqY3bSFGO1V2Fkv\nMC7JywSCKP6SMWfaJge4Qyn1P+AejDM/N2KMfrYZY2jqT4o5A1Lcut7AuLHlo0qpiVrrNLtlrrQ9\nsK3rtG19E4FpthHVhBBCuIE6P7KlEEIIIYQQQngv6fMihBBCCCGE8AlSvAghhBBCCCF8ghQvQggh\nhBBCCJ8gxYsQQgghhBDCJ0jxIoQQQgghhPAJUrwIIYQQQgghfIIUL0IIIYQQQgifIMWLEEIIIYQQ\nwidI8SKEEEIIIYTwCVK8CCGEEEIIIXyCFC9CCCGEEEIInyDFixBCCCGEEMInSPEihBBCCCGE8AlS\nvAghhBBCCCF8ghQvQgghhBBCCJ8gxYsQQgghhBDCJ0jxIoQQQgghhPAJUrwIIYQQQgghfIIUL0II\nIYQQQgifIMWLEEIIIYQQwidI8SKEEEIIIYTwCVK8CCGEEEIIIXyCFC9CCCGEEEIInyDFixBCCCGE\nEMInSPEihBBCCCGE8AlSvAghhBBCCCF8ghQvQgghhBBCCJ8gxYsQQgghxGVKKXW/UmqvUipDKfWX\nUqqtp3MSojhSvAghhBBCXIaUUoOAd4EXgZbABmCeUirGo4kJUQyltfZ0DkIIIYQQws2UUn8Bq7TW\nD9l+V8BBYILWepxHkxOiCP6OzKSUigZ6AfuATDMT8nLBQG1gntb6lLMLSzueU6Z2BGlLO/KadA15\nTbqOvCZdQ16TwtUueE0ppQKA1sDr+TNorbVSaj7QvuDC8nryGYXuO5RSNQFXn1E7qbU+4OKYJdNa\nl/gAbgW0PM49bnWk3aQdzWlHaUvXtaW0o2vaUdrSdW0p7eiadpS2lEcxj1ttr48qgBVoV+B18xaw\nUl5PPv+41e5/V1P5W8xYRxpQs7T7qNI+HDrzglFl87///Y9GjRoVOsPh5MPM3jmbObvmcDj5MFXL\nVaVfg370a9CPh4Y/xPfff+/gqhwzcOBAl8csKe62bdsYOnQo2NqjFPZB8e3oDDPaoDQxv/wS3n8f\nvvsO6tQpOZ4L2vHcsq5qy4Jc0bZZWVls3LiRTZs2oZSiWbNmNG3alMDAQJetz6OvydxcWLUKfvkF\nFi+GnBwGBgXx/XPPQdeuEBJSypQuZvb73Vtfk4Vtd0ZGBrt372bbtm1s376dHTt2sHv3bnJzcwGo\nXbs2cXFxxMXF0bBhQ+Li4oiIiCgxrqv079+fI0eOgJfsJ+2Zsd2ffvopn376KatXr3ZpXFe+JiN7\nNaRRdAQfPPoRAIlpuWw6kYkC2lYLITzQr9CFtdas3p/Ed2uPcijJONBeLsiP5CN7SDlxiAEdmjLy\nhm6Aua8pe2at5+S+s6z9YTd52XlUqF6O1jfXZ8jQwT69TQW56vOidswVjOj6qIuyMvxv+SSGdhwl\nMV3gtPU47/04Fi78P8foXCuRvRriHxXqkvXknk4nad6OUIyzOW49++Jo8ZIJ0KhRI1q1anXBhCMp\nRxg1ZxQ/7/iZ8MBwbkm4hTta3EFCzQQsyhgP4LGAxy5arqwCAgJcHtOJuKU9XVpkO5aGGW1QmpiN\nG8OsWTB5Mvz6KyjlcLyynHZ2aVsWVNa23bNnDz/88AM5OTlcd911dOzYkdDQoncYLvhfuuc1abXC\nX3/Bt9/CjBlw7JjxAnj1Vbj1VgK6d6fVs8+WMpWiufH97lWvyaK2u2PHjhf8np2dzZYtW1i3bh1r\n165l7dq1fPzxx2RkZABQp04dOnToQMeOHenYsSP+/v6mtCeAv/+5jxWv2E/aM+N1VLVqVQDT2hMX\nvCb9o0KJblSfVq1acTg5h6PHMqkXo6kfFUiTSsHFBmjdGu65XvPb1hN8uHQ/h5IyCYupRxiwMisd\nvRVa14oiR1uoUi+eyhFBKPsPARcz4394eNNJdi7aTM3y9agcV4HO9zbDP8jPtP1OQe5aj53819RJ\nIA+oVGB6JeBYUcudTDnOj2u+vGBC+/rd6VC/e6kTCg0Mp07FBqVe/nKNuWLXAlbuWnDB37J0Rv6P\nF+07/KNCCYgNL9W6vImjxUuhpm+ezsg5IwnyD+Lz6z7n5vibCQsMu2i+hg0blmU1hTIjpplxzeAt\n7RoUBP/3fzBggHEW5o47yhbPG5Ql782bN/PTTz9Rt25dBgwYQLly5Uxdn+m0hrVrjYJl+nQ4eBCq\nVIFBg+D226FVq3MVq6+9L7263XE8v8DAQFq2bEnLli0ZPnw4AHl5eezcuZO1a9fy999/s3z5cqZP\nn05ubi7+/v706dPnXDFz5ZVXEhZ28b67NGrXrs2BA+6/BNoRZv2/7Qo2rxUVVYU1h9M5lGycoYsM\nttAwJsihZf0sit6NYjh7ZC/vzd1JZngV/EPK4RcUypqDqaw5mMrZ4Er0nrSayBB/GlYKJ87uUSsq\nBD+LawoaV/8PD6w9wfLPtqCtmurNYuh4VxP8AiymrKsontoPaa1zlFL/AD2AWXCuw34PYEJRy1WP\nqs2jfV91T5KiWB0KKRpP5B1kzCf/8UxCblKqPe7ZzLOMnDOSbzZ/w83xN/PhtR8SHRrt6tyED+nf\nH4YNg4cegh49oHp1T2fkfmfPnmXjxo0sWLCAZs2aMWDAAPz8Cr8cwyckJhpV6bffwp49EBMDN99s\nFC0JCeDL23YZ8PPzo1GjRjRq1IjbbrsNgPT0dFavXs3IkSMBeOedd3j++efx9/enZcuWdOzYkZ49\ne9KrVy/ffu2Ki4VUOVe4NIwOJK5iEBYHz5As+GcbL332M3sOJwJQOfoII2+6miaN4th9MoPtx1OZ\nEuSHv0WRlJHLqn1JrNqXdG754AALDWPDaV8nkh4NY6hfMczUszOO2vf3cVZ+vgWtoVbbSrQf1giL\n32V3B4n3gKm2ImY1MAYIBaZ6MikhiuN08fLvmX/p93U/jqQc4asbv2JIkyFesRMSnjd+PPz5JwwZ\nAgsWQECApzMyj9aaU6dOsX//fg4cOMD+/fs5e/YsAO3bt6dnz56+/b44ehS6d4cjR2DgQJg0yfjd\nB44wi6KFhobStWtX6tevz6xZs7BarWzZsoXly5ezbNkyZs6cyfjx46lRowZ33303d91117nLooRv\nCw+JJjzQQuuqwUSFOPY+Pnb6LC9OnsmcFRsBqFAulAcGXs3tvTsQEmTs4NvZ+jlu+CSSGY92ZE9i\nGtuPp9oeaew4kUpmjpUNh5PZcDiZj5YdoEZkMD0axtCjYQxNqpZzuIhypbTTmaz+ajtaQ72OVWg7\nJA6Li84O+RKt9Xe2e7q8jHG52Hqgl9Y60bOZCVE0p76JrD+6nif/fJLI4EhWjVhFwxjHTnX269ev\nVMm5O6aZcc3gbe1aoYJxVVHXrvD00/DOO77VnvYK5m21Wjl+/Pi5YuXAgQOkpaWhlKJy5co0atSI\nmjVrUrNmzVJdfuNV7XT4MHTrBhkZ8PffUL++w4v62vvSq9q9EGZvt8VioWnTpjRt2pT77rsPgL//\n/puPP/6YN998k5deeokBAwZw77330rNnTyyWko9KJyQksGTJElPyLiuz2jMoyLHLrzypWlQNOtcK\nJci/5P+h1Wpl6q/LGffVb6RmZOFnsTCifyceHnQN5UIL7yPTr18/gvwtxFcpR3yV85fK5lk1B85k\nsOFwMot2nmLF3jMcTMpk6qpDTF11iIrhgXRvEE3v+Fha1ShfYm6u+B9qrVn99XZys/KoWK88Vw6J\nQxVSuLhr/+Dp/ZDWehIwydH5m9Zo6/Ic2pehv4zEvPw4dX703jn3El8xnr/u+svhwgVg9uzZTifm\niZhmxjWDN7Zrx47w9tvw7rvwxx++1Z727PPetGkTb7/9Np988gnz588nPT2dVq1aMXToUJ588knu\nueceevXqRaNGjUrdb8Br2klr6N0bsrKMEcScKFzA996XXtPuRfDEdrdp04ZPP/2UI0eOMGHCBHbv\n3k3v3r1p06bNuQEAirNs2TJXpupSZrVnVlaWKXFdqVO9eg4VLgAf/LCAFybPJDUji1YNa/Hbu2N4\n/s4BRRYuUHTb+lkUdaJDub5ZZcYPbMyih9rzzg2N6BtfkfAgPxJTs5m+9ih3/m8D3687WmJurvgf\nJu45y9Gtp7H4W2g3tPDCxVXrcoS374cKal7T9cVLWTr7S8zLj1NnXnLzcvn2pm+d7t8yduxYp+b3\nVEwz45rBW9v1oYeMbhKvvQbvvVf2eJ4wduxYtNYsXbqUhQsX0qRJE9q2bUvVqlVN6ZzrNa+748dh\n82b4/nuoW9fpxX3tfek17V4ET253+fLlGTVqFCNHjmTRokX06tWLt99+mxdeeKHY5e655x6vPfNi\nVns6MiiHp7WrVc2h+U6dTWXiD8boRU/d3pdRN3Rz6Iybo20bGuhHz7iK9IyrSHauldX7k/h503F+\n35bI23/uoU3N8tSOLnpkRlf8D625VgDCo4OJqFT0ASd37R+8fT8khLdxumdaYaOJlcSMIQDNGlbQ\nzcMVlom3tqtS8MQTxoH73FzfaU97LVq0YNasWSxcuJCuXbty4403UrNmTdNGFfKa193mzcZzs2al\nWtzX3pde0+5F8IbtVkrRrVs3HnnkEd544w32799f7Pxm3HfJVcxqzwAv7+AXFhhOoL9jOU78YQFp\nmVk0q1fd4cIFSte2gf4WEupF8dZ1cbSrHUlmjpXnZ+9w+XoKCo8x7kGVeioTq1Wbui5HePt+SAhv\n43TxkmfNMyMPcYm57jpjxLFvv/V0JqXzzz//sH79em644Qa6dOni253vnaFtH+S7dnk2D+F1Ro0a\nRWZmJqtWrfJ0KsJJ5YIcO+ioteanJWsBeHRIL4cLl7KyKMVTPa8AYOORFDJzzP2eEVohiIBgP6y5\nVg6tl37pQvgap/dM+5L2mZCGuNT4+Rn9X3zxe05aWhoLFiygZcuWNCvlGQifdfXVxuP++yE93dPZ\nCC+Sfwf5Dh06eDgT4axyQY7dUXv/sVMkJqUQ6O9Hx2bO9Xcrq6SMHAAqRwQRHGDuMN0WPwsNu9cA\nYOPsf4s9+yKE8D5OFy/bT253eiVTpkxxehlPxDQzrhm8vV3btoXVq6ecO5jvK5YuXcqaNWu4+uqr\n3bZOr3ndKQUffmgMlXzvvZCb69Tivva+9Jp2L4K3bHd6ejqTJk2iYcOGVC/hJk4zZ84sS2qmMqs9\n07280A/zL7qjvb2New4CEF+nGsGBzl0KV9a23Z2YBkD9isWfJXLV/zCuR00CQvxJPpZO4u6kQudx\n1/7B2/dDQngbp4qX+IrxTNs4zemVrF271ullPBHTzLhm8PZ2tVpBqbX42hVXhw8fJi0tjdBQx45W\nuoJXve6uuAI+/xy++ca4IaUTIyn52vvSq9q9EN6w3adPn6Znz56sWrWKCROKvOn2Odu3O3+Ay13M\nas+cnBxT4rpKnoNHkEJtQz7n5jl/2VZZ2zYnz8gxJLD4sy6u+h8qBXm2y9OCywWauq6SePt+SAhv\n41TxMjB+IHN3z2Xvmb1OrWTixIlOze+pmGbGNYO3t+uRI1Cvnu+0JxjXfCcmJvLMM8+4db1e97ob\nMgR+/BHmzIH+/SE52aHFfO196XXtXoCnt/vAgQMkJCSwc+dOFi5cyDXXXFPiMk899VRZ0zONWe1Z\nvnzJ9yfxpMy8bIfmq1k5CjAuH9NOnjIva9sG+htHuXLyrKauJ9/Rbaex5mrCK4YQUbnwA1Xu2j94\n+35ICG/jVPFyTb1riAiK4NO1n5qVj7hEHDoE//sftG7t6Uyco7UmOzubkJAQT6fieQMGwG+/GR2X\n2reH3bs9nZFwo02bNtG+fXsyMjJYvnw5V155padTEqWUml3y/XkAalaKJsDfj5T0TA4cP21yVhfK\nzjWKJX833OVea832P41L5Gq0qHj5DMgixCXCqeIlJCCEYc2HMWXdFLIdPJIjLj+5ucaB++BgGD/e\n09k4x2KxUL58ec6cOePpVLxDt25G8ZKba3RimjvX0xkJN1i8eDGdOnUiNjaWlStX0qBBA0+nJMrg\nTEYSeQ50Sg8ODKBFfaMj+4pN7j1YceRsJgBVIhzrn1MWR7ee5uS/Z/ELsNCwWw3T1yeEcC2nO+zf\n0/oeTqSd4Pc9v5uRj/BhVivMmgWdO8PKlcYwyTExns7KedHR0Rw+fNjpyyYuWXFxRgHToQP07Qtb\nt3o6I2GC5ORkpk2bRr9+/bj66qtp06YNixcvpnLlyp5OTZRRZk4Gm446NiRwh6bGKGNzV20yM6WL\nHE8x+tZVjggybR1aa/YsP8LyKcb9rK7oVI3QSPPWJ4Qwh9PFS1xMHACJaY6PjT5gwABnV+ORmGbG\nNYO3tGtWltG/u0kT4/4uFotxgL5jR99qz3xt2rThjTfeYMeO4m+W5kpe306RkcY/Weti7wHja+9L\nb293s7c7LS2N6dOnc+ONNxIbG8uwYcNISkriv//9L3PmzCEiIsLp2GPGjHF1ui5jVnuePu3eS6xK\nY+7WLaTnFN+fBODGLq1QSvHn39vYuveIw/HL2rYBtsvFcks4Q1Ta9aSfyWTRxA2s+mo7OZl5RNeJ\noEmf2qasy1nevh8Swts4Xbz4W/zxU35k5Tk+AtHo0aOdXY1HYpoZ1wyebtdjx+DNN6FuXRg+HBo0\ngGXLjEf+KMO+1J75GjZsyA033MDcuXNJSUlxyzp9op3yv8gmFT6sKPje+9Lb292s/Pr378/gwYOJ\njY1l8ODBHDp0iNdee40DBw6wbNkyRo8eTVBQ6Y5I33LLLS7O1nXMas+wMMduAulJ/57YxepD6SUW\nMPWqxdK/Y3MA3v12nsPxy9q25YKNoZlTMosfuc3Z9SQdSWXtD7uY88oqjm49jcXfQosb6tHz0dYE\nhRU/HLS79g/evh8Swtv4l2ahYP9gMnMzHZ7fkRFqnGVGTDPjmsET7Zqba5xVmTwZZs+GgAC49VZ4\n7DFo1Mg9OZpNKcUTTzzBZ599xqRJk+jduzfNmjUztVOn17eT1vDUU8b4ovXqFTmbr70vvb3dXZ2f\n1ppJkybx2GOPUb16dZ577jkGDRpE3bp1XbaO9u3buyyWq5n1/y5toedOBxN3cybTyoJ/U2lWOZga\nEQFF7tMevPlqZq/YwLxVm/ll2Xr6J7QoMX5Z27aSbbjiA2eK/27hyHqy03PY//cJ9qw8wun95w9A\nRdeO4KrbG1G+imPFprv2D96+HxLC25S6eMnKdfzMi/B9u3fDZ5/B1KnG/QtbtoT/+z+jcKlQwdPZ\nuV5UVBSjRo1i3rx5zJw5k82bN9OvXz+vHxLVNK++avzDJ02ChARPZyNK4cSJEwwfPpw5c+YwevRo\nxo0bJ6PqXUaOnt5NhWA/zmTm8c+RTI6k5NKsUjChARdfgBFXqwoP3NSD/5sxn6c++p628XWoHGXu\nvq9J1XKjGZb0AAAgAElEQVQAbDri2LDsBeVk5nJ8ZxL7/znOofWJ5NnOMCmLolrTGOq2r0LVJtFY\n3DCamRDCXKUqXsoFlWPTCfd25hOecfgwPPssfPmlcdXQbbfBXXdBq1aezsx8oaGh3HDDDTRu3JjZ\ns2fz/vvvExcXR4sWLahbty4Wi9NXXfqmrVvhhRfgxRdh5EhPZyOcsG/fPubMmcOcOXNYuHAhERER\nzJkzh759+3o6NeFmJ5JP0rRiLiczg9mWmMXRlFyOpaRSvXwADaICiQi+8OaQDw+6hgX/bGfTv4cY\n9fY0vnn5PoICSvWVwSFNqpTDouDI2Sw2HUmmadXi+1vl5Vo5tS+ZY9tPc3zHGU7uTUbb9ZcpXzWM\neu2rUPvKykXehFII4ZtK9e3r6YSn+WrTV3y18SuH5p85c2ZpVuP2mGbGNYOZ7ZqWBi+9ZPRjmTMH\nPvjAOOMycaJzhYsvtac9+7wbNGjAqFGj6N69OydOnOCrr75i/PjxzJ8/n5MnT7p8fV4nMtJ4btas\nxFl97X3p1e2O8/nl5uaydOlSnnrqKZo0aUKdOnV4+OGHycrK4vXXX2fTpk307dvX1O1euHChabHL\nyqztzsx0/DJqTwoPDqFhTBBd64QRE+qHBg6ezeHPvWmsOJjOyfTcc6MsBvj78cGjtxERGszqbXt5\n5qPvix2BsaxtGxbkT9/GsQC88fserAXWpa2aM4dSef/lT1k0cQM/PL6U+e+tZfOv+0jccxZtNW44\nWb9LNXo92Ya+z15JXI+aZSpc3LV/8Pb9kBDeplTFy92t7mZY82HcM/seVhxcUeL833zzTWlW4/aY\nZsY1g1ntumABNGwIr78O999vXDI2ahSU5goTX2pPewXzDg4OpkOHDowcOZK7776buLg4/vnnHyZO\nnMiUKVNYvXo1qampLlufV6laFapVgx9+gIzib3bna+9Lr253HMvv2LFjfPnll9x6663ExsbSuXNn\nPvvsM9q2bcuMGTM4efIkf/75J2PGjCE2NtbhuKU1b57jnbzdzaztzijhfeENIoPDCfIPtP3sR6da\nYXSpHUbVcsbZlOOpuSzdn86S/ekcTzWKmHrVYpn42O1YLIrpf65h6q/Li4zvirZ9uFsdwgL92HI0\nhVmbjpOVmsO+NcdY+cVWfnpmOb+9vpqvvvyaI1tOkZuVR1B4ALXaxNLutjgGvNKeAS+1p+2ghkTX\ninBJH0V37R+8fT8khLcp1TlgpRQfXvshu0/vpvPnnXmxy4s83elp/C2Fh5s+fXqZknRXTDPjmsGM\nXD/5ZDpxcVC/PixZYowkVha+1J72ispbKUXVqlWpWrUq11xzDTt37mT9+vXMmzePuXPnUrt2bRo3\nbkyjRo0IDQ0t8/q8xujRxvWDf/4JjzwC9913fvQxO772vvT2di8sv+zsbJYvX37uNbdhwwYAWrVq\nxejRo+nXrx9t2rQp9rJGM7f7zTff5I8//jAtflmYtd0VfKDjX1jGxWeHokL8aFc9lNTsPHadyubA\n2RxOZ+Sx4mA6FUL8aBQTRNeWDXnujv68/PksXvtiNl1aNKRutYoXxXJF28aEBnJPw1hWLTvMoWk7\n+DE9D/sTMH6BFt4YM57KcRWo3LACkVXDUSb2YXHX/sHb90NCeJtSX8AaGhDKojsW8cqSVxi7eCzz\n9sxj2g3TqFOhjivzE2724ouQkgJffQU15MbDxfL39yc+Pp74+HjS09PZvn07W7ZsOdfHoG7duucK\nmeBg8+8abaqnnoKBA2HcOHjuOXjjDXjgAXjwQd+8E6mP2bNnD3PnzmXevHksWLCAtLQ0YmNj6dWr\nF48//jg9e/Y8d1ZFiMKE79/Lml+m0abf0IvOSoQH+tGySgiNYoLYeTqbvWeyOZNfxAT70a9bBxat\n286S9Tt55P1v+f61Ufj7+RWxJsdorclMySH5WBrJx9NJ3J3E0W2nCUzNoVP+PEBk1TCqxEdTtXE0\nMfXK4+d/mfQ1FEIUqUy97wL8Ani528tcU+8abv/pdtpNbseqEaukgPFRiYnw/vvG5WJSuDgnNDSU\nVq1a0apVK9LS0ti6dStbtmxh1qxZzJ8/n/79+xMXF+fpNMvmiivgk0+MCvfdd88/7r0XHn3UuLRM\nuExaWhrfffcdkydPZsWKFfj7+5OQkMBzzz1Hr169aN68+eUzaIQos4pJZ/nfM8NY+MW7dL7tQVr1\nGUJg8IXXAgcHWGhWKZgG0YHsPJXNvjPZnMnMY9XhDG4bMphyMYtZvHINd7wymQ8fH0ZEWMnXElvz\nrKQkZpB8LJ3k42mkHE/n7PF0ko+lk5ORe9H8/sF+nIzwZ2VODpH1yzN+WAv8ZIQwrzI11o/QamUr\nXoV5yqde+u8XlwwdklAzgTV3r6H9lPZc+/W1rLhrBZHBka4ILdxozRqwWmHQIE9n4tvCwsJo27Yt\nbdu2JTk5mV9//ZXp06fTqlUrevXqRWCgj498U60avPcePPMMTJhgVLwTJ8J//gNPPFHsfWBE8bTW\nrFmzhilTpvDNN9+QmppKz549+fbbb+nbty/lypXzdIrCB4UGBnNDzyH8M/NzDu/YwDcv3MWs956g\n/cB7SBg0kgqVLzxaFex/vojZfdooYrKtit49utKjSwLrNm7h3vem88aI/tSuEg0Y91Y5aytQko+l\nk3I8neTj6aQkZlwwCtgFFIRFBRNROYwK1cKpEh9FxXrl2Xsmgy+mriPzaAqTlu7jgS5yQFQIcZ7L\nDtvFhMYwe8hsjqYe5fpvr2df0r5z0+68805XrcbUmGbGNYOrc127FgID76RWLdfF9KX2tOeqvCMi\nIhg0aBD9+vVj06ZNfPzxx4WOUOaT7RQTAy+/DPv3G88zZ3LnFVcY42lv3OjSVV0O7/cffviB5s2b\n065dO3777TfGjBnDTTfdxLx58xg0aJBLCxczt3vs2LGmxS4rs7Y7KSnJlLiuklC3GUOenchL8w9x\n3aNvE1W1FmlJp5g/+Q1euqYWr/S9gk9G9+fndx/nr58+Y+/6FaSfPUOwv4UmscH0qV+OVlWCiQy2\nEODvT9vmTRmYcA3ffbmBBR+uZ+Zzy+nZqj9/vPMPq6ZtZ9sfBzi08STJx9PRVo1/kB9RNctRu20l\nmvarQ8KIJvR99kpu+W8XrnulA93ub06L6+tRqUEFLH4W6sWEMbZPAwAmrzjIukNnz22LO9+z7lqX\nN+2HhPAFLh20vWFMQ2YOmsngHwbT8IOG3N/2fp7p9IxH7gTvbXHN4Opc58+H+PhrcOWN5H2pPe25\nMm+lFK1bt6Z27dpMnz6dqVOncscdd1Cx4vlOr77aToDRcf/JJ+HBB7lm1ChYuBCaN4e+fY2/d+pE\nWV9Ul/L7/ejRo4wePZoff/yRPn36MG7cOHr27Imfn59poxCZud1XXXUVv/zyi2nxy8Ks7Q4KCjIl\nrqs0ja4MQFj5KLr/5zG63j6GzYt+YcnXE9i1eiEnD+7h5ME9bFk8+4LlwqNiqVy3EbG1WhJRoRnK\nvy7Zp4PJO5EOeZrqwDFOG+uo0YbQyCAiKocSUSnM9mw8QiKDnB79q2nVcvhbFLlWTUZ23rm/u/M9\n6651ecN+yClKlXmfLkx0GfxvXH7HqS61u7DrgV2M/2s845aPY8q6KTzV8SnSc9IJDXB89KWSDBky\nxGWx3BHXDK7M9fRpWLYMJk1y7fb7UnvaMyPv6Oho7rjjDqZNm8bUqVMZNmwYlSpVMm19bhcSwpDP\nP4ecHJg+Hd56C7p0gauuMjr8DxhQ6p3qpfh+11ozdepUHnnkEQIDA/nuu+8YOHDgBV/yfHG7e/fu\nzbPPPmta/LIwa7tDSjOOvBsFZZ694HeLnx/NelxPsx7Xk3zyGMf/3caxf7dxYu92jv27jcR9e/Cz\n1qd8hbaEq3jyTlTmzAmAPCANgDxLLjvTT5Ook7jt6so8ef8gqjRoiH9A2S+LPZ6cxStzd5Fr1bSr\nHUn7OudHc3Pne9Zd67ok9v9CuJEpt8sNDwznuc7PcW/re3l1yau8uOhFPljzAWO7jOXOlncWOaSy\n8JzffoO8POjXz9OZXNrCwsIYNmwYX375JZMnT6ZDhw507NjR9/vB2AsIgKFDjcvHfv0V3nwTrr/e\nKGDeeMPT2XmNefPmMXz4cIYOHcr48eOJjo72dEriEuWXdrrIaRExlYmIqUz9K7uRdiqDXUsPs2f5\nUbLScs7PpEBFhWCpHEZy0gb2zR/HmVM7mFX3AQBy33mSsNxkLH5+RFevS6U6jahUJ45Kdc8/h5Qr\nX2yOp9Kymb/9JHO3nWDtwWQA/C2Kp3pe4ZJ7tgghLh2mVhEVwyryf33+j4eueojnFjzHPbPv4b2/\n3uONHm9wXcPrZIfkRWbNgjZtjPsRCnOFhoZy5513snTpUpYvX87atWvp0aMHzZs3v7TeE0rBtdca\nj3ffhcceM4axGzXK05l5hdmzZ1OvXj2mTZvm6VTEJS4v6WiR07TWHN9xhp2LD3F448lz91UJiwqm\ncutYjpULIa9iKKGh/lxZPYTy/o04eeuVLFj2F7N+2EiwxUpcXBwn9m4jKy2FxP27SNy/i82LZl2w\nnoiKVYxCxq6wCa1an7+TApm37SSr950hz65ff6saEdx5VQ3qxrjuig0hxKXBLeNsHtlyhK9v+pp/\n7vmH6hHVuWH6DXT6vBOHkg+VOuayZctcmKH5cc3gqlxzcmDuXOjf3/Xb70vtac/svIOCgrj66qsZ\nPXo0tWrVYsKECUyePJnU1FRT12u2Itvt0Ufh4YeNm13+/rvr4paRJ1+ff/zxR4nXuvvidq9bt860\n2GVl1nZnZ2ebEtdVss9ePEgIGMMYL/l4EwsmrOfQBqNwqdSwAp3vbUr3567kWKNYrNXKUSEigK61\nw4gK8ccvIIBKdRryr9U4U9irYyse+2YV/d+ew8t/HmbUp/O56en36TT4fuq36075WOOIWHLiUXat\nXsiy6ZOY/u7TPDbxOwZ8uYOxv+5i5V6jcGlcOZxHutdl3v1X8vnQFnS+4uKzke58z7prXb76OSmE\np7jl+q1x48aRkJBAqyqt+OP2P/hjzx+M+GUEHaZ04Pfbfycuxvn7X+THNCtXX+CqXP/9F5KTjX7V\nrt5+X2pPe+7KOzIykoEDB/Lxxx/TuHFjZsyYwbBhw/Ar4w3gPKXYdnv3XWM87jfeACc7qF6K7/f0\n9HQiI4sfUt4Xt/vLL780Ja4rmLXd3n7QQedkYc3JxBJw/ma52qr5a9p2Dm88icXfQr0OVWjQpTrl\nq4QBcDojF6sGi4JOtcLwt7vXSkZWNt/OXwVA3/bNAXj77beZNWsW5WOr0vCqHhesPyPlLCf27eDQ\n7m3M3pPBgqw6ZFqMfkKhSXuptH8+FfcvpEGNWGqoWwmqNQgiCr/ZmDvfs+5al699Traeezex3t3N\n67KWW6EmSz2dhMnccubl22+/veD3nvV6snz4ciKCIkj4LIHVh1eXOaarmBXXDK7Kde9e47luXddv\nvy+1pz135/3zzz9zyy23cOjQIX4vxZkJb1Fsu1ksxiVjixbBrl2ui1sGnnx9xsfHs23btmLn8cXt\nfv31102LXVZmbXeFChVKnsmDNGDNSLngbxtm/cu+1cdQFkWnu5vQdnDDc4ULQPkgPywKrBoyc60X\nLDtjwd+cSUmnZqUoerVrDBTftiHlynMg5ApeO9aIX3PiybSEUDc6lHf612VCgj99ok4TnnmcQ9vW\n8fO7jzO2Z00m3NGZv2d/hTUv74JY7nzPumtdvvo5KYSnuKV4CQ29+JrV6hHVWXLnEhpEN6DT550Y\nt3wceda8QpZ2PKYrmBXXDK7K9fhx4zk21vXb70vtac/deYeGhlKjRg169erF6tWrS/xS661KbLcb\nb4QKFeCzz1wbt5Q8+fqMj49n69atxc7ji9vtzSNvmbXd3t5XzQpY05PP/Z52KoOtv+8HoN1tcVRr\nGnPRMn4WRXig8RUhJet88aK15ovflgNwV//O+NvOEhfXtt/+c4QHZmzmcFImFcMDeaFPfWaMaE3P\nJtVp2/827p00h1cWHOXm5z+kXuvOAOxZu5RpTw/lrZuasWH+j2hbZxx3vmfdtS5f+5xU8vD6x6XO\nLcVLUaJColhwxwIeavcQT81/ik6fd2LnqZ2eTOmyVKeO8Zx/BkZ4Ttu2bYmLi+OXX37x+ktRSiU4\n2BiFbOpUyM31dDYeFR8fz+7du8nKyvJ0KuIykJdxvnjZ97dxxKpSg0jqtq9S6Pxaa9KyjaIlLPD8\nV4UNuw+y48AxggL9ublbm2LXqbVmwqK9vPH7bjRwU4vKzLq3LTe1qHLBZWgA4RViSLjlPh6cupix\nfxyg7+hXCI2owLE9W/lszE28O7gt25bNPVfECCEuXx4tXgCC/YMZ13McS+9cSmJ6Ii0+asHXm772\ndFqXlfh447mEg8DCDZRS9OvXD4vFwpw5czydjjlGjIBjx4xhlC9j8fHxWK1Wdu6UAzbCXFqDNf38\nvV4O/HMCgNptKxe5THqOJs/W5yXcrnj57s81APS5qikRYcWfZZu4ZB9TVh4EYHTn2jzfuz6hgSX3\n56tQuQa97n2O53/7l2vueY7AkDAObv2Hj0b24Y/JMty6EJc7txQvjz/+eInzdKzZkfX3rmdg/ECG\n/jiUqeunljlmaZgV1wyuyjUgwHjOy3P99vtSe9pzd9726wsLC6N79+5s376dlJSUYpbyPg61W/Pm\nxrjckye7Nm4pePvr0xe3e/z48abFLiuztjs5ObnkmTxIAzlJx879npFsjI4WVatckcv42U6MWDXk\n2a4ay8zO4eelxmhyg3pcecH8Bdt24+Hkc4XL873rc3fHmk5fXhcaEcm1D7zCi3P30mnw/QA8+/yL\nnE0seuhnV3LX/sHb90NCeBu3FC81a9Z0aL6wwDCmXj+Vu1vdzfCfhzN5bdFfbhyN6Syz4prBVbke\ntX0OVKni+u33pfa05+68C66vUaNGWCyWEvtEeBuH223ECJgzBw4fdm1cJ3ny9blv3z4AateuXeQ8\nvrjdlSsXfTTf08zabm8fHVCjyEncf+53ZbtkS1uLWgKCAyyEBhjznck0+qPOW7WZs2kZVKtYgY5N\nr7hgfvu2zc618sKcHVg1XNs4loEtC780zVHhURW56Zn3qd28PWGWXOZ99HKZ4jnKXfsHX/2cFMJT\n3FK8PPDAAw7Pa1EWPuz3If9p8R9GzRlFdl7h4+c7E9MZZsU1g6tytdo+wLZvd/32+1J72nN33gXX\nFxISQp06ddizZ49b8ygrh9ttyBCj/8sXX7g2rpM8+fpcs2YNVapUoVy5oo9+++J2Dx482LTYZWXW\ndoeFhZU8kwdZgZyTB879HhBkFFuppzKKXS461Libwp7T2Wit+W3lJgBu6toai+XCrw/2bbv24Fn2\nnsqgQkgAT/as54pNMPKpVofm0bDjr/kui1kcd+0ffPVzUghP8Xifl8JYlIWbGt1EjjWHk+mF31xL\nuE58PNx5JzzyCMjl996jYsWKnDp1ytNpmCMiAm65BaZMOV89X0YyMzOZNm0aQ4cO9XQq4jKQB+Sc\nPHju9/zRxfatPl7scg2iA1HAsdRcjqTksHrbvwB0btGg2OWOpRiDUMRXCad8SEDpE7fz28QX+efX\nr1FKMWDMWy6JKYTwTV5ZvIAxEhlAYlqihzO5PEyYANWqGQNBXYbfJb1SVFQUSUlJWC/Vf8hddxl3\nSF2yxNOZuN3MmTM5ffo0I0aM8HQq4jKQC+QmHcWaYxQVddoZl/Yd2XyS7PScIpeLCPKjQXQgAOuP\nZnDiTAqB/n60qF/8ZU6JKcYVE9FhgS7IHjb+OZN5H78CwM3PfUjzq290SVwhhG9yS/Gyfft2p5dZ\ntG8Rwf7B1Iqs5bKYjjArrhlcmWt4uHEQ/O+/t/PDDy4L61Ptac/deRe2vszMTAICArz+HhL2nGq3\njh0hMhJWrHBtXCd46vW5bt06ateuTYMGxR/B9sXt3uvFY66btd25Xj7sdy6A1uisdAAiq4VTLjYU\na57mxO6zxS5bp4JRgGRbjf1QbIUIggMvPpti37blQ4zLzU6nFX7ZtzOseXnMef9ZALoOe4ToZl3K\nHNNR7to/+OrnpBCe4pbi5YknnnBqfqu2MmXdFG6Ov5nI4EiXxHSUWXHN4OpcExKgYsUnGDvWGHnM\nFXypPe25O+/C1peYmEhsbKxPFS9OtZtS0KQJbNzo2rhO8NTr88CBA9SqVfiBGXu+uN0TJkwwLXZZ\nmbXd3j7aWK7ttnU693wxUamB8dl6YteZYpc9t/ex3V8lIKDwwQns2zauUjgAW4+llvm+LOt/n8Gx\nPVsJKRdJr3ufd+t71l3r8tXPSSE8xS3FywcffODU/GsOr2HPmT0MbzncZTEdZVZcM5iR60cffcDW\nrbBggWvi+VJ72nN33gXXl5OTw7///kuVKmUbpcfdnG63uDjYvdv1cR3kqddnUlIS5cuXL3E+X9xu\nb/4iZtZ2O/K/9KRcWwWi885fIhZb3yheEv8t/sxLao5x2apC254LP5hi37YNYsPwtyhOp+dwKCmz\n1HkDrPt9BgCdb32A0IhIt75n3bUuX/2cFKI0lFJdlFJ9lVIVShvDq4ZKzvf7nt+JCIqgY42OLovp\nKF8astCMXG+4oSa1asHMma6J50vtac/TQyWvW7eO9PR02rVr59Y8ysrpditfHlJTXR/XQZ56fdat\nW9ehkeR8cbu9ueC+XIdKzivkzEuF6sYod2ePpKGtRZ8d2ZdkFDxhFuM5K6fwS+Ts2zY4wI+mVY34\nq/YllSFzOHnAOLhRq9lVF63HbDJUshClp5R6Uin1it3vSik1F1gIzAa2KaUalya2V3bYn793Pt3r\ndCfAzzWjlAjHKQXXXw8//3zuKgHhZkePHmXp0qU0bdqUqKgoT6djruBgh4qXS01cXBy7du0iO7vs\nfQKEKMm5My92xUu52BD8AizkZuWRcrLwIZOTMvI4nGwULTGBxhmYjCzHXrNX1TEOqi7eXbYRE08d\nNvpQRVevU6Y4Qgi3GwRstvt9INAZ6ATEAH8DL5YmsFcWL3vP7KVxxVIVY8IF+vQx7h24bZunM7m8\naK1Zvnw5kydPJjw8nB49eng6JfMtXgzNmnk6C7dLSEggOzubpUuXejoVcRnIyz8QZfE/9zeLn4Xy\nVYz70yQduvgAQlq2lRUH07FqqBTmR2y40XE/OS3DoX4s18RVBGDJ7tPsSkwrde7BYREApJ89XeoY\nQgiPqAPYd2rtC3yvtV6utT4NvAq0L01gtxQvb73l3JjspzJOER0S7dKYjjIrrhnMyPWtt94iIQEC\nA+HPP10Tzxe5O++XXnqJadOmMX/+fK666ipGjBhBRESEW3NwBafa7cABWLbMuGGlK+M6wVOvzxYt\nWlC9enVmzZpV7Hy+uN1Tp041LXZZmbXdqV5+9jC/eFH+F17NUKG60bH+zOEL88/KNQqXrDxN+SAL\nbauFElXeKHRy86ykZmRdtI6CbVs3JpSrGxr3k5m8/MBF8zuqagPj4MaRXZsKXY+Z3LUuX/2cFKIE\n/oD9zqI9YD+86BGMMzBOc0vxkp6e7vC8WmsyczMJ9g92WUxnmBXXDGbkmp6eTlgYtGgBa9e6Jp4v\ncmfeu3fvZtmyZZw8eZJhw4bRs2dPr7+GvihOtdu0aRASAtdd59q4TvDU61MpxYABA5g1a1axR7F9\ncbszM8vWQdtMZm13WUfUMpv1XPESdMHfIyobBUlq4vnLxnKtmr8OZZCabSXEX9G+RigBfoqQoECC\nAo0zN2dSLj6TUljb3t3R6Mvxx/ZETqRcXPA4okZ8awA2L/i5yPWYxV3r8tXPSSFKsAfjMjGUUjWB\nBoD9jd2qA6W6rtQtxctLL73k8LxKKWJCYziVUfz2OBPTGWbFNYMZuebHrFgRTrvgLL0vtac9d+Rt\ntVpZsGABX331Ff/5z3+47777qFPHt6/rdrjdrFb49FMYPBgcOMN0Kb7fBwwYwL59+9i8eXOR8/ji\ndt93332mxS4rs7a7XLlypsR1lfyR71XAhTeNDAg2DpLkZRtzWLVmzeEMTmfkEWCBDjVDCQk4/zWh\nQjmj2DmTcvGX7cLaNq5SOC2rR5Cn4acNx0qVe7vr70Qpxbblczm6e4tb37PuWpevfk4KUYKJwAdK\nqSnAb8BKrfVWu+ndgXWlCeyVfV4qhVVi84miP9CF+SpUcE3xIor2888/s2zZMrp3786tt95KaGio\np1Nyn8WLYf9+uPtuT2fiMV27diU8PJzZs2d7OhVxibPanpXfhcWLn60wybUVL9sSsziWmotFwVU1\nQokIuvAMcGS4sY9KKqR4KcrAlsboc7M3nyhN6sTUqEvTHjcA8NO4MeTl5JSwhBDCG2itPwUeBKIw\nzrjcVGCWqsBnpYntlcXLfW3uY/qW6UzfPN3TqVy2KleGY6U7UCYckJiYyMaNG+nbty+dOnXyqRtR\nusSOHeDnBz42FLQrBQUF0bp1a9avX+/pVMQlLr94sRQ485KTaRQtAcH+nEjLZecpYySx1lVDiAn1\np6AsW+GQf/mYIxpXsQ3JnFH6oqPPyLEEhoSyY+UfTH/lPq+/TE8IYdBaf6a1vkFrPVJrfazAtFFa\n659KE9ctxcvJkyedmn9km5EMbjKYEb+MYOXBlS6J6Siz4prBjFzzY1arZow4VtbPCF9qT3tm571i\nxQrKlStHy5Yt3bI+d3F4O44ehUqVwOLYLuhSfb/Hx8ezdevWIqf74nafOVP8Hds9yazttlqtJc/k\nQedu41Lg9gOZKUaxEhAewN+HjX4vtSMDqB5R+G0K8i8Xi4oIu2haUW2bf1jGWoYPk6oNmnLH29NR\nFguLZnzGj28+RE6W+X2r3LV/8PR+SAh3sd3rpbtS6lqvv0nl8OHDnZpfKcWn/T+lQXQDOnzWgd7/\n682S/UsuONribExHmRXXDGbkmh+zWjXIyICyfg/xpfa0Z3bep06dwt/f/9x9Pny1nQpyeDuUgvR0\ncADvuZ0AACAASURBVPA+J5fq+71FixZs27aNpKTCb+Tni9v98ssvmxa7rMza7qL+f97CCsZ7roAU\nW0f9rCB/svI04YEWmlYqfLCcA8dPkZSSjsWiqFSh/EXTi2rbb/45AkBUWGCh0x3VpEs/bn52EvMP\nw5Kv32fcwObs/ntJyQuWgbv2D57eDwlhBqVUpFLqC6XUJqXUp0qpCGApMB/4BeMmlaW6V4Jbipex\nY8c6vUx4YDirRqzi6xu/5kjKEbpM7ULC5wnM2TkHrXWpYjrCrLhmMCPX/JjVqxu/Hz7smni+xuy8\nr7/+ejIzM5kxYwZ5eXk+204FObwdAwdCUhL8+qtr4zrJ0+3ep08f8vLymDt3bqHTfXG777nnHtNi\nl5VZ2+3tHfatAFqjsy/sq3Jq71kA0iuEAFAvKhB/S+GXsM5evgGA9o3rUT485KLphbXtol2n+NZW\nvDxxdb1SZn9ex1vu5fVxbxMRU5kT+3by/p1d+O6VkaQnm1M8umv/4On9kBAmeQdjeORvgabAXMAP\nuApoB2wDXitNYLcUL61atSrVcv4Wf4Y0HcKG+zbwy5Bf0FrT75t+xE2MY3bKbPac3uPiTEufqyeY\nkWt+zPzi5eBB18TzNWbnHRUVxaBBg9i/fz9Lly712XYqyOHtaNLEGI97umP92sxqH0+3e40aNWjR\nogVTp04t9Dp+X9zuRo0amRa7rMza7oCAwi+z8hb5o41ZM1LO/S0zJZvUk5mgICMqBAVFXi6mtebH\nxcbY+f0TWhQ6T8G23XwkhWd/2Q7A7VdWI6FeVNk2wmbwfY/x9M/baH/TCACWf/cRL/euzbyPXiEz\nNdkl68jnrv2Dp/dDQpikD3C31vo1jM76VwFPa61Xa63XAE8CbUsT2Cs77BeklKJfg34sH76cxf9Z\nzFXVr+LtFW9zxftX0H5Kez5Y/QGJaYmeTvOSUq0aREbCulINYiccUatWLVq2bMm6desuzw6o7dtD\nMf09Lhdjx45l3rx5fPTRR55ORVyirLaTKXkZ529GeXKv8UU/MDoEFeRPtQh/Av0KP+uyfOMutu8/\nSkhQIP06Ni9xfduOpXDf9E2kZuXRukZ5Hurq2iHgQyMiGTz2U0ZPWUDlKxqTkXKWXye+wEu96zB/\nyltkpV98HxohhNtVAnYCaK0PA5mA/SHxA0DF0gT2ieIln1KKzrU688X1X3D8seN8c9M3xITGMGbe\nGKq8W4W+X/Xli/VfSCHjAhYLtG0Lq1Z5OpNLW/PmzUlOTmb//v2eTsX96taFvXvLPiqEj7vuuuu4\n//77GTNmDBs2bPB0OuISZLVdCmbNtC9ejEvG8mKNzvf1o4MuXtDm458XAzCoR9tzwyUXZcfxVO79\nZhMpmbm0qBbB+zc3JsDPnK8a9a/sxpPfb2DYW18TW7sB6WdP88v4p3i5T13+/GwcmWkpJQcRQpjF\nwvkTv9h+tv/AL/WHv1uKlylTprg85jdffsPgJoP5ZcgvHH30KO/3eZ/krGTu/PlOKr1TiYTPEnhr\n2VtsTdzq1FFtM3I1ixm52sfs0gUWLIDkMpyJ96X2tOeuvKtXr050dDSvv/66W9ZnNqfaLSICUlON\nG1a6Mq4TvOX1+c4779C4cWN69ux5wU0rfXG7Z86caVrssjJru739Dun5n4DWzPNf5s8cNH62VAqj\nYpgfkcF+hSwJOw8eY+Ha7SilGNG/c5HrmDJlCrsS07j3m02czcyladVyTBzUhLAgx4dVdkTB/6HF\nz4/WfYfw1E9buO21L4iuXpfU0yeY9d8neemaWvz24UuknS3dTcvctX/wlv2QECYYoZR6UCn1IOAP\n/Mfu9xGlDeqW4mXt2rWmxowJjWFk25EsG76Mo48eZfKAyVQMq8jLS16m8aTGXPH+FYyZO4YFexeQ\nk1f8WPNm5GoWs9v1jjuMEce+/to18XyJu/JWStG1a1fWr1/PgQMH3LJOMznVbseOQWyscb8XV8Z1\ngre8PoODg5k3bx7VqlWjW7dubNq0CfDN7d6+fbtpscvKrO3O8fIbJ+bZrgazP/Ny5rDxs4oOIb5i\n0WddPp1ljOjVq10TaleJKXK+RctXc8/XGzmTkUPjyuFMGtSUcBcXLlD0/9DP358rBwzj2Vnbue3V\nqcaZmOQzzJ00lpeuqcWs9550uk+Mu/YP3rIfEsLFDgB3A2Nsj2PA7Xa/j7DN4zS3FC8TJ050W8xK\n4ZUY3nI4Pw36iVNPnGLOrXO4pu41zNg6gx5f9iBuYhxbE4u+zt6MXM1idrtWrw7/z955h0dRdXH4\nnd30npBeIJXQQu8gvTcBKWIB0c+CgIIKYkPg+1QsKAooYKOIiPSm9BLpECAQINRAEtI76WXn+2Mh\nEmqSndkC8z7PPsAy+7vnnsy92TP33nP69YMFC6q/s8eU/Hk7+rS7fv36vPjii+zatcvkz75UyW8X\nL4K3t/S6VcCY7k9XV1d27tyJn58f3bp1IyMjwyT7PWXKFNm0dUWufjs63p062JgQqbhtrLSojMJs\nbZpyT187XKzvHWSIosi6cO3Bx//0f+KBbTj1Hk9Gfgl1POyY/3QYDlbSBy7w8J+h2tyclk+O4r11\nZ3nhyxV4125IUX4uO3/9gs1zPpS0LakwpnlIQUEqRFH0F0Ux4GGv6mib1JmXqmJlZkWfkD780O8H\n4ibGcfTlo9ia29L257Zsv7zd0OaZBK++CidPwtGjhrbk0UUQBLp06cK1a9e4cuWKoc3RDykpsGqV\nNmWyQjkuLi789ddfFBYW8tFHHxnaHIVHhFubzgWVNqBQmQlw83C+n9X9vwYIgoCVhfYzDrZ3p0e+\nneyCUgBeaVcTB2vDZ19TqdU06TWMyatO0u0lbUCdk5poYKsUFBSk4JEOXm5HEASaezdn34v7aOvX\nlt7LevPbqd8MbZbR07Mn1KypXX1RkI+QkBB8fX3ZtWuXoU3RD/PmabNCvPaaoS0xOjw9PZk2bRrz\n589XDvArSILm5oKuYKENQLKLRQR7bdFIs9yiB362lqd2q9jVxAdXgTe/GQzlFZXqYqrkiBoNJUWF\nABQXGvfZJAUFhcrx2AQvt3CwdGDFkBVYmlmyK+Yx+aKoA2o1/Oc/8McfkJ1taGseXQRBwNnZmdzc\n3IdfbOokJcHXX2uX9Vykqf3wqDFu3DgCAwP55JNq1e9SUKhA8R3/Ts0rRXUzy9j5HbEP3K5ap5Yn\noE2X/CACa2izkM3eE0N8ZkH1jZWQC4d38dXwZuz9bTYAzl41DWyRgoKCFOgleBkwYIBRac45MoeS\nshI+7HD3/lc5bJULffn1pZegqAiWLZNGzxTQt909e/bk9OnTtG/fXq/tSk2l/Pb++2BpCVXYFiXX\nz8NY709zc3MmTpzIypUrZUmjLWe/J06cKJu2rsjV74yM6mWz0hd5N2MTTZG2/klafhlmrb0RzASS\nojO5diz5vp+9Vddl04FTlJSW3fe6/XPfItTdlvS8EsasOE2cTAHMw36GhXk3iD6wnR/HD2Def7py\n/Xwk1vZODJz0NYOnfCtpW1JhrPOQgoKxopfgZdy4cQbXTM1L5ceIH+n5W0+m7p7K2BZjCXQO1FnX\nkOjLr97e0L9/9Q7um5I/b0efdsfExBAUFISLi4vJV1p+qN9++w1+/RVmzABnZ+l0q4kx35+jRo3C\nzs6OOXPmSK4tZ7+HDRsmm7auyNVvW1tbWXSlIv9mlUqxuIAyjUh6QSkqRyuCu9UC4ODic5zZchWN\n5u4Jvn3DEGo42pGencuiv/bdt40Jb4xn3vAGeDtaEptZSP/5R3l9xWl2XUij9B661eXOn2FWUjzH\nt6xg1afj+XJYU6a0deKHV3sQtWcjKrWaJ0aM48PNF+k8ciJm5hY6tSUXxjwPKSgYI/KkA7mDHj16\nGEQzKTeJtefWsurcKvZc3QNAJ/9OzOk9hxebvFhtXWNBn3599VXo3VtbtLJ1a931jB192J2fn8/2\n7ds5efIkzZs3Z8CAAagrkTbYmHmg3376CV55BV58UXtDSaWrA8Z8f9ra2jJ27Fh++OEHPv74Y+zt\n7SXTlrPfbdq0kU1bV+Tqt6Xl/VMNGwN55WderEjJK6VUA1ZmAk161aIoJZ/Y4ylEbrhCwpl02oyq\nh53rv4fzzdRq3hregw8WruGTxZtoVsefprVr3dXGLd8ueLohn2y9yKGrWey/ksn+K5m421swuJEn\ngxt54eFQfV9pysqoX8uTfSt+4MrxfcSc3E9Gwt0rky4+/gQ370S3F9/FI7BOtdvT1/xgzPOQgoIx\nopfgRZ9cSL/A5gubWXd+Hf9c+weVoKJrYFfm953PwDoDcbN1M7SJJkmPHuDvr119qUrwonA3RUVF\nnDx5kvDwcDQaDf369aNp06YIgmBo0+RBo4FZs2DyZBgzBubO1R7WV3go48aNY9asWSxcuJC3337b\n0OYomCglCBSLoLZ24HqO9kC9j4M5ZhZq2r1UH+8GNTj25wVSL2fz1ydHCG7vTe2OvuVBzMjebTkY\ndZlNByIZ8+VS9sydjLXlvVcxarpYs2BEQ2IzClgdmcj6yGRSbhQzf18sC/fH0jG4BkOaeNEmwBm1\n6v5zniiKZCXHExt1lNioo1yLOkLcmWN31WoRVCp8QhsT2LQ9gY3bEdCkHU4ePhJ5TkFBwRgx+eCl\nuKyY8GvhbLqwic0XN3Mp4xKWaku6Bnbl5wE/MyB0ADVsahjaTJNHpdKefZk5U/vd08h3SRglaWlp\nHDlyhMjISEpKSggLC6N79+7Y2dkZ2jT5uHYNRo+G3bthyhT49FN4VIM0GfD19eXll1/m/fffp0WL\nFnTocP8K5woKD+IGgJ0ribnagpo+9tpf/4IgENjaC/dgJw4uPkvq5Wyid8YRvSsO7/o1qN3JF686\nLnwxdignLsZyPTWT1XsieK7ng1fYarpYM7FzIGOf8GfnhTRWnUjkWGw2uy+ms/tiOt6Olgxp7MXA\nRp7UsLUgLyu9QqASG3WUG+l3n8WxsLbFv1Gb8mClVsNWWNlKtyqpoKBg/Ojl8ee6desk1UvOTWbc\nrHEMXjGYGl/UoPvS7qw6u4quAV3Z8PSG8uKUo5uMrnLgIrWtciKHrQ/SfPZZyMuDqjRrSv68Hans\nFkWR6Oholi5dyrx58zh79iytWrViwoQJDBo0qDxwMVU/3Ul5P0QRfvkFwsLg0iXYsQM++6zagYtc\n/jF2v69bt47Zs2fTrl07Bg4cKFn1ejn7vXv3btm0dUWufhcWFsqiKyU3RIFM+wBKNWBtJuBiXXGL\nqp2rNd0mNqXj6w3xqucCIiREpbNnbiSbZhwm8Wg6L/fWFqr8aaN21fh27udbCzMVveu58/OzjVj7\ncnOea+GDvZUZCdlFfLf3Kt2+3U+fiV8xfkBb5o/pzV/zpnJm7yZupCejUqvxqdOYNk+9zPCPFzJp\n5QnavLuYsT9up/eYjwlt003WwEVf84Oxz0MKCsaGXlZeli9fzsCBAyXRWn12NaPWjSLv9zzavtWW\n99q/R9+QvjT0aCjJthspbZUbOWx9kGZAADzxBHzzDQwfDmaVuHtMyZ+3I5XdBw4cYMeOHfj6+jJo\n0CDq1auH2T0cZ6p+upPyfsydC2+8oV11+eYb0LECuVz+MXa/37JvzZo1tGvXju7du7Nz505q164t\nia4cbN26VRZdKZCr3wUFxpEa+EHkWdkRX2QJlOLtYH7P35eCSsCngSs+DVzJSc7nwt54rhxK5EZK\nPhF/XsDR2ow+jnUIT7jC5euphPh5lH+2Mr51KcukReJGiFjNsRxbEoIHkOPWgOvuLbnesxmhidvp\naXedoAZNqdWgBT6hjbGwtqmg8fbHnzH4qack8cnD0Nf8YOzz0J0c67kQGx/d5iAF+XDMvQb/jDK0\nGbKil+BlxYoVOmtoRA0f7/6Y//3zP4bXH86cw3NkOb8iha36Qg5bH6b55ZfQtq32IXplMt2akj9v\nRwq7RVEkIiKCRo0aPfQXk6n66U5WrFih3Sr23nswdqw2iJFKVwaM3e+37HNycmL79u1069aNDh06\nsH37dsLCwnTWlYOZM2eyfft22fR1Qa5+O1chc56hyHYLpSxXe94lwMn8odc7eNjQfFhtGg0IJOZw\nEtG74shNLaCTbRDtbPxJ3JGCRx87HDy0e4jv59uctCQit6/mxJYVXDmxr7ymjJcg0L5GIQ61Szhk\n3pADKWrO+/SiwNma6R1rE+B37wce+hyz+mrL2OchBQVjwyTOvJRqShm6cijro9fzWdfPeLfdu4/u\n4WYjp1UrbZmOGTOga1dtIKNwb+Li4sjMzHz8cviPHatNg/zZZ4a25JHC29ubvXv30qNHDzp16sTS\npUvp06ePoc1SMBGuuzYgFPCyM8PesvJZDc2tzKjd0ZfgJ3w4vP0Ce1ZGUcvCmfijqcQfS8WvsRv1\ne/nj4ldx+1bBjWw2ffs++1fOR7xti1lA47Y06TWcxt2H4OjuDcAoYO/FdP639SKxmQWM/i2SmU/W\noXc9dym6rqCg8IhhEsHL9D3T2Xh+I+ufXk//0P6GNuexZ+pU2LMH+vTRHmVo3tzQFhknSUlJqFQq\natW6O63oI0tcHGzeDIsXg4SpfRW0uLm5sXv3boYNG0bfvn3p378/s2fPJjDw7ppVCgq3k6K2JxQI\ndKlarZNbqFQCmQ5FzEs7QPfAOoyu3Yr4U2nEnUgl7kQq3g1q0KBPAK7+DkTuXMvqT8eRnZIAQK2w\nljTpOZzGPYfi7Ol3T/2OITVo6ufI5HXnOBCTyYm4bCV4MVYEQUm8Ysw8Bj8bow9edsXs4pN/PuG/\nnf+rBC5Ggrm59vtpz57QvTvs3AkmXltRFoqKirCysnq8Vgk3bNAehnrcVpv0iJOTE1u3bmXVqlW8\n9dZb1KtXj3fffZcpU6ZgbW39cAGFx5LckkLMVOBqU/1aUlcSUgGw97Olw2sNyUrI5czWa8QeSyYh\nKp2EqHTKhFjOHZ9JXm4CrjWDefrjhYS07FwpfXsrMxr5OHAgJrPKBZEVFBQeH/SSbWz06NHV+lxK\nXgrPrnmWLgFdmNJ+iiSaD0MuXTmQw9bKajo4wJYtEBIC7dtrz8KUlFRfz9jQ1e6ysjIuX75c6TTI\npuqnCogio6dPhy5dwMlJUunHdbzfzz5BEBg6dCjR0dG8/fbbzJw5k6lTp+qsKwXTpk2TTVtX5Op3\nVlaWLLpSkl+Ui7utGSodHqbsP3URgGBf7YqIk7cd7UbXp+/U1iyO+BJRLEMt1qR+47m077eECYsj\nKh243MLSXPu1JDbz3kkQ9Dlm9dWWsc9DCgrGhl6Cl+pUj9WIGkatG0WZpoylg5aiVlV8WvQ4Vty+\nEzlsrYqmoyPs2qUtlj5lCrRoAUeOVF/PmNDFblEU2bhxI/Hx8fTu3Vv29oyG8HB6pKZqs4xJzOM6\n3h9mn62tLZ988gkvvvgiq1evLj8MrauuLrQ24iq2cvXb0rL6VeP1RX5RHh621d9sERF9lX8iL2Km\nVjGow79L7aIoErF1AarkbUQeHUlu/hEEQUVJtg9bPjvJhb3xaMo0D1CuSLdQV9QCHLqaRVTCjbv+\nX59jVl9tGfs8pKBgbOhl29iIESMqfa0oihxPPM53R75jy6UtbHl2C172XjppVgW5dOVADlurqmln\np82E+9xz8Mor0Lo1jB+vrUVoa2ta/rydqtqdl5dHUlISycnJxMbGcv78eQYPHoy/v78s7Rkd6ekw\nZQojGjbUHoaSmMd1vFfGvpycHKytrYmJieH8+fPUqVNHEt3q0qtXLz744APZ9HVBrn6bwna9/OJc\nPOyq9ys/Ivoq78z9E4DBHZpQfP0su/4+REzkQa6dOkR2SgK17aF+l048PW0c2QmlHPvzAlnxuRxb\ncYETay7h4GmLo5ctjl422j89bbF1tUalqrgS5OdsTZ/67myMSuHLnZeZ/3QY1ub/PrzU55jVV1vG\nPg8pKBgbRnPm5VrWNZadXsZvp37jXNo5PGw9mNN7Dj2DexraNIVK0KwZHD4Mc+bABx9oz8T8+qu2\nLsyjRFlZGWlpaSQnJ5e/kpKSyMvLA8Dc3BwPDw/69eunUypbk2LVKm2GsZISWL36sTgsaGiKi4v5\n+++/WbZsGRs3bqSwsJDOnTtTo0bVivIqPD44WFpjbV61zRapmTlMW/An6w+dA8CKEnKXjuO7nzIr\nXGduZc2AiV/wxIixCIKAezD0erc5l/YlcGrTFYrzSsmMu0FmXMWVFLW5CgcPGxxuBjO3gpuXW9dk\nx/k0TsbnMH5lFN8NaYCNRfXP6igoKDxaGDR4ySvOY3nUcpaeWkr4tXCszawZVHcQX/f8mm6B3TBT\nGU1spVAJzMxg4kTo109bm7BjR+0Oos8+AxN4MFkBURS5ceNGhUAlKSmJ1NTU8srSjo6OeHp60qxZ\nMzw8PPDw8MDFxeXxOaCfkqINWlatgoED4fvvwevuVVIF6Thy5Ai//PILf/75J5mZmTRs2JDp06cz\nYsQI/PzuncVJQQGgqX/dSl1XmJtDxF/LWfL3frZlOFIiaLOT+edEUT/jH6zKCnBw9cS/URv8G7bG\nv1Eb/Oo1u6uYpEqt0qZYbu9Nbloh2Yl55CTlkZ2YR3ZSHjlJ+ZSVaMiMzyUzPrfiZ80EJjlbcbqg\nlIScTD7MPsGnoxthZfXw+jQKCgqPPnqJDvbt20f79u3L/12mKWPRyUV8tPsjknKT6BrYlcUDFzOo\nziDsLSuXXvVOTblsNWbksFUKzZAQ2LsXvv0WpkzZh5lZe776SiIDJaaoqIi0tDTS09MrvCIiIvDx\n8QHAzMwMDw8PfHx8aNq0aXmgYmVlJZkdpnTfAXDihDajWGEhrFgBQ4eCIJjcuDR2v99u3/Hjx2nd\nujV+fn68+uqrPPvsszRo0EBnXak5ceKELLpSIFe/i4uLJdeUmnZB999OKIoiVyMPcnD1TxzetpaD\n9k+QYBcCAjgXpdDTIZE2PeoT0Gg0tRq2xsW71l0Pae7nW5X65uqKhw3wb2FpjUYkL72A7MT8f4Oa\nm4FNWbGGotQCagO1AU7nsGbSPlxr2hNffInufbviFuSIlX310j5XFn3ND8Y+DykoGBt6CV6++OKL\n8oG5/fJ23tn+DqeSTzGiwQg+6fIJAc4BOmlKiVy6ciCHrVJpqtXw1lvwww9fsGBBez78UPIEVJWm\nrKyMzMzM8sAkLS2NjIwM0tLSyrd7AdjZ2VGjRg28vb1ZunQpb7/9Nq6urjg7O6NSyZvbwpTuO9au\n1R5yqlcP1q8Hb+/y/zK1cWnsfr9lnyiKTJ48mTp16nDq1CnMzHSbuuXs95IlS2TRlQK5+p2bm/vw\niwxM6D3qq+RlpXNkwxIOrfmJpMtnybD04LDHU+SbO6IWYEyPhrw5agjWNrYP1a+qb1UqAXs3G+zd\nbKCha/n7okYkL1O7UpOdkMeeA9cxSyvErkwkLSaHeX99h9V1bbYzOzdr3IIccQt0xC3ICQdPG0lX\nvvU1Pxj7PKSgYGzoJXj5448/OJNyhne2v8OWS1to59eOQy8dopVvK5005UAuXTmQw1apNbds+YN6\n9WDhQpg8WVLp+5Kdnc3ly5e5cuUKiYmJZGZmlmdhMjc3p0aNGri6ulKrVi1cXV2pUaMGNWrUqJAx\nqGvXrtjY2NyvCckxmftu0SLtnsChQ7V/v8NHpjYujd3vt+zbs2cPO3fuZP369ToHLrfrysGnn35q\ntF/E5Oq3s7OzLLpSYa42w83epcJ7J7ev5vePRlOUpz2HkukQSLj7k5SJAjU9XPj+nedpHFKz0m1I\n5VtBJWBXwxq7Gtb4NHDlL3UpSw/HM7q+J096OvBNi3ncuF5MdmIeuakF5KYWEHMoCQBnP3vq9aiJ\nXxP3uxIBVAd9zQ/GPg8pKBgbsgcvybnJTN09lZ9O/ESAUwCrh61mUJ1BOj8dkeuLpT6/sOqKHLZK\nrRkUZMOgQbB8uXzBS1FREVevXi0PWNLT0xEEAW9vb0JCQioEKPb29pW69/R9H5jEfVdUBO+/D08/\nDcuWwT1Wo0xtXBq732/Zd/78eVQqFf37S1OoV85+G3PmLbn6bezn3GzM/y2WW1ZayqZv32PXIu1e\nXq+QMOr1f5mpe1Ipy86jS7O6zJn4LI52Vfs5yuVbd3tLEAQSRQ0BrbwIaKU9V1ecX0JaTA6pl7NI\nu5JNWkwOmXE32P/zGezcrlC3W00CW3uiNq/+QX99zQ/GPg/dyajkUgI0pYY2Q+E+pJRp+MfQRsiM\nbMFLYWkhsw7MYub+mZirzJnVYxavt3gdC7W8e1QVjI9Bg7Tfd69dg1q1pNXesGEDmzdvRqPR4OTk\nRGBgIF26dCEgIMCov0SZJEuXQlISTJ9+z8BFQT7Mzc3LE0UoKFQVjai9d0qLi5g/pjcXj+wGoMsL\n79Bn/CcM+3gBadl51KnlxfxJz2NjZTx1azzstbYk3yiq8L6FjTne9WvgXV+bYa8ot4QLe+M5vyeO\n3NQCji4/z+nNMTQdEoJ/cw+9262goCAfsgQvlzMuM3TlUKJSohjfcjwfdPgAF2uXh39Q4ZGkSxft\nn4cPSx+8WFhY0L17d4KCgnB2djb6J6Amze7dEBSkzcigoFdcXLTzZ0REBM2bNzewNQqmxq1ts6d2\nrePikd1Y2tjxzH9/pXGPIVyMS+bouatYmKlZ+O4oowpcAPyctIlRziblEp9VgK/TvR9KWdqZE9Y3\ngLrdanL5QAJnt12jILuYqM0xSvAiMcLNl4Jx8jj8bCR/fLryzEqaLmzKjeIbHHn5CLN6zuKzqZ9J\n3QyTJk2SXFNOXTmQw1apNSdNmkROjvbvcpSg8PHxoUWLFpKnKNb3fWAS993IkXDpEmzbdt9LTG1c\nGrvfb9nXv39/wsLCGD9+vCQrMHL2e/bs2bJp64pc/c65NckZKZqbwUta7CUAGvcYSuMeQwCwtNA+\nwxRUAoHebvcWqARy+baupx0tajlSVKph5rbLvPPOOw+83sxSTUgHH8yttP2q1aL6gYu+5gdjHwrC\n1wAAIABJREFUn4cUFIwNSYOX+cfmM2zVMHoF9yLilQgaezYGoGbNyh/6qyxyaMqpKwem4NeaNWuS\nkKD9uxwlQI4cOcLBgwcpKip6+MVVQN/3gUncdz16QOvW8Omn973E1Malsfv9ln1mZmbMmTOHQ4cO\n8fvvv0umKweenp6yaeuKXP1Wq427gOKtcDczKQ4AlfrfTRcuDtpMYkXFpZyNSah2G3L5VhAE3u8R\ngplK4J/LGUTnWZNfXHbXdWUlZSScSefoH+fZMPUgOcn5WNqaU6dz9esf6Wt+MPZ5SEHB2JA0ePG2\n16ZMberZFAdLh/L3x48fL2UzsmnKqSsHpuDX8ePHEx4O9vYQHCypNACBgYHs2LGDb775hm3btpGd\nnS2Jrr7vA5O47wQBhg+Ho0fh5pPcOzG1cWnsfr/dvo4dO9K3b1++/PLL8m1AUuhKzdNPPy2btq7I\n1W9b24enEjYk4s0zL0FNnwDg4OofOf63NsOVnbUV7Rtqt4I+N2MhMYlp1WpDznsq0NWGNzr5AxBX\nszvDf4ngZHw2hTeKuXwwgfAFp1k9eR975kVyMfw6+ZlFqC1UNH+6NubW1d8dr6/5wdjnIQUFY0PS\nMy8DQgfw4RMf8t7O96jvXp9+tftJKa9gomzapH1obyFDrobOnTsTHBzMkSNHiIiI4NChQ9SvX58m\nTZrg6+uLhRyNPs4EBEBBASQngxE/YX9UmThxIt26dWPPnj107tzZ0OYomAhlN4OXZn2f4VrUEcKX\nfcdvH4yiuDCfFv2eZ/7kkQz54HuiryUyYup8Vn86Fh8340r/PKqVHyFO1ixYex67q3ns+CqCM8UV\n9/dbO1rgE+aKT5grHqHOmFkY94qYgoJC9ZD8wP70ztM5nXKagX8M5L+d/8u77d9FJSiZiR5XDh3S\nvpYula8NBwcHunXrRocOHThx4gSHDh0iKioKlUqFl5cXfn5+1KxZk5o1axr9E1Kjp3597Z+rVsG4\ncYa15TGkS5cuhISEsGLFCiV4Uag0oka7UicIAoMmfU1Wcjyndqxh+dSX2PLDdLqMeofFU55n+Ixf\nuJqYxuD357Fixmv4e7k+RFleSgpKSb2STcrFTJIvZpFx7QY9NRVXHc3drQlt7oFvQ1ec/SqXCl9B\nNxa5q7HxUQJDY8Ux99EfA5JHFSpBxcqhK5ncbjIf7PqAHkt7EB4RLnUzREdHS64pp64cyGGrlJpl\nZfDii9E0aQIjRkgme18sLCxo1aoVb7zxBmPGjKF37964uLhw7tw5/vzzT7766ivmzp3Lhg0bOHny\nJBkZGffdfqPv+8Bk7rvgYHj5ZfjgA8oPM92GqY1LY/f7nfYJgkDz5s05c+aMpLpSEhMTI5u2rsjV\n79JS4655oeHfJA8qtZpRn/9Ovzc/w87FnczEWFbPfIN5wxswNrQEfw9nrqdm8tT787gQl1TpNqTw\nbUF2EfGRqRxffZEtM4+y6p1w9syL5Oy2WNJjchA1IhllSfi39CCziQvfe6n5yU1FUPeauNR0kDxw\n0df8YOzzkIKCsSHLkoi52pxPu37K9ue3cyb1DN2f786+2H2StjFZpoqHcunKgRy2Sqk5axacOzeZ\nH34AfZ5nFQQBd3d3mjdvzuDBg5kwYQITJkxg8ODBBAQEcP36ddavX8+cOXOYNWsWy5YtY8eOHZw+\nfZrU1FQ0Go3e7wNTuu+YOROsrOC55yAzs8J/mdq4NHa/38u+unXrcu7cOcl1peK7776TTVtX5Oq3\nsWcbE0WxQpY6MwtLuv9nCh9vvcrQD7+nhk8AeZlpHPr5Y+of/gwXMYfkzBz6TJzFt0vXUlp69wH5\nO6mKbzUakeykPK4eS+bkukvsnnuSNVP2sfa9/YQvOE30zjgyYm8gimDnZk1gGy9aj6zLgBlt2Jb4\nB21fqM/oUWGItmYk5RTxx/HqJxqQqk+m0I6CwqOCbEUqAboGduXUa6foT3+6LunKr0/+yjNhz0ii\nPXfuXEl09KUrB3LYKpXm33/De+/Ba6/NpVUrSSR1wtHRkbCwMMLCwgAoKCggPj6e2NhYkpOTOX36\nNPv37we0mYPatm3L+vXr8fDwwMPDA09PT1mLXprSfYeLC/zxBzz1FDRrBqtXQ5MmgOmNS2P3+73s\nKykpwdJSt1occvZ78uTJhIdLv9ouBXL129HRURZdKUnOLcLLoeIcZmFlTfvhY2jz1Muc3LaSPUu/\nIe7MMdpe/Y1DngNIs/bly9X7+OXPDQwLKKND29YENeuAZ1A9VHcUqr2fb0uLy8i6nktmXC6Z8TfI\njM8l63ouZSV3p/wWBHDwtMUtyBH3ECfcQ5yxcap4r8+dOxdRFJm9+wq5RWUIQB0PO92ccx/0NT8Y\n+zx0F4KgfSkYJ4/Bz0bW4AXAzdaN8AnhvLzxZZ5d8ywX0i/wYYcPMVPp1vTjmjr1dow1VfK5c/D0\n09C7N8yda5z+tLa2JiQkhJDbCi7m5+eTkpJCUlISycnJ5UFNWZn2qaODg0N5MOPh4YG7uzs1atSQ\nJE2qKd13AHTuDMePw5Ah0KYNfPst/Oc/Jjcujd3v97IvNjaWWjpWe5Wz315y5ESXiMc1VTLApfS8\nu4KXW6jNzGjWZwTN+owgPzuTmMgD9Dq6l/VHLrAn34d0tQs/XBPZcWoFYenjsHVwIrhFJ8I6P0n9\nTv2xdXQp921xQSlJ5zJIOJNO2pVsbqTk3zM5odpChbOPHc6+9jj72eHka4+Tt+1DD9l7ePvy3y0X\nWX0yCQH4b79Q2gXKUwRbSZWsoGCcyB68AFioLVj05CJCXEKYunsq68+v54e+P9Dat7U+mlfQI+np\n0L8/+PnB77/rd7uYrtjY2ODv74+/v3/5exqNhvT0dJKTk8uDmsjISG7cuAGASqWiRo0auLu74+bm\nhru7O+7u7jg7O9/1ZPKRw98f9u2DN9+E116DOXNgxgwYNOixePJjKG7cuIGNjY2hzVAwMS6n59DC\nzwUrswfPSzaOztTv0Jf6HfoyELiemMIHc39jx5nrXHRqTqGlC80SN3Jq51pO7VyLSq2mdosh1Aod\niFr0J+NaQXmCgFtYO1rg5GuPs6/dzZc9dm7WqFRVmyfOJ+fy/sZoLqXmIwDT+tamf1j1i1AqKCiY\nJnoJXkB7DuHDDh/SI6gHr29+nTY/t+GlJi8xs9tMXG0Mm9FEQRpKSmDYMMjKgiNHwMHh4Z8xdlQq\nFW5ubri5udGgQYPy9wsKCkhJSSElJYXU1FRSUlK4cuUKBQUFgPZJ7K1g5vagxtHR8dHKhmNlBQsW\nwIsvwkcfabeSNW0K//sf9OqlBDEyUKdOHRYvXmxoMxRMjJyCbC6kF9PQw6pKn/PxcmfRJ2+xcd9J\n3pz9O3HWgbh2+YSRHpZknM/GXAjCytybrCsA+QCorQqp2cSLWk1r4uxnj7WDbinrNaLIksPxzA2/\nSkmZiIuNOdP71qZDcA2ddBUUFEwTvTwa/vzzz8v/3tKnJYf/c5jv+3zP6nOrqTuvLteyrumkKSVy\n6cqBHLbqojltGoSHa49ABAbqrmdIHma3tbU1tWrVokWLFvTp04cXXniBSZMm8fbbb/P888/TvXt3\nvL29ycjIYN++fSxfvpxvv/2WmTNnsm7dOuLj4ytkOjNVP5XTqhVs28bnr7wC1tbQp4/2lZEhifzj\nOt7vZV+DBg24fv06aWnVKyZ4P12pWLRokWzauiJXv3Nzc2XRlZLcwhxiMospKategdP+7RuzdOrL\n2Flb4pHuTElcQ+xtnsDK2hsEDWuPzeXq5bmcPPocB7b3Ze3cDsRd3IiVvbnOtn+14wrf7I6hpEzE\n7sw6Vv2nmV4CF33ND8Y+DykoGBt6WXnJz8+v8G+1Ss2YFmMYXHcwzRY2Y8LWCawdvlYnTamQS1cO\n5LC1upqpqTB7NkyeDB076q5naKpjtyAI2NnZYWdnR+Ct6A1tpp+cnBxSU1O5fv06J0+eJDIyEg8P\nD5o3b05YWJjJ+ulO8j09Yf58bWXS0aOhRQtYtw5uJkqotu5jOt7vZd8TT2irpO/YsaPa1ezl7Hdh\nYaFs2roiV7/vl3LdmBDEIjQipOaV4u1QvYCiXcMQJrTsjMNF7X7gwDZe+DZyxTPUhfOf/sPrr7/C\n6V3rOLx+EXFnjvH7R6OJ2ruR4VMXYOdcvR0Wq08msuzYdQA+6BlMVIEdNWz1U3xYX/ODsc9DCgrG\nhl5WXqZPn37P9z3sPPim5zesi17H5gubJdHUFbl05UAOW6ur+fXXoFLBW29Jo2dopLRbEAQcHR0J\nDg6mY8eOvPHGGzz77LM4OTnx119/8fXXX9O8efPyLWemzPTp07Vbxfr3h6NHwc5Oe6D/r79015UB\nY78/72Wfr68vjRo1YvPmqs2ZD9OVitdee002bV2Rq9/29vay6EqJjZk28UhyXvVr0iRfyMT+ovZr\nQ6ZvMa2fr4tvQzfMLNVMnz4dJw8fnhgxlreWHaLfm5+hNjPn1I41fD44jIyEqu+wiEq4wadbLwEw\ntkMthjX1ZsaMGdW2v6roa34w9nlIQcHY0NuZl/sxuO5gHC0d2Re7j761+xraHIVqUFwMCxfCq69C\nDWUL8kMRBIHg4GCCg4PJzs5m7969HD9+nNq1axMaGmpo86QjIAAOHNBmJvvyS+02MgVJaN++PXv2\n7DG0GQomhLWZNjVxdtHdKYorS9L5DAQE4ouz8Wnmed/rVGo13f8zhbrtevLrO8NIi73EkfWL6TVm\napXa2xadSqlG5IkgF15uq2TkUlDQlQklrxBQXFsSrZiSC3zIGEm0qorB0yGFXwsnuyibAaEDDG2K\nQjX5+2/t0YbRow1tienh6OiISqXCzs6O4OBgQ5sjPba24O0NSnYsSbGysqKkpMTQZiiYEJZm2meV\nZZrqb3GLNdMW4/Q0t6dnk/oPvd63bhOa9R4BQE5aYpXbyy7Q3uONfBwerUQnCgoKOqGX4OV+B0v3\nXN3DhK0TCHQOrHLaZF0OqxpCVw7ksLU6mitWQOPGUP8ev8tMyZ+3I7fdBQUFnDp1ipUrV3LixAmC\ng4NNolbEw7jLb2fPauvB6Lgk97iO9/vZZ25uTmlp9bf/yNnvzMxM2bR1Ra5+31693lgxU2nnl9Jq\nBi95BUXM2ryN68XZmAkqdn5ynPAFp7l6LJmSwtJy34qiyPXzkWz/aSbfvdCR7T9/pv18VnqV28y/\nWchyU1Qy+69ok3/oc8zqqy1jn4cUFIwNvQQvL774YoV/RyRE0PO3nnRe3BkLtQXLn1pe5acqd2pK\nhVy6ciCHrdXRPHJEuzNIKj1jQA67MzMzOXToEIsXL+bLL79k7dq1ZGVl0bFjR3788UfJ2zME5X7T\naLSFK5s21Z57ee89aXQlxtjvz/vZZ25urtPKi5z91ueZhKoiV7+zsrJk0ZUSMzNbAOwsqv5rXxRF\nJn//J5fiU9ijicHG1ZKyEg3xkakc+OUMqyf/Q9/2/fh98nQ+7hbIF0Mas+nb97gcEY6mtBR3/9q0\neerlKrc7MMwDRyszrmYU8PqKKMb8cZrhz42qsk510df8YOzzkIKCsaGXMy/Tpk2joKSAvdf28suJ\nX1h5diV1XOuwethqBtUZVK3l4GnTpklvqIy6ciCHrVXVzM2Fy5ehYUNp9IwFKewWRZGUlBTOnDlD\ndHQ0qampqNVqAgIC6NOnD7Vr18bhZjEcOzs7ndszBqZNmwaJiTByJOzYoS1g+dln2vTJuurKgLHf\nn/ezz8zMTKeVFzn7/corrxAeHi6bvi7I1W9TOLAvqLVzjatN1X7ti6LI7D+3s/6fk5ipVUx8oTWe\nYibxUTGkXy6lLM8bM1wZEPYC5NamdnBL8ryisXQoxTPUi9B2zanZuDbqhxTHvBftglzY9FoLFh6I\nZfmxBA7EZFIYMoj3N0TzTHMfGnjL63d9zQ/GPg8pKBgbsgYvMZkx/HXxL/6+9De7/t5FQWkBgc6B\n/DzgZ0Y2GomZqvrNN23aVEJL5deVAzlsrarmrSRSbdpIo2cs6GJ3eno6UVFRREVFkZaWhpWVFaGh\noXTu3JmgoCAsLO5O82mqfrqTpgUF2tUWQYBt26B7d2l0H9Pxfj/7PDw8SE1NJTs7G0dHR8l0paBu\n3bqyaeuKXP02N9e9loncpOWX4WUFbrYP/72r0WjITLjG1fOn+XTNIQ5fLwIgLGMfG8d+ddf1NrZB\n+AUPRjDzQYUt9g6NAMg4DwfPJ3BYnYiDly3OvnY4+9rj7GOHk68dlrYP95uDtTnvdA1ieFNvZu+O\nYQew+UwKm8+k0NDbnmea+9Ctjivmauk3kuhrfjD2eUhBwdiQNHgpKi3in9h/+Pvi3/x16S+i06Ix\nV5nzRK0n+G/n/9I7pDd1XesqB+8eIX74AZ54Ah6lJFnVITs7m6ioKM6cOUNiYiIWFhbUqVOHHj16\nEBgY+EicZ3kgoghz52pzZbdpA3/+CZ73z0akoBu9evWitLSUrVu3MmzYMEObo2ACJGbGU9c7EGer\nil/yRVHkauQhLkeEk3TlLEmXzpAcc46MEnMOeQ4g29INQSyjUdoeAnIiUZtb4O4fimdQPbyC6uMR\nVA+/es2o4eOPKIpkJ+SRHptDZlwuWfG5ZF7PpaSglKx47b9jSCpv28bZEmdfe5x87XDxs8c1wAFr\nR8t72u/nbM2swfWISrjB78eus/VcKqcSbnBqQzSuOy0Y2tSLF1r5YmX+iM+1CgoK0gUvf138i5c2\nvERSbhI+9j70CenDp10+pWtgVxwsHaRqRsGIuHIF9uyB3383tCWGITc3l7NnzxIVFUVcXBxmZmbU\nrl2b9u3bExISYhJPYyVBFOGNN7TBy8SJ8Pnn8Lj03UDUqlWLRo0aMXv2bPr27Yutra2hTVIwclKy\nrxPsYln+8DA/O5Njm35j/6oFJF06U36dCFxxaEiUZwdKVRbYqssY19yRDi2m4hlUH1e/INRm9/7q\nIAgCTj52OPnYwc3VeFEUycso1AYy8blkxt8gMz6XvPRC8jOLyM8s4vrpfw+s27hY4hrgePPlgLOv\nPWrzfwOuBt72fDqgDm91CWTVyURWHk8kLa+YH/65hkqAV9rVkt55CgoKRoXO66x5xXmM2TSGvr/3\npYlnE06+epK4iXEs7L+QQXUH4WDpwM8//yyFrRWQQ1NOXTkwtF937tQWpuz7gPI8puTP27mf3QUF\nBZw4cYKlS5fy9ddfs3XrVqysrBg0aBDvvPMOQ4cOpV69elUOXEzVT4giTJigDVwWLODn+vVlCVwe\n1/H+IPvmzZvH6dOn6du3L7m5uZLp6sq6detk09YVufptChXScwuy8LJTE3PyIMs+eIGp3XxYPfMN\nki6dwdzKmsbdh9DypWlc7jidk27dKFVZ0KpeILsXTGP8e9Np1G0wHgGh9w1c7udbQRCwq2GNbyM3\nwvoG0OHVhjz537YMmdWBbm81pdnQEALbeOHkY4cgQH5GEbERKRxfdZFtX0aw8u29bP3yGBGrLnLt\nWDLff/sDoijiamfBa+1rsWVsSzwdtKs1Xg5WkvpMX/ODsc9DCgrGhk7By4G4AzRZ0IQlp5bwQ98f\n2PzMZhp5NrprW9jx48d1MvJeyKEpp64cGNqv4eHa4w0OD1hYMyV/3s7tdms0GqKjo1m+fDlfffUV\nGzZsQKPR0LdvX95++22eeeYZGjZsiKXlvbc7VLU9k+Ldd+G772DBAnjlFZMbl8bu9wfZ165dO7Zu\n3crx48fp1asXBw8eRBQrlwZXzn5HR0fLpq0rcvXbFGruFBVlM2dUe2Y/35YjGxZTUliAV3ADnnpv\nDjN2JuAy6H1mHCoiMj4bKwtzpr30JCv/NwZvV6dK6VfVtxbWZrgHOxHa2Y/Wz9elzwctGTKrA13e\nbEyjAYH4hLliaWeOplQkPSaH87vi2P/LGdb+uIV17+9n309RnN8bz4bwWJKyCzFTCXQMdqmOayTr\nk7G3o6DwqFCtbWM3im7w3s73+P7o97T0acmmZzZRu8b9K3bOmzev2gbqU1NOXTkwtF8jIqBrV+n0\njIl58+ZRWFjI8ePHOXr0KFlZWXh7e9O9e3fq168veXYhk/TT5cvw1VfabGKvvAKY3rg0dr8/zL62\nbduybds2hg8fTtu2bQkJCWHkyJE899xz+Pv7V1tXF6ZMmcLKlStl09cFufpdnaQJ+iYu7gxXIw9i\nbmlF457DaDf0VfwbtaFMo+GzpX+xYN0eAFrWDeCr8cMJ9Harkr4UvjW3MsMz1AXPUG0QIooiuWkF\npMXkkB6TQ1pMNi92mkBBdjGxx1OIPZ4CwHgVlLiakXAgkdIQZ5x87VCpdD9bq6/5wdjnIQUFY6PK\nwcvmC5t5bfNrZBRk8E3PbxjXchxqlXJA7nGjrEz73fX11w1tifSkpqZy5MgRIiMjKSsro0GDBgwZ\nMgQfHx9Dm2ZczJkDLi7adMgKBqN169ZcuXKFPXv2sGTJEmbOnMlHH31Ep06dGDlyJE899VR5Sm6F\nx5eUgkxcfAIY++N2XP2CAMjOLeC1LxfzT+RFAMY+1YXJz/RGLUPmruogCAL2bjbYu9kQ0FKbACQu\nNY+F6y6QdjkbvyIRn2IRGw2QUsTx1ZcAMLdS4xrkhEdtJ4LbeWNho5zBU1B4lKhS8HIq6RSjj46m\nR1APFvRbgL+Tv0xmKRg7169DcTEEBRnaEmk5fPgwW7Zswc7Ojnbt2tGsWbNHpgaL5GzYAO3b61zD\nRUF31Go1Xbt2pWvXrsybN481a9awZMkSXnrpJcaPH89zzz3HmDFjaNSokaFNVTAEgkCRoOGZ7zeW\nBy4AM3/bzD+RF7G2tOCbN56mXzvjvj9uFJby+uozxGYWonZS4dfEi75t/CC9iJSLWaRczCL1chYl\nhWUknkkn8Uw6l/cn0un1hti72xja/EeGUcmlBGiqX2dKQV5SyjT8Y2gjZKZKwcvVrKsAbBqxCXO1\n8iTjceZWfTwdjnkYFaIosmfPHsLDw2nTpg1du3Z99NMb68obb2izi/34I7xc9erZCvJgZ2fHyJEj\nGTlyJLGxsfzyyy/8+OOPLFiwgLZt2zJmzBiGDBmClZW0h5sVjBdnW1dyKSCxpICQm+/lFRSxZo/2\nrMWPU0bRqUkdwxlYCURR5KPN54nNLMTLwZJ5wxsQ5Hozy56DFa4BjtTrUQuNRiTrei4pF7OI3hnL\njZR8tn0ZwROvhuEeXLnzOwoKCsZNldaGs4qycLB0qHLgMmDAgCpdbyhNOXXlwJB+Vd28czQaafQM\nzc6dOwkPD6dbt2706NGDQYMG6bV9U/FTBd58E8aM0b527wZMb1wau991ta9mzZpMmzaNq1evsmrV\nKqytrXn++edxdHRkypQpxMXFSWTpv0ycOFFyTamQ6+edkZEhi65UuNprt1xdSIopf2/zgUjyCovw\n93KlY2PdC3XJPZbWRCax+0I615a+x1eD6v0buNyBSiXg4mdPnS5+9JzcHJea9hTllbDruxNkJVQt\nK5++5gdjn4cUFIyNKgUv9hb25BbnkpqXWqVGxo0bV6XrDaUpp64cGNKvlQ1eTMWfx44do02bNrRr\n1w7Qv92m4qcKCII201j79vCf/0BBgcmNS2P3u1T2mZub89RTT7Fjxw6io6Pp27cv8+fPJyAggKef\nfppDhw5J0g5g1EUz5fp5G3udHVcHLwAuJF0tfy/i/DUA+rW9O0NodZB7LJ2MzwHg6RdeoYF35RKm\nWDta0u2tpjj72aMpFUk+n1mlNvU1Pxj7PHQngvIy+tejTpWCl47+HQFYF121PP49evSo0vWG0pRT\nVw4M6dfKBi+m4M/CwkKKiorw9vYuf0/fdpuCn+6JmZk2TXJcHHz+ucmNS2P3uxz2hYaGsmbNGuLi\n4pg9ezYRERG0adOG1q1b88cff1Baqtte9jZt2khkqfTI9fPWJU26PnBz1K68nL8teIlL1q4WBXq7\nStKG3GPJ+mahyrDWHav0OTMLNdaOFuV/rwr6mh/kaGf69OmoVKoKryFDhlS4RhCEGYIgJAiCkC8I\nwnZBEIIlN0RBQQaqFLy4WLvQ2b8zXxz4gsQbiXLZpGAC3HpQ97DgxRTIy8sDwFo5eF49QkO1hSo/\n/1ybhk7BJLC3t2fcuHGcP3+ejRs3Ymdnx4gRI3jppZcMbZqCxLjYuQNwNe16+XtJGdkAeFWyjouh\nsbfSHtG9mJpXpc+VFJSSGa/dLmZuU63qECZLgwYNSE5OJikpiaSkpArFMAVBeBcYB7wCtATygK2C\nIFgYxloFhcpT5XyI8/vNp7C0kE6LO5FwI0EOmxRMgIIC7Z+Pwvd9JycnzMzMSElJMbQppku9elBY\n+GhEs48ZKpWKfv36sWPHDhYvXsySJUtYtmyZoc1SkJBb28JUt20Ps7PRJmzILSgyiE1VpVdddwRg\n94V0Tl3PqfTnIlZdpCCrCNsaVnjVlbaIpbFjZmaGm5sb7u7uuLu731mP6E3gv6IobhJFMQoYCXgD\nAw1hq4JCVahy8BLsEsyeUXsoKCmg06JOXEy/+NDPrFtXtW1mlUEOTTl15cCQfs3P1/5p85Dsk6bg\nT7Vajbe3N9euXSt/T992m4KfHsjNFZd1GzbIIv+4jnd99/v555+nY8eOjBkzhqSkpGpp776ZvMEY\nkcufhYWFsuhKRWlZCQCW5v8+VHdz1KaAT8mofCDwIOQeSyHutgxo6EH22X+Y9tcFrqbnP/D6otwS\nIlZe4MrBRBCgzci6mFtVbeVFX/ODXO1cvHgRHx8fgoKCeO65524f096AJ7Dz1huiKOYAhwHj3fep\noHCTalWiCnIJYs8LewBo/mPzh56BWb58eXWa0bumnLpyYEi/3gpeHnZO1VT82bBhQ86fP09ERASg\nf7tNxU/3pKwM5s+Hhg1Z/uefsjTxuI53ffU7NzeX77//nvr167N37178/f0RRbFa2lu3bpXCRFmQ\ny58Ft5aijZTM3DQA3Oz/XXkIraU9xL/j2FlJ2tDHWBr7hD/5Ubu4nJbPsF+Os+zodTQqQ/ENAAAg\nAElEQVR33KelxWWc3XaNDR8f5PzueADq96iFe4hzldvT1/wgRzutW7dm0aJFbN26lfnz5xMTE8PL\n/6a0rwGIQPIdH0tGG9QoKBg11d4AGugcyLFXjjF6/WgGrRjEpLaT+LTrp5ip7pZcsWKFTkbeCzk0\n5dSVA0P69eYxkYeuvJiKP5s2bUpycjKbN2/GwcFB73abip/uyZw5EBEBBw6wonVrWZp4XMe73P2+\ndOkSc+bMYdGiReTl5TFw4EC+//57OnbsWO0MVDNnzmT79u1SmisZcvnT2bnqX4z1SUKGdlW5aa16\n5e8N7dKC71buYM+J88SnZODrrtuWKn2MJQ8HS07v/Yupm89z6GoWX+y4zK4LaXzYKwRfGwuuHk3m\nzJar5Gdpt8I5+drRZGAQXvVqVKs9fc0PcrTTs2fP8r83aNCAli1b4uvrK4n2b/u/x8aiYvHmNiFd\naBvSRRJ9hcpz4OIuDl7cVeG9ItG4H6ZIgU6n1xwsHVg1dBXfHPqGydsnE5kcycqhK3GwdJDKPgUj\nRceEREaHIAj06tWLnJwc/vzzTwYPHkzdunUNbZbxc+0afPghjB0LMgUuCtKTmJjItGnT+Pnnn3F2\ndmbs2LGMGTMGPz8/Q5umIAOJmVfBHJrcFrwEeLnSLiyY/acvMW/NLj57bcj9BYwIDwdL5j8dxsoT\niczaeZmkC1n8ePIw9QpApdGuwtg4W9KwfyD+LT1RqR6HxLEPx9HRkVq1anHmzBmAdLQZdT2ouPri\nAZx4mNZz7V4nwK22LHYqVI229wgaU8rimLjwBcMYpCeqtW3sdgRB4K02b7H1ua0cjj9M+1/aE5sd\nK4VtCkZMgwbaPyMjDWuHlNxKJRkaGsqff/7JwYMHq7115rFAFLVBi5MTfPKJoa1RqAQ5OTl89NFH\nBAcHs2rVKr788kvi4uL49NNPlcDlESY5S5tcp2mtig9kJgzXpuhdtu0QZ2NMJwFPQXYx9VOKeTdH\nzbOpZTTIE1FpRNLNIaeRM09Mbk5gay8lcLmN3Nzc24vSJgBJQNdbbwiC4AC0Ag7o3zoFhaqhc/By\ni66BXTnw0gFuFN+g1U+tKnWQX8F08fEBb284fNjQlkiLmZkZTz31FG3btmXbtm2sX7+enBxpDrQ+\ncqxbB5s3w7x54KCstho7GzZsIDg4mK+++oo33niDy5cvM3HiRKysrAxtmoLMaMQybMyscLO8Y6tP\ngyD6tW2ERiPywcLVlJUZb7bAkoJSrhxMZNd3J1j/wX4iN1yhML0QM0s1To1dORJmz08ean7IuMGT\nPx9j5YmEu87DPE5MmjSJ8PBwrl27xoEDBxg0aBBmZhU228wGPhQEob8gCGHAEiAeWG8IexUUqoKk\nSc/rudXj0EuHeOLXJ3h2zbPsf3E/5mpzRo8eza+//iplU7JoyqkrB4b2a6dOsHUrzJwpjZ6xIAgC\nv//+O+PHj2fHjh1ERUXRrFkz2rdvj7195So7VxVT9BPr10OTJvDkk+Vvmdq4NHa/S2XfkiVLePHF\nF+nXrx9z587lo48+wslJnvoe06ZNk0VXCuT6eWdlZUmuKTXu5g6s+/ItRkz/qcL7H43uz+7j0Rw9\nd5Xv1+xi/NBu1dKXw7dlpRoSz6Rz9Wgy10+nUVaiYcGuL3i1y2TcghwJauuNXxM3zK3M6C2K7L+S\nyXd7Yjifksf/tlxi4+kUPuodQojbQzLL6LFP+monPj6eZ555hvT0dNzc3Gjfvj2LFi1iwIABAIii\n+IUgCDbAAsAJ+AfoLYpi8cO0F7mrsfGpWsFPBf3hmPvorzhKtvJyCw87D5YNXsbxxOPM2DsDMGwl\neGPRlQND+3XgQDh5Eq5elUbPmOjRowdNmzblzTffpEOHDpw6dYrvvvuOrVu3kp//4BSd1W3P5Dh+\nHFq2rPCWqY1LY/e7rvaVlZXx7bffMmrUKEaPHs3q1avx9fWVtd+tjfjsk1z9trS0lEVXShwEcw6t\n+ZnTuyumM/dxc+Z/rwwCYNYfWzl5sXrbvqX0bX5mIUeWn2ftlH2ELzhN7PEUyko0OHjY0PfJ3gyY\n0YbubzcjsI1XefpjQRBoH+TC8tFNmdwtCBsLNZHXc3j6l+PMC79arS3A+pof5Ghn+fLlxMfHU1BQ\nQGxsLL///js+Pj4VrhFFcZooit6iKNqIothTFMVLkhuioCADkgcvAC18WvBhhw/5bN9nZBZkMmLE\nCMnbkENTTl05MLRfe/UCKyv44w9p9IyJW3ZbWlrSoUMH3nzzTdq1a8eJEydYsGBBtWtgPKw9kyI6\nGurXr/CWqY1LY/d7dewTRZHIyEgmTZpEzZo1mTBhAm+99RYLFy5ErVZXW7ey9OrVSzZtXZGj30eP\nHiU3NxdHR0ccHR1p27YtW7ZsqXDN1KlT8fb2xsbGhu7du3PpUsXviEVFRYwdOxZXV1fs7e0ZMmQI\nGRkZFa4RBMFZEIRlgiBkC4KQKQjCT4IgVHpJwc+jFgB/THuZ3IzUCv83pHNz+rdrRGmZhm9WbKtS\n/28hhW81ZRrObY9l04zDXPrnOsX5pVg7WlCnqx+9prSg79RWTP78Texc718dWa0SeLaFD+tebk6X\n2jUo1Ygs3B/LsqPXq2yPvuYHY5+H7kIQlJexvx5xZAleAJ5r+BxlYhmHrz9ihyIUyrG3h2HDYOHC\nR7+wupWVFZ06deL111/H1taWX375hejoaEObZVhEEcwk3XmqoAOxsbHMnDmTsLAwGjduzK+//sqg\nQYM4ePAgs2bNqnbqY4UH4+DggL29PcePHyciIoIuXbrw5JNPcu7cOQA+//xz5s6dy8KFCzly5Ai2\ntrb07NmT4uJ/d+dMmDCBzZs3s3r1asLDw0lISGDSpEl3NvU7UBftIeu+QAe0W34qRYP6rfEKbkBu\nRgp/TH+lwkqEIAhMfFr79D/85AWycqVfXX4YKZey+Puzo5xYe4nSojJcAx3p8kZjnvykHU2fCsGl\npn2V7mEPB0u+eao+73QNBOCb3TGcuq6cX1RQeBSQLXgJdA7EzsKOw/FK8PIoM2YMxMTAHQ8aH1kc\nHBwYPXo0ISEhrFixgqioKEObZDjMzKD4odujFWREFEW2b99O165dqVWrFjNmzCAsLIxNmzaRmJjI\n3LlzjXob16NAaGgoVlZWBAUFERwczP/+9z/s7Ow4dOgQAN9++y0fffQR/fr1o0GDBixZsoSEhITy\nquo5OTn88ssvfPPNN3Ts2JEmTZrw66+/EnlbKkdBEOoCPYGXRFE8JoriAWA88LQgCJUqKujr4sXz\nM39DbWbO6V3rOPvPXxX+v7afJ6E1PSkpLWPnsXNSuKbSpFzKYsfXx8lOyMPS1pxWz9eh+1tN8azj\nonPGsOda+NCjrhulGpF315+jVPP4HuJXUHhUkC14eW/He+QV59HatzX79u2TXF8OTTl15cAY/Nqq\nlfbYwxdfSKNnLDzIbrVajVqtRqVSYfOwKp0StGe0hIbelW7O1Malsfv9fvaJosjff/9N27Zt6dGj\nBzdu3GDx4sUkJyezfPly+vbti7m5eZV1peDEiYeWiTAYcvX71iqKRqPhjz/+ID8/n7Zt2xITE0NS\nUhJdu5ZnpMXBwYFWrVpx8OBBAI4dO0ZpaWmFa0JDQ/H0rBCTtAYyRVG83bk70FZJb1UZGx2tbfEJ\nbUTDboMBSI65e+XYzUmbkKS0rKwykhXQxbfXT6UB4BHqTL+PWxPUxhvhPkFLVdsRBIGPe4fgbG1O\nQnYRR65mVvqz+pofjH0eUlAwNmQJXn44+gNfHPiCr3t+Tc/gnnxxv2+2OiCHppy6cmAMfhUEeO89\n2LsXDtwjO7wp+fN27me3KIps3LiRqKgoBg8eTGBgoKztGTWDBmlTJd+2+mJq49LY/X4v+7Zu3Uqr\nVq3o06cPAH///TeHDx9m5MiRlc6GJ2e/lyxZIpu2rsjV75ycHOzt7bG0tOT1119n7dq1hIaGkpSU\nhCAIeHh4VLj+/+ydd3gUVdfAf7Ob3ispBNJJCL1LFRQQFKMoCvYXeVVArK9gF+yKBV4RebF8IJYI\nKIIgSJMm0knoIZBGEpKQ3tvuzvfHEExICEl2ZrML83seHpLZmXPPOTv3Zs7ce8/x8fG5tG8uOzsb\nGxsbXC5LN+7hUa/ivS9woe4BURT1QP7Fz66K5uJfe2sbKTW22EiAcvqcpFNEx2aJrIcxvi3KKgOg\nYy9vbJ2uHHS3th0nWytGd/YCYP2JC1c527i2WoO5j0MqKuZGi4KXW2+9lejo6Hr/Bg4ceGn6WxRF\n5u6ey/TPphO8IZhnb3gWgJ8u7uh+8skn+eabb+rJPHz4MNHR0eTm5tY7Pnv2bD788MN6x86dO0d0\ndDTx8fGXZAIsWLCgwfrg8vJyoqOjG7zRiImJYfLkyQ1smzhxIqtXr74kNyYmhoEDB+Lr63vJ1uee\ne67ZvmqKq/mxlk2bNl1Ka1iXWj/W9UFr/ViXBQsWNHgYb44fo6OlopUzZsCECRPr2XHXXXcp5keQ\nz5d1OXz4MHq9vlFfTp06lbi4OMaPH0+XLl2a9GVL7klXV9cGutXek3XPM6t78rbboLgYDh9W9J6c\nOXNmPbmt7dt1z6v1o16vN+t7stbuWl+uWrWKMWPGYGNjw+bNmxk1ahRHjhyptxegOfdkrVw5fVlr\nq74Vb+0bQ4m+/eKLL8p2T9bF3d2d/v37s3jxYqZNm8bDDz9MfHw8mzZtajTL1Z49e0hPT7/0u16v\nb+DHc+fkK/acv+Y4r0+bQXR0NB//tIm1qfDUewvr+TI7v5i0hGPk7VtNpw71g63m/O2uvada48vK\nEukFiLWD9VXvyZ8uyxBz+T0Jjd8TY6LakbFmHiu+/7bed9LUONWvX78W2VGXlvStn376qdl2QPO+\nj5iYGKKjo4mIiCAqKkr2cU5FpS0RmpM+UBCE3sChQ4cO0bt370bP0Rl0PPn7k3x5+EteG/oab414\n65rbIHr48GH69OkD0EcUxcMtvb45frRUYmNh4EB49FH44oumzzXWj9A2vkxISCAmJoYRI0YwbNgw\nk7R5Ndr0nszJgXbtYNUqaRbGgrGEe7KwsJBu3boRHh7Oli1b0GgUW/VrFNfbOPn222+zaNEizp//\np0L9qFGjCAsLY9asWYSGhhIXF0f37t0vfT58+HB69erFvHnz2LZtGyNHjqSgoKDe7Iu/vz+ZmZkA\nfYAewMeiKHrWfi4IghaoBCaIothoYcFaX3rd14uf5yzlxk7deWdcJ3JSzzBt8UYiB/2Tonf9nqM8\n/uG3dA7yY/P8F2TyTvM4uCKBhO3phA3xp//9kYq0UaM3MPCT3dToRdZN7UcH9ytnLLtWkatvhj35\nFQ7tO8mun4o8uJamsuu9h6HO91z73b0zYRHB3vJ8d8k5Cbz287R67ZgKWf76iaLIxJ8n8n9x/8c3\n0d/w9k1vX3OBi0rT9OoF8+fDokXSs+y1Rk5ODqtWrSIiIoKhQ4e2tTrmgaentBZF5rTRKo3zyiuv\nUFxczNKlS802cFGRMBgMVFVVERwcjK+vL1u3br30WXFxMfv27WPQoEEA9OnTBysrq3rnnD59+vJ0\n7HsAN0EQetU5djMgAM3KiiNgoLK0mJzUMwAERPaq9/mh+BQA+kYGNc9IGfGLkpbIZRzPw6BXJnWl\ntVZDp3ZOAJzMKlWkDRUVFdMgS57Trw9/zapTq/h14q/cGXmnHCJVLJAnnpC2QDz3HIwdC/bXyIut\nkpISfvjhB1xdXbnzzjvVwLyW3FwpR7aXV1trcl2wc+dOHnzwQTp27NjWqqjUYfPmzVRXV5Oamnpp\nrNixYwebNkn1Up599lneeecdwsLCCAoK4vXXXycgIIA77rgDkDbwT5kyheeffx53d3ecnZ15+umn\n6dGjB3FxcQCIohgvCMJG4CtBEKYBNsACIEYUxWa9PdAA6fGSPDffDjh5eNf7/ODF4KVPRJCRHmk5\nPp3csXO2pqKwiqQ9mYQNaX/1i1qBu730yFNZI8/SRhUVlbbB6Nd3KYUpPL/peab0mnLFwKWRfPVG\no4RMJeUqgbn5VRDg008hMxM+/th4eW1Jrd5VVVX88MMPiKLIAw88gJ2dnaLtWRS1qVx79Lh0yNL6\npbn7vVY/URRJSUmRLUGEknbPnz9fMdnGooTdZWVl5OfnExkZyciRIzl06BCbNm3ipptuAmDWrFk8\n9dRTPPHEEwwYMICKigo2bNiAjY3NJRnz5s1j3LhxTJgwgeHDh+Pv789HH310eVP3A/FIWcbWATuB\nJ5qrpyAYSD8lrezo0Ln+cryqGh3HEqU9OH1aOfNijG+tbLRE3SK1e3x9Cvomggtj2qnWS8vkbaya\n9+hjqvHB3MchFRVzw+jg5eO/P8bJxolPb/n0iuco8aZQqbePlvRW0xz9Gh4OTz4J8+ZBTY1l+bMu\ntXofPXqUnJwcHnjggQbZgJRoz6JISpIi1tDQS4csrV+au99r9TMYDDg4OLBkyRJOnz4tm1wluCzF\nr1mhhN133nknzs7OVFRUkJWVVS9wqWXOnDmcP3+e8vJyNm7cSFhYWL3PbW1tWbBgAbm5uZSUlLBy\n5crLs40himKhKIoPiqLoKoqiuyiKj4mi2OxqkgZRvBS8BFwWvJxMPk+1To+7swNBvp6NXX5VjP7b\nMdQfBzdbygurOPFHqiLt5JVJiQGcbJq36MRU44O5j0MqKuaGUcGLQTSwOn41E7tMxMX2yg92Tz31\nlDHNmEymknKVwFz9+uCDUFAAf/1lWf6sS63eeXl5uLu7065dO5O0Z1FotSCK/+RgxfL6pbn7vVY/\nrVbL9u3b0ev19OvXj19++UUWuUowadIkxWQbi1J2Ozo6KiJXTvQGPWm1wUtU/eDlRHIGAN1CAlq9\nLNZY32qttfS+JxyAk5tSKcosk7WdkkodSblSrBfl59Ssa0w1Ppj7OKSiYm4YFbzEZcWRUZKh7nNR\nqUfv3hAQAL/91taaGE9BQUGDN6AqF7G6+PZSp2tbPa4ToqKi2L9/P2PGjGHChAm88sorGAzKbG5W\nufaorqokO+kU0HDZWO2Ssa6hyuw1aS4denrTvrsXBr3I3u9Oybp5/0RmCSLQ3s0OT0ebq56voqJi\nvhgVvGQUS29rIr2USW2oYpkIAvTtCzKsbmlzKioqLOKtaptQW8FdDV5MhrOzM8uXL2fu3Lm8//77\nPPjgg1RVVbW1WioWQH7mOUSDAUc3T1y8/ep9duBUMgA9w9t2+ZIgCPS9txPW9lbkpRQ3uXyspRzJ\nKAagu3/zCrmqqKiYL0YFL5W6SgDsrZpOK3V5QSc5UEKmknKVwJz9GhAA6emW5c+61OpdXV2NtXXT\nFZ/lbM+iqPVLTc2lQ5bWL83d743pJwgCM2fOZOXKlaxatYpRo0Zx4ULzq4ZfSa5cJCcnKybbWJSy\nW2cBAXxephQI+IZ2qbc0LL+4lIS0bABu6NL6hBBy+dbRw45+k6Q6FMfXJ5OTVCRLO0drg5f2zd+7\naKrxwdzHIRUVc8PoPS8AIk0Xupw1a5YxzZhMppJylcCc/dq+vRS8WJI/61KrtyAIslUMb057FkXt\nG3+t9tIhS+uX5u73pvSbMGECf/75J6dOnSIyMpKvvvqq2cvIlLT7s88+U0y2sShld3FxsSJy5SQ/\n8xwAvqFR9Y7HJkjHwwLa4eHSvL0gjSGnb4P6+RLUzwdRhD1LT1BT+U9w2Jp2avQG4i4GLz1bELyY\nanww93FIRcXcMCp48XaU8sTnluc2ed7nn39uTDMmk6mkXCUwZ78GBEib9ufOtRx/1qXWD97e3i1+\nq21MexZFUhK0awd1ltVZWr80d79fTb9BgwZx8uRJoqOjefzxxxk2bBjHjx83Wq4xmPODmFJ2u7q6\nKiJXTvKz0gDwDakfvBxPurhZPzTAKPly+7bvpAgcPewoza3k0IoEo9o5klFMaZUedwdrIn2bH6CZ\nanww93FIRcXcMCp48XH0ASC9OL3J88wxpa+p5SqBOfs14OLfQY3GcvxZl1o/+Pr6kp2drfjsiyXd\nd5dISKiXJhksr1+au9+bo5+3tzdLly5l27Zt5Obm0qtXL8aPH09MTAylpY1XElfSbj8/v6uf1EYo\nZbe2zuyjuVJwQfo77XPZzMuJ5PMAdA02brO+3L61sbdi4L+iQICkvVlkHMttdTu7EvMBGBzijqYF\n2dTUVMkqKuaJUcFLhFcE3g7erEtYJ5c+KtcItcFLetNxrdkTFBRETU0N586da2tVzIvqatiwAUaM\naGtNVC4yfPhwjhw5wieffEJmZib3338/3t7eTJgwgZUrV1JW1njqWZXrg+I8aV/L5cvGUjKloCAs\nwMfkOl2NdmFuRN7UAYBDP59psnhlU+xOLABgSIiaOVJFxVQIgtBJEIT+lx27WRCEbYIg7BcE4ZXW\nyjYqeLHSWHFP1D0sP7H80v4XFRWQ9ryA5Qcvfn5+ODs7k5CQcPWTryc2b5bWBZpxTY/rEVtbW55+\n+mn27t1LcnIyb731FikpKdx77720a9eOSZMmsXfv3rZWU6UNMIgi9s5uuHj9U0RUFEXOZecBEOhr\nng/23W4Lxt7VhtKcCuL/TGvx9dnFVZzJKUMjwMBgdwU0VFFRuQIfAuNqfxEEIRhYC1QDe4CXBUF4\ntjWCjQpeAO7rdh/pxensPrf7iud8+OGHxjZjEplKylUCc/arvT24usJPP1mOP+tS6wdBEHB3d6eo\nqOgqV8jTnsXw1VfQrRt07VrvsKX1S3P3uzH6BQUFMXPmTA4ePMiZM2d47bXXOHbsGMOGDVO0kOTS\npUsVk20sSn3fV1qeZ06IgoB3YHi9TGOlFVWUVkiJN9p7G/dgr5Rvre2s6H67lAUt9dCFFreTcEGa\ncQzzdsTNoWWZI001Ppj7OKSi0kr6Ahvq/P4AkCCK4i2iKD4DPAv8qzWCjQ5eBnUYRAeXDsQcj7ni\nOeXl5cY2YxKZSspVAnP3q7MzlJZajj/rUuuHqqoq0tPTCQoKMkl7FsGZM1IF0meekYr61MHS+qW5\n+10u/cLCwnj55ZeJjY3lwQcfZPny5bz11luIYtOZIltDZWWl7DLlQqnvWwk/yo0oCDi41p9dKSyR\n/GFrY4W9rXGFG5XsSz4RUmBVnFlGaWnLlj+WVkuZylztrVrcrqnGB3Mfh1RUWokXUHf9zQikmZda\ntgNBrRFsdPCiETRM6jqJn0/+fMUB/M033zS2GZPIVFKuEpi7Xx0coF8/y/FnXd58801EUWT37t0Y\nDAZCL9uYrkR7FsPnn4OXFzzwQIOPLK1fmrvf5dbPxsaGb775hnHjxjF79myWLVsmq3yAqVOnyi5T\nLpT6vp2dzb/woSiAnWP9NMHFZRUAuDo2XautOSjZlxw97NBaazDoRV548sUWXVtRLe2TsbNqeVIF\nU40P5j4Oqai0knzAD0AQBA3STEzddcs2QPMzaNTB6OAF4Obgm8kpz+Fs/lk5xKlcA4ginD8Pvr5X\nP9cc0el0rF69ml27djF8+HA8PT3bWiXzoKoKvv8eJk8GO7u21kalhZw+fZqxY8eybt06xowZw+jR\no9taJRUToquuqve7oJGeGwwG8545KsurRF9jQNAIOLjZtuhabyfp/PNF5jsjqKJyjbIdeF0QhA5I\nS8Q0F4/VEgWktEawLMFLX/++ABw8f1AOcSrXANnZUFoKnTq1tSYtp7Kyku+++44TJ05w1113ceON\nN7a1SubDb79Bfr4UvKhYDLm5ucyaNYtu3bqRkJDAmjVrWL9+vVmnNVaRG4GK4oJ6R+xspD0gVTW6\nxi4wG87FSrW2vEJcsLZr2fKvMG8HAFLzK6jRq4mFVFRMyKtAZyAVafP+LFEU6677fAj4szWCZQle\nPB086eTZie0p2xv9PDe36SKWrUEJmUrKVQJz9uvixWBtDcHBluPPWjZs2EBSUhKPPPII3bp1M0mb\nFnPf/fYb9OoFkZGNfmxp/dLc/W6sfunp6Tz33HMEBgaycOFCXn31VU6cOMGgQYPqbdyWk4KCgquf\n1EYo9X0bDJbxUJyRcISaqn9mIDxcpAKzJeWV5BaWGCVbKd8m7c3kyOpEADr08G5xO74utng4WKMz\niPx1sd5LczHV+GDu45CKSmsQRTEFiAR6AYGiKC667JTZwDutkS1L8AIwJnQMG85uaHTfy6OPPipX\nM4rKVFKuEpirXxMT4f33YeZMeO01y/EnwIkTJzh69Ci7du2iQ4cOJmvXYu67v/6C4cOv+LGl9Utz\n93tr9Ttz5gyPPfYYISEhLF26lBdeeIHU1FRmz56Nvb29ona/9dZbisk2FqXsLiwsVESunNi7ulNZ\nWsyJHf/UZXNzcqBzkDT7tud4olHy5fatKIqc3pbG3mWnEEUIGehHpxEdWtyOIAhEd5dq2Pwcm9mi\na001Ppj7OKSiYgT2QDuglyAI3nU/EEXxiCiKea0RKlvwcmv4raQVp7E/Y3+Dz+bMmSNXM4rKVFKu\nEpijX3U6mDJF2uvy6quW5U+ArVu3EhoayieffGLSdi3CT9nZkJICgwZd8RRL65fm7veW6nf27Fke\nfvhhIiMjWbt2Le+++y6pqam8+eabeHl5tVpuS3j88ccVk20sStltCRv2A7sNAOCPRW9SWVp86fig\nrmHS8X3HjZIvl29FUeT8iTw2fniQQyvPANBpeAADHohEoxFa1c7dPaQAbXdSAefyK5p9nanGB3Mf\nh1RUWoMgCD2B08AfSFnGzgqCcIscsmULXm4OuZlIr0je2P5Gg8969+4tVzOKylRSrhKYo19nzYLd\nu2HZMinbmCX5E6BDhw5kZ2ebbLlYLRbhp7yLL0j8/a94iqX1S3P3e3P1S05OZsqUKURGRrJlyxb+\n+9//kpKSwsyZM3FxcWlwvpJ2d+7cWTHZxqKU3dbWLasf0haE9RuOs6cPmWeP8+2s+9DrpH0udw/v\nA8C63UdIyWz98iU5fHvhTAFbPj3M9oVHyD9XgpWtlp53htLnnvBLyQVa005HDwKTRBsAACAASURB\nVHuGhLgjAt8fyGj2daYaH8x9HFJRaSUfAknAYKAPsBX4XA7BsgUvVhor3hnxDpsSN7E6frVcYlUs\niB9/hHnz4JNPYNiwttamdYwYMYKKigo2bNhATk6ORdRvMBm1hfgcHdtWD5VLVFZWMn36dDp16sTv\nv//OJ598QmJiIjNmzMBOzQanUgd7ZzceW/Ab1rZ2nNy1ni8eG8neX5cQ5u3E8N6R6A0GPvhuvUn3\n74iiSFFmGSc2prBx7kG2zIslJ7EIjZWGyJs7EP3WQKJGB8qyP+vB/gEArDmaRUmleScoUFG5RugD\nPC2K4l5RFGOBR4FQQRAavlFrIS2v2tQEd3W+i7FhYxm/fDzT+07ng5Ef4Gxr/tPpKsYTFwf//jc8\n9BA89VRba9N63NzcGDFiBNu3bycuLg43NzfCw8Pp1KkTQUFBWFnJ2mUsC39/KQvDqlXQo0dba3Pd\nU1VVxV133cW2bdt4//33mT59Og4ODm2tloqZUq2rIbBbfx587zu+nTWJswd3cPbgDla89QTBfaPZ\nQSDr/j6C40Ib5k6/F61Wtneb9TDoDeQkFpF+NJeMY7mU5vyzjEvQCIQO9qfr2KAWp0RuiiqdgR8P\nSjMuelGkSmdAfTJRUVEcD+oUqRRFsVAQhDLAEyi+4lXNQNbRSRAE1t2/jgVjF/DtkW/ptqgbmxM3\n880338jZDIAiMpWUqwTm4te8PLjrLikB1eLF9YuuW5I/axk8eDDe3t7cf//9hIWFkZCQwA8//MDc\nuXOJiYnh4MGDFBcb1e8aYBF+CgiAF1+EDz6A06cbPcXS+qW5+/1K+lVXVzNhwgS2bdvG2rVreeGF\nF1oUuChp9+rV5jvzrpTdllAhvaRKChJ6jp7Ay2tOceuMt/EL74ZeV0Px3l/om70eQTSwfOsBHvjP\nW8Tv/ZP8zHPNnolpyrcVRVWkHMji7yUnWPXiX2ydH8vpP9MozalAYyXgF+VBv0mduOOdQfS/L6LJ\nwKUl36HOIHIis4QZK46z82w+tlYa/nt3F7ycbIy2SU7MfRxSUTGCKEEQutf+QypK2fmyYy1G9lcr\nGkHDjP4zODbtGKEeoYz+fjRzYuawKXGTrEtwDh8+LJssU8hVAiV0banMqiqYMAGKi+HXX8H+skLN\nluTPuhw5coTw8HBuu+02nnnmGaZNm8aNN95IZWUl69evZ968eXzxxRf88ccfnDlzhurqaqPasxg/\nvfIKdOgAt90Ge/Y0+NjS+qW5+70x/crKyrjzzjvZtGkTq1evZuTIkbLIlYv4+HjFZBuLUnbX1NQo\nIldO8sr+meFoFxjOLU+8xkurjvLympOMnf4m/X219M/+HUE08FdKCS8+/xRvjg5kZj8H3ovuzJcz\nbmfVh8+y88fPOblrAxdSz6Cr+Wfcq+vbypJqzh2+wIGY06x7cy+/vrybv5ecJOVANtXlOmwdrQm+\nwZehj3Xl7rlDGTGjJ+HDApo129LUd6g3iJzMLOHbfek8tfI4N87/m/uXxrI/tRAHGy1fTOzK4FCP\nZvvMVOODuY9DKipGsBWIq/PPAVgHxF78PbY1QhVbAxPsHsyWh7aw4sQK5vrN5Zbvb6GHTw9mDprJ\nvV3uxVpr3AbHhQsXyqSpaeQqgRK6tkSmXg8PPgh798LmzRAYaJw8c6Ku3oIg0K5dO9q1a8fgwYOp\nqKggMTGRpKQkTp06xb59+9BqtXTo0IHQ0FBCQkLw8/Nr0Tpti/GTvT388Ye0PnDIEClDw5w5YCs9\ndFhavzR3v1+uX25uLrfddhsnT55k3bp1jBo1Sha5cvLSSy+xcuVKxeQbg1J2u7q6KiJXTqytG9fR\nN6QzY6a9wZhpb5B59gTv/u97Vp+tJtV7IMEVCeiqq8hOjic7uWFQKmg0ePgF4tWhK0O9+7N6zk/o\nKz2pKtZediK4BzjhG+FB++5eeIW4otG0bh9L3e9QbxBJuFDGgXOFHEwt5HBaESVV+nrnO9tq6dPR\njScGdyTKr2WLxUw1Ppj7OKSi0kqClRKs6AJ+QRCY2HUi93a5l20p25i7ey4P/vogr/z5Cq8OfZV/\n9/43GkGZdbUqyiKK8Mwz0vaHVauk59jrBXt7e7p27UrXrl0RRZG8vLxLwczOnTvZunUrDg4OhISE\n0K9fPzp27NjWKstLWBjs2gUffQSzZ8Pvv8NXX8GAAW2t2TVNamoqt9xyC/n5+Wzfvp0+ffq0tUoq\nFoSNjRcGUUTTxEsVv7AuvD37df6Y8ha51a48+MNpgl0EctMSyUk7S15aIjnnzpKblkxFgTVOjt1x\nc++Ho3UnDIVQd/FcWWkilVUJaOxycfDUUW3rR2lVIBcyAtEZAvHwD8TOqWX7dgvKazh2vpijGSUc\nO1/MicySBsGKk62W3h1c6dvRjf6BrnRq54S2lYGSiopK6xFFMVUp2SbZfSwIAjcF38RNwTdxNPso\nH+7+kCfWPcHSuKX8b9z/6O7TqiVvKm2EKEpbHxYulJ5Z77ijrTVqOwRBwMvLCy8vLwYMGIBeryc9\nPZ3ExEROnTrFkiVLCAwMZMiQIYSGhipW1dzkWFnByy/DrbfC5Mlwww1SgZ/33wdv76tfr9Iijh07\nxpgxY7C1tWX37t2Eh4e3tUoqFoarkw8ZxTo6uDa96kGrEbC20lJZXUONQcQzIATPgGACIoaQeSqf\nTJc8XK0KqPGtn7FLY1NKjZhKUf5hMlO2UlqYdlWd7J3d8PAPxMM/CHf/QDz8AqX//QNxateB9Go7\njp0v5dj5Yo6dLyG9sLKBDEeb2mDFlX6BbkT4OGGlBisqKtc0Jk+d1N2nOz/c9QNT+0zliXVP0Htx\nb54f+Dyzb5yNo42agtUSmDNHeun+3/9KGcZU/kGr1RIYGEhgYCAjRozg9OnT7Nq1ix9++AE/Pz+G\nDh1KZGTktRPE9OgBBw5ImRpefRV++QXeeQemTgWt9urXq1yVXbt2cfvttxMcHMyGDRvw9fVta5VU\nLBBPp3acza8iwMWqyfHnu417KCmvpFMHH7r6+hG76iznT+RRlFlW7zxbR2t8ozzwj/LAN9IDe9f6\n+1XKivLJz0ghPzOV/IwUCjJTyT+feun/8qJ8KkoKyThdSMbpI4hAYbue5HYYSrFnZ0rdCxG1DTfW\nBzhp6BXkRff2LnTzdya8nRqsqKhcb5gkeImOjua3336rd2xo4FDipsbx8d8f8/bOt8kszeS78d8Z\nJVMOlJKrBEroejWZixfDW2/Bhx/C008bL89ckUNvQRCIjIwkIiKC5ORkdu3axYoVK5g4cSKRkZGy\nt9dmaLUwfTrccw/Rffvy24wZ8PPPEBMDMj1oX6/9fdCgQcTGxjJw4EBWr17daMHJ1qCk3c8995wi\ncuVAKbvz8/NllyknLrYO2NnYUVhpILtMh69T47MvoiiybMPfaBB4ostg1r+zH321lG1MEMAzyAW/\nLp74RXni0dG53r6Vy33r6OqBo6sHHaIaL8BYWVZCQeY5MtNS2Hy2mK15zmSL9e9vq8pCXPJO4pJ3\nCpfckzjnxfPH2VJ69mpH5cBRlAwaTdnAUbh6+xnrokYx1fhg7uPQ5fT54zHa2V/9PJW2QefekV1t\nrYTCmCR4mTFjRqPHbbQ2vDL0FWy0Nrz252ssGLsANzs3o2Qai1JylUAJXZuSuXu3VMPlySelfdrG\nyjNn5NRbEARCQkIICQnh3XffpbCwUNH22gxvb2Z89ZW0eX/SJOjdG376SZaKpddjf9+1axeHDx/m\nxhtvZM2aNbIWnVTS7nvvvZedO3cqJt8YlLLb0cwLtzpYWxPibsPZ/GqOZ1fRztGq0b0vp1IyoVDP\n0+2GoD9aBYB3mCudhgXg29kDW8crLzlrqW8LdNYsT3NgVZw7RZXSRno7aw1jo9rRP9CNzl42OFRc\noDDTgfxMbwrOB5J2yoecsi2U5l/g0O8/cOj3HwDwC+9G5KDRRA4aTUjvodjYyfNkbarxwZzHIRUV\nc8Qkwcvo0aOb/Pz+bvcza/Msfjn5C1N6T5FFZmtRSq4SKKHrlWQmJ8Pdd8PAgTBvnvHyzB0l9C4s\nLEQQBHS6htWdLdVPl3PJjthYuO8+uOkmWLAApk2TR67MmKvfY2NjufXWWxk0aBCrV6+WNXABZe0e\nOHCgYrKNRSm7bW3lK6ioBDYaDRFetpwrqqGk2kBSfjVhng113vnbSZ7yGoJGELBxsKLX+DBCBvoh\nNGNZVnN9m1tazRe7Ulh9JAv9xeoJ/q62TOrTnvHdfXCxrxsgueET1Kne9VNqqkmJ20P8nk3E/72J\n9JOHyDxzjMwzx9j27SfY2Dtww/gpDH/4eTzbBzVLJ2NtMhZzHYdUVMwVsygXfuj8IUTEZs+6qJiW\n+HgYORKcnWHFCqnIukrzKS0tZdeuXRw6dAhbW9trL/tYY/j6Svmzn39emqrz9YXx49taK4ugvLyc\n++67j/DwcNauXYv95cWTVFRaiI0gYKMViPK2JS6rkhM5VXg7WuFq98++tKz4fJxOC2gEAbG9ltue\nugF7l+YVc2wO5dV6lu1PZ+neNCpqpKVo/QJdeaBve4aFeTY7I5iVtQ1h/W4krN+NjHv6XUoLcknY\nt5X4vzdx+u9NFGans/PHBfy1/At6jr6XmyfPJKBzL9nsUJGqDKq7jMyX6+G7afPgpbCykKm/T2Vs\n2Fju6nxXW6ujchlHjsCoUeDjIz2L+vi0tUaWQ3l5OXv27GHfvn1oNBqGDRvGDTfcgI2NfA8EZo2V\nFcyfD1lZ8MADsGMH9OvX1lqZPS+99BKpqakcPnzY7JcjqVgG1heXiAW5WZNZqiO7VMeBjApuDHLE\nWitQlFXGzi+PoUHgUHk6L0yNljVw2RKfwwebE8kplYpadvVz5j83h9C7g/H1cZzcveg9ZiK9x0xE\nFEUS9m5l65K5nN6zmcMbYji8IYaIgaOY8MrntLtsFkdFRcUyMUmRldWrV1/xs5mbZlJSVcLicYtb\nlIGpKZnGoJRcJVBC17oyd+yAG2+Ejh1h+/bW7b22JH/WpbV6i6JISkoKq1at4tNPP2Xfvn0MGDCA\nZ555hmHDhl0xcLFUP11OAzs0Gvj2Wykr2d13Q0mJPHJlwtz8fuLECRYsWMD7779P586dLdLubdu2\nKSbbWJSyu7KyYQpfc8IaaX2WIAj08bPDzkqgpNrAtuRSCir0JOxIR1epJ7kqnyNO2fh5tnwVRFO+\nff33BHJKq2nvZseHd0Ty/SM9Wx24NNWOIAhEDBzJ9C838cJPB3HzCQDg9J7NbP7qPVnbkhNzG4dU\nVMwdkwQvMTExjR7fnLiZr2O/5uPRH9PBtYMsMo1FKblKoISutTJ//hlGj4a+feHPP8HT0zh5lkZL\n9S4rK2P37t0sXLiQb7/9loyMDEaMGMEzzzzDzTfffNWlP5bqp8tp1A57eynzWF6elE5ZLrkyYG5+\n/9///oePjw/Tp08HLNPujRs3KibbWJSyu6KiQhG5cmHQ/7PPztZKw8AABxysBcpqRHaklFFQUgPA\nqapsSquqWtXGlXxbozdQXi0Vkvz+kZ6MiWpnVKr45nyH5xOO8csHT1OYnQ5A+8iejPz3y4q0JQfm\nNg6pqJg7Jlk2tnz58gbHkguSeWztY4wIGsFjvR+TRaYcKCVXCZTQdfny5Xz9NTz+uJQwaulSMGaV\nkyX5sy7N0buiooIzZ85w6tQpEhISEASBqKgoxo0bR2BgYIv+QFuqny7ninYEBcG770p7YB55BFpY\nHf566O/l5eUsW7aMGTNmXJqhs0S7P/jgAzZv3qyYfGNQym53d3dF5MpFtb5+khA3ey0jgp2Izazg\nfImOgkppD0rPdkEczDiPTq/HqoV1mq7k29r9LQBrj13g3t5+2Fu3vgZUbTuiKFKSl0120imykk6R\nnXiSrORTZCedojgnEwBbBydunfE2Q++bgdaq5Y87phofzGkcUlGxBNpkz8ua+DU8svoRPB08+b87\n/u/aKdh3DbBqlRS4TJsmJYnSmGRuznIoLCzk9OnTnD59mpSUFERRpH379owaNYoePXqom6ub4qmn\npAqnW7a0OHi5HtixYwfFxcU89NBDba2KyjVGXnV1g2M2WoH+7e1JKazhsL8T+pO5+Ffa83rYreyL\ny6VHN2+cbIz/A+BkqyXM24GzOeV8+mcSS/em8a8bArinlz8ONlcPYgwGAwWZ58hOOnUxUDl56efy\n4oIrXtdj1N3cNWs+br4BRtugoqJiXpg0eNEZdLy05SU+2fMJ4yPHs+SOJbjaGb9hT0UeduyA+++H\ne+9VA5daRFEkKyvrUsCSlZWFRqMhJCSEW2+9lYiICJydndtaTctAq4WwMDh7tq01MUu2bNlCQEAA\nERERba2KyjVGnk5HaWU5TnYO9Y4LgkCwuw3t7wjmiK89CT8nIBRUkbrkJBn9/fC/wZ8Abzu8HK1w\ntBZa9aJRIwj8NLk3vx3L5uu/z3G+qIpP/0zm//ak8czwYO7qKRWY1Ot05KYl1gtOshJPciElnuqK\n8kZlC4KAZ0AIPiGd8Q2Jwieks/QvOBJ7Z/XZQkXlWsWkwcuXh75k3t55zLtlHs8MeEadcTEj1q+X\ngpYhQ6T91ddz4FJZWUlSUhJnzpzh7NmzlJaWYmtrS3h4OEOGDCEsLMzs6zqYJeXlUFgIxcVtrYnZ\nIYoia9euZdSoUeq4qKIIR9NOMyi88ZTBNloB31BbHjm3iUf8BtBB74Ru73nOHcoio4s3Vj3a4ehh\nh7ejFd4OWrwcrXCwbv4fCWuthrt7+hHdzYff4jL4ancqmWU63tsQT9Gyp8lKOklO6hn0uppGr9da\nWeMd1Anf4M74hEbhezFI8Q7sJFtBShUVFcvBJI+okydPRhRFFh9azJ2Rd/LsDc8a/Qd68uTJMmln\nGrlKIJeu33wD0dFw883g5zcZOZ/LLcGfoihy4cIFdu/ezbfffstHH33EAw88QHp6Ot26dePhhx9m\n5syZ3H333XTp0kWRwMUS/NQcmrTj6achMxNmz5ZXrhGYi9+3b9/OmTNneOSRR+odt0S758yZo5hs\nY1HK7sLCQkXkysmO0wea/Hz+ik0U6yo57JrBwEc64+zrADUG9HHZVC07RtG6s6QkFHIos5KNZ0vZ\ndLaU2MwK0otqqNIZGvi2uqKclKP72PvrEtZ8OosvZ9zO++PC2TU5ECH2FwBc0/4mbvPPZCWeRK+r\nwcbekQ5Rfeg77kHGPfMeU+b/yiu/xfPRgXJe/vU4kz9dycqD5+g9dhLtI3ooHriYanwwl3FIRcVS\nMMnMy+jRo4nNiuVo9lE+HPmhbDKVwJIq3cqh6wcfwMsvS3tcPvsMVq6U135z92dCQgLr16+nqKgI\nKysrQkJCGDNmDH5+fvz73/82mR7m7qfmckU7Vq6UouQlSyAqSj65RmIufl+0aBEREREMGzas3nFL\ntPuGG25g7dq1isk3BqXstoSZ2O0n9/DyuMcb/Sw1K4+V2w4CMOuhWwmO8COovy+ZJ/OJ33qOrPgC\n9Gekfy43daSmSzvKagyUFRpIKaxBAIL73MiFMh36zAR2L/+C/WuXUVXWMDV6mUsg2SFjABjlU8WA\nmZ9emklx8+2A5irT/qbss6Zqy1zGoeZy8JYvcWiv1swxV1xLU2HXI1c/0YIxSfBy3333sSVpCwDh\nHuGyyVQCpeQqgbG6fv65FLi88Ya0j1oQ5LffnP2ZlpbGypUrCQoKYty4cQQFBWF1MSNNPxMXUzRn\nP7WERu2oqID//AfuvFPKNCaXXBkwB7/Hxsby888/88UXXzSYkbZEu8eMGcOrrUyJrTRK2W0JiTrO\n5Z2/4mcrtu7HYBAZ2iOcPhGBgLSfxL+LJ/5dPClIL+HkpnOkHsymZHsaw3t4gq8TOeV6cst0FFUZ\n6HbzXew+V055RjkZRTr0ogZnTx/8wrriGyrtR9H4deaNOBv0ZTp6Brjw4oNvtngVhin7rKnaModx\nSEXFkjDZnpcOLlIdl7TiNEI9Qk3VrMoV+O47KfnTf/7zT+ByPZGXl0dMTAz+/v5MnDjxUtCiogCf\nfSYtF5s79/q70a6CKIq8+OKLdOrUiSlTprS1OirXMEVVFej0Oqy09cc6vd5wadZl0sgBjV7rHuDM\noMlRgEjqwQvsXXKS217rj5+PHbF/rGDvdwtx6Xs7Pjfeh0P7ToRPnkunf71PRzc7Qj1scLXTklFY\nybTlx8gpqyDEy4H/3t1F3d+loqLSKkz2xNbRtSNONk68t+s9BrQfgL21+b+puhbR6aSZlvffhylT\n4KOPrs/nyRMnTlBRUYEoiiQlJREeHq7+IVWK776D++6DcHlmXa8VysvLefzxx9m8eTNr1qzB2tq6\nrVVSucYprizDw7F+Fq6D8Smczy3ExcGOWwZ0veK1giDQZUwQqQcvUFFYRU5SEd6hDnz/6sPoqqso\nS48nyKacoHFPkKV3pKQKUotqSC2qAYOetUczSC+sxN/Vlv9N6oabg3q/WyyCcH0+OFgK18F3Y5IN\n+3/99Rf21vasmbSG3Wm7GRczjrLqMqNlKoFScpWgpbpmZcGoUdIL8A8+gC+/bHiPy22/ufpzyJAh\n3H333RgMBmJiYli4cCEHDhyg+mI9BFPrba5+aimN2mFvL/2TW64MtJXfU1JSGDx4MKtWrSImJobo\n6OhGz7NEu2NjYxWTbSxK2V3dSB0Vc0JABKCmkWxem/YfB2Bkvy7Y2Vw5oDDoDez/8TQAnkEu+EZ6\nkHh4F7rqKtx8OzBqTgzjnnyDroE+3BzsyNBAB7wdNBhEETRabu/ZkZljuzDn9i4427U+cDFlnzVV\nW9fK+K+iYipMMvMyd+5chgwZwk3BN/HHA39w64+3cs/Ke1j/wHqjZcqNUnKVoCW6nj0LQ4dKwcqf\nf8Jl+4JbJVNuHU2JRqOha9eudO3albS0NPbu3cuGDRv4888/ueOOO0yut7n6qaU0aoebG8TFQUkJ\ntLImzrXU3//66y/uvPNOXFxc2LNnDz169LjiuZZo97JlyxSRKwdK2V1aWiq7TDmpLQVZo9c1+OzP\nQ/EAjO7fpUkZJzamkptUhLW9FYMf7YLWSsPZgzsAiLhhJJ/Om8/wETddOn9/cj5zNydSYxDpF+zF\n0E7tsLO24nypgazEUrq2syPE3brFM96m7LOmasvSxv8nhocTEnXlcUulbck8I7CrrZVQGJPMvPz0\n00+Xfh4aOJSvbv+KDWc3cCrnlCwy5UQpuUrQXF0rK+Gee8DJCQ4fvnLg0hKZzcUS/NmhQwfuuece\nnn76aYKCgli5ciVvv/22SXWwBD81h0btePZZOHkSevWCffvkkysDpvb7qlWrGDlyJF27duXgwYNN\nBi5gmXa/9957isk2FqXsdnd3V0SuXNS+pWwseMnMk9I8RwX7X/H60twKTm5MBaDfpE44eUkzqVqr\nf2ZQan2bVVzJUytP8PJv8RRU1ODnYsu0Qf6Mj3Klf3t7PO21GEQ4ml3J3vQKqnSGFtliyj5rqrau\nlfFfRcVUmCR4cXCoX9V3fOR43Ozc+O7od7LJlAul5CpBc3V9/nk4dUrKVuvrK4/M5mJJ/nRzc2PC\nhAl06tSJtWvXkpiYaLK2LclPTdGoHbfdBrGx4OkJgwfD229DC5fZXAv9fdGiRUyYMIE77riDjRs3\n4uHhcdVrLNFuc868pZTd5r5frnbmpbI4u95xURQpr5L6oqPdldM9H/7lLPoaAz6d3Ajs63PpePvI\nngBknI7D2taO7/enM/6rQ+xKzMdaK/DksEBiJvciwscJjSDQ3sWaoYEOdPexRSNAVqmOP5PLyCiu\nQRTFZtliyj5rqraulfFfRcVUtEkddVsrW0aFjOKvc+o6T6VZvx4WLYL586Fnz7bWxvzRarVMmDAB\nf39/duzY0dbqXDuEhcFff8Err0jp7bp0gVWroJkPLJbO8uXLmT59Ok899RQxMTEWURdE5drB+mJs\nVXBiU73jldU6DAapDzra2zR6bXWFjvQjOQD0ubdTvUAtLy0REUiyC+Ourw7y0dYkyqv19GzvwopH\n+/D44ECstfUfMwRBINTDluFBjjjbaKjUiezPqGBXajkFFXqZLFZRFEFAUP+Z7z/M+2WKHLRJ8AJQ\nqavE1c716ieqtJqiInjiCbjlFul/leah1Wrx9vbGYGjZcgaVq2BtDW+9BUeOSMHM3XdLaxj3729r\nzRTl4MGD/Otf/+L+++9n/vz5Vy3Cp6IiN/YX143lxu+ud7y8suqfc2waD14KM6T9PA7utrj5O106\nnpuWyE8/LCPu5vn83XkG5woq8XCw5o2x4Sx5qAchXk3PJrjaaRke7EiElw1aAfIq9GxPKeNARjnl\nNerYq6KicmVM8ld05syZDY6dLzmPh/3Vl020RKYcKCVXCa6m63PPQWFh41nFWiuzpViSP2vR6XSN\nFgxUEkv0U2M0y46uXWHDBti4UYqwBwyQUimnpBgntxUo7feKigrGjx9P9+7d+frrr1t8T1mi3fPn\nz1dMtrEoZXdxcbEicuXCyU5aOJaXk4OuNP/S8fJKacmYrY0VWm3jjwNFmVJmUNc6gcuhIyf41/w1\n7Lvpc4p8emFrpcH7yPesm9qPu3v6oWnmfW6lEYjytmNUqBMdXKX9M+nFOjYnlhKXVUFFI0GMKcdK\nU7V1rYz/KiqmwiTBS8eOHev9fjjzMIcyDzEmdIxsMuVCKblK0JSu330HS5ZI9QFbYpLc9luSPwFK\nSkr49ttv0Wq1DBw40GTtWpqfrkSL7Bg9WtoL8803sGMHRETArFlSxG2M3BagtN+XL19Oeno6P/zw\nQ6v2glii3b5X21jXhihlt1arvfpJbYiXiwsAF0SBot0xl45fijGaWL2ptZIeE0S9gaziSp7+ehNT\n1l0gzasviAZuDnJgzeN9uWNwNxxtW5fA1N5aQ19/e0YEOeLtIG3oTy6oYVNiKUcuC2JMOVaaqq1r\nZfxXUTEVJglennrqqXq/v//X+4S6h3JPl3tkkykXSslVgivpevIkTJ0KPLON7AAAIABJREFUjzwC\nkyfLI7O1WJI/MzIy+PLLLykqKmLx4sVERUWZrG1L8lNTtNgOrRYefRQSEqT9MAsXSkvKFi2qtx/G\nUvv7okWLuOWWWwgLC2vV9ZZo96RJkxSTbSxK2e3o6KiIXLnw85AyiZ0XBYr/XoGhugIAG2sp2Kiq\n0V1xw7yjpx0AGRml3LZwLzty7BA1WjqWxrPk7mA+va8vfq52svjWzV7LkEBHhnR0wPNiEJN0MYiJ\nz6lCFEWTjpWmautaGf9VVEyFyRdfl1WX8eupX3l6wNNYaUxSZua6IjcXoqMhOFh6DlRpHuXl5fz0\n00+4urry+OOP0759+7ZW6frCyQlmz4YzZ+COO2D6dPjqq7bWyihycnLYv38/Dz/8cFuronKdE+AZ\nCEACGgyVZVQkHQLA2cEOjUaafsnMbTjjCeBwMS2yUFKDxiDgmh3Lo8IOVs+ZTO+IQEX09Xa0YmhH\nBymIuZha+VRuFadzzbsYqIqKimkwefByKPMQelHP8KDhpm76mqeqCsaPh+JiWLsWzPxloFmxfv16\n9Ho9EydOxMnJ6eoXqCiDv7+0jGz6dJgxA/bubWuNWk3KxT08kZGRbauIynVPr8BwAI7rNZSIUJUu\nFaa0t7WhZ7i0ZGnnkYQG19XoDby9M5lCrfSw0P/oSmaF5PLMS6+jtbZucL6cCIIgBTGBDnTzkbLz\nncqtIilfDWBUVK53TBK8xMfHX/p5X/o+HKwdiPI2bklOXZlyopRcJbhc11dfhQMHYM0aaeZFDpnG\nYgn+TExM5MSJE9x66604X6wAb2q9LcFPzUE2O+bNg/79peqq1dUW2d9TU6WifoGBrX87bYl2Jycn\nKybbWJSyW6drWPzRnPB19iDMCfQIbDFYUZVx8tJnQ3t0AmBnXMPg5fsDGWw8lcM5W2lJ2Q3ePRn7\n5JxG21DKt4IgEOZhS7inlA3t9z1HqWxhYcvWYqpx+VoZ/1VUTIVJgpdZs2Zd+nn/+f309e9r9JKx\nujLlRCm5SlBX15oaWLoUnn4ajNlnLrf9luDPtLQ0HB0d6dq166VjptbbEvzUHGSzw8ZG2veSng6b\nNllkf09NTcXR0bFZxSivhCXa/dlnnykm21iUstvcs40haLg3QFoe9o3Ompxzpy59dGNPKXjZdSSh\nQXr4bacvAJCb/guiqENrCOHkxnONNqHkPWUQRfIv1oD58dM3sNGaJhOkqcbla2X8V1ExFSYJXj7/\n/PNLP+9L38eA9gNklSknSslVgrq6bt0KeXlw//3yyZQDS/BnXl4enp6e9Y6ZWm9L8FNzkNWObt2k\nYpYxMRbZ31NTUwkKCjIq5bYl2m3OD2JK2e3qau41ywQe7CgQ6gBFCCwuKERXnAtAr06BONnbUlBS\nzrGkjEtXlJZVcixDCsqci/6iW7S06f/YumTO7j7foAWlfFulM3DofAV55XqsNPDN/xY2OxWzsZhq\nXL5Wxn8VFVNh0lTJ2aXZpBWn0b99f9lkyo0lpSysq+vGjRAUBD16yCdTDszdn6IokpaWho+PT73j\nptbb3P3UXGS3Y+xY2LPH4vq7KIrs2LGj3mxea7A0uwH8/PwUk20s12uqZAQN1hqB2eHSn/xfDdas\n370KAGsrLYO6Sdnwdl1cOqbX6Vj85jMYBC3amjKe+eBLuo/tSsRNHQDY/0M8B2JOo1cwhbEoiiQV\nVLM5qYz0YmlZXl9/e6LCW7kmuhWoqZJVVMwTk27YP5x5GIA+fn1M2ex1waFD0hYBE9ZVvCbIyMig\nqKjIpGmRVVqAszNUVra1Fi1m3759HD16lMktzVWuoqIIGhBhkIeG+72lWeZZf64gvSAbgGEXl47t\niDuNXqfj+1ceImHHGulKWweCetwAQO+7wug2LhgEOLMrgy3zDlOWL3//zCnTsS25jCNZldToRVxs\nNQzt6ICfs7JJAlRUVCwDkwYvsVmxuNm5EeQWZMpmrwuOHYPu3dtaC8vj0KFDODo6qm++zJXKSmlD\nl4WxbNkyAgMDGTVqVFuroqICwj9/6mf26kdnQU9xTTXTls6hWlfDsJ4RAByMT2H1Z7M5vOEnbJBm\nO2oMAhU1+otiBLrdGsyN07pjbW9FXkoxG97bz7nDF4xWURRFMktq2JFSxl/nyimqMmCtge4+dowI\ndsTLUS2toKKiImGS4OXDDz8EILkgmTCPMKPWgF8uU26UkqsEdXX19IT8fHllyoE5+zM+Pp64uDiG\nDx+ORlO/K5hab3P2U0uQ1Y6iIvjyS7jzTovr78eOHWPIkCEN7quWYml2AyxdulQx2cailN2lpaWK\nyJUNQZp5AXDyC+FN62qcBTiUeoL3f/+SYD8vOrTzoEanZ8WKnwB4+PXP8HGWMnzFphXVE9e+qxdj\nX+6HR0dnqst1/PX1caZPfJ6aipZnXTOIImlFNfyZXMbe9AryK/RoBAh2s2ZUqBOhHjb19riYcqw0\nVVvXyvivomIqTBK8lJeXA5BWnEaAS4CsMuVGKblKUFfXqCg4flxemXJgrv4sLS1l7dq1RERE0KdP\nw2WMptbbXP3UUmS148MPoawM5syxuP6emJhIaGio0XIszW6ASjNe5qeU3VeqTm8+/PPwb+MTiJ9G\n4GVtFQCLty1n68m9DOku3a9ZdoH0u/0h+o27n4HB7gD8nVzQQKKTlz2jXuhDlzGBCAJkJeay/r39\nFKQ3P5C7UKZjc2IpB89XUFxlwEoD4R42jA51oqefPbZWDR9RTDlWmqqta2X8V1ExFSYJXt58800A\nymvKcbSWp3JirUy5UUquEtTVddQo2LQJVq6UT6YcmKs/Dxw4gE6n4/bbb290JtDUepurn1qKbHas\nXg0ffAAvvQTt21tcf6+oqMDOzs5oOZZmN8DUqVMVk20sStldWx/KXBFriuDi3nqNrQtWbj4M1eqZ\n3GsEALNWfIR7tZRprMQpgLtfXgDAoBApzfeeRoIXAK2Vhh7RoYx8vjePjJ1KWV4lmz89RObJvCb1\nMYgixy9UsvtcOeU1IjZagShvW24Jc6arjx321ld+NDHlWGmqtq6V8V9FxVSYdM+Lt6M3OeU5pmzy\nuuHJJ+G+++Chh+Dvv9taG/PGYDAQFxdH165dcXSUJ5hWkZE9e6SbecIEeP31ttamVURGRqqF51TM\nBkPZSQS99JJG49T+0h6YmUPuIMQ7gKyiXDYl/A5AjVM77J2l1M8DAt0QgLM55WSXVF1RvneoG2Nf\n7ke7cDd0lXq2f3G00XTKAKXVBnaklHEmrxqAIDdrbglzIsLL1mT1W1RUVCwbkwYvvo6+nC9pfEBT\nMQ6NBpYskTKO3X47xMW1tUbmS0ZGBsXFxfTs2bOtVVG5nKNHpRu4b19Ytky6sS2QLl268Pfff5t9\n5XWV6wN9yUnpB6012LiCKE3D2Fnb8PEkqS5Pgp0OUVtDYZWITi9t0HdzsCbKT5pV2p7Q9GyKjYM1\nI2b0JKi/D6JBZP8P8Q1mYEqq9OxMKaOwUtqM37+9Pb387LHSqEGLiopK8zHJk0FurlQMK8o7itO5\np6nWV8smU26UkqsEl+tqawtr1kBICNx0k5Q+2ViZxmKO/qy5mL2qqaUeptbbHP3UGoyy4/hxuPlm\nCAyE336DOsuuLK2/T5s2jcTERBYtWmSUHEuzG6CgoPElRuaAUnZfXpne3BDLkwEQbN0RBAFDdYX0\nu40dN4T2xNtZ2tuCphpRhMKSf/Zg3BrlDcCK2PNN7u3Jzc1Fa61h4CNRhA6WClru/e4U1eXSeFta\nbeCvc+VU6UVcbTXcHOJEe5eWpz425VhpqraulfFfRcVUmCR4efTRRwHo5deLGkMNJy6ckE2m3Cgl\nVwka09XdHTZvhk6dpOfAXbuMl2kM5ujP2oJyTb0VN7Xe5uin1tBqOxITpRs2IEC6gd3d5ZF7FZSS\n26dPHx577DFef/11srOzWy3H0uwGeOuttxSTbSxK2V1YWKiIXNnQSUu+BFsvAMQqKTjR2ErLZp1s\nHQCwRgpq8kvKLl0a3d0XO2sNZ3PK2ZdyZTtrfSsIAn3uCce5nQMVRdUcXHGG0mo9f6WWUamTarYM\n7ujQ5L6WpjDlWGmqtq6V8V9FxVSYJHH6nDlzAOjh0wMBgdisWHr59ZJFptwoJVcJrqSrm5u0eT86\nGoYPh9mz4dVXoTlFoOW23xz96e4uvX08c+YMXl5ejZ5jar3N0U+todV2fP65VGF182bw8JBP7lVQ\n0u/vvvsuq1ev5qGHHmLDhg2tqsJuiXY//vjj7Ny5UzH5xqCU3ea+Yb92s75g64qoq0HUSasfaoOX\nKp00O2Klr0EHFBT/M/PiYmfFnd19+enQed7deJYVU3pjb93wXq7rWysbLQMf6cymjw+Rsj+L3FAP\n9F4OONtoGNLRodEsYs3FlGOlqdq6VsZ/FfPHdlIU9lHyLJm3PWkFP8siqsWYZOald+/eADjaOBLh\nFcHhzMOyyZQbpeQqQVO6urjAli3Sfuc335SWkaWlGSezNZijP11cXOjZsye7d++murrxJYym1tsc\n/dQaWmWHKMKvv8Ldd8MVgklL7O9eXl78+OOPbNmyhffee69VMizR7s6dOysm21iUstva2swrv9eu\narN2wVD1z6yKxtaBal0NmUVSIh27Kmk2uu7MC8CTw4LwdrLhXEEFn+9IabSJy33rFeyKX+92AJTv\nSsPFRmBooHGBS2PtKImp2rpWxn8VFVNh8pK1vf16E5sVa+pmr0usrGDOHGk1zgMPQM+e8OOPcMst\nba1Z2zNs2DCOHDnCkiVLGDp0KJGRkUYXFFRpJWfPQmoqjBvX1prIzs0338wbb7zBG2+8wc8//8xt\nt93GuHHjGDBgQKtmYlRUWsXFTGOCrRu6wizpZ2s7BK0VZ88nIooidlbW2FZXgzUUFNWv1eJiZ8Xs\nsZ2YsfI43x/IwNZKw4wbg+oVj6zXnEHkVG4V+V19IDYHQ3oJtjvPYfVgpLJ2qpiEqp9OUuGtJiMx\nV6r1zXhTbeGY/Gmtl28v4rLi0Bv0pm76umXoUCn72IABMHYsvPMOmPn+UsVxc3PjkUcewd7enpUr\nV7Jo0SLi4uLQ69X70uTUFmjz9m5bPRTijTfeYOXKlfTo0YMvv/ySwYMH4+Pjw0MPPcTy5cvNf7+E\niuUjrQpD49aJ4gNrAHCIGATAlhNSbv1B4b2xtpJmkLKSG6b5HhrmwbShgQB8syeNWatPUVnTcLzM\nK9fxZ7KUClnjYku7scEIGoFzB7LZMj+WiqIrp1xWUVFRaQ4mCV6++eabSz/38u1FeU05Z/LPyCZT\nTpSSqwQt0dXDA9atk5aRvf463HEHZGYaJ7M5mLM/O3bsyMMPP8yUKVPw9PRkzZo1LFiwgOTkZJPr\nbc5+agmtsqOkRBm5zcAUftdoNEyYMIFly5aRnZ3N7t27eeKJJzh69CiTJk3Cy8uL4cOHM2fOHNau\nXUtmnY5piXavXr1aMdnGopTdZl8hvebiDIl9MKWH1wPgMuAu0vOzWL5P+n1s9xtxadcegFO7fqe8\nuGFQPXVIIO+Mi8BKI7A5Ppe7vj7Ee5uSWHkkhxfe/5ytSaXsTC2ntNqAnZXADQH2jLwtiBEzemBt\nb0VecjEb3j9A/NZz1FS27s29KcdKU7V1rYz/KiqmwiTBy+HD/+xxOZ13Go2gwcHaQTaZcqKUXCVo\nqa4ajbT/Zd062L8fIiPhiy+g7mSD3PZbgj8DAgKYNGkSU6dOpbi4mJSUFJPrbQl+ag4ttmPdOimS\nDgyE8HD55DYTU/tdq9UyaNAg3n33XY4cOUJqaiqff/45zs7OLFy4kOjoaPz9/fH39yc6OprFixfz\n+++/k5WVJaseStptzsU5lbK7Nv26OSM4BZL3x5cYqsqwbhfCxuISRs59lOTcDNwdXBjTbQgaVx8A\n8hOP8tE9PUmO+6ficWWNgazSGjr5ufHu+O48O7ozjw2PpHMHL6xsbDlx7AjFVdKUfkVlFa5aHS42\nUtDkG+nBLbP64uLjQGVxNYd/Ocua1/7m6LokKktbVjrBlH3WVG1dK+O/ioqpMMmel4ULFwJQo6/h\no78/4t4u99LRtaMsMuVGKblK0Fpdb7sNTp2Cl16CJ5+Eb7+FxYulPTFy229J/gQQRZGgoCCT621p\nfroSzbajqkqaAvzoI6ko5dKl4OpqvNwW0tZ+79ixI1OnTmXq1KmIokhaWhoHDx7k0KFDHDx4kKSk\nJMZd3AvUvn17+vTpQ9++fenTpw/9+vXDu5VL7ZS0+6WXXmLlypWKyTcGpex2beLeNRcqS10oPbKJ\nckHLIqeOrP7+bQD6BHZhwUOv/T975x0eRdX98c9skk1vJCQhtNBDlSZNXstPKQIvKCBFbLwqIoKA\nCmJDREVAKaKioCKCVEV5pQm+CggqIAhIbwmQQBrppG6Z3x9DQgIpm92Z2dkwn+fZJ2Fm9nvPPcyd\n7Nl77zmE+AWRkJkPQMMGDTD4ePLjlm1E5fjhUbMBBZaSNV4Egnw8AbBYLFy5WkDLYZNZtSeGhIw8\nsvKlYM4gQNMwP9rWCaBxTR/qjGhCROxVLu++zNWUPI5uPs+Jny/SuHsktw1ohLux8n1gao5Ztdpy\n9nNIR8fVUHXD/ju/vcP5jPOsH6rdZQW3CjVqwOLF8Pjj8MwzUkHzCROkDf5+fs62zjkU1eO4dOkS\nUVFRCOVsRtWxk6Qk2LxZmm35+WfIy4MPPoAXXpDSJN/iCIJAvXr1qFevHgMHDgSkYPrChQvFwcyB\nAweYN29ecSHIZs2a0b179+JXo0aN9PtW5ybMORbS9+0jSRR41RjO6RP7MAgGJvZ6nNH3jCDbJHAs\nKY/BD/yberUjCfC//kfACtcCFxF/oxuBXgaCvNwI9HIj0NNQnD3MYg3nTEoOh+KzOBSfyaH4LBKy\nCjiZdJWTSaUTAHh4Q6f6XnRKKMRYaOXU9niSPASiu9emdpCXwxnJdHR0qjeqBS9fHfyK6b9N593/\ne5fbIm5Tq1mdSrjjDvj7b5g7F6ZPh7VrpZIb/fs72zL1adGiBQkJCfzyyy/ExsYyYMAAAgICnG2W\n6yKKcPCgFKxs3Ah//SUFKZ07w8svS6mRo/XsQxUhCAJRUVFERUUxaNAgQApoYmNj2bt3L7t372b3\n7t0sWbIEURQJDw8vFcy0bdsWd3fVk0rqaIzM2HwyQ9x5VQwgLTuDYN9gJvV/nYga0WyLyS++rlV0\n02u/iQR6umFOjuXI+s/IOL0PS1o8Q177mLY9BpXZhptBIDrcj+hwP4Z1iAQgKauAQ5ey+OdSFhfS\n8ohLz+NSZj4WsxVjRgHGQmk2J94I849dpuBEAgIQ5m+kbrC39Aryok6wN/WCvagT5I2/l34/6+jc\n6qjyFNh9cTejNo5iVPtRvNL9FTWa1KkCRqO0hGzIEGkZ2YAB8OCDUhATGels69TD3d2dXr160aRJ\nE9avX8+nn37KoEGDaNy4sbNNcx1MJtixA777TgpYLl+Wig716gVjx0rp7qppVjG1EASBhg0b0rBh\nQ4YPHw5IFd7//PNPdu3axe7du5kyZQoFBQX4+vrSpUsXhg8fzvDhw/HxcWyvoY5rctkMMy2+FFpN\n1K4RxejeUwn0DyPPLAUPfkYDwd5urN26iz/+PsqU4T34v26toWFr2td+gYWjepKVmshXLwxm+PQl\ndHlwpE3thgd40iugJr2aXx/zFqvIjs+PkBR/BYDcpgEk1/UmKjOf+PR8cgotJGUXkpRdyP6LmTdp\nto7054E2EfRqXlMPZJzE0jA3fGrrqd61SuDV6j/7rsrc7NCBQ2ke2pxP+n4i25KG/gpNDSilqwRy\n29qwIXh49GfNGvjjD2jZUtqKIIqVvrVcXMmfRTRs2JBffvmFunXrsmrVKo4cOaJ4m67op2JMJti6\nFZ56iv6+vtCzp7QsbOhQ+PVXuHJFmtJ77DG7A5dbdbzbal9QUBD3338/M2bM4LfffiMzM5Pff/+d\nqVOnYjAYePrpp6lduzYTJ07k1KlTivZ74sSJimk7ilL9TktLU0RXLv7yr0Oh1UL9sKa8Nvh9WkdG\n0jLMk+71fOjX1J8ejfzoGOnNn38d4HzcJbw83LCYzRzc+i3fvPoYqfExJdTK/oNgq2/dDAKebtc/\nerSu6ct7fZux9j8d+P2Fbmwf34Xlj7Xl3X8349nu9enXKoy2tQOo4SOlcf5x5lje/ukM9320h9c3\nnGT/xQxER/5IVYBazwetP4d0dLSG4l9b5JvzSWuTxpiWY3A3yNfc2LFjZdNSQ1cJlLB17Nix9Owp\nFbacOBFGjoTVq+GzzyAqShs2qsH48eO57777+PHHH/n+++/Jy8vj9ttvV2w/gcv5SRSlgGXtWli/\nHtLToVEjxg4cCJMnQ7t2su5juVXHu732eXp60q1bN7p168bkyZOJjY1l0aJFfPnll8yfP5+2bdvy\n/fff88ADD8henHXIkCH89ttvsmrKhVL/376+voroysVprwiwnOee5ncyoHlYmc+xpLQsYi9fQRAE\n3M7vZfqrvclIlIrduXkY6XD/cO56ZDx1mrcrs42q+LbrEy3wDfHixP8ucu73BJJOZ3DXs20IjPCl\nho+RGj5G2tS+ecluak4hM33HcNbLh5jUXDYcTWbD0WTqBnkxpEMkj9xeu9zCmfag1vNB688hHR2t\nofjMy7m0c+TXz+fLg18ybcc0zqWdk0W3Z8+esuiopasESthapBkSAsuWwaZNcOwYNG4MAwfCtm1V\nK3DpSv4sSc+ePTEYDAwYMIDOnTuzZcsWvvrqK86ePavIt3wu5SdRhHHjpCVgu3fDs89Ke1vOnKHn\n6tXQvr3sG/Bv1fEul30NGjRg5syZxMfH88033+Dj48OgQYN44oknZC/M2rVrV1n15ESp/29PT09F\ndOUiPv0iAL1btCz3C5g9x6S/zc3rR7BhxjNkJMbhE1iDXqOnMm3bBUa8u7TcwAWq5ls3dwPtHmzM\n3WOk/a9XU/I4vT2+0veF+Bp5//kRfP90B5Y/1pZBbSPwNboRl5HPnF9ieHn9CQrM8lVgVuv5oPXn\n0E0Igv7S+quao3jw0jKsJTse38HdUXcz5885NP6oMd2XdGfR/kWk56Ur3byOg/TpA8ePw0cfwdmz\n0taFJk1g9mxISXG2dcojCAK9evXi4Ycfxmq1smLFCr788ktOnz6t2FIFzfPee/DJJ/Dpp3DqFLz7\nrpRn+xZ4YLo6np6ejBgxgt9//52VK1eycuVKHn/8cdkDGB1tcTU/Cx+jN50btS73mqLgpWurxnQa\n8DgABjd37njoGQJCI2S3yWqxcnqnFLC4e7nRuLvtGywFQaBN7QCm3t+U/43rwis9G+NuENh28gpj\n1hwhy84CmDo6Oq6BKnte7oq6iyUDlpD0UhIrB67E39OfMZvHEDEngsfXP64HMRrH31/6cv3wYfj9\ndylD2dSpUKcOPPUUZGU520JlEQSBJk2a8OSTT/LII49gMBhYtWoVixcv5q+//tJ+dW05+fFHeO01\nKaf26NF6wOLCDB8+nFWrVrF69Wp92cotwF3NbsfT3Vju+b3HpH0tXVo1YuCUBdRudhtX05JZ9rL0\nxY3c/LMxlstHU3HzMHD3s20Irutvl46P0Y1hHSJZOLQVvkY39l/M5PUN2i2UqqOj4ziqBC/r10t1\nXXw8fBjeejhbRmwhfmI8M/5vBj+e+pH2i9vz16W/7NKUG6V0lUAJWyvSFATo1k1aTnbpkvSF+9q1\n0vaGv8r573Mlf5akLLsFQaBRo0aMHDmSxx57DH9/f7Zs2cKcOXNYtWoVR48etbvStsv46cQJ8PaW\nCkyWgauNS637Xel+P/TQQ0yZMoU1a9bINpO4fft2WXSUQCl/5ufnV36Rk/lXsw7lnjOZLZy7JE2l\nt21SD6OXN0/M+Rajty9n9+9k5/L5lepX1beXjkjZxjoOa0pYk2Cb31deO52jgpk1oDkAxxOvlnlN\nVVHr+aD155COjtZQJXhZtWrVTcdq+dfixW4vcvCZg4T5hnHHkjv4eN/HDmnKgVK6SqCErbZqhoTA\nSy/BoUPS7926wZw5N2cmcyV/lqQiuwVBoEGDBjz88MO8+OKL9OzZk5ycHNatW8cHH3zA+vXruXDh\ngmztaYrbbpOKS54/X+ZpVxuXWve7Gv1u164d6enppMi0DnTr1q2y6CiBUv7My8tTRFdOWkSWn/I9\nLjkNi9WKl9GDiBrSRvmw+k14cNJcADYueJXEmBMV6lfFt+ZCC1mJ0ox1reYhNr+vsnZ8jNJHGl+j\nPGl81Xo+aP05pKOjNVQJXtasWVPuuaigKHaN3MWoDqMYt2UchxIPOazpCErpKoEStlZVs2FDac/2\nxIlSMLNsmWN6WsFWu319fencuTNPPfUU48aNo1u3bsTFxbF06dIqfRh0GT+1u7Zhd+fOMk+72rjU\nut/V6Hfbtm0BmDZtmizLg2bOnOmwhlIo5c/gYNtnDpxF04iocs8djZH2njSMrFlqQ3/XwU9To3YU\n5sICDv+8rkL9qvi2MNeMaJW+6TLlVW1/SkXtWK59eZZrssgyk6jW80HrzyEdHa2hSvBSGUY3I7Pu\nmwVgc/Ciox2MRmkD/5Ah8MorcFWeGXuXo0aNGtx11108++yzeHl5qVIfRnXCw6U82l995WxLdGSi\nUaNGLF68mM8++4xnn31Wkf0NOs5FEAQCvf3KPb9t3zEA7mzbtNTx47s2k3bpvJQquc9w2ezxDjQS\n2Uqacdm38mRxIOMobSL98TG6kZxdyD+XsmXR1NHR0R6aCF5A2g8T5hvGySv6RjtXZfZsSEuDefOc\nbYlzEQSB8PBwjh8/7mxTlOHJJ2HXLin9nE614Omnn2bJkiV8/vnnPPbYYy6xDErHdrw9PMtNkWwy\nW/h1v7QkrHeXVsXHj/22mdVvPgXA3Y9MILRuI9nsEQSB24c2xd3TjZRzmRz47gxWi+NBs5eHG/c0\nkYKi1X9fdlhPR0dHm2gmeHn7t7dJzknmzvp3OtsUHTupXx/uvBO+99qrAAAgAElEQVT++cfZljiP\nmJgYPvvsMy5evEizZs2cbY4yFNXxKGffi45r8sQTT7By5UrWrVtHt27dOHdOnppcOs7H1+hV7rk9\nx86RlZtPaKAf7ZrU52r6FZZNeYTFz/Ul60oi4Q2i6fH0q/LbFOJN+8FNADi9I54dnxymMNe+hCcl\nGdo+EgHYfCyZjUeTHNbT0dHRHqoELyNHjiz3nCiKLD+8nDd3vMnb97xNnyZ9HNZ0BKV0lUAJWx3V\n9PaGkol3XMmfJamq3Wlpaaxdu5bly5fj4+PDqFGj6NGjh2LtORUPD+lnGZnVXG1cat3vavd72LBh\n7Nmzh+zsbDp06MDGjRurrD1t2jQHrVMOpfyZkZGhiK5ceHuUH7z8tPcoAPfd3oIDm77hvQdacGDT\nCgSDgXsef5GX1hzA2z+w0jbs8W3jOyLp/nQr3IwGEk+m89Os/aScq9iXlbVzW50AnuleD4C3fzpD\nbKr9qezVej5o/Tmko6M13NVopKzqsTmFOaw4soKFfy3kcNJhRrQewWv/es0hTTlwpUq3StjqqKaX\nl7R0TC49Z2GL3aIocvHiRfbs2cPJkyfx9/dn4MCBtGrVqtwlGo60pxmKEhF43fyByNXGpdb97ox+\n33bbbezfv59HHnmEwYMHExcXR82aNW3W7tKlCxs2bJDDTNlRyp+enp6K6MqFt0fZ9lksVrb8Ke3N\ny/l1MSvO/ApAROOWPDx9CfVbd7K5DXt9W69dGP41vfntsyNcTcnj5zl/U+e2mrR9oCEB4b52tTPq\njvr8HZfFvgsZfLg9lvmDW9plm1rPB60/h3R0tIYqMy/Dh1/f6Hc69TQTfppA7bm1Gb1xNPUC6/HT\niJ9Y9uCyKn3gK6kpJ0rpKoEStjqqeePMiyv5syQV2W2xWDhy5AhffPEFS5cu5cqVK/Tr149x48bR\nunXrKgculbWnOdauheBgqVrpDbjauNS6353V76CgIL7++msMBgOLFi2qknbv3r0dMU1RlPKnt7e3\nIrpyYXArO3Xwxi1bSU7PwsOSj9uZnXj7B/LvCTOZtOZAlQIXcMy3wXX86TWlI427RyIIEH84hU1v\n72PfqlPkZRVWuR03g8CrvRojANvPpHI62b4sMmo9H7T+HNLR0RqqzLwA7Lu0j2k7prHl7BZCfUJ5\ntuOzPNPxGaKCotQyQUcFvLykMiDVEVEUOX78ONu2bSMrK4uGDRvy8MMP07hxY7sCFpdl7VoYPFhK\nM6dTbQkJCWHAgAEsXLiQ11577da6x6sZbsLNwcvBrd8yZ+4iCLiNOnnnuPex8fR8+lV8g6pWd0Uu\nvPyMdHo4mmb31OXQ+nNcOnKFs7suEfd3Mv96pjVhjYOqpNcgxIeezWuy9UQK3/x1iel9q+keRB2d\nWxDFg5eDCQd5c8ebbDi9geahzVn2wDIeavkQXu7lr8HVcV3c3cFicbYV8pORkcHmzZs5c+YM0dHR\nPPzww4SHhzvbLOeQkgLVNRmBTjEbN25k3bp1DBkyRA9cXByDW+lFFmf/2snyVx4hLfwhAMZOfIkH\n+97nDNNuIrCWL3c924ak0+kc+O4MGfFX+fXDg3QaEU3DLrWqpNUlKoitJ1LIkCERgI6OjnZQbNnY\n2bSzDFo7iPaL23Nw70FWDFzBkWeP8Ohtj8oSuOzevVsGK9XTVQIlbJVb05X8WZIiu0VR5M8//2Th\nwoUkJSUxdOhQhg4dKnvg4lJ+8vIqvTawBK42LrXud2f1e9OmTQwaNIh+/frxVRVr+hw8eNAR0xRF\nKX8WFhZWfpETMQjX/9QnXzjDF+MfoNBkIdszDIBuHds73Ibcvg1vGkzPlzpQt11NrBaRPctOcOyn\n81VqJ88kpV/28ih72VxlqPV80PpzSEdHaygSvGTmZ9JzeU/2X97PVwO+ou25tjzc+mHcDPY9QMpi\n9uzZsmmpoasEStjqqKbZDIYSd5Ur+bMks2fPxmKx8MMPP7Bt2zbatWvHmDFjiI6OVqw9l8BqldYF\nupc9aetq41Lrfle734mJiTz22GP069ePXr16sXr1ajyKssvZyLJly+QwURGU8udVjVfmLRm87Fr5\nEXnZGQS1uhMLAv4+XtQJC3a4DSV86250o/uTrWjZqz4A/2yIYcbb79n8/nyTtAzA28O+jzpqPR+0\n/hzS0dEasgcvoigyZvMYruReYcfjO3ii7ROsWbNG7mZYvXq17JpK6iqBErY6qnn1Kvj7y6fnLL7+\n+mtWrlzJ8ePHGTx4MPfff7+iGYVcxk/HjkF2NnTuXOZpVxuXWve7Wv02mUzMnz+fZs2asWXLFr74\n4gvWr1+P0Y59TTNmzJDLTNlRyp/BwY5/+FeSksv+Tv6xDYAmvR4FoFZIoCzLApXyrWAQuG1AI2q3\nDkUU4aWB021+b9614MXemRe1ng9afw7p6GgN2fe87Lywk5VHVrLsgWU0CG4AgI+Pj9zNKKKppK4S\naNGv2dng5yefnjMoKCjgu+++IzU1lUceeYSoqCjF23QZP23fLs26dCo7E5GrjUut+12Nfl+5coVe\nvXpx6NAhRo8ezdtvv02NGjXs1tZy5i2l/Kn1PUGGa/ZdTUsh+fwpADzDGwFHqRnkX8E7bUfpsdSi\nZ30uHblC0j+Z5F8txMuv8sC6aNmYt53Bi1rPB60/h3R0tIbswUuYbxgCAgWWArmldVyAhARo3drZ\nVtiPxWLh22+/JTU1lSeeeIKIiAhnm6QdRBEWL4a+fUH/Y1stSE1N5b777iMhIYG9e/fSsWNHZ5uk\nowBFwZWnrz/e/oHkZWeSnRIPgMnsGhlWiopXegd64uFl20eX6zMvqlSF0NHRUQnZR3SLmi0Y3GIw\n7+56l8z8TLnldTROXBzUretsK+xn06ZNxMbGMnToUD1wuZFffpGWjY0f72xLdGQgIyODHj16cOnS\nJX799Vc9cKnWSMGLh6cXbXsOAeDC7xsBSM3S9n4dgLS4bI79dB6ANv0b4uZu20eXfAdnXnR0dLSJ\nIl9HvHnXmyTnJNPgwwbM3D2TCS9MkL2NSZMmya6ppK4SKGGrI5oFBZCYCPXqyaOnNhaLhaNHjxId\nHc3ChQtVbVvzfkpMhKeego4d4e67y73M1cal1v2uZL/ffPNNzp49yy+//ELLlvZVIC+L+fPny6Yl\nN0r5MysrSxFduSi5qK3roKcAuPSXtPflSka2LG0o4VtTvpkD351h68y/MOVbqFHPn4XfzbH5/UWr\n+cxWq13tq/V80PpzSEdHaygSvLQMa8mZcWd4uPXDTN0+lSUxS1iwdwH55rLTq9pDvZKfkGVEKV0l\nUMJWRzQvXZJ+lpx5cSV/urm5cdddd3HixAmCgqpWEM1RNO2nq1elpWImE6xbd/0TQRm42rjUtN9R\nzj4fHx8+/fRTpkyZQps2bWTV1vKMpVL+dCungr1WKDli67fuxKPvfYOfUQQgMyefk3t3ONyG3L6N\n/yeFTdP3curXOEQR6nUI464xt1G/fn2bNeoGS/uvLqTZVzlZreeD1p9DOjpaQ7GFoJH+kXzc52NO\njzvN4JGDmbh1Ik0/asqyw8uwivZ9C1KScePGyWClerpKoIStjmjGxUk/SwYvruRPgC5duhAaGkpo\naCj55dQyUQJN+2n8eDh9GjZtKj2tVgauNi417XeUs+/48eOEhIQwXoElgMOGDZNdUy6U8qevr68i\nunIh3vA3t2O/EUxZvhNBlAKYec8NJPbQnw61Iadv0+Oz+W3REXIzCvAN8eLu526j+5Ot8A4w2tyO\nKIqkXJXq78Sn2/csV+v5oPXnkI6O1lB8F1tUUBRLBizh+JjjdKrdicfXP07HxR35JeYXpZvWUZnL\nl6WftWs71w5HcHNzY+DAgWRkZLBixQoKCm7xxBMFBbB2Lbz8MrRt62xrdGRg1apVfPfdd8ybN0/z\nH7p15CE3/+aZh9pNWtGiQSQASR4RLHlhEJkpCWqbViaJJ9NBhJqNA+n7RmciW4ZU6f1mq8j0LWf4\n7qDUn/uiQ5Uw02ns2rWL/v37U7t2bQwGAz/++ONN10ydOpXIyEh8fHzo0aMHZ8+eLXVeEARPQRA+\nEQThiiAI2YIgfCcIQphafdDRcQTVUnA0C23Gd0O+Y/fI3Xi6e3Lf8vvos6IP59LOqWWCjsIkJICv\nb+k6L65IREQEjz76KCkpKaxYsYKMjAxnm+Q8fv1VWjb24IPOtkRHBs6fP8+YMWMYNmyYpmdIdOQl\nK7/sTfn3dGgBQGb4bWSlJPDVC4MxFag341weaRelfTgR0TVwN9q+JC8rz8SGI0k8vfIw3x9OxCDA\n1Pub8HBHF/5GrQxycnJo27YtCxcuLDNN96xZs/j4449ZvHgx+/btw9fXl169emEymUpeNh/oCwwC\n7gQigXVq2K+j4yiqBC8nT54s/v2Oenfwx3/+4NuHvuXklZN0WNyBH0/d/K1BVTTlRCldJVDCVkc0\nz52DG5cju5I/S5KVlcWjjz5KamoqCxYsYN26dVwumlpSAM366Y8/oFYtaNHCpstdbVxq1u/XkNO+\nnTt30qlTJ4KDgxVZLlZEbGysYtqOotT/t9lsVkRXLtJyy04ocG/H5gDEG+vhFhBK7KE/WP7KI1gt\nVU+fLKdvRau0nO30jnjSLpa2/cZ2MnJN/HA4kefWHOGeBXt4feMp/o7Lwugm8MGDLRjUtpbddqj1\nfKhqO71792b69OkMGDAA8drSv5J8+OGHvPHGG/Tr149WrVqxbNkyLl++zPbt24su8QX+A0wURXGn\nKIoHgZHAHYIglF3ES0dHQ6gSvEyePLnUvwVBYHCLwRx85iD3NLiHAasH8Oovr2Kx2v7AvFFTLpTS\nVQIlbHVE8++/oX17+fScyeTJk6lduzbjx4+nd+/eXLp0ic8//5yvv/6aM2fOlPkHw9H2NMmlS9I+\nFxuL8LnauNSs368hh32iKLJgwQLuvfdeWrduzd69e5kxY4YM1pXNggULFNN2FKX+v7WebSy7IJfs\n/JybjneMjqJp3XDyCs2EPzwLNw8jh39ex/ezJlT5GSenbzsObUqNev4UXDXxv3kHSTyZVqqdQrOV\ndYcSeGbVP/zfgj+Ztvk0u2PSMVtFGtf04dnu9Vn3VEfubebYcjG1ng9ythMbG0tiYiL33ntv8bGA\ngAA6d+7MkSNHig61QKrzV7x+XxTFU8BFoKtsxujoKIQqwcvHH39c5vFAr0C+H/I9s+6bxazfZ/HW\nzrcc1nQUpXSVQAlb7dW0WODwYWjXTh49Z1Nkt9FopFOnTowdO5bBgwdTWFjIypUr+fnnnxVpT3Nc\nuQLGyitZF+Fq41Kzfr+GHPbNnj2b8ePHM378eLZu3UrNmjUV7beWA0Il+p2dna16dkJ7iE2IuemY\nIAg8dn83AHZfyOaRGcsA2LXqYxLPHa+Svpy+9fI3cu+EdoQ1CcJcYOGPr44VB1PzPlzAhHXHmL7l\nDHvOZ2ARoVm4L2PvjGL9qI6se6ojo/9Vn3o1vB22Q63ng5ztJCYmIggC4eHhpY6Hh4eTmppa9M8a\nQKEoijdG3UmAdtMF6uhcw7YytQ5SURpAQRCYfMdkfjz1IxcyL8ii6QiulLJQS6mSY2MhLw9at5ZH\nz9ncaLfBYKBly5Y0b96c2bNn4+npqWh7mmHIEHj0UfjpJ+jdu9LLXW1catbv13DUvkuXLjF9+nQm\nTpzInDnX62Mo2e9atexfpqM0cvc7Ly+PZcuWMWDAAFl1leDSpnm0HvM5gqH0HpImdaXPqjl5BbTr\nNYS100eTl52BWMXaKHL71t3TDcEgzfjWqB+AIAhYrCKfHcrl95h0vDwMjOpWjx7RNWUJVMpCT5Vc\nNpc3fYybV+lkH0G33Uvwbfc5yaJbl/TD/yPjcOkEWB4W+1KDuxKqBC+2YBEtuAnazpWvUz4nTkg/\nmzd3rh1Kk5CQQEFBAQ0bNnS2KeowYgQsXQpjxsDRo+Dj42yLdKrAq6++iq+vL2+++aazTamWfP31\n16SkpLhEkcGcC0dJ3fQhof9+odTxoiBFEASupqWQl52BIAjUrN/EGWYWc35fEkmn0nHzMNBxSFNE\nUeSdn86w7eQV3A0C8wa2oFvDGk61UYtEREQgiiJJSUmlZl+SkpKofT0VaCpgFAQh4IbZl3AgsbI2\nIvuOxad2UznN1rGT4NvuuyloDLx6gV0zHnOSReqgmeDFKlr14MWFOXkS/PxcO02yLcTExGA0GomM\njHS2KeogCPDpp9KU2vTpMHOmsy3SsZG//vqLZcuW8dlnnxEYGOhsc6odZrOZ999/n8GDB9O4cWNn\nm1MpFiBz90o8QusS2PWh4uPWa8uxDAaBpFhp43iN2g3w8PRyhpkAFOaa+HvdGQBa3R+FX6g387bH\nFGcQmzkgWg9cyqFBgwZERETwyy+/FBegzcrKYu/evUybNo2VK1cCnADMwL3ADwCCIDQD6gGVFvz5\nIHsuLTP0L7K0yqn8AHY52wiFUWXPy6xZsyq9xmK1YBBsN8cWTXtQSlcJlLDVXs0TJyA6+uZ93a7k\nz5KUZ3dMTAwNGjSQvaK2pv3UpAm88QbMmQPXN3yWiauNS037HfvtE0WRCRMm0Lp1a5588knZdG1h\n6dKlimk7ipz9XrduHTExMbz88suav48A3MOkYOTKf98n5+TvxceLghc3g4Hka8FLeIPoKuvL6YND\n689RcNVEQIQP0ffV48s/L7J0TzwArRK30iO6pmxtVYRa/69VbScnJ4fDhw9z6NAhQPq7dPjwYeKu\nVYqeMGEC77zzDhs2bODIkSM89thj1KlTh7vvvrtYAvgSmCsIwt2CIHQAlgC/i6K4T55e6egohyrB\nS25ubqXXWEQLbgbbPxDaomkPSukqgRK22qt54kTZS8ZcyZ8lKctuk8lEXFwcDRo0UKU9TTFpkhTE\njBoFFayFd7VxqXW/22vf2rVr+eOPP5g3bx7u7jdPsCvZ7/x859cJKQ+5+i2KIjNnzqRHjx60b99e\n8/cRgEeDlnjX9ADRStKKVyi4fBoA67W0xAbh+sxLmB3Bi1w+SInJ5OxuKS19p+HNWPdPIgt2nAfg\nhf9rSMNA9RaMqPX/WtV29u/fT7t27ejQoQOCIPDiiy/Svn374uWhkydPZty4cTzzzDN07tyZvLw8\ntmzZgoeHR0mZicBG4DtgB3AZqeaLTQj6S7OvWwFVgpe33qo8i5jFWrU9L7Zo2oNSukqghK32aIpi\n+cGLK/mzJGXZfeHCBSwWiyL7XTTvJ6MRFi2CPXukn+XgauNS6363x768vDwmT55M//79S6VLdVTX\nVkaPHq2YtqPI1e9t27Zx6NAhpkyZIquukoj1+hEYHYoxwA2xMJeEpRMxZ6UUBy9CiWVj9sy8yOED\nq8XKX6tOAdCwSwQHCk3M2CpVhn+6W10e71xHVV+r1VZV27nrrruwWq1YLJZSryVLlhRfM23aNC5f\nvkxubi5bt269aWmjKIoFoiiOE0UxVBRFf1EUHxJFMVmWDuno3IAgESoIQogceqoEL7ZgFa1VmnnR\n0Q6JiZCZWf0368fExODv709oqGO1A1yWf/0LnnoKpkyBhARnW6NTDnPnziUhIYEPPvjA2aZUW2bN\nmsXtt9/OPffc42xTbMbs5oNnuxcJjvbBzduAJTOJhK8mYC6UMhMZBMGhZWNycGpHPBmXrmL0dSe/\nXSivbzyFCAxtX4vn7oxyik06Ojr2IwhChCAIy4B0pFTcyYIgpAuCsEQQhPBK3l4umgleLGLV9rzo\naIdbJdNYbGwsDRs2RLCxYGO1ZNYs8PKCCROcbYlOGVy+fJn33nuPcePG0aSJc7NFVVf27t3L9u3b\nmTJliks9CwrNFtxr341HVE9qNPfB4OFG4eVTpO/8BgBBFEm7fB6AsKhmqtuXk5bPkY2xANS4qzaT\nfzqN2SrSp0VNpvRs7FK+1tHRAUEQAoA/gN7AV8AY4DlgOfBvYJcgCH72aKsSLVy5cqXSa6q6bMwW\nTXtQSlcJlLDVHs0TJ8DDAxo1kkdPC9xod05ODomJiYqlSHYZP9WoAfPmwdq1sHnzTaddbVxq3e9V\nte+1117Dy8uLN954Q1bdqpCenq6YtqPI0e9Zs2bRtGnTUrVdtH4fARRaLAAY24zDI7gWwdGe4OZG\nfrz07ZPZVIAoivgEBONXo+ob4h31wYFvT2MusOBb1483TiVQYLZyZ+MaTO/XDEOJwEVNX6vVlivc\nPzo6djAeKdFhS1EUJ4qiuEgUxc9EUXweaIm0Red5e4RVCV7+85//VHpNVZeN2aJpD0rpKoESttqj\neeKEtJe7jH3BLuXPktxod2ys9I2gEpv1y2pP0wwfDj17SrVfcnJKnXK1cal1v1fFvgMHDrB06VLe\nfvvtSiu+K9nv6dOnK6btKI72+8SJE/zwww9Mnjy5VMZBrd9HAIVmMwCChx/G9lMw+nsQ1MhIUfqN\nwvQkQNqsb88shyM+iP8nhfjDVxAMAkvdTFwttNKhbiDvP9AcD7fSH1PU9LVabbnC/aOjYwd9gRmi\nKKbceOLa/qr3kGZgqowqwcu0adMqvaaqy8Zs0bQHpXSVQAlb7dEsb7O+vXpa4Ea7Y2JiqFmzJv7+\n/qq0p2kEARYuhKQkuGGjqauNS6373Vb7ilIjt2zZkqefflo2XXsYNWqUYtqO4mi/33//fSIjI3nk\nkUdk1VUDk9VS/Ltb6G24NxmGd6gHnjWleh2FmdJebXv3u9jrA3OBhf1rpcxn/9RwJ8ZioXmEHwse\naomXx81faKrpa7XacoX7R0fHDpoiLRsrjz8Au9aoqhK8tG/fvtJrqrpszBZNe1BKVwmUsNUezZMn\npRovculpgZJ2i6JITEyMYkvGbmzPJWjUCKZOhblz4fDh4sOuNi617ndb7Vu3bh27d+8uNzWyvbr2\n0FzDm98c6Xd8fDzffPMNL7zwAp6enrLpqkXRzEsRHtFPIAQ2xnitfqnl2rKykBD7ij/a64Mjm2PJ\nTSsgx0PgZ08rDUK8WTi0FX6eZd/HavparbZc4f7R0bGDACCjgvMZ166pMprZIa9nG3NNMjPh8uXq\nvVk/LS2NzMxMRYMXl+TFF6Wo9ZlnwGKp/HodRcjPz2fSpEn069ePHj16ONucasu8efPw9fXV9MxS\nRZhuGKOCwQPP9q8iGqTaH5ZrKZPdT2/HnJGkik0Zl65y8hepsOLmQIHQIC8+G9aaGj5GVdrX0dFR\nFAEovzAciNhZmkYzwYuebcw1OSll1qzWwUtMTAwGg4H69es72xRtUVT7Ze9e+OwzZ1tzyzJ//nzi\n4+P11MgKkpaWxqJFi3juuecUWzqqNCZz4U3HDAFREPl/AJivzcwECgUkLJ2ItSDnpuvlRLSK7Fl5\nEtEqcspbICPEk8+GtSYiwEvRdnV0dFRDAE4LgpBW1gs4aa+wKtHCl19+Wek1VV02ZoumPSilqwRK\n2FpVzaI0yc3KWbXoSv4sSUm7Y2NjqVOnzk1LRZRqz6W44w5p5uWVV+DyZZcbl1r3e2X2JSYm8u67\n7zJ27FialTcI7dB1hPXr1yum7Sj29vuTTz7BYrHw/PNlJ8bR+n0EUGjOL/O4ENIOAFG04uZmIDgs\nnMKE0yStfBXRYi7zPWVRVR+c/v0SabFZFAiwJ9yDT4e1JirER/Z2HEGttlzh/tHRsYORwARgYjmv\nCYBd2SpUCV7+/vvvSq+p6rIxWzTtQSldJVDC1qpqnjgB9euDr688elqhyG6r1Vpc30WN9lyS994D\nHx8YP97lxqXW/V6Zfa+//jpGo5GpU6fKqusIJ0/a/WWa4tjT79zcXBYsWMCTTz5JWFiYbLpqU9bM\nC0jrNkCq8xJSw4uwu+9BcPck9+TvXNkwB1EUy3zfjVTFBzmZBez99gwAe4PdmPlwa6LDbSv3oKav\n1WrLFe4fHZ2qIori17a87NFWJXj55JNPKr3GIlZt5sUWTXtQSlcJlLC1qpoVZRqzR08rFNmdkJBA\nfn6+4sGLq/oJgOBgmD8fvvuOT+6/X5EmbtXxXpF9Bw8eZMmSJUyfPp3g4GDZdB1lypQpimk7ij39\nXrJkCenp6bz44ouy6qqNyVJ28GK1FgUnIjVr+uCWsZ3QPv8BQSDrz2/J/H21Tfq2+kAURZYvPIi7\nWSTZAx55vBXt6gTa9N6qtCMHarXlCvePjo6W0MwmE4tV3/PiilQWvLg6MTExGI1GIiMjnW2Kthk6\nFHr1gueeg6tXnW1NtUcURSZOnEjz5s155plnnG1OtcVkMvHBBx8wdOhQxWo8qYW5nCVg1mszKwIi\nYY1aAyIeOT9To5d0X6VunEvOsR2y2fHZtycIiMtFBBo/0IjuTUJk09bR0bk10Ey0oGcbcz3y8yEm\npvw0ydWBmJgYoqKiShWk0ykDQYBPP4WUFNBrFijODz/8wM6dO5k7d65NqZF17GPNmjVcuHCBl19+\n2dmmOMyN2caKKFoWJogitToOQ/CphZiXjLd/EgGdB4IokrTqdQriTzhsw9LfL2LenQiAW/Mg+t2j\nJ0HR0dGpOpoJXqq6bEzH+Zw9C1Zr9Z15MZlMxMXF6SmSbaVBA3jzTWkJ2cGDzram2lJQUMBLL71E\nnz596NWrl7PNqbaIosisWbPo06cPbdq0cbY5DlNe8FK0bExAJLzxbRg7vAIYsF76haDbO+HdtCui\nKZ+EpRMwpSfa3f66Qwn8uTGGEDOIXm4MfLK13Vo6Ojq3NqoEL/3796/0mqouG7NF0x6U0lUCJWyt\nimZRprGKghdX8mdJ+vfvz4ULF7BYLKoEL67qpxvpv2uXdEOMGiVr7ZdbdbyXZd+HH37IxYsXmTNn\njqy6cjFx4kTFtB2lKv3evHkzR48etWkPj9bvIwCztexyC/l5udd+EwmLaoZbjVa4Nx0BgOnIAsIG\nvogxojGW7FQSl07Aml/2stCKfLD1RAoLNpymW5Zkwx3Dm2H08bCrH2r6Wq22XOH+0dHREqoEL2PH\njq30GotoqdKyMVs07UEpXSVQwtaqaJ44AaGh0ksOPS0xdmzgHJgAACAASURBVOxYYmJi8Pf3J7Si\nDsrYXnVg7PPPw+LFcOAALFwon+4tOt5vtC8pKYl33nmH5557jmgH1msq2e8hQ4Yopu0oVen3zJkz\n6dq1K927d5dV11mYrWVnDctKlQpSGo1e+AQEAeDR7FEMQc3AdBXz8Y+IeGIubv4hFCaeJXHFK2Wm\nUC7PB7+fS+PV/56gR7oVDxHCmwVTv2O43f1Q09dqteUK94+OjpZQJXjp2bNnpddYRWuVlo3ZomkP\nSukqgRK2VkXTls36ruTPkvTs2bM4RbIg2FUAtsrtVQd69uwJXbvC6NHw2msQHy+frgJo3e832vfG\nG2/g7u7Om2++KauunHTt2lUxbUextd+7d+9m9+7dTJkyxabxr/X7CCoIXq5IS8G8/K4X3xQM7hg7\nvApuXlivHIS034l4Yh6Chyd5p//kyo/v35RCuSwfHIzP5IXvj9Mox0rDfBGDu8Dtw5o59ExV09dq\nteUK94+OjpbQxJ4XqyhNJevZxlyL6pxpLCcnh8TERH2/i73MmCEV/xk/3tmWVBsOHTrEF198wVtv\nvUWNGjWcbU61ZtasWbRo0YJ+/fo52xTZsIiUWbMlKzUZAG+/gFLHDX518Wj1LACm419gDPAifPi7\nUgrlPevI3LWiwvZOJl1l3NqjWAst9MmWjrXoWZ+A8MoLUero6OhUhCaiBYtVWhuvZxtzHSwWOHWq\n+gYvsbGxAC6fHtVpBAXBhx/C99/Djz862xqXpyg1crNmzRg9erSzzanWHD16lI0bN/Lyyy9jMGji\nT6QsmK0Cojn7puNZaVLw4uN/c60V9/r9MIR3AauJggMz8InuRkjfCQCkbv6Qq0e3l9nW+dRcnl19\nhOwCC4Os7hgLrfiHedOyl55dTEdHx3FUeTKvX7++wvNFMy9VWTZWmaa9KKWrBErYaqvmhQtSquTK\nghdX8mdJVq5cSc2aNfH396/8YhlwVT/dSKl+PPQQ9Okj1X7JvvlDk926MqJ1vxfZ99///pcdO3Yw\nd+5cPDzs2+hclq4SbN9e9gdaLWBLv2fPnk3dunUZPny4rLrOxiJasZjSbzqenZYClB28CIKAZ9uX\nwBiEmBWD6cSXBHZ/mICuD4Eokrz6dfLjjgHXfZCUVcDo1UdIyzXRyc+LeokFANw+rBluHo5/Qamm\nr9VqyxXuHx0dLaFK8LJq1aoKz1vEqs+8VKZpL0rpKoESttqqWZRprLI9w67kzyJEUWTLli2qLhlz\nRT+VRal+CAJ88gmkpkoplOXSlRGt+33VqlXFqZF79+7N/fffL5uuUmzdulUxbUeprN8XLlxg5cqV\nvPjii1UKErV+HwFYrRZMpoxSxyxmM1fTUwHw9Q8q832CVw2M7V4CwHzuW6xXDhL67xfxadYN0VRA\n4tIXMKUnsGrVKtJyC3lm9T8kZBUQFezFgGxAhPq3hxMRLc9SRzV9rVZbrnD/6OhoCVWClzVr1lR4\nvmjZWFX2vFSmaS9K6SqBErbaqnniBPj4QN268uhpibS0NB544AFVgxdX9FNZ3NSPqCh46y1pCdnf\nf8unKxNa9/uaNWv46KOPOH/+vEOpkcvSVYqZM2cqpu0olfV7zpw5BAYG8tRTT8mqqwWsohVzYVap\nY2mXz2O9lkLZ09ev3Pe6R3TDPerfABT+PRMseYSPeA9jrSZYrqaS8NV4Fi9azHNrjhKbmkdEgCev\nR9UkK/4qHt7utB/YWLZ+qOlrtdpyhftHR0dLaGJBrz3LxnScy8mT0qxLNVoSXkxMTAwGg4H69fX1\n2bIwYQK0aiXVfjHfnGJVp3ySk5N5++23efbZZ2nRooWzzanWpKSk8MUXX/D888/j6+vrbHNkx2K1\nYDKXrtGSFHsS8VrmL7dKHuYeLUcj+NZBzL9C4T/zEYw+1HpiPm4BNbmaFMeYL37meOJVgn08+KhP\nM85vuwhA2wEN8Q70VKZTOjo6tySa+Ohpz7IxHedSnTONxcbGUqdOHTw99T+4suDhIdV++ftvaRmZ\njs1MnToVg8HAtGnTnG1Ktefjjz9GEIRqW3PDarVgNuWUOpYcexIRKXgxGCpOXyy4e2Ps8AoIBiyX\ntmOJ/wX3oHBqPjaXOf4jOWoKw8dgZuGQViT/Go8p30JIVACNutdWrE86Ojq3JtoIXuxYNqbjPESx\n+gYvVquV2NhYPcuY3HTuDGPGwOuvQ1ycs61xCf755x8+//xzpk2bRkhIiLPNqdZcvXqVjz76iKef\nfrra+toqWjFb8kodS4o9CcXBS+V/f92Cm+PR7HEACv/5EHNOAu/8DfvdojGKJl7J/Az3nZu5eCAZ\nQYDbhzerNCjS0dHRqSqqRAsjR46s8Lw9y8Yq07QXpXSVQAlbbdFMTob0dNuCF1fyJ0BCQgL5+fks\nlLE6vC24mp/Ko8J+vPsu+PvD88/Lq+sAWvW7KIq88MIL+Pn5MWbMGNn1ley3lmeJyuv3559/TnZ2\nNi+88IKsulrCKlowmwtKHUsqOfNiY+FI9yYPYwhugWjKYca3P7H5eAruBoHgX9+lufkiR3ZJOk3v\nqUuNuvJna1TT12q15Qr3j46OllAleKmseqw9y8Zu1YrbJVHCVls0izKN2RK8uJI/QdrvYjQaGTBg\ngKrtupqfyqPCfgQGwoIFsH699JJL1wG06vcNGzbwyy+/8Mwzz8iSGvlGlOx3ly5dFNN2lLL6XVhY\nyJw5cxgxYgT16tWTTVdrWK0WzJbCUseSS+x5sTV4EQxuGDu8wuIrPVmX0AgBkXf+3YyRTz5NathY\nCsRQjEImTdvkyt4HUNfXarXlCvePjo6WUCV4qSxfvj3LxqqSg78qKKWrBErYaovmiRPg5gaNGsmj\npyViYmKIiopixIgRqrbran4qj0r7MWgQ9OsHY8dWqfbLrTTeCwsLefHFF+nZsyezZs1SpA0l+927\nd2/FtB2lrH6vWLGCS5cuMXnyZFl1tYbFasFsuZ4w42r6FXIyUsHGPS8lWX5UZGlKNwBeqrWFXpGZ\n9LmnP+cvSPtb6nv+l9Q1kzClXZKvA9dQ09dqteUK94+OjpbQxCYTPduYa3HiBDRuDEajsy2RF5PJ\nRFxcnKopkm85BAE+/lhad/jGG862RpN8/PHHxMTEMHfuXAQbvw3XsQ+r1crs2bPp379/tc/mZhWt\nmK1WxGsrHaT9LuDpJxWntHXm5YfDicz9NQaAMY3OMjB4H/n7Z/DXqpNYLSKRLYIIr2fCcjWNhK8m\nYMlzrECtjo6Ozo1oInjRs425FtV1s/6FCxewWCx68KI09evD9Onw0Uewf7+zrdEUKSkpTJ8+ndGj\nR9OyZUtnm1Pt+fHHHzl58iRTpkxxtimKY7VasOAJZqnWS/K14MU7UEpQYEug/PPJFKZvOQ3AE53r\n8HT/geBZg4tnAkg+k4mbh4GOw5oTOXIebgFhmJJjSVo+GdFsUqhXOjo6tyKqBC+7d++u8HzRsrGq\nzLxUpmkvSukqgRK22qJZleDFlfwZExODv78/oaGhqtvtSn6qCJv7MX48tGljc+2XW2W8v/nmmwC8\n9dZbgGv2++DBg4ppO0rJfouiyHvvvcedd95J165dZdPVKhbRgkXwRjSnA9dnXrwDawCVLxv7IyaN\nKf89iVWEQW0jmHBPAwxeQRA9iaOn7uNUwhFa3umOX6g37oFh1Bop1YLJO/cXKT+8hyiKsvRDTV+r\n1ZYr3D86OlpCleBl9uzZFZ4vmnmpyp6XyjTtRSldJVDC1so0s7Ph0iXbgxdX8mdsbCwNGzZEEATV\n7XYlP1WEzf1wd5dqvxw6JM3AyKVbRbTk96NHj7Jo0SLefPNNQkNDAdfs97JlyxTTdpSS/d65cyf7\n9u2TZdZFS/dReVitFsx4IZrTgBLBS4AUvFRUpPJwfBYTvz+O2SrSMzqU13o1KZ6pOfpHIIWFvvx0\nZBkNvD9CLMwEwDOyKeEjZoBgIHv/j2TsWCpLP9T0tVptucL9o6OjJVQJXlavXl3h+eI9L1VYNlaZ\npr0opasESthameZJ6e+dzcGLq/gzJyeHxMTE4iVjatvtKn6qjCr14/bbpY37b7wBFy/Kp1sFtOJ3\nURSZOHEijRo14rnnnis+7or9njFjhmLajlKy3zNnzqRNmzayJBjQyn1UEdKysevBS9GyMS//YKD8\nPS+nk6/y3LdHyTdZ6dYgmBn9o3G7NkuTci6Ts7svA7B86l0IphQKD80tnmXxje5O6IBJAKT99AlX\nD29zuB9q+lqttlzh/tHR0RKqBC8+Pj4Vnrdn2VhlmvailK4SKGFrZZpFaZKjo+XR0wqxsbEAxcUp\n1bbbVfxUGVXuxzvvQFCQFMRUsKykuo/3TZs28b///Y85c+ZgLJEJwxX77e3trZi2oxT1+9ChQ2zd\nupWXX35ZlqQIWrmPKsIiWrEIXoimNEwF+aRekp553v5BAAhlLBu7mJbH6NVHyM4307ZOAHMGtsDD\nTfrYYLVY+WuVFAA17FqLxv1Hg+CGJWEXlritxRqBXR8isPvDACSvnUb++cMO9UNNX6vVlivcPzo6\nWkJTG/arsmxMxzmcOAF16oCfn7MtkZeYmBhq1qyJv7/8RdV0KiAgQFo2tmED/PCDs61xCkWpke+7\n7z769evnbHNuCWbNmkVUVBRDhgxxtimqUTTzYjWnkXLxLKLVird/IG6eXsDNMy9J2QU8s/ofUnNM\nNAvz5aOHWuFjvP4F46nt8WRczsHT14O2DzbCENQUj2ip2GLhPx9hzblcfG1I3/H4tLgL0VxIwrIX\nMaXGq9BjHR2d6oomogV7lo3pOIfqmGlMFEViYmL0LGPO4oEHoH9/GDcOsrKcbY3qLFy4kLNnz+qp\nkVXi3LlzrF27lkmTJuHu7u5sc1TDKlqwIG3YTz5/CoCwqGbFE54lvzxMzzUxetURLmcWUC/Yi0+H\ntSbA67qvctLyObJJmrlpO7ARXn7SbKF7k6EYQlqDJY/Cv99DvLaqQjC4ET78HTxrN8eak0HCV+Ox\n5N56Y11HR0ceVAleJk2aVOF5e5aNVaZpL0rpKoEStlamWdXgxRX8mZaWRmZmZqngRW27XcFPtmBX\nPwRBmn3JzITXX5dP1wac7fcrV67w1ltvMWrUKFq3bn3TeVfs9/z58xXTdpRJkybxwQcfEBISwsiR\nI2XV1TqWog37prTi/S5hDaKxWKUvD4uyjeUUmHlu7VFiUnMJ8zeyaHgbQnxLF/U6sPY05gILNRsH\n0rBLLUDygSC4YWz/Crj7Yk07hvnMquL3GIzeRDwxF/fAcEwpF0hcPsmuFMpq+lqttlzh/tHR0RKq\nBC/16tWr8Lw9y8Yq07QXpXSVQAlbK9IsLIRz56oWvLiCP2NiYjAYDNSvX7/4mNp2u4KfbMHuftSr\nB2+/LRWw3LdPPt1Km3Wu36dNm4bVamX69OllnnfFfkdERCim7ShBQUF89dVXjB8/Xta9Oc6+j2zB\narVIe17MacWZxsIbRGO1SlMvBkGgwGxl/LpjHEvIJtjbg0XD2hAZ6FVKJ/5wCvH/XEEwCHQaHl08\nW1jkA4NPBMY24wAwnfoaS/rJ4ve6B9QkYuR8BE9f8mMOkPL9u1VOoaymr9VqyxXuHx0dLaFK8DJu\n3LgKz9uzbKwyTXtRSlcJlLC1Is0zZ8BiqVrw4gr+jI2NpU6dOnh6ehYfU9tuV/CTLTjUj3HjoF27\nMmu/VMfxfuzYMT777DOmTp1KzZo1y7zGFfs9bNgwxbQdJScnBw8PD8aMGSOrriuMX6tovZZtLL04\neAlrEH09eBAEJq8/wV8XMvE1urFwaCsahpbeSG7KN7N/rVSksnmPegTW8i0+V9IHbnV64BZ5N4gW\nCg/MQDTnFZ/zrNWEiBEzweBG9oGNZPz6ZZX6oaav1WrLFe4fHR0toYk9L/YsG9NRn6JMY9Vpz4vV\naiU2NrY4y5iOEymq/XLkCHz4obOtURRRFHnhhRdo0KCB/sFFJTIzM/nkk08YPXo0wcHBzjZHdYpT\nJZsyipeNhTeIxnoteNmZZGDHmVSMbgILHmpJi1o3Jy85uvk8uekF+IZ40er+qHLbEgQB420TELxC\nEXPiMR1bVOq8T7OuhA6YDEDats/IPviTTL3U0dG5FdBE8JJVIG3c83DzcLIlOhURHy9tTzh71tmW\nyEdycjL5+fl68KIVOnSQZmCmToWjR51tjWLs2bOHbdu28f7775dKjayjHKtXryY3N5cJEyY42xSn\nYBEtWARvsrMsFOReBSCkdgMMgoBHYBinMw24CfD+gy3oWC/o5vebrZzaHgdAWOMgDO6VfHwwGDHU\naAGA+fyPiPlppU4HdhlEQJdBAFz57yzEa3tvdHR0dCpDleDl5MmTFZ7/+vDXNA1pSlRQlGya9qKU\nrhIoYWtFmsOHQ9eucOed8N57YMvfGq3708NDCphvXHettt1a95OtyNKPd9+Fxo2lDGRXrsinWwbO\n8vuRI0cwGAyVpkZ2xX4X1UzSGmlpafj7+1O7dm3ZtV1h/Pp5STMpQmh3jN7Scq8rcecYdE9HMBde\nu0qka4OyZ6UMbgJRnaT9TLF7E/n1w4PkpOUXny/ygSiKmBN2k//rE1gu/waAW+Sd4BlYSk80F5J/\n4QgAXg3aIxhs+ziipq/VassV7h8dHS2hSvAyefLkcs+dzzjP9ye+Z1yncVXasF+RpiMopasEStha\nkWZ4OOzcCVOmwGuvQa9ekJ5uv54WCAgIAKQlJSVR226t+8lWZOmHry+sXw8pKTBkCIhitRvvFy9e\nJDAwkPRKBpAr9nvBggWKaTtKVlYWX3zxBVu3buX48eNkyZSa2xXGb6iPFLAUBI+gfutOAJz7exd3\ntG7Mu4/3wFqYh0UU6Dv3f3zyy0kupuWV+lJHEAQ6PxJN50ea4W40kHwmg03T/2DzWz/zv/c28eSg\nR9gzfyl/f/Qhx9du4PzpMC4n38YV96dJy+tGyvbvuLL5Y5LXvsXlL58nbt4wChNOY/ANoubAV2zu\nh5q+VqstV7h/dHS0hCpJ7j/++OMyj2fkZ/DA6geI8Ivg8dsel0XTUZTSVQIlbK1M091dKop+zz3S\n58q+fWHbtvKLVmrdn+fPnwfAy6t0Rh217da6n2zF4X7ExMCyZdLr6lVISgKTqdqN94YNG5KdnU1k\nZCR9+vTh8ccfp2/fvqWSRihpn5L9njx5Mr/99pti+vbSrl07QkJCGDVqVKkP5QEBAdStW7fUq06d\nOqX+XVkFdFcYvxdSL5Gdl4EY0ZSmne/lzL7t7Fg2ly4P/oeHe3Zhw5lfOZ4FKRYvFu9LZvG+ZPzd\nCulSM5sOgQm0846hjjWWsJw07mgZxMFTA8nKrU1GkhvgzdD2LxJzOhyoB7S53vDBol9qAiG4k4eb\nkIe7kIO7IR//Ws1I+ykNo282nr4eGH098PRxx9Ov6HcP3L3cirOaqelrtdpyhftHR0dLqBK8lJUG\nMM+UR/9V/bmYeZFdI3fh71m1yuaumEJUbtROlVySe++Fn36C//s/GDhQKpB+w+euKuk5g8LCQjZt\n2kTDhg1p2rRpqXN6qmT7sKsfmZnw7bdSwLJrlxQJP/QQfPUV/OtfYDBUu/H+n//8h/79+7N69Wq+\n/vprBg0aRHBwMMOGDeOxxx6jc+fOCILgkv2uVauWYtqO0Lt3b5KSkigsLOTy5cvExcURHx9PXFxc\n8evAgQP897//JTk5udR7a9SoUWZQU3RM6+O3YSDEmQr4cd8y/h3el66dwtgZ6E/KhTP8+s49/OuO\nuiyuk8aKC01Zf7kpcYa6uPkGk42RnxND+DkxBGhFkDWLluZztDKf5Q7DYvAJwST6YRZ9qOfpg1ks\n/bLgh1nww2z1xmL1AAyY8cUs+lIghoIVMk8Dp+MrtF8wCHj6ukvBjK8Hsb4ZeF773ejjjpe/kYAI\nXwIjfTF6y/exRk+VrKOjTVQvL1xgLmDFkRW8/8f7XMy8yP8e/R8tw1qqbYaODNx+uxS09O4Nzz4L\nS5Y426KqcfToUTIzMzEajfz888/Uq1ePunXr4uvrW/mbdexDFKXZlT//lF579sDhw9IGqvvug2++\ngQcfhEq+6a4OhIaGMnbsWMaOHcvx48dZvnw5y5cv59NPP6Vu3br06dOHPn36cO+99+r3pIwYjUai\noqKIiooq95r8/HwuXbpUZoDz559/8u2335Kamlp8fYcOHdi/f78K1tvHwJYN+PBsCntO/Q/3iF8x\nINKovjeH/8nmzx1/07G+gbxUEz3T99BD3ENqgZH1yXXYaG5Fnm8EHgGhePoFkWEI4HdjO343tmO5\nzwD6+p5nUHga4cEBuPmH4OYfirt/iPS7XwgG4/UZbYvZSmGOicJcMwU5JgqumijMNVGQY6Iwx3zt\np+n6z1wzhTkmLCYrolUkP9tEfnblRS19gj0JjPQjqJYUzARF+hEQ4YO7Uc9mKhdHc58nJ7uJs83Q\nKYdkSxyw3dlmKIpqwUtWQRaL9i9i/t75XM6+zIBmA1gxcAXta7VXywQdBbj7bli4EJ58UlpCNmiQ\nsy2ynZYtW2I2m4mLi+PYsWP8+eefwPVvWevWrUu9evUIDQ0tXrKgU0VycuCvv6QgpShYKfpWu2lT\nKQPEqFHSzVOnjnNtdSItWrTgvffe45133mHHjh1s2LCBTZs2sWjRIoxGI3fffTd9+/alb9++NGrU\nyNnmVnu8vLxo1KhRhb7Ozc0lPj6e2bNns3nzZhWtqzon8loCO4j08wdrDht25HL4H2kctogIJ/3U\n9TosboHh1G/Yng5pPqzfmU5exim8Ms7z6dh/Ywipx99JJraeuEJMKnyb05T1FwT+7R/O403rEBVS\n/pcObu4GvAM98Q4sY4q+AsyFluKgprxAJzezkKyEHHIzCshNl14Jx64Hl4IAfjW9CazlR1Dk9aDG\nP8wbg5smkq7q6OhUAcWDl5zCHPo/15/9jfaTZ8rj0TaPMumOSUSHRjukO2vWLF5++WWZrFReVwmU\nsNUezZEjYdMmePpp6bNoZKSyNsqFp6cnnTp1olMnafNqZmYmcXFxXLx4kS+++IK2bdsiiiJeXl7U\nrVuXO+64g/r16ytii5b9VBVmvfEGL7dpI2V2+OMP+OcfqbKpvz906iQFKl27QufOEBJiu+7/s3ee\n4VVUWwN+56T33iFAEhJ6772FYgFEpChKU1QuFux6PxWxo1zRCygIiFxAEFRAQHoVpENooSRACOm9\n9zPfj0kwIQI5Zc6ZA/M+T57AmZm1114ze+es2XutdZ+MdysrK/r370///v2ZM2cOr7/+OkFBQWze\nvJnXX3+dl156ifDwcB5++GEmTJhAixYt9GpHzn4vXbpUFrnGwJj9dnR0JDw8nAYNGpCfn28UmXJx\n4loU2MBon3JW/pzM+XNS0a7ezerTuqE31u7+OLXsj3PL/tjVb8GSzQd4f9U6ANpFNOC7154k0EfK\nQtYpHKb0aMC+mEx+OBTPqRu5/BqVzIJv/sO4517iX70a0sDTwWi6W9taYW1rhaOHtIpzp3tYWlhG\nTlIB2YkF5CQWkJ2YT05iASUFZeSlFpGXWsSNqLSb52usBLxD3GjQwY/6bX2wd66ZttxU84PS5qG6\nob7QUy73/r2R1Xn54/IfTN08lfjYeKY/Np2Xu7xMkKtx0lQWFhYaRY6p5MqBHLrqI1MQpNqCzZvD\niy/C2rWGyTMXbm5uuLm50aJFCw4fPsy0adP47bffuHHjBrGxsTRt2lQ258WS7FSDlBTJUdmzB/bs\nobCqkmnjxtC9Ozz3nOSsNGsGVvpv27hfx7ujoyMvv/wyL7/8Mvn5+ezcuZNNmzaxbNkyZs+eTZcu\nXXjmmWcYPXq0TlvL5Ox3cXHx3U8yE3L1+9ZU60ojKSseG19nCjYd53piGhpBYHC3NrR/6CmcWw3A\nrn7zm6vLxy5cZeaSDQBMfLAH7054GFubml8VNIJAn8Ze9GnsxckbOSw9dINVO4rZGp3GjgtpPNIm\ngGe7B+ProtsqS1240z20dbTBJ9Qdn9C/69SIorTlLCcxX3JqkvJvOjflJRWkXs4m9XI2x1Zfwr+J\nB8Htfanf2gdbRxuTzQ9Kn4dUVJSGUJdJVxCEdsDx48eP067d3bd5JeUl8fLWl/n53M9EhkQy/8H5\nhHmGGUFd83LixAnat28P0F4UxRO6Xq+rHS2NVaukWjAbNsDDD9/+PEPtCPLaMiMjg4MHDxIVFYWV\nlRXt27enS5cuN9MqKwmTP5NpabB7901nhSpnJTxc2kPYpw/07l1z+c0CUPozeSulpaVs2LCB77//\nnu3bt+Ps7Mzjjz/OlClTzD633G/z5Icffsi3335LYmKiUeUa85n0HtsWdx8XHti1Dxtra8a9+Rmt\nR79Saztsdn4hg6b/h4S0LIb1bMvcV56o85bZiyn5/HfvNfbHSsUo7aw1jG4XSM8wT5r6OeNib/IQ\n2zsiakXy0ou4cSqNuOOpZMXn3TymsRYIaOpFk3718Yv457o3loixxuZHI7+lkU/4Xc9XMQ+pFfFM\nXzgBqt3nqnv3xdq9hDZrY5R2Ys+f4vWRvWu0YypkmU0G/G8A6YXprBixgrEtxqrxAvcJo0fD0qUw\ndar00t3T09wa6U5JSQnffvst9vb29O7dm44dO9ZKo3zfsngx/OtfUFLyt7Py7rsW6axYOra2towc\nOZKRI0dy7do1lixZwqxZs1iwYAEXL16slT1PRcW+tAJHZxee/W4rDVt3rXU8O7+QcR98T0JaFg38\nvfjs+ZE6/e2O8HNm7qgWnIjP4es9Vzl1I5dlR26w7IiUSSzYw56m/i4083emqb8zTf1dcDWjQyNo\nBFx9HWk2sAFNI4OJP5nG8TWXKMopRVsuknAmneQLmYz+uo/ZdFRRUflnjD5zJOQmcD7tPGsfW8uj\nzSwoelvFYKq2j7VuLYU2rFkjfWZJWFlZUVFRQWRkJK1btza3OsqgqAimTZPSyT3zDMyYoTorCiIg\nIICEhARKSkp46aWX1IB+lX8kw1ag0/Pv/aPjkpVbkCZ0VgAAIABJREFUwNgZCzh7JQEPF0e+f2sC\nLo76vbRpV9+NpeNasz82kw1nUjiXlEdiTgnXs4q5niVtLauivrs9TQMkh6aZvzNN/ZxxdbDRu4+6\nUFZcTvKFLBLPpZN4NoOinNIax90CnQjvdf8mEVFRUTJGd14Oxh8EoFv9bjc/S09Px9vb26jtyCFT\nTrlyoES7BgfDokUwciSsWAGDB1uOPQGsra2xtbUlISHBpM6LYp+7oiLo0QPOn5fqrkyYcMfTLW1c\nKtbuldxNv/z8fCIjIzl58iRLly5l/Pi6FfuVs99ZWVmyyDUGcvVbq9UaXaYxqe8eTLKQycmKAh65\n5Zgoikz4eDFnryTg7ebMqpnP0aSB7rV6qttWEAR6hXnRK0xKypFdWEZ0Sj7nk/M4nyT9TswpIT67\nmPjsYrZVc2jaBLkysm0AkU28sbepHSen7z0URZHclEISz2WQeDaDtJhstBV/b5u3stXgH+FJYHMv\nAlt44eRpT3p6us7t6IPS5yEVFaVh9ByB3o7SANx97e8c05MmTTJ2M7LIlFOuHCjVro88Im0Zi462\nLHtWYWNjw8cff2zSNhVrp1On4MQJWLfuro4LWN64VKzdK7mbfrNnz+bEiRPs3bu3zo5LXeQawsyZ\nM2WTbShy9Ts7O1sWucaigau0Uhp943KtY4IgkJKZC8D4B7rr5bjAnW3r7mhD10YeTO4azOwRzfhj\namf2vtSV78a05MU+DYls4k2Qu7TScyohl//beJHIuYf5Ykcs1zJqBrPrcg/LSytIPJfBsdWX+P39\nv9g08zAnf4kh5WIW2goRZx8HwvvUo++01oz8oie9n29F415BOHna69yWISh9HlJRURpGX3np26gv\nI5uN5OUtLzM4bDCeDp7MmDHD2M3IIlNOuXKgVLseOwaZmVLxykcfNVyeqamoqGDy5MkmbVOxz115\nufT7DgX9qmNp41Kxdq/kTvolJyfzxRdf8OKLL9K5c2ejyTWUKVOmsG/fPtnkG4Jc/XZxcZFFrrFw\ncfWGYkiMj0Gr1aLR1Hxv+cJjA3hz/hqWbNzPxAd74O6se5FYXW1b5dB0bfR3QHxqXgkbzqTwy6kk\nEnNKWH40geVHE+jYwI1pvRrSpp7bXdvJzygi8WwGiecySLmYRUXZ36tiGmsB3zB3Alt4E9jCC1ff\nO/fTVPOD0uchFRWlIUu03DeDv6HpvKYM/N9Afn7sZ1kyxsiVhcYSsttUoVS7/vYbeHhIGXKtrS3H\nniA5LmVlZXrXz9AXxT53VdthNHVbpLW0calYu1dyJ/1ef/11bG1teeedd4wq11CaNm0qm2xDkavf\nNjamidPQFwcnyUHILynkx9dG88THP2Lr8PcX99H9O7Jw/R5iE9IY8fZcFr01kZAgH53aMIZtfV3s\neLpbMBO71OfglSzWnExkf2wmR+NymLr6LFumdqrVjrZCS1pMjrQd7FwGOUkFNY47utsR2ELaCuYX\n7oGNDkkCTDU/KH0eUlFRGrI4LwEuAewav4tRa0bRdkFbFg9dzMhmI+VoSkVhlJVJGceeeAKslZUZ\ns04kJiZSUVFBUJBx6hFZPFVvlPPy7nyeiklZu3Yty5cvZ9myZXh43DupXFXkwd5OqntSZG/Pqe1r\nyUyK4+lv1uPmI20Rs7ayYt6r4xj/0WIuxafw4Otz+O/0JxjQsZlZ9LXSCPQM86RnmCfJucX86+ez\nxKQVsvJ4Is/1aEBRTslNZyU5OpOy4oqb1woaAe8QVwKbexHUwhu3QCc146mKyj2GbF8v2wW04/iU\n40zZOIXH1jzGy51fZvag2WgEo4fZqCiIDRsgORmeftrcmujHtWvXsLW1JSBAv33f9xzulcXeYmJA\nfTuoCA4ePMhzzz3Ho48+yrhx48ytjooF4OYo5a0vdnLCwd2L62ePMmtkGwZMfovujz2LrYMjLULq\n8cfs6Tw3axlHoq8y4ePFTHqoJ28+MQQnB+MXm6wr/q72TG4TyNL1l7i+6RobdyeRm1QzDsbO2eZm\noH1AU09sHZW9EqaiYi4W7L6E4yXjyCpMMJIgPZDVk3Czd2PVo6t4vOxxvj78NVN+n4JWNE5WlsWL\nFxtFjqnkyoEcuhois6gI3nwT+veX0iUbKs8cuLi4UFpayhdffGHSdhVrp+Bg6NYNnnwSvv0W7lLU\n1tLGpWLtXkl1/ZKTkxk/fjzdu3cnJCSE7777Tu83ynL2e926dbLJNhS5+q30Cuk2VtKX+XJtBS/9\n7wB+IU3Jz0xl3Rev8MHgRuxa+iUlhQX4eriyauZzjH+gOwBLNu6n34tfsPNY9F3bMKZti3JLiTue\nwtGfLrJx5iGyl1xgeIaWFjkVbNi1FgDPBi60fLARg97owIjPetB1fDMatPczquNiqvlB6fOQiorS\nkH0ZRBAE3LPcWfbIMn449QOT1k+iQltx9wvvwokT8hTzlEuuHMihqyEyP/kE4uNh3jzjyDMHrVu3\nJjg4mI0bN1JWVmaydhVrJ2tr2LVLKtwzdSqMGwc5Obc93dLGpWLtXsmJEycoLi7mq6++Ijw8nE2b\nNrFw4UIOHTpkUGpVOft94cIF2WQbilz9NuVcoQ8l5UUAONjYE9AwgjfWnmLMjO/xCmpEfmYq62e/\nzgeDG7JvxX+xtbHm4ykjWPH+FIL9PElIy2L8R4uY9p/llJaV37YNQ21blFvK0dUX2fjBIX57608O\nLD7H5f0J5CZLjmGqDZxys6LYJ5MRs3ow+M2OtHywEV4NXRE08mwLM9X8oPR5SEVFaZgkKmFe5bdZ\nK8GKcb+No4VvC17r9ppRZBobueTKgRy66ivzt9/g00/h//4PIiIMl2cuBEGgefPmDBgwgKtXr5qs\nUrmi7WRnB//9L3TvLu0HXL8eRo2S/t21a41KpJY2LpVqd1EUOXDgAOXl5fj7+5OXl8dzzz3Hhx9+\niKenp8Hy5ez3W2+9xZo1a2STbwhy9dvNzU0WucbCrjQDAFsbafuXtY0tXR99mk5Dx3N043K2f/8x\n6fGx/PLZi9g6OtPlkYn0bhvBjq9fY/ZPW/n+932s23eSri3CeGJgl39swxDbVpRr2fttFJlxlbF1\nAngEOePb2B2PUDe+iU5h9/VsInyd+PnTJXq3oyummh+UOg/djqW+VjgG1a7Bo6IM3PLv/Rgvkwag\njG05lqkdpjJz70xS8lNM2bSKjFR9lx05UnJeLJnLly+zdetWmjVrRlhYmLnVURZjxsDFi9LewN27\nJWemWTP48ktITTW3dvcEMTExvP/++4SFhdGzZ0+2bt3KtGnTiI6OZt68eUZxXFTuP3yyLwJQVFpM\nhbZaYUYbG7o8MpF3NlxgwNNvA7D246kkXjoDgKO9He9OHMoLj/YH4K+zMbLod2pdLJlxedg6WtNz\nSksendWTIe90oumwUD67KDkudtYaXukXIkv7KioqloXJo+c/6PsBNlY2fLjvQ1M3rSIDhw/DY4/B\n8OGwfLllZhjTarXExcWxfft2Vq9eTePGjRkxYkStWggqQFAQvPsuxMbC9u3Qpg38+9/S50OGwDvv\nwE8/wblzUuo5lTqRnp5Onz59aNy4MXPmzKFv377s2bOHK1eu8NFHH5lsBVDl3sQ97hAApeUlfL9/\nE1ptzdhTK2tr+k14DVefAMpKivn5w+duHhNF8eZceCz6mtF1y7iWy8Vd8QA4uNmRlpTPtsMJvLMu\nmgfmH+HwtWwcba2YP7oFXRqpmfUUgSCoP0r/uccx+VdNTwdPwr3CySjKMHXTKjJgby+NEzc3sLKg\nVeSioiJiY2O5dOkSMTExFBUV4ejoSLt27Rg4cCBWltQZc6DRwIAB0k9GBqxYAZs3w48/QmKidI6t\nLTRpAq1aQcuWf/8ODLwvJlddeOONN4iKiuKnn35i2LBhODg4mFsllXsIh7wswkLbEJN5g5m/zWLT\niU18PPJlWtWPoCAnk73/m8PeFV9TnJ8LgGtlCuX4lEze+nYNe09JWYXCg/2NrpvGRoOVvRUVxRXk\nJBWQ8/tVqS0BnG0FMlysebRXA9r4K7sQqIqKiukwyavloUOH3vx3QWkBxxKP0Su4l9FkGhO55MqB\nHLrqKrN1a1i4EBYvlsIiDJUnJ/n5+Rw8eJAff/yRL774gl9++YXU1FQ6dOjA5MmTee2113jggQew\ntrY2ud5KspPOeHnBiy/Cli0Mbd9ecmb27IHZs6FzZynN8ocfSisz9epJ5/fpAy+8ID08p07dNYvZ\nvTze9+3bxw8//MDnn3/OmDFjajgultjv6dOnyybbUOTqd2ZmpixyjcmngeEM7zwBexsHjsedY8js\nKQz796OMGd+RH36ZR6q2DJ/GLZk4ew1Pfr6KxRv30/+lL9h76hJ2tta8/dSDLHln4m3l18W2oiiS\nUVDK4WtZrDiawP/9foGRv5zlc29Y7mvFHjcNMfYCpVZgK0LDEpH26WVcW3GJta/uY+sXx+jTeQAF\nGUXGNM1tMdX8oIR5SEXFkjDJysu0adMAyCvJ46l1T1GhrWBAyACjyDQ2csmVAzl01Ufm+PEQFQWv\nvip9P23c2DB5crF3716OHTsGSFnF+vbte9tAW1PrrSQ7GcK0adPA0xN695Z+qtBq4do1OHNG+jl9\nGnbsgPnzpWMNGsAjj8CIEVJq5ltWvu7l8f7rr78CMHPmTP766y8iIyMZMGAAvr6+FtnvUaNGsW/f\nPtnkG4Jc/XZycpJFrrGw87DDKT+ByO6v0DO8FytXT+d4aQ5HC9KgYRAgFeUVBIFf9q+k8I+fyMsF\nwdaOxg0a8M6YEfRo1gLrO6xI32rbvOJyYtMLiEkrJCatgJj0AmJSC8kqqr2d1MHWivBwD3qEetIj\n1AM/ZztykgpIjckmLTab1JgcirJLyLiaSxffgWx47y8CmnvRuFcQAc280MiUbcxU84MS5iFdGJ9S\nTiPt7TPPqZiX1Aot+82thMyYxHkZOHAgMZkxDF81nOs511k3Zh2NvRrf/cK7yJQDueTKgRy66ivz\nk0/gl1+kWO7K72IGyZODgQMH4uvry+HDh4mKiiI9PZ2uXbvStGnTWvEtptZbSXYyhNv2Q6OBkBDp\nZ9iwvz8vKoIDB6R0datXw5w54OsrBVGNGAF9+4Kt7T093j///HOGDBnCtm3b2L59O0uXLgUkBzsy\nMhKAnj17GnUrmZz97tq1q2yyDUWuftvZma+IY13QODiSd+MyALa2HoRu/QM3Z0fym7XALqwpWRq4\nlp5AfkkhKXnp0kUuIAKXSm4w4ccDAPi5etHQO4iG3vVo5BNEQ+8gGngFgcabkoDWfLX7CrFphVxO\nKyA5t+QfdRGA+h4OhPk4EurtRIdgN9rVd8PWuuYc7B7kjHuQM+G96yGKIgUZxaRezsbviAcpF7NI\nPJtB4tkMnLzsCesRSGi3QOxdbI1qN1PND0qYh1RULAnZnRdRFFl7fi3PbnwWb0dvDj99mKY+TeVu\nVsXE2NtLqZKfeEIK4u/c2dwa1cbGxoaOHTvSoUMHLl++zF9//cXatWtxc3Nj0qRJuLq6mlvF+w8H\nh79jZ/77X+nh+fVX6WfhQimYaskSyZG5R7Gzs2PQoEEMGjQIkIpR7tixg23btrF8+XK+/PJL7Ozs\n6NixI2FhYYSEhBAaGnrzx8vLS+9ilSr3B5diUrl8MZZeTxajsbWn+ZAn6TtyIqHteyIIAleT0nl+\n1jLOXL8GNsU0b+xN17b1SC9M51paAtfSE8gqzCUlN4OU3AwOXzl9SwtWWNsEYmMTjI1NA2xsG6DR\nOOHrYktjHyfCfJwI83YkzMeJRt6OONjoFlMoCALO3g44ezsQ0jWA3JQCLu9P5OqhJAoyiolaf4Xo\nHdcZOrMbtg4WmDXGwhAqf1SUyf1wb2Qd5Sn5KUzdPJVfo3/l0aaPsmjoItzt3eVsUsWMjBkj1TCM\nilKm81KFIAiEh4cTHh7OgQMH2LFjB+JdYi5UTIBGI9WN6dpV8oT794eDByUH5j7C39+fcePGMW7c\nOERR5Ny5c2zfvp2jR48SHR3Nxo0bSU9Pv3m+q6trDYem+r/r16+PtSWmAFQxKoeiYgnw90djaw+I\njP94CbZW0lec9ftP8ub8NeQXleDp4sZHUyYytEebWg5xVkEucRkJXK10Zk7FX+NATAxFJWmIYiHl\nZfGUl8VThLRK08AriBaerenYoAUdG7UkzNfPaE62q58T7Uc2pvXQEK4fT+XUuhiK88pIvZRFvdY+\nRmlDRUVFucgSsF9WUcaPp36k2fxm7I/bz2ser7F21FqjOi7r1q0zmixTyJUDOXQ1RKZGA66uNQuw\nK92eN27cIDAwsFbsi6n1Vrqd6orB/RBFKTZm3DjJcfn5Z+jf/74d7+vXr6dFixZMnz6dlStXcujQ\nIdLS0sjOzubEiROsXbuWf//733Tq1Ins7GzWrFnD1KlTiYyMJCQkBAcHB8LCwhg0aBBTp07lyy+/\nZN26dXz33Xe10uUai927d8si1xjIdb+Li4tlkWssKrQi4QPGAOBhb4WtlYBWq+Wd737hX7OXk19U\nQudmIWz96lWG9Wz7j06Gh5MrbYKb8kj7AbRp9CDRWf1xcnuG9hEzWTPtB54I6sO4rg8T4d8IgLiM\nBFYf2cxrq2bR+9Mnafl/Q3nmh3e5kWVYjbfq99Da1oqQrgHUa+MrtXk8lYqyCoPk364tOVH6PKSi\nojSM5ryIosjJpJO8vOVlAv8TyIT1ExgYOpBzU89x/cB1YzVzk59++snoMuWUKwdy6GqoTFdXyM01\nnjy5yc7OJjExkUWLFnHgwAGysrIA0+utdDvVFZ37UVIChw7Bf/4jVTkNCoJGjf6OgXnkEf3k1hGl\n2/12+rm5udG2bVseffRR3njjDRYsWMCOHTu4cuUKxcXFXL58mS1btvDNN98wfPhwHB0d+fPPP5kx\nYwaPPPIIzz//PG5ubnTr1o3nnnuO+fPnc+DAAXKrD1492bp1q8Ey5EKu+11UZJrsV/pia21Fs7Fv\nAeDrJK3ELdn0J8u2HEQQBF56bACrP3yOQO+7v2DMLSrjvU2XKCnX0jPUkxUT2tE9LJTrxy4ya/Tr\n7H7rR859vJFlz3zOCwPG0TmkFfY2tmQW5LApai+/HttmUF/+6R4GNvcCIO5YCuvf/Yvz2+IoKzI8\noNxU84PS5yEVFaVh8H6ClPwUVpxZwY9RP3I65TR+Tn6Mbz2e8a3H09KvJQCrV682WNFbkUOmnHLl\nQIl2dXOrufKidHtOmDCBS5cuER0dzZ49e9ixYwcBAQG88MILZGZmmqyiudLtVFfu2o/UVPjrL2lV\n5eBBOHpUcmDs7aFTJyl1Xbdu0o+XV93lyqWvmdFHPxsbG8LCwggLC6t1TBRFkpKSOH369M2fgwcP\nsnjxYsrLpS97DRs2pFWrVrRq1YrWrVvTqlUrQkND61z76LPPPmP79u06620K5LrfHh7KLp7YMLwZ\n2aIDIOLrbM35a4l88uNGAGY+PZyJD/aos6zFh+LJLS4n1NuROSObY12Z6au6bT2cXBnQvCsDmkvJ\nG0rLy3j6h3fZce4gttY2BvXln+5hUEsvOo6J4NzWaxRmlXBqXSzntsbRuFcQEX3r4+CqXyC/qeYH\npc9DKipKQ2/npbi8mJf+eInFJxdjpbFiaMRQPun3CYPCBmGtUfdY36+4uUllPiwFOzs7WrZsScuW\nLSktLeXy5cucP3+effv2sXPnTho3bszYsWPVgGh9ycuDXbtg61YpNfJlKeMRQUHQvTt8/rnkqLRu\nLRW1VJEVQRAIDAwkMDCQwYMH3/y8tLSUCxcuEBUVddOpWbRoEcnJyQA4ODjQq1cvXnvtNfr376+O\nBwsjsMuDlFaIWGvA08GKCfPWUFpewYAOzZjwQPc6y8ktLuenY1IR2pf6NLrpuNyNotJi4tITAHCx\nN35aaUEQaNwriNDuAVw7msL5bXHkJhdyfmscF3bGE9o1gKaRwTh7q8VfVVTuBfTyMhJyExjx8wii\nkqOYFTmLCW0m4OlgmjfUKsqmc2f43/+grAxsDHvBZnJsbW1p3rw5zZs3p6ysjMOHD7Nz505ycnJw\nd1cTTdQJrVYqOrlli+SwHDwI5eUQGgoDB8LMmZKzEhxsbk1VqmFra3tztaU6qampnD59mqioKFas\nWEFkZCTt27fnzTffZMSIEXVejVExL/ahHQDwdrTm0vVkTl2+jo21FbP+9ZhOjuj5pDxKyrUEutnR\nK6xuf/PT87IY+91rXE6Jw9XemT5NOunVh7qgsdIQ0iWARp38STiTzrmtcWRcy+Xy/gRiDiQS3N6X\nZpEN8KjnLJsOKioq8qNzzMuRhCN0+L4DiXmJ/DnpT17p+orquKjcZNw4SEuTXrJbMjY2NrRt2xaA\n+Ph4M2ujcMrLpfiUcePA3x/at5eyhbm7w9dfQ0yM9DN/vpSSTnVcLAZfX18GDBjAq6++yvHjx9m2\nbRtubm6MGjWKJk2asHz5cnOrqFIHiu2kbW1+ztb8uvc4AP3aN8XXQ7f08BdT8wFo5u9yV6dHFEV2\nRx9m+DfTOJdwGW9nD3554RuCPPz06IFuCBqBeq19GPh6e/q/3JaAZp6IWpG4oyn88ckR9syPoiBT\n2UkWVFRUbo/Ozsszvz9DkEsQx545RofADnW6ZuLEiTorZg6ZcsqVAyXatU0baNECFi0yjjxzMWHC\nBPbvl2rUlpT8c7E1Y2KRdhJF2LhR2vI1ZgycP89Ef3/YvVvaO7h+PUydKq26GMj9Ot6V1G9BEIiM\njGTnzp0cOXKE8PBwnnzyyVrO/YwZM4ykpfGRy57Z2dmyyDUW+RXSJgs/J2tOXZbuV2THZjrLySuW\nMnkdicvmfFJejWNVti2rKGft0a0MmDWRJxa8zpW0eALdffntxbk0D6odh6UrutxDQRDwC/eg77Q2\nDH67I8HtfREESDybweaPj3D9ZKrR2jIEpc9DKipKQyfnJT4nntMpp3m7x9v4Odf97YmSKsGbS64c\nKNGugiB9X123Dq5ftyx7VpGdnY2NjQ1Hjx5l8ODBtG/fXvY2Lc5OR49C377w8MPg5wfHjsGJEwx8\n+23o08fo8Sv363hXar87duzIvHnzADh79myNY126dDFItpzIZU87OztZ5BoLEbC3FnC0EXBxkHQt\nr9A9Vfb4zvVoHeRKbnE5U346zemEv7PT9ezTiwW7V9Plw9G8uOJjopOu4GjrwJTeo9j8ygJCfesb\npS/63kPP+i70mNyCB9/rjFdDV8qKyvnz+7McWXmB8tJ/Tq9sqvlB6fOQiorS0Ml52Re3DzsrOwaF\nDdKpkbFjx+p0vrlkyilXDpRq1yefBBcXafXFkuwJ0irLwoULad68OZMmTaJz584mCU62KDt9+KGU\nGSwjAzZvhp07pa1iWN64VLrdldzv4OBgHBwciI6OrvF59UQASkMuezo4KD8Q3MvBCkEQcHdxBCA5\nM+cuV9TGxd6ab0e3oG09V/JKKpi4PIq3ftvD9J++4JNzq/hg/TySstPwdfXk7QencGzGWmY8Mg1f\nV6+7C68jht5DVz8nIl9tR7OBDUCAmD8TObb6kixt1RWlz0MqKkpDJ+flTOoZOgV1wtlWDXZTuT3O\nztCvn5QR19KwsbHByckJNzc3AgMDza2O8ti4Ed57D/7v/6TA/CFDpOU2lfsOrVZLaWkpjo6O5lZF\npQ642EnJFdqGNwBg04HTiKKosxwnO2u+ejSCRm6xpKUvYNne91h9+HcKS4sI82vAl2Pe4PB7P/NC\n5DjcHV2M2gdjobHS0GZ4KL2elRJUXDuaTHF+qZm1UlFRqSs6OS/R6dG0D5B/C42K5dOqFZw+bW4t\ndEej0TBkyBCuX7/OmTNnzK2OsoiLg6eegqFD4YMPQM00dV8THx9PRUUFjRo1MrcqKnXA3lp6yTC0\nRxvsbW24fCOFExfjdJaz8tBGen48iiOXfqC87DoCGuzsWuDmMQlv7xfpENIHO2vLSHter5U3nsEu\naMtFrh5ONrc6KioqdUQn5+VGzg1a+7fWuZE///xT52vMIVNOuXKgZLu2aiXVI1y/3nLsWUVISAgA\ne/bsQavVfV+4PljEc7dgAWg0sHSp9PsfsLRxqXS7K7nfVW/tM24p7HTy5EmDZcuFXPYsLVX+W3tb\nK8l5cXVyYFDnFgDsOh59p0tq8d/ty3lt1SwyC3IIcPfh9SGTOfz+Gj557N/YphcRm17Ek8tOsf1C\nmtH1r8LY99CjvrQ6lJ9WJHtbt0Pp85CKitLQOdtYE+8mOjcya9Ysna8xh0w55cqBku1aVS7is88s\nx57VOXDgAFlZWVy69M97oY2NRTx3R49KhSXvUE3c0sal0u2u5H6HhITQv39/5syZU2P70bJlywyW\nLRdy2TM/P18Wucakoto9ah8hbR07dzWxTteKosjHv3/Hp5sWAvBS5JMcfnc10weNp56HD2M7BBF4\nZRNdGrpTXKbltd+imbv3Klo9tqXdDWPew4qyCuIrM47Va+Uta1t3QunzkIqK0tDZeYnwitC5kVWr\nVul8jTlkyilXDpRs15AQcHSEoUMtx57VWbduHfXr1+f48eMmaU/xz50oShnFOna842mWNi6Vbnel\n9/uVV17h6NGjHDly5OZnn3zyiVFky4Fc9vS4g0OvFKonF2sREgTA+Wt1c14W71vLvJ0rAXh36PO8\n+eAzWFvVrHH9y5qfmTe6JU91qgfA9wfjeX/TJaM7MMa8h/Gn0igtLMfRww6/JrXr1ZlqflD6PKSi\nojR0cl7c7d3xcNB9kpYjoFOuIFFLCj5Vsl01GggIgKwsy7FndRwdHQkKCjJZ/QbFP3exsZCdfVfn\nxdLGpdLtrvR+Dx48GB8fH3777bebnyk585Zc9jRFRkJDqb7y0ijQB4CkjBxKy8rveN2FpCt8/PsC\nAN4f9i+e7/fPmbEcHR2x1gi82j+Ejx6KwEqADWdSmLHZuA6MMe/hxd03AAjtHohGU/semmp+UPo8\npKKiNHRyXhp6NJRJDZV7EQ8PyMoytxb6Y2fPW8qOAAAgAElEQVRnZ5IClRbB0aPSbxPUvFGxHDQa\nDQ8++CC///67uVVRuQvVV168XJ2ws7FGFEVSMnNve825hBieXfo+JeWl9G/WhSl9RtWprYdb+vHJ\n0CZYCbD+dAqv/HKey2kFhnbBqKRfzSHjWi4aa4HGPYPMrY6KiooO6Oa8uDWUSQ2Ve5HS0tvGdSse\nURS5fv26ot8im5SjR6FRI/CuvS9c5f5m4MCBnD9/vlbgvopy0Wg0eLtLgeppOXm1jqflZfL66i8Y\n+OVkLqfE4e3swX/GvqXTCtPgZr58MrQJGgF2X85g5KLjvLjmLFE3bu8smZKrh6TsYg3a+2HvYhnZ\n0VRUVCR0+moZ5hmmVyOvv/66XteZWqaccuVAyXYtLobz5+HKFcuxZ3UmT57M1atXGTBggEnaU/xz\nV4d4F7C8cal0u1tCv1u2bAlws1jlnDlzjCbb2Mhlz9xcZXwhvxNVqZKrcLSTvrAXl5Td/Ky0vIx5\nO1fS/aPHWfHX74iiyNC2/dj8ygJ8XGrHhFTnn2w7uJkvKye0ZUCENwKwNyaTp/53iknLozgQm6lX\nnRlj3EOtViQ+SsqI1qCDn6xt1QWlz0MqKkrD+u6n/E2oZ6hejQQHB+t1nallyilXDpRs1zNnoLwc\nWre2HHtWodVqyc7OJjIyksaNG5ukTUU/dxUVcOIEzJhx11MtbVwq2u5YRr9DQ6W/C5cuXaJHjx74\n+/sbTbaxkcueVhZQ88jeuua7Sgc7GwCKKp2XpOw0nv3xfY5dPQtA6/pN+OCRF+gU0rJO8m9n26b+\nLswe0YxrGYUsPXyD38+kcDw+h+PxObQOcmVqzwZ0buhe51UdY9zDG6fSKM4txdbRGv8mt4/jNdX8\noPR5SEVFaei08tLYU78vci+88IJe15lappxy5UDJdj1xQqph+OGHlmPPKmJiYmjdujW9e/c2WZuK\nfu6io6GgADp0uOupljYuFW13LKPfpyur0TZpIqXRHzNmjNFkGxu57Onk5CSLXGPiYFPTOXCoXHkp\nKi3lwOUTDPryaY5dPYurvTNzHn+bTdO/q7PjAne3bUMvR2Y8EM7m5zsxrmMQ9tYaohJyeXbVGSav\nOM2x63VLjmLoPSwrKuf4GikFfuPe9dBY3f5rkKnmB6XPQyoqSkMn50WfTGMq9yfHj0OzZmCJISMn\nTpzA39+fgIAAc6uiDI4eBUFQg/VV/pFt27bh6upKp06dzK2Kyh24deXFvnLl5UDsEUbPf4X0/Cya\nBYbyx6sLGdVpCBqZAhb9XO14fUAoG5/vyBMdgrC1Ejgen8PkFad5ee05SsrlLQx8euMVinJKcfZx\noPmgBrK2paKiIg8WGk6tonROnLDM77qpqalcvHiRDh06WET6U5OwfbtUddTFxdyaqCgMURRZuXIl\nQ4YMwdpap13IKiZEQMTmlr/2Dna2iEIFv5z5Da2oZUT7SDa8/C2NfOqZRCcfZzveiAxl4/OdGN0u\nAGuNwO7LGby1PppyrfGLWwIU55Vyeb9U26bj6HCsbZW/3U9FRaU2JnFeLly4YBEy5ZQrB0q1a2mp\nFPPSrp1l2RNg7969uLu7Y29vb9J2FWunoiLYsAFGjqzT6ZY2LhVr90qU3u9du3Zx4cIFnn/++Zuf\nXb161Siy5UAue5aX37lWirnRiNpaL2Mc7GzANYX80nwaegfx1eNv42ir/7ynr239XOx4Z1BjvhvT\nElsrgV2XMvhoy+XbBvMbcg8v709AW67Fs4EL/k3vnIDA0LZ0QenzkIqK0jCJ8/LGG29YhEw55cqB\nUu164YLkwLRta1n2zM3N5fz58/Ts2ZO3337bpG0r1k579kjxLo8+WqfTLW1cKtbulSi536Io8skn\nn9C8eXN69ep18/NvvvnGYNlyIZc9lZ5tTNBW1PpMY1WB6CalC359yGRsrAxbOTPUth0buPP58KZo\nBPgtKplv9l4zajsVZRVc3isVpWzSP7hOK+ummh+UPg+pqCgNkzgvc+fOtQiZcsqVA6XaNT5e+t2o\nkWXZMz8/H4DAwECT661YO12/LhXrCQ+v0+mWNi4Va/dKlNzvhQsXsmvXLmbPnl3ji6CSv4jJZU83\nNzdZ5BoLQay9MnQx9yRoKvB28GVY234Gt2EM2/YL9+bdIVJioCV/xbPsyA2jtXPtWArFeWU4utsR\n3NanTteYan5Q+jykomJMBEHoLQjCA4Ig6B1Ib5JNykpO6WsquXKgVLsmJUnx3X5+YG1tOfYsLS0F\nwNbW1uTpXhX73KWmSoUp65gK1tLGpWLtXolS+x0bG8urr77KlClTGDRoUI1jSk50cd+mSi4vrfHf\nG1kpnMuIAqCDb3ejBOcby7YjWgeQXVjO13uuMnvnFeysNIxuH2hQO9oKLRd2SG/VwvveOcNYddRU\nySoq+iMIwpuAsyiK71b+XwD+AAZWnpIqCEJ/URTP6SpbpxnrRNIJXeWr3IfY24MoQnbdMl8qhrw8\nqdK0o6OjmTVREKmp4Otrbi1UFEReXh7Dhw/H39+fL774wtzqqNQBsbSoxv/f+/UbKsRyKHbBUazb\nKoQpmdilHuM7S4kDPtkWw1e7rqDVo6BlFee2xpGTVICNgzVh3QPvfoGKiooxGA2crfb/kUAvoCfg\nDRwD3tdHsE7Oy/u73yevJE+fdlTuI/r0kX7v3m1WNXQmLS0NFxcXkwfrKxrVeVGpRkVFBU888QTX\nr1/n999/x9XV1dwqqdSBsoK/Y3K2nv2TLWf2oxE0CBnBJKYp7y2TIAhM79uIf/WSUhkvPXyDN9df\noLC0duzO3Ui/msPZzdcA6DA6HFtHG2OqqqKicnsaAaer/f8BYK0oigdEUcwEPgK66iNYJ+clsyiT\nDt934H9R/6NcW/fsKp9//rnOiplDppxy5UCpdq1XD5o0gbVrLcue2dnZN/eum1pvxdopKUna/1dH\nLG1cKtbulSip32VlZUyePJlNmzaxatUqmjZt+o/nLV261EDt5EMue1bFyymVouxUAApKCvn32jkA\njGjzAEKZI7GJaWi1htdWMbZtBUFgSvcGfPRQBNYagW3RaTy2+DjT3ppRp+u1WpELO6+zc85JRK1I\ncDtfGnas+1wGppsflD4PqajoiTVQUu3/XYGD1f6fiLQCozM6OS9Lhi0hwiuCp9Y9RdN5Tfnx1I91\ncmIKCwv10c3kMuWUKwdKtuv06fDzzxAbazn29PX1JSUlhYqKCpM/B4p87kRRynndvHmdL7G0calI\nu1dDKf0uKChg2LBhrFy5kuXLlzNkyJDbnltcXGyoerIhlz1vl9ZXKeTciCUz6TqztywlMTuV+p7+\nzBw5FUd7WzJy8jl7JcHgNuSy7cMt/VgwtiX+rnbcyC5mzdFrfLTlMvklt//ukZdayM6vTnDilxgq\nyrT4N/Gg0+MROtfuMtX8oPR5SEVFT2KRtokhCEIwEA7sq3a8HpChj2CdnJcI7wg2jN3A8SnHae7T\nnAnrJxAxN4INFzfc8boPPvhAH91MLlNOuXKgZLtOmgQREXDtmuXYs1GjRpSVlRETE2Py50CRz11c\nnBS41LZtnS+xtHGpSLtXQwn9LikpoX///uzfv5/NmzczduzYO57/3HPPGaqebMhlTxeFF3AtL8xh\n468L+X7vGgA+GTkddydnerWJAGDbUZ3jZWsh51jqEOzOL0+3Z1TbAPwHTGLNySQeXXSc49drbnkr\nLSwjan0smz8+QlpsDtZ2VnR6PIK+L7TRa7uYqeYHpc9DKip6Mg+YKwjCYqRA/b9EUTxf7Xg/4KQ+\ngvVKMdIuoB3rxqzj5LMnifCKYNiqYbz4x4sUlyv3jZuKabG2hk8/lYqzb99ubm3qRkBAAMHBwaxe\nvZpdu3ZRUaH7/up7isoEBri7m1cPFbOye/duDh8+zKZNmxgwYIC51VHRg/KSAtYf2UKFtoLeER3p\n30zaZj6kS0sAVu04Qlm5suc7Zztr/j24MYseb0U9d3uSc0uYvOI0c/depaiwlHNbrrH+3b84tzWO\nijItfhEePPh/nQjrEaTziouKiorhiKL4PfAi4Im04nJrwbhAYIk+sg3Kj9jGvw2bHt/Ef4f8lwXH\nF9B1cVcupl80RKTKPcTw4dC1K7z5JhhhS7XsaDQaxo8fT58+fThw4ACLFi0iNTXV3GqZj8DKrDxJ\nSebVQ8WsbN++ncDAQHr27GluVVT0RNBqiRWldMkDW3S/+flD3Vvj4+5CckYOmw5GmUs9nejYwJ01\nk9szvJUfoihydFscq946QNSGK5QVleMW6ESvZ1vS78U2OHk5mFtdFZX7GlEUl4ii+Igois+Loph8\ny7Gpoij+po9cg+u8CILAtE7T6BHcg9FrR9Pzh56c/9d5vB3/jsFJT0/H21uvmJzbIodMOeXKgdLt\nKgjwzjvpPPywN7//DsOGGUWsrGg0Gnr16oWnpyf79u3j+++/Z/jw4TTXIe5DHxT53Hl6SvVddHDg\nLG1cKtLu1VBCv3fs2EFkZGSd315nZWUZopqsyGVPYwS8y4l3cGPSSwsA6NG43c3P7WyseWpIN2b/\ntJVVO44wvFe724m4K6YaS1XtvD8knFbXiyi5kQlAvp2GfqMiCOnsj0ZjnJUWU/fJUljqa4VjkMJr\nG93HuOUrY6VREIS9wE5gN3BIFMUyY8k2vDJVJW3827Bvwj7KteW8vOXlGscmTZpkrGZklSmnXDmw\nBLsuXDiJjh1hwQKjipWdd955h2eeeYamTZuydu1a9uzZI2tQriKfu9JSqKgAJ6c6X2Jp41KRdq+G\nufudkpLC6dOniYyMrLPsmTNn6quW7Mhlz2yFF7Wyr1cPrZUVVqJIiG/9GseG9mgDwJHzVygsLvmn\ny+uEqcbSpEmTqCjTcnDJOUrOZIIAf3lb862PwLrCQqM5LlVtmQKlz0MqKnpyFZgI7AWyBUHYIQjC\nvwVB6CoIgkHer9GcFwA/Zz/mDJ7DijMr2Ba77ebnM2bMMGYzssmUU64cWIJdZ8yYwbPPwpYtUvy3\npTBjxgxsbGx45JFH6NevH3v37uXXX3+VzYFR5HNX9YVMh5gXSxuXirR7Nczd702bNgHoFOsyZcoU\nfVQyCXLZU/EB+5X6OecXUJCZXuNYSKAP9Xw8KC2v4K+zV/Ruw1RjacaMGRxeHs31E6lorAS6T2rO\no082RysI/O9IAidv5Bi1LVOg9HmoFoKg/ij9RwGIojhBFMVGQAjwApAATAEOAFmCIPwhCMLr+sg2\nqvMC8GSrJ2nk3qiG89Kunf5L0bdDDplyypUDS7Bru3btGD0anJ1h8WKjipaVKjsIgkDPnj157LHH\nOHv2LHv37pW1PUUREyP9rl//zudVw9LGpSLtXg1z9vvChQu88sorDBs2DD8dav3crv6LEpDLnjY2\nyi58mFksFal0KSziRvSJGscEQaBN42AAriWn17q2rphqLDUJaU7csRQAej3figbt/ejT2IsHmkvF\ndLecTzNaW6bqk9LnIRUVQxBF8Vpl7Mt4URQbAGHAN0A34DN9ZBrdeREEgTDPMK5lXzO2aBULxdkZ\nnnhCcl7K617bVFE0a9aMvn37snfvXmKqvtTf65w8Cba2OtV5Ubk3yMjI4KGHHiIoKIhly5aZWx0V\nA0nIluJkXQqLSIo5W+u4p6u0NTQrr8CkeunDtaPJiCJ4N3IlsJnXzc8HNpFiRg7EZppLNRUVldsg\nCEIDQRDGC4LwA1IczHTgGKBXnnCjOy+ZRZnE5cRRUKb8SVDFdDz7LCQmQuUuFIskJCQEKysrDhw4\nYG5V5Ke8HFaulGq82NqaWxsVE5KcnMyAAQPIycnh999/x9XV1dwqqRhIao60GuFSWEhWYu39uzbW\n0vbzouJSk+qlDxnXpFUkvyaeNT7v1MAdjQDx2cWk5yu/Hyoq9zqCIDwlCMISQRCuAGeAscAl4AnA\nXRTF/qIo6hUkaVTnJbckl0HLB5FZlMnsgbNvfr5Yhv1CcsiUU64cWIJdq+S1aQMdO8LChUYVLxvV\n7SCKIn/++Sc//PAD/v7+PPzww7K2pwg++wwOH4YvvtDpMksbl4qz+y2Yut+xsbF0796d1NRUdu3a\nRUhIiM6y161bZ6h6siGXPZVeIT27UIoDcSgpxcWr9hbA6DgpHXpYvbpvD7wVU42lfZe3AnAjKq1G\nDKKTnTUelYUo0wuM47yYqk9Kn4dUVPRkKVIhylmAlyiKg0VR/FQUxYOGZh4zmvNSoa1g6E9DicmM\nYdu4bTTzaXbz2IkTJ+5wpX7IIVNOuXJgCXatLm/KFPjjD0hOvsMFCqFK76KiIpYvX87OnTvp2rUr\nEydOxNPT8y5X69+eIjhxAmbMgHfeAR1re1jauFSU3f8BU/Y7ISGBbt26YWNjw8GDB2nZsqVesi9c\nuGCoerIhlz3LyoyWAVQWsoukgrN2pWV4BATXOKbVajkbewOA1mF1j2+7FVONpficWKxsNOQkFtxc\nhanCy0laJc4wkvNiqj4pfR5SUdGTqcAh4H0gVRCE3wVBeFUQhA6CgZVjjea8LDqxiL1xe1k3eh1t\nA9rWODZv3jxjNSOrTDnlyoEl2LW6vFGjQKMBS9h1NW/ePDIzM1m8eDFJSUk8+eSTDBgwACsreXLb\nK+q5mzkTQkPhvfd0vtTSxqWi7P4PmLLfa9euJTs7m3379tGgQQO9Zb/11luGqCYrctnTzc1NFrnG\norBEWhmyLS+v5bxcS84gt7AYO1trGtfXf+XFVGPpuwXfEtRSim9JPJdR45hn5cpLZoFxnElT9Unp\n85CKij6IovidKIpjRFEMALoDm4FOwCakbGObBEF4TR/ZRnFeMgozeGfXO0xoM4HeDXsbQ6TKPYir\nq7R17MgRc2tyd+Li4li0aBEATz/9tF7bZyyS6GhYvx7eeAMUnkFJxbhs27aNnj174uvra25VVIyM\ntnJ7lVVFBR4BNR3TM5WrLs0aBt6MfVE6/k2l1e+UizULonpWrrxkFqoxLyoqSkIUxfOiKH4riuJo\noC0wF+gBfK6PPKM4L18d+oqyijI+669XxjOV+4iePeFs7WQ3iiIuLo7ly5fj6+vL5MmTZdkmpli+\n/Rb8/WHcOHNromJiYmNjOX36NEuXLlV8xXgV/bDSirj7BdX47HSl89IqtJ45VNIL/wgPANKv5lJR\n9vez6uUkvXDJMNLKi1LZv38/Q4cOJSgoCI1Gw4YNG2ocnzhxIhqNpsbPAw88UOMcQRDsBEGYJwhC\nuiAIeYIgrBUEQX1zoWJ0BEHwFQRhtCAI3wqCEA3EA68BJwHzBOyXa8tZcnIJT7Z6Ej9n/ZecVe4P\nvL0hP9/cWtyehIQEVq5cSf369Rk3bhwODg7mVsl0VFTA2rUwZgzY2ZlbGxUTs23bNvr168fEiRPp\n2rUrhw8fNrdKKkbG3ssXa9uaY/v81QQAWoRYjvPi5GWPjb0VolYkL/XvZAmejpUrL0aKeVEqBQUF\ntGnThvnz53O70IEhQ4aQkpJCcnIyycnJ/PTTT7eeMgd4EHgU6AUEAr/IqbfK/YUgCPMFQTgPJAHL\ngBbAWiASKdtYH1EUzZMq+Y/Lf5CUn8TT7Z6+7TlDhw41tBmTyJRTrhxYgl1vlefiAkpNzFNcXMzy\n5cvx8/Pj559/xtra2mRtK+K5O3wYkpJg5Ei9RVjauFSE3e+AKfsdHBzMqlWr2LdvH6WlpXTp0oVZ\ns2bpLHv69OnGUFEW5LJnZqaya4tYVX7BdfDxr3Xs/DUp01jzRoEGtWGqsTR06FAEQcAt0BmA7MS/\n34Z5GnnlxZR90oXBgwczc+ZMhg0bViPjWnXs7Ozw8fHB19cXX1/fW+OynIBJwHRRFPeKongSmAh0\nFwShk369UFGpRVtgHTAY8BBFsacoiu+KorhLFMViQwQb/O1s+5XthHiE1ArSr860adMMbcYkMuWU\nKweWYNdb5Wm1UtC+EnelVFRUUFxcTLt27ahXz7RvIRXx3DlJheoM8S4tbVwqwu53wBz97tmzJ8eO\nHSMoKIj4+HidZY8aNYp9+/YZop5syGVPp6qxo1BsrKypAET72ivJRSXSKoWbs6NBbZhqLFW14+gu\nrSCVFPxd+TinSHJanO2ME7tj6j4Zkz179uDn54eHhwf9+vXjo48+qn64KdL3v51VH4iieFEQhOtA\nV8ACIlNVlI4oil3lkm3wysuf1/+kZ/Cd06kOHDjQ0GZMIlNOuXJgCXa9VV5+Pjga9jdSNpycnAgI\nCODKlSsmfw4U8dy1agUNGkgB+3piaeNSEXa/A+bq9/Xr10lJSWHAgAE6y+7aVba/VwYjlz3tFL7N\n0k4jrUiUaitqHXOyl3QvKCoxqA1TjaWqdqxtpa8vFaV/9ykmTXrxEuptHGfS1H0yFkOGDGHZsmXs\n2rWLWbNmsXfvXh544IHqqzReQKkoirm3XJoC1F6eU1FRGAavvESnR/NU66eMoYvKfcD+/eDjA7m3\nTpkKISQkhFOnTiGK4m33Et+zCAKMHg1ffw2DBoEMxThVLIP//Oc/2Nvb07u3mj3yXsDexpZCyiks\nqx0L4uxoR1p2HrmFRWbQTH801pXOS/nfy/jRydIWsjBfZa+Eyc2oUaNu/rt58+a0bNmS0NBQjh07\nZkatVFSMh8HOi7OtM4VlCg1iUFEUmzfDpk0wa5aUiVeJ1KtXjwMHDpCbm6v42g2yMHMmxMbCI4/A\n//4HY8eaWyMVE7N9+3bmzp3L119/jbu7u7nVUTECznZOZJJDdnHtbClers5cTUwnI6fADJrpT3mp\n5LRY20hbxLILy7icJvWhbT1Xs+mlRBo1aoS3t3f1baAZgK0gCK63rL74AXctI524aS5W9jUdRPfW\n/fForftKrYphZEXtIDtqZ43PbCos60WEPhi8bczD3oOsoqw7nrNu3TpDmzGJTDnlyoEl2LVKXlER\nvPQS9O8P/foZtQmjEhQkpRFdsmSJSdtVzHNnZwerVkmpkp94An79VafLLW1cKsbut8HU/S4uLmbi\nxIn0799f7334u3fvNkQ1WZHLnsXFBsWeyo6rowsAuaVFtQK8vdykwPeMHMPSQJpqLFW1U1EmbRez\nqtw+dvJGDgAh3o54VdZ7MVZbciN3Ozdu3CAjIwNvb++qj6KBcqB/1QeCIEQAwcBfd5MX+OA0Gj31\naY0f1XExDx6tB9S6F80fU27SFGNhuPPi4EFW8Z2dl39I0WcwcsiUU64cWIJdq+TNmAHx8TB3rrQ7\nSam4uLgQHh7Ojz/+SKEJ06Ip6rmztoYlS2DYMHj+edAhk5KljUtF2f0fMHW/165dS0JCAvPnz0ej\n0e/Pw9atWw1RTVbksmdRkbLfdDpUviUvQ6QoL6fGMe9K5yU9J8+gNkw1lqraubnyYiutvFxIkZyv\nFgEuRm9LbnRtp6CggKioKE6dOgXAlStXiIqKIj4+noKCAt544w0OHz5MXFwcO3fuZPjw4YSHh1eP\nRysAFgP/EQShjyAI7YElwAFRFNVgfRXFY5yVl7s4L6tXrza0GZPIlFOuHFiCXVevXs3hw/Dll5ID\n06SJUcXLwkMPPcTjjz/O5s2bTdam4p47jQbmz4eSEnjttTpfZmnjUnF2vwVT93vhwoX069eP8PBw\nvWV/9plyixXLZU8PDw9Z5BoLWxtpJUKr0VCQnV7jmLeRVl5MNZaq2qkK1K9aeakK1m9sxHgXU/ep\nrhw7doy2bdvSvn17BEHg1VdfpV27drz//vtYWVlx+vRphg0bRkREBM888wwdO3Zk37592NjYVBcz\nHdiIVHdjD5CIVPNFRUXxGBzzYqWxorTi3i4IpaI/W7dKMeAdOuj0HdisuLi4MHDgQNavX0/fvn3x\n8vIyt0rmISAAPv0Upk6Ft9+Gxo3NrZGKjOzfv5/9+/ezZs0ac6uiYmSsNdKfesl5ycAnOOzmMQ8X\n6ct+Vp5lxa6KWmn7m6CRlvKjK1deGvvc+8H6vXv3RnuHegNbtmz5x8+rpz4XRbEEeKHyR0XFojB4\n5SU2M5YQ9xBj6KJyDyGK8NVX8MAD0KMHbN8u7UayFJo2bYpGo+HKlSvmVsW8TJgAHh6wcKG5NVGR\nEa1Wy6uvvkr79u0ZMWKEudVRMTKaSuelQhAoLaoZmG9vJ72NLy41TmFHU2FjL/WprLicjIJSErKL\nETDutjEVFRVlYpDzUq4t50rWFcK99N9ioHLvkZQkrba88oq02rJ+PbhaWPIXOzs76tWrx9WrV82t\ninlxcIDx4+GHHyA729zaqMhAbm4uL774IkePHuXLL7/UO9blfuXo0aOkpaXh5uaGm5sb3bp1q/Xm\n+7333iMwMBBHR0ciIyOJiYmpcbxPnz5oNJqbP1ZWVnz66ac1zhEEwUMQhBWCIOQIgpAlCMIiQRDq\ntMxQfeWlpLDm9jB7W8l5qSpWaSnYOFY6L4XlHI2T5qZQH0dc7C3oLZmKiopeGPRXKi47jjJtGY29\n7rydZOLEiYY0YzKZcsqVA6XZVauFb7+V4lr27IHVqyE1dSJWxil2bFImTpyIj48P2Sb6wq7o5+7V\nV6GsTPp9FyxtXCra7sjbb1EUWbFiBRERESxZsoTZs2fTp08fg2XPmDHDYBlyIYc9XV1d0Wg0nDhx\nguPHj9OvXz+GDRtGdHQ0AJ9//jlz585l4cKFHDlyBCcnJwYNGkRp6d/OgiAITJkyhZSUFJKTk0lK\nSuKll166tamVSJXR+wMPAr2ABXXR0dFOqgxcYmNDfmZqjWOerpL/k25gzIupxlJVO7YOkpNSWlTO\nL6ek7L69w4y7xdfUfVJRUakbBjkvlzMvA9DY887OiyVUgpdbrhwoya4nT0K3blJ4xOjRcOECjBpl\nWfaszsCBA3F2diYvL69WalG52lMs9erB7NlSBrI//rjjqZY2LhVtd4yvn1arJTY2Fnd3d/r06cO4\ncePo0aMHFy5c4JVXXjFKG126dDGKHDmQ435HRETg6OhIaGgoYWFhfPTRRzg7O3Po0CEAvv76a959\n910eeughWrRowbJly0hMTKyVHtfR0fqNzioAACAASURBVBEfHx98fX3x9fXF0dHx5jFBEJoAg4DJ\noigeE0XxIFKswhhBEO5aEd3FXqpZVWxnS3ZqQo1j/l7SseSMnFrX6YKpq9HbVDovSWmFHInLRiPA\nY20DZGlLbpQ+D6moKA3DnJeMy9ha2RLsFnzH88bKUOhODplyypUDJdg1MREmTYL27SE/H/78UwqP\n8PSUT0dTMHbsWAICAsjPz2f79u2yOzCKt9PkyVIA08iRUrXR22Bp41LpdjdEv6KiIo4dO8aiRYuY\nNm0aPXv2xN3dnbCwMObMmUNGRgbbtm1jzZo1BAffeQ7XhcGDBxtNlrGR6347ODgAknO4atUqCgsL\n6datG1evXiU5OZn+/W+W08DV1ZXOnTvz1181y2msWLECHx8fWrZsyTvvvHNr7ZiuQJYoiierfbYD\nEIHOd9XPTooDKbKz5frZozWO1ff1xEqjISuvkCsJaTr0uiamGktV7VStvPx5Qcqe1i/cmwA3e1na\nkhulz0MqKkrDoM2hlzMvE+oRipXGAvcFqRhEYaH0Mv7zz6WwiLlzYcoUywrKvxsREREMHjyYLVu2\nUFRUxP+zd97hUVTrH//MbE3vIYGEhBp6gNAiYKErEMCuYEG8Kor1CvafXC94xXKt2EFFiiAqF0WU\nJtJrACnSISGJgUB62WyZ+f2xJCbUkMxsSebzPPuk7OR7vufdM5N9d855z/DhwxvuegBBgIUL4Y47\nICUFPv/cuZhfwyM4depU5b4PFY8DBw7gcDgQRZGEhAQ6d+7M8OHDSUxMJDExkaioy35gr1FDbDYb\nAQEBWCwWAgIC+OGHH0hISGDjxo0IgkCjRo2qHd+oUSOys//eyHz06NHExcXRuHFj/vjjDyZNmsSW\nLdW224gCqs33kmXZIQhC7tnnLone4Fx0aDEZObBxOZbiQsz+zt8F+Jrp27k1q1P388OaVP55x+Da\nBcHF7Mt1VkfT2WW6xgbyf9dr1RA1NBoKdXqrefDMwcuud9Gof+TkOKeIpaXB44/DCy9AcLC7XalD\nz5498fHxYdGiRciyzIgRIxA8eZdNNfHxcSYwDz8MY8fCli0wdaqzGpmGy9m/fz9z585l3rx5lQvA\n/fz8SExM5Nprr+WJJ54gMTGRDh06VJuCpKE8er2eXbt2UVBQwMKFC7n77rtZs2ZNjf/+/vvvr/y+\nffv2REdH069fP8X8iXpnomI1GCiX7BzYvJLE/qMqn7/xmq6sTt3P4nU7PD55yS60MG35ETL35jAS\niEPkmRvb4+NjuOzfaijDPSftNJPs7rahcRFOOSTWutuEylzRx8g33HADKSkplY+109ay5V9bzpu7\nu2zZMlJSUip/XrduHQCPPPIIM2bMqHZsamoqKSkpnD5dfeOsl19+mWnTplX7XXp6OikpKezfv79S\nE+D9999n4sSJ1Y4tLS0lJSWl2nHg3Mn2QovjbrvtNhYtWlR5/Lx580hOTiYqKqqyv08++eQl41NT\nzo1jSkoKycnJl41jBRVxrNq32saxKu+///55t6/PjaPN5lzTcvLkPIYNG8sbb1RPXCriWMHkyZNV\niyMoF8uqpKam0qdPn8pYdurUiZEjR/LOO+/w2GOPVTv2UrG8kjF5ww03nOft3Fh6xJhctYqU7Gx4\n9134+mtISIBZs3jk4YdVG5MTJ06splvbc7vqcRVx7NOnj0ePyYo+VsRyz549/Pe//yUpKYm2bdsy\nbdo0goODWbBgAQcPHqSwsJB58+Zx4sQJ+vbtS48ePSoTl6pjskJXyVhW9PW+++6rbeiqoca5PWPG\nDMXGZFWsVitPPPEEJSUlTJ06lcTERN599122bNmCJEmcPHmy2vG//fYbJSV/lyw+N46vv/76uVNV\ns4HIqr8QBEEHhJ597pK8MeEuSpceJnfxXhadEHn0+X9Xi+WAbu0QRYG9O7YyaMj15/19Tf53V4yh\nusbyYmNy9py59B12K/2fm8mqg2fIMAtIJh2f/G8y7z//cbVjr/R6f7ExMX78eMX7caFza926deed\nW3Xtx7x580hJSSEhIYF27dopfp3T0HAnQk3m8guC0BXYvn37drp27QqA1WHFZ6oPHw39iAeSHrjk\n36ekpLB48WIl/KqqeTnd1NRUkpKSAJJkWU69Uu0LxbEuuCOuTz0F778PK1fC1VfXTq+ucQTlY3ku\nF/K9ZMkSduzYwbhx44iOVnZhaG1fS7eOyawsZwWyb76Bvn1h1ixSHnvM5eelErqeOiYr/K1atYqp\nU6fy22+/YTAYGDZsGHfeeSdDhw7FbL7yef5qxROcG+idvevgEdfJqqjR73//+99MnTq12hqV/v37\nExcXx8yZM2ncuDETJ06sfONYWFhIo0aNmDVrFrfccssFNdevX8/VV19dsRFhElAK7AW6Vax7EQRh\nEPAzECPL8gUTmIpYvrHwd3bnr2H57mUkpJ3gjfun0m3ondWOHTbxXXYeSuftx27nln7drzgOao6p\nzHwLT32/j/0nizk26zlGPTedF4e0IiCvnFXv7QQZeo5uQ4vejRVtV80+uaMdpf5fTLn5I5pFaFtk\neCqnHCd48tN7ocrrXPHatXzkM3ybKPPalWYe5PD0f1Rrx1XUegL/sbxjSLJ02UpjAN98801tm3Gp\nppq6auDquObmwnvvwSuv1CxxuZyeJ3Mh34MHD8ZgMJz3qZta7Xk8jRvDvHmwYgWkp8PIkXzzxReq\nNNVQz/cKf1988QWrVq3i/fff5+TJk3z33XfcdNNNtUpcquqqwauvvqqadl1Ro9/Lly/Hz8+PtLQ0\n9uzZw3PPPcfvv//OmDFjAHjiiSeYMmUKP/74I7t37+buu+8mJiaGESNGAHD06FGmTJlCamoqaWlp\nLF68mHvuuada4ibL8n7gV+AzQRC6C4LQG3gfmHexxOVc4iI7AnAyJJiAsEbnPZ+UEAfA/vQayZ2H\nWmNq/8li7p61k/0niwk06/lk5iy+uCuRVpF+RCWE0nFoMwC2zDtA1t4zirbtquuDp1+HNDQ8jVon\nLwfPHASo0ZoXNeZbqzWH25vmhrs6rr/+Cg4H3H23MnqezIV86/V6JEmq9RvGK23Pa+jfHxYvhgMH\n8H3hBVWaaKjne4W/l156CYPBQG5uLsEKLDBTs98Vlbc8ETX6XVJSQkFBAW3atGHAgAFs376dZcuW\nVa5ZmTRpEo8++igPPvggPXv2pKysjKVLl2I0GgEwGo2sWLGCwYMH07ZtWyZOnMgtt9zC22+/fW5T\ndwL7cVYZ+wlYAzxYE496AZpHJwKQH+BPePuk846JDHWui8mt5X4vasR207E87pu9i9MlVlpF+LFw\nXBJ3JLdArLLusMOQeOK7N0KWZNZ9voczaYWKte+q64OnX4c0NDyNWi/YP5p3FLPeTOMAZW/Tangu\nS5dC587QpIm7nbiHsrIyrFar9o/mQnTqBO+8Aw895Kyd3aOHux3VK1q3bs2TTz7J1KlTCQwMZMKE\nCei8cffXesjIkSP566+/yMrKuugxkydPvujmnTExMaxevfq836emVp+FIctyPjCmNh5DTCKBfqGE\nimZyJQs70v9kQPvk6scEOK9ruUUlF5JwC5MW/UmJ1UH3uCDevrE9Aebz37IIokDPu9piKbKSvT+P\n7d8eYtDT5ydnGhoa9Yda33mxOqyY9WZEoYGWjm2AbNkCffq424X72LJlC3q9npYtW7rbimfSu7fz\nq12rQqMGkydPZty4cTz55JMkJyezc+dOd1vS8BYszg0oTQbnXTGH7DjvkOLScgD8fZS/s1xbGgWa\nABjRMeqCiUsFOr1Ip+HNASgrKHeJNw0NDfdR68xDEAQkWarRsedW4VACNTTV1FUDV8a1qAgOHoQr\nXT/rTfGsyoUqx2zevJmuXbvi5+enenteSUYGE0GVW3MN9Xyv6s/Hx4fp06ezfv16ysrK6NatG089\n9RQnTpyok67SvPPOO6pp1xW1+l1YqNxUJTUoyk4HQDp7t87XeP7UvpN5zj5EhgTUqg01YnttqzAA\nvt3xF3mltku2U1HCXnIot6Gwq64Pnn4d0tDwNGqdvJj1ZspsZTXaeVzJ3ZvV1FRTVw1cGdesLJBl\naN5cGT1Pp6rv7OxsPvvsMwRB4KqrrlK9Pa8kNxeefpqmoaHOhfwK01DP9wv5S05OZvv27bzyyit8\n/vnnxMfHM3LkSJYtW1ZRnapWukrhyZtfqtVvT5/CV1ZWhs1hI6/ceQemUWDYecfsPZoJQFzU+c/V\nBDVie327SPSiwK7MQkZ9uo2f9pwkNjb2gsfuX+VM4n1DTIq176rrg6dfhzQ0PI1aJy+RfpHYJBsF\nZy+Gl+LRRx+tbTMu1VRTVw1cGdfa7svoTfGsSoXvvXv3MnPmTMxmM//4xz8ICgpStT2vpLQUUlIg\nO5tH168Hg/KbxTXU8/1i/oxGI88//zyZmZlMnz6do0ePMnjwYBISEvjvf/9Lbm5urXSV4Pbbb1dN\nu66o1W817sYqiRzchOMn92N12Aj3D6FVo7hqz5eVW9my7ygAfRNrV0ZVjdg2D/flizGJtIzwJa/M\nxgs/HmBvxLVk5luqHXd8azZp204iiAJJtyhXwtdV1wdPvw5paHgatU5emgQ4p4b8fOhnxcxoeC4V\nyUsNbrTVG9LS0li4cCEJCQncd999ilR5qndkZ8PgwbBjByxZAm3auNtRgyIgIICHHnqIXbt2sW7d\nOnr06MGzzz5LdHQ0KSkpzJ492+OnNGmojxgUxeHsvQBc1apL5RSrClIPpmO1O2gcHkzzxhHusHhR\nOjUJ5JuxXXn0mniMOoFNx/MZ89UO9mQVAXDyYB6b5zjL13e4Pp7w+EB32tXQ0HABtU5ekmOTub3D\n7dy76F5+OviTkp40PBDx7EhpSMnL3r17CQoK4sYbb8Sgwt0Er2f9euciqCNHYPly6NnT3Y4aLIIg\n0Lt3b+bMmUNGRgbTpk3jzJkz3HXXXURERDBixAjmzJmjJTINFVHgVM4xABKimp33dN7ZCmMxESHn\nJTaegEEncv9VTVl4fzfaNPInt9TGuLm7WL46jd8/+gOHVSK6XSjth8RdXkxDQ8PrqXXyIgois0bO\nYljrYdy04Ca+2vnVRRfwq7GpnxqaauqqgSvjWvH/rIZT6i+r5+ns37+fgwcP0rp1a5f8M/eqODkc\n8NZbcO210LIlpKbC2bVA3nZeenrca+MvMjKSJ554gvXr15Oens60adPIyclhzJgxREZGMnLkSKZP\nn45dpapwx44dU0VXCdR6vdWKpZKcyXUu2g/RGc97rrTMWaHLz6f260VccS7FhfrwTDcj/aIC6ZVj\nI/PbI9jLHUS1CeHqBzsi6pStfuqq64OnX4c0NDyNOp3pBp2Bb27+hhvb3si9/7uXLp904ccDP563\niH/SpEl1Mnkh1NBUU1cNXBnX2k4b86Z4VmXSpEnYbDaX3XHxmjjt2AG9esHEifDYY7ByJVRZoO1t\n56Wnx72u/mJjY3niiSfYsGEDaWlpvPrqq2RmZjJhwgSaN2/OlClTyM6u3Y7qF+O9995TVE9J1Hq9\nPf2OluRwkFH0FwDr35zEntU/Xvi4OtxaV/tckhwSJ3bmMGH0I3TfmkvPIhmjDMdMAv+L1FNku8JP\n1mqAq64Pnn4d0tDwNOr8MYVRZ2TeTfNYf996QswhpHyTQu+ZvVl9fHXlMR988EFdmzkPNTTV1FUD\nV8a1ttPGvCmeVfnggw9o06YN+/btq1FFPSXa82hKSuDpp6F7dygvhw0bnHdfzknuvO289PS4K+mv\nadOmPPXUU2zdupWffvqJQYMG8eqrrxIbG8ttt93G77//rkg7nvxGTK3XW61CHkqRfvoI5bIdX4eE\nT2YGnz2awoIpD1NakAdAaKA/APlFpbVuQ63Y2q0Odv98jP+9tJG1n+7m9s4PARDVNhRxYBP+F6Vj\n9bE8bp25nd1ZyiaRrro+ePp1SEPD07j4rk9XyFWxV/HbPb+x4ugKnl/1PNd9dR0Dmw9kar+pdG/a\nXalmKmmopVOr4spSyRXvUcvKlNHzdJo2bYrdbic1NZWMjIyLludUsj2P5pFHYP58mDIF/vnPi1YU\n87bz0tPjrpa/oUOHMnToUN544w2++uornn/+eRYsWMCmTZvoWce1S9HR0Qq5VJ6GWio5PecQAMN6\nXs81TXuyetZ/WT//I7b9NJtr7nyM0D63AZB1Oh9Zlms1VVaN2FqKrPz+0R+cOe5MSkz+Bq4e1J2W\nfZrgH+7cqyb0z1AmLvqTk0VWXl9+hK/v6aJY+1qp5AvzZaQO3yaePeYbMkHFnrduTWkUnSAqCAID\nWwxky/1b+P7W78ksyqTH5z24cf6N7D21V8mmNFxMdDQEB8OuXe524jqaNWtGSEgIW7dudbcV97Ny\nJTz6KDz7rCqlkDXcgyAIrF27lrKyMiZMmEDXK92FVsMrsNicnzo1CYtm1MS3ePjT5US36kh5SRHL\nPpvKt+P7ohcgJ7+Io1k5bnbrpOhUKcve3M6Z44UYffUk39OOkVN703lkS/zDfZBkmXnbMnnppwMA\n+Jt0jLvKu5IADQ2N2qHs6razCILAqLaj+OOhP5g1chY7s3fS8aOO3PXDXRzOPaxGkxoqIwjQowds\n3uxuJ65DEAS6devGvn37KCoqcrcd95GVBRkZzgGg4fVIksTOnTt566236NKlC6tWreK7777j/fff\n16rq1VPsDufu9Ca98/VNSB7ApIU7ue+d72nSpjOO0gJCSp0L+r+at9BtPgFkWeb4tpMse2M7xTll\n+IWZGTQxidBOYWzJKGDGxnT++f0+rv9wC68tP4LFLtEzPpiF45K4tlXtNtjUuEIEQXt4+qOeo0ry\nUoFO1HFX4l3cX3o/H9zwASuPrqTNB20Y979xHMurW0WaadOmKeTSNbpqoIbXS2kmJV35nRdvimdV\nKnx36dIFk8nETz/9pOraF4+Ok68vBAXB//532UO97bz06LijjD9Zljlw4AAfffQRN998MxEREXTp\n0oWXXnqJjh07smPHDm688UYF3Dr58ssvFdNSGrVe7+LiYlV0lcLfx7kmZ/W25ThK8gEQRZHE/qOY\nuCCV+9/7Hx38nRs/frn2IN8tmH/FbSgR2+IzZayevosNM/dSXmJDCjOxqX0Ad3y/l6vf2chD3+zm\nxX+9yooDp8kuLMdsEHlmYAs+vr0j0UHmOrd/Lq66Pnj6dUhDw9NQbM3LpSi3lPNw94cZ23ksn2z/\nhP+s+w+z/pjFuC7jeL7v8zQNuvJbvaWltV9Y6A5dNVDD66U027VzfgBfWAiBNdwHzJviWZUK3z4+\nPqSkpPDNN9+QmppKUlKSqu15JMHB8N57cM89cOONMGrURQ/1tvPSo+NO7f1lZWWxfPlyVq5cyapV\nq8jMzESv19OzZ08mTJhAWloan3zyCSZT7UvjXgyLxXL5g9yE0q+3JEmUlpa6pKhHXeijt7EN2Hwq\njQ1v3E7r5nHoA0IRTf6I5gDizAG898xoUl77lWNSKM98vZpIH+g9eASCwVSjNTCXi63dIVFUbCW3\noJyC/HKKi6wUF1kpLbZSXmLHWlCO/mAhOknGDmwIFNnsY0c6llepERtsxi9I5MF+zWgbFUC7KH/8\nTeq9jXHV9cHTr0MaGp6GUJOLriAIXYHt27dvV2ROdIm1hA+3fsi09dMoKC/g1va38mSvJ+nWuFud\ntdWkypvXJFmWU6/075WOo6tZvx769IE//oCOHWuvU9c4gutjuXjxYnbs2EHr1q3p0aMHzZs394jN\n3Fw2JmXZmbQsXQoPPQTPPw+NGtXat6fhjWPyXPLz81m4cCFz5syprBzWuXNn+vfvT79+/ejbty/+\n/v6q+6gv10lZlsnJyeHEiRPVHhkZGZXfZ2ZmYrfbadmyJYcOHVK0fSXH5IvTUvgiuxBJcvBkbHtG\nndxCbqmN7XlGdpX4c8gWTIYQQYn+70+l+pRtYWpn51oZQSdi1xsp0flTog+jhBDKxGDK5CDKZX+s\nsh92yYxdMiE5DODQg11E5xDR20EvgclRs09L003wa4gOc7iZ9tEBtIsKoH20P20b+RPoo01rrAtK\nnZstH/kM3yatFfenoQxBxWmsffVuqPI6q/HalWYe5PD0f1Rrx1W45M7LufgZ/ZjYeyIPdXuImTtm\n8u7md5m7ey59mvbhyV5PMiJhBDpRq2ThaWRlOb82aeJeH+5g6NChxMbGsnnzZmbPnk14eDg9evQg\nMTERo/H8Td/qHYIAc+fC22/DG2/A55/D448793sJCXG3uwaLxWLh559/Zvbs2SxZsgS73U6/fv2Y\nOXMmw4cPJyxMWwNwIWRZJjc397xk5NwkxWq1Vv6N0WgkJiaGmJgY4uLi6NOnD7GxscTGxtK5c2c3\n9ubyfLzzBIZIf5qHt2LNbhvfWQbiMDfC7OODr7+JQJ2RJMGAj6jHDxF/QSRAvI5F5Xr0sh6DJGCS\nBUzS+XPNjWcfNUVCxiqCVZBwiA4coh1EO+hs6HxyaRdymFG+hQT76BFtvoin/BEK/ZHSAik0ByL6\nBCL6hiGa/BCNvogmHwSjL6LZH0FUdSa8hoaGh+CW5KWCAFMAj/d6nAk9JrD4wGLe3vQ2Ny24iWbB\nzZiRMoPrml3nTnsa53DgAISFQWiou524Hp1OR5cuXejcuTPp6els3ryZpUuXsnLlSjp16kTHjh2J\niYnxiLsxquHrCy+8AA8/7Exg3n0XPvwQXnrJmcjo3Xo5aVBkZ2czZcoUZs+eTUFBAUlJSbz22mvc\nfvvtHl2q2J1s27aN5557jvT0dE6cOEFZlbrver2eJk2aEBMTQ2xsLD169KhMTCp+FxERgejFb447\nxt9A6Jke9A2AYN8LHCADjppp2QUZmyjj0Mk4RAeyaEMQrYhiOTqxDL1QioliTBRhohBfuRA/OQ8/\nRz4myi6+ntgCOPfS5EpXEYm+Qfi26olPq174tuqJPrj+3Bn2NN4s+i/t8y80iDQ8gQOWQNa624TK\nuOTdxunTpwkPD7/o8zpRx6i2oxjVdhTbs7bzz2X/ZMQ3I1gzdg2doy78idblNNXy6kmo4fVSmmvW\nwJXO4vCmeFblYr4FQSAuLo64uDjy8/PZtm0bf/zxB1u3biUoKIj27dvToUMHoqKiriiR8ao4hYTA\nq686E5Z//9t592X+fJgxg9PR0V51Xnp63M/1V1xczJtvvsmbb76J0WhkwoQJjBkzhjZt2tRJV0ny\n8vIuf5AbWL58OWvWrGHChAnnJSaNGjWq014tnj6OOkXcwIDjPWjy940kbKKEQy8gGQ1gFBHMOvRm\nPQYfPUZfPT7+Rnz89PgHmAgIMhIUZCYoyIjZz4DOcH6sLhYDWXKAowzZXopsLUEqL0QuzUey5CNZ\nCpAsRciWIhyWYuTyEiRrCXK5BclahmwrR7KVI9usSDY7st3OmcJyQsx6ZElGcoAsAZKMVFpA8a5l\nFO9aBoChUXN8W/XCt3UvzM26IhqvfEG/q15XTx8/GhqehkuSl/vuu4/FixfX6Nikxkn8dOdPXPvl\ntVw/53o2jdtEXHBcnTSvBLV01UANrxfTLC6G3393fuCuhJ6nUxPfwcHBDBgwgP79+5Oens7u3bvZ\nuXMnGzZsICwsjPbt29OpU6caTd3xyjg1agQffABjxsC4cZCUxH3NmrF4zx7F94JpqOd7hT9Jkvj0\n00+ZPHky+fn5PP744zz77LOE1HLKnpr9fuWVV1TRVYq33npLcU1PH0fXZEXTJAJ0eiutuqynVbIV\n35jbEf06K3a3+GIxEEQdiP4IBn/wgbpOCH9k+DB++OwF7BkrcPy1HiQrsiRjK3ZgLQ+jPN+O9XQ2\ntpNHKTh5lIJ1c0FnwKdZF4L63IFf27517pPSePr4uRD1eI6BhhfgknvgkydPvqLj/Y3+LLlzCTaH\njTc3vKmIZk1RS1cN1PB6Mc1vvwWrFYYNU0bP07kS3xV3Y4YNG8ZTTz3F6NGjK9fHTJ8+nSVLlly2\nmoy3xgmAXr0gNRWefZbJR46AC8elp+oqRYW/X375hfHjx9OvXz8OHjzItGnTap24VNVVgwceeEA1\n7bri66vOVBdPH0ciOmJa72DQA1tJvG00AW2mofPvoug0V1fFYPK/XkEXlYyp20v4DFmIsfNEdJFd\nMAYa8I8oILRFMSEJZvS+Vd7eOGyUHd5CzndTrqgynMv65OHjR0PD03DJnZfaVIyJ8Iug3FFObFCs\nYpo1wZuqgKnh9UKaNptzdtCNN0Lz5nXX8wZq61un09GyZUtatmzJ0KFD2bJlC2vWrGHPnj1cc801\ndO/e/YLTU7w1TpWYTPDKK3R1OJyL+h9+WNHKDg31fK/wV7GO5bHHHqNp07rvIq5mv9u2bauadl1R\naxNOTx9H9sg/6P2PR9D5tVetDVfFoGo7gsEfXZP+2KQoyoqaUnZgDeXZGSBJ1f5GNAgYA3X4RpVR\ntnQkYlALxKCWZx+tEAKaIgjuuy57+vjR0PA0PHaF7f7T+ym2FtM1Wjup3c0XX8CxYzXao1CjCnq9\nnquuuorExERWrVrFsmXL2L59O8OHD1fkDahHMmkSfPKJc03M9OnudlNvSEhIQBAE9u7dS69evdxt\nR8PLiG8rqJq4uBLZbsNyYi+Wo9soO5qKJW0Xsq282jE6/zDMzRIxRTXBFOKDKOQhFx5BLjwOtiKk\n0zuRTu/8+w/0vogh7dCFdUQM64gY0hZBp/weSPWF8E6+RLUIcLcNjYuQ/ZePuy2ojscmL+9seodw\n33B6xWj/qN1Jfj68+CKMHl23vV0aMn5+fgwfPpzu3bvz888/88UXX9CzZ0/69++v2ifBbiMoCHr0\ngBMn3O2kXuHr60vnzp1ZtWoV48aNc7cdDS+jaSt1Ntd1BbLdhiVjL5Yjl0pWQjE3T8Ln7MMQGX/B\nKXGyZEMuPI5UcLjaA3spUs42pJxtzgMFPWJwa2ciE9oBXVgHBGOQK7qroaFRA1yy5mXGjBlXdPyh\nM4eYuWMmz/V5Dn/jhTdVu1LN6x250AAAIABJREFUmqKWrhqo4fVczZdfhrIyeP11ZfS8BTV8R0VF\nce+99zJo0CC2b9/Oxx9/zImzb/K9NU7nMmPGDGfiovCdpYZ6vlf1N2zYMJYuXYrdbldUV2kWLVqk\nmnZdqVoeWUk8fRyZzOrv96NUDGRZpjzrAHmrvyTrs4c5Nvlasj66n9xlH1N2eAvzt2ci+oXg13EA\n4SOfIfapBcS9+CtRo/9DUPLNGBs1u+haHkE0IAa3Qh93PcZOj2Lu+y4+QxdjvvYzDB0fRdfkOgRz\nGMh2pLx9zPjobaxbXqJs6SjKVo3Fuutt7FlrkG1XWsj50nj6+DkPQUDQHp77cPf4cAEuSV5SU69s\n4823Nr5FpF8k47uNV0yzpqilqwZqeK2qefiwc+bPiy9C48Z11/Mm1PItiiLJyck8+OCD+Pr68vXX\nX1NcXOy1cTqX1NRUVZKXhnq+V/U3cOBA8vLy2Ldvn6K6SrN//37VtOuKEonfhfD0cWQwBareRl1i\n4CjJp2jnr5xaMJm0qUPIeHc0uUs/oOzwFmRbOaJfMH4d+xM+YhJpUX2Jf2kZUWNeIyj5FoyNmtep\n8IAg6BCDWmBoPgpTt5cwD1qAecAcjF2fZVdOGIK/s9qpXJSG/fiPWLdOpmzpSCxrH8N24GscuX8i\nyzXcIOciePr40dDwNFwybWz6Fcx9L7GWMHf3XJ7o9QQ+hovP27sSzStBLV01UMNrVc1//xsiI+Gx\nx5TR8ybU9h0eHs6dd97Je++9x+rVq702Tucy/dVXnRtXKpy8NNTzvaq/oCDntBWLxaKortI8++yz\nfPvtt6rp14WAAHXm6Xv6ONLp1J+eeiUxkB12yjP2UXpgI6UHN1CesQ+qVAETDGZ8WnZ3bjrZojuG\nKgnKx1fdqrj3qgiCgOAXjegXzcfzBzn9lhfgyN2DdHoHjlNbkYtPIOXuQcrdA/u/AEMguoiu6CK7\nI0Z2Q/SJuKI2PX38aNQfCvaspizjT0W0rPknFdGpDR635uXbfd9SZC1ibOex7rbSoDlyBGbPdm6i\n7lP/1365BR8fH/r27cuKFSvo06cPwcHB7rZUdyrWutTXggRuRK93Xq5tNpubnWh4H+6fSGIvOEXp\nwY2UHthI2eHNSGVF1Z43RrXENyEZn9bJ+MR3RtAb3eT0fARTEPro3hDdGwCpNBvp1DYcp7biyEkF\nWyGOrNU4slY7jw+IRxfZzZnMhHXSFv9raCiMRyUvkizx5oY3uaHVDTQLaeZuOw2ahQvBbHbuPaih\nHi1atGD58uUUFxfXr+Ql9sIlzjVqT0W55BNaMQSNK8b1yYtst1J2fKczWTm4AWv2kWrPiz6B+LTq\niW/rZHxb90IfFOlyj7VF9I1CjB+GPn4YsuRAyv8Tx6ltSKe2IuXtRy46jr3oOPYjC0E0IoZ1QhfZ\nHV1kN4SACxcT0NDQqDkelbz8dPAn9ubs5eNhH7vbSoNnyRLo31+766I25eXOqjkmUz35ZC49HXQ6\nOPtGW0M5QkJCiIqKUmTNi0YDQ3DJ8lZkh52SvaspSl1C2eGtyLYqUxwFAVNMe3wTkvFtnYwpph2C\nzqPegtQKQdShC+2ALrQDtLkX2VqIIycVx6mtSKe2IltOV1Yys+0FwRyOLioZfXwKYlALd9vX0PBK\nXHJFS0lJuewxDsnBy6tfpm/TvvRp2kcRzdqglq4aqOE1JSWFsjLYsAGuv14ZPW/EVb4PHTqEKIrc\ne++9LmlPbVJeew3i40Gv7JuShnq+n+svJiaGzMxMxXWV5Mknn1RNu64UFBSoouvp4whqvqt8bbDn\nn+T65ETS/jOMk3OepfTPtcg2C7qAMAKShhN5x1TiX1pOzIQvCR34IOa4TrVOXFwZ69q0JRgD0Te5\nFlOXiZgHzcd83QwM7ccjRnQD0YhsOY39+I9YVv8Dy7rHsWeuJmX4cBXca2jUX1zysceECRMue8zs\nP2azM3snG+7boJhmbVBLVw3U8DphwgR27QKHw7ldhxJ63ogrfGdmZrJ+/XquueYaevbsqXp7qiPL\nTLBYYNQoxaUb6vl+rr+MjAxuuOEGxXWV5NZbb2XNmjWq6dcFH5VuJXv6OEKqe5GHC1F6eCuFGxdQ\nsm8Nt8WW4Sg6jc4/lIDuI/DvNBBjdCvFp0i5MtZ1bUsQBITAZoiBzTC0vAXZUY505g/s6b/gyFqD\ndGY31jO7+UeyDduBr9HHD0cw1YPpwxoaKuOS5GXQoEGXfF6SJV787UVubX8rybHJimjWFrV01UAN\nr4MGDeLDD8FggA4dlNHzRtT2bbfbWbRoEVFRUfTp0wedTqdqey7hyBEGZWeDAm+uz6Whnu9V/ZWW\nlpKdnU2zZnVfD6hmv5OTa3YNdwdGozqLwD19HMmS8vvb5K+dy5mf/lv588B+1xKUfDN+7a9D0KtX\n3cyVsVa6LUFnOrv2pTtSWQ72tCXYj/9I//Z52PZ/gT39F8z9ZmoL/DU0LoNHTDjNLMwkozCDuzvd\n7W4rGsD27c7Epb4sw/BEfvvtN/Ly8njggQfqR+ICIEnOr35+7vVRT1m/fj0A3bp1c7MTDW9Dsp1R\nVM+ac5zcXz4AIKDbcIL6jsYU1VLRNuo7ok8Exjb3Ymh1J46/1mLd8xFy6V/Y03/B0GyEu+1paHg0\nrlnFdxmO5h0FoEWotnjNE0hNhaQkd7uov5w4cYKNGzdy7bXXEhnpPRV2LktcHAgCHD3qbif1kmXL\nltG4cWPat2/vbisa3oZVuf0YZFkmZ+G/ke1WfFonE3Hz/2mJSx0QdEb0Mf0xtB4NgP3wgjpveqmh\nUd9xSfKyaNGiSz5/JO8IAgLxwfGKadYWtXTVQA2v33yziD17lEtevCmeVVHT97p164iMjOSqq65y\nSXsuw2RiUXQ0qLDeoaGe7xX+SktLmTNnDsOGDVNkDYGa/f7tt99U064rFdX9lMbTx5Gt9LBiWo6i\n01iO7wJBJOLGFyrHo6ti4MpYu7JPurN7yMilf4Fd+Wl+Ghr1CZckL/Pmzbvk80fzjtIksAlmvVkx\nzdqilq4aqOH144/nYbfD1Vcro+dN8ayKWr7tdjvHjh2jY8eOiOLfp5+3xulc5oWFwYIFkJurrG4D\nPd8r/L377rucPn2aZ599VlFdNfj1119V064raiUvnj6OLIX7kGW7IlpSeQkAoskXQ0hU5e9dFQNX\nxtqVfZJObgFACGqJYPB3SbsaGt6KS5KX+fPnX/L5o3lHaR7SXFHN2qKWrhqo4fXqq+cTHg5t2yqj\n503xrIpavtPT07HZbLRq1col7bma+StWOEvVffCBsroN9HyfP38+x48fZ9q0aYwfP16RxfoVumrx\n2muvqaZdVwIDA1XR9fRxZLVZcBTvUERLtlmd35xT6thVMXBlrF3V1jdzv8Z2zHmXR9/kOpe0qaHh\nzXjEmpe0gjTiguLcbUMD2L8fOnVyLl3QUJ5Tp06h1+uJiIhwtxV1iIyEp56CKVOci6c06kRhYSHD\nhg0jPDycl19+2d12NLwUi03EnvuLIlqG0MYg6pBK8rHlZimi2dCx7n4PufAoGIPQxw52tx0NDY/H\nI5KXEwUniA2MdbcNDeDYMVDow12NC5Cbm0toaKjiex94FK+8Au3bw+jRUFrqbjdeiyRJ3HHHHZw4\ncYIff/yR0NBQd1vS8FJKrSKOgjXI9qI6a4lmf8xNnXX0yw5tqrNeQ8eetgRH2s+AgCnpRQSzdp5r\naFwOj0heCssLCTIHuduGBpCXB9p7JPWQJIny8nKkirLC9RGjEebOhePHYdIkd7vxWjZt2sTPP//M\nV199RVul5nFqNEgschTINuz5yxXR801wFhsp2qHM3ZyGiuPUVqy73gHA0OZedJFamU8NjZrgkuRl\n7Nixl3w+wi+CnJIcRTVri1q6aqCG18LCsZxUrqqmV8WzKmr57ty5MwUFBRw+XL36j7fG6Vwq+9G2\nLbz5JkyfDj//rJyuwnhy3FeuXInBYGDYsGGKa6vZ78mTJ6umXVcKCwtV0fXkcQRgNTjLa9tzlyqi\nF9B1GIg6LMdSKc92XstcFQNXxlrNtqSCw5Rv/RfIDh6akY/+bKlkDQ2Ny+OS5OVyu9RG+UeRUZSh\nqGZt8fSdkquihtfY2EGKJi/eFM+qqOW7SZMmREdHs2XLFpe052qq9ePhh+H662HcOOcifqV0FcST\n475ixQoSExPR65XfS1jNfvfq1Us17bpiNBpV0fXkcQRg0TUHwYBUdgjJcqzOevrgRvi1c5akLNz0\nHeC6GLgy1mq1JduKKd/8IthLEcM7M+S2JxEEj5gIo6HhFbjkbLnjjjsu+Xyf2D4sP7Icu1TzUo6X\n06wtaumqgRpeCwvvoKWC+415UzyropZvQRBITk7myJEj/PXXX6q352qq9UMQ4JlnIDsb9u1TTldB\nPDXuJSUlbNy4kXvuuUcVfTX7PWTIENW064rZXPNy/FeCp46jCkqtIqJfIoBiVccCk28FoGj7EiRL\nscti4MpYq9WW9Y/3kMtOIfhGY+rxCneOvkuVdjQ06isekerf1O4mzpSd4ffjv7vbSoMmKwsOH4Zr\nrnG3k/pN+/btCQkJYd26de62oj5JSSCKcM6dJo1Ls3btWmw2GwMGDHC3FY16QJnFis6/EwCO4t2K\naPq06IYhIh7ZWkpRat2nhjYU7JmrcWSsAEHEmPSCtqeLhkYt8IjkJSk6ieYhzZn1xyx3W2nQzJsH\nBgNcp5WZVw1Jkti0aROFhYWUlJS42476/Pmnux14HXa7ncmTJ9OmTRsSEhLcbUejHlBmtaHzbQeA\nZDl8maNrhiAIBPa8EYDi3SsV0azvyLKM7eBsAPSt7kAX2s7NjjQ0vBOXJC+X+4RZEAQe6PoA8/fM\nJ7esZjtzq/WptTd9Gq6kV7sd3nsP+vVbR3i4YrJeFc+qqOE7Pz+fWbNmsXz5crp3787o0X8v0PTW\nOJ1LtX5Yrc71Lp07Qx2nPzWk8/31119n69atzJw5k/Xr16vShpr93rFDmWlJamCz2VTR9cRxVBW7\nQ0IwNQFAtmYjy8pUO6xY92I5vpM1K5cponk5XBlrpduS8vY693PRmTC0uFW1djQ06jsuSV5ef/31\nyx4ztstYJFli7u65imnWBrV01UBJr4sXQ3o6lJUp239vimdVlPb9559/8tFHH5Gfn88999zD4MGD\nMRgMqrXnLqr14913nWtdZsyAOi46bwjne3Z2Nk888QQvv/wykyZNIjk52Sv7PWuW595BL1Vp3yFP\nGkcXwu6wIxgiAB3INmTbaUV0DWExGMKbguRg2pR/KaJ5OVwZa6Xbsh/9AQBdk+sQjAGqtaOhUd9x\nSfLyzTffXPaYSL9Iroq9ipXHanb7uSaatUEtXTVQ0uvcudC1Kyxdqmz/vSmeVVHKtyRJrFixggUL\nFtCyZUvGjx9PfHy8au25m8p+FBXBtGlw//3OOy9K6SqMJ8Q9JyeHp59+mubNm/Pll1/yf//3f7zy\nyiuAd/b71VdfVU27rgQGBqqi6wnj6FLYHRKCoEcwNgJAtv51mb+oOb6tkwH48IGBimleClfGWsm2\npOJMHJnOdb2G5jeq1o6GRkPAJcmLr69vjY67Ju4a1qStQarBLe2aal4paumqgVJei4pgyRK44w7l\n++9N8ayKEr5tNhuzZ89mw4YNDBw4kJtvvhmTyaRae55AZT8++MA5sF54QVldhXFn3CVJ4uWXX6ZZ\ns2Z8+umnTJw4kePHj/PSSy9V3pXzxn77+Piopl1XBEFQRdfTz1+7w/k/VTA2BkCyZimm7ZPgTF44\nvg1ZlhXTvRiujLWSbdkPzwckxMgeiEHVS3p6+vjR0PA0lN9AoA74GHwos5XhkByIOo+oJdAgWL8e\nLBYYMcLdTuoXhw4d4tixY4wZM4YWLVq4245rSU2FXr0gNtbdTjwSSZJ48MEHmTlzJhMnTmTixImE\nhYW525ZGPcVud+6zJJqaIBVvQ7akK6bt07wbgt6EPT8b68kjmKIUrLVfT5BKsrCnOzcINbS+081u\nNDS8H4/KEP534H8MaTkEg85w+YM1FGP7dggKQtH9XTQgLS2NkJCQhpe4gHMwpaW524VHIssyjz76\nKDNmzOCLL77gtdde0xIXDVWpTF7MzQEU2aiyAtFoxqdldwBK961RTLc+Ydv/FcgOxIhu6MI6uduO\nhobX45LkZeLEiZc9Zn36ejZlbGJUm1GKadYGtXTVQCmvO3ZAly7OPQWV7r83xbMqSvjOzs5GFMUa\nlUT21jidS2U/2rRxVoDYu1dZXYVxR9xnzpzJhx9+yKeffsrdd999yWO9sd/vvPOOatp1pbi4WBVd\nTz9/rZXJSzMApPLjiur7tbua137LIH/N15Qd2aao9rm4MtZ1bUt2WLHuegdHxnIADG3HqdKOhkZD\nwyXJS9OmTS/5/PH844ycP5Kr467mtg63KaJZW9TSVQOlvB44AO3aKatZgTfFsypK+O7fvz8Wi4XP\nPvuMv/669AJZb43TuVT245ZboH17uPlm59oXpXQVxtVxl2WZd955h5EjR3L//fdf9nhv7HdUVJRq\n2nVFp9Opouvp52+JpRwAwRAKgGwvUFTfv8sNNI2PRyorImvGBAq3/6SoflVcGeu6tCUVZ2BZOwH7\n8cWAgKHNfehCLrxvk6ePHw0NT8Mlycujjz560eeKrcUMnzecQFMg3936HUadsc6adUEtXTVQwqsk\nwaFD0Lq1cppV8aZ4VkUJ302bNuUf//gHfn5+zJw5k61bt+JwOFRrzxOo7IevLyxcCBkZMHYslJcr\no6swro77unXr2LNnD4888kiNjvfGft9+++2qadcVtYoJePr5W1haBoCgO7ubu1SGLFkV0xeNZl6Y\n8zt+nQaCw07Ogslkz36GsiPKL+J3ZayvtC3ZWog9YyXl26ZgWf0AcsFhMAZhSn4NQ8IYxdrR0Gjo\nuH3B/pO/PMnRvKNs/cdWwn0V3B1Ro0acPOl8X9m8ubud1E+CgoK49957+eWXX/j555/ZtGkT/fr1\no127dqpVPvIYEhJg1iy4/Xbo0wcWLIBmzdztyq0cPXoUgF69ernZiUZD4nT+2elyukAEfSiyPRf7\nmcUYIm5WrA3RYKLRHVPJDYsh/7cvKNm9kpLdKzFExBHY8yYCkoah81WnVLW7kGUZuTgdR/ZGHCc3\nIeXugSrVUsWwThiTXkD0iXCjSw2N+odbk5cf/vyBz3d8zmfDP6NdRDt3WmmwVMxmio52r4/6jMFg\nYPjw4XTv3p1Vq1axcOFCoqOj6devHy1atKjfScyoUbBhg3MaWdeu8NVXkJLiblduo3379oBz09Lu\n3bu72Y1GQyG3sISiUgsBvmYMUWOxZryF9eRX6EMGIeiVSygEUSRsyCP4Jw6icNNCilKXYstJ48xP\n/yX31+n4Jw7CHJeILjAcfWAEusAIdL7BCKJH1Q46D9lhRS7PRbbkIZfnQnkeUtFxHNkbkUurTwkW\nApqhi+qFrlEyYmg7BMGz+6ah4Y24JHnZv38/bdq0qfa7Xdm7uG/xfYxsM5JxXS68iO1KNZVALV01\nUMLryZPOrxXT1JXuvzfFsypq+I6KiuLOO+8kLS2NlStXMmfOHPz9/WnevDmiKDJgwAD8/PwUbdPV\nXDBuSUnO0sljxzrrcQ8cCM89B9de66wSUVtdtfyqSNu2bTEajbzxxht8/fXXF933pwJv7PexY8pV\nslIau92uiq6nX+f0go7fdx5g2FWJ6EMGYc36EBxF2AvXYwi9XpE2qsbAFN2KiFHPEXbDYxTtWErh\npu+w/nWIom0/UrTtx+p/KOrQB4SjC4xAH1jla0BEZYKjDwxH9A1CEATFYi1LduTyPCjPq5KYVHyf\ni1yex/5Dx2gd6QD7JYquiAbE8M7oGvVC16gXot+VfxLo6eNHQ8PTcEnyMmnSJBYvXlz5876cfQz4\negAtQlrw5Ygva/XJ87maSqGWrhoo4bWiEJa/v3KaVfGmeFZFTd9xcXGMHTuWtLQ0Dh06xJEjR3j7\n7be58847iYqKokWLFrRo0YLY2Fj0erfP7LwiLhq34GD4/nv49lv4z3+gXz/o2ROefdZ5J+Yyn7zW\nl/Pdz8+Pr7/+mrvuuoshQ4bw/fffExIS4nJ/avb7vffeU0VXCWpS+a82ePp1rq1PI16fvZTBPTog\n53wNUhnoAtEFKHf370IxEE1+BPW6mcCeN1Ge9gdFO3/BnvcX9sIcHIWncZTkguTAXnASe8FJLrky\nTmdAHxjBY3N3MmvSHWcTm7N3cAKcX8WAUERR+jshKc+rTET+/t75M9bLFy144aM/+PaFs6WNRQOC\nKcT5MIcimCMRI7qii+yGoK/bWipPHz8aGp6GS94ZffDBB5XfHzh9gAGzBhDtH82vY34lyBxUZ00l\nUUtXDZTwarE4v5rNymlWxZviWRW1fQuCQHx8PPHx8QwcOJBrrrkGq9XK0aNH2blzJ+vXr8dgMNC8\neXOGDRuGf0V26eFcMm6CALfe6pxC9uuvziRm1Cho29a5HqZDh9rp1gF3jM9bb72V6OhoRowYQa9e\nvbjjjjto164d7dq1o1WrVtXuxnhjvydNmsSaNZ6534da55GnX+e6+zRh+alcZi/6nFtbzQfAFPMU\nokG5daaXioEgCJjjEzHHJ1b7veyw4yg6g73ImczYC3POJjY52AtP4yhy/k4qyQeHDXteFi/1DqZk\n98qLt6UDvY8Ova+I3ufsw1eHziSc/0GpICIYQ8AcgmAK/TsxOfv9B5+WY27RHsEUAgZ/1ab4evr4\nOZfTu0r466SyhRg0lCPP4m4H6uOS5KWiDGDqX6kMnj2YSL9IVty9gjDf2m/M5o0lRJVGCa/nFoLR\nSiU7cbXvtm3bApCYmIgsy5w8eZIjR46wdu1aNmzYwKBBg1zqp7bUKG6CAEOGOB8bNsDo0TB1Ksyb\nVzfdWuCu8dm3b182btzI448/zscff8zJs/M3dTodLVq0qExmKh4JCQn4+voq1r6a/Y724AV0DbVU\nso+o47HwPqxaspvrH4KQxkPRB1+raBu1iYGg06MPboQ+uFHl72RZBmshUkkWcmkWckkWjsJ07Llp\n2POzCC4pQLLKOKzSeV9lB8gOsBU7sBU7zmvLEBqJISwGY6PmGKPbYGjcDmN4UwTdhd8KNYu54i7V\nCk8fPxoanobL5qT8fvx3hs8bTtuItvx85891Slw0lKOicqjF8vfdFw33IggCUVFRREVFUVJSwo4d\nO7juuuswGAzutqY8V10FDz4I//oXFBZCYP2qRnQpEhIS+OWXXwA4c+YMf/75J/v27at8fPXVV2Rm\nZgLOMdGsWbPzkpqOHTti1k5cjcsgRPhiQMdgn84sXNCUhO4tiY/PJCjMF3OgEXOAEYOP3iXFQ2TJ\n4Zy6VXYa2ZKDbDmDXJaDXJrlTFhK/rrgGhMRMJoBswEM/oh+TRD8GiP4Nkb0a4zg1xjZEIKjtBxb\nThrWk0exnTqG9dQxrDlpyA4b1pwsrDlZlOzf8rewTo8hrCnGRs0wN+1I0FW3Iejr4bVWQ6Me4ZLk\nZf6e+dyz6B76NO3DotsX4W/0jikwDYGK9z2WBnCb0Rtp0aIFGzduJCsri7i4OHfbUYebbnIu4F+7\nFoYOdbcbtxAWFkafPn3o06dPtd8XFBScl9TMnz+ftLQ0wFnJLjExkR49etCzZ0969uxJq1atED28\nepOGi+ndCIMQg21DJqFloeSsySVnTW71Y3TgE2DEN9iMOcDoTGrOJjY+gX//7BNgRG/WnZfoyLIM\n9hJnImI5fTY5Oe1MTs7+LFlOQ3kecPkpR4I53Jmc+DVG9G389/d+jRGMzg85JKsFqTQfR0k+jrwC\npNL9OEoLcJQUIJUVgk6PLjASo6jDevIIOC5QsMFhx3bqKLZTRynZvRJTkzb4tOhW20hraGi4AFWT\nF1mWmbZ+Gs/96zlGjx/NjJQZmPSXrq5TU6ZNm8YzzzyjiJYrdNVACa9V77wopVkVb4pnVVzt+0Lt\nybLM2rVrCQsLIybGRfMX6kit4laxgWVwsLK6NcDTx+fHH3/MM888c96+MMXFxezbt4+tW7eyZcsW\nVq5cyYcffghAcHAw3bt3r0xmevToQWRkZLW/V7PfX375pSq6SlBaWqqKrqePo02HdtB8ZC98YgKx\n/3kaSmzIpTakEhtSiRXRLoMDyvKtlOVffvNKnV7G5GPHbLZgMpVg0hcwb80PPDg4EbOpGJOxxPkw\nlaDXWc8vKiiICKYwBJ9wBHM4mMLAEIIkBoLsiyTrcVhKnUnIqQIcpSdwlOxBKi3g/R838mCvxkil\nBcj2Wm5+KwiIPoHofIMQfYPR+QWh8w3CEN4Uc1ynysNc9bp6+vjR0PA0VEterA4rDy95mBk7ZtC3\ncV++HvW1orek1fonpJauGijhteLOS1mZcppV8aZ4VsXVvktLS5FlmeLiYk6dOkVOTg6ZmZmkpaUx\nZswY1ebqK80Vx624GL75xvl9bKxyujXE08fnxfz5+/vTo0cPevTowSOPPAJAXl4e27ZtY/PmzWze\nvJlPPvmEKVOmABAfH0/v3r25/vrrGTJkiKr9tnjwbVyLxcLjjz9ObGxs5SMmJobGjRvXqbKfp4+j\njB1zmX/oOPae99IkMoT4FqE0iwjA1+jss2yXkEttWAvKyDhygpPpJyk8lYfRLhAgmugQDP46E+Xl\nftgdJhx2gdIiA6VFBiAAiCIzO4o//rxQ2WUZnc6OXmdHJ9rRiTZ0ghUdFkS5FFEqQZRy0JGBTih3\nPrAgVn5fXuX35RTnnsJRWOW10unPJiFB6PyC/05Izv4s+joTE51vEKJfEDrfYESfAATx8tdUV72u\nnj5+NDQ8DVWSl+zibG5acBPbsrbx5YgvuafzPYq38a9//UtxTTV11UAJrxX/ryu2P1C6/94Uz6qo\n6bsiScnJyalMVOLi4nj99dcr3/jp9XrCw8O57rrraNGihWpelKbGcdu3Dz76yLlpZUkJ3HMPXOLu\nUkM936/EX0hICAMHDmRaV0nNAAAgAElEQVTgwIGAc5ylpaWxefNmtmzZwurVq5kzZw6iKNKrVy9M\nJhNDhw6lU6dOin6w9NBDD/HZZ58ppqcUgwYN4vfff2f58uWcOHGC4uLiyudEUSQ6OrpaQlM1wYmN\njaVRo0YX/RDB08dRgUFP8z9m0LGJBUOnJ5mz6zTflgpEBJjoFGWgd5QNU2A0YmAwLWODaUlHAP7K\nymDHvsOszNjBvyOWgazHZjdhtflTbvXFajNTbvPBJvnxcO8EbPJubFIANtn5kDACAg6HAYdDmXUk\nvbvCToeI3qTD4GvAYDZgMOvRm3UYzHoMZp3zOYMeg6hDjx6DQ4fBpkNv0WOQdRgkB3oT6AziJce+\nq15XTx8/Ghq1QRCEcMBPluW0Kr9rDzwN+AGLZFmeWxttxZOXrZlbGTV/FJIs8fu9v9Mrptfl/0jD\nbdTnzd09AavVSmZmZmWSUpGwVCQpOp2O8PBwIiMjadWqFREREURGRhIcHFz/1i1IEvzwA0yfDr/9\nBpGR8Nhj8MADoFXbUZyq5bhvu+02ALKysli6dClLlizhP//5Dy+88AIxMTHccMMNDB06lMGDB192\n40xvJSkpqbJAgizLFBQUkJGRwYkTJ6o9MjIy2LVrFydOnKCs4pY0zg8UGjdufF5SExMTQ1JSkkdX\njCo16AgI9uManz8xrhnPVQ6RX4VefCsNYGVRICsPQRPHZh7w2UJkdAyFMb0oi2hLdOMYohvHANey\nvfQegjI2ErX9c/Tl6fgCvgAVOYmoQzT7Ox8+AYhmfzAEIhmCkHSBSLoAJNEXSfDFgRmHbMKB6Wxi\no8NuF7FbwVbuwG6xYyt3YCuzYy93YLM4kOwSAJIDykslykslyLPVKS6CKDgTHR8dBtPZBMj0dxJk\n8jfSKCGEyFbB6I3ecffbFewpfYySolbutqFxEU45TgC/udsGwPtAFvBPAEEQIoG1Z393BPhSEASd\nLMtfX6mwosmLzWFj+LzhxAXH8cNtP9A4oLGS8hoqUHHnxYNnengVNpuN9PR0jh8/zvHjx8nKykKS\npMokJSIighYtWhAZGUlERAQhISH1L0m5ELLsTFSmT4fevWHuXLjxRqinb5Q9lcaNGzNu3DjGjRtH\neXk5a9euZcmSJSxZsoRPP/2UiIgIxo0bx4MPPkh8fLy77aqGIAgEBwcTHBxMh4vsLyTLMrm5uecl\nOBU/b926lYyMDMrLy2nRogWHDx92cS+uAEFgVddO9C210VKUEJG4nnX0K9vMUlMfvjf1I1PXiK+t\n3XkufTF7/zjI5pIwpMhWtEtoRfuEVhh9Q8ltPZSI5u2JNZZUSVT8Ec0BCAaTqtXKHHYJu8WBrdzu\n/Frtezs2iwN7ufOrzfJ3AmS3VPldecVxzjLKsiRjK7NjK7PDRbbI/HNFOjqDSGSrYBq3DyO6XRgB\nkT4uqcymoeHl9ALurfLz3UAu0FmWZbsgCE8DjwDuTV6WH13OyZKT/DLml2qJy+nTpwkPV24zLLU0\n1dRVAyW8VsxIOngQundXvv/eFM+q1NS3zWYjIyOjMlnJyMhAkiR8fX1p1qwZnTp1Ij4+nrCwsEsm\nKd4ap3O5aD9efNGZuHzyifNOi1K6dcTT4652vwcMGMCAAQN4++232bdvH59++ikfffQR06ZN44Yb\nbmD8+PEMGTLkitZc5eXlKe5XKa4knoIgEBYWRlhYGImJiRc8RpZlXnzxRWbMmKGkTcXxkSSOC3oe\ncBh5vOtAHuh5PQbfQHTmANr4+JOw7zQv/JLGcUcwI7dV7LlSAid2EhUaiKFDGwBCzCItm3bEqDv/\njbva55JOL6LzFymyFBDepG7tyJLsvKNT7kx8KpIiW1n1BOfE0UzK0mVK88v5a18uf+3LBQ7hH24m\nun0YjduF0SghpM53ZTz9OqShUUuigONVfu4HfC/LckXZv8XAc7URVvQj33l75tEuoh2Jjapf6O+7\n7z4lm1FNU01dNVDCa1AQNGniXIKglGZVvCmeVbmc75ycHGbPns20adOYNWsWW7duxc/Pj8GDBzN+\n/Hiefvppbr75Zrp3705ERMRl7654a5zO5YL9mDEDXn0V3nijVonLRXUVwNPj7sp+t2vXjnfeeYfM\nzEw+++wzsrKyGDZsGK1ateLYsWM11n7llVeUtKooSsdTEATMZjP5+fmK6irNf667g0EdemOTJN7c\n/Cs9P/8/Jiz9ig83r+S+d7/kkbdmAVBulxAEgR5tmzF53AiWfvAS/ftdhyCIRPvr6RPnd8HEBVx3\nLinRjiAKGHz0/8/eeYdHUXV//DNbkmw2vXdIgBBCgNA70kXFBoooVnwFC9gbVuwNfUVF/am8IqKi\nKFZQepNeQw8thBTSe7KbbfP7YyAECJIyk+zKfJ5nniRbvvecMzs3e+beey6efu74hhkJbO1DWPsA\nopODie0dTvxlUSSObMWsxW9y7Wv9uPK5XnS9vi2h7f3RaAUqCswcXpPFmk92s/i1LTgcTdtt3tn7\noboR1MOpD6egDKhdRrQXsLnW3yLQqOkXso68bM7czFXtrjpvOHX69OlyNqOYppK6SiCXrZGRcGqD\nb9n9d6V41uZCdouiyKZNm1ixYgX+/v4MHz6c2NhYQkJCmjSNwFXjdC51+rFoEQweDI8/Lq+uDDh7\n3FvCb6PRyMSJE9HpdEyePBlBEDCcrqleDyZNmsTatWtlsFJ+lIqnt7e3IrpykdBjOLd068b8zYt5\n5bePKa4qY1HKGhalrAFACDRQVppHqHccX797L13j2lJssrM2XdosMtZPT5cwj3/s45rrWmrOa3b6\n9OnSFMMIL/wivOgwIgar2cbJ/UVsmLMfh82BVqdp8ldFZ++HVFQaySbgQUEQ7gHGIJUmXFnr+Xgg\nozHCsiUvFruFY8XHSAhKOO+5bt26ydWMoppK6iqBXLZ6e0N5ubyap3GleNamLrtLS0v5+eefSU9P\np3fv3gwbNky2Xe9dNU7nUqcfGRmQnCy/rgw4e9xbwu+ysjLuvfdevvvuO+644w4+/PDDBn0579Ch\ngxwmKoJS8ZSrH1AKQRAQBIGb+1xFjLEdD378OTlVmYgeZQiGSkTBRLU5hRPmFK764GeiAyKIDu6A\nn1cIrQJC8YuL5LAQSoRfCF4ennW20VzXUnNes7XbsppslJyspDS7goxd+ThsDvQGHQPuSULQNC19\ncfZ+SEWlkTwPrABuRco3XhdFsfa84vHAmsYIy5a8lJpLsYt22TahVGk+fH3ByWc9tDiiKLJgwQLK\ny8u5/fbbiY2NbWmTXAezWf2AuRBTp07ljz/+4Ntvv+Xmm29uaXNUZGTfsSwmvjaHSrODsIAEnr1l\nNOXu/ry5ZC2iLY02AXnsPnGAjKJsMoqya973SS0Nbw8jEX4hRPiFEO4XLP3uf+b3SL8QPN3rP1Ln\nbNgsdspyqijJrqA0u7ImYakqPntBv6ARGHB3R3zDjC1kqYqKcyOK4m5BEDoA/YEcURQ3n/OS+cD+\nxmjLlrwEG4O5rNVlzNk1hzuT75RLVqUZiIyEFSta2grn5tixY2RlZTFhwgQ1cWkoU6fC5Mmwa1eT\nR2BUlGXnzp18/fXXfPzxx2ri8i8jO7+Y21/9gkpzNf06teXLZyaSWWZlwlc7cXOL46nRI2kd7Ed6\ncRlHc/aTX3IUraOEvLI8skvyOFmST6mpgnJzJak5aaTmXHgdlJ+nN+G+wUT4n5PknEp0Iv1Dcde5\nNaP352O3OSjPq6L0ZKWUpGRXUnqygop8E+IFlrAY/NzxizDiG24kqkswIW396n6hiooKAKIoFgC/\nXuC5RY3VlXXNy3097mP8T+NJyUmhS9iZRfuzZ8/m7rvvlrMpRTSV1FUCuWyNjoYTJ+TVPI0rxbM2\nte0WRZG1a9cSERGh2IaRrhqnc6nTj4kT4d13Ydo0+PNP+XRlwNnj3tx+P/3007Rv357//Oc/jdb+\n5ZdfmmKaoigVT1fYIf2hmd+RW1RG+5gwPn/qTgStjqd+3Y3VLjKyQzD+Pt7kVtrwdPfkph79aRsw\n5Lw1LhXmKk6W5JF1KpnJLjmT2Gxfth6xrS8V1VWUVJVTUlXOgZPHLmhPqE8gUQFhRAeEEx0QRnRA\nWM3fkf4heOjrnsXR0HNoNdsoy6miNKeSspwqynIqKcutojzfhHiBhfbuRj2+EUbWHPyT2yfciW+E\nEb8II26eykwPdPZ+SEWlMQiCcHt9XieK4tyGasuavFzf4XriA+N58K8HWX3H6pqOb8eOHbJfmEpo\nKqmrBHLZarfD6SnbcvvvSvGsTW2709PTOXHiBOPHj1estr+rxulc6vRDp5Oqjd1wA6xcCUOHyqMr\nA84e9+b0e//+/SxdupRvv/0Wna7x/xoOHjzYVPMUQ6l4Wq1N2yxRaUzVFjbvlxKJz5+6E18vAy8t\nPkRaoYlwH3dGJkVRYRXxctPQO8qAj3vdpX+9PDxpF9aadmGtz3vugT0PMOutWZSbK8kuzjuV2JxK\ncIpPJzlS4mOymMktKyS3rJDtx/fV2VaITwDR/uGnEprTRzir/l7DLbfdisHtTHIjiiLVFVZKT1bW\nSlSk36tK6t6/BUDnocU33HhqNMVL+hnhhYe3HkEQ+PmB2bQbFNmASDcOZ++HVFQayRygArBx4RJo\nItCyyYub1o1ZV85ixNcjmLd7Hrd1uQ2AWbNmydmMYppK6iqBXLaePAnh4fJqnsaV4lmb2navXbuW\n0NBQ4uPjm6U9V+aCfowZA716wVNPwZYt0MAk8FK93pvT708//ZTg4GDGjh3bJO2nn36aBQsWNElD\nKZSKp6+vryK6cnE0Kw+HQyQ0wIe4yGCWHcxnYUoOAvDQiAQqrCLuWoH+MZ546hu3g8Lp2Hp7GGkf\nHkv78Lqn14qiSFFlKZlFOWQU5ZBRdJKMopxaf+dQZTGRV1ZEXlkR29PPSW58oc2TIwg0+BGkDSDQ\n4U+EOZzo6kjCxBC0nJ94efi44RPqiW+YEZ8wT3zDjfiEGTH4uv3jDanm6h+cvR86l/d1n6HXe7W0\nGSoXIERwmnVYB4BQYB7wP1EUd8slLGvyAjA8bjg3Jt7Isyuf5eZON6PTyN6EioxYrbB8ObRr19KW\nOCfFxcWkpaUxZswYdUflpiAI8Oab0qjLn3/ClVe2tEUq57B69WpGjx6Nm1vLrkVQkZ8TOUUAJMVF\nIooin6xLB+DeQbGY7QIaAXpHGRqduDQEQRAI9PIj0MuPLjHnVycVRZHiqrJTyYyU2GQUniTtZBbp\nedmcrMjHLFZTaCqhkFqFQPTgjhttDa1JCmpH91ZJ9OnQhejWobgbnbsanIrKvxFRFDsKgtAbmAis\nFQThCDAb+EYUxbKmaCuSWTw78FmS/y+ZH/f/yPik8Uo0oSITH38MBw7A11+3tCXOSVpaGoIg0E7N\n7prO4MHQowfMnKkmL05IXFwcWVlZLW2GigIUlVcAEBbgy8HcSo4WVOGmFegSE0BOhZ0oHz2Bns5x\no1EQBAKMvvjovfDN8yMwM5TQA9F0PDX9S0TEhIkqnyockTYKDAUcLD/GntxUys2V7DMdYl/GIb7P\nWAR/Q9uQGHrEJtG9dRKD4rsTHRjewh6qqFw6nKowtlkQhIeBG4G7gBmCIPwCTBRF8cLzOv8BRXqr\nLmFdGBY7jA+3fKgmL05MQQG8+KK06blaZr5u0tPTCQ8Px8PDo6VNcX0EAR5+GG69Ffbvh8TElrZI\npRaJiYn873//w2q1Ov2+JSoNo6TcBECQnzdLDuQDMDQ+iLxKOwCx/s51vkWHyKoPd5F/tLTmMa1e\nQ0g7P8ITAwnvEIBPmOdZo+F2h53DuelsS9vLtuP72Ja2l2P5GRzJO8GRvBPM37wYvVbH7ImvMbxj\n35Zw69+DU23iruIKiKJoAuYKgnAceAlpj5cpQKOSF8XGiEfHj2bnyZ2Iosg111wju74SmkrqKkFT\nbZ0xA2w2eOUV+TTPxZXiWZvTdldWVjbLfHZXjdO5XNSPG2+UFlh98IG8uo3E2ePenH6PGzeOvLw8\nPv744yZpP/LII016v5IoFc+ioiJFdOXCYpOSFIObnuOFUmW07q0CcIhg0An4e9S9QL8hyBnbY5tO\nkn+0FJ27lvZDoxkypQtj3xnIkCnJPPn+A/iGG8+bxqvVaEkIj+PWftfw/i3T+PvZb9jz6m98dc+b\nTB1+K52j22O125g05wV2HK/f1hLN1T84ez+kotIUBEGIFAThGUEQDiPt7bIV6HjOhpUNQrHkpbVf\na0w2E/lV+UyZMkV2fSU0ldRVgqbYmpcHH34IDz0EwcHyaNaFK8WzNqftFkWxWda6uGqczuWifri5\nwf33w9y50IAvfJfq9d6cficnJzNp0iRefPFF8vLyGq09bty4ppimKErF02h0mgWyFyW3XLrR6eMp\nrW3yN2hl6ePkiq2t2k7Kb1JltE5XxtL9hnaEJwaic9M2uJ1ALz9GdOzHtNGT+P3hTxiS0BuztZrb\nPn+K7JKLf8abq39w9n5IRaUxCIIwThCEP4HDQE/gMSBaFMUnRVFsUllKxZKXIM8gAAqqChg5cqTs\n+kpoKqmrBI21VRSlqWLu7vDYY/JoXghXimdtTtttMBjIz89HvNCuZTK35+rUy4/Jk6Uhv3nz5NVt\nBM4e9+b2+9VXX0Wj0fDss882WrtvX+edkqNUPN3d696TxBkprLQAoNdKyYCvDKMuIF9sy3IrMZdZ\n0LlriR8SJVs7eq2Oz+56iTYhMRRXlrLqwJaLvqe5+gdn74dUVBrJfKAD8F9gFdAaeEAQhAdrH40R\nVix5KTFLVUD8PfyVakKlkbz/Pvz6K8yZAwEBLW2Nc9OrVy/y8/Odeu8KlyM4GC6/HL7/vqUtUTmH\noKAgXnnlFWbPns22bdta2hwVBaiyOgDQaKTRlmYoMNYgvIIMgDQC4zhlq1wY3T3xN/oA4GtQS/2q\nqCjMCaR9XG4BHrnA8XBjhBXrtgqqCgAIMKjfjp2JgwfhySelERd1mu3FiYmJoXXr1qxdu1bx0ZdL\nivHjYcMGyMhoaUtUzmHy5MkkJSXxzDPPtLQpKjIjiiImi7T+5fRUMY2TlYB389Rj8JNGso5vzZVV\ne8fx/RzMlqakhfoGyqqtoqJyNqIothZFMfYiR1xjtBVLXo4VHyPcKxx3nTu//PKL7PpKaCqpqwSN\nsfXrr8HbG157TT7Nf8KV4lmb2nYPGjSInJwcDh8+3CztuTL19uOqq0CjgSVL5NVtIM4e95bwW6fT\ncfnll5Oent4o7VWrVjXWLMVRKp5ms1kRXblwd5MKi5osVvTaU0kL0s0Ys02e0Q05Y9t2QAQA2344\nRObuAlnaWZSymhtmPUhFdRWdo9uTHNPhou9prv7B2fshFRVnQ7HkJbUwlfZB7QH47rvvZNdXQlNJ\nXSVoqK2iCPPnw9ix0noXOTQvhivFsza17W7dujXR0dGKjr64apzOpd5++PlBz56wdKm8ug3E2ePe\nUn7rdDpsNlujtJfUMyFtCZSKp8lkUkRXLrw8pA6/tNKEj4eUyAinkpcKizzJi5yxTbqiNbF9whAd\nIutn7yV1VQa2anuD23E4HGw+msIT37/DPV++gNlqYXhiX358YCZ67cV3imiu/sHZ+yEVFWdDsV2p\nMkozapKX7xWY266EppK6StBQW7dtg2PH4LPP5NO8GK4Uz9rUtlsQBAYNGsQ333zD0aNHadu2raLt\nuTIN8mPkSJg1C+x20P7zouFL9XpvKb+rq6vR6Rr37+HNN99k2bJljXqv0igVT39/517baTRIlcXK\nKk0E+bmRW26h3GwF9ORX2nGIYpOnj8kZW0EQ6D0hgeoKK9l7C9m+4DB7FqXRbmAkcz6b+4/vFUWR\nlIyD/LpjBb/tXMXJ0vya5+4aOIaXrpuCrh6JCzRf/+Ds/ZCKirOhWPJSZa3CU+eplLxKI5g/H0JD\npY3OVRpGmzZtiI6OZtWqVbRp06ZZyif/6xkxQtpkaMcOaRRGxWlIT0+nVatWLW2GikwYDdImu+WV\nZjp28GZfTgUHsktJiA6m2i6SU2Ejwtu5NqrUaDUMnNSJo+uzObgyg4p8E/uWpHNgxQla9wyj3aBI\nAmK8EQQBs7WafVlHWL5vA7/uXMnxgqwaHW8PI1d0HsTYHiMZGN+9BT1SUVGRC8WSF5PNhEFvUEpe\npRH8+CPccMNFb3Kr1IEgCAwePJivv/6a48ePExsb29ImuT59+oDRCKtWqcmLE1FUVMTWrVu58sor\nW9oUFZkwGqRpY8XllXSO9OGHnSfZdLyYkUnhHCmyklpQTahRh1bjXDdltDoN8ZdF0XZgJFm7Cziw\n/AR5x4rZsCmF7zcvJts9h2z3k6Sbs7E5zkxz9NC7MzKpP9d2HcaQDr3w0LtOKWsVFZWLo1jyYraZ\nMejU5MVZKC2FEyegf/+WtsR1iY2Nxc3NjezsbDV5kQO9XqoeUV3d0paonKKkpISRI0diMpl46KGH\nWtocFZmICPQF4Gh2Pv3j/PHQaTiUV0l5lRm9RkuJ2cGePDPJYc71P1sURbJK8tiVfoBdJw6wy+Mg\nu4wHqbKeWmNkB6qkX71EIwlebbiiwyDGDB1OaIRa6VRF5d+KciMv1jMjL3fddRdffvmlrPpKaCqp\nqwQNsfV0oaz4ePk064MrxbM2ddktCAKBgYEUFhY2S3uuSIP9MJvBw0N+3Xri7HFvTr8LCwsZPXo0\nx44dY9WqVXTocPFqTHUxffp0GSxUBqXiWVJSIrumnESFBKLRCJSUV2GtNnNdlzDmb89mzqYMXh7d\ngY2ZJtKKrQQYtMT4ujWqDTlia7Xb2Jd1mM1Hd7MlbTfb0vaRX1501mtKlh4iYnQXOkW1I94rlnBz\nGD5ZvrgXGxCKBdgAKzbswjfCSFzvcGL7hOHh3XI+OVM7cvGQdRKxlnYtbYbKBcizZ/Aof7W0GYqi\nSPLiEB2UVpfi4y5tBqXE7rGX6o7btWmIrWlp0s+4i1TUltt/V4pnbS5ktyAI2O32ZmvP1WiQH1u3\nQkkJ1GMU61K93pvL75UrV3LbbbdhNptZunQpXbp0abR2nz59+P3335tqoiIoFU/3C5VvdBI83HTE\nhgdxNCufg+knub1XK37ceZLNx0vYeryIhDBfDhZY2HXSjK+7Fl+Phs8tbkxsK6ur2JF+gM1HU9iS\ntoftx/dhspxddlqn0dIhog3JMQkkx3QgO/4wD987Fa3mjI2iKFKWU0XW3gKy9xSSf6yU0uxKdv58\nhF2/HiWqSxBt+kcQlhBQszmnUj41Bmfvh1RUnA1Fkpf8ynwsdgvRPtEA3HzzzbK3oYSmkrpK0BBb\ns7OlG9x+fvJp1gdXimdt6rLbZDKRnZ1Njx49mqU9V6RBfjz/PHToANdfL69uA3D2uCvtt9Vq5YUX\nXuCtt95iyJAhzJ07l8jIyCZpjxo1imeffVYOM2VHqXgaDM413aouElqF1yQvl3Vtz30DW/HhmuO8\ntewIC+7uRohRS16lnc1ZJoa0NtbsB1Nf6hPbcnMl6w/vYNORFLak7WZP5mHsjrNvBvl5etMzthO9\n4jrTK64TSZHxGNxqJYd9ztcVBAHfcCO+4UYSR7TCUmXlxI48jm44SeHxMjJ25pOxMx/PAHfa9I2g\n3WWReHhdfDSmufoHZ++HzkUABJxrfZTKGS6Fc6NI8pJRJu2aHe0brYS8SiPIzZUqjalFshrP7t27\nAYi72PCVysX56itpg8oFC9QKEi3Erl27mDhxInv27OHNN9/k8ccfR6NRbOsvlRamfUwYizbsZm+a\nVInrzj7RrD5cyJ7sch74YR8fjUuivNpBpcXB9mwTvaMMTa6qKIoi+7KOsOrgZlYf2MLWtD3YzklW\nIvxC6N2mM73jutArrhPxoa2b/Dl089TTdkAkbQdEUpxZwdEN2RzfkkNVUTV7FqVxeF0Wfe9IJLyD\nui5GRcUVUSZ5KT2VvPioyYuzIIrQyG0bVIDMzEyWLl1Kjx498PX1bWlzXJuvvoK77oJ77pF2TFVp\nVsxmM6+88gpvvfUWiYmJbNq0ie7d1RKy/3Z6d2wDwLpdh3A4HOg0Gl6/OoGJ36RwtKCKe77dzbtj\nO5JaZOdkhY3UQgsJQQ2fDldYUcLa1G2sPriZNalbySs7e81KbFAkA+K70zuuM73adCHKP1QW/y6E\nf5QXPcbF0/X6NmTsymffX+mUnqxk1Ye76DA8hs7XxKHVqUm7ioorocgVm1GWgYfOgyDPIAD+/vtv\n2dtQQlNJXSVoiK06HVit8mrWB1eKZ21q211ZWckPP/xAREQEo0aNUrw9V+aifnzxhZS4TJoEn35a\n76HAS/V6l9u+DRs20LVrV95++22mT5/Otm3bZE9cdu7cKauenCh1vi0WiyK6ctIzoTVGD3cKSivY\nfTQTgJgAA3Nu7UKknweZJWamfL8HH50DgAP51Zwsr8c/DaCgvJhps17j2pkP0Pn5a3ng65dZsHUJ\neWVFeLoZGNGxH6+NfZj1z37L+ue+461xjzOmx8hGJS6NPYdavZbWPcO4/KketBsoTY08sPwEK2fu\nRHSIsrbVUJy9H1JRcTYUSV6KTEUEGAJqhpzffvtt2dtQQlNJXSVoiK3l5VCfadly++9K8axNbbuX\nLFmCzWZj3LhxaBWa4uSqcTqXC/phs8Ejj0ijLffdBx9/DA2YGnKpXu9y2VdRUcFDDz3EgAED8PX1\nZcCAATz33HO4uTWuCtM/MXfuP++A3pIodb4rKioU0ZUTN72Ood0TAPj6r401j0f5SwlMXJAn+RUW\nHl6wm8Iyqf7w1iwTRSZbnXoV5ip+3LqECZ8+QdcXx/Dfd99ja9oeRFGkQ3gc9w29mR/u/y/7Xv+d\nr+55k7sGjiE2OKrJfjT1HOrctPS8uT39JnYEIP9oKTZL3UVYmqt/cPZ+SEXF2VBkIpFG0CCKZ+5k\nzJ8/X/Y2lNBUUlcJGmLroUMXL5PcUM364ErxrM1pu9PS0tizZw/XXHMN3t7eirfn6tTpR2Eh3HQT\nrF4NH34IDzzQ4FQ3s00AACAASURBVMVXl+r1Lod9y5YtY9KkSeTl5fHee+8xdepUqhXcW+f1119n\nwIABiuk3BaXOt7+/vyK6cnH6//F/rh7E7+tTWLhmO09MGEVYgDQFNsTbnXm3JzNz9XG+35HNrFWH\nuKN/G1oFebMxw8SgVp54u0s3btambuObjb+zbN8GzNYzn6NB91zLDX1HMTp5MBF+IYr5Itc59A31\nBMDdS4/eo+6vQs3VPzh7P6Si4mwokrzoNDqq7Wc6NU9PT9nbUEJTSV0lqK+tZjPs2AG33SafZn1x\npXjW5rTdq1evJjo6muTk5GZpz9U5z4+jR2HUKKkk8vLlMHiwPLoy4exxb4p9NpuNadOmMWPGDIYO\nHcqKFStqik0o6bczV95Syu+mLmxXGnNFOQDdE1rTq0MsWw6kMfv3dTx7x+ia1xjddTxzeVtGdghi\n+qJDzNuYxp0D2hDpb2T18UpijOV8sPRj/ty9ruY9ccHRXN99ONd1G06bkOZZ49rUcyiKIhk789n5\n8xEAfEIvrNdc/YOz90MqKs6GIslLjG8MRaYiyqrLavZ6UWk5PvgACgrgP/9paUtcD5PJRFxcnNN/\nOXFKtm2DK68Ef3/YsqVe+7moyENBQQHjx49n9erVvPfeezz88MPqZ/gSpjQvq+b3+8cMZctrs5m3\nZCNTbxiGj/HsZLNHjB8L/tOdj9Yc59uNadzUO5rUjOUs3v4tFls1Oo2WCf2u5ubeV9EpKt6lPldF\nJ8rY/uNh8o+UAmDwdSP5ujYtbJWKikpDUSR5SQiS5tWmFqTSM7KnEk2o1JNjx+C11+Dee6F9+5a2\nxvVwOByUlpZiNpvxqMdO8Cqn2LABRo6EpCT44w8ICmppiy4JRFFk6dKlTJ48maqqKpYvX87gRo52\nqfx7KD6ZXvP70O4JxEeHcigjl3lLNnL/mKHnvd6g1/LE8Da0C6zk8fmPU1V9EoA2YYlMGjaFXrHt\nCPd2jfKVpjILmSn5ZOzMIye1GETQ6jV0GBFD4ohW6NzVUu0qKq6GIgv24wOlxRWphakAPPHEE7K3\noYSmkrpKcDFbf/8duneXvje++KI8mg3FleJZm9N2t23bltTUVN59911++uknjh49isPhUKw9V6fG\nj48/hpgYWLFClsTlUr3e62ufKIqsXLmSgQMHMmrUKGJiYti2bdsFExcl/X7//fcV024qSvldVlam\niK5cnDyyr+Z3jUbDf64ZBMDCNTvqfL0oivxv3U888s2jVFWfxODmTae423lw9Bt4ecWwP7+aFccq\nWXa0gj25ZgoqbTz++OPN4kt9zmFVSTWpqzNZ/t8d/DLtb7Z+l0rOQSlxad0zlNEv9qHz6LiLJi7N\n1T80tJ033niDXr164ePjQ2hoKNdffz2HDh0673UvvPACEREReHp6MmLECDIyMs56XhAEd0EQZgmC\nUCAIQrkgCD8KgqDcgiUVFZlQJHnxcfch3Cuc1AIpeYmJiZG9DSU0ldRVggvZarPBU0/BNddISwy2\nb4fg4KZpNhZXimdtTts9atQoHnnkEQYPHkxOTg7z5s1j5syZrFy5ksLCQtnbc3Vq/Ni+HYYMAaNR\nXl2Zcfa418e+tWvXMmTIEIYNG4bFYuHPP/9kzZo1//heJf0OCwtTTLupKOW3UlUI5eLE3i1n/X1F\nn87otBoOpp/kWHb+Wc+VVJVz5xfTeO6nmVTbLAxL7MPm5+eRENGX95ce4PDJYkKNOjQCVFpFjhRZ\nWHeiinJDKNuyTZwotVBhcZxVtEdO6jqHoihSerKSA8tPsHTGdn55Zj3bfzhE3uESRBECWnmTfF0b\nrp7eh353dcQYUL9R9ObqHxrazrp165g6dSqbN29m+fLlWK1WRo4ciclkqnnNW2+9xUcffcRnn33G\nli1bMBqNPPDAA+dKvQ9cBYwFBgERwE9NckZFpRlQbNy3fVD7mpGXqVOnyq6vhKaSukpQl62iCBMn\nwrffwowZ8OijDSvsJLf/rhTP2tS229vbm/79+9OvXz+ysrLYtWsXW7ZsYd26dURERNCpUyc6duzY\npGpkrhqnc5k6dar0IczKgrQ0qKoCGRajXqrX+4XsOz097PXXX2ft2rUkJyfz22+/MXr06HqtQVDS\n7/Hjx/POO+8opt8UlPLbKFOSrhT5J45QkpOJX5hUqtjf25N+SW1Zm3KIVTsOEhch3d0qM1Uw/pNH\n2Z2RiptWz3PX3Mfdg8YiCAK39IDVhwv5ZnM6UwZE4aYzkFth42SFjdwKG6NumUxGqZWMUmlvGDet\nQIBBW3P4G7ToNE1fH3P6HFqqrOQcLObkgUJO7iuiquTsCnrBbXyJTg4mOjkYY2Djikg0V//Q0HYW\nL1581t9z5swhJCSE7du311T6mzlzJs8//zyjR0tFGebOnUtIyJlBFUEQfICJwHhRFNeceuwu4IAg\nCL1EUTw741VRcSIUS14SAhNYn7FeKXmVCzBzJnz9NXzzDdxyS0tb8+9CEASioqKIiori8ssvJzU1\nlb1797J8+XKWLFlC69atSUpKIjEx0akrLimOIMD//gd33AH9+8PPP0Pr1i1t1b8Cu93OwoULeeON\nN9i5cye9evXi559/5pprrkHTgH1zVC49tv/5HcPuOjM9qUu7aNamHOJIZi4AldVV3PrZk+zOSCXA\n6Mt3971Lp6gz9fV/2S29rmcrXzzdpJGmSB89kT56HKJIkclOTrmNApOdUrMdi10kp8JGToW0T4wA\n+LhrCPA8ndDoMOqFei/4dzhEik6Uc3J/ISf3F1GYVkrtwR2tXkNIOz8ikoKITg7G08+9KeFyKUpK\nShAEgYCAAEAq8Z+Tk8OwYcNqXuPj40NSUhLbt28//VAPpO+AK04/IIpiqiAIJ4C+gJq8qDgtio68\nzEmZg0N0oBHUf6rNwYoV8Pjj0qEmLsqi1+tJSkoiKSkJs9nMgQMH2Lt3L4sWLWLx4sW0bduW+Ph4\n2rVrh4/PJVhx74YbpI2FrrsOevSAxx6Dyy+H5OQGbU6pImGxWJg3bx5vvfUWhw4dYtiwYaxYsYIh\nQ4a4VLUnlZZjy69zGHL7o2hOTXFrEyndhT+alU96QTZTvn6F7en78DV4Mf++90iKagfA4fxKvt+e\nzeJ9eQA8NjTuPG2NIBDkqSPIU/pKYXeIlJjtFJnOHGabSGm1g9JqB2nF0uiMVgB3nYC7ToOHVsDN\n4YDyasRSC7bSaqwlZqqLqzEVmqgsNGO3nr3e0CfMk/DEQMITAwhp64fOzbmn7ymBKIo8/PDDDBgw\ngMTERABycnIQBIHQ0NCzXns6uTlFKGARRfHcBVu5gPPO/VRRQcHkxcfdB7PNjN1h59DhQyQkJMiq\nf/DgQdk1ldRVgtq2pqVJ+wAOHQpvvCGPphy4Ujxr0xC7PTw86Nq1K127dqWiooJ9+/axb98+Fi1a\nhCiKhIaG0q5dO9q1a0dUVFSdd8hdNU7ncpYfnTvD1q0wdapU8u6ZZ6TFVyNGSInMyJFQz/URl+r1\nvnPnTtatW8c777xDZmYm1113HV9//TW9evVqkq6SfqelpSmiKwdK+W2z1b0LvbPg5mEg5+h+1nzz\nAUNufwQAnVaDiMjJ6iMMf+cuKqtNeHsY+fbeGbQPb8Oyg/nM357NthOlNTo3dYugQ1jd02Nrx1ar\nEQj01BHoeeYrhsnqoLDCRk5uFYW5VZTnm7CWVmMqs+Aoq0YsqwbTP8dRcNNSYCgkoV9X/OL98Qk0\n4K4VEHQC5XZwtzrw0AloZErom6t/aEo7999/P/v372f9+uab6TJv/cd4unmd9VjfdkPp1+78ynUq\nyrLh8Eo2Hl551mPVoukCr/73oFjyUmQqwsfdB71Wz5NPPslvv/0mq74SmkrqKsFpW6uq4PrrwdcX\n5s8HXRPOqtz+u1I8a9NYu728vOjduze9e/fGZDJx5MgRjhw5wvbt2/n7778xGAy0adOGdu3aER8f\nX1N+2VXjdC7n+REYKC3Aslik8slLlsDSpdJjICU4l18uHQMHgptb/XSVstdJKCkpYdasWbz88svY\n7XZuueUWnnrqKTp27CiLvpJ+f/DBB4royoFSfjt7tbF+V97I/j/nsujDZ+k05BqCotuQmpmFGHyE\no5YSAHrHdWbG+GmsPmLnid+2kF9hAaTRkSHxQdzUPYKeMb4XbKN2bO1WB8WZ5eQfK6Usp5KKAjMV\nBSaqiqsRHf+8kF9r0KH1dUfj4w4+bji83cDHHeHUMXfqzTxz+3wqHEB+dZ0aeq2Ah1bAXSfgcWpk\nx0uvwdtdOty19Zuu1lz9Q2PbmTJlCosXL2bdunWEh4fXPB4WFoYoiuTm5p41+lJUVFT77TmAmyAI\nPueMvoSeeu6C3P3Bh8QlKrtxs0r9GEp3hnJ2tbqTh3cz5bpBLWRR86BY8lJqLsXXXeroPvroI9n1\nldBUUlcJTtv62mtw6BBs2gRnjwo3XlMuXCmetZHDboPBQKdOnejUqRMOh4Ps7GwOHz7M4cOH2bt3\nL56enowaNYqkpCSXjdO5XNAPNzep9N3gwdLQYF4eLFsmJTNz58I774CfnzTNbNw4GDbsrETmUrre\nV65cyW233UZhYSE33XQTL7/8Mq1lXjOkpN9PPvkka9euVUy/KSjlt6/vhb/UOwMJHTthLRzC4S2r\n+N+jN3DX/y3hq51zwFiCRtAwbfQkRnQazbTfD5OaVwlAgKeescnh3Ng1nFCff14/Yi638Oz9L7Fz\n4REK0kopTC/HYau7pLxGp8Er0ANjkAGvQA+8av00BhlwM5z9tUQURWwOMNscVNtFIj/8kKBQD+lv\nm4jZLlJtc2C2iVTbRETAahex2kXKLXXbq9cK+LidSWZ83LV4u2nw0J2d1DRX/9CYdqZMmcKvv/5a\nZ2XB2NhYwsLCWLFiBZ07dwakBHvv3r21X7YdsAHDgJ8BBEFoD8QAGxvjh4pKc6FY8mLQG6i2S3dF\n1FLJyhATE0NlJXzyibQJ5ak+qsmacuJK8ayN3HZrNJqaxf5DhgyhtLSUZcuWsXDhQvbu3ctVV10l\na3stRb3jFhICEyZIhyjCrl3w00+wYAHMmXMmkbnxRhg+/JK43i0WCy+88AJvv/02Q4YM4auvviIq\nKkqRtpT0u/YdYGfjUi2VbK8o4pZX5/Du+J4cP7yHq14aT4lgA7uWt298Do2xA7d+tZtqmwN/g55H\nh8YyKjEEN935U1xFh0hpTiX5R0spOFZK/rFSKvJPT1Mprnmdu5eeoDhf/KO88A42YAw04BVkwODj\nhtCAqmOCIKDXgl6rxRsI6tjmgq8VRRGLXaTaLiUyUkLjwGQTqbA4KK92UGl1YLWLFJrsFJrsZ71f\nrwHvU4mMt7sGn4AIqqwODLr6FxZoDA39XN5///189913/PbbbxiNRnJzpWIKvr6+NaP5Dz/8MK++\n+ipt27aldevWPP/884SEhNTs9SKKYpkgCLOB9wRBKAbKgQ+A9WqlMRVnR7Hkxag3Ul5drpS8yinm\nzYPSUnjwwZa2RKUh+Pr6csMNN5CUlMSiRYuYNWsWN998s+x32F0CQYCuXaXjlVdgzx744YezE5kp\nU+DllxtW99uFsFgsDBo0iO3bt/Pmm2/y+OOPq9XDVGTDUVFIQHgM/5n5M+NmTCLrVOLiXdaFQkcc\nXyw9AkC/WH9eGd2eIK+6p29azTZWfbiLgrRzpskJ4BtuJDjOl6BTh3ewodmLSQiCcKoAAHCBwSK7\nQ0pkyqodlFfbKT/1e6XFgdVBTYGB2rTy1dMtwnkqSH766acIgnDeJrRffvklt99+OyCNgFZVVTF5\n8mRKSkoYOHAgH374Idddd13ttzwC2IEfkSL2F3DeZjDnISibzKk0DYF//7lRLHmJ9o3GZDORXZ5N\nhHeEUs1c8qxdC337qpVoXZWEhAQcDgcLFizAbDa3tDktjyBIQ4idO59JZObMgVdfhbg4uOuulrZQ\nEURRZM+ePTzxxBM8+eSTLW2Oyr8Ma3E2APpWbcgKCgBRRMiNx99dz8IUaXnD1MtaM7Fv9AUXuzvs\nDv7+Yi8FaWVo9RqC4nzPJCuxPrh56pvNn6ag1Qj4emjx9dACZ2y2O0QqLQ7KLKeSmupTCY7FQUaZ\nlS5hHmhl2KdGDhyOuqfkncv06dOZPn16zd87duw463lRFKuBqacOFRWXQbFbez0jegKwNWsrb731\nluz6SmgqqasEUtlUkLMYitz+u1I8a9NcdtvtdlatWsXevXtp3759s7SpJLLG7XQi8957vNWzJzzw\nAJw9Z7vJOMvn093dnREjRpy3VsQV+7k5c+Yopt1UlPK7oqJCEV25sBZkIDoc/LJ9OQCxhiAEixfF\nVh1FVVaMblru6B31j1W6ti84zMn9RWjdNAx/pBvDHupK56vjiOgYiJunvtmuJaXa0WoEfDy0RPno\n6RDsQc9IAxu+/xCtAA4Ris32i4s0Emfph1RUXAXFkpconyiifKL4Zs83VFVVya6vhKaSukpQVVVF\nZibIOS1ebv9dKZ61aS6716xZQ2FhITExMf+KYXjFrsvhw6V1Mu+9J6+uE30+x44dy/r163nuueew\n26UvSq7YzznzCKJSfoviP1fQamlEqwVr/nG2HZeS/2sHXAOA1TMIAKO7Fqv9wj44HCLHNp0EQNAI\nZO7Ox1R29mr45rqWlDyH5dV20ootbM2q4q8jFezLLOV0WKos9RvtaAzO1A+pqLgCiiUvgiDwxrA3\nWLB/AT1u6SG7/ksvvSS7ppK6SvDSSy8RGioVbpJTU05cKZ61aQ67Dx06xLp16xg6dCjvvvuu4u01\nB4pdl6+/Lo3EBAfLq+tEn88JEybw+uuv88YbbzBq1Cjy8/Ndsp+79957FdNuKkr57e1d994nzoTp\n2HZig6U7XcWmYq7sk4S1NA/RXEFeuYUZK45e8L0ajUC/OxLxDjFgM9vZ91c6vz63gS3fHqQsT/ri\n3VzXklztOESRMrOdY0UWtmRW8efhCpYfq2RXjpnMMhtmm8gtDz5DoEFLh2B3In2UmxbnTP2Qioor\noNiaF4AJnSbw7Z5vmfzHZDSChivbXfmvuLvsTERHw+7d4HCoG5e7ElVVVfz888/Ex8fTv3//ljbH\neRFFOHAAFi2CEyegXbuWtkgxNBoN06ZNo1evXtx8880kJyczbtw4+vXrR79+/YiMjGxpE1VcGNPR\n7XTtOBKAlIyDzL7nbZZueI6ytBR8O/Tnp105lJtt3N0vhoRQr/PeH901hMguwWSl5LN/2QkKj5dx\n5O9sjvydTUg7P1r3CiOma7BTrX0RRaniWIXFcd5RaXFw7liTRoAAg5YgTy1BnjoCDFqnWeeioqJy\nBkWTF0EQ+Pzqzxn/03hGfzeaXpG9mH7ZdEa1HaUmMTJx551SNdl77oHPP1cTGFchIyMDs9nMFVdc\noV4L52I2w5o1UsLyxx+QlgYGA4weDVde2dLWKc6wYcPYsWMHzz//PL/++ivvv/8+IJVT7devH/37\n96dfv3507twZXVN2pFW5pLDmHyfAKO1HU2UxEx7ox5DASpYVF2BL34GuVTeWHixg6cECBrYJ4J5+\nMXSJ8jlLQ6MRiO4aQlRyMPlHSti/7ATZ+wrJO1xC3uEStn1/iMhOgcT2CiO8YyDaOkotK4HFLlJh\nsUuJSfXZSco/zIZDezpZMeoI8tTi76EmKyoqroDi//kifSJZOHohKeUpvLj6Ra789kp6R/bmuUHP\ncXmby9FrG3eXpqCggKCgIJmtVU5XCQoKChg7Noi5c+GOO8Buh88+u+Am5fXWlNN/V4pnbZS2u7Cw\nEL1eX7O5navG6Vwa7UdmprRh5R9/SJtXVlZCTIyUsFx1FQWdOhEUHe089ipMVFQUX375JQUFBVit\nVjZu3MiGDRvYsGEDCxcuxGKx4OnpSe/evenXrx99+/ala9euhIeH1ysZVtLv4uLii7+ohVDK7/pW\nf2pJbMUnKTNJhQV8DdI0t/fen0nPidMpzcmg+9GFaHqM47hvZ9YdLWLd0SJ6tvJlTJdwLmsbgNH9\nzNcFQRAIaedPSDt/KovMpG/LZdfKgzjK9GTszCdjZz5uRh0xXUOITg4mJN6/SYmMzSFisjowWUUy\nc/Pw8AmgyipVB6uwOLD8Q4YiAJ56DV5utQ536efF9m9prv7BWfshFRVnpVlui9x9990MjxvO33f9\nzZJblyAIAld/dzVh74Yx8deJLD68mGpbdYM0J06cqIitSukqwWlbb71V2u9l3jxo3x6+/BJstqZp\nyoUrxbM2StpdVFTE1q1bz/qi6apxOpd6+1FZCYsXw8MPQ8eO0vzHSZMgPx+ee06aC3n8OMyaBVde\nycQHLr71gKL2thATJ04kPDycMWPGMGPGDDZs2EBpaSnr16/npZdewtfXl88//5zRo0cTGRlJaGgo\nI0aM4IknnmDevHns3bsXq9Vap65SvPzyy4ppNxWl/C4pKVFEV04c1ZWYzVLyotNIm2r6+/pw59VD\nAMjQRRLzx1T6Lrmb3p756DQCW9NLmfbbQYZ8sInHFu5n6YF8qixnV90yBniQOLIV8/fP4opnepIw\nLBqDrxuWShtH/s5m1UcpLHzqbzZ8uY8TO/OwVZ/9flEUMVsdFJlsZJVZOVxYze4cM5syqliVVsGi\nQ+X8nlrO8mOVrM+oYvI9/yG1wEJGqZUik70mcfHQCQR5amntpycpxJ0+UQaGxxm5JsGbkW296Bfj\nSecwD+IC3Agx6vDUay6a6DdX/+Ds/ZCKirPRLHMOTtcZFwSBkW1GMiJuBDtO7uCnAz/x04Gf+HLX\nl/i4+3B1/NWM7TCWUW1HYdD/84ZQtWuXK2GrK1Db1ptvhi5d4MUXYeJEePNNeOklGDeuYVPJ5Pbf\nleJZG6XszsnJYd68eXh4eDBmzBjF22tuLuiHwwE7d8LSpdLIyt9/g9UqJS0jR0of3GHDIDCwYbpK\n2esk1GWfh4dHzTqYxx9/HFEUOX78OCkpKezatYuUlBR+/PFHZsyYAYCbmxtJSUl06dKFLl26kJyc\nzGOPPaaYzZMmTTqv5LOzoNT5dvYF+4JW+icQZZDWsqQVZNY8d/fVg5j9xzryiMCzyxVUpfyJ/osb\nGN1pCG5jXmVTgZ4TxSaWpxawPLUAD72Gy9oGcnmHYPrF+WPQS4nQ9OnT8Y/yxj/Km+Tr25KbWkzG\nzjwyUwowl1s4vjWX41tzEXQaPGN9cWvrjxDrS7VOi6Mexdp0GjDoNdz/2LO09tPjqddgrDWaolNg\nuldz9Q/O3g+pqDgbzZK8dOvW7ay/BUGge0R3ukd057Whr7Evfx8/7v+Rnw78xDd7vsGoNzK49WD6\nRvWlX3Q/ekb2xMvN6x81lbLVmTnX1sREaVPyHTvghRekhOa11+DZZ6V1MVptwzXlttFVkNNui8XC\n8ePHOXLkCLt37yYgIIAJEyZgNBoVaa8l6datm7TIPjtb+iDu2AHbt8PGjVBQAEYjDBkC774rJS3x\n8VIVsfroKmWvE1Mf+wRBIDY2ltjY2LN2zy4pKWH37t2kpKTUJDbffvst1dXSKHerVq247bbbeOKJ\nJ/Dx8bmQfIPp0KGDbFpyo9T51uudZ5F6XQg6qfNvbZT+j+aUFlBmqsDH4EV4oC/XDezKglXb2Oh3\nGf958Cr2zXmekj2r0OwfxH9nr8Ia2Y0lB/JZejCfrBIzSw7ks+RAPnqtQJdIH3q18qN7qzbkVlgx\n2UQqqh2Ue3lQ0TsKoUs4bjkVOI6VYD9aglhWTeXhYioPF4NRj8f4RARPPQadgEGvwVN/6qdOg0Ev\n4KnXYNBr0GukzzpxzVfgpLn6B2fvh86lev5+TMGNnN6hojgWe0ZLm6A4Lb7aUxAEkkKSSApJYvrg\n6aQWpLLwwEJWp6/m7Q1vU1ZdhkbQ0Dm0M/2i+tE3WkpoYv1i1YXOF6BbN2npwMaNMH26lMS88AI8\n/bQ0xawpa2JULo4oiuTl5XHkyBGOHj1Keno6DocDPz8/unTpwtChQ3F3d29pM+VBFCE9/UyicjpZ\nOV2/OzBQ+kBOngwjRkDfvuoHsJnw8/Nj0KBBDBo0qOYxm81GamoqKSkprF+/nhkzZvDpp5/y3HPP\nce+99/57PpcqZ+GotgJ6AoJbEeoTSG5ZIUfzTtC1VSIAD44bwcodBzmSmccz2fncddunRKbM5fDf\ni/jxtQd44ocddBgSy9TLWpGSVcHm9DKOF5tw0+kI8nbHy8uDjAqBjArT+Y1rBNwivTHG+uIxsjXa\nYhOmw8UU7cyjuqQa/61ZDJqUhFatNqOiolJPWjx5OZf2Qe2ZNnAa0wZOwyE62J+/n40ZG9mQuYEV\naSv4eNvHAIQYQ+gX3Y++UX3pG9WXHhE9LjrV7FKjb19pDfTWrfDGG3D33VIy88QTUhLj79/SFv57\nEEWRgwcPcujQIY4ePUp5eTk6nY7Y2FhGjhxJ27ZtCQgIcP2E226H336DTZvOJCtFRdJzoaHQvbuU\nqHTrJh3R0fUaWVFpHnQ6HR07dqRjx47ccsstTJs2jenTp/Poo4/y/vvv884773DDDTe0tJkqCuAe\n3RGdTxBtQ2PILSvkcG56TfISGx7Eyg+e4IUvfubXdbuY/ddmWof2pWPocWxB7fhz8148wtpScaq8\ncFigD2GB54/WlVRZKKwwU1BeTUFFNdUWG7FBHtw/IIYwHw/pRa2MkBxEcd8w/npzGyd3F5C1q4CY\nbiHNGA0VFRVXplludcyePbtR79MIGpJCkrin+z18ee2XHJxykIInCvjj5j/omdOTUnMpL695mUFz\nBuHzpg+9Pu/Fw389zPd7v+dE6YlG7XrcWFtbgvra2rMnLFwIe/fCoEHSGunQULjmGvj2W6ioaLim\n3DY6Gw2xOy0tjc8++4wffviBrKwskpKSuO2223jqqae45ZZb6N27N4GBgf+YuLhEnJYuheRkGDMG\nvvtOmgL20EPSMF92NuTkMHvMGHj5ZbjuOqlamEyJi1Lxcfa4K2XfF198wbFjx1iyZAlmsxlvb2+O\nHz/OAw88w4nUXgAAIABJREFU0OTd4n/55ReZrJQfpeLpCjukeyYMxGa3kVcm3WyorD57lCTQ14tZ\nj93G7GfuomvHeHr16cugt1fQ8ZEvsQbEUX4qcdEK4OuuIcpHR0KQGz0jDAyJNZL39/f0jfIg2AMq\nqkzszSxid1YJv6bkcMucnWw7cXZRA/8ob9oPkTbNPLGj/jstN+c121xtOXs/pKLibDRL8rJjxw7Z\ntAI9A7kq/ipamVqx8o6VlDxdws7JO5k5aibtg9rz+6HfGf/TeFq934ro/0Zz44IbeW/je2zK3FSv\nimZy2qo0DbW1Y0epIllmJsyYIS1BmDABQkLgppvg559h61Z5/XeleNamPnYXFhYyf/585s6di1ar\nZeLEidx///2MHDmSuLi4Bu3B4dRx2rcPrrgCLr8c/PxgyxZpw8hffpHmI151FYSHA8r54Wq6ciGn\nfenp6cyZM4c77riDRx55hDZt2jBp0iRSU1OZNGkSixcv5siRI00eHTx48KBMFsuPUue7ropuzoZH\ndCLzNv7O4dx0/D19uK7b8LOeN9scHCqoRhPYmom33szAPj3wNBgoKill058L2PXaWIIO/c7V7b0Z\nGudFz0hPOgR7EOWrx89Dy+5du0gI9eKO3lF8NC6JdY/0438TOhMfYqSw0sqkb3fz9ZbMs5JjN0+p\nj9R71GNB5ima85ptrracvR9SUXE2mmXa2KxZsxTT1Gl0JIclkxyWzP097wcgtyKXjZkb2ZixkY2Z\nG3l25bOYbWbcte4MjR3KvT3u5cp2V6LTnO++ErYqRWNtDQ+HBx+UjuPH4fvvYf586Ya6j88sAgLg\nqafg1BYkLWJjS3Ou3ZWVleTl5ZGfn1/zMzMzE29vb8aOHUvHjh2b9KXPaeP0++/SKEp4OPz0E1x/\n/T+Opijlh6vpykVj7LNarRw6dIi9e/eyZ88e9u7dy65du0hPT0cQBLp06cI999zDkCFDGDhwIH5+\nfrLa/PTTT7NgwQJZNeVCqfPtK0dnqTCVBl/e+fMNAB674i78jWemfRVW2diYUYX11HY1WgHCvXVs\n37WH12cvwOEQiS82U/LcrbRJ7EJEu6Tz9M+NrV6roXuMH3NvT+blPw+zeF8eM1YcI8LXg2HtpT1N\nqiulRd/mciuiQ0SoR8Ww5rxmm6stZ++HVFScDadb8yIHoV6hXJdwHdclSJV3LHYLKTkprM9Yzzd7\nvuHa+dcS5RPFpG6TuLvb3UR4R7SwxS1H69ZSovLUU3DwoLRHzPvvS5tdPv883HffpbW+uqqq6rwk\nJT8/v2ZaiFarJTAwkJCQEEaOHEm3bt2cvtJQk0hIkI7UVNiwQaoQ5uV18fepKI7D4SA9Pb0mQTmd\nrKSmptaMBERERJCUlMTYsWMZMGAAl112GQEBAS1suUpL8M4Pb1NcWUp8WGtu73dtzeN5lTY2ZVRh\nF8HHXUObADcivfXotQI9I3tj1NqZ9ulPlAQmQtHfZB3cVWfyciEMei139I5i8T5paliw15l/KJFJ\ngaSuyiBrTwFb56fSc3z7eiUwKioqlzb/yuTlXNy0bvSM7EnPyJ483OdhtmVv4/+2/R9vrn+Tl9a8\nxLUJ1/L8oOdJDktuaVNblIQEeOstaURm+nR49FGYOVPaM+bGG/99665NJhMHDhwgJyenJkmprKwE\nQKPR1CQpsbGxBAcHExISQkBAAJpLqSpOu3bS/izvviutZVmwQPo5eLCsa1pU/hmHw0FKSgpr1qyp\nSVL27dtX83n19fWlU6dODBgwgPvuu4+kpCQ6duxI4AX2zVG5tMgR4bvMY4DAU537IpbmIfqHU1hl\nZ2NGFQ4RQoxaekd5nrdfyqDk9gAUOjxxoKG8KLdebVbbHBzIKWd3djm/pOQAMLJDMJ0jz4z4hCUE\n0Pf2RDbO3c+Rv7PR6jV0vzFeHqdVVFT+tVwSycu59IjoQYdRHaTKZiumsfDAQkI8Q/hk9CctbZpT\nEBkJn38OjzwijcjcdJM0rezTT6X1Ma5OdnY2W7duZe/evdjtdgIDAwkODqZ79+6EhITUJCna+myM\ncyng5gbTpkkfhKlT4c47pcdDQ6F3b+no0wd69AAZ9wu51CkqKmLp0qX89ddf/PXXX+Tm5uLh4UFi\nYiJJSUnceOONJCUlkZSURGRkpOtXslNRjKU6PXYE+mrsxK+ZzYk1s9EYvMgY+jKO4GSCKKOHnwGd\nxnjW+3KO7ud/n3wCuOEQwSFo0OnOH4oXRZHMEjO7s8rYky0lLKm5Fdhq7T7p6abl0SGx5703tncY\n5goLO386Qvq2XDV5UVFRuSjNkrxcc801/Pbbb06heajwEJ9s/YQvd31JWXUZo+NH80DPBxjRZoRi\ntiqF0nFNTJSWPPz0E9x7r7Tg/9NPYezYlrWxMVitVvbt28e2bdvIysrC19eXQYMG0a1bt7M2izxN\nc9vtLHH6R+LiYNEiyM2VFu1v2gSbN0vDdWVlIAhc4+XFbzfeeCap6dgRGlC44EIoFR9nirvD4WD7\n9u389ddf/Pnnn2zevBmHw0GnTp24/fbbueKKK+jfvz9uMszjVNLvRx55RBFdOVDK76LT5cKdlA0W\nPQIwKQT0Fg3WKgcOUwXWKqnUpPuGz8k8tAidbyhuUR1IK6pm6+aNHNy/l2XRd4DOjS6kMX7a+/S7\ncTJWu4MdGaXszipnd3YZe7LK2fF/jxN7+xtntRvgqadzpA+dI7wZnhBMuK9HnfbZqu0ABMVdfO1Q\nc16zzdWWM/VDKv9uhmV+Q0ihPFp5Jpgvj1SDaZbkZcqUKS2mabFb2JixkWXHlrHs2DK2ZG0hyDOI\n+3rcx+Qek2nt11pxW5WiueI6diwMHCglMDfcIP386COoz8CEM8TTYrHw0UcfUV5eDkBiYiKDBg0i\nODj4glPAmttuZ4hTvQkNhauvlg4Ah0NaMLV5M1N+/FHapHLOHOlxLy+pnPK0aVJp5UaiVHycJe6r\nVq3itttuIysrCx8fH0aMGMFnn32Gh4cHEyZMkL09Jf0eN24ca9euVUy/KSjld103QJwJm8NB71aJ\njJz6X+z527Flrcd07G+OBkhVAnUaaY2UrTSXvfv3szTlOAB7g0dg1nkRbnAw+/H7STcm8MbyNJYd\nzKfEdPYO62H9x9A5wptOET50ivSmc4QPEb7udY4ImkqryT1UTO6hEnIPFVORL5VtDku4+Hqs5rxm\nm6stZ+mHVFRchWZJXkaOHNlsmqIosi9/H8uOLmN52nLWHF9DpbWSQEMgw+OG82CvBxmbOBYPXd13\ngJSwVSmaM64hIdIIzBdfSIv4Cwvh66/hYhtyO0M89Xo9/fv358SJE5w8eZL9+/ezf/9+dDodoaGh\nhIeH1xzBwcHodLpmt9sZ4tRoNBppmC4xkZF33SU9VlkpJTGLFkl1ub/6Svo5blyj1skoFZ+Wjrso\nisycOZPHH3+cwYMH891339GnTx/Fi0Ao6Xffvn0V024qSvntfrGO0AkYGN8dQWdAFz7g/9k77/Co\nqvSPf+6dySST3nujhh6qKIJYaCIiKirg2nbt6LqrwrLq7orrsmv5WRDUXTvrqig2EFFBuiAdQksI\nkJAA6b1Ovb8/bggJJclM5s7cgft5nnmm3fm+73lzz2Tee855D/q4kZzo+hh1RWZ0WOnS3Y5PcDCW\nOiu1BfL6FGLTyAnoj84/hCFdDEz/oYEyMbdZL9THzvDkQAakxjIgIZheMSMx6M99Maix1kxxdiVF\nWRUUHaqgurD1vjiCAFHdQkke0v68ZHf2WXfZ8vT3kIaGt3FBrHk5WXOSVUdXsfLoSlYdXUVhbSG+\nOl9GpYzir6P/ypiuYxgYOxBRuIgWWiuAIMB9953eF+b66+Hbb8Fo9LRnbSMIAsOHD2f48OEANDY2\nUlhYSEFBAYWFhRw7dowdO3YgSRKiKBIdHU1sbCyxsbFERkYSERFBSEiItqbAEQIC5B1Rr7gCHngA\nnngCpk2Dt96SR2VSUz3tocex2WzcfffdfPzxx8yaNYt58+Y5tDeQhueor6/n+PHj5Ofnk5GR4Wl3\nOkREoFwS22yTOF5lYX+xGYC+MYEY4meTu3sDq7M2sNrWlYIhCdRF9CQ0IAqdMZDNTRr+UgPDzXsZ\nZdlJf+thxGIJ+75IpKBUssUILGI4VkKw2AIw2/wwWww01vtQU3nGML0AoXH+xKSFEZMWQXSPUAxG\n7dzX0NDoGF75bVFrrmVd7rrmZGV/yX4ABsUO4s4BdzKm6xhGJo/E6KPyX9Veyg03wIoVMGECvPSS\nvE+hN+Hn50dqaiqpLX5Am81mioqKmhOagoICMjIysNvljQ/0ej3h4eFERES0ukVGRmJUe/bmabp2\nlXdA/fxzOetdulQuaXeRU1ZWxueff86oUaN44YUXtORYJZhMpubEJD8/v9XjU7cz17iMHz/eQ952\nnDD/ULadqOdktQU78rlWeOI4L7y1inpjNFJgJKJ+MmJfCaMdYm0QYJMIrrfS16ec7kIp4XYz5sZg\nTKbr2GMJwGIPgFodlLZv3ygWEqw7QrDuMMH6o+hrGmA7mDP8OekXgOgbgNjqPrD5uXCe15vvfQMQ\n9BdwyXoNDY1WuCV5+eabb5gyZYrTn7farWw/ub15Ktjm/M1Y9ltIvjSZsV3H8swVz3BNl2uICojy\nuK/uRAlfO6p51VXy788XX5RHY5o2WHeLj0pgMBhISkoiKSkJkP2+7777qKyspKysrNUtIyOD6urq\n5s8ajcbmRCY8PLx5tCY8PLzDV9K9JU7t0WY7iovlxfu33upa3U7gybhHR0fz0UcfMX36dObOncuz\nzz571jHe2O41a9YoousKlixZwtChQ9tMTEpKSlp9Jjw8vPm7YcSIESQmJjY/T0pKIiEhgR9++MFD\nLeoYMcHxEDCM49VW7IV1VB6vpqCwmsrSesYY+hNghoASCX+7FX/7uRTCMRFOwXn0ffQN7MxdyxVp\nafjo6jCINfiItfiINfgItQTq8tFLtUg2CbsNJJsETYXIJHM9NnM9NkrOo96aldmVjO1x9saqgt4X\n0S8Awdf/jEQo8ByJUQA+kcn4pQxo05a7vh+87fu/n/98+gb6e9oNjfOQZbrwq366JXn59NNPHe6Y\nkiSx/eR2PtrzEZ/u+5TyhnKCfYO5usvVvDr+VZbvWM7yx5a7/GqlM756CiV8dUTz6aflzSzfeAPm\nzeu8npo45Xd4eDjh4eH06NGj1ftms5ny8vJWSU1JSQkHDx7EZDI1HxcbG0uXLl3o0qULKSkp560U\n5a1xOpPztuP77+Gf/5TnGsbGuk63k3g67tOmTSMnJ4ennnqKL774gvT0dAYOHEh6ejrp6ele2e4f\nf/xREd3O8vnnn3Pbbbe1ei0kJKQ5CRk6dChTpkxplZgkJibi79/+jzRPn0ftMX7IbZhLG6hek0tQ\nUQNGoGsbxwsC+AYZ8Asy4Bfkg1/wqceG04+DT78v6kSW3LaIeS/MQzJVgqkSyVSBZKpEMlecfnzq\n9cZypMZK7BYLUlMyY7dJp++trV+T7DokwR9J8GX5jwVMHN4bu8WMvbEOydIIgGQ1Yas1QW3HK78l\nPvY/fOPTzvu+u/6uaj9/NDTUhluSl8WLF3f42JM1J/k442M+2vMRB0oOEB8Uz72D7mVKrykMSxiG\nXpRdnvnNTI/76mmU8NURTZ0OGhvb/i3qTfFsSXt+GwyG5nUxLZEkifr6+uZkJj8/n3379rF582ZE\nUSQhIaE5mUlMTGwemfHWOJ3JWe3IyYE//EGeKnbNNfDaa67RdRFqiPucOXNITU1l48aN7Nmzh2XL\nllFbK5ewjY6OZty4cc3JTHp6Or169er0gn4l2/2vf/2LlStXKqbvLEeOHCEoKIglS5Y0JyZBQUEu\n0VbDedQW1j12rLsOEISAJEBwaiCRMYEYz0pE5MeGAB9EB3e6PxUDwRgFxvZnQUiSBNY6OZExt0hs\nTBVNyU8lUmMJ9uocsDUCVsDK4rlpQB3o/BBDBiEEdQf/FDDGgS4Uu7lBTmpMddgb67Cbmm5Nj+v2\n/oy9sRZdYAT6sPgOtUlp1H7+aGioDdWsedlXvI9ZK2fx05GfMOgMTOk1hVfGvcKYrmPQidpmgWpk\n1Sowm+G66zztiXoQBIGAgAACAgJITk5myJAhSJJEWVkZOTk55OTksG3bNtavX49eryc5OZl+/fox\naNAgT7vuWiRJ3v9l7lyIjJTXu0yd6lSlsQsdQRCYPn0606dPB+T9XnJyctizZ0/zbcmSJbz88suA\nnDj36dOH9PR0brzxRm644QZPuu9V+Pn5XZSVnaKLGtBFCcT1jWDwzd0JifV8aWdBEMAnEMEnEEg+\n73GSZEOqycNemY296lDTfTbYGrGX74fy/acP1vkiBndFH9wVMbgLYkI3JH045uITmE4cxFpxEntj\n04WB2+aiM7omeb0Y0b7KNTyJapKXuevmsrdoL29d9xa39r2VUL+z57RqqIsPP4QBA6BbN097om4E\nQSAyMpLIyEiGDRuGJEkUFhY2/0D96aefLrzk5cUX5b1dZs2SKzoEBnraI69BFEW6detGt27duOmm\nm5pfr6ysJCMjozmh2b59Ox999BHPP/88Tz31lLbgX+O8WHwsjH54AAn9Ij3tisMIgg4huAticBdA\nTjwlyYZUe7xFQnMIe9Vh7A21mMr2YqndjaXWhqXOhs0knaUZMmIKxu5D3dwSDQ0NV6Ga5OVY5THG\ndxvP/UPu97QrGh0gOxuWLYN33vG0J96HIAjN+8rU1tZy6NAhT7vkWr74AubMkZOWuXM97c0FQ2ho\nKFdccQVXXHEFIE+7ee6553jmmWcoKCjg9ddfR9eRnWM1LjpC+ui9MnE5H4KgQzJEYjYVYSoxYjpu\nwHRCwFpRe87jdX4iPoEiPgE6DEE6fKSfafhuPUJQCmJwV8SQroghPRBD0xB8PD8qpXYiB/gT200b\ntVIrhQUXfgVUt2x8cs+pjeva4ETNCRKCE1yq6QxK6SqBEr52VPPtt+XZQO1t/u1N8WyJO/w+fPgw\nBw8eJDg42GvjdCb33Hgj3HknzJgB56ie5bTuRdrf2/JPEAT+9re/sXDhQhYuXMhbb73lEt3Ocq6q\naWqhZZVAV6L28yimS+crcbaHkjGQJAlLaT41O5cz/eqh5L82g5y/XUXBOw9T/sNC6vatxloh10Lz\niUgiMH0cERMfI/7+t0l95juSfv8+0VP/TOjlU/FLTZcTFMmKVH0E2/GVWPb/G9OmJ2n4fjINq3+L\naddLWHO/4+7bpyJJNsXadQq1nz8aGmrDLSMvHZljbLVb8dV1fJfiC3XHbUdQwteOaEoSfPMN3Hwz\n+Pl1Xk+NKOl3UVERK1eu5MiRIyQnJzNhwgTFd1R3C3Y74w4ehKQkePddl06Kvlj7e8f6o4QgCIwa\nNcqlus5y6aWXsmzZMsX0O8P5qv11FrWfR6GRypdOdWUM7OZGTMcP0JiXQeOxDBqP7cVeVwHA8IBy\nzAXyaLU+NBbf5P74JvbGL7EPhvi086xjiUUX0a/5mSTZkeqLsFcfRao+ir36CPaKLKSGIqSaXGw1\nudjyVnBlbBENy69HDE1DDOuNGNYLMawPotG1o1hqP380NNSGW5KXUwtR20JAwC6ds8C805rOoJSu\nEijha0c0s7Lg6FGYNMk1empECb+tVivff/89u3btIiIigttuu420tLTmBdtez/vvMz0rC9asARdv\n3Hmx9vf2/KuurubZZ5/l7rvvJj093WW6nWHChAk8/fTTiul3Br/2rrY4idrPI6OfMklbSzoTA8lq\noTFvLw2Ht1KfvRXT8f1gP2PEQ+eDb0JvfjOqP34pA/BLGYA+2LkRJUEQEQLiEAPiIO7y0340lmOr\nOIi96Xbr1Vlgrcdetgd72Z7TnzdGI0YORBc1GDFycKeTGbWfP2chCNoaOxVzMfxlVLHmxS7ZqTZV\nE2DQ5pp6AytXgsEgb1Sp0XHWrl3Lnj17mDhxIoMHD77w1if8979yRnvllZ725KLhww8/pLKykuee\ne87TrmioGF+DukZ2JUnCXHiEhsNbaDi8lYajO5HMDa2O0QVFNicpfikD8E3ohaBXNgkT/MLRx13e\nnNA0VzqrONic1EjVuUgNxdjyf8KW/5P8ucBkdFGDEKOGoIsc2FRBTUNDQylUkbwcrz5Og7WBXpG9\nPO2KRgdYtw4uuQQ6sHebRhN5eXls2rSJq6++mmHDhnnaHdcjSbBnD8ye7WlPLhokSeKtt97ixhtv\nJDEx0dPuaKgYgwqmpdoaaqk/uI76Q7/SkL0VW21Zq/fFgDD8e1yCsfslGLsNQx8W5/Gr+y0rnelT\nJgIgWRuwl+/HVrITe+ku7JWHkGrzsNbmQc63gIgY2gMxajC62MsQw/ogCG5ZXqyhcdHglh61cePG\nNt/PLM0EIC3i/DvdOqrpLErpKoESvnZEc9Mm6Oj0em+KZ0tc6Xd9fT1ff/01CQkJjBgxQnF7HuHo\nUaiqYqNCP5Iu1v7eln87duwgMzOTBx54wKW6nWXXrl2KaXcWi8WiiK7azyN35ADnioHdVE/N7h8o\n+OgJcv8+luLFf6N21wpstWUIPr4Ye44g4ro/kPjYJ6Q+8yMx0/9B8LAb8AmPP2/i4s5Yn8uWoDei\nix6Koe/9+I1+C+O132AYNhd96g0IgUmAHXtlFtbsTzFt+D2NK2dg3vcWtopMeWPODtrR0NA4P25J\nXl588cU2388qzcKgM5AamuoyTWdRSlcJlPC1PU2zGQoKoHt31+ipFVf5bbfbWbJkCWazmZtvvhlR\nPHeX89Y4NbNyJej1vLhmjSLyF2t/b8u/UyW2nRnJU7LdixYtUky7s9TX1yuiq/bzCAfWkzrLqRjY\nLY3U7ltN4cdz5ITl02eoP7AObBZ8orsQetU9xN//Nl2eXUP87+YTesVv8I3viXCe78bz2XEHHbEl\nGILQx4/CkP4Yxms+wm/cYgyD5qBLvAb0/kgNxViPfIFp/cM0rvoN5gPvYq860iqRUf35o6GhMtwy\nbeyzzz5r8/3M0kx6hPdAJ3Z8DUB7ms6ilK4SKOFre5pFRfJ9XJxr9NSKK/y22+0sX76cY8eOcccd\ndxAaev6NV701Ts2sWAEjRvDZkiWKyF+s/b0t/44dO0ZoaCjBwY5XklKy3fPmzWPkyJGK6XcGZ2LV\nEdR+HiFZFTfxyUfvU77yP1Rt+B92U13z6/qIRALTxxE4YByG2G6dngrmzlg7Y0s0RiEmj0OfPA7J\nZsJWtBXbiTXYin5Fqi/Amv0J1uxPEEJ6YOj3ELrIgeo/fzQ0VIZbkhf/dhZHZJVlObzepT1NZ1FK\nVwmU8LU9zZoa+T4kxDV6aqWzftfU1PDll1+Sl5fHpEmTSE1NVdSeRykrgx9+gHnzvK5fqj3ubfm3\nYsUKBg8e7HLdzmJ0caU5V6LUGgq1n0eSvVE5bZuV6m3fULHyneZ1LPqQGALSxxGUPg5DQi+Xxt2d\nse6sLUHniz5+FPr4UUjWBmxFvzYlMluQqrIx/fI4uriR+PV9EFD3OaShoSZUsWA/szSTu9Lv8rQb\nGg6gVUk8P0ePHuWrr75CEATuuusuUlJSPO2SsixaJC/Yv/NOT3ty0bBv3z42bNjA4sWLPe2Khhcg\nWc+983xnaTiynZKv/4ml5Bggj7JETHiEgH5Xd3ga2MWCoDeiT7gKfcJVSKYqLJkfYs1dhq1gI7ai\nLei73YJP799qi/s1NDqAx5MXq93KiZoTpIRe4D/wLhDMZvn+Qqvy21nsdjuHDh1i69at5OTk0LVr\nV2666SYCAi6C8t8rV0Lv3hDp2o3bNM7NqlWreOSRR4iLi2PKlCmedkfDC5BslYroFi3+G7aqIsSA\nUMLH3EfwJTch6D1f2UztCL4hGNIfQ99lMuZ9b2Iv2YE1+xN0UYPRRTk3mqqhcTHhlhR/1qxZ531P\nL+qJC4wjryrPZZqdQSldJVDC1/Y0Dx+W77t2dY2eWumo3/X19fzyyy/Mnz+fxYsXY7FYuOmmm7j9\n9tsdSly8NU4APPggZGTA2297Xb9Ue9xb+pefn88tt9zC2LFjiY6OZuXKlU7vGK9ku1977TXFtDtL\nba0yIxBqP48kU74iur7xPQEIHn4Tz3+93S2JiztjrbQtMbgLuriRPPXhYTAEI4b2VNSehsaFgltG\nXpKTk9t8v290X/YV73OpprMopasESvjanuaBAxAV1fGL7N4Uz5Z0xO+1a9fyyy+/IEkS/fr145JL\nLiE+Pl4xe6pl8mR46CF4/HGSp04Fkwl8fV1q4mLt78nJydTX1/Pqq68yb948goOD+fjjj5kxY0an\n1hEo2e7Y2FjFtDuLUhvDqv08spscuzjYUQIHjqf+4AZqdywnMWa0IjbOxJ2xVtqWvfIQlswPSIr0\nwyftLm1zSw2NDuKWkZdHH320zfevTLmSn478RGl9qcs0nUUpXSVQwtf2NA8cgD59XKenVjrid1VV\nFVarlQEDBnD99dc7nbh01J6qefllGDuWRz/+GJKT4S9/gRMnXCZ/MfZ3m81GQEAAPXr0YO7cuTz0\n0ENkZWVx++23d3oBtJLtnjZtmmLanUWpYgJqPo8ArPXHFNEN6DMaXXA01qoibtLvxlanzPS0lrgz\n1krasub9SOOGR8FczcMzRqNPvV4xWxoaFxqqWBn2wNAHkJB4e/vbnnZFox0cTV4uZCZPnsyYMWPY\nvXs3ixYtorq62tMueQ5/f1i6FA4ehFtvhddeg5QU+fGGDfKCfo0O8+OPPzJo0CB+97vfMWrUKDIz\nM3n55ZcVK/WrcWFjNpUjWatcrisajMTfuxBdYATmgkOcfOdhtyQw3oxkt2LOmI951wtgtyDGXIrf\nyFcRRI8vQdbQ8BpUkbxE+kdyd/rdzN8yn1qzMnOSNTqPxQJZWVrycgpBELj88su55557qKys5N13\n36W0tOOjhxckvXrBG2/Ioy6vvgp79sAVV8Dw4bBkCdhsnvZQ1RQVFXHrrbcyYcIEQkND2bJlC599\n9hnNp5UgAAAgAElEQVRdO7rITEPjHFjtIraGQ4poG2K6EH//280JTMEHf8BublDElrcjWWox/fpn\nrDnfAKBPuxPf4c9r08U0NBzELclLZmZmu8f8edSfqTJV8dqvHVvs2RFNZ1BKVwmU8LUtzf375Wpj\ngwa5Rk/NOOJ3UlIS9913H35+fnz44YcUFxcrak/NNLcjOBgefVQeifn+ewgMhFtugbQ0ePNNcHCn\n8wu9v0uSxKJFi+jduzdr1qzhk08+Yd26dYqNtCjZ7pycHMW0O4vVqsxmjWo5j86H2Qr2+oOK6Rti\nulB91ZOI/iGY8vdR9PGfkGzeH2tX2rLXnaRx/aPYS3aAzg/DJX/H0OtuBEFU/fmjoaE23JK8zJ49\nu91jkkOSeWjoQ7y06SUqG9sfdu6IpjMopasESvjalubOnfL+LunprtFTM476HRgYyF133UVgYCAf\nfvghZWVlitpTK2e1QxTh2mth9WrYtg2GDJGTmpQU+PZb53VdhFrifsstt3DXXXdx7bXXcvDgQaZP\nn44gCF7Z7vnz5yum3Vnq6uraP8gJ1HIenQ+zTcRed0BRG8+8+AZxd7+K4ONLfdYmyn5YqIgdd8ba\nVbYkUwWNGx5Fqj2G4BeJ36j56OMud7kdDY2LBbckLwsWLOjQcU+OeJJqUzXfZ3/vMk1HUUpXCZTw\ntS3NX36Bfv3ki+iu0FMzzvgdEBDAXXfdhdFoZNmyZUgOrPPw1jidSZvtGDoUFi+G7Gx5+O6BB6CD\npWsv9P6+bt06Zs6cyf/+9z8iW5Ty88Z2q/mHWKAjX14OoJbz6HxYbQJ2U66iNhYsWIBfygCib50L\nQM22b5GsFkXsuAtX2bJkLQJTBUJgCr5XvIkY0l0ROxoaFwtuSV46Wm4wMTiRgbEDWXF4hcs0HUXt\nJS9b4u5SyevWwWgHq2F6Uzxb4qzfRqORSZMmcezYMXbu3Km4PbXRoXZ07QrvvAOVlfB//+c6XSdQ\nS9zT0tKoqKg463VvbHdcXJxi2p3lYi2VbLUJSOZiJLtZMRunYhDQ7yp0QRHYG6qpz96imB134Apb\n9trjWHO/A8Aw4PeIxrP3GVD7+aOhoTZUsWC/JWO7jmVd7jpPu6FxBoWFcOSIvPZao22Cg4MxGo3s\n2rXL066ol+JiCA2VF/FrMGTIEL7++mveeusth0bsNDQ6gkXyBexI5gLFbQmiDr+UAQCYjis7Vc0b\nsBVtBsmGGNEfXZQDC0Y1NDTOi+qSl5SQFAprC7V/4Cpjxw75ftgwz/qhdrKzs3nnnXfw9/dnypQp\nnnZHfVit8NxzcNll8n4wWvICwLx587j77rt5+OGHue666ygoUP5HpsbFg1UIB8BuOq64LbvFRMPh\nbQAYuw5W3J7aEYwxAEjWRg97oqFx4eCW5OWFF17o8LHRAdFY7JZ2F+07oukISukqgRK+nk9z504I\nC5PXWbtCT+044/f+/fv55JNPSElJ4d577221dkEJe2qkzXZIkrx4/7nn4Omn5UVUaWmd1+0Eaol7\nQEAAb775JsuXL2fnzp3079+fI0eOeGW7P/zwQ8W0O0u9g1XuOopazqPzYSEMAMmUr5iNUzFoyN6C\nvbEWfUgMfl1cn7y4M9ausCUGpQIg1eQiSXbF7GhoXEy4JXlx5B+Gn94PALOt7bm5Sv0TUkpXCZTw\n9Xya5eUQFydXG3OFntpxxu/c3FwiIiKYNm0afn5+ittTI222w26HVavg5Zdh7lzw8XGNbidQW9wn\nTpzItm3bKCsrY/v27V7Z7sZG9V5hVmpEX23n0ZlYRflCiq1euWlczTFo+oEuGgMRRNf/xHBnrF1h\ny1b4CwCCMRpBOHc81H7+aGioDbckL3Pnzu3wsVa7XBte385us45oOoJSukqghK+u1vSmeLbEWb99\nfHwQHM3wOmFPbXSoHaGhyug6gRrjHtoiPt7Y7gcffFAx7c4SEBCgiK4az6OW2HRyEQVb7e7zXv3v\nLKdi4JvcDwBz0VFsDa7fdNqdse6sLclSiyX7MwB8et6hmB0NDTUjCEKAIAh/FwRhkyAIhwVBONry\n5oxm2xmCB7DY5dKKPrqOX5XVUJ7CQlDo//4Fg8lkQq9XXZdSBydPwu9/Lz9WcTUqNeDj44NOp3N4\nryANjfNhFcNBMICtGslcgOCboJgtfVAk+vAErOUnMOXvw7/npYrZUjvW/FVgqUEITEaXdI2n3dHQ\n8BTvAqOB/wIFQKeHwFW3YL+jIy8a7qO+HpYtg8mTPe2JepEkiWPHjpGUlORpV9SF3Q5vvw29e8PG\njfI+L+PGedorVePn58fll1/OihXtl4zX0OgIVpuE4CNPHZOs5Yrb80vuD0Bj3l7FbakZ28k1AOhT\nJiIIypTp1tDwAq4FbpEk6U+SJL0mSdLrLW/OCLoleSktLe3wsRabPPLSXvLiiKYjKKWrBEr4ei7N\npUuhrg6mT3eNnjfgqN8VFRVUV1eTmprqFntqpVU7ysrgmmvgoYfg1lvh4EH53olpdRdbfx83bhyr\nVq2isLBQEX0l232u/WrUgt2uzJQptZ5Hp7BYbQi6IAAka9vFcJylZQxOlUqu2vgpZT8sxFLhuup5\n7oy1s7bsNccw7XwBe5mcvOkSrlTEjoaGl1ABuPSqiVuSl9/+9rcdPvZ49XHCjeH4iG1PG3NE0xGU\n0lUCJXw9l+Ynn8Dw4dCtm2v0vAFH/T614DLUifUczthTK83tOHYMRo6Efftg9Wp5U8qwsM7ruhg1\nxr2+vp5FixaRnp7O/fffr4gNJdv93HPPKabdWWpqahTRVeN51BKTqRZ7w2EARIMyU8ZaxiCgz2j0\nYXHYG6qpXPMBeS/cQMGHf6Q+axNSJxNId8baUVu2iixMW/9G4+rfYsv/EQB9lxsQjdEutaOh4WX8\nBXhOEAR/Vwm6ZW7Ws88+2+Fjs8qySItIa3fRsyOajqCUrhIo4euZmmVlsGIFvPKKa/S8BXf77a1x\nOpNnn30W9u6F8ePBaIRNm6BHD9foKoDa4i5JErNmzSIvL49vv/1WsSpESrb7/vvvZ/369YrpdwZ/\nf5f972yF2s6jMzHVHgFsiP79EI1dFbHRMgb60BiSZ31N3cENVG/+gobDW6k/uIH6gxvQRyRiTB2I\nLigSXVAE+qBIdMGnH4u+bf+N3BnrM21JNjOSqRypsUK+N5VDo3xvr8ltHmkB0MWNRN9jBrqwXg7b\n0dDwdgRB2EXrtS3dgSJBEHIBS8tjJUlyuKa6W5KXwYM77ldmaSb9ovu5VNMRlNJVAiV8PVNzxQp5\nX8FbbnGNnrfgqN9GoxGAw4cPEx3d9lU2V9hTK4MHD4bHHoOCAli3ziWJS7OuAqgp7uvWrWPWrFls\n27aNN954g1692v/R4yxKtrt3796KaXcWHwfKczuCms6jc1FZIe/voo9QbuHimTEQdHoC+11FYL+r\nMJfkUv3rl9RsX4a17Dg1ZeffLFMwGE8nNIER6JsSG11QJPqgSPrGRmCtLUfnH+qSUsySZANTFZKp\nKSFpSkakxnL62stp/OXj5tewtFM9TRDRJY7Bp/s0xODUDvug9vNHQ8MJvlFSXFWr4iVJIqssi5t7\n3+xpVzSaWLsW+vWD2FhPe6JuIiIiuPTSS/n555/p0qULcRdzRa1nn5X3c7nrLti8WTt52mH//v3M\nmTOH7777jqFDh7JmzRquvPJKT7ulcQFx7KQIgi/6kJEesW+ISiXy+icIH/8w9Qc3YCk/ga2mDGt1\nKbaaUvlxTSmSuQHJ3IClLB9LWTsbaoo6dIHhcqLTnNxENI3iRKILDEXnp0fUWcFcdTopOSNBwVQJ\nODCVTfRB8A1D8A1H8AtH8A2HpntdzCWI/tr3nYaGJEmK1v9WVfJSWFtItamaXpHKXXHUcIwNG2DM\nGE974R1cc801HDp0iKVLl/LAAw942h3PERYmD9lddhmMGAF33glTpkB6ulOL9S9kXnjhBZ566ilS\nUlL47LPPuOWWWxAV2NhP4+LGVBODGNQbQafMtLmOIhqMBKafv9qg3VSPtaYUW/XphKY5uakuxVYr\n39vrKsBuw1Zdgq26pG2jAuh8RXS+QtO9iM5PQN/0WDQI8uaRhpCmZCQMwS+iKTlpSlJaJio+gU7t\n5aWhoQGCIPgBtwEBwEpJkrKd0XHLf8n33nuvQ8dllWUBkBaZ5jJNR1FKVwmU8LWlpiRBbi50ZvaK\nN8WzJc74nZWVRXl5OSkpKW6xp0aa25GcDD//LCcvr70GgwZBly7ylLI1a+S5iM7ouhhPxv2ll15i\nzpw5/OlPf+LgwYPcdtttZyUu3tjub75RdLZAp2hoaFBEV+39t6dPAifMwxW14YoYiL7+GCKT8Uvp\nh3+33gSlpRHSpzthA7oQMSSFqEsS+aGqltgREUQPCSRiQABhvYyEdPMjMMkX/xgffMP1+ATqEA1N\nCYYEtkY75iobDcUWavNNVGU3UravnuIdtRRuqafkYAAV+dHUlCRRX9cDk70vNr/BfLD8GLq40eii\nBiEGpSAYghRJXNR+/mhoOIMgCK8IgvBGi+cG4FfgHWAesEsQhBHOaLtl5GXnzp387ne/a/e4zNJM\n9KKebmHtl7XqqKajKKWrBEr42lKzpgbMZoiKco2eN+GI31arlQMHDvDtt9/Sv39/xo8fr6g9NdOq\nHb16wccfg8Uir3/55hv46iuYPx/Cw2HSJJgwAYYOlUvZtTHicKH19wULFjB79mz+8pe/tFmdyxvb\nnZmZqYiuK7A6mDR3FLX331TfMDIyw+ne/nVBp+lMDOx1J7DmLMVeloG9oRhM5y+3vftgPndd0VMe\nQQkORzRGI/hHIxhjEIzRCMZoRP8YBGMUki4QW3Ux1ooCLBUFWJtulsqmx5WFYLdhrTiJteIkjWfY\nWr8yj2tOfo4+OAqfqBQiJz+JIcb1BQ/Ufv6cSemeOgqKOr3PoIZCVJx5InuOccBTLZ7fDiQDPYA8\n4H3gaeA6R4XdkrwsXLiw3WNMVhP/2fEfBsUOwkfX/qLKjmg6g1K6SqCEry01XfF/3pvi2ZL2/LZY\nLBw+fJiDBw9y6NAhTCYTvXr14oYbbnDqypy3xulMztkOHx957uGYMfDGG7Bzp5zIfP01LFokHxMU\nJI/ODB58+paWBnr9+XWV8tcN/O9//0Ov17e7uN0b2z1nzhy++OILxfQ7Q1BQkCK63tB/K3+s5niv\nMhLTIhTRdzQGkiRhL9mJNecrbIW/ctam2zo/OSHxb0pIjHKC8uaiaARjFIJfFILO0KYNARDDE/AJ\nT8B4Lh+app5ZKgqbE5jmx5WFzJ3gAzYL1qoirFVF1OxaQcSEmQ61syN4w/mjoeEEycCBFs/HAUsk\nSToGIAjC68D3zgirZs3LM6ufYV/xPrbcu8XTrmg0ER4OKSmwfTtMm+ZpbzyPyWQiOzubgwcPkp2d\njcViITo6mksvvZTevXsTHR2tzYVuD0GAIUPk29//DqWlsGuXnNDs3AnffSdPMwO51HJ6euuEpm9f\nMLT9g8UbWL58OTNnzmTGjBksXbqUN998k7BO7IOjodEW1iA9fviwdv5uRtzZh+SB0eh9PbPju2Rt\nwJq/EmvO10g1x5pfF6MvQZ88ATEwEcEYDT7KTNFqiSDq0IfGog+NhS4Dz/bVbsdScozS716l4dAm\neW2MhoZGR7EjX0M4xaXA31s8rwSc+sfn8eSlqLaIF355gVd/fZWXxr7EoLhBnnZJowXDh8tLFCTp\n4llrbbVaKS8vp6SkhNLS0uZbSUkJNpuNuLg4Ro0aRZ8+fYiIUOYq5kVDZCSMHSvfTlFV1TqhWbMG\n3npLPgkNBli8WC4A4MWEh4fz6aefMnnyZB5++GFSUlLo2rUr8fHxzbe4uLhWz2NiYtDrPf6VreGF\nBIzvTnWGRHAF/PrRQTZ/dADfMAOxXcMITwoiNDGQ8KQg/IKUuTAgSRL2ikysecuxHV8Dtqa1Rzoj\n+uTx6LtMQQxKVsR2W9gtjVgr5VEVa2UR1srCs55L5tN7LQk+vm73UUPDizkIXA+8IghCX+SRmDUt\n3k8BipwR9th/wtL6Ul765SUWbFuAXtTz3JXP8fhlj3vKHY3zcM89cO218O23Xv978SwaGhpaJSen\nbhUVFUiSPIXBaDQSFRVFfHw8AwcOpGfPntoVcqUJCYErr5Rvp6ithYwMGD0ajh073ye9junTpzNq\n1CgWLVrE8ePHOXnyJHv37uXHH3+koKAAm83WfKwgCERHR7dKaM6V5ERHR6PTeeaquoZK0QlEzxhE\n44ZjNO4vws+mw1xhIW9HMXk7ipsPM4YYCEsMIiwxkLAk+T4w0oggOnflSjJXY81fhTXve6Tqo82v\nCwGJ6LvcgD55PIJPYKebd07bNivW6lI5IalqmZScfmyvq+yQlugfgk9kCgH9r1bEVw2NC5QXgc8E\nQbgO6At8L0lSTov3JwJbnRF2S/IyefJkli5diiRJ7Cnaw+J9i1mwbQEAf7z0jzx+2eOEG8Od0lTK\nV29ACV/P1Bw/Xr4oPns2XHedvHzB0z46gyRJZGRkkJ+f35yk1NXVNb8fGhpKZGQkPXv2JDIykjlz\n5vDtt98qtiP3maglTp1FsX45YwZLFy2SF2IFB7tOVwVxT0xM5KmnnjrrdZvNxsSJE/nXv/5FQUEB\nJ0+ebHXbtWsXy5cvp7CwELv99D4VoigSExNzVoKTmJjYfHvyySf5/vvvFZmW88c//tHlmq6ivLyc\nr7/+mqSkJJKSkoiKinJJaWo1nEdt8dX2XG6PTyN+dCrG0alUFZaRsTGDqpwSIiQ/EnyCidQH0FBl\npqGqjJP7y5o/q/fTERztj95Xh86gQ28Q0fkI6HVWdDoLOtGETjTx+xef4u05j6OjDh01iPYaxMaj\n6IQG9DoLOn04hsRh+HYdjz56wFlxl2xW7E37vJy+b5TvLadfn/bEPP4396EWxzXK95bTz0/tH4PU\n/v4tgsGIPiSmafpYTNNj+fmtjz7N0qXLEA3nWjHjOtR+/mhoOIMkSV8LgjARmAT8BLxxxiH1wJvO\naCuevFQ0VDBg0gB+++1v+eHwDxTUFhBoCGTmsJk8OeJJIv0jndJ95JFHXOypsrpKoISvZ2oKAjz/\nvDx9bONGuOqqzul5gsbGRr7++msOHTpEdHQ0kZGRpKSkEBkZSVRUFBEREWftvD1r1iy3JS6gjji5\nAkXaUVLCI4GBcqllg0Fe++Ii1Bx3nU7HE088waBBgxg06PzTaW02G8XFxc1JzZmJztatWzl58iTF\nxcXNI4oAwcHBrRKac93Cw8MdTnBuvfVW1q9f73S7laJXr16IoshNN93U/JrBYCAhIaE5mTl1S0xM\nbH4cERHRbgzUfB4BBGx4nQ9CUxmYGsk1feIJiY1g1NSrkCSJ4tIy1m/aSkbGDkIsPsT7BBPvE0yS\nbwgx+iBohPK8mnYsCAyPu5kdq6OAluUpz1UFtRxYjU6wIgoWRMxNNxOiYEGH+fTrghkRC7oWz8fH\nxJP9/RZ0QtPnmt47fYx8L2BH0OvlZKRFQtL8uClhEY3nX1vz+8dnK564gPrPHw0NZ5Ek6Wfg5/O8\n5/RGli5PXuySnd2Fu1mRvYIVh1fw6/FfsUk2+lr7cnv/25nQfQIjk0fiq+/c3NFx486/0ZUadZVA\nCV/PpTlkCAQGwtatjicvno5nYWEhn3/+OQ0NDUyfPp2ePXt26HPu9tvTcXIVLm1HXh68/DK8+y7j\nRBEeeAAefxwSElxmQu1x74h/Op2OuLg44uLiGDJkyHmPM5vNFBQUcPz48bNumZmZrFq1ipMnT7Ya\nxfHz82s3wTlz9OKyyy7rXKMV4sYbb8RkMlFSUkJ+fj75+fkcP368+fGxY8fYuHEjJ06caFVS2Wg0\nNiczLZOalrexLddsqRB9XRavdd/E9qpwvl+fgH90N/omhJIUHkBMVCS33DCRm6+fQOmJoxzYtZVl\nv+7BLImICETrAwnTGTEIInE+NpIMFuJ9rHTzNSMIeuySAbtk4MouPtilA9jxkV/DB1vT/annUvNP\nDhGbZMAmGZD3qus40bFwpAOlYAUReaTIrkNfJ6Ir1aE36ND5iOh9degNZnSG4+h9dE2jSqL8/qnR\nJYOOYX0uQ5IkxQsHqP176Ez21f+eupoennZD4zwU2/JpvbTE/QiCMADYJ0mSvenxeZEkKcNRfZcl\nL9Wmat7b+R7zt84ntzKXQEMgY7qO4c3r3mRC9wkkh7h/MZ6Ga9Dp5K04tm3ztCeOYTKZeP/997FY\nLIwcOZL4+HhPu6TRFg0NsHmzvEB/9WrYskWeIjZ7Njz6KGjFETqFwWAgJSWlzU1UrVYrRUVF50xw\ncnNzm3/cWyyW5s8EBgby5z//mSeeeAJfX3UvaD61big6Ovq8iZ7dbqeoqOicCU52djarV68+K8kb\nPXo0a9eudVMrHKcuwJ+YrUu4XhC4Hig/HsSOvX1YEzIMKWUovRIjiQ/1JzqpO9FJ3bk17m0qtq/g\nQGMQ+xuCOdAYTIHFyJ4WScPNUcU83qUcwWBENBib7v3Ofu5z+jl6P+yiEUnww4YvkuCLTfLBLvlg\nl/TY7XqsVgGbxY7VbMNmtmM12bBamh6bbVhNttbvm23YzDasTcdKdnl0UbKDtdGGtdF27qB0EP8w\nXxIGRJLYP5LoHmHofLSKYxoaHWA3EAsUNz2WaF157NRzCXB4kWank5e8qjxe//V13tn5Dg3WBqb3\nm857k99jZPJIDO3UYNfwHrp1k9dLexMGg4Hx48ezd+9efvnlFzZu3EhSUhJpaWn06tVLqxTmacxm\neTjvVLKyeTOYTHIFsquugjffhBkz5GE/Dbeg1+tJSEggISGB4cPPvSO73W6npKSkOalZs2YNf/3r\nX/noo49YuHAh4eGOrV9UG6IoNo9kXXLJJec8xmq1UlhYSH5+Pm+88YaqExcAc0ggoiDgExaBPiiU\nRIM/yX4iN/kewuJTTMaJeL7Yn0JcfAJDu0RSN/Qurr70CsYYjORUmPho3UE+/2U/ZoucCMSEBXPr\now+SMkB9V9/tNjtWs11OaExyUmOz2JoSn6bXLS0So1NJkMWGrel4q1lOesqOVVNfYSJ73Qmy151A\n76cjvk8ECf0jiO8biW+gg4tANTQuHroAJS0euxSnk5f8qnxmrZzFkgNLCPINYuawmTxyySMkBJ89\npeObb75hiotLVSmhqaSuErgzrnFx8MMPrtNzB4IgMGTIEIYMGUJ9fT2HDh0iMzOTtWvXsmrVKqKi\nokhLS6Nv377ExMS0mhrgbr+96bxrizbbYbXKJZBXr5ZvGzdCfb1cXWz0aHjhBTlp6dcPzljMe7H2\ndzW2+1RBgJiYGIYMGcINN9zAvffey8yZMxk7dizp6eku9tZ1uCqeer2+edrcqlWr+MGZL0c3Uh0Q\nQNBltxA1+UkE8eyLnAlA2dbjvLH+GINTIqgTjXx7wsCytb+yfs+h5uP6donnvsmjmTxyIAaf1j8f\n3NWX2rMj6kQMRhGMnZ9Y8uUXXzGy1xUczyjlxN5SGqvN5O0sJm9nMYIAkV1DiO0VTmyvcCJSgxB1\nzo3KqP176NxcJHsneCWe/9uc2ojyzMeuwqmedqT8CKM+GMXGvI28PuF18v+Yzz/H/POciQvAp59+\n2ikn3aWppK4SuDOuERFQUeE6PXfj7+/PwIEDmTZtGrNmzeLWW28lPj6e7du38+9//5uFCxeyevVq\nioqKkCTJ7X6rJU6dpVU77HbYswdefRUmT5ZPoksukTenFEV49ll5LmJZmVyL+7HHYMCAsxKXs3SV\n8leFeEu7+/Xrx9q1a3nnnXfYs2ePS7VdiVLxbGhoUETXVZT4GFgd1/+cicspahpMBBt9kJp2un/t\n81Ws33MIQRAYd0lfPv/7Q/zwyuNMvWroWYkLuK8vubPPfr5kMQn9Ixl+ey9unHc542cPpe+1qYQm\nBCJJUHKkir3Lc1j5fztYMmsD697OIGtNPlWFda2KY7SH2r+HNDScQRCEnoIgXHLGa9cIgrBGEISt\ngiCcXWazgzh8aSKrNIurF11NoCGQjXduJDE4sd3PLF682Cnn3K2ppK4SuDOuPj7yhXNX6XkSg8FA\n79696d27NzabjZycHPbv38+2bdvYsGEDkZGRPPjggxQXFxMdHe0Wn9QYJ4eRJBY/+ywsXChPBVu7\nVk5MfH3h8sth1iy4+moYNszhmtsXa3/3pnYLgsCMGTO47777XK7tKpSKpzfs/fTMl68zrEt/ukUn\nNb9mt9v5cu0Ovlq3k30k8sD4wehEkT37DxJm1HPHbyZy/ciBpMS2P8XWXX3JnX22pS1BFIhIDSYi\nNZj067tSW9ZA4cFyCjMrKMwqx1xn5URGKScySgHwD/UltlcYCf0jSRwY1eaif7V/D2loOMkLwF6a\n9nIRBKELsAzYAGQAfxYEoV6SpNccFXYoeSlvKGfSR5MIN4az6s5VxAbGOmpPw0vR6ZxLXtSOTqej\ne/fudO/enUmTJnH06FH279/Pli1bWL9+PUFBQa2qDMXFxWkbAJ6JJMFPP8FTT8HOnaDXy7W1H35Y\nngZ22WXg5+dpLzXcwOHDhz3tgsY5SE9O40DjCf61/D+8c8/fm19f+OVqXvjfCnTGIIZccwkJYQHY\nbVZmXNaNZ6eee82ThkxghJHuIxPoPjIBu12i8ngNBU3JTMmRKuorTRz9tZCjvxZy9e8HEtvLu9eC\naWg4wVDkjSpPcTtwSJKk8QCCIGQAjwLKJi9z187FarCy8o6VWuJykVFXd+Gvm9bpdPTo0YMePXpg\ntVo5evQox44d4/jx46xevRqr1YpOpyM+Pr7VfhCBF3pg2mLLFpgzRx5lufxyWLYMrrzywj9ZNM5i\n586djB07lrS0NLKysjztjkYL7hl5E7NWvcGm7F3Y7XZEUeRESQWvf7EKgKlXDSW3aWAg1N9AzwSt\n/zqCKAqEJwcTnhxM3/GpWM02So5UsX9FLsWHKzmxr0xLXjQuRiKB4y2eX4U88nKKtcD/OSPsUH8n\nOS4AACAASURBVPKyMW8jy55YRlxQnDO2NLyYqip5XfXFgl6vp2fPns37wthstubqQsePH2fv3r1s\n2rQJkKeMJCUlcfnll7ttmpnHqamBu++Gr76SF9gvWwbXXSfvaqpxUXHixAmWL1/On/70J3r27MkL\nL7zAVY5uCKWhKD1iUjAa/KioryazMIc+8d147oOlNJotDO/blcemXs29n+4DoNHa8bUaGudGb9AR\n1zscc72F4sOVFGWWe9olDQ1PUA7EAfmCIIjIIzGvtHjfgJPVBRxasH9N12uY1HOSw0buuecehz/j\nCU0ldZXAnXGtrHQuefGmeLbkTL91Oh0JCQlceumlTJ06lccff5w//OEPTJ06lZ49e5KXl8eiRYso\nKytziT3Vs2+fnLi88grs3g2TJoEgeF2/VHvc1dhui8XCunXrmDNnDunp6SQmJvLQQw8xcuRIVq5c\nySuvvNK+iIdQKp6VlZWK6LoKvU7P5T0GA/Dpr9+xcc8hlm/KQBQF/n7fjRj0IpX1ZiRJwmyTaLTa\n21E8G3f1JXf22c7aComVN+BsqDIrakdDQ6WsBf4iCEIS8AfknGNti/f7ALnOCDuUvAyJO//uzW3h\nrp3g1ayrBO6Ma1UVhIa6Tk/tdMTvkJAQ+vbty4QJE7j33nvx8/Pjv//9L9XV1YrYUxWnMtnhw+UF\nUU14W79Ue9zV0u6TJ0/y3nvvMXXqVCIjI7nyyit5//33SU9P55NPPqG4uJhly5YRHBzMpZdeqojP\nrkCpeKp9c06A311xMwCf/rqcp975HIA7J4ygT2o8VruEyWqnpEbehbKs3vGNHd3Vl9zZZztry1Qr\nb+bqG9R2gRK1fw9paDjJ00Av4Bjy4v3ZkiTVtXj/DmC1M8IOJS89IpzbkGr69OlOfc7dmkrqKoE7\n4+rsyIs3xbMljvodEBDAHXfcAcCXX36puD2Pc2qDz9zcVi97W79Ue9w93e6srCzuuOMOkpKSuP/+\n+zl58iRPPvkk27Zto7CwkEWLFjF9+vRWG75OmDBBEZ9dgVLxNBqNiui6kit6DqVPfHfqzY0crt1L\nWJA/T86Q/1Zi03TP3NJaAErrHa/O4q6+5M4+2xlbNSX17PpaLmDhH9p2cqv27yENDWeQJCkX6A0M\nAlIkSXrrjEP+BjzvjLZDyYuggo1vNDyDs8nLxURISAjjx48nLy+PkydPetodZYmJgZEj4a0zv4s0\nLgQOHTrEHXfcQZ8+fVizZg3z58+nuLiYTZs28Ze//IWhQ4cinmM/Hg31IggCT0xomp4UUkjfnpGE\nBvoDEBfsy4D4IHKakxfHR140TpO7rZAV/9xGeV4NBn89/a9z+QbjGhpegSRJVkmS9kiSdNaPoqbX\nnZpr79B/n3pLvTM2NC4AnJ02drGRlpZGSEgIW7du9bQryvP447BxI/z6q6c90XARdrudBx98kN69\nezcnLUeOHGHmzJmtRlc0vJMJ/UeSGtoFBIljjXubXxcEgacn9CC/TJ7RUW2yY3Ji3cvFjrnewuaP\nDrDpgwNYG21EdQvh2qcuIaqb9s9TQ8OVOJS8ZJdlO2Vk48aNTn3O3ZpK6iqBu+Jqt0NODiQkuEbP\nG3DWb1EUCQwMpLGx0S32PMrkydC/Pzz0EFjkud3e1i/VHnd3t3vXrl38+9//Zu7cuRw+fJiZM2c6\nvJ5j165drnBREZSKp9nc9oJstSAIAiNS5f1bimpLWu0C3ysmkCkDYjhZIV+k3FvU4JC2u/qSO/us\nI7YKDpSx/Pmt5GwpBAH6TUzlmj8MIiC8/T2u1P49pKGhNhxKXjbmO9fBXnzxxfYPUoGmkrpK4K64\n5uRAdTUMHuwaPW/AWb9LS0s5ceIE/fv3d4s9j6LTwQcfwN69MG8e4H39Uu1xd3e7f/75Z/z9/Zk9\nezZ+Tm4sumjRos64pihKxbO2tlYRXSUICZP/7TfW6th6IKfVe4+OTiW7UK6cllNhoc7c8elj7upL\n7uyzHbHVWGNm6yeZrFmwh4ZKE4FRRsY+PoQBk7oi6jr2E0vt30MaGmrDoeRld+FuCmsLHTby2Wef\nOfwZT2gqqasE7orrqQupgwa5Rs8bcNbvPXv24OfnR1pamlvseZwhQ+RNKp9/HsrLva5fqj3u7m73\n5s2bGTFiBAaDwWnteU2JrBpRKp5hYWGK6CpBSU3TFHO7niVrt7d6z89Hx8yRiRRXN6DXifxjZQ65\nZR2bLu6uvuTOPtuWrdqyBrYtzuLbZzZxeKM8nb/nlYlMfOoSoro5tkBU7d9DGhpqw6HkxUfnwwe7\nPnDYiL+/v8Of8YSmkrpK4K64ZmVBeLi8RtsVet6AM35LkkRGRgZ9+/ZFr3do/1evjRMAd90FVits\n3ep1/VLtcXd3u61Wa6dtqrnyllLxFLxoc9bRvYbJDwJLWbNzf6upYwA9ogOJD5GnCuaVN3Db+zv5\nfOfJs447E3f1JXf22XPZqjxRy6YP9rPsb7+Sve4ENoud8JQgrn5sIENv7YneV3cOJcftaGhonB+H\nkpdxXcfxn53/wS5pC/kuJrKzoWmjeY022LdvH9XV1aSnp3vaFffSvbuc3WoL970evV6PpWn9ksaF\nyeRBV5MQFgM6KwWmoxzMLTjrGKNBvviSFOpLo9XOP348zL2fZHCwsMbd7qoCSZI4eaCMNQt28/0/\ntpK7rQjJLhHbO5xrHhvE+NlDiU0L97SbGhoXDQ4lL9d2v5bcylwOlhxUyh8NFVJYCPHxnvZCvdhs\nNn766Se++uorevbsSWJioqddci+FhVBTo9XSvgCIjIyksNDxqcEa3oOPTs+MSycBIPnV8Orin1q9\nb7LaqTHJFyifGd+N2WO64asX2Z5XxbQPdvHU0kwKqhwrSOKtWE02stefYPlzW1i7YA8FB8pBgOTB\n0UyYM4yrHx1ITFqYV428aWhcCDiUvKTHpuMj+rDu2DqHjMyaNcuh4z2lqaSuErgrrvX1EBDgOj1v\noKN+l5aW8t5777FlyxbGjh3LtGnTnPpH5q1xAmDBAvD1hXvu8bp+qfa4u7vdffr0ITMzE7vd+dH1\n1157zenPKo1S8ayurlZE11VYLa2rofVJ6CY/MDSy4te9bM88vXC/sFbeoDLEVyTAoOP2YQl8c/9Q\nJvaNBmD5/mIm/3sbr6/Nob7Fgn539SV32GmsMbP7myPcNPI3bPssi+qievR+OtKuTmLy3MsYeW8/\nwpODXGZP7d9DGhpqw6HkxehjZGj8UDbmOVZ1LDk52aHjPaWppK4SuCuunUlevCmeLWnPb0mS2LVr\nF//5z38wm83ce++9jBgxwukrcN4aJ8rL4c034d57ITTU6/ql2uPu7nZ36dKFhoYGiouLndaOjY11\n+rNKo1Q8dTrH1zm4k8ba1tO9esV2BUD0NSEh8cqnp0dfCmrk5CUuyKf5tfgQP/45uRef3D2Iockh\nmG0S72/OZ+p7O9icUwG4ry8pacdcb2HPt0dY+tfNHPjpGGF+kQRG+jHklh7c+I/LGTK1B4GRrl/T\npfbvIQ0NteHYqmIgPSadTcc3OfSZRx991FEzHtFUUlcJ3BXXujpwdj2hN8WzJW353dDQwPLly9m/\nfz+DBg1iwoQJnarO1J49VfPcc2CzyRXH8L5+qfa4u7vdRUVF6HQ6IiMjndaeNm0aL730ktOfVxKl\n4hng7NUdN2Gqaz0ylBQei9HgR4O5EZ3BxPo9h8jKK6RbYgzFdXLyEh909s+DvnFBvDtjAOsOl/Ov\nnw5zorKRBz/by+T+MTx574NuaYsSf0NLg5XMNflk/pyPpUFuf3hyEP944K/E949EFJWdFqb27yEN\nDbXhcPLSJ6oP7+9+H6vdil50+OMaXkh9vfPJy4VGdnY2y5cvx2QyMXXqVPr27etplzzHjh2wcKGc\nwDhTik5DdeTm5pKYmOhwtTwNdWOqb70PjSiK9IxJZU9+Jul9oti9u4b3v9vAI7dPwSaBv49AsO+5\nJ2YIgsCVPSIYlhzCG+ty+WzHSZbuLWLjkXLmjOvOuF6RXrUG5HhGKVv/d5DGGrlQRWh8AAOu70rC\nAO9qh4bGxYTD/6H6RvfFbDNzpPwIaZGO7WWh4Z0YjfLoy8VMVVUVP/zwA5mZmXTt2pXJkycTcjEv\nUN+0CSZOhIED4Q9/8LQ3Gi4iJyeHLl26eNoNDRfTWHv2mpzuMcnsyc+kd/dwdu+u4eedWYwe0wBA\ncohPuz/cA3z1zBnXnWv7RPPs94c4WlbP7G8Osrx7OE+P70FMsK8ibXEVlkYrO788zJFf5D1agqL9\nGTCpC8mDoxEUHmnR0NDoHA6teQF55AXgQMmBDn8mMzPTUTMe0VRSVwncFdekJMjLc52eN3DKb7vd\nzsaNG1m4cCEnTpzg5ptv5je/+Y3LExevitOqVTB2LKSnw88/y9ltE97WL9Ued3e3Ozc3l9TU1E5p\n5+TktH+Qh1AqnlarVRFdV2GqP7vEcXKEXEJS0jcSEx7MhDFXYbJBoEGkZ0THE4/0xGAW/3YwU5Is\n6EWBdYfLuend7Xyxq/29YZzBFX/DivwaVvxzm5y4CNB7TDITnx5GytCYVomLu74f1P49pKGhNhxO\nXmICYogJiGHV0VUd/szs2bMdNeMRTSV1lcBdcU1NhaNHXafnDZzye/PmzaxevZohQ4Ywc+ZM+vXr\np8hUAq+IkyTJ08SuvRauuAJWrIDg4FaHeFu/VHvc3dnunJwcMjIy6NWrV6e058+f36nPK4lS8VR7\ntbGGc4y8xARHAFBSU84Dt09lSHp/JEliSLwRnYMjDwa9yK7PX2fxbwczID6IWpON5384zAOf7eWk\ni8sqd/ZvWF1cz+o3dlNb0oB/mC/XPDaIQTd1R+dzdtEFd30/qP17SENDbTicvAiCwMPDHub93e9T\nWNux/QAWLFjgsGOe0FRSVwncFdf0dNi3D8zmc3zACT1vYMGCBZjNZjZt2sTgwYMZP348vr7KTYNQ\nfZwaGuDuu+GRR2DmTFi69JwLobytX6o97u5qt91u5+677yYmJoaHH364U9pq/iGmVDzVPoW0saby\nrNdKasoB0OtDiIpPAuCzr7+jvKzUKRsLFiyge1QAH94xkNljuuGnF9mSW8nN7+5w6ShMZ/6GDVUm\n1ryxG1OthfDkICY+fQkxPcMUseUIav8e0tBQGw4nLwC/H/57DDoDf/75z9il9vcD0EolK4O74jp4\nMFgssH+/a/S8geTkZHbv3k1jYyMjR450iz3VcuAAjBgBX3wB//0vvPYa+Pic81Bv65eqjjvua/e8\nefNYv349H3zwAUFBndu/Ii4urlOfV5KLtVRyfXXFWa8dLy8CQG+QK8vt2bWDTdt28p9v1ztl41Rs\ndaLA7cMS+Px3QxiUGEy9WR6F+dO3mVhszu8fdKYdR6kra2D1/N3UlTUSGGVk9MPpGPzP/T3WWVuO\novbvIQ0NteFU8hLqF8qr41/lo90fcftXt2Oymlztl4aKOLVhfKlzF+S8lsrKSkJDQwkNDfW0K57B\nZoP/+z85e21slBfp/+Y3nvZKw8W88cYb/D975x1fRZU98O+8nt5DgBRC6L0jiFJEiiIWiuACKv5E\npLh2xXVdsC72FWm7sCKuFAFFUEFURBBFgSA1gLQUElJIb6/O749JQhICaTOvwHw/n/nMe/Nmzj33\nvHvnvTP33nP+/ve/849//INBgwa5Wh0VBci5cPmixfM5kvMS5BtGp3Ajt3dvAcCGHfvIzL18jUx9\niQn24r+TuvLs0Dh0GoFvEzJ56vNjmG2Nd2DqS9a5fL59az95aUV4BRgYPLMrXv6NC2+voqLiOhrk\nvABM7T6VdePW8UXCF4z4dAS5pZcPS6tcG5RHTbVaXauHszEYDFivt0qXk5gIgwfDM8/AjBkQHy9F\nFlO5ZrDb7SxYsIDHHnuMp556in/84x+uVklFITKTTl12LDFbmvbdxD+cuGADvdq1oEfbGMxWGx99\nXb9E1FdCI0ijMB+M7YhRp+GnU9nMXncEm0P+hfxXInFfOj+8F09pvoXASF+GP9sLv3A19r+KiifT\nYOcFYEyHMXw/5XsOXjhIz3/35EDagRrPmz9/fmOKcZpMJeUqgbPsmpcn7RuSh9GT7FmZ+fPnExQU\nREFBAV9++SUlJSWKl+dW/N//wdmz8OOP8O67VSKKXQ1P65duZ/dqKKHfiRMnGDx4MDExMTz22GPM\nnj2bt956S7ZAFCtWrJBFjhIo9X0XFhbWfpILKcrJ4o/vNlQ5drFAmkrWsWk4GkFAEAQeuXMQAMs2\n7+R85uVTza7G1Wx7Y1wwi+7thJdeWgezL7HhDzvr+h3arQ72rT3J7v8exW510KxTCLc+2QPvIJPs\nZTUWd78Pqai4G41yXgAGRA9g37R9BJoC6be8H8vil122MK+4uLixxVyGEjKVlKsEzrLr1q1gMknL\nHuSQ5wkUFxfTpUsX7rjjDhISEli4cCFHjx5VJPRneXluQ0YGbN8OL70EAwfW61JP65duZfcakEu/\n3Nxcli5dSr9+/WjXrh2//voro0ePZs+ePfzrX/+SNYJeaam80aXkRKnvW6n7gpyse/VRCrMzAbA7\nRED6zsO9L63XGXlDJ/q0j6W41MILSzfUq1612bZXdCA3tJAWx5/LbvjDoLp8h4VZJXz3zn5O/pQC\nQIfhMdw8vQt6U/1S2znr/uDu9yEVFXej0c4LQMugluyeupsHuj3Aw5sfZsKGCaTkp1R8Pm/ePDmK\nqYISMpWUqwTOsutXX0kziGoILtUgeZ7AvHnzEASBHj16MHPmTKKjo1m/fj1r165V5CmrW9lp82Zw\nOGDIkHpf6mn90q3sXgON0S8tLY3ly5dz9913ExERwYwZMwgODuazzz4jNzeXRYsW0bdvX9lDf0+f\nPl1WeXKi1Pfd2CAHShMa1ZLC7EyWPX43RbkXyS6xUe6WGHWX1qBoNBrmzxiHXqflh30JbP3tSJ3L\nqIttw3yl4fuU3IY7L1crx2a2c/ibs3zz2u9kJxVg8NExcEYXut0Zh6YBiSeddX9w9/uQioq7IYvz\nAmDSmVgyagmr7lnFjnM7aPthW17b+RqlNvd9CqdSO+npsGMH3HWXqzVxHX5+fowfP57x48eTnJzM\n4sWLr+2kYr17Q2AgjB9//UVp8GAcDgf79u1j7ty59O7dm2bNmjFt2jQyMzN59dVXSUlJ4euvv2bc\nuHGYTHWfOqPi+Qy5/Q5Mvv6cPbCb9yb14+f4bymxFGHUe+HnHV7l3NZRTZh+1yAAXl/5FVabXRYd\nsostbDmWAUCbMB9ZZJbjcIic2p3K5rm/cvirs9jMdsLiAhg5pw/NO4XKWpaKiorrqd8Yah2Y2Hki\nt7W+jVd2vsLcn+ay/MByFoxcwO1tbpe7KBUnsH49aDQwZoyrNXE97du3Jzo6ms2bN7N27Vq6devG\n8OHDr70/gl26SB7rrbdK08Y2bYK4OFdrpVIDFouFrVu3smnTJr7++msuXLhAQEAAI0eO5PHHH2fE\niBGEhIS4Wk0VF2M49zP33zeSNeu+JTPxT+Yv+xsEBdC3zRDO5WmIrBZQceaYIaz+7jfOpmaxatse\n7r/txnqXWWq1k5xTSmJ2MYnZJew6nU2B2U67Jr7c3qlJveVZS22U5lsoybdU2pspzbeQeSaP/AvS\n1CvfUBPd7mpFVPcwRRIKq6iouB7ZnReAAFMAbw97m4d7PMxjWx/jjuV3sP3R7QxqMUi2MrKysggN\nlf+JilJylUAJXavLXLMGhg+Hhv7/8SR7VuZKevv4+HDvvfdy4MABvv32W06dOsXIkSNp3759o34o\n3c5OXbvCzp0wbBi0bg133AGPPSZNJbtKPT2tX7qd3atRk36iKLJv3z5WrlzJ6tWruXjxIu3atWPS\npEmMGjWK/v37o79CHp6ryZWLnJz6LfR2JkrV2+Fwfvjf+mArKMaYcoqxPaJZdkxHUpCUVHNg++Fk\nFts5ue5ZQslAHxyBPiQao38zBrUPYv2eQnb/cYQpw3sjaC+P2GJ3iKTllZKYXcLhM+fJdnhVOCsX\n8s1UXzEjAM/dGoe2bAqX3eagtLozUnDJQansrNjM0ghQQUkefl6XJwU1+OjoNDKW1jc1R6uXZ1KJ\ns+4P7n4fUlFxNxRxXsppG9qWb+77hoieEUwIm8CBRw7Q1E+eBGZTp05l06ZNsshyhlwlUELXyjKT\nk+Hnn6W8hHLI8ySupnf5Wpi4uDi2bNnCunXraN26NbfddluDc8K4pZ3atYPjx+HTT2HBAhg6FDp0\ngFmzYPJk8PW97BJP65duafdKVNYvJSWF//3vf6xcuZKEhASaNm3K1KlTmTx5Mp07d26wXLl5+eWX\nFZErB0rVOzfXvVMF+LRqjndoIPq8bI4i9duYtHRiEvdiDmnJ2fC70XwzGwFpjUumaGLzqV6AlhHW\nLzm1fCOp+ijOa6NJESNItoaQXOJLSrEBq0NyRM6unEPslDdAFPFyQIgdwrQaok16IvQ6ggWBMK2W\nnM/P8HW+hZJ8M5YiW73qoTNqWf7Du7w27X1M/ga8/I2Y/A14BxqJ7Bpaa9LJ+uKs+4O734dUVNwN\nRZ0XAK1Gy+oPV3P/b/czccNEfpjyA1pN47MRz507t/HKOVGuEiiha2WZ69eD0QijR8sjz5Ooi94B\nAQFMmDCB48ePs2XLFhYuXEjHjh3p0KEDcXFx9cq67bZ28vaGhx+WQifv3Ck5MbNmwZw58OCDMHMm\ntGpVcbqn9Uu3tXsZc+fO5dChQ7z00kts2rQJk8nE3XffzXvvvcfQoUMbnNldyXpPmzaNnTsblqVd\naRpab7PZzPnz50lJSSE5ObnKduDAAbdfsO/V1kJGr8d5efMqEjiMziEyovVwipr1QAcUh3fky4Db\n+S2pkLOOMHL1wehjfQn09uJN/XBKsowYRPCxS5uvQyTYDlF2B352B8EOC7nd7qVNahFaux6hYjmt\nHbiUKyuvbKuMRgtGXy1efnpMAUa8ArwwBZjw8jeUOSjS3uRnQG/S0Wryv+jRo4dT7Oas+4O734dU\nVNwNxZ0XgKE3DmV15GoGrRjEe3ve4+n+TzdaplI3L2fdFOVACV0ry/zjDym5ur+/PPI8ifro3a5d\nO2JjY9mzZw9Hjhzh4MGDGI1G2rVrR4cOHWjZsiU63dW7mtvbSRCk9S8DB0JSEixeDP/5D/zrXzBy\npDSl7NZbPa5furPdT548yVtvvcXatWtp2bIlS5cu5d5778W/MR2yDCXr3b59e8VkN5aa6m2z2UhN\nTb3MKansqKSnp1e5JjAwkKioKKKiorj99tsZPHiws6rQIF7ZkcehX+YAoNXomDBwJl3a3Ypoc+DI\nN5ORls9+2y2YQhz0soOPXcTHAb4FIj654OOwo79i1GQBMNIsqJPkq5ShEwrRCwXohQIMZXu9tgCD\nrhCjXtpMhkIMxlI0egGNrmyzCmgKvNHYfNCU+KEtCEKT5YdD74tF70tnb1+sp88h6H3B4Iug90XQ\n+4Feeo3WJNtaF2fdH9z5PqSi4o44xXkBuDnmZp7q9xR/2/43RrQaQafwTs4qWqWBnDwJbdu6WgvP\nwGg0MnDgQG6++WYyMzM5evQox44dq3Bk2rZtS+/evYmMjHS1qo0nOhreeEPKA7NmjTQaM2IEtGkj\nOTGPPAK1OGsqV+bixYs8//zzfPTRR0RERLB06VIeeOCBWtexqFydzMxMPv30U5KSkqo4KRcuXKiy\nZsXPz6/CMenWrRujRo2qeB8VFUVkZCS+NUyZdGf252rQh0OvpjcywjqYwL0+FO2IR2OV6h0AjKqD\nHL1Ji8nPgNFXg8lLxGC0YTBYMOhK0GsK0ZOL3paJxpKOWJKDozgfR0kh9tIicFTybGzSZi+BmoMm\nlwAXK94JWiTHRi/gFWbAp+lVMiYL2jJHxg9B7wPGIDTeTRF8IhC8m6HxjkDwboqgb0DsfxUABt2w\nnG5x7j3aeD3zR1rdkkp7Mk79h/HKkFfYfHIzf9v+N76c8KUzi1ZpAElJ0mJ9lbojCALh4eGEh4cz\nePBgMjIyOHbsGEeOHOHo0aPcd999tGzZ0tVqyoOXlzR17IEHYPduyYl57DFYsQI+/lhaH6NSL8xm\nM6NHjyYhIYG3336b6dOnX3vR7FzEihUreO6552jTpg1RUVF06NCBYcOGXeaYBARcvhjc04kOimNs\nwARiEoPKjpgv5UnQgN7PgE+AEZ9AY7XpWsYqU7d0hoZNUxRFEdFSjL0oD0dxHvayzVFtby/KwVGU\ni704V3J8zFIEMdEOdruI3SyC1oh/z4GI1kKwFiKWbVgLpBNFO1jyEC15FQEDagynYAiQHBmfZgje\nEZKDU+7keDVB0KgPYFRU3BWn9M7ly5fz0EMPYdKZeKrfUzzy1SOczTlLbFBso2XKjVJylUAJXSvL\nLCho3JSx6vI8Cbn0LndkBgwYwNq1a1m9ejWTJk0iJiZGkfJcgiDAgAEwYADLX3yRhzZskOYbvvIK\nPPkkNHBdRmWuh/4uiiLTp09n//79/PTTT/Tt29cj671x40ZF5DYWm82Gj4+PIjma3Kkd1cSdGYOI\nEYMQNCJtBkUR2TlMckoCDOi9dLJMs7qaDQRBQDD6oDH6QHCzK8oQRRF7QRalSYcp2LuJ4hO/gCi5\nHhqTL77dR/JFopZpvS+fei6KIthLqzk1BYilFxGL0hCL0xCLL+AoTgNLPljycFjyIPdEDZpoELzC\n+PjHizw4/tZLTo5PMzS+UdL0NBlx9/ZzGcJVg06quJjr4auRLUnl1YiPj694/ZcufyHQFMiivYtk\nkyknSslVAiV0LZfpcEBhYY0BpRokz9OQW2+dTsf48eNp1qwZq1atwmw2K1qeq4jPyYH4eGkh/3PP\nwaOPyiP3OujvCxcuZMWKFSxbtoy+ffsCnllvd07garPVL7pVXXGndlQTWrQ07VDIHfP603NsG5q0\nDSKgqQ8Gb71s60PqawN7US4lZ+LJ+3UdmV/8k/NLHubcvFtIfG0k6Z88S/Hxn0F0YIrtjeHogwAA\nIABJREFUQfi984j521bC7nqOgyfP1ihPEAQEnRcarzA0/rFoQzqji+iPvsUdGDpOw9j7H5gGLsZ7\n5Ea8btuMadB/MPSeh77jo+hi70TTpC+CbwxoDIADsSSdAwePYU/agvX4R1j2v4Z550xKvhlNydZx\nlO5+EsvB97Ge/hx7xl4cxemIYsNCZtfXdm+88QZ9+vTB39+fJk2acPfdd3Py5Mkq5zz44INoNJoq\n22OPPVbdZkZBEBYKgpAlCEKBIAjrBUGomrVURcUNccrIy8KFCytee+u9eaj7Qyw7sIy5g+biY2hY\npt3KMuVEKblKoISu5TKzs0EUobGh5z3JnpVRQm+Hw0FBQQHh4eEYDFXnbHuqnapTUY933gGbDbZs\nkVeuzLiL3Y8fP84zzzzDzJkzmTRpUsVxT6z3888/z7p16xST3xiUigrmLu3oSvh03sugmcsUTdp4\nJRs4zMVYMs5guXBa2tKlvb0gq2ZBGi36kCi829+Ef587MYS1qFM59UHQ+yAExKEJuDz5rig6wJyD\noyiNhT2kERtH+chN4XlE88WKzZH1R9WLtSYE30g0vlFofKMR/KKlvW8kgtZ4RX3qW6ddu3Yxe/Zs\nevXqhc1mY86cOQwbNoyEhAS8vC6tdxg5ciQrVqyQRqWAhIQEBg0aVFnU+8BIYAyQDywENgA31Ush\nFRUn45JJnTP7zOTdPe/y6eFPmdZzmitUUKmF8uA6TeqfCFmlBkRRZOvWrRQVFTFp0qTrI/Nz69aw\nZIk0jKdxyiCvR2K1Wpk8eTIxMTG8+eabrlZH5RokunWw0+459pJCSk7+QlHCLkoTD2HLPn/Fc3VB\nzTBExGFoElex14fFoNFf+Y++0giCBkwhaE0hEHJ5YCHRWoijMBmxIBlHYRJiYRKOgmTEohRp2lre\nKex5pyoHXgMEBO8maILao23SF214HwRjw3KCAXzzzTdV3q9YsYLw8HD279/PgAEDKo4bjUbCwsIq\n3qekpFSqp+APTAUmiKL4U9mxB4EEQRD6iKL4e4MVVFFRGJc4Ly0CWzAsbhhrj65VnRc3pdx5iYhw\nrR7XAjabjc2bN3Po0CHuvPNOgoODXa2S8jgc8O234OenOi+1sGzZMvbv38+ePXvw9lYjIKnIT3Bw\nTO0nNQJLVhLFCbskh+XsgaqRxQCtX0gVB8UQ0QpDk1hpDYyHIeh90Qa1h6CqIcFFh00apSlIQiws\nc2wKknAUJoO1ALH4AvbiC9jP/wgIaALbom3SF02TvmgC20hOUwPJzc1FEITLflt27NhBkyZNCAoK\nYsiQIYwbN67yxz2R/gP+UFEHUTwhCEIS0A9QnRcVt8Vl4TSGxg7l7z/+HYvdgkF7lbCHKi5BHXmR\nh6KiItauXUtqaipjxoyhU6frJET422/DV19Jmxo2+YoUFBQwd+5cJk+eTJ8+fVytjso1il4n/29s\naeJhCg//QHHCTqxZSVXLC2uBd/ub8G7bD2PTNmh9Gj7K4CkIGh2CbxQa36gqx0VRBEsujvxz2LPi\nsaf/hph3CkfucRy5x+HEx2AMQhveG22TG9A2vRFBU/ew6KIo8vjjjzNgwAA6VIrwOHLkSMaMGUNs\nbCynT59mzpw57Nq1q/KlEYBFFMX8aiLTyz5TUXFbnPKvYvTo0WzatKnKsYEtBlJiK+FA2gH6RvaV\nRaYcKCVXCZTQtVxmZiaYTI1fsO9J9qyMHHqfPHmSr7/+GrvdzgMPPHDVHC+eaqfqjB49mk133AEv\nvABz5sDtt8sn9xrs7x988AF5eXm88sorNX7uifV+4oknFJErB3l51fO7y4Or21Ft1JYkt66IokjJ\nn7+Rs/2/lJ6ttMhco+XRb9L5bOEb+LQbgD406spCGokzbS1HWYIgSM5JWBDasO7Q/iEcJVk4MvZi\nT/8Ne+Y+xr30E+v+loM9eRuCKQxdq3HoYm5H0NWer2PGjBkcO3aM3bt3Vzk+fvz4itcdO3akc+fO\nxMVdvsanITy3/E8CfKq2qXE3NWH8zerTTmfz2c501u2qmkQ3r7TxET7dHac4L7NmzbrsWKS/9Ecu\nszhTNplyoJRcJVBC13KZXl5gNoPd3rhIt55kz8o0Ru+CggK2bt3KsWPHaNWqFaNGjao1d4Sn2qkK\nJSXMslhg2jQpytjLL8sm+lrs71arlUWLFjFlyhSio6NrPMcT6z1+/Hh27typmPzGUHkxs5y4e/8V\nhMb9mRFFkeKEneRs/y/m5KPSQa0e3y5D8ekwEK/WN/D04F8IHDBMBm2vjjNtrVRZGq9QNDEj0cWM\nRHRYmVW8DF0rDfbk7xFLM7EeWYT15P/Qt7wHXexdCIaacxbMmjWLb775hl27dtG0adOrlhkbG0tg\nYCA5OTnlhy4ABkEQ/KuNvjQp++yKzH+oNd3VJJVuwfibL3ca/0j14sYZ31zhimsDpzgvw4ZdfkPz\nNUiP9AsthbLJlAOl5CqBErqWywwLk6KNXbwI4Y0InOhJ9qxMQ/U+evQomzdvRqfTMWbMGDp27Fin\nhbKeaqcKLlyA229n2LFjUoLKKVNkFX8t9vcvv/yS1NRUZs6cecVzPLHe/fr1U0x2Y6ke5U8u3L3/\nCkLDf+ptBRe5sOIJzCnHJFl6I/597yHw5snoAi79ODjLBs60tTPKEjR6Ro6TQsqL7R7EnrwN66k1\niEWpWI+vwPrnWgzdnkIXOaTKdbNmzeLLL7/kp59+uuLDj8qkpKRUH3ncD9iAW4AvAARBaAtEA7/K\nUTcVFaVw2WT03NJcAEw6NXu0O1IeoCQzs3HOy/XGrl27iIiI4N5771XsKa9b8uKLkJQEv/4K3bq5\nWhuPYOHChQwYMICuXbu6WhWVaxyx5hzztV9ns5L+v+cwpxxDMPoQ0G8cATfdh873Ogg64gIErQFd\ni1Foo0diT/0J65+rEPPPYDkwXwq/HNgakKaKrV69mk2bNuHj40N62SLVgIAATCYTRUVFzJs3jzFj\nxhAREcGpU6d47rnniI6O5ty5cwCIopgvCMJy4F1BEHKAAuADYLcaaezaZcKN7ekUIU9gmCMXillz\nOkEWWfXFZc7L7iRpfma/SPd9Snc9U9l5Uak7Wq2WkJCQ68txOX0aVqyAt95SHZc6cuTIEXbs2MHq\n1atdrYrK9YCjtEGXZW1+m9Jzf6Ax+tB81scYwlvIq5dKjQgaLbrIIWibD8L824s40vdg3jsX08Al\nCAY/lixZgiAI1XO28NFHHzFlyhS0Wi2HDh1i5cqV5Obm0qxZM4YPH87YsWMZOnRo5UueAOzAesAI\nbAWuPBSsouImOCV+6caNGy87tidlDy2DWtLEt2ELvGqSKQdKyVUCJXQtl1nuvGRdIY9YfeV5Gg3V\nWxAE7HZ77SfKVJ5b8MorUoOZPt3j+qWr7P7xxx8THh7OPffcc9XzPLHeP/74o2KyG4vZbFZErtv3\nX3tRvS8pPrmH/D0bQBAIn/harY6Ls2zgTFu7uk6CoMHYYw6Cd1PE4jSsJ1YCUsJju91+2TalbLqu\nyWRi69atXLhwgdLSUs6cOcPixYsJCgqqIl8URbMoirNFUQwVRdFPFMVxoihmKFtbFZXG4xTnpaan\ni6dzTtMutJ2sMuXAk56EKqFruczyRNT51YMoNlCep9EQve12O+np6YQ3YJ6dp9qJkyfhk0+k6GJe\nXh7XL11l9+PHj9O7d+9a12B4Yr2//fZbxWQ3FqWcF3fvv6Itt37niyLZ2xYDEND/XnzaD6jlCufZ\nwJm2doc6CQY/DF1mA2BL/g7RbnGKTioq7oxTnJe1a9dediwpL4mYgIYnzqpJphwoJVcJlNC1XKZO\nJ0UcKyiQR56n0RC9U1NTsdlsxMTUv117qp145RVo2hQefhjwvH7pKrsnJibSokWLWs/zxHr/85//\nVEx2Y/H3rzlqU2Nx9/4rWi/W6/ySk79iTj6KoDcROPjBOl3jLBs409buUidNeG8EUxhY87Ff+MUp\nOqmouDMuS3tdYCnA36jMD4mKPISHQ2qqq7XwHPLLhqlCQkJcrIkT+e47ePBBKSmQSp0QRZFz5841\nyMlVcT+WLFlC165dCQgIICAggP79+7N169aKz7/44guGDx9OaGgoGo2GQ4cOXSbDbDYzc+ZMQkND\n8fPzY+zYsWRnZ1c5RxCEIEEQPhUEIU8QhBxBEJYJglCnFPUOW3btJ1XW57y0CNen02B0ftfR/cxN\nEQQtmmApAaVYkl7L2Soq1z4uc158Db4UmBv5WF9FUTp0gATXBJLwSIxGI6Dc1BS3ozyWdrNmrtbE\no8jJyaGgoKBOIy8q7k9UVBTz588nPj6e/fv3M2TIEO68804Sym6eRUVF3HTTTbz55ptXDJv++OOP\n8/XXX7NhwwZ27txJamoqzzzzTPXTVgHtkULb3g7cDCyti46irX4jL2ikvDCC5tpPducpOIrOAyD4\nXDnZsYrK9YLLoo0FewVzOOMwoijWKQ+GivNp1Qq+/97VWngO153zUloKNhvo9a7WxKOIj5cyk8fG\nxrpYExU5uP3226u8f/XVV1m8eDF79uyhffv2TJo0CZCmCoqieNn1+fn5/Pe//2XNmjUMHDgQkKJG\ntW/fvuIcQRDaA8OBnqIoHig7Nhv4WhCEp0VRvGpSQWzZ9fqt1eilkVRrVpL6G+0GOIpSEfPPAaDx\na+FSXVRU3AGnjLw8+ODlc2af6f8Mu5J28e/9/5ZNphwoJVcJlNC1ssz0dIiIkE+eJ9EQva1WKwD6\nBvyZ90g7eXlBv37wxRcVhzytXzrb7qIoMnfuXLp160aPHj1qPd8T6z137lzFZDeW/MZGILkC5fZ0\nOBysWbOG4uLiOifr3L9/PzabjVtuuaXiWNu2bYmoevO9Acgpd1zK+B4Qgb61FiLaQaz7Qm/vDgMR\ndAZKEw9RfOynOl3jrL7kzD7rDnUSRRHLwfdBtKEJ7Y7go450q6g4xXmpKUvtba1vY1qPaTy57UkO\npB2o4ar6y5QDd8+UXBkldK0s88QJaNNGPnmeREP0Li2Vcik0xHnxVDvxwAOwdSscPQp4Xr90tt23\nbNnC7t27ef3119Foar/9emK9b7jhBsVkN5baors1lPbt2+Pn54fRaGTGjBl88cUXtGtXt2iaFy5c\nwGAwXBZMIDi4SiLICKBKCFtRFO1AdtlnteMoqdNpAPqgpgTc9BcAsja/gyUzsdZrnNWXnNlnXV0n\nUXRgO7ESR+Y+0OgxdH1CHQVTUaGezsttt93G6NGjq2z9+vW7LEb5tm3bGD16dMX7iRMnAjBz5kyW\nL19ecfyd4e8QXRxNr8G9ePeHd6sMqf/jH/9g/vz5VeQmJSUxevRojh8/XiETYMGCBZfNDy4uLmb0\n6NH8/PPPVY6vXr26xqcc9957Lxs3bqyQu3r1avr160dERERFXZ944ok62ak2GmrHcsrtWNkG8fHx\njB49mqxqiVlqs2NlFixYUDGlJTcXjhyBDh0aZsfKKGVHkM+WlYmPj2f16tX1tmV4eDg6nY7PP/+c\n9957r15tctu2bZfpVt2WbtkmJ0yA1q2Z2a0by6dOZeKECRUfydUmn3nmmSptvaF9u/J55XZcvXq1\nU9vku+++S9++fRkxYkSd2mR5veW0ZWW5ctqyvK5yhUpWom9rtVpZ7VjO9OnT6dOnD0uXLuXRRx9l\nypQpHD9+vM52tNvtl9kxKSnpKtapH/fMOszou8bXy5ZBgx9AFxiBLSeNh27rx8J5T1c5t3qbLG9T\njbVlbW2y8r0Aav7Nqe/9/kptovp3IGc9KjNx4sTL6iGac/n6XxO5a8pTAOjbPYjGN7LO9Si/t7Vt\n25YOHTrIfp9TUXElQk1zcC87SRB6APv3799fp6kO9aHUVsoTW59gyf4lTOw0kaWjluJn9JO1DLmI\nj4+nZ8+eIM07jq/v9UraUW7WrpX+lyYmQnS0vLIba0dwX1smJiayatUqIiIiuO+++yrWwSiFW7TJ\nwkJ47DH46COp0SxZAgEBDZPlIpzRJk+ePEnbtm1ZuXIlkydPbpzCboxbtMkaeOONN3jvvffIyFA+\nB9+tt95Kq1atWLx4ccWxxMREYmNj+eOPP+jSpUvF8R9//JGhQ4eSk5NTZfSlWbNmpKWlAfQEugJv\ni6JYEfpLEAQtUAqMFUXxy5r0KLflz6t70O/OdWi8WtarHrb8LNJXzaH0rDQ7ImDARIKHz0RjUKML\nKok9Yx+WA/MRSy+C1oih82y00SMbPeoiV9/8+Z1edI9zz/9pKvBHqhc3zvgGKn3P5d/dxint6RTh\nLUs5Ry4Uc9fKhCrlOAuXRRsrx6QzsXjUYlaPWc3mk5vpsqQL355y3yRn1wtffAFdusjvuFzrxMTE\nMHnyZNLT01m6dCmnTp1ytUrK4+sL//0vrF4N33wDHTvChg1SNDKVCjZs2ICfnx/jxo1ztSoqCuNw\nOGoM3FHTn8+ePXui0+n44YcfKo6dOHGCCxeqrMH/FQgUBKF7pWO3AALwW236iCKIjqI661+Ozj+U\nZg8vJuBmydnO+3k1SW+PoSD+G0SHo97yVK6OoyCJ0j0vYP71WcTSiwi+MZhuXoQu5jZ1upiKSiWc\n4rxUHzatiQmdJvDHI38QFxTHiE9H8JfP/0JmUWajZDYEpeQqgRK6/vzzz1y8KDkvcjwc9iR7VqYx\nekdGRvLwww8TGBjIp59+yrp162pdKOypdqrChAn8vHw59OgBY8fCqFFw9qwsoq+F/m42m/H398dU\nj5w4nljvAwfqv4bRWZQH1ZCTF154gYULF5KYmMiRI0eYM2cOP/30U0WUsZycHA4ePMjRo0cRRZHj\nx49z8OBB0tOlfB3+/v489NBDPPnkk+zYsYP9+/czdepUunbtWlGGKIrHgW+B/wiC0FsQhBuBBcDq\nWiONAQ4RRHtxg+onaHWE3v5XIu5/B11QU+x56WSsfYnzCx+g5NwfFec5qy85s886q6xd27dgOfgv\nSn+ciiN9DwhadLF3Yxq4CI2/GpVQRaU6TnFe3nzzzTqdFxccx3eTv2PFnSvYemor7Ra2Y9HeRVjs\nl0dJqavM+qKUXCVQQtc333yT//1PelJ3//3yyPNEGqt3SEgIkydP5p577iExMZGFCxeya9euikX9\ncpfnLry5ciVs2gQbN8Lhw9IozEsvSflgGiP3Gujver2+3n+ePbHeK1euVEx2Yykubtgf+KuRkZHB\ns88+S7t27Rg6dCj79+9n27ZtDBkyBIBNmzbRvXt37rjjDgRBYOLEifTo0YOlSy+laHnvvfcYNWoU\nY8eOZdCgQTRr1oy33nqrelH3AceRoox9BewEHqmLjqIIOBpXd58OA4l6ah3BI2YiGLwxpxwjdfH/\nkb76RWz5WU7rS87ss0qXJdotWP9czT/nPIjt3JcgOtBG9Mc0eDmGLrMRdF6Klq+i4qk4xXlZs2ZN\nnc8VBIH7u91PwswERrUZxaxvZtH2w7Z8dOAjbA5bg2TWB6XkKoESuq5Zs4b162HkSAgLk0eeJyKH\n3oIg0LlzZ2bNmkW3bt346aefeP/99/nhhx8oKqo6hcNT7VSdinrceSccOwazZ8Pbb0vzDx9/HJKT\nGydXZpxp95iYGDIyMqpPB7oqnljv119/XTHZjaV6RC85WLZsGZmZmZSUlHDhwoUqjgvA/fffj8Ph\nwG63V9leeumlinOMRiMLFiwgKyuLgoIC1q1bVz3aGKIo5oqiOEkUxQBRFINEUXxYFMU6eSQOUUC0\n13/aWHU0ehNBgx8k+tkv8OtzNwgChX9sJentMSyZfTei3Va7kEbizD6rVFmiKGJL+YHSH+7Heuw/\nfPxUW4SA1hhvfBdj31fR+KnztVVUroZTnBdv7/ovDgr3Cefjuz7m8KOH6dm0J1M3TaXDwg6sPrwa\nURQbJLMuKCVXCZTQtbTUm19+kWb8yIEn2bMycuptMpkYOXIkf/3rX+nRowe///4777//Plu2bKmY\nTuapdqpOlXr4+sL8+ZCUBE8/DStXQsuWUnjlEycaLldGnGn34cOHIwgCW7ZsqfM1nlhvLy/3fVqs\n1LoBd++/DhlGXiqj8wshfMzfiJz9CcaojojmIkq+X0jKB5Mwp56UrZyacKatlSjLkX8G886ZWPa/\nhliSjmAKI7Df3zANXIw2tJvs5amoXIu4fMF+bXQM78j68euJnxZPi8AW3Pf5fexO3u1qta5Ztm8H\nhwNuu83Vmlx7+Pn5MWzYMB5//HEGDBjAoUOHWL9+vavVUp7QUJg3TwpdN38+fPcd9OolOTXXEWFh\nYfTv35+FCxdisdQ9YaCKSmNxOAREm/wJOo3N29F8xkeE3fM3NN4BWC6c4sLKp3FYap4ee70jlmZj\n/uU5HLnHQeuFvt1UTLd8jC5qGILg9n/HVFTcBo/pLd2bdufejveiETR0COvganWuWfbtg8hIaN7c\n1Zpcu3h5eTFw4MA6J7G7ZvDzgyeflKaT+ftLU8quM959910OHjxYZcqQiorS2EUBhzVdEdmCRoN/\n37uJfnoDuoAm2HJSydm+vPYLrzNEhx3zvlcQzRcR/GLwGvoJ+raTEHRq2GkVlfriFOelevKmhrLx\nxEb6NO9DsFewbDKro5RcJVBC1zVrnkEKAy8PnmTPyjhDb4vFgl6vd1p5zqBO9QgIgA8+kBb2f/21\nfHIbgLPt3qdPH1577TXmz5/PokWLsNvtVz3fE+v9/vvvKya7sRQWFioi1937r80OojlN0TKen/sa\noXdKdsjd+QnWrIatb6sNZ9pazrKsJz/BcfEg6Lwx9p6HYLq0psnd24+KirvhFOclWoZkIUv2LeGr\nk18xo9cM2WTWhFJylUAJXe32aJo2lU+eJ9mzMs7Q2+FwoNVqnVaeM6hzPe65B2JiYNcueeXWE1fY\n/emnn+bhhx9m5syZ9OnTh927rzwN1hPrHRERoZjsxlLe3+TG3fuvzSEgWuseKKIhREdH49NxEF6t\nbwC7jbxfP1OsHGchV1mOkgxsf0qL/w1dn7xsQb67tx8VFXfDKc7L7EZOD9mZuJPZW2Yzq/csJned\nLIvMK6GUXCVQQtfw8Nmy5hb0JHtWxtl6e6qdqlPneggCNGkCmVfO5dQgufXEFXbXaDT8+9//5pdf\nfkEQBAYMGMCkSZM4c+aM0/RTst4TJkxQTHZjUSqYgLv3X7tDQLReRHQot9aq3AYBAyYCULBvMw5L\niWLlOAO5yrImfAQOC5qQLmibD1asHBWV6wW3X/OSmJvImM/GcFP0Tbw7/F1Xq3PNo9GoidGdgSiK\nZGdnYzAYXK2Ka/jlFzh5EhR6Eu4J9OvXj99//53ly5ezbds24uLi6Nq1K3//+9/Zu3cvDjWDuYpM\n2EQ9ICLashUvy7tNP3QhkThKC8nfs0Hx8twdR+6f2JO3AaDvOF2xiHcqKtcTbu28FFmKuGvtXfga\nfPls3GfotXpXq3TNIwhStDEVZUlISCAjI4PevXu7WhXns3YtDBkCnTvDG2+4WhuXotFomDp1KmfO\nnGHdunV07dqVRYsW0adPHyIjI3nkkUf4+uuvKSmR/wm2yvWDzV7+h1n5P86CRkPQoAcAyNnxMQ6z\n/IlBPQVRFLEcXQqIaJsPQRt0nQVpUVFRCKc4L8ePH2/QdY989Qh/XvyTTRM2EeodKovM2lBKrhIo\noWtp6XFZR148yZ6VUUpvs9nMgQMH2LZtG61atSImJkbR8pzNVetx5gzMnAkTJsDYsVLI5JCQxstt\nBO5id19fX8aOHcvKlStJT09nx44dTJw4kS1btjBq1ChCQ0OZP3++bOUpWe+zZ88qJrux2GzKJFF0\nl3Z0JWz2sidSCobjrWwDv56j0IdE4SjKIXXZLIr//A1Rph8WZ9q6MWWJ5hwsf7yDIyseNHr0Hf5P\nkXJUVK5HnOK8PPvss/W+ZvOJzXx6+FOWjlpK5yadZZFZF5SSqwRK6JqS8qyszosn2bMycurtcDj4\n888/2bBhA2+//TabNm0iODiYESNGKFKeK6mxHr/9BuPGQevW0qjLW2/BJ5+A0dg4uTLgjnbX6XQM\nHDiQd955h27dunHw4EFsNhuJiYmylaFkvT/44APFZDeWoqLGZ5mvCXdsR5WxOgCtH4IuSLEyKttA\n0OoIGf00gs6AOekQactmkrr4IYpP7mm0E+NMWzekLNFhw3p6HSXfT8Ge9A0A+nYPoPG+ciALd28/\nKiruhs4ZhXz44Yf1Or/AXMCMb2YwstVI7ut8nywy64pScpVACV1jYz+UddqYJ9mzMo3VWxRF0tLS\nOHToEEeOHKGoqIiwsDAGDhxIly5d8Pf3l7U8d6FKPb7+WpoWtnu35LgsXAhTpkADslZfr/19wYIF\nbN++HYvFwvTp02WTq2S9n332WXbu3KmY/Mbg6+uriFx3b0d2h4Au8BYEQbmf/Oo28Gl3I9HPbiT3\np5Xk//Y5pYmHSFs+C2NUR4yRHdB6B6L1CUDjE1j2OhBN+d5w5dwnzrR19bJEUQRbMaIlH9GSB2X7\nyu/tWQcQC6Uw0ZqANui7zEIb3Kle5aioqFwdpzgv9Q0D+P2Z70nJT2HbpG1XXNzmiSFE5UYJXX18\nopFzZoUn2bMyDdFbFEWSk5NJSEggISGBvLw8fHx86NSpE127diUiIsLp7dnZVNRj2TJ4+GG48UbY\nuBHuuEOKBtFYuTLjjnZPTk7m+++/r9gyMjIYOnQoXbp0ka0MJevdVM5Y6zJzvYZKLrFo0AXdqmgZ\nNdlAFxBO6OinCRz0ALk/fUz+ns8xJx/FnHz0qrIEnVFyanwCJMfGu8zJ8QkkwDuAguxj9XJ4akIU\nHWAtqnA+qOSESO/zaWLJozSp6jHEOvxAGgIxdPg/tNHDEYTa25y7tx8VFXfDKc5LfYkJlNYBFFgK\nXKzJ9UdAAOTmuloLz8HhcHDu3DkSEhI4fvw4hYWF+Pr60q5dOzp06EBMTAyaRvxp90i2boXp0+HR\nR6XRFjW6zlXJzc1lx44dFc7KiRMnEASBnj17MnXqVIYOHcqAAQNcraaKB5Oa64MjLreqAAAgAElE\nQVTG23WLxXX+oYTe8RSBg+6n6PB27AUXsRfnYi/Kw16ci6MoF3tRLvbiPLBbEW1m7Hnp2PPS61yG\noDei8fJDa/JGYzKhMRjRGHRodAIaHWi0dgSNFY1gRqMzo3EUAg2cZqA1Iuj9wRiAoPdHKNtjDEAw\nhaBrPhhBr8wonzuQdbCItHQ1LKm7klPqag2Uxy2dl3ah7RAQOJpxlD7N+7haneuKoCBISHC1Fu6L\nKIpcvHiRc+fOce7cOc6cOUNJSQkBAQF06tSJ9u3bExUVdf2Gw8zOlta36HTSVLE9e6BbN1Aov4Yn\nkpOTw88//8yuXbvYuXNnRVjkuLg4hg4dyquvvsqQIUMIDg6uXZiKSh3IyGlapxEApdH5hRLQf/wV\nPxdFEdFSXOHIVDg1Rbk4ivOwFeVgL8jAUZAhHS8pxFFaAqKIaDVjt5qx59dNF41BQOelQedtQO/v\nhz4gEF1QGFr/MDSGAARjAFRyTARjABj8pde6+o3yqKioyItTHgnXN0qOt96b2KBYjmZeeWhZzsg7\nzpCrBEroarXOZ98+kGvKuifZszLleouiSFZWFvv27WP9+vW88847LFy4kC1btpCXl0evXr14+OGH\n+etf/8rw4cOJjo5ukOPiqXaqzvxFi6RRl65d4fnnoX9/8PeH7t1h2jT497/hwAGwWusn14P7e1pa\nGp999hmzZ8+ma9euhISEMHr0aFatWkVsbCxLlizhzJkznDp1iiVLljB27NgKx8UT671ixQrFZDeW\n4mJlwva6e/+15YXWflIjkcMGgiAgGLzR+Xij93JgMOVhNKXiZTyJl2E/voZdLNu+maCoC4S2K6VJ\ndx0RN/jSpK8fYT18CekaQHD3SIK6tiSgUxv82rfDp3VbvFq0xtgsBn1IBBovPwAcFhFLnp3itBLy\nTmSQ9ftJLny7m7TN35Oxcz85B8/y2vxVmPM02DVhCL4t0HiFK+K4uHv7UVFxN5wy8tKQH4yOYR2v\n6rwo9SOklFwlUELX1q2L6dULnnpKemje2CninmTPcmw2G6dPn2b9+vWcO3eOoqIiBEGgefPmdOvW\njdjYWKKiomRNMOmJdqqJYqtViiYGYLHA4cOwd6+0/fYbLF8uJRIymaQRmd69oWdPaNMG4uIgLKzG\naWae1N/tdjurVq1i+/bt7Ny5kz///BOAVq1acfPNN/Pkk09y0003ERsbW6uj60n1Lqe01H3nLMgV\nrrc67t5/fcwBipfRUBuIDhuOrD+wp+3CkXsSR2EK2K4cFa7ELCL4RCL4RqLxjUTwaY7GNwrBpzmC\nVxhCHcJB24vzsWaew5JxDmvmWWmfcQ5r9nkcpYWYk49gTj7CxSOpXPj4jHSRVo8+NApjs7b4dR+J\nV+u+CBp5RrPcvf2oqLgbTnFe5s2bV+9rWgS2YPvZ7bLKrAtKyVUCJXR9+eV5DBsGAwfC8OGwahWE\nhzdcnifZEyTH5bPPPiMyMpK8vDy6detGixYtiI6OltVZqY6n2elKVKmHwSA5Jj17SqMxAMXF0shL\nuUOzdSssWHDpGj8/yYmJi4NWrSpez3voIbDbG+9NX01fmZgzZw4//PADnTt3ZtiwYbz66qvcdNNN\nDVrI7on3uenTp/Of//xHMfmNwcfHRxG57t5/I7T+ZOUWEBrop1gZ9bGB6LDiyIzHlroTe9pusFaf\n6yUgeIVLDopPJIJv8zJHJZLX7ohA0DTur4vW2x9tTBdMMVWDYDisZqxZyWWOzVle7CbtrZmJiFYz\n1vQzWNPPUHhgC1r/cPx63o5fz1EYwmIapY+7tx8VFXfDLde8ABRbi/E1XLsL3tyZAQPg+++lXII9\nesBnn0mzf651bDYb69at48yZM/zlL38hLi7O1Spde3h7SxHIbrzx0rHCQjh9WtpOnbr0es0aSE6m\nIna3wQCxsZc5NrRqBS1a1CtvjJLs3LmTzz//nLvvvtvVqqioAGAQdOzbf5YRt8gXsa6+iA479ozf\nsJc7LJVHVwyB6JoOQBPe69Ioila5h0VXQqM3YmzaCmPTVlWOiw4HttwLWDLOUnxiN4V/fIs9P4Pc\nHz8i98ePMMV0wa/nHfj2uA2N3j3uQyoq1zJu57yIosiP535kV9IuWgS2cLU61y2DB0N8PNx7rzQK\n88Yb8OSTjYp26zbYbDZyc3PJyckhJyeH7OxscnJyyMzMJD8/nwkTJqiOizPx9ZXWyHTtevlnFguc\nO1fVqTl9GrZtgzNnpM9BmmoWHQ3t2kHbttK+fIuIcGrEs3/+85+q46LidiStT2XRT6n0GNSS3je3\nQqtz3s3cnrEXy5HFiAXnLh00BqNrehPa5gPRBHeWbQqWEggaDTr/UESrGe9WfdD5BpP363rsBVkA\nlCYeojTxEObU44TdPcfF2qqoXPs4xXnJysoiNPTqCwZtDhsbjm3gzV/eJD4tnm4R3Zg7cG6jZDYE\npeQqgRK6VpbZvDn8+CO88AI88wx89x18/LH0X9CVOtaFkpKSy5yT8i0vL6/iPI1GQ1BQEEFBQbRq\n1YpOnToRHR3tdL09qd1dDdnrYTBAmzZkBQcTetttVT9zOOD8+UuOzZ9/wokT8O23sGgRFQmL/Pyq\nOjPlDk6rVmQVFMhu93nz5uHl5cW0adManVfEE+9zOTk5isiVA4ecGXgr4fb9V6/FVzBAFpxZn8Lx\n9efQNNXTc3BL2vaORGdsvONQkw0cBYlYjizGkfF7mR7+6KKGom12M5rgjg2KgKakrUWHA3t+Bpas\nJKyZSVw4fQx/SxaWrCRs2akgXrn9aP3DMLXo3qBy3b79qKi4GU5xXqZOncqmTZtq/MxsM7P8wHLe\n/uVtzuaeZWjLoWybtI2hLYdedTHr1WQqpau7oYSu1WXq9dL666FD4f77pYfj//sf3FrHfGfOsOep\nU6dITEys4qxUXjRsMpkICgoiODiYyMjICmclODgYPz+/GvOwOLsdeFK7uxpO7ZcaDURFSdvgwVU/\ns1qlkZnjx6XtxAlpv3nzpURGGg1TTSY2DRkixQiXiYEDBzJjxgyWLl3KX//6V2JiYmjevDnNmzev\nd4Z3T7zPvfzyy4rIlYPc3Fy2bdtGVFQUUVFR9f4+roS799/CIc0wRLbGfjoH66lsDGYdpIkcXHWa\n+FV/YvZ1YPLR4+NnIjDQh4BAL4zeenRGLXovHfqyvc506bXeqEVrAMGah1h6kQf/MpXPlz6HWHoR\nsTQLsSQLR+Y+6Q+/oEXX8m70bSYjGBq37qYmW4uiiGgzI1pKcZiLcViKEc0l0t5SgsNSgsNc9tpc\njMNSgmgpLjtWisNSjL0wB2tWEqL10m/HjA2n+PeYS1PIBIM3hrAY9GEx6EOj0YdFYwhrgT40Co2x\n4eup3L39qKg0BEEQQgEfURQTKx3rCDwN+AAbRVFc1RDZTnFe5s6de9kxu8POp4c/5aUfXyI5P5l7\nO97LhvEb6N60bk8uapIpB0rJVQIldL2SzOHD4eBBmDIFbrtNWgdTl5kxzrDnjz/+SGpqKgBRUVH0\n79+/wjkJCgrCqwE5RpzdDjyp3V0Nt+mXer00utK2Ldx556XjOTlSkIBPP4Vvv2VucTF89ZXsur74\n4os8/vjjTJ06tcpnAQEBNG/enMjIyAqHpvrr0NDQigc3bmPPejBt2jR2yhVrXUbi4uKw2+0MHz68\n4lhAQECFIxMVFUVkZORl7729vWuV7e79d8MfaWT5xXLLTVF4D4rBcaEQy8mLmE9mYjRr8C7UQKFI\nSXoJJZSQVg/ZOq0Znc7MkCaj+G5JLnqdHZ3OG50uAp32VgyB4Rib98RwMRhdfCF6QxFanR2dxopW\nY0EjmNEJZgRHCVirOReWUsQyZ8Rhlo7N6KQl+YNJZcdLKvZXGxWpFxot+uDm6MNieGHWQML63Vjm\nrMSg9QtRJIeXu7cfFZUGsgBIBZ4CEAQhHNhVduw0sEIQBK0oip/UV7BTnJcePXpUvBZFka9OfsUL\n21/gSMYR7ml/D1snbaVdaP2y/1aWKSdKyVUCJXS9mswmTaT/eZMmSXkIV6+W9g2VJxcPPPAABw4c\nYPfu3SQnJ+Pn50fr1q2JqM/8tmo4ux14Uru7Gm7VL3NypIVb+/fDvn3S/kxZ2FNfX+jfnx7l0dBM\nJhg7VjZ9+/Tpwy+//EJxcTGpqamkpKRw/vz5iv358+c5evQo27ZtIy0trcp0JoPBQLNmzWp0cMr3\nTZs2bVT0OyXbW/v27RWT3RjGjx/PXXfdxfnz50lOTiY5OZmUlJSK13v37uXzzz8nKyurynXBwcG1\nOjju3n/DT23iXHQkC87n0rNFCN1jQggc1ALTwBjEiyWUpmSQkXSWc2fPU1SsQY8Oo6DDqNFhKtsb\nBWnzKnutKQtJbLMbsdmNNPHtQ25NCSKTgcNZQFYNH1bGgRYrWsGBRgAtGrSCFq1gQIuIVhDQClp8\niCP5bClawQutYEYv5GPS2NAJZgAEvRHB4I3G6I3G4FX22qvstRcao7d0rOK1CY3BG42XP/rQKPTB\nzRG00l+j+scHbBju3n6qc6T4MYoKWrtaDZUrkGFPBn50tRoANwAPVHo/BcgGuomiaBME4WlgJuCe\nzgtAakEqqw+v5pNDn3Aw/SCDWwzmt//7jT7N+zhLBRUZ0Oulh9Y6HUycCDEx0MfFX6Fer6dPnz70\n7NmTgwcP8vPPP7N06VJGjhxJH1crp6Is5eteTpy4fEssG6n29ZWSZN5556XQzW3aVI0+ER+viHre\n3t60atWKVq1aXfEcm81Genp6hVNT3dGJj48nJSWFkpKSKtdFREQQExNzxc3f31+ROnkyBoOB2NhY\nYmNjr3hOaWlpFaem8uvdu3eTkpJCdnZ2lWtGjBjBli1blFa/wQSmfsfIP0sY9urnbNu7l027EsA3\nmu4xIbRvGoB3aAtadGtB9+IjdD71IueztZzNNnI2z4fEAiOJRQaSSoykW42ISCMPOjQVzk1nrxKe\napKEHSN20YhdNFW8dpS9t3HptfTZpXOkfNka7HhhF72gAel4TH56/MK98Y/wlvbh0t431Aut/hqI\nNKOi4nlEAOcqvR8CfC6KYtmCVDYBDYpwoajzkm/OZ8OxDXx6+FO2n92OXqtnVJtRvHXrW7WuaVFx\nX3Q6WLkSfvkFli1zvfNSjlarpUePHnTr1o3PP/+cX3/9ld69e6vt7FqgsLBmB+XkSSl3DEiedatW\n0lSxCROgUyfo1Qtat5Y9P4yc6HS6ihGWKyGKIrm5uVWcmuTkZBITE0lMTGTv3r0kJydjKw9SAAQF\nBV3m0LRo0aLidUiIMlNgPB2TyVSrw1lUVFTh1CxdupTdu3c7UcP6U2w0Ys5LJfLwTB6wJTMlUuR0\nUSQ7TvVgxZFONGsayS0dmpLj3YkD4n3EnltCJ6CTAPiXbYBZ0JPhFcN5MZBks5HtFxwcy7FQ7Kcn\neuhNl0Y6DF4IRi9pRMPoLY14GMr2ZccFnR6Q2rbd6sBaYsNaasdmtmEtsWMt29vM0nFr6aW9rdL7\nouxSSvMtlBZYKS3II/N0XpW6CwL4hJjwK3Nm/JtIm1+4N96BRgSN2gcahmo398Vtvpt8IBAoX/PS\nB1he6XMRaFBscdmdF4fo4NtT3/LRHx+x+eRmzDYzbRLb8J9Z/2FMhzEEmgJlKWf58uU89NBDsshy\nhlwlUELXusrUauEvf4EPP4QPPpBm3ThLx9rQaDT07t2bo0ePsnfvXtq3b4+fX/0WiTpbb09qd1ej\n0fUwm6XFVb//DseOVSy0X56aSoXUJk0kB6V3b2kOY3n0sBYtJM/amfoqTLl+giBUBJro1KlTjefa\n7XbS0tIqHJrK23fffUdiYmKVTN7e3t5VnJq4uDjuuuuuq/5prwsbN25s1PVKItf37ePjQ9u2bWnb\nti2//vor3333nQzaKUeJyQiF58n63RdroQPRLuLHce7gOEMx8FnucL4y38mYPi3J7zKOQ4X59BXO\nYQiNQh8WjT4kGn1oFLrACDqUTanKyS/i51eWQU4Stw4bzsbUMw2yrSAI6AxadAYtXgG1n798+XIe\nmla1HEuJjYKMYgoyislPL6Ygo6Titc1spzCrlMKsUtKOVR0x0+o1+DXxpmn7YKJ7hBMc7VfFoXfW\n/cHd70MqKg1kD/CYIAgPA/cAfkDl7PNtkCaW1hvZnJe80jw++uMjFu5dyKnsU3QO78zLg15mYueJ\nvDHnDR7qIW/HjI+PV6SzKyVXCZTQtT4yx4+H116TRmCGDGm8PDmJjo6mRYsWbNmyhS1bthAYGFgx\nVz0yMpImTZpcNYyts/X2pHZ3NepVD1GU1qD89tul7cABKXeLXn/JKXnwQeL37OGh11+XpnsFyvMA\npN76uoD66KfVaomMjCQyMpIbKycBLUMURbKyskhMTOTFF19k2LBhFc7Nnj17+OSTT3jmmWfo378/\n999/P+PHjyewAbY+fvx4va9xFkp931arVXaZclJiMKC3WbHk2SuO6QKaoA+LwT80iidDojhnyGd7\neg6xTYJIaT+BUTdEoNdePt3Kbnfw6bY9vLlqC7kFxeh1Wob36cQ7r693Sl+q6Ts0eOkIifEnJKbq\nVElRFCnNt5Q5NJJTk59RTEF6MYVZJditDnJTCslNKSThuyR8QkxEdw8nqnsYIS38nXZ/cPf7kIpK\nA/k78AMwCcnfeF0Uxcqx9CcAPzVEcKOdl6MZR/nw9w/55NAnmO1mxnUYx8d3fUy/yH4VTzAWLlzY\n2GIuQwmZSspVAlfbtWNHKYXGb79d2XlxlT0FQeD+++8nPz+/yrz1Y8eO4XA4KqbqVHZofHwuhbp0\ntt6e1O6uxlXrkZ0tjaj8/rvUaH7/HcoXR8fFQd++cN990r5bNzBeGk1Wyjrubnc59RMEgbCwMMLC\nwti6detln5eUlPDll1/y8ccf8+ijj/LYY49x1113MWXKFIYNG4aujqNazz//POvWrZNNbzlR6vsO\nCKjDkIELsRj0dGoWilfrvoTc9lf0YdFo9FWHy7sBkUVWdiWV0DzIh81HMrin66WgJza7nd2HTvH6\nyq84elaK7tgupimvTrubls3DnNaX6lOOIAh4BRjxCjDSpE3VcOgOu4Oi7FKyEwtI/iOT80eyKLpY\nSsL3SSR8n4R3kJGpgx8n/WQOobEBiq6bcff7kIpKQxBF8ZAgCO2BG4ELoij+Vu2UNcCxhshusPOS\nVpDGE98+wdqja4nwjeCZ/s8wrec0mvo5Kz6HiqvRaqX1Llu3wvPPOzWJeZ3x9/enY8eOdOzYEZAW\nR6elpVU4NAcPHqyYrz5+/Hi3jZTkcfw/e+cdHkX1/eF3tiab3hMSSCgJ0ouE3uyINMtXQQVs2CkK\n2BvoTwQ7gg0sIEVUBKWJNOlVQm8hQCAkgZBeN1vm98eEGCAh2WRnC8z7PPtky+znnnt27mTP3nvP\nOX9emkXZvVu6JSRIhSRBqqnSsSM8+6wUqHTsCEqBNqfj6enJ4MGDGTx4MKmpqcybN49Zs2Zx1113\n0aBBAyZMmMDQoUPrXHhTwfEUeBmIu+dJIu587qqV7D21akTRiiCo2Jqcz62x/mzdf5yV2w+waudB\nsvOlZYd+Xp6Me7APQ/t0QeOm54NKrcInxIBPiIHoDmGYSy2kHszkTMJ5zu7PpCjbyNG1Zzi69gxq\nrYqgGF/C4gIIjfUnuKEvaq179ltBwZGIongB+KOK15bVVtfm4MUqWvn23295ZfUr6NQ6vh/wPQ+1\nfgiduvZpOxXcl9GjYcAAKW3ygw8625rq0Wg05SlOQVpWMHfuXFJSUggLC3OydW6IKErZvi4GKRcD\nlZQU6XVfXynTV//+0L69FKzExrpmpKtQTr169Rg3bhxjx44lISGBSZMm8eijj/Lxxx/zwQcf0Ldv\nX2WzvxtRrNPxvUXLm1cJXDIKzew4W4wgqCgymvg3OYuOY1dRkJZUfoyftyeDerZn7ODbCfS1T4FP\nV0GjU9OgXSgN2oViLrWQdiiLMwnnST+aTUleKecTczifKBW4VWlUBDf0JTTWn7C4ACWYUVC4DEEQ\nRgHfiqJYUna/SkRRnGqrvk3BS3p+Ot2/787WlK080e4JJt82mUDPQFvbVLiG6N9f2vsyejT07AlR\nUc62yDb+/fdfkpKS6N+/P4GByrlcI5KS4McfYedOKVjJyJCeDw6WApSHH5YClvbtoVGjS1MSK7gV\ngiDQvn17fv31V7Zv387LL79Mv3796NGjB19//TXNmzd3tokKNeSbdQvw8TAwtOtAgrwv3ct0IsvI\n3vQSEAROn01l9ootmIOboAlvTKQlmz4dW3BHp5Z0bN7QbWdabEGjU1O/bQj124YgiiJ554o4fyyH\nc4nZnE/MuSSYObD8FCqNisbdIuhwf5wS1CsoSLwAzAVKyu5XhQjYHLzY9K3ik22fcCrnFBse2cCM\nATNqHLgMGDDAVrucoimnrhy4il8vZhtr3x4uT7rj6v7Mz88HYOnSpfz000/s2rWLgoICh9vt6n4C\nYNs2qZBjXBxMnw46nbT0648/4PRpOH+eAXo9TJokRbRNmtgtcLlex7sr9btTp06sW7eO5cuXk5GR\nQdeuXVm7du0Vx73wwtX+TzkXufx5ed0XV+OWZp2wilamLP+O+An38dKCD0lMP0VRSSkLth1n7zkj\nCAI7Evby2dc/EGjJwaC2otZ5MnrEcCY8MYiurZpcNXBx1Fhy5JgdMGAAgiDgF+5FbM9Iuj/ekrsn\ndaPf252IH9KU6A6hePjqsJqtJK4/y4mtabVuR0HhWkIUxYaiKGZWuF/VrVFt9G36ZrHmxBreu/k9\nekT3sKmR559/3qbjnaUpp64cuIpfw8KkH+Dbt4c77oC33gKLpfZ6juSmm27ixRdf5M4770QURZYv\nX87HH39MbGws27ZtIzc3t3oRO+CyfrJYYNEi6NYNunSB/fvhyy+lpWJ//gnvvCOtG6xfHwTB7cal\ny/q9DFfrtyAI3HnnnWzfvp1OnTrRp08ffvrp0uLI999/vz1MlAW5/Fkx2Ycr8mKfR5n60Ou0jIql\nxFTKnK1L6PXBMHq+/zRnS6TkP2vWb8KjJIu1X4xn1Wcv8uJtcQB8tzWFYpPlavKA48aSI8dsZW0J\ngoBvmBexPSLp9pgUzLQZKH3/2v1bIoVZJXZpR0HhWkUQBI0gCHVad2pT8BJsCGZYm2E2N3L77bfb\n/B5naMqpKweu5NeQEFi+HN57T0qffNNNUoFzd/Cnj48P8fHxDBs2jHHjxtG/f39uvPFGVq1axeef\nf05SUlL1InXEZf00bBjcc49UP+WPP+DwYXjqKfD0rPRwdxuXLuv3Mly1376+vixdupShQ4cybNgw\n3n33XURRKovepUsXe5goC3L5U6+vVZ01h6FRa7gv/g5Wjp3J7yOnEhd0AwCpeceZtuwNMlKOMmnY\nzbz92EAaRkjJMwa1Dqeen54LhaUMn72HY+cLrtqGo8aSI8dsTdoSBIEG7UJRaQRMJRaOb06VpR0F\nBXdDEIT+giA8ctlzrwMFQI4gCH8LghBQ6ZurwabgJas4iwtFF2rTjsJ1gEoFr70G//wjBS5t2kgb\n+d0Jg8FA+/btefDBBxk/fjxRUVGsXr26/IvZdcW6dTBvHsyYAevXSzMsyv4VhTK0Wi0zZ87k3Xff\n5a233uLxxx93+Xon1zuCINC5cVvG9X2ZCUNmEuAdQompmIb1TPgYLk2drFWrmHhXU/w9NRw9X8iQ\nHxL4bstpzNbr8Fp4Fc4euMDKKbuwmkX03loatAtxtkkKCq7Ci0D5tLQgCF2BicC7wP1AfaRaMDZj\n0zcRlUrFnH1zatOOwnVEjx5SkfS+faUMZMOGgdnsbKtsx8PDg1tuuYX09HQOHz7sbHMci9kMY8ZA\n587w2GPOtkbBRREEgTfeeIPZs2czZ84cBgwYcH0G+m5EbokFi1cIwb7h+Kql0gZbjidUemx8tD+/\nj+jATbFBmK0iU9efYvD3u/k1IZVCoxte1O1EQWYxx9an8M/0vaz/ah+lRWaCYny589V4AqJ8nG2e\ngoKr0ALYUuHxfcAqURT/TxTF34GxQP/aCNsUvNzW6Da+2PEFJottv64tXrzYpuOdpSmnrhy4sl/9\n/aUf7UePXszcudIebnfioh+io6Np1KgR//zzD1arVfb2XIaZM2HfPikbgw2zLe42Ll3O75fhLv0e\nOnQon376KX/99RfLltU6db/syOXPkhLb9zk4iwPnS7CKUJyXw+njhQD8vHUFJkvlwUiQl45P723O\ne/2a4qNXk5hRyHt/HeeWL7YxccUxDqblI4qiw8aSI8fsxbYsZivnjmaze2EiSydu4883t7JrwTFS\nD2aCCLE9I7n1hfYYAjyqUbx6OwoK1xg+QGaFx92BNRUeHwTq1UbYpuBleJvhnM49zdz9c21qZL4M\na4fk0JRTVw7cwa9pafN5/XWYMEEqqO4uVPTDzTffTEZGBgcOHHBIe04nOxveeAMeeQTi4216q7uN\nS5fyeyW4U79NJhOenp5s2rTJ7tr2Qi5/FhcXy6JrbzIKzZwvtCAA/VrX454ON4NZS25JHhN+/rHK\n9wmCQP9WYSx9uiNjb2lETKAnxSYrC/ek8+CPCQz+IYHJ078nNVf+IM4RY1YURfLPFzHji+/Z+O1+\nFr60kTWfJ3BkzRny0osQVAKhTfxpO6gxfd/oSPzgpqi1tV9S6+rXIQWFWnIWaAZQtkG/DZfOxAQB\nRbURtqnOS2xQLAOaDmDK5ikMbzO8xvnMFyxYUBvbHK4pp64cuINfFyxYgMkEK1dKy8f277ervGxU\n9ENkZCRxcXFs27aN1q1by96e03nnHTAa4f33bX6ru41Ll/J7JbhTv8+cOUP9+vX54IMPWHV5znQX\nQS5/BgTUas+pwxBFEYtVlGq5AA0DtPh6avhs1EMcfS+BA9m7+H79n9wQ3IKH76g64YK/QcuwjlEM\njY9k95lcftuTzuojGRw5VwA3j+POL3fQKMhA10YBdG8cyI31/dBp7LtPTg6QY9EAACAASURBVI7P\nUBRF8jOKOX9MquNyLjGH4hwjDzUdw5k9Uh0rDx8tES2CqNciiIhmgegMWru17+rXIQWFWvIr8Jkg\nCO8DfYF0YFuF1zsAR2sjbFPwAjCm0xhunn0z65PX0zumd23aVLjO0GqlPd/t2knlQXr2dLZFthMT\nE8O6desQRfHaLkJ26JD0If3f/0FEhLOtUXAjrFYr6uuggKE7UlKQz8EMI/mlVvRqgRuCpexoarWK\nZ/v15dmfdoFg4ZWvfiMnv4jn7r35qtc5QRC4sYE/Nzbw5+VbG7PkwDlWH73AvrN5nMgs4kRmEXN2\nnsVDqyK+gT/dGwfSvVEAUQGVZyl0NNLMSjHnE7M5l5jD+WPZFOeWXnKMSi0Q1NCX8KaB1GsZRGB9\nHwTVNXztV1CwPxOBSKQilOnAw6IoVsy7PgRYUhthm4OX3jG9aRrUlK93fa0ELwo1pnVrGDFCWj62\ncKGzrbGdgIAATCYTBQUF+PhcoxsyS0vh+echJkbarK+gYANarRazO2bmuA7IyMnlfJb05bx9PQ/0\nFWZDdBppBqFeiB/p5+CDOcsRVALP3XNzjbT9DVqGdoxiaMco8opNbDuVw+YTWWw+kU1GQSkbk7LY\nmCQV8bwhzJvhnaK4vVkIGicEAvkZRZzcls7J7elX1GNRaQSCY/wIjfMnNNaf4IZ+aHRKMK6gUFtE\nUSwGqqyvIoriTbXVtjl4EQSBpzs8zUurXuJcwTnCvMNq27bCdcaECdI+8EqKcrs8kZGR6PV6VqxY\nwf/+979rb/YlP19KD7d5MyxdCi5et0LB9QgMDOTcuXNKtjEXJL1QJAyo76cl3PvS5U7asuAlNNCb\nJx7px3s/LuWT+Svp17UN0eFBNrXj66nl9mYh3N4sBFEUScwoZFNSNptPZLEnJY8j5wp49c8jfLH+\nJEM7RjGodTgGmQMEU4mZ0wnnObk1nfPHc8qfV2lUBDf0JTTWn7C4AIJifJVgRUHBjgiCcDOwQRRF\nu/+qVavFqMPbDEetUvN9wvc1Ov7RRx+tTTMO15RTVw7cwa8V9cLCpDTK69bZtQlZuNwPPj4+DBw4\nkMOHD7N161bZ23M4TzwB//4Lf/8Nt91Waxl3G5dO93s1uFO/b7jhBvLy8nj11Vftrm0v5PJnTk5O\n9Qc5kUK1VGqhgd+V+zS0Kuk3TJPFwlMDe9O9dSxGk5mJ3/9hUxuX+1YQBOJCvXmsS32+e6gNa0d1\n5vmeMQQYtKTmGpm8Kok+07fzzaZkTJaaZ3Ks6WdYcKGYbbMPsejVzWz/6YgUuAgQ0TyQro+14L6P\nenDrC+1p3a8RYXEBlQYujro+uPp1SEGhlqwCAi8+EARhmyAIkfYQrlXwEuAZwJCWQ5i2cxr5xvxq\nj3elSvDO0pUDd/Dr5Xp33gk7d9q1CVmozA/NmjWja9eurF69moyMDNnbcyj5+bBpE/TqVScZdxuX\nTvd7NbhTv5s1awZIs5Suilz+1Lv4TKWo0aNRQbDhyi/omrJ9SiaLCUEQmDhiEGqVipU7DpJyPqvG\nbVTnWz9PLSO6NeCvZzvyRp8mNAjwILfEzJcbk/lqY7Ld2gEozitlzWcJnNiWjtlowTvEkzYDGjHo\nva7c9HxbYjqE1WiWxVHXB1e/Diko1JLLl6i0AOxysax1GpC3er1FdnE2E9dPrPbYIUOG1LYZh2rK\nqSsH7uDXy/V0OnCHPb1V+eGmm27Cz8+PtXZe++b0827YMGjRos4y7jYune73anCnfsfFxREVFYXR\naLS7tr2Qy5+enq6xEf1qGLQqVJUsd724bMxcVuclrn44DesFA3Aq7UKN9WvqWw+tmv+1q8fiJ+N5\n/Y4mAPyw7Qx7UnLt0o7FZGHDN/sozCrBO8STW19sT/93OtOiT4zNdVgcdX1w9euQgoKrUevgJcY/\nhjd7vsmn2z5l/v75WEX5CvgpXDvk54Mb/J+vEo1GQ3x8PEeOHCE1NdXZ5tgPmVJAK1w/CIJAv379\n2Lhxo7NNUagEvbryfXoXl40Zzf8Vn44KlVZ6nLZh5sVW1CqB+9vXo1/LUKwivLn0GFY77JfateAY\nmSfz0Hpq6P1sa0Kb+F97exQVFNwDsexW1eNaU6cE7GO7jqVvbF8e/P1B2nzdhoWHFipBjMJVCQuD\n3Jr9wOZy5OTk8Mcff7B69Wp8fX3Rau2X59/pTJ0KblJoT8F18fLyorS0tPoDFRyOtorgJcI/BIC0\nnAyyC/MA8PaQVnaUGE2VvseevHJbEzy1Kk5nF5N0oVb16so5dyybpC1pIECPES3xDfOyk5UKCgq1\nQADWCIKwWxCE3YABWHLxcYXnbaZOwYtOrePPIX+y+bHNhHuHc9+v99Hum3YsPrL4kowzclRclquK\nsytXh74cd/Dr5Xq33w5WN4hvK9pdUFDA8uXL+eKLL0hMTOSOO+5g5MiRhISEyNKeU9i3D+67T0qX\nXAfcbVw63e/V4G79Xrt2LY0aNZJF2x7I1W93CNjMJYWVPh/hH0JsWDRW0crmROl7RGGJtPTPy7Pm\ny9Nr61sfDw2t6vkCsDclr9btWMxWdi04BkCTbvUIvyGw0uNswVHXB1e/Diko1JIJwELgj7Lbu0iF\nK/+47GYzdil927V+V1YNXcWGRzYQ5BnE3QvuZtqOaeWvT5kyxR7NXIIcmnLqyoE7+PVyvZgYaNDA\nrk3IwkW7S0pK+OGHH9i/fz+9e/dm1KhRdOrUCY3G5izjNWrPaXz8MSxfDr/9VicZdxuXTvd7NbhT\nv7/99lsSEhLIzs62u7a9kMufBQUFsujak5LczCpf6xHXAYCdJ/cDYDJLdeTUqpp/RaiLb9tESsHL\nlpPVnztVtbP7t0Ry0wrRe2tpO6hxrW2pSVv2xtWvQwoKtUEUxQk1udVG2y7By0V6RPdg7fC1jOo4\nirF/j2VX6i4Afv75Z3s2I5umnLpy4A5+rUyvTRu7NiELP//8M6IosmTJEgoLCxkxYgQ9evRAp9PJ\n1p5TKcsUVdf6Lu42Lp3u92pwh36LosiECRN46qmneP7555kxY4bdtO2NXP4MCAiQRdeeFGWdq/K1\nRqFRAJzNlo6pF+wvPc6oeSBaF9/e0UyaxV6fmElW0dVnsSpr5/imsyRuOAsCdB7aDJ3BPkt6HXV9\ncPXrkIKCq2HX4OUiH97+IW3D23L/r/dTZCrCYDDYvQ05NOXUlQN38Gtlei1b2rUJWTAYDOzevZtD\nhw4xYMAAAgPrvgShuvacyoWyrELh4XWScbdx6XS/V4Or97uoqIjHH3+cd955h/fff5+pU6fi5eW6\n+wzk8qc7bAjPzzhb5WvhvlJ2sbQcKQV8TIT0ODm96tmay6mLb2NDvWgR7o3ZKjJv59UToVzezoWT\nueXLxVr3a0Rkq+Ba21FdW3Lh6tchBQVXQ5bgRafWMfeeuZzKOcW8/fPkaELBjQkLc7YFNWP79u00\nb96c5s2bO9sU+dmzR8phfT30VcEuJCQk0L59e37++WdmzZrFq6++6hZf4q9X0g/vpCi38pmUdUd2\nAFAvIBSAmIggwLZUyXXl4Y7S7M/MLaf5J7FmQZOx0MTm7w5itYjUbxdCiz7RcpqooKDgIsgSvADE\nBsXSL64fX+z44pLN+woK7vD95ty5c2RkZNDGHda42YP166FnT3CD5S8KzqW0tJSPPvqITp064enp\nyb///suwYcOcbZZCNRScOcKupXOueD499wK/7vgLgBG97gcgJryszku644KXvi1CeaB9BCLw6p9H\nOJR29QLYJfmlbPnxUHk9l04PN1OCZwWF6wTZgheAh1o9xL5z+3hm9DN21x4/frzdNeXUlQM5bLW3\n5uV6p07B99/btQlZGDNmDHq9nsaN7bPxszqcft7t2AGDBtVZxt3GpdP9Xg2u1O8DBw7w4osvEhkZ\nyfjx4xk9ejTbtm2j2cX9UmV89tln9jLT7sjlz7y86rNkOZuSCyksm/YGqYkHyp8rKCnise9eo9Ri\nokPDlnRs1AqAhvVCUKtUnM/OZ/nWfTXSt4dvx9/amPhoP4pKLTwyZy9/7Eu/4pgxI1/k398S+eON\nLaQdzESlEej+eEt0nvZNogKOuz64+nVIQcHVkDV4OZN3BoPWQLMmzao/2EYayJSySi5dOZDDVntr\nVtSbO1farH+u6n2jLoNerycqKgq1Wu2Q9px+3gkCPPhgnWXcbVw63e/V4Ox+5+Xl8e2339KpUyda\ntWrFnDlzGDZsGAcPHuTDDz9EX0mCh/A67puSE7n86ajrRF1o0LoLJQV5fPNsX3LPp1JcamT4jFfY\nc/oIAV5+fPzAS+XH+hg8eHJgLwDGT/+F1Bps3LeHb7VqFZ/c04JujQIwmq28tewYE5Yfo8RkoeBC\nMTvmHSFnn4mja89gMVkJbOBD7+faENjAp85tV4ajrg+ufh1SUHA17P9TRQUS0hNoG96W0Y+Ntrv2\nyJEj7a4pp64cyGGrvTVHjhxJQQE88wzMmQMPPQQjRkDv3nZtxu60atWKiIgIh7Xn9PPu1lshuO4b\nXd1tXDrd79XgjH5nZWWxYsUKlixZwp9//onRaKRPnz4sXLiQfv36VZtxb/DgwXz44Yf2NtkuyOVP\nV05ScJE7Rk0mc/8Gzp86ymfDe3Ds9jvYmnwAb72B+U9/RGx4zCXHj3+wD1sOHGdv4hmG/993/PDa\nY0SFVp24xF6+9fXQMO3+lszYfJqvNiazeE8agcfyCEnKx2oRub3F3YQ08aNFnxgimgXKulTMUdcH\nV78OKSi4GrLOvOxO20278HZyNqHg4hw5Ap06waJFUvAyZw74yPMjmV3x9PR0i9oNdsPT09kWKDiR\no0eP8tFHH9GrVy9CQ0N5+OGHSUxM5I033iA5OZlly5Zxzz33yJYqXEF+8vHkqS+XExDRgJ1iEeuS\nD6ACZgx9m9b1m15xvE6rYfqLDxPs583hU2n0HfcZW/Yfd4itKkGgcbCBcDMMO2ch6FgeVotI+A0B\n3PpCO2578UbqNQ9S9rgoKFynyBa8FJYWcvTCUdpHtJerCQUX59dfIT4eRBF27pRmXdyFuLg4jh07\nhtVqdbYpjmHrVumDUrgusFqtbNy4kXHjxtG0aVNuuOEG3nzzTXx8fJg+fTopKSn8+++/vPbaa0RF\nRTnbXAU7kJpvIiiqIQOn/8G+G+IAaJl4gn/GPcjeNYsqTawTExHM8o/G0KpRFFl5hQx5+xs+XfA3\nuQXFsthotorsO5vH9HUnWTzrIA+lmQkzgc6goeujzblpZFtCY5WkIgoK1zuyBS/JucmIiMQGxnLk\nyBG768uhKaeuHLiyX+fMgfvvhx49jrBjx381EN0FrVZLUVERu3btckh7Tj/v0tLghRfAYqmTjLuN\nS6f7vRrsaZ/VamXLli2MHj2a8PBwevbsydy5c+nZsyd//PEHFy5cYOnSpTz11FNERkbWup2TJ0/a\nzWZ7I9fnbTabZdG1F2qriWKzyL7UDJ6e/z5mRDpFNKGzWUPW2VN8P+YePnrgRvav+/OKIKZeSAC/\nT3qeu3u1x2K18vH8lcQ/MZG3Zi7m9Ln/UhrXxreiKHIqs4if/01lzMKD9P5sC2NnJlC6+CRdc62o\ngcg2wdz1Vmdi4sMRBMGhY9ZRbbn6dUhBwdWQLXgJ9JTWxuaU5PDSSy9Vc7TtyKEpp64cuKpf//wT\nHnkEHn0UNJqX8Pauu12O5uOPPyY+Pp6///6btLQ02dtz+nn3yivwxRfwwANQUlJrGXcbl073ezXU\n1T5RFNmxYwdjx44lJiaGbt268euvv+Lt7c3mzZs5e/YsM2bMYMCAAXbbtzF16lS76MiBXJ+3q2cb\nCzi2HJPFxMg5b3EmK52GwZF89/ynvPL7fm4f8Tp6gzcphxOYOWogHw/pyMENyy8JYjz1WqaOeZCp\nLzzIDdERFJWU8v3SjXR/ZhJPTZlFwrHTNfKtKIqk5Zaw/OB53lx6lDumb2fgt7uY9PdxNh65QOvz\npQw7ZyHMBHio6fJoc3o+2QpP3/+WKzpyzDqqLVe/DikouBqybdgPNgQjILDm5BqmfmH/f2bTpk2z\nu6acunIgh6111fz3X2nGZdAg+PZbSE11H39WZNq0adSrV4+UlBTmzp1LbGws4eHh5bfKsizVtT2n\n8r//QefOMGSItNZv2DDpQ4yNtUnG3cal0/1eDbW1r7CwkJkzZzJ16lROnDhBaGgo9913Hw888ADd\nu3cnJSVFtgxHL730Ehs2bJBFu67I9Xn7+fnJomsv/JNW8efmQI6nHcKg0fFFyxZ45Z5FF34Dd416\nj15Dx7Bu1sdsmPcFZw7u4tvn7uKWx15mwAsflGsIgsA9vW7k7p7t2bDnGN/+8Q/r9xxj2ZZ9LNuy\njy9G/pfuVxRFMgpKSbpQRFJGIcfL/p7ILKLAKM3uqkWRekboWSrSTFThV2BBKFulW79dCB0eaHpJ\n0HIRR45ZR7Xl6tchBQVXQ7bgRaPS8EbPN3h3w7scyjjEj4N+pJ5PPbvpOzuFqCvgaqmSrVZ49llo\n2lRKi6zRuJc/K3LR7gceeIANGzaQlpbG/v37sZQtqwoMDCQiIoLw8PDyv3X55dol/DRwoFSs8v/+\nD956C156CVq0kIKYu++G9u2rrTDqbuPSJfx+FWy1Lycnh+nTp/PZZ5+RnZ3NkCFDmDFjBr169bok\nna+c/XZklj5buV5TJZu1sP7IKgAe6jUGj70zSNm6GEGjRhcchkeDFtx8cy963vc4a+d/xT+zP2HN\n95PxC61Hr4dGXaIlCAK92jWlV7umHElO45FJP5FeZGFnlo4DfyWSlFFI0oUi8kouXUqnFkUiSqGt\nUSTOqiK40IpgvTi7I0UthkA97e5uQvSNYVX2xZFjVkmVrKDgmsiaKnniTRPp0aAHwxcPp9VXrfiy\n75f8r8X/UAmyJjlTcBKzZkm1DjdsADtPTDgNPz8/+vfvD4DFYiEjI4P09HTS0tJIT08nMTGR0tJS\nAHx9fctnZqKiooiJiUGr1TrTfNuJj4fFi6GwEP7+W7r/5ZdSQFO/vhTIPPSQlEJOwWXIy8tj0qRJ\nTJ8+ndLSUh5//HHGjx9PTEyMs027JhFFkZycHM6cOUNSUpKzzamWXW3vp/jo30T6hdO6cXfSvfVE\n//0qotmCMT0VY3oquTtWYTRZCLeIRIUHkpKexe8fjEZMXIl/3I2cI4BTpX6cMnqRavTgfKmOTJMe\nY3RngqwiG4+VYLCkYrCKNLCCtxVCtWpCNGr8LKDNMoL50mDFw1dHWJw/YXEBhMYG4BPqqWQQU1BQ\nqBZZgxeA2xrfxr5n9vHkkicZvHAw7218j5e7vczgloPRqGRvXsFBWK3w7rsXN+k72xp5UKvV5cFJ\n27ZtAelLTFZW1iUBza5du9iwYQMajYaYmBhiY2OJjY0lIMCNsuR4eUmzLXffDSYTbNwo5btetEja\nG3PHHfD229Cli7Mtve7Jz8+nT58+7Nu3j+eee44XXnjBpQtFugN5eXmkpKRw5syZK24Xny8sLCw/\nvmPHjk60tnp+3LQYVYiB3m2lHw+LIzpivvMVUrYt4XjiMU5miyRbgsjyiKDYKwLzDeFo2wWj1/mR\nbPXAcAgMFjBYRQxWaGyBVlax7DkzuioTFVoBU/kjrbaEwIAsgkLyCalnwjtEh8bgj+Dpj7okAHNm\nIGqvYAS9L4LKtWezFBQUnIdDoofvvviO31/+nY3JG5m0aRJDFw3lzXVvMr7reB5t+yieWttrTEye\nPJmXX37Z7rbKpSsHcthaW801a+DkSSnLmD30nE1N7RYEgaCgIIKCgmjRogUgBTSZmZkkJiaSmJjI\nypUrWbFiBUFBQeWBTHR09CVLTVzaT1ot3HyzdPv8c/jtN5gwAbp2lYKYd96R9svgfuPSpf1O9fYV\nFBTQt29fDh06xD///EOHDh3solsXfvzxR1l07cHkyZMZOXJkpcFIxVvFDfiCIBAeHk79+vWpX78+\nLVq0KL9/8fbTTz85sVfVYxGtdGrSm04NepOecIqDh09TUmzAUzUcg7+AwQfalwcjoLcA5WWuapYu\nfknCXO5tfxcaoQCtUIhWKEBT9lerysdLlYKn6hxCMXAaSk5DlalBBFCpBQSNGkGrRqXRImi1qHQ6\nvlybzMgBbVHpPFF5eKHSe6Hy8EHl6Ys2JBptYCSCRxCCIRxBVbeZb0ddH1z9OnQ5vTt/R9vGblCw\n7TplT9q1X7fNIcFLUVERAD2ie9Ajugd70vcwefNkRq4YyaRNk9j79N7y7GS2atobuXTlQA5ba6s5\nYwY0b37lD/Hu5M+K1MVuQRAIDg4mODiYLl26YDQaOXHiBImJiRw8eJBt27ah0+kYMGBAecDjNn5S\nqaTptfvu+y+I6dJFCmDeftvtxqWr+706+0aMGMHevXtZtWpVjQOXmujWhZI6ZKuTk2XLljFhwgRe\neeWVS54PDQ0tD0JuuummKwKTiIiIaotzumqfL9I0sg19/B6g4McD+FlEumKo8Grl0yZWQcSqFdAa\n1Hj66vAJ8MQvwICnrw69jw4PHy16bx06gwq9tpCD7+vp/3w4lqJsrMVqrMUi1hIr1mIzVqMZq7Ee\notEfq7EEa2kJoqkUq6kUq8mMaDYjmq2IF/fAiGA1i2A2Q4kZMJbblXs+i4KqUgsLEBbvg0ojACoE\nQyiCoR4qr3oIZTeVV6R0X1P9FzxHXR9c/TqkoOBqOCR4mTBhwiWP24a3Zf698xnXZRwdZnRgy5kt\n9IvrVydNeyGXrhzIYWttNDMypK0RU6ZcuZ/bnfxZEXvardfradasGc2aNUMURc6dO8fGjRtZtGgR\n3t7eREdHu5+fLgYx994LTzwBP/wAb7/tduPS1f1enX0hISHo9Xpat25tV9268PTTTzNjxgzZ9GvL\nvn37UKlU/PTTT+WBSWRkpF0yB7r6eXRjZlf8tp4DoEBtweQhoPXS4O2nIyTEi5BQbwJDvPH01UuB\nibcWrafGhv0nPvzfx1/W2U7RYsZSnItYlImlKAtrUQ7WomysxblYinIoST7MCxototlU6fv1wX6o\nfKPAmAGWEsSidMSidKwXdldycIAU1JQHN5FlwU090PkhCILDPldXP3+uQKg2d4uCE7kePhqnbjpp\nH9GeAI8AEtISbA5eFFyH2bOlC9nQoc62xPW5uATlnnvuYe7cufz888888cQTBAUFOdu02qFWS1nK\nfvwRTp0CZYO4Qxk9ejTTpk1j1qxZPP300842x+UxGAw8/PDDzjbD4YTmWxA9oU2/hjS/PRqV2vWS\n5ohWK5aiHCy5GZjzzmMu+2vJzcCce46SMwcRjYWXvEcTFIUhthOesZ3wbNQBtcFX0hJFMGZjLUxF\nLDwr/S1KRSxMxVp4FkrzpNeN2ZB1kCtK82oMUiDjGYKgDwKPQFQeweARiKAPQvAIRNAHKvtyFBSc\nhFODl52pOykyFWEVa7amVsE1mT9f+v7qrt+/HY0oipw6dYri4mJKSko4c+aMewYvoiht4B83TsqL\n7eKF+q5FGjduzODBgxk3bhzNmzenZ8+ezjZJwQUp1pjo83IHghr4OqV9q6mkkqDkPObc85jzMqT7\n+RfAekUYcQkqgx+ejePLApaOaAMjKz1OEATwCETtEQhBLa94XTQVlAUyqf/9LQtuxOIMMBch5h7H\nknv8KtYIoPeXghiPoLJbheDm4nP6QAT11ZcdKigo2IZDgpcLFy4QHBx8yXOnc08zYP4A2kW04+Xu\ntm9Uq0zTHsilKwdy2GqrZmqqVJjyxRfto+cqyGV3SkoKa9as4dSpU0RFRTF8+HBiYmLcz09798KY\nMfDPP9CnDyxbBs2aud24dHW/18S+mTNn0r9/f/r27cvy5ctrFMDI2e/s7GxZdO2B1SrPD2Wufh6F\ndzLIGriY8zM5e2Ar/oIRS17Gf0FJWbBiLa7hDxuCgNo7CI1fKGrfEDR+oWh8Q1D7haIPa4yuXlMy\ns7LwraOvBa03gn8cKv+4K14TLaWIRWmIhWlkpCYRZDAjlmQiGjMRS7LK7meBaAVjNqIxGzGvmnTZ\nWp+ygCa4QrAj/VV5NyCz1JuQkKpr2ygoKFyKQ4KXxx57jD///BOQfnVeemwpY1aOwUPjweIHFuOh\n8aiTpj2RS1cO5LDVVs2//5a2P9xxh330XAV72202m1m+fDkJCQmEhoYyePBg4uLiyteUu42fMjLg\njTdg5kyIjYXly+HOO8tfdrdx6ep+r4l9BoOBJUuWlAcwW7dupVWrVnXWrS0TJ06URdce5Ofny6Lr\n6udRs1bRdtMSrVZM509SkryX4lN7KUneizkzhScXHufbe5tU+T5B51keiGguC0w0vmX3fYIQ1Ff/\nWiK3rwW1DsEnGnyiefLJ9yttSxStYMxBNJYFM+VBTeZlj7PAagJTPqIpHzE/udI2H3n/IAs/GYoq\nsAXqwOaoApoj6JRsXgoKVeGQ4OWdd94BICEtgbF/j2XdqXXc0vAWvrrrK8K8a/drw0VNeyOXrhzI\nYautmklJEBlZ9ZIxd/JnRexpd15eHr/88gvp6en069ePdu3aoVJduubc5f1UWirVd5k4UYpWP/kE\nnn1WSqNcAXcbl67u95radzGA6dSpE0OGDGHHjh0YDIYqj5ez308++SQbNmyQTb8uXM0ndcHVzyN/\nP69av9daWoIx5SAlZYFKSfL+K2dSBIEXB8RjaNayQlASVh6kqH1DUXl42aUApSN9XVVbgqCS9r94\nBIJf1QGbKIpS4FJSIai5JMC5gDXvBK890ADrhd1YL+zGfLENn2hUAS1QB7ZAFdgcwbu+1K6CgoJj\ngpe4lnE8+sejzNozixuCb2DpkKX0je1bpwtZ+/bt7Wih/LpyIIettmqmpUFEhP30XAV72X3q1CkW\nLlyISqXi0UcfJTKy8jXaLu2nNWvgmWekSPXpp6X0yFUs23C3cenSfsc2+wwGAz///DMdOnRg3Lhx\nfPll1dmf5Ox3s2bNZNOuK1pt3ep+VIWrn0eIV99LUhmm7DQyfp1IPNkBpwAAIABJREFU8cndV+xF\nEbQe6Bu0xDO6DR4xbdA3aEVjT8fMFDjS13VtSxAE0Pki6HzBt2Glx4iihS49krFkHcSadRBr1iHE\nwhTE/GQs+clYTi+XDtT6oGnQB22LJxEEJVGAwvWNY1Il/zOBBQcWML3vdEbcOAKNyql5AhTsiMUC\nMi0jd2sKCwtZtWoVe/fuJTo6mvvuuw9vb29nm2U7M2ZIgUuPHvD779Dyys2vCq5DixYtGDp0KCtW\nrHC2KQquhI3Biyk7jdRvnsKcnQqA2jcEj7JAxSOmDfqIuGqXdynUDEFQI/g2QuXbCGL6AyAac6Rg\nJvuQFNBkHwFTPuakXxFNBejajlVmYRSua2S/+iRlJfH59s95s+ebPBP/jNzNKTiYG2+EefPAaAQ7\nlEtwe6xWK7t372bNmjUA9OvXj/bt29tluYRDEUV4+214911pedjUqVJaZAWXZ+fOnfTo0cPZZii4\nEGL5YqTqqRi4aIPqEz78E7ShMe53DXNjBL0/mohuENENANFqxpKyltKEKVhOr8Ck0qBtPUb5TBSu\nW2QP3T/a8hGGAwbGdh1rV93vvvvOrnpy68qBHLbaqtmxo7QdYu9e++i5CrW1e8mSJSxbtowbbriB\n559/nhtvvLFG/2Bczk/vvy8FLpMnw7RpNQ5c3G1cupzfL8NW+4xGI3v37qVRo0Z21bWFxYsXy6Zd\nV4qLi2XRdfXzCLHmwUvmss/LA5d6T32DLqyhS13DHOlrV+mToNKgaXA7uvavAALmU0uwZu13iG0K\nCq6I7MFLqaUU/Xk9Bq19N0ru3l1JxVwX1pUDOWy1VbNNG9DpYMcO++i5CrWx++zZs+zZs4e77rqL\ngQMH4uVV802yLuWntDQpeBk/Hl56yaZSyu42Ll3K75Vgq316vZ7hw4fz/vvvs2rVKrvp2sKRI0dk\n064rZnPNv8TbgqufR6K5qMbHXlwqFtRvDBq/0Bq/z1E+cKSvXa1Pmvq3ovJvCoBYKk/mPAUFd0D2\n4CXMOwzPgZ52150+fbrdNeXUlQM5bLVVU6+Htm1h+3b76LkKtbF79erVhISE1GqTp0v5aeJE8PCA\n116z+a3uNi5dyu+VUBv7vv32W2699Vbuuece9u3bZzfdmvLKK6/Ipl1XfHzk2VTu6ueRaKl5AVmr\nUQp0VHrbMpQ5ygeO9LUr9km0SLOHgsb+36sUFNwF2YOX9hHtSc5N5q/jf8ndlIKT8PWF3FxnW+F8\nLly4QMOGDa9Ig+x2pKVJH6qyx8Ut0Wq1fPDBBxQUFLCjqilRhesLa82Xy6kNUjHLkuTKA18F52HN\nP42YfxoAwaAUtVS4fpH9W9a9ze7l1ka38tTSp8g3KtOc1xomE2zdCt27O9sS59O8eXMOHjwoWxVv\nh/HRR1IxytGjnW2JQi2ZOnUqoaGhPPTQQ842RcElqPk1ybfzfQDkbv4Zq8kol0EKtcB0bC4gog7v\nhsqr8rT7CgrXA7IHL4Ig8G2/b7lQdIHX1ti+DEXBtfn3XygshF69nG2J82nbti2FhYUcP37c2abU\njSZN4PPP4YcfYOFCZ1ujYCOnT59m1qxZjBs3Dk9PZWmJAjalSvZuczsa/3AsBVnk/7tURqMUbMFa\ncBZLipTFUtt0qJOtUVBwLg5Z3zJ6+Ggm3TKJ6Tuns+n0JrtoDhgwwC46jtKVAzlstVVz/Xrw8oKq\ntnm4kz8rUhu7w8PDCQsLY29Vqdfs3J6sPPYY3H03PPkknD1b47e527h0Ob9fRm3smzx5Mn5+fjzz\nTNWp6eXs9wsvvCCbdl3JlWl9q6ufR7YEL4Jag18PacYud8McRGvN3usoHzjS167UJ9OxOYAVVVhn\nVP5x8huloODCOCR4ef7553ku/jk6R3XmiT+foMRcYhdNOZBLVw7ksNVWzfXroVs3qKpwtTv5syK1\nsVsQBNq0acPRo0cpKqp5dp/aticrgiAVqNTr4ZFHalyJ1N3Gpcv5/TJstS81NZXvvvuOF1544apF\nUeXs9/333y+bdl2RaybK1c8jW4tU+sYPROXpiynzDIUH/6nRexzlA0f62lX6ZC1MxZIiZQ/Uximz\nLgoKDglebr/9dtQqNTMHzORkzkkmrp9oF005kEtXDuSw1RZNsxk2bbr6kjF38mdFamt369atEUWR\nAwcOOKQ9WQkKglmzYPVqaRlZDXC3cemSfq+ArfZ99NFHeHh4VPtlSM5+d+nSRTbtuqLT6WTRdfXz\nyJY9LwAqvQG/rlIQmvPPLERRrPY9jvKBI33tKn0yJc4D0YoqNB51YDOH2KSg4Mo4NC1S85DmvNnz\nTaZsnkJCWoIjm1aQgT17ID9f2e9SES8vL5o0aVKrpWMuyW23wZgx8MorUEXaXQXX4Pz583z99deM\nGjUKPz8/Z5uj4ErYOPMC4Nv1fgSNHmPKIUpO/CuDUQo1wVqUjuX0SkDZ66KgcBGH53R9udvLtAht\nwWN/PobJYnJ08wp2ZP168PSE+HhnW+JatG3bltTUVM6fP+9sU+zDpEnQtCk89BCU1H3Jp4I8fPrp\np6jVakYrWeIULkMUbS/OqfEOxKdDfwBy1s+2t0kKNcScOB9EC6rg9qgDWzrbHAUFl8AhwcvixYvL\n72vVWr4f8D37zu3joy0f2UXTnsilKwdy2GqL5oYN0KULXG0lhjv5syJ1sTsuLg5PT0+bZl9c2k8e\nHjB3LiQmSjMwV8HdxqVL+52a25eVlcW0adN49tlnCQoKsptubVi3bp1s2nXFaJQn9a+rn0e2Lhu7\niH/Ph0FQUXR0C8a0xKse6ygfONLXzu6Ttfg85uQVgDLroqBQEYcEL/Pnz7/k8Y31bmRcl3FMWD+B\nzac320XTXsilKwdy2FpTTYsFNm6sfsmYO/mzIrW1WxRFcnJyCAkJYd++fTWu+eLyfmrVCj74QNr7\n8sorsHIl5ORccZi7jUtX93t19omiyN69e3nuueewWCyMHTvWLrp1YeXKlbJp1xW5ghdXP49qs2wM\nQBsUhVerWwBInz2OC0s+ofDwRqzGwiuOdZQPHOlrZ/RJLM3FnLqR0v3TMG4eB6IZVVAb1MFtHGKL\nwrVNcBsvIrr62uUW3MbLaf3QOKKRBQsWXPHcO73fYdOZTfT8sScvd3uZt3u9jV6jr5OmPZBLVw7k\nsLWmmr/8AtnZ0L+/ffRcDVvsLi4u5sSJE5w4cYKkpCRyc3NRqVQ0btwYQRDs3p7TGDUKjh6VspBN\nniw916yZNP3WuTN06cKCefNkafp6He+V2We1WtmxYwe///47v//+O0lJSfj5+TFlyhRCQ0NrrWsv\nPvjgA1atWiWbfl3w9fWVRdfVz6NS05XBRk0JuOVxihO3Yc46S+6meeRumgcqNfqoFhiaxOPZJB6P\n6NYO84Ejfe2ItkRjNnM/fZbSfVOxZO5DzDtx6QFqD7TNn5DdDgUFd8IhwUtleGo9Wf/IeiZvmsyE\n9RNYlriM2YNm0yZc+XXB1bFa4d13oW9faNfO2dY4HlEUSU5OJikpiRMnTpCamgpAcHAwTZs2pXHj\nxkRHR6PX1zwYdwtUKvjqK/jyS2kJ2datsG2b9PfHH6UTw9cXOnb8L6Dp1g2UzeN1xmKxsHHjRhYu\nXMiiRYs4e/YsoaGhDBo0iOnTp3PTTTfJlklLwf3JL8iu9Xv14U1oMH4Rxcd3Unx8B0VJOzFnpmA8\nvQ/j6X1kr/0OQavHI6YtHjHt0AZGoPELQ+MfjsYvFEGjnJeiaAVjDtbiDMSSDMTiDMT8ZCyZexHz\nk684XvCJRh3UBlVwG9TBbRH0AU6wWkHBdXFa8AKgUWl4vefr3BV3F8MWDaP7D905PvI4Yd5hzjRL\noRqmT4fDh+H7751tieMRRZFFixaxf/9+DAYDjRo1okOHDjRu3Fi2X3VdDkGAuDjpNny49FxBAezc\nKQUz27bB119LEa5WC7ffDv/7HwwcCP7+zrXdzTh69CizZs1i9uzZnD17lqioKO69917uvfdeunXr\nhlqtdraJCm5Afl5Wnd6v9vLHu81teLe5DQBTdhrFx3dIAU3STiz5mRQnbqc4cfuV7/UOQuMfVhbQ\nXAxqwsqfU/sGI6jc9zwWRQtiSZYUkFwMTIozEEsuXHL/akv3BN9GqINaS8FKUGslWFFQqAanBi8X\naRvelvWPrCfm8xg+2PQBn/b51NkmKVTBzp0wdqy0gqhzZ2db41hEUWTlypXs37+fe+65h5YtW9Z4\nWdg1j7c33HSTdAMQRThxApYtg19/lQpdKoFMjcjJyWHBggXMmjWLrVu34u/vz5AhQxg6dCidOnVC\npXJ4kkgFNyc3PxPRUoSgNthFTxsQgTZ+IL7xAxFFEdO5ExQl7aT07FHMuecw56Rjzj2HaDJiKcjE\nUpCJMeVQ5WIqNRrfkAoBTvil9/3CUHn5O+VaK1rNZUHIhcsCkwzpueIMRGMmiDXZ26hC8AhE8AxB\n8AhBMIShCmxZFqwos9MKCrbgkODl0Ucf5YcffrjqMQGeAbzY+UUmbZrES91eIsInos6atUEuXTmQ\nw9araRYUwP33Q9u28OGHdddzZSqze+fOnWzfvp277rqLVq1ayd6eO1LeD0GAxo2lKHfUKDh7FhYu\nvDKQefppuPNOqGYG4XoY72lpabz88sv88ssvmEwm+vTpQ69evfjrr7/w8PCwa1ty9vudd96RRdce\n5OXlyaLrSudRZWQXCliLDqH26WB3bUEQ0IU35qlX37vEB6IoYi3KLQ9kzDnn/gtsLt7PPQ9WS9lz\n6VW3odGXBzRj521j+mtPXTJ7o/EPQ+XhbZPdoqX0v9mRkguIxecvmSmxFmfw1Ieb+WZUDYpCCmoE\nj6D/AhPPEATP4LL7odJjfWCVM0yufv4oKLgaDglealqldnTn0by38T0WHVnEs/HP2kXTVly/UvJ/\nyGHr1TS/+AJSU6WC6zVdXu9O/qxIZXbn5eWh0+lo3bq1Q9pzR6rsR2TklYHMTz9JGR8aNYLnnoPH\nHqtyNuZaHu+iKPLDDz/w4osv4uHhwcSJE3n44YepV68e8+fPt3vgAvL2u3PnzixZskQ2/bog174g\nVziPrkZ6lgpRlLeu2uU+EAQBtZc/ai9/9JE3VPoe0WrBkp9ZSWDzX4Bjyc9ENBsxXTiN6cJpOvnk\nkr1m5hVaKg/vS5aiaby8UXvqUetUqHRW1KoSMGVJ+06KL0DpldkSL+eWtoGg0iJ4BJcFJBeDk+Dy\nIEXlGQJ6fwSh9kvfXP38UVBwNRwSvAwZMqRGx/l7+NO9QXdWHF9RbfBSU01bkUtXDuSwtSrNvDxp\ntmXECOkH9brquTqV2R0fH8+WLVvYvXs3ne28Zs5d/XQ5NepHxUBm+3aYOlVKv/zmmzB0KIweLWUx\ns1VXLntlJDk5mREjRrBq1SqGDx/OJ598QmBgYPnr7tjvPn368Prrr8umXxfkCATB+edRdZzL0qPy\naChrG7XxgaBSo/ELReMXClQ+my2aSzHnni+fvRlecSYnOxVzdirW0hKsJQWUphdQmp5UZXsqrYBa\nJ6DSq9DoVeiDPNCHR6IyVJwxCUHwCEblGcLwPiGg80MQ5F2q6ernz+Vc2FtI2jnR2WYoVEH2dVBL\n2iX2vFTktka3MXnzZGeboXAZs2ZJy8ZefdXZljgPPz8/WrVqxcqVK9m9ezexsbHExsZSv359ZeN0\nbenUSSqA+fHH8M030kb/77+HTz6RZmOu4T1Foihy5513UlBQwIoVK+jTp4+zTVK4RskvCEDQumci\nHEGjQxsUhTYoCgBr8QUsaZuwpGVgvZAF6LBatFiMVqylIhajVbqZVFhMaum5YiOixYLVJGI1iVBo\nxQgUppWiOeuNT4ee+DTvjzYg3Kl9VVBQqBkuF7yEeYWRZ8zDYrWgduMMJNcaS5ZIe7EjI51tiXPp\n378/TZs2JTExkb1797Jlyxb0ej1NmjQhNjaWJk2a4OXlvMJNbkt4OLz9thQdv/QSjBwpZS375hu4\nRv25du1aDh8+zPr16+nZs6ezzVG4hhFKg9w6uYi16ByWtI1YUjdgzToI/Perv8ovDk1YPCpDRPms\nieAZAhqv8j6X77+5OGOTk44xLZHCfaswZ6eSveobsld/i2eTTvjGD8DQvBcq7TWW6l5B4RrCIWlr\nNm3aVONjvXTSF5XCaopq2aJpC3LpyoEctlamWVAA//wD/frZR88dqMpujUZD8+bNGThwIGPHjuWJ\nJ56gc+fOZGdns3jxYj766CNmzpzJ6tWrSUxMpKSkZvO37uqny6lzP3Q6+OwzmD8fFi2S6sSUlFyT\n433GjBm0aNGCHj16VHmMO/Y7ISFBNu26YjLJs+/D1cdvsBBOqcksaxty+MCSdQDj9jcpWTUE04Ev\nsWYdYMuhbFQBzdG2eBqPW+fi0ftrdM0eRxPdF3VoPCrfhgha70uCtYv7b/T1muLVvCd+Xe8n9N7X\niX79L0IHv4tH4w4gihQnbuPcvNdI/eoJRIvZYZ+rq58/CgquhkOClylTptT42I3JG4nwjsBLe/Vf\nW23RtAW5dOVADlsr09y1C0ym/7Lg1lXPHaiJ3YIgEBkZSe/evRkxYgRjx45lwIAB+Pv7s3fvXubN\nm8fkyZP55ptvWLFiBYcOHaKgoKDW7bkDduvH4MFSmuW9e2HXrmtyvOfm5tKwYcOr/iLujv2ePXu2\nbNp1paioSBZdVx+/jfXBLP5+h6xt2MsHomjFkr6Vko2jMW4chSV9MwCqoNZoWz7P55tC8eg5DW2T\n+1F5XT0raXWodB74tLuTyCe/psFLiwm45QkEvRfGs4cpOrLJYZ+rq58/CgquhkOWjf388881Oq7I\nVMTc/XN5Lv65apeM1VTTVuTSlQM5bK1Mc/du8PSEGypPGGOznjtQG7u9vb1p164d7dq1QxRFsrOz\nSU5O5vTp0yQmJrJjh/TlITAwkOjoaBo0aEDDhg3x8/NzWz9djl370bWrlFJ5795rcry3bt2a+fPn\nU1JSUuVGcnfs9/vvv0/37t1l068LchWSdYfxa9pbzJYFh2jYOpygaB90Bq1d9eviA9FqwppzDGvm\nfsxn/kbMPyW9oNKijrpNClR8GgCw4Ff77w0TrRYQBDxi2qI/8S8lJxPI2/67wz5XW9v5+uuv+eqr\nrzh16hQALVq04K233rpk39xbb73FzJkzycnJoVu3bnz11VeXaAiCoAc+AR4A9MBK4FlRFM/XpS8K\nCo7AIcGLwVB9YayUvBQe+v0hikxFPN7+cbto1ga5dOVADlsr00xLA4MBSktBY+MZ407+rEhd7RYE\ngcDAQAIDA2nXrh0A+fn5JCcnlwc0F5fXBAcH07hxYxo3bkx0dLRs6VwdgV0/b50OQkLg9Olrcrx3\n7tyZKVOm4O/vT+fOnenduze9evWic+fOeHp6ymqfnP2+aLsrIte+D1e/zqmbBCDkCpxan86p9VI9\nFe8QT4KifQmK9iEoxpeA+j5odLXfZ2qLD0RzMdasQ1iy9mPN3Ic1+zBYjP8doPFCE9MfTaN7UHkG\n17qdS9q0mDFnp2HKPCPdLqSU/T2NKTsVLJcuqzOmHnPY52prO/Xr12fy5MnExsYiiiI//vgjAwcO\nZM+ePTRr1ozJkyczbdo0Zs+eTUxMDG+88QZ33HEH8+bNqyjzGXAncC+QB0wHFgJVr2NVUHARXGLD\n/tJjS3lk8SN4aDxYM2wNjQIaOdskhQo8/bSUzfbDD6U91Qq1w8fHh5YtW9KyZUsAiouLOXnyJMeP\nH+fw4cNs374dtVpNgwYNyoOZsLAwt95oWyeOH5cKC3Xr5mxLZGHQoEEkJCTwzz//sH79eqZOncqE\nCRPQ6XR06tSpPJjp0qWLy385VnBx2gSjVUdTciqbouRMfKxaCjKKKcgoJnnXOQAElYBfhBdB0T4E\nlgU1nn56NHo1Gp0aQVW765BoKUUszcGakygFKpn7seYeu7Iqvc4PdVArVMFt0dS/HUFb86KTotWK\naCrBWlqEtbgAU1YKpsyUstowKZgzz0gBitVSpYag0aEJjEIbHIU2qD7ebW6rVX8dwV133XXJ4/fe\ne4+vvvqKbdu20axZMz7//HPefPNN+pVtVJ09ezZhYWGsW7fu4lu8gMeAwaIorgcQBOFR4LAgCB1F\nUZR3jaGCQh1xavCSW5LL62tfZ/rO6fSL68ePA38kyBDkTJMUKqFxYxgzBiZPloqjR0c726JrA09P\nT5o3b07z5s0RRZHMzEySkpJISkpi7dq1rF69Gm9vbwYNGkRjW4rruDuiKNV/mTJFWjZWm81WboAg\nCLRt25a2bdsyZswYrFYrBw4cKA9mvvzyS9599120Wi3t2rUjOjqayMhIoqKiyv9GRUVRr149t56t\ncyQ5OTkMGTKE+vXrU79+faKiosrvh4SEoFI5ZBuow1m7bRnBD71CUMsQvIHU1GyO7Uqk8MQ5Iqxa\norV+GKxacs4WkHO2gKQtaVdoaPTqskBGQKMT0WqtqDUWtBoTak0pGlUJGlUxalUhGqEANfmoxVy0\nqgLU6lI0GiMatQm1yohaAJU+AME3FsGrIXhGIqp8sJiKETOKsZ79A6uxGLG0CGtpMWJpMVbjxftF\nWI3FWEuLEC/+LS2ukR8Ejb48ONEG10cbVB9NUNlfv1AEN/z8rVYrv/zyC0VFRXTt2pWTJ0+Snp7O\nLbfcUn6Mr68vnTp1Yv/+/Refao70/W/NxSdEUTwqCMJpoAugBC8KLo1Dgpfx48fz4Ycflj8WRZHf\nDv3G6L9Gk2fM4/M+nzOy40ibfmG+XFMuW10ZOWytSvP112HePHjqKVixoublN9zJnxVxtN3jxo3j\nmWeeISsri8zMTKxWK2q1mrCwMLdKvVwnv508CXPmwE8/QWKilJf700/Bx+e6GO8qlYrWrVvTunVr\nRo0ahdVq5fHHH+fGG29k165dpKSksH//flJSUq5I/BAaGnpFYFMxwImMjMTHx6f8eDn7/dlnn8mi\nW1cGDRrEnDlzSEtLY8eOHaSkpFBaWlr+uk6nKw9mKgY1FW+BgYGV/p9ypfOoMvJMW9i3fC6alrfT\npWkk9eoFUG9AR4pKzSQkZzLrWCrG9POEFRmJKIV6oo5IrQ8GlQ4Bqb9mowWzsbKZCw2gYd6Wn3iw\n61M2WGVBjRG1UIpKyEfNhbL7RtSUohaMqMper3h/2oZtvNCrJWoB1KhRCTrUgoiaUgTh/9k77/Co\nqvSPf+5MZiYz6T0hHUILNfTeE0EEURFFXRsWFgUVV9Qfy64VFVlEBNuKuogLLiooIAJSBKQGCL2H\n9EB6zyRT7u+PCyGBAClzJxO5n+eZZ+7M3Pme95zJObnvPee8rxVB54LGu4WUG8Y3THJUfCSHRe3u\nVy8HxV6/a0PKOXr0KH379sVoNOLm5sbKlStp27Ytu3btQhAEAgJq5vUJCAggNzf38ktvoFIUxaKr\nZC8CN012c7RsGqXFretlr4L9yLKkAltuel5zxi7OS1iYtNFOFEUOXzzMq5teZd3ZdYxrN44PR35I\nmEdYgzVtjVy6ciCHrdfTdHeXUm6MHi0lrHz00cbpOTpy211eXk5ubi6ZmZmcPXuWU6dO8e233+Lh\n4UFUVBRxcXFERkY2uzvq9Wo3UYTERNi0SXJatm+XcrqMHw+ffAJDhsCl5J+3Yn9XqVR069aNZ599\n9prPioqKSEtLIz09nbS0tBrHu3fvJi0tjZycnBrfcXd3r3JoioqKmDVrFsHBwURERNC5c2eCgoJs\nskQxMNAxE/21b9+eyZMnM3XqVEC6Y52Tk0NqamqNR1paGsnJyezYsYP09HTM5it7IfR6/TWOTUhI\niMMnqT2XX8nErodJfHMGm4K60u+vr6IN7o3B4Eb/1gH0i/Ln1IUiVh1IIcUkOSgWYwmmokysWcmo\nykvQCU7oBDVBGithWhPD3QoJ0lqxiFosoo6WngUEaHZgEXVY0WERdVjQYhVrHlu5PKapsWDAIhqq\np225KSq9MyfL76r1M7VGhZOoxilXjaZEjdMFNU7OTmj1TrTq50SQZ/1mVuw1PjSknHbt2nHo0CEK\nCwv5/vvvefjhh9m2bZsM1ikoOB6CKN581BAEoRuwf//+/XTr1q1eBVisFnan7WblyZWsOrmKc/nn\nCHUPZeHtCxnbdmwDzW4aDhw4QPfu3QG6i6J4oL7fb0w7OgoPPQQbNkBSkrSJvyE0th2hebSl0Wis\nmknJy8urcVxeLi1zUKlUhIWFVSW59PPzq9cFZLP6m8zOhn37YO9eaVnY3r2QlwcqFcTGwl/+AuPG\nNUlSyj/j36TRaCQjI6OGY3P1c2ZmJhaLdLHq5+dHly5dqpaydenShbZt26LR1C8qVbP6m7wJFouF\nrKysa5yb6q8zMjIICwvj/PnzNi3bln+TvhNjCA1xIXbLboxGM0M7hdExLIDi4N5ktb+LsuAeAKSc\nPsovRy5wQV1zk7y+JBNj5mly8gqq3otys7Is1gm1swuCVo9KZ0Cl1UvHWgOCTnpW6QxV76l0ekQn\nPaKoxWxRYa4wYzJaqmZ1TEaz9Hzptdl4+dhc7fjSuZffM1oQrXW5joHef2lPyz6NC6/sqMTGxhIV\nFcWMGTNo1aoVCQkJdO7cuerzIUOGEBwcfHnT/tPAJ4BX9dkXQRCSgA9EUfywtjIu/z21C+qEQVtz\nT1Lf1kPp13qYzeulcGN2ntnMrjM1Z1kqxHKOpSRAtbHj8m+34189iGnldq1QAzh4rpgBL8bXKMde\nyDLzYjQb2Xx+MytPrOTn0z+TVZpFgEsAd7a9k4W3L2RoxFB0Tkr22ubIG29I+QO//BJquSF8y1FR\nUXGNY3L5uHpOCYPBgI+PD76+vrRp0wYfHx+8vb3x8fFpdrMrdaK8HA4evOKk7N0rzbIA+PpCr17w\n3HPSc8+e4KPsdbM1zs7OtGzZkpYtrx8AxWKxkJKSwqFDh0hISODQoUN8//33zJ07FwCdTkeHDh2q\nnJnLzx4eHvaqRpOiVqsJCgoiKCiIXr161XrOm2++eU0YWkfyuCkiAAAgAElEQVTDWRC5UCmQ6myg\njVMlbYO80fqGEN6uI628ysixnOGQujUt27Tnxx5+lKHlRD5sSCxh3Yk8yl2DoHUQ/fwNDArVsfCr\nZZwtruBY+8cY0TO6QTZJo55trgMsZitmo+Tk1HBwLr2XcSyP5PiL7F5yAnOFhTaDQ2xSriNhtVqp\nqKggMjKSwMBANm3aVOW8FBUVsWfPHl577bXLzssJwAwMB1YCCILQFggDdt2srIf6TyHSr41cVVGo\nB/1aD6df6+E13suypPLC5482jUF2wmbOi9lqZlPiJr45/A0/nfqJksoSoryjeKTLI4xrN44+IX1Q\nCc1vM5xCTVq2hIkTpb3Ujz4KrnUPCPOnIS8vjx07dnDmzJkaew/0en2VQ9KqVauqY29v7+vm8fhT\nkZ0tebbLlkmZTc1mcHaGbt3gzjslR6V3b4iIqPumKQVZUavVREZGEhkZybhx46reLygo4PDhw1UO\nTUJCAkuXLq3aI9KqVSteeeUVJk2adOtGw2tGtCwt5YyfG/HRbejfugPhE15EH9qx6rczWEWOnSnG\nbFWT5xpBqIcGv2AY1BGmDDayZE8aKw9d4FRWGaeyynDtOAxz2hm+Wr+7wc6LLVE7qVC7qtC51j5L\nGNEzEJ2rhtNb04j/7jTeYW74RjZfB/z//u//GDVqFGFhYRQXF/Ptt9/y+++/s2HDBgCef/553nrr\nLaKiooiIiGDWrFmEhIQwZMiQyxKlwGJgniAI+UAxsAD4Q4k0ptAcaJTzIooiCRcS+ObwNyw7uowL\nJRdo59uOGf1mcHf7u4n2i0YQBE6ePGlzx+XkyZO0a0jWxCbSlQM5bK2L5uuvQ5cuMHUqfPVV4/Uc\nkdrszs7OZseOHRw5cgSDwUDXrl3x9/evclIak9+iubYTRiOsXg1LlsCvv3ISaDd6NHz0keSodOwo\nRQxrJLdqf2+qent6ejJo0CAGDRpU9Z7JZOLUqVMcOnSIX375hSeffJKlS5fy2Wef0bZt26rzbL18\nypbI1Z7V98U4Ih7nUtG18KZEr+fttERWLp/HS7dPIq5Df8xW2J1WhtkKKgHctDX/V7fwcOaVuCie\nGhDGFzvOsyw+HZNKi0tYB04IIv9ce4r7uwcjFKTZpS815DcUVAL+UZ6c3pqGSi3g7Fa32W57jQ/1\nLScrK4tHHnmEzMxMPDw86Ny5Mxs2bGDYMGnZ1owZMygrK+Ppp5+moKCAgQMHsm7dOoqKauzPfwGw\nAN8jTYH9Cjxjs0opKMhIgzwKo9nInD/m0OmTTnT7vBtLDy9lQvQE9j25j+NTjjNr8Cw6+Heouqsz\nY8YMmxotl6acunLQVO3aqhUsWgRffw03SwzcnNqzOtXtLigoYMWKFXz88cckJSUxcuRInnvuOUaM\nGEHnzp0JCQlpdGK+ZtdOBw7AU09BYCBMmCDNusyfz4zhw2HVKik5UEyMTRwXuHX7uyPVW6PR0LFj\nRx588EG+/fZbfvvtN9LS0ujSpQuzZ8/m8v7JBQsW2NpcmyFXe151UehwuJQbecUQxkujJuHm7MLx\njHM89sX/cfsHk/n+8Blyyiw4qaB/mAFPfe3BBy5m5bLsv8vIjv+VytQjBBgELKLAqsMXuf+rA4yY\n+DRzN51j5aELHMkooqzy+jlVGkNdfkOLyUrRxVLSj+Zwamsa+78/w77lpwCIvi0cV9+6jdf2Gh/q\nW84XX3xBYmIi5eXlXLhwoYbjcpnXXnuNjIwMysrKWL9+PVFRUTU+F0WxQhTFqaIo+oqi6CaK4r2i\nKGY1ujIKCnagQTMvL214ic8PfM7d7e9mTuwcYlvGolFf/yJl4cKFDTbQnppy6spBU7brww/Dr7/C\nX/8KgwdD0HX2QDan9qxOdbuPHj3K8ePH0ev13HvvvYSE2H69dLNpp4wMePVVaaYlLEyafnvoIbh0\n533hmDGyFHur9ndHrvfw4cM5cuQIDz/8MDNnzuSxxx4jKCiIGTNmOGzUI7na09H3ADm7uPHgzI9x\n9fLl0QF38cnmZXyx7QcOpZzgtf/9jelj32ZC12i8ruO4AGzcd4zsgmIAPM0FPNnJmZZRUaw4eIGN\nJ3Nwi3uWb/am1/hOCw8drXxdaOVroJWvgSg/FyJ9Deg1DY/Odvk3rCwzUZJTTvGlZJslOdKjOKec\nsvyKWiOYuQca6HBbRL3LkhtHH4cUFByNejsvu9N2s2jfIubdNo/n+zxfp+/YM6Svo+rKQVO2qyDA\nwoXQoYPkwKxcWfs2hubUntWpbnf//v3x9PRky5YtLF68mA4dOjBkyBB8fX1voNDw8hyS8nKYNw/e\neQf0eimU8RNPgFPNIaS59UtHb3dHr7derycrK4tBgwYRdOkORtD17mQ4AHK1p6OHSg6IbIerlzRe\nuTq7EdftYYKC4vh43Wuk555n/s+v0DPofbwirr9/5ak7B1NpNvPVmh2kZuXxwoLlhAV4M+XuYTw3\nuQc7zxdwNruUczllnMsuI6e0kozCCjIKK9h+Lq9KRwCCPZ0lh8ZPcmx6hnsS4Hbt5n1RFMlNKqIw\ns5SSbMkxKckuZ29uEpWlN16q56RT4+qrx9XXGVdfPW5+BsJ7+KPW1H3BiSOHSlZQuJWpt/PyzC/P\n0L1Fd6b2miqHPQrNCB8f+PhjuOceWL8eRo5saovkQRAEOnbsSHR0NAkJCVXZz2NjY+nbt29Tmyc/\nmzZJjkp6OkybBn//O3h6NrVVCg5AfHw827ZtY9myZU1tisIN8Ai4Mlt86IKR1CITXi4+LHpkLm/+\n+A/2Jx3joc9fYt8/V+Ciqz0GvrNWw98mjuTpO4ew5NedfP7T76RczOOVT77nxYJiXrgvrsb5BWUm\nzuVIzszZ7LKq4/wyE2kFRtIKjPx+VnJqXLRq/vtoDBE+V8oWRZF9y05xdkfGdevl7K695KDocfO7\n7KgYcPXT4+ymUYJJKCj8SamX83I+/zwHMg/w8/0/o1Y59p0mBftw993g5gbHjv15nZfLXE4a2Llz\nZzZt2sSGDRvQ6/V07dq1qU2Th9JSePllaYPT0KFSgp/WSlZlBQmj0cgjjzxC165dueeee5raHIUb\n4OEfXHWsunQ9H+6pISbIne/+Oo9hcx4lJTeTDUd3clf3ETfUcjM488zdw3h89AAefvMLdh09h9li\nveY8T4OG7mGedA+reaMjr6ySc9lll2ZoStmdVEBKfjnvbTzHx/ddiYB2eM15zu7IQBAgoJ03br56\nXP2qOyp6nHTKdYiCwq1IvTbsbzm/BReNCyNa3nhwu5r33nuvXuc3laacunLgKO3q5QX5+bbTcwRu\nZLeTkxNxcXHExMTw888/c/z4cVnLaxISEqSQcl9+KUUO++23Ojkuza1fOly7X4Uj1/vVV1/l3Llz\nLF26tEYiy6+//rrR2nIhV3tWD5nuiHhWm3kJcJXuWWaVmrGKIgadnru7xwKw6sBvddbU67QUlxkB\n6NgyuM5t623Q0jPck/u7t2DmyNYsmtARjVpg5/n8qpmYM9vTObYuCYCeE9sybGpXek5sS/sRYfx3\n/Zd4BrvaxXGx1/jg6OOQgoKjUS/n5Uz+GboFdUOvqV9kperJ+myFHJpy6sqBo7SryQTidRIcN6f2\nrM7N7BYEgTvuuIP27duzYsUKvvnmGzIzM2Urz+7Mng1WKxw6JGUjVdVtqGhu/dLh2v0qHLHeVquV\nl19+mfnz5zNnzhw6dOhQ43Oj0dhY82RDrvYUrzcAOgjuvoFVx/4uTjipoMwksietHItVZFRnKST2\n3sTD9dJNy5buWkUG+Ta4bUO8nInwlpaLHc0oxlhSycGVZwHodEckUQOCa5xvzz5rr7IcfRxSUHA0\n6uW8eOo8KaworHchr7/+er2/0xSacurKgSO0a3o6ZGZC9+620XMU6mK3SqVi/Pjx3HfffRQVFfH5\n55/zww8/kJeXd9PvNqQ8u2IyQfv29V4m1tz6pcO1+1U4Wr0rKyt5+OGHef/99/nggw+YNm3aNedM\nnjy5sebJhlzt6ebmJouurdA4X7nhqFEL9Ao2oBLgQomZPWnlhHpLDkJheQklxrpfSKur3dRoaNuu\nPZrFmexSDFo193UP4vj6ZMxGC16hrnQcGXHN+fbss/Yqy9HHIQUFR6Nee1689d6k5adhsVqUPS8K\nXLwoRc0FKR/hrYggCLRr1442bdqQkJDA1q1bWbRoEV26dGHAgAF4e3s3tYkNQ6WScreIYu1h5BRu\nKUwmEytWrGDOnDmcOHGC5cuXM2HChKY2S6GOOGlrRvIKcHWib6iB3allXCw1k1ZQgkpQYRWtZBfn\n4epc+6b9q9E4SdcBxkpTg237YmcKAE/GtCDxp0TO7ZRmsLuMbYWgUsYeBQWFa6mX89InpA+fZnzK\n+nPrub317XLZpODglJZKUXPnzJEi5S5aBMHBN//en5nLm/k7derEvn372LlzJwkJCXTo0IGBAwfi\n7+/f1CbWj0cfhbFj4dNPpVjYCrck+fn5/Pvf/2bBggWkp6cTGxvLJ598cmtE2fsTUVl+7WyKv4sT\n/cIMxKeX8cXGj7CKVgI8gikwe1FmsmKoQ0jh8EAfLuQWcjrlAl1bNyzcb05xBT2KrbisSeGcUUps\n2XpgMEHRzfTGzy3A1/5qDMHKDWxHxaPkz+/012vZWEf/jsQExrBo36J6FZKTk1Ov85tKU05dObB3\nu5aXS9eyrVvDW29JCdbPnYMpU+xroz1oqN0ajYZ+/frx3HPPMXLkSFJTU/nkk09Yvnw5SUlJ110b\n73DtNGaM5LRMnw71SDjY3Pqlw7X7VTRFvcvKyti0aRNTp04lNDSUWbNmcdttt3H48GE2bNhwU8cl\n/3rROxwAudrTar022pYjUVZU+1JWX4MT+bnbOZj4B2qVmkeG/42kAgsbzpawPbmUg5nlnMmtILPY\nRHGFBetV41e7MGkvTcKZ1Hq3bXmFmdU/neH+lEqGF1ixGC14hboR+2I3ek5se90wx/bss/Yqy9HH\nIQUFR6NezosgCLzY90V+OfMLc/6YU+fvPf744/U2rCk05dSVA3u164ULMGuWlFB9yhQYPBhOnoR/\n/QtutiqqObVndRprt0ajoVevXkydOpWxY8eSk5PDf/7zHxYsWMDWrVspKCiwaXmyMHcudO4s/eC3\n3QY7dtz0K82tXzpku1fDHvUuLy9n06ZNzJo1i4EDB+Lp6cmIESNYsWIFL774IikpKSxevJhOnTrV\nSfuNN96QxWZbIFd7Xt2fHY2ywtqdl8Opp5j5wwcA/G3kY0zs1gU/gxoRyCmzkFRg4mhWBbvTyvkt\nsZSfThaz4Wwxf6SU8s2OMyQVmmnXuhVOWl2d2lYURQ4mF/Dh5wf5asZ2iten4mOGMjV0m9iW217u\ngV+rG+eQsmeftVdZjj4OKSg4GvVOUvlg5wc5mXOSl397GXedO5N73Hxz5muvvdYQ2+yuKaeuHMjd\nrgkJ8MEHsGwZaLXw+ONSjsKoqKa10R7Yym61Wk1MTAxdu3YlNTWVgwcPsmvXLn7//XciIiLo2rUr\n7du3d8x2Mhhg50744Qd4800YOFByZGbNgmHDat0L09z6pUO2ezXksK+8vJzbb7+df/zjH2zdupU9\ne/ZQWVmJj48PQ4YMYd68eQwdOpTo6OgGJfl76qmn2FaP2Tp7Itfv7egb9ktrcV5yivN5fPFMjKZK\nRnTox9QRD6FSqQhwdaKowkKB0UJJhZUSk5WSCiulJitmK5SaREpNFlx9Ahg/ZlSVnqeHO7+dK8FF\nq8L10sNFo0LnJJBeUMb207mc3JZOm4sV+EmrwzCqwdLeixF3RREZVLc2tGeftVdZjj4OXc0jWRYi\nRUtTm6FwHbIsItub2giZqbfzAvDG0DcorixmytopmCwmpvaeesPzu3Xr1iDj7K0pp64cyNWu27dL\ny8I2bIDQUHj7bXjyyYYlVW9O7VkdW9stCAJhYWGEhYUxatQoTpw4QUJCAqtWrWLDhg088MADNi3P\nZqjVMGECjB8PP/8sOTEjRkDLlhAbKx0PHQo+PkDz65eO/vdpK/vS0tJYvXo1q1evZvPmzVRUVODj\n48PgwYP517/+xZAhQ4iOjkZVx5DYN6J9+/Y2sFge5Pq9q+e5cUTKa3FeZvxvLhkFWbT0C+GjB2fW\n+O3ddWrcq+VRKS4z8suuw6zdfYyUnGL8fLwJCvBjUPeOeHp4UGqyEhndleJKK8WV1y6hE60irnvz\n6JlRAYBVr8a9VyD9hobh4aZFrxEQRbFOzrI9+6y9ynL0cUhBwdFokPMiCALzbpuHRqVh2q/TSMxP\nZG7cXCUCWTNGFKU8hG+9JW1x6NQJ/vtfuPdeaVO+gu3QarV06dKFLl26kJ+fz48//siSJUt44IEH\nCA8Pb2rzakelgnHj4M47YeNG+Okn6Q/ms8+kGZhu3SRHZsQIGDAAnJ2b2uJbGqvVyoEDB6ocloMH\nD6JWqxk0aBCzZ88mNjaWDh062MRZUXB8Sgtr7kPadHwXvx7Zjlql5vPH3sTDcO2sh9liYVvCaX7Y\nup/1e47WiCgW4KphStxw2oUHUVZpISGtiMMZxZzPK6fQaMXDoMXHRYeHQYOHswZhaypCYgGoBDQD\nQlB38MPipOJgrglyJV2VAHqNCoOTID1rLj9fOnZSoVaijzkEzve1Rx/dtanNULgO2jMa+LyprZCX\nBl+WqgQV78e9T6RXJFPXTSWpMIn/jf8fGrVj34FSqInFIt1Qf/dd2LsXevSQrkvvuKPOeQkVGoGX\nlxd/+ctfWLZsGUuXLuWhhx5yXAcGJEclLk56AKSkwKZNkiPz1Vfw3nuS49K/PwwaBB07SvlioqLA\nwe9ON3esVivbtm1j+fLlrF69moyMDDw8PLj99tt56aWXGDlyJF5eXk1tpkITUFaYW+P1P1d+BMAT\ng8cT3aJVjc8SM7JZ/tsevt8ST1Z+cdX7USH+jB/Sg2G9O3OhXGDN2ULe2HKQkxeKsVwVh8RLr6Fb\nmActXNzxOZxL9qlcBJVAh4fa4dLGh3KTlTKzlXKTSJnJitEsYhWhtNJKaSVA7UuSdGoBV50KD50K\nd50aD2fp2UlxahQUHA5BEPoCPqIorqn23sPA64ALsAqYKopiRX21G31PfUrPKYR5hHHXd3fx5rY3\neWPotZs1Fy9ezKRJkxpblOyacurKQWNsLS2Fr7+G+fPh7FlpO8P69ZCSspixY21X/+bUntWxp91a\nrZaKigp8fX3ZtWuXYzsvVxMWBo89Jj1EkcVvvMEkd3fJmfnwQ7icsNPJCdq0gehoyZmJjpYebdrU\naZbmVu3vdbHvzJkzLFmyhG+++Ybk5GQiIiKYMGECY8eOZcCAAbUuaZKz3qtWrZJF1xbIVW9Hz5Bu\nqiivOrZYLaTmXQDgji5DAClPy7pdR/jvxt3sOnqu6lxvdxfi+nWnVZs25FSo2ZRWxL+XnrhGv4WH\nDtWJjTw+aRLdQj2I8NZXLQHbvPsgAIHtvencJ6hW+6yiSLlJvMapKTNdObaIUGERWfvNV4y452Hg\nykyQi0ZV5ch46FS4O6tx0QgN2rNVHXuND44+DikoNJB/AFuBNQCCIHQCFgNfAyeAl4AM4LX6Ctvk\n3vodbe5g1qBZzN4+mz1pe675/MCBA7YoRnZNOXXloCG2ZmbCzJnSNedzz0H37rBnj7RULC4ODh60\nbf2bU3tWx952Hzp0iMjISC5evGjXcm2KIHAgKwteeAHWroWcHCmT6datsGCBtMk/Lw+++AImToQu\nXcDFRYq9feedUsbTb76B+HjJu67Grdrfr2dfQUEBn3/+Of3796dNmzYsWLCA2NhYtm3bRmJiIh98\n8AFDhw697l4MOet98uRJ2bQbi1z1NpkanqTRHjhpr9wgUKvUjOw0EIBPNn3Hq599R49JbzD1g2/Z\ndfQcgkpF1x69GTH2Xlr0Hs3GfC8+3ZPN9wkXSMyRnLSWPgbGxwQxe0xbfp3Si3VTehNhzeSerkFE\n+hhqOA2dx7YCATKP5ZK07wJW67Xh4lWCgItWha+LE2EeWtr66ogJ0tM/zIURrVwZ09aN0W3cGBLh\nQnHyUaK8tfi7qNGppXJKTVYyis2czKlgT3o5G8+VsPpUMVuTpHDP5/MrrwnzXBfsNT44+jh0DYLk\nGCoPB33gMDORXYFN1V7fD+wRRfFJURTnAdOABmU7ttluhlcHvMqa02t45pdniH8qvsZnixbVLy9M\nXZBDU05dOaiPraIICxfCjBnS6p0nnpAih0VENFzT1jY6Eva2+4033mDNmjUUFBRgNptxaqYbjWq0\nmyCAv7/0GDy45on5+XDiBBw/fuX5v/+VlqGBNFMzYoQUKODOO2/Z/n49+y5Hr4uLi2PZsmXceeed\n6PX6RuvagldeeYUVK1bIpt8Y5Kq3h4eHLLq2wkmrq/H6L/3GsjphC78c2QriVnB1wdXNj77t+pCr\n7khqEaRerARALUC7AFdiQj3oHuZBTIgHXoZrneLrta1vhDtth4RwaksaO786zv7/nSEo2psWnXxp\nEe2NthatqxEEAa0atHo1S/79aY3PKsxWCiusFBgtpBWaKKyQAgZYRMgvt5BfbgFMiCK09NbevLHq\nUCdb4+jjkIJCA/ECqt+RHQysq/Z6HxDaEGGbXSFp1Bpe7Psi9/9wP6mFqYR6NMgeBRm4cEFa1fPr\nr/Dss9KmfAf/X3vLUFJSwu+//87+/ftxd3fnnnvuabaOS73w8oJ+/aRHdUpKpCRCu3ZJIZqffBKe\nflqKaDZ+PNx1l+QM3eIEBwfTpUsXfvrpp6Y2RaEZ4O4TUON1x6D2+IityTWngKYCdKWUUMrGxCRA\nhbM2mJjwzgyP7sH47r3wd29cKOguY1thrrSSciCLilITSfsukrTvIoJKwK+lBy06+tCiow8eQS51\nWuoliiIllVbyjRbyyyXHpcBooZZJHXRqAW+9mkC3W2BcVVBwLC4CkUCqIAhaoBvwz2qfu1F9/Wc9\nsGlvjmsVh0pQse7sOp7q/pQtpRUayObNcN99UsTbX36BUaNu/h0FeamoqCA1NZXExETi4+NRq9WM\nGDGCXr163RqOy41wdZWiRvToAVOnSsvOVq6E77+HZ56RsqQOGiRFmOjdu6mtbTLGjBnDm2++SVlZ\nGQaDoanNUXBwPAKCq45FUWTK3G/IT/Yk0CuUWc/czbwtO0nPPUml6TxWSz7GylR2nUll15m1vLta\nTZhPC0K8AwjxCiTEO4BQ7yBCvAII9g4k0N0HJ/WNxy0nnZreD7aj5/1tyDlfRPqRHDKO5lKYWUrW\n2QKyzhaQsOocbv562gwJJbJPIGa1qmrPS217YczXRmTGSQVezmo89Wq8nNV46dXonRq/90VBQaFB\n/AK8KwjCy8A4oAxqpKDpDJyr7Ys3w6ZXSl56LzoHdCY+I15xXhyAvXthzBjo21dakaPcsG4aysrK\nSElJITk5mZSUFDIzMxFFERcXF3r27MmAAQPqteTnliIgACZPlh7Z2bBqFfz1r9KemlvYeZkwYQKv\nv/46L730krLkROGmePiHVB0fP5/BtkOn0TqpmfTQ/by7JQejOZrwoC7MvC2Kdv4Wdp1NYOfZBHae\nPUBq3gUSs1NJzE6tVVutUhPk4VfNuQms4egEewWgc5KWa6nUKvxaeeAZ6UHLUZHkXizjwrFcck/m\nUXK+kOKscvb/7zT7fzqHUyd/nDr7I7jUvqxMLYCH8xUnxdNZSoypOCoKCg7DLOBH4HegBHhEFMXK\nap8/DmxoiLDNb/O29GpJUkFSjffGjh3Lzz//bNNy5NCUU1cObmTr6dMwerS0J/rnn6Vk6Y3VtLWN\njkxD7RZFkeLi4hrOSlZWFgDu7u5ERETQrVs3wsPD8fHxqfpH21zb6Wpk75ejRknxvW2U1M3R2/16\n9rVs2ZJ58+YxZcoUYmNjGTdunE10bcELL7wgi64tkKveeXnXJoF0JDyrzbys2BIPgorIHoP5fK80\nNvWN9OLtMW3xcZGcjHt7jeTeXiMBSM+/SFJOOml5F0nLv0Ba3kXS8y+QmneBjIIsTBYzafkXOPyf\nTXiP7VBr+V4u3vi6+eHl6o+nqz++7i0I84siyCsMp0hviPRGV2nBcjIXc8JFxMIKzPGZmA9ewKWD\nLwHDwnD31KHXqJj84D2sWLkKV60KlcyOir3GB0cfh66mYvlxyv3MTW2GwnWotNR+o8HeiKKYAwwS\nBMEDKBFF8eoY6PciOTX1xubOS6RnJD+dqrkO+9lnn7V1MbJoyqkrBzey9dFHwdcXVq+uu+NyM82G\n0Jzaszo3s9tsNpOXl0dOTg45OTnk5uZWPVdUSCHLfXx8CAsLo1+/foSHh+Pp6dng8poLsvXLp5+G\nb7+FDz6Q1kD26mUbXQdv9xvZN3nyZDZu3MgTTzzBoEGD8Pb2toluY5kwYQLbtm2TTb8xyFVvFxcX\nWXRthYdfC0C6ubL6jwSc/SPIEd1QC/DMoAge6xt6XUcg2EuaPakNi9VCVlEeqXkX+DFyDYaWLUjK\nySQ9/yLZRVnklWRRaa4gvzSP/NI84FSN7zupnYjwa0nboDZ0CG5Dl5h2tB/VjdLTRZzdkkru+SJK\nD2eDixPRf2kPwIvPT8VdZ5+E2PYaHxx9HFJQaAyiKBZe5/0G3/WxufMS4RlBckEyVtGKSpAiMcdd\nTmhnQ+TQlFNXDq5na0EB7N4N//43+PjYRrOhNKf2rE5cXByiKFJaWlqrg1JQUIB4KfSms7Mzvr6+\n+Pv70759e3x9fQkJCcHV1bVe5f0ZsHk9srPhs8+I+/hjKc73iBFS5IkWLWwi7+jtfiP7BEHgk08+\noXXr1rz22mssWLDAJrqNpW/fvrJpNxa56q3T6W5+UhOi1Ut3sFIu5nExrwj3dtIMyTODI5jUN6ze\neiaLSH65hdxyC3nlBvJN4fSOewaATlFXznPRCDhRSnFZFvkl2eQWZ5FVdJHErGSOpp2isLyEsxdO\nc/bCadZK6WDQOWnpEBxFp8g2+Hr5Ih50Iqj0SnJVe9TNwMcAACAASURBVPZZe5Xl6OPQ1cx3+hyN\npu7/3xTsi7/Q9DdTBEH4EXhUFMWiS8fXRRTFu+urL8vMi8lqIqM4gxD3kJt/QcHmbN8uhUa+Ojqt\nws0RRZH169eTlpZGTk5O1SyKIAh4eXnh6+tLu3bt8PX1xdfXFx8fHwwGg7LOWg5efVWaaREEePhh\nKbZ3h9qXpdyqBAQE8Pe//53/+7//49lnn6VNmzZNbZKCAxN/MgkEAa27DyIwoGXdZ+suk1RQycFM\n4zXvqwXw0qvx0avx1kv7UHROKqSAQoHXnC+KIsm5GRxOPcWh1FMcST3F4dTTFBlLOJB8nAPJx6UT\nNeB+xpXVFz+hdUAzSuCroHBrUwiI1Y5tis2dl04BnQDYnbab8dHjbS2vUAc+/VRKXt6qVVNb0vwQ\nRZHCwkLy8vKqHBeQLhKDgoLw9/cnICAAf39/h18q0qwpK5Miij31FMyeXf8pxFuEiooKtm7dilar\ndfhEiQpNT0mZEQQVoiAtuwr2dL7JN66l0nxtPGK9k0BrHy0t3DToNXXLfS0IAhG+wUT4BjM2ZhgA\nZZVGFv/+PR/9tpSSirKqc8usRsorr3WYFJqG58xPEWlq3dRmKFyHLEsq0/m1SW0QRfGx2o5tRd1G\nmXoQ5hFGtF80v5z5peq9VatW2boYWTTl1JWD2myNj5dCIs+cKd2wtoVmY2hO7QmgUqm47777aN26\nNdOnT+fBBx8kNjaWgIAAMjMz+e2331iyZAlz585l7ty5fPPNN6xfv56EhAQyMzOxWmuJ31kHmls7\nXQ+b1SM7W3oePx58fG7Z/n4j+yorK5kwYQKbN2/m559/pkM9ZqXkrPeWLVtk024sctXbaGweF9Yh\n/t5gtSBYpX2zOSWVN/nGtbT20TIkwoW2PlrcdNIlRLlZ5N/f/sCvZ0vYer6EE9lG0opMFBgtmGtL\nvnIJo6mCI2mn+d/edTz/7Wy6zhrHO2s/r3JcAq3+jFXHsWX6f+gc2hawb5+1V1mOPg4pKNgSQRAG\nC4JwuyAIXjc/u3ZkSSoxuvVoFh9cTFFFEe46d5YtW1bvaDg3Qw5NOXXloDZb58+HqCgpt4utNBtD\nc2rP6ixfvpy77roLNzc3oqKuLOK2Wq3k5uaSlZXFxYsXycrK4tSpU+zevRuQNu5GR0fToUMHwsLC\n6rycrLm209XYrB6Vly6qdu+G2Nhbtr9fz77Dhw8zadIkDh8+zE8//cSIESNsomsL1q9fL4uuLZCr\n3uXl5TbXtCUmo2RfeKC0TMxSWY7K2ZXskkoifOqXJ0gQBLwuLQuL9oeSSguZxWY+Wv8DvUfcQb7R\nSr6xplOkU4PJlE9WfjJpeedJyT5PYlYiidmpWKw1AxAFuvgSY+1EdFE7gsQABjzakbDQK3H+7dln\n7VWWo49DCgoN4VJ+F1dRFGddei0A64DLm7yyBEEYLorisfpqy+K8TOs9jYV7F/LO9nd4Z8Q7fPfd\ndzYvQw5NOXXl4GpbzWZp1uXZZ6WATLbQbCzNqT2rcz27VSoVfn5++Pn51bjTXVlZSWZmJidPnuTY\nsWPs27cPNzc32rdvT8eOHQkJCbmhI9Nc2+lqbFaPqChp+vAf/wCV6pbt71fbV1FRwdtvv80777xD\nmzZt2LZtG70bkO9Gznq/++67bNy4UTb9xiBXvb28GnwD0S4UZGcA0LKFH4E+HpRVGlE5uzZo5uVq\nXLVqWvuo2bzmB4xmK0l5pRxMTeTUhXOcu3ielJxEMnKTKK0orvX7LjpXIvxaEmEIpV1WBAFZPqhQ\nodE70en2CMK61UxQZs8+a6+yHH0cuhrn+9qjj+7a1GYoXAftGS183tRWAHAf8F611+OBQcBA4ASw\nBPgnMKG+wrI4LyHuIbzY90Xe3/k+46PH071FdzmKUbiKXbsgP1/K76JgX7RaLeHh4YSHhxMXF0dq\nairHjh3j+PHj7N27F3d3d7p27Urv3r2VjOh1QRDgrbdAp4O//x3On4fnn4eOHZvasiYjLS2NkSNH\ncurUKWbOnMmrr77q8FGuFByDgrREQLr5cluvDvxwWlrmltVI58VqtXIuO5UDScc5mHycAynHOZGR\neM1sCoBapSLEO5Qw3whaeEfi6xaGf6Uf7hfUWFOKEBMvLb1zUuHUxR+nboEku2nISS7FoFXholFh\n0Khw0QoYNCp0akEJlKKg4NhEAoervb4d+F4UxT8ABEF4C1jREGFZnBeAlwe8zLqz6+j/ZX8W3r6Q\nSTGTlIFGZtasAT8/6NmzqS25tREEgbCwMMLCwhg5ciQpKSkcPXqUXbt2sWvXLnr06EHfvn1xc3Nr\nalMdn1mzwNMT3nwTFi+W8rtMmgT33w/u7k1tnd2wWq08+uij5Ofnc+DAATp16tTUJik0IzJOHag6\nHhLTjpXJpwFwq2e+lNySAg4mn+BAsuSsHEw+QZHx2hxz3i4eRAdHER3UivYtWhEd3IrWAeFYS0Qy\njuWScSyXC7vyMVfkctnNEdQC7jEBaHoGUq5xwipCmUmkzGSBslqcIQEMGlWVY+OiEWo4ORq1cr0h\nG4LiODoyAg7z2zgBFdVe9wXmV3udAfg2VFgWXLWu7Hh8B8+te44nVz/JH6l/sOj2RRg0yl1nuVi7\nVpp1Udk8DINCQxEEoWpGZujQoezevZu9e/eyd+9eYmJiGDBgAB4eHk1tpmMzdSo8/bTknS9eDH/9\nqzQLc++9kiMzcGDDolM0IxYuXMimTZvYsGGD4rgo1JuUY1ecl4jgAJxcpYAYXYNvnKvDaKpg3eHt\nbDq+iwPJx0nKSb/mHGeNji6hbYkJj6ZbeDQx4e1p4emPIAiIokhBWgnJ+7PYfPQQBek1HR1ndy0t\nOvjQooMPge280Bo0gBT10WgWKTVZKau0UmoSKTNZq16Xm0UsIhRXWimurD1IikYtSA6NRoWrVoW7\nTo2HToWrTnXdhJwKCgo25RzSMrFEQRDCgDZA9QzGIUBuQ4Rlvcx1dnLmszGfMeDAAL47+h3P/mK7\nLLKPPWbzyGuy6spBdVszMuDYMRg1ynaatqA5tWd15LDbYDAwbNgwnn/+eQYNGsSxY8f4+OOPOXTo\nULNtp6uRrV8+/TTcfbfkoScnS/thduyQkhm1bSuFVc7MrL+ug7f7ZfvmzZvHxIkTiY2NtamuHLz2\n2muyaTcWuepdUFAgi66tyEpNxFgq7Tk5W2BBEFRYjCWIlbUHGjiRcY5ZP35It3/ezTPfvMGP+zdW\nOS5R/mFM6DmSd+99kfV/+4JT765j5bSFnF+1jzu6DiHYK4Cii2UcXpPI2jf2sO6dfRxfnyw5LgL4\nRrrTeUwkI1/pyV2z+9PnL+0J6+Zf5biAdNNHr1Hha3AizFNLez8d3VvoGRTuwnezpzG2rRuxrVzo\nF2qga6AzrX20BLs54eWsQntpxsVkESkwWskoNnM6t5L4jHI2nS9l9aliNieWEJ9RzpncCrJKzBjN\ntTtA9hofHH0cUlBoIIuAhYIgLEbaqL9LFMXj1T4fBhxsiLBsMy/VmXL/FIpaFzF57WQmxUyif1j/\nRmvKlZG2OWW6rW7r/v3Sc58+ttO0Bc2pPasjp93Ozs4MGjSI3r17s27dOlatWoWnpydGoxFn5/rn\nXXAk7NIvQ0Ik5+XVV2HbNmk25vXXpb0xo0ZJszGjR4NGc31Bme21FZfti4mJITk52ea6ctCnTx9W\nr14tm35jkKvejr73yGq1knhgB9EDR7HmaBYAFbnpOGv7Vp1TWlHGqgObWbZ7zZUEkUALT3/u7Xkb\nvVt1ISasPR6G2pe7Duo7hOMbkkmOv0h+2pUZFpWTiuCOPoR09SMo2htnV22j6hIXF4daJeCqVXM9\nKZOl2kyNyUpJhZXCCitFFRbMVii89Dq12nd0agF3ZxUeOjXuOhUezmpG2OhmQV3qpKDwZ0MUxX8L\ngmABxiDNuLx+1SktgC8bom0X52XixIlYrBYWH1zMlF+mkPB0QqPXS06cONFG1tlHVw6q27p/P/j6\nQmio7TRtQXNqz+rYw26dTse4ceMIDQ1lzZo1fPbZZ0yePNnhL4RuhF37pUoFQ4ZIj48+gmXL4Msv\n4a67ICAAliyBm1wUOPrf52X7xowZwxNPPEFubi4+NkjYKWe9R44cycyZM2XTbwxy1Vuv18uia0vO\n7ttKYPfh7DyfD0BFdiqueulmyYXCHEZ/8DSZBdJyMieVmts6DeCBPncwqG0P1Kob7405uTkV50Oh\nJCScA0BQCQS19ya8hz8hnf3Q6G13qVGX31CjFvBQq/Fwrmm3KIqUmUQKKywUGa3Sc4WVkkorFRaR\n7FIL2aVX9td49xxDSmEloe4aWfd4OPo4pKDQUERR/JLrOCiiKE5pqK5dnBcAtUrNeyPeY9iSYexI\n2cHA8IH2KvqW4I8/oHfvP/3S/z8NoiiSnJxMQkICx45JIc79/f2VTZANxdNT2gvz17/CoUPw2GPw\n/vs3dV6aC4mJibi4uDRrx1ahacnLTCYxpwyrCBZjCdaKUlz1OkRRZPqyd8ksyKaFpz+PD7qHe3ve\nhp+bd510T25K4cAPZwHwj/IkolcAoV390bnefObT3giCgItWwEWrokW1CSSzVaS4QnJmCo3SDE2h\n0YLRLLI/w0hivokuAc546RuYg0BB4RZEEIQWwHTgDVEUi676zAP4OzBfFMVrN9PdBLs5LwCDIwYT\n4RnBkkNLFOfFhphMsHMnOPBSc4VLlJSUcPDgQQ4ePEh+fj5eXl4MHDiQLl26KBv3bUWXLpLz8uKL\nUFwMzTyqW3l5OZ999hmPP/44rq433mCtoHA9jCVFXCiSAv9YK8oxOGtRq1V8vWMlW0/uxVmjZdnk\nubQOjKiz5unf06oclw6jIuh8R2SzvAHjpLqSePMyFqvI2bxKTuVUkF9uYWtSKeGeGroGOisb/hUU\n6sZ0wP1qxwVAFMVCQRDcgFeBem+It0tcqh07dkiFCSoe7PQgP5z4odY48A3RtDVy6crBZVs3boSy\nMhg2zHaatqI5tWd1bG13WVkZGzdu5MMPP2T79u2EhYXx6KOPMnXqVAYNGsSRI0dsWl5T4TD90mKR\nvPqUFNvq2pkdO3awePFi8vLymDZtmk115eLgwQbtv7QLctW7srLxyR7lprKshPwyEwBWUwUuztIs\n3g/xGwB44bZH6+W4ABxeI+WP6XBbOEWe6XZxXOzVZ9UqgeyT+4ht5UqohzSLlFxgIq+8cdcuteHo\n45CCQgMZiZSI8nosAYY2RNguzsucOXOqjmNbxpJvzOdIVuMu1qpr2hK5dOXgsq3vvy+lv+jWzXaa\ntqI5tWd1bGW30Whky5YtfPjhh8THx9OvXz+mT5/OuHHjCA8Pr/pn31zb6Wocol9u2gQvvQTPPAMd\nOthOtwl45513eOutt3j44Ydp1aqVzXTlrPeSJTf6X9W0yFXvkpJrc504Gmqtrlr2BxGdRlp4Eegh\npVnQquu3zMtcYaGy1AxAdFw477//vo0svTH27LNz5sxBr1HRo4UeF43UenK4Z44+DikoNJBI4EZ3\nENOAiIYI28V5Wb58edVx75De6NQ6tiVvu8E36qdpS+TSlYPly5ezfTts3QozZthmv4ut69+c2rM6\ntrD7+PHjfPjhh+zcuZPu3bszbdo0hg4dWmtEsebaTlfTpP0yJwfmzoXx46VpyPnzb/oVR2/34cOH\nk52dbfPww3LWe/bs2bJpNxa56u3l5SWLri3ROutRqy79kxBUODlJS6TaBbUEYN2R7RhNFdf7+jUY\ni6/MNpUXVditL9mzzy5fvpwyk5WjWUbKTCIgLTGToxwFhT8h5dzYOYm4dE69sYvzYjBcSUzp7ORM\noGsgF0su2kzTlsilKwclJQYeeAD69YNx42yjaev6N6f2rE5j7BZFkZ07d7JixQpatmzJtGnTiIuL\nw8XFRZbyHAm790tRhC1bYOJECA6WQijfcQf873/gdPMtfY7e7q1bt8ZqtbJx40ab6spZb0eOvCVX\nvZvDPg+Ns4FAd2mpmFrvhvaS8zK6y2CcNVr2Jh7m4X+/QmlFWZ30nN21uPpJv/WG9/dTkl53x6cx\n2KPPiqJITpmZI3mw4WwJZ3IrEQF3nZTw0tY4+jikoNBA9gB/ucHnDwN7GyLcJLnYVYIKEbEpiv7T\nYDbD/fdDZaV0naZWgqA4BKIosm7dOjZu3MiAAQMYP348bs18w7hDUloqzbK0bSvNshw8CO+8A+np\n8M038CcJfjBmzBiefPJJpk2bRnx8fFObo9CM0ej0dA52ByTnRa2RkqS0C2rJ0qfex0WnZ8fp/Uz8\n9G+UVRpvquekVRP3t+74RLhTWWZm84IEkvc37qakI5BbZmZrUinbk8vIKDYjAr4GNX1C9AyLdLky\ne6WgoHAz5gKPCYIwVxCEgMtvCoIQIAjCv4BHL51Tb5rMebGKtWe0Vagbf/+7lJ/vu++kG84KjkFJ\nSQnx8fFotVpcXV0xm81NbdKfj4wMGDhQmmXp2VNaN3niBEyfLiU7+pMxf/58oqKi6NmzJ/369ePT\nTz8lPz+/qc1SaGZonPX4uGjxchYQBAGV3r3qs36tY/jurx/gaXAj/vxR/rNjZZ00nd20DH8+htAY\nP6wWkV3/OUF+arFcVZCdiyVm/kgpo8BoRSVAuKeGYZEuDAx3IchN3lwvCgp/NkRR3AI8gxRNLEMQ\nhHxBEPKAjEvvTxVFcXNDtO3ivLz00ks1C7WB83K1pq2QS9eWrFwJ770HAwa8xJAhttW2df2bQ3vW\nRkPtdnNzY/LkybRr147169czf/58tm3bRnn5jZd1Ntd2uhrZ++XRo9CnD2Rlwd698O23MHhwgzd8\nOXq7v/TSSxgMBvbs2cPy5cvx8vLimWeeISgoiAkTJrBmzRpMJlODdOVifh32GjUVctW7qOiaSKAO\nh95Vmo00CFK0LA+vmnlcukVE8887pYiln275jvLKui0Dc9KqGTCpIz+f/g9Ws5XtXxylsly+mzZy\n/YYZRSZ2p5VhESHAxYmRUa4sm/ePaxJdyoGjj0MKCg1FFMXPgFbA34D/AsuBF4EoURQ/aaiuXZyX\nsLCwmoXawHm5WtNWyKVrK06ehEcegXvugbvvtr2ttq6/o7fn9WiM3f7+/tx1111MnTqV6Ohotm3b\nxvz589m6det1Q6o213a6Gln7ZXY2DBgAXl6we7eUz8UWug7MZfv0ej333Xcfa9euJT09nbfffpuT\nJ08yZswYQkNDeeONN8jNza23rhwEBgbKpt1Y5Kq3uhms23W+5LyIJulGymVnpjp394jFz82b7OI8\nVifU/YaooBLoPTIGg7eOkuxyjq1LsonNtSHHb1hhtrI3vRyrCJ7OKvqE6tE5qew2Pjj6OKSg0BhE\nUUwXRfEDURSfEUVxiiiK80VRTGuMpl2cl6lTp9Z47a5zp9BYaFNNWyGXri3Iz4c774SQEPjyS5g2\nzfa22rr+jtyeN8IWdnt5eTF69Gief/55unfvzo4dO/joo4/Yv38/VmtN5725ttPVyNov8/KgsBA+\n+EDqBLbSdWBqsy8wMJAXX3yRQ4cOcfDgQe655x7eeecdwsPDmT59OqmpqQ3StRX333+/bNqNRa56\n3ygYh6PgpJU26+cVSmGdfTyutfmPMwfILs4DIMK3fn1s6tSpiBZpL6veQ9sYU29ajq1xUgm46aTL\noQKj5MiUm6x2Gx8cfRxSUHA0mmTPS4BrABdLm//GPntiNksBlbKz4eefwd395t9RcAxcXV2Ji4vj\n2WefJTIykjVr1vDpp59y7ty5pjateXH57mQdLs5vBQRBoGvXrixatIjk5GReeOEFvvrqK1q2bMlj\njz1GcnJyU5uo4EAIKhXlFZUUGaVlhlFBNZeN5ZUW8uKy9wB4bODd9GrZqV76R9clUV5YiYuPM60H\nNa+NmGqVwJAIF9r4aBGAzGIzvyWWcDKnAqNZ2Z+roOBoNInz4m/wJ6s0qymKbra8/DL89husWAFR\nUU1tjUJD8PT05O677+bJJ5/EYDCwdOlSJYJUfdDrIToa5syRcrooVOHv78+bb75JSkoK7733HuvX\nr6d///6cPXu2qU1TcBBUgopj59MRNNIMTJjvlSiIRlMFjy+eSWZhNpG+wcy84+k664qiyOE1iRzf\nIDnLMXdFodY4/jK6q1GrBDr4OzM00gUvZxVmK5zIruDXMyXsTSsju9SMKCpRUhUUHAG7OC8nT56s\n8doWMy9Xa9oKuXQbw9dfw7x50mqZ4cOvvC+HrbbWdMT2rAty2t2iRQseeeQRevXqxdq1a9m+fTsn\nTpyQrTx7Inu//PFHyXGJi4OCAtvpOij1tc/NzY3p06ezf/9+3NzcGDJkSK0OjJz1Pn/+vGzajUWu\nejeLqIKCwOGzaagvRRlr6SPlFrFarTz37Wz2Jh7G3dmVLyfNxqCrW64eq1Uk/rvTHP0liYz8FDrd\nEUlojJ9sVQD5+6yHs5rBES70aKGnOOMsIpBebGZHShm/JZZyNq+CSottnRhHH4cUFBwNuzgvM2bM\nqPHa38WfiyUXG3UX42pNWyGXbkPZsgWefhomTYJnn635mRy22lrT0dqzrshttyAIjBw5ksGDB7N5\n82aeeOIJWcuzF7L3y7ZtYeNGSEqC8eOlJJW20HVQGmpfUFAQmzdvxtXVleHDh1+zx0rOei9YsEA2\n7cYiV72bQ7QxQRCIP5uBSqMDRCJ9Jedl0eb/sjphCxq1E188/iZtgyLrpGcxWdn55THObEsHAdal\nfEun2yNlDydsjz4rCAKhHhq+//A1hkW6EOmpwUkFJZVWjlys4NczxSRkllNcYbFJeY4+DikoOBp2\ncV4WLlxY43WASwDl5nJKTaU207QVcuk2hB07pGThgwfDokXXRoOVw1ZbazpSe9YHe9gtCAJDhgxh\nyJAh9OrV608x+2KXftm5s5SIctMm+PVX2+k6II2xLygoiDZt2uDt7Y1KVXOol7PejnwhJle9PZpB\nUlRnVw+OpEr5gXz0avQaNUfTzjB33ZcAzB7/AgPadK+Tlslo5vdPDpFyIAuVWqD/4x34atli2Wyv\njj377MKFC/FwVtM1SM/IKDe6BjrjrlNhEeF8gYnfEkv5I6WUCyWmRt2MdfRxSEHB0XCyRyFXhwH0\nd/EH4GLJRVy9XW2iaSscJWTh/v1w++1SDr5Vq0Cnu/YcOWxVQiVL2NPuQYMGkZ2dzcqVK/Hx8cHf\n399uZdsau/XL22+H/v1h1iwYObLBeV4c/e+zMfYlJiaydu1aPvnk2lD6ctY7KChINu3GciuHSla7\neJJZWoiLL7QNcMVkMfPct29jspgZ2WkgD/S5o046FpOFzQsSyE0qwkmnZuBTnQhq733zL9oIe/bZ\n6mVp1AKRXloiPDXklFk4l1dJZomZrFILWaXluGpVxAQ542uo/2WVo49DCgqORpNs2NdrpPW05eYb\nJ+67lZk9G0JDYc0aMBia2hoFOREEgdjYWEwmE2fOnGlqc5oHggBPPCF5+YWNC7v+Z+TXX3+lX79+\nBAYG8sADDzS1OQoOQHq5E2pnaZN+dAsP/jh9gBOZiXgZ3Hn/vpfqvNzr/N6L5CYVoTU4MWxaV7s6\nLo6AIAj4uTjRJ9RAbCtXWnlrq5aU7Ugu43x+7bm8FBQUbEeTOC9pRVJumhB32+Rq+DMSHw+jR4Nr\nwyamFJoZ+/fvR6PREBMT09SmNB/S08HbG5rBkh17UVFRwfTp0xk1ahQxMTHs378fV2UQUQBSSwXU\nBsl5ifJ1Yf3RHQCM7jIYH1fPOmmIosjpLVKo8g4jI/CNvLX7nqtWRecAZ0ZGuRHs7oQIJFwwkpBZ\njlWJTKagIBt2cV7ee++9Gq/P5J7BVeuKh67hA9/VmrZCLt36kJMDKSnQ/SbLj+Ww1daajtCeDcGe\ndmdmZjJnzhx69OiBoZlPs9mtX4oibN0K7do1eMlYrboORn3sO3/+PP369WPRokV88MEHrF279rrZ\n7uWs99dffy2bdmORq94lJSWy6NoKg7snx9Oyq2ZeWvoa2HR8NwBxHQfUWacws5SCjFJUTipa9au5\nPNBefcmefbauZWnUAj1b6In2k9Z3ny8wcTqn7jMwjj4OKSg4GnbZ81JWVlZ1bBWtfH3oa0a3Ht2o\nqCTVNW2JXLr14cAB6blbtxufJ4etttZ0hPZsCPayOykpiWXLlqHRaBg0aJBdypQTu/XLOXOkxEc/\n/mhbXQejrvatX7+eiRMn4uXlxe7du286gydnvY1Go2zajUWuejt6/g/PwFD2nU1DCJFWO+jUZtLy\nLwDQI7JjnXV0LhoArBYrVmvNOturL9mzz9anLEEQaOurQ6sWSLhgJKmgkra+2jpd5zj6OKSg4GjY\nZebl9ddfrzpee3otZ/PO8nyf522maUvk0q0PBw6Amxu0anXj8+Sw1daajtCeDcEedp89e5alS5cS\nEhLCDz/8gLOzs+xlyo1d+uWaNfDqqzBzJtx1l+10HZC62Pfuu+8yatQo+vTpQ3x8fJ2WHspZ78mT\nJ8um3Vjkqrebm9vNT2pCDH5hJGZkIwjSv/z0/HQAfFw98TTU3Xa9hw7PFi4gwsWT+TU+s1dfsmef\nbUhZYR4aNCooN4tkldYtlLKjj0MKCo6GXfe85JfnM3XdVAaGDaRPSB97Ft2syMsDT09QNcmOJAV7\nkZSUhMViwdvbW/bcCH8KrFb4f/bOOzyKqvvjn9mSZNMrCSS0JEACiHQIqPQuTQQBgRcQURFURCmv\n+P4UsYFSVIyiIGABFAERpVel904IoSShJAHSN2WzO78/BpASIGVmdiPzeZ59km3fe+7dubN75t5z\nzvvvQ/fu0K0baF/4REdHM2HCBP773/+ycuVKfHx87G2ShgNidgsC/jnHnLgkFS6tHlil2FpB1wP0\nL5+8Jodp/zr0OoFgT2mFKim7DBQv1dAog6j281gURYb8NoSMvAwW9FygVrNlkgYNICEBkpPtbYmG\nkrRp04aOHTty4MABvvnmGy5fvmxvkxyXK1ekYcZjtgAAIABJREFUDBZvvy2tuPz6K5SB9LRKsn79\nekaNGsWoUaOYPHnyXbVcNDRukCZ4AiI6pGKlu+IOA9Ao9JFiawVFSM7LpZPXHH67nL3wNUnnpvRc\neYpYamho3I4q33ZXrlwhem80v8X8xvwe86niXUUWTSVQSrc4NL2+KLVhw/1fp4Stcms6wniWBDXs\nFgSBJk2aMHz4cMxmM9988w3btm27qxp6WUKRcVuxgiu1a0sp+FatgkmTZHNcHP34vJd9oigycOBA\nAgMDSxTsq2S/U1NTH/wiO6FUvx19zqbkSV/1Lnpp9eX4RSkle+3gasXWKlfNG51BwHwtj7+/OYo5\nLQ9Qby6pOWeL25ZNFElMtxB3TQrWz8wr2nHh6OchDQ1HQxXnpd+gfoxfP54XGrxA1xpdZdEcOnSo\nLDpq6RaHypWhTRuYPBms97lwo4Stcms6wniWBDXtLleuHFu2bKFp06asX7+eBQsWkF5Ga5fIOm5J\nSdCnD3TvzlBRhAMHoEMH+fRx/OPzXvYJgsDEiRNJTk6mbdu2JCYmyqIrB5MmTVJMu7Qo1e+0tDRF\ndOUi9/pv6AruktPv6RoMwNaYPcXWMjjpqdczHEEnkHAwhZWTdnJqSyJDhqgzl9Scs0Vty2oTOXMt\nn3VxWey5mEN6ng29ANX8nGRtR0NDQ0Jx50UURfIey8PdyZ2P28qXDvCdd96RTUsN3eLy/vtw/Dj8\n9NO9X6OErXJrOsp4Fhe17X733Xdp164d//nPf0hNTSU6OrpMFqyUZdxSU+GzzyAyEjZtgp9+4p0/\n/4QQ+etCOfrxeT/7Xn75ZbZu3Up8fDz16tVj9uzZJCUllVq3tAwfPlwx7dKiVL8dPWC/wCpt76ru\nJyUYdXKRUlku27+eU5fPFVuvRquKdBzfCL8qnhTkWtm7+BTtKvbi2JpzZCQpmzlLzTl7r7ZyLDYu\nZVo4mZLHzgQzq09ncSgpF7NFxEkvEOnvTIdwd6r5OZeqHQ0NjcJR3HmZuHEif1n+IrpLNF4u8hW0\nqv+gPMIOpltcmjSBJ5+ETz6RSloUhhK2yq3pKONZXNS2+0Z7VapUoUePHuTl5XH27FlVbZCDEo9b\nQYG0JeyZZyAoCF5/XQrKP3EC+vWj/oOKHpUQRz8+H2RfVFQUBw4c4LHHHuPFF1+kfPnyNGvWjI8/\n/pgTJ07cMyZByX5HRkYqpl1alOq30WhURFcuDAbJvioeoBPgbGo5qgZUITsvh07ThrN416pix6/4\nhLjT7o0GNHymOkYXPf5U5NBvZ1j57k7+eG8Xh38/Q2pipuxxMWrO2Xr16mG22LiYYeF4ci7b4838\neSqT1aez2JmYw4kreVzKKiDfKuJqFKgT6EKHcHciApxxNhT955Wjn4c0NBwNReu8fLnnSz74+wOm\ntptK94juSjb1r+Tll6FTJ9ixA5o1s7c1GmqQnZ3N8uXLKV++PK1atbK3Ocpz8iTMmwfffw8XL0Kt\nWvDBBzBgAAQG2tu6MoG/vz/Lli0jJSWFP/74g99++41JkyYxfvx4qlWrRrdu3ejWrRvNmzdH/5An\nOXhYCfL35vjVFDLS0uheJ5Rlhy5TMWgYIT7L+OvUPkYv/JBtsfv5uM8bmJyKtloAoNMJVG8RQqUG\n5Ug8mEL8gRSSYlJJv5RN+qVsjq46h7u/CxXrlqN6yxDcfB0/HXxKdgFJ2QWk51pJy7WRby3c+fJw\n1uHtosfbRfrra9Kj07JGamiogmLOS8yVGEb+OZLXmrzGmKgxSjXzr6Z9ewgNha+/1pyXfzM2m43z\n589z7NgxTpw4gSAI9O3b1+Gv5pYIsxm2bIHVq2HNGoiJAR8f6N8fhgyRKrNqPwBKREBAAIMHD2bw\n4MHk5OSwceNGfvvtN3788Uc+/fRTmjZtyqpVq/D29ra3qRoqU8HfG2JSOJ2YxKSurVh1LJkTSTae\nixpJ82rbmfLnHJbsXUP9KjUZ/Fjxaye5uDsR/lgw4Y8Fk2+2cOHIFRIOpnDp+DWyruRyYn088QeS\n6TKxCQZnx3Sg8wpsHE7KJTHj9vTGAuB501HR423S4emsx6DTzlMaGvZCsW1jq0+vxknvxAdtPmDu\n3Lmy68+ZM0d2TSV1S4JOB4MHS0XEs7Pvfl4JW+XWdKTxLA5K222z2Th37hx//PEH06ZN47XXXiMu\nLo66desydOhQPD09FW1fKe4aN1GEY8fg008lb9zXFzp3huXL4YknpIP70iX44gspR/g9HJeHYb4X\nRkntM5lMdOnShdmzZ3PhwgXWr19PTEwM7du3Jy0tTdF+L1++XDHt0qJUvx29QvojoVK82F8HT+Fr\nMjCmTSgAc3ZcQO/cFHdnV6BkdV9ucGNsnVyNVG1SnideqEOvKY/z2PO1cfV2JvtqLkf+KP1WWLk/\nQ1EUiU/LZ92Z7JuOS0UvI3WDXEjYvJiuNTxoHepO/QomQn2d8DUZZHdcHP08pKHhaCjmvGw8t5Go\nilGYjCb2798vu74SmkrqlpRnn4WsLPjtt7ufKwvj6mjjWVSUtHvDhg1Mnz6d+fPnc+rUKerUqYOP\njw+vvPIK7dq1w9fXV7G2lebmuF28CC+8ABUrQu3aMHGilN74o4+kTBTnzsHs2dCzJzg/eJvKwzLf\n70QO+3Q6HW3atGHDhg2cPn2adu3asXfvXhmsK5yTJ08qpl1alPq8LRaLIrpyUa1iOfy93Mkw5/L3\n4Vj61K/A661DEUUb09d8T0ZuFoFe5Wga9miJ2yhsbG1WG3qDDs/ybgCc3JhQ6oB+uT/DQ5dz2Xcp\nF4tVxM0o0LKKGw0rmKjq40TM0YPoVVhhcfTzkIaGo6HYtrH03HQC3AIAmDVrluz6SmgqqVtSQkOh\neXP44QdpZ82tlIVxdbTxLCpK2n3x4kWysrIA8PX1xcvLi5kzZyL8C7ZLzZo1C/74Q1oy1Oulg7Zj\nR3j8cTCZSqerAI5+fMpl36VLl4iOjiY9PZ20tDSmTJkii25hjB8/nl9++UUx/dKg1Oft5SVfMhol\nyMlMpUvzR5n/5zbe+24FzR4Jp0WYwFfrfuRKdgwAWdZ6jPvtJEOjKhEZ5F7sNmbNmoU5LY+U02kk\nx6WRcjqdtItZcEfISH5O6arOy/0Zmi3/1GLJtogcScqlopeRYE+jaucHRz8PaWg4Goo5Lw3KN2Dp\nyaVKyT9UDBgAI0dKZS+0GOayz8CBA8nIyCAmJoaYmBjWrl3L6tWrCQoKIiIigho1ahAYGFj2nJm8\nPJgwAaZPl7aGzZsHAQH2tuqhJjMzk08++YRPPvkEFxcXPv30U1566SWci7DapfHv4WrCGd7oO4g/\nth0iJuEyw76Ywo5LWzDn5+BidKFmpaeIz4xk7ckrrD15heahPrzasio1Au/vxGRfy+XyyWskx6aR\nEpdG1pXcu17jUc5EQJg35cK9CazujZtfyS9iKEGTEFcuZhYQn55PcraVqznS7XBSLuU9DFTwMOLv\nqselGNnDNDQ0lEUx5yWqYhTTdk5jw5kNtAlto1QzDwW9e8OoUbBsGbz4or2t0ZADT09PGjVqRKNG\njcjNzeX06dOcPHmS7du3s3nzZkwmE5UqVbp5K1++vONnipo1S3Jc/vMf+O47LfDeTuTk5LBq1SoW\nL17MypUrsVqtvPbaa4wfP14L1n9ISTpzAh9PN94b3pMX5kxmw3lp22BUWF2m9RtPZf8KxCZnM3dH\nPKtPpLDtTCpJmXn8OqzhbTp52RaSTqVy+WQqSTHXyEzOue15QQDvEA8CwrwoF+5NQJgXJi/HdpT1\nOoGKXkYqehnJsdhIyLAQn24hM8/GhYwCLlyPg3F30uHvqsfPVY+/qwFXo+bMaGjYC8Wcl+41utMh\nrAO9fu7FtqHbqFWullJN/evx84O6daWUyZrz8u/DxcWF2rVrU7t2baxWK+fPn+f8+fMkJCSwefNm\nLBYLBoOB4ODgm85MSEgILi4OlnZ04EBYuVLa41i7NowZozkwKpGbm8uaNWv4+eefWbFiBVlZWdSt\nW5eJEycycOBAQhQo8KlRdji9dwt5BfmsjF0GnskADG7ah8l9RqDTST/Cq5Vz48PukQxtVomnv91H\nXIqZzGwL2QmZXD6ZyuWT17iWkHnbNjBBJ+BX2YPA6j4EVPMmoKoXRpOiFRgUxWTUUd3PmWq+TqTn\nSo5MSnYB6Xk2svKl27k0Kb7J1Sjg52rA3yQ5NO5OurK3Wq6hUUZR7NKBUW/k594/U9m7Mo1aN+Jc\n2jlZ9bt16yarntK6paVJE9i16/bHlLBVbk1HHc8HobbdN9rT6/WEhobSqlUrBg0axLhx4xg2bBit\nW7fG1dWV/fv38+OPP/Lxxx/z1VdfcfToUVXtvC8BAXRzc4M33oA335SC8c+dk0X6YZvvN7iffaIo\nsnXrVgYPHkxgYCA9evTgyJEjjBs3jpiYGA4cOMCECRMKdVyU7Pfo0aMV0y4tSvX72rVriujKxcXY\nwwz+aiy/H9yEgA4hJZTafg1vOi634uViIFAUaHvNysoJf7Pxs4McX3uea/GS4+JV3o3qLUN44sU6\nPD31cdq/2ZBHu4fx4vghqjguasxZQRDwNul56/k+tA51p0t1D5qGmKjm64SPix4BMFtEEtItHLic\ny/oz2ayKzWJXopnYq3lcyynAVozinI5+HtLQcDQUPdN4OnvyR/8/aHS4EU2/bcrK/itpWKHhg99Y\nBEaOHCmLjlq6paV+ffjyS6lMhquU1VIRW+XWdNTxfBBq232v9vR6PcHBwQQHBxMVFYUoiuzbt49V\nq1aRlJSEv7+/qnY+iJGjRkkpkZs2lZYJa9SAl16Ct94qVfzLwzbfb1CYfSkpKSxYsIBvvvmGmJgY\nwsLCGD16NH369KFmzZol1pWLPn36sHXrVsX0S4NS/XZzc1NEVy7OBwZw7vR+XIzOhNgacSY7D/0d\njosoivy64SzH18YzKMuGDmmRxeTtTFCED0E1fAms4YOrd+HbwNSaS2rO2RttOekFynsYKe8h1d4q\nsIlcM1u5Yi7gSo6V1BwreVaRi5kFXMyUtpnpBfAxScUr/Vz1+JoMOOkLX5lx9POQhoajofhlkhDP\nEA5NPUS3hd1oMa8Fi3otomuNrqXWbd++vQzWqadbWmrWlEpmxMRAvXrSY0rYKremo47ng1Db7qK0\nl5yczLp16zh9+jQVK1akXbt2pKSkqGBd0bnZjx49oF07mDEDpkyBuXOlFZnRo8HDo+S6MuPox+cN\n+0RRZOPGjcyePZtly5YhCAK9evUiOjqaFi1aFHoFvSi6ShAVFaWYdmlRqt+OngAhNqQCRmBsx+FM\n/nwnAC3q1bj5/MljV1j/4wl80yyEX3/MM9yLRk+GUq6ad5G2Q6k1l9Scs/dqy6ATKOduoJy79BPK\nahNJy7Vy1fxPwL/FKnLFbOWK2QpXpfd5OuvwM+kJuv5e3fVxdfTzkIaGo6HK5tRybuXY9J9NDFg2\ngB6Le/BZx894ufHLajT9r6HG9e+ZU6f+cV40Hg4sFgtbt25l27ZteHt707t3byIjIxEEweGcl9tw\nc5NWXF58ET74AN5/X3Jknn5aSqX8xBNSJVaN+2I2mxk2bBgLFy4kMjKSjz/+mIEDBzrcqpuGA6PT\nEZx8hdwE6W6dsBCCfKX0zn+uP0vKsrP4imADCPWg4zMR+Fcs/kWGhxW9Top/8XOVflKJokhmvo1r\nN5wZs5Vsi42MPOl2Ns2Cs14gxNNIJS8jXi5avIyGRnFQLbLOZDTx89M/M3bdWEauGsmZ1DNMbT8V\nnaD9eCkKNwquZ2fb1w4NdTl37hy///476enptGzZkubNmzt+1rE78fODTz+VVl3mzZNu8+dD1apS\nZrJBg6T/Ne7i7Nmz9OzZk9jYWH766Sf69u2r/cjRKBE1ziXw0wYpy1jv1o3IK7Axa9Ex/HakYBTh\niqeBjs8/QvUwHztbWvYRBAFPZz2eznqqXB/O3AIbV69vNUvMKCDPKhKXmk9caj4eTjoqXc94ZtKy\nmGloPBBVZsny5csB0Ov0fNrhUz7v9Dkzds1g0LJBpdaUG6V0S4teD0Yj5NySmVIJW+XWdNTxfBBq\n211Ye+vXr2f+/Pm4ubnxwgsv8MQTTzi843LfcQsJgYkTITYWtm6FVq3gk0+kSqxt2kBCQsl0S4Ej\nH59HjhyhTp06ZGVlsXPnTvr16yeb46Jkvzdt2qSYdmlRqt+5uXfXN3EknAQ9BRZvLmYW4OrixFMt\n6vPGgkM3HZe8IBPD34kqleOi1lxSc87K2ZaLQUewp5FHg0x0quZOVIiJYE8DOgHW/7mCYyl5rDmd\nRWK6RbY2NTT+rajivCxcuPC2+yMbj2ROtzn8eORHdiXuuse7iqcpF0rpyoHJBLd+Ryphq9yajjye\n90Ntu+9sLyEhgW3bttGyZUuGDBlCQBkp9likcRMEePxxmDMHLl+WVmFOn4a2bSE5ueS6JcCRj8/E\nxESysrL48ccfeeSRR2TVVrLfa9asUUy7tCjV75ycnAe/yI6U9/Ij1aU8AG0bRHIsOZes0+kYRXAK\nNDFoQhNcXIylakOtuaTmnFWqLZ0gEORhpHGwK52reXB00zJ8TXpE4GBSLnkFNkXa1dD4t6CK87J4\n8eK7HhtYZyDhvuF8uuNT2TTlQCldOTCZbl95UcJWuTUdeTzvh9p239qeKIqsXbuWoKAgnnjiiTK1\nTajY4+bmJm0b27ABMjKkTGWpqaXXLSKOfHy2bNkSk8nE5s2bZddWst8fffSRYtqlRal++/g49lYr\nk4sb2aYgAII99MzZkUBQvpTKt3qDQPQybFVSay6pOWfVaMuoF1i59Bcer+yKp7MOi1XkaHKe4u1q\naJRl7La5Uq/T83Kjl/n1xK/kWBz7qpUjIIpQUCD91fh3k5KSQmJiIi1atChTjkupCA+HdesgPh5e\neMHe1jgEJpOJzp07M2PGDI4fP25vczTKMDpBIM+jAgBibiZ749Pxs0rPeZV37DTPDws6QaBukFR4\nOD7dQoFN+7LX0LgXdo0MqxlQE5toIyk7yZ5mlAliY+HqVWgoT5kcDQfG9UYhn4eN2rXh88/hl1/A\ngbceqcmsWbMICAigZcuWHDp0yN7maJRRLFYLZkH6YZxskdI6G9ylbWK5mVqMhaPga9Kju369Kq9A\nc140NO6FatnGCqOcWzkAkrOTqeJdxZ6mODxr10pZZZs3t7clGkrj5uaGwWBw+KrditC/vxQL8/LL\ncPAguLvb2yK7EhgYyKZNm2jfvj2tWrVi586dVK9e3d5maZQxci35ZFmla5WJBdJKi085V7iaT1aK\n2Z6madyCIAg46wVyCkTyrSLampiG7FSwIVaRKaYqx36xWaqsvAwZMqTQx48lHwOgwvXlbDk0S4tS\nuqUhKQnefRd69fonZTIoY6vcmo44nkVBbbtvbU8QBMLCwtizZw8FBQWq2lFaSj1uggBffSUd9EOH\n3twn+TDN91sZMmQIfn5+bNiwAS8vL8aOHSubrlK88847immXFqX6nZaWpoiuXORa8rCKAiCQiFQf\nKLS6LwBJMXfHmJUEteaSmnPWHn26kSo5K18L2tfQuBeqOC/3qh675MQSmgQ3IcQzRDbN0uJolW5F\nUarxJwgwa9btzylhq9yajjaeRUVtu+9sr23btqSnp7N7925V7Sgtsoxb9epSLZhffpHqw8ilWwiO\nfnzesM/b25v333+f3377jb///ls2XSVo2rSpYtqlRal+Ozs7K6IrF3kWaWuYi6uJPAx4uRho0KwC\ngk4g7WI2WVdLH3eq1lxSc87ao09eztLPsvQ8qypta2iURVRxXvr163fXYwcuHeCPU3/wTK1nZNOU\nA6V0S8oPP8Dy5TB7NtyZLVcJW+XWdLTxLCpq231ne/7+/jRs2JANGzawZ88exDKSqUG2cevVC8aN\ngzffhHHj6Ne7tzy6d+Dox+et9vXt25dHH32UqVOnyqorNx07dlRMu7Qo1W+TyaSIrlzkWKTsVS7u\n3gA0ruKNq4cTAWFeAJzfU/q4U7Xmkppz1h59cr/uvGRrKy8aGvfELgH7ZouZ/kv7U7tcbUY0GmEP\nE8oECQkwahQMHAg9etjbGg216dChAw0bNuTPP/9kxYoVWCwPWWDthx/C1KnS6kvr1nDhgr0tsis6\nnY7+/fuzbt06h68rouFYWGwFiIIVvZvkvDxSwQOA0KZS7ZfT2y4iatmtHArdQ5JoUkOjJNjFeXlj\n7RucTzvPj0/9iLPBsZfb7UVBAQwZIsUrz5xpb2s07IFer6dTp0707NmTw4cP8+OPP9rbJHURBHjj\nDdiyBc6cgXr14OhRe1tlV7p27UpOTg4bN260tykaZQ1DHjoPafk+IlBKhFGpQTmMJgPZV3O5cPSq\nPa3TuE7u9SxjuoclTb6GRglQxXm5dY/27zG/E703mmkdphEZECmLppwopVscRBFeeUX6zbZgAdyr\n/pkStsqt6QjjWRLUtvte7dlsNi5evIjNZsPf319Vm0qCIuPWvDl/R0dD+fLQrZuUM1wmHP34vNO+\niIgIwsLC+P3332XVlZMDBw4opl1alOp3fn6+Irqy4pyNzUXK+FLFV0rHbnDSE/6YlDDn8Io4bKVY\nfVFrLqk5Z9XuU2aelTPXpGPJ31WvStsaGmURVZyXKVOmAHAp8xJDVwyla/WuvNCgdIXobmjKjVK6\nxWHmTIiOhi+/lHbL3AslbJVb0xHGsySobXdh7ZnNZr7//nv27NlDx44d6dKli6o2lQTF5uU338Bv\nv0FGBvTpIy1NyqHr4MfnnfYJgkDXrl1ZuXJlqeKglOz3ggULFNMuLUr1OysrSxFdWTFlg6BDAPzc\nnW4+XLN9ZYwmA2kXszm363KJ5dWaS2rOWTX7JIoi+y/lYhUhwFVPJS+jKm1raJRFVHFeFi1ahE20\nMfi3wegFPXO6zSl15fBFixbJZJ06ukXlhx/g9delOOXnn7//a5WwVW5Ne49nSVHb7jvbE0WR5cuX\nk5yczKBBg2jSpEmp54waKDovq1SBJUtg82b44gv5dB2Ywuxr1qwZFy5cIDk5WVZdufjggw8U0y4t\nSvXb517L4w6E6CzVc/F1M2K4JaDC2c1IRJuKACQcSimxvlpzSc05q2afMvNsXMuxohegfgVTmTjf\na2jYC1WcF1dXVz7f9Tlr49Yyv8d8AtwCHvymImgqgT2rmy9bBoMHS7ePPnrw65WwVW7NslotXm27\n72zv6NGjxMbG0q1bNypXrqyqLaVB8XnZsiU89xxMmgQyFPF09OOzMPsuXbqEs7MzAXemHyylrlw4\ncuYtpfpdJn5o6qSMYwHud8eZuvm4AGCzlnw1T625pOacVbNP2RYpu5iHsw5Xo13CkTU0ygyqzJDz\naecZt34crzV5jQ7hHdRosszx88/wzDPw9NPwzTeg085dDy1Wq5XVq1dTs2ZNatSoYW9zHI/33pO2\njb31lr0tsQvHjx+natWq6LSThEZx0BUgihYCbtkydoMbmca0jGP2I8cijb2Tvgw4whoadkaVb78d\niTvIs+bxdou31WiuTGGzwf/+JzkuvXvD99+DXovTe6ix2WyYzWbNcbkXgYHS0uRXX0lFkB4iLl68\nyIIFC+jZs6e9TdEokwhU9r17ZezC0SsAeFdwU9sgjet4m6SfY8nZVtJztQKVGhr3QxXn5bPJnxHo\nFoivyVc2zTfffFM2LTV0CyM7W1ppmTxZKmnxww9gLEaMnhK2yq2p5njKidp239qewWBAr9eTm5ur\nqg1yoNq8fOkl6NlTyid+7px8ug7Gnfb93//9H66urowbN05WXTmZMWOGYtqlRal+Z2RkKKIrL3oE\nwUBkkPttj+Zm5nPhiJTBLzSqfInV1ZpLas5ZNfvkazJQwcMAwOGk3DJTmFhDwx6o4rz4BfmRYk5h\nyrYpsk3ISpUqyaKjlu6dZGfDk0/C2rVSEqXx46WyFsVBCVvl1lRrPOVGbbtvbU8QBFxcXMqk86La\nvBQEmDMHvL2hVy8wm+XRdTBute/LL7/k22+/5d1338XLy0s2XbkJCgpSTLu0KNVvfRlYLhcEKa7l\nTuflxLp4RJuIXxVPvCu4F/bWIqHWXFJzzqrdp9rlXNAJcMVs5Uhynipta2iURVRxXpZNW8a45uMY\nt34cT/38FOm56aXWHDVqlAyWqad7Kzk5kuOydy+sXg1du5ZMRwlb5dZUYzyVQG2772yvrDovqs5L\nHx8py8WJEzBsmFQgSQ5dB+KGfd9++y0vv/wyr732GiNGjJBNVwn69u2rmHZpUarfbm6Ov93KYAgA\nq+VmjReA7Gu5xGxOBOCRLlVLpa/WXFJzzqrdJzcnHfXLS9v64q7lc/qq5sBoaBSGKs6LQWfggzYf\nsKLvCjad3UT92fX56/xfajTtkPzvf5LjsmoVPPaYva3RcERMJhNXrlzRtg48iLp1Yd48WLgQxowB\n679rr7goikyfPp3hw4czYsQIpk2bVjYyW2k4HHpDIHrzNfS3pEk+sOw0tgIb5ap5U76mfNu6NUpO\nRS8jtcpJGeGOJOdxPq0MFEDV0FAZVdPVdK3RlX3D9xHkHkSLeS0YvXo0ZkvJtnuUZTZuhBkzNMdF\n4940bNiQ2NhYdu3aZW9THJ8+feCzz6Tqrl27QlqavS2SBbPZzMCBA3n99dcZM2YMn3/+uea4aJQY\ng6EczlmXbt6PP5BM/L5kBJ1A/V7h2rHlQFTzdSLMR8oKt/9SLgnpFjtbpKHhWKjivJw8efLm/2G+\nYWwdvJVP2n/CV/u+ou5Xdfn1+K9k5mWWWFNOlNK9FTc3kGNnhRK2yq2pxngqgdp239neo48+SlRU\nFGvXruXo0aNlZgXGbvNy1ChpD+bOndCkCezbJ4+unUhMTKR58+YsWbKEhQsXMnXqVFlTIyvZ77Nn\nzyqmXVqU6ndBQYEiunKiNwTgdi0WkIL09yyMAaBmu0r4VvIstb5ac0nNOWuvPgmCwCOBzlTxljL4\n7LuYw4UMzYHR0LiBKs7L2LFjb7uv1+loP18xAAAgAElEQVR5Pep1Dr5wkHJu5Xj6l6fxm+JHmwVt\n+GT7JxxLPvbAH2t3aiplqxK0bi05MKVFCVvl1lRjPJVAbbsLa69t27ZERETw66+/MmfOHE6dOuXw\nToxd52W7drB7Nzg7Q8OG0irMzp2l17UDL730EsnJyTRt2lSRGBIl+/3ZZ58ppl1alOp3Wcg2ZjAE\n4nF5H3nmbPYuPkVelgWvCm7U7ly6WJcbqDWX1Jyz9uyTIAjUDXKhkpcREdhzIYeLmZoDo6EBKjkv\nX3zxRaGP1/Cvwd9D/+b0qNNM6zANF4MLb296m9rRtak8ozIv/P4Cy08uL3RV5l6aStkqJ3XqyKOj\nhK1ya6oxnkqgtt2FtafT6ejduzfPPvssOp2OhQsXMnv2bI4fP+6wTozd52V4OOzfL+Udj4uDqCjJ\nqdmypXS6KrJx40ZWrlzJ9OnTWbBggSJtKNlvR3UIQbl+lzb7m+IILgiiM0EpBzi+4Rjx+6XtYlGD\naqKXqZq7WnNJzTlr7z4JgkD98i5U9JQcmN2JOVzO0hwYDQ2DGo08KN1gmG8YIxuPZGTjkeRYcthy\nfgurYlex6vQqZu+fjVFnpF75ekSFRNGsYjOiQqLKdKrkatXk0dFSJSuHPVMl34ogCISHhxMWFsb5\n8+fZunUrv/zyC3Xq1HHIQoUOMS8NBnj2WejXD5YulQoptWwp1Yb58suS66rE5MmTady4Mb1791Ys\nDkHJfpcvX/JaIUrzsKZKNuh9EHLScLLlc2pjOqCnVsfK+FbykK0NLVWyMu0IgkD9Ci7YRJELmQXs\nuZBD52qG2xIvaGg8bKjivBQHk9FEx/COdAzvyExmEnctjjVxa9iWsI0VMSuYuWsmAMEewURVjCIq\nRLrVL18fZ4Ozna0vGikp9rZAo6whCAJVqlShSpUqREdHa8G1RUGnk6rA9uoFn38Or74KLVrAM8/Y\n27L7kpWVRZ06dbTPWEM2BJ0nrqIZD6/aWPP0OLkZqNWxir3N0igiOkGgYbCJ5FOZWGyQnW/D08Wx\nHWYNDSVxOOflTsJ8wxjhO4IRjaTaBpezLrMzcSc7EnawI3EHb218i9yCXJz0TjQo30ByZq47NcGe\nwXa2vnCOHLG3BRpllezsbFJSUmjcuLG9TSk7CIIU0L9jBwwfDs2aQcWK9rbqnvj5+XH69GnMZjOu\nrq4PfoOGxgPQ6VwJMOnx8ZNSXJaP9EZvUDXZqEYpEQAngw5Lvo0si+a8aDzcqHL2+vjjj2XTCnIP\nokdED3z3+7J1yFbSx6eze9huprabSmXvyvx64ld6/9KbkOkhVJpeiWeWPMOMnTPYfWE3+dYH50uX\n09Z78csvcPRo6XWUsFVuTTXGUwnUtvtB7YmiyLFjx4iOjsbJyYnw8HCVLCseSo1bqXUFASZOhIyM\n2zKROeLx2bx5c7Zs2UJQUBCNGzdm+/btssc4KdnvefPmKaZdWpTqd1ZWliK6ciEIRtyNIu5elQFI\nit8textqzSU156yj9Ckr38bW82ay820A6LVVWY2HHFVWXsxm+Wu53NB00jvRKLgRjYIb8UqTVwC4\nlHmJHYk7bq7OjF8/njxrHi4Gl7tWZ8p7lC9UV0lCQuDJJ6XESOXKlVxHyXF1VD21UNvu+7WXlpbG\nn3/+SWxsLJGRkXTq1AkPD/n2qsuJUuMmi+6aNVImstat5dWVmYkTJ9K/f3/mz5/PjBkzaN68OdWr\nV2fw4MEMGjSI4ODSrygr2e/c3FzFtEuLUv121AQa/1DAVbOVsCY1ST4Gl04mkXw+lnKVZQrARL25\npOactXefLFaRhHQLR5NzsYpg0EGdQBcC3R1+04yGhqIIRTnpCoJQH9i3b98+6tevr7xVMpNvzefg\n5YPsSNjB9sTt7EjYQUJGAgC1AmrxVORT9IzoSd2guvfdZ75//34aNGgA0EAUxf3FtePGOK5cuY/n\nnqtPWJhUsNK5bITqyEZpxxHK/jF5P0RRJCkpibi4OOLi4oiPj8fV1ZXOnTsTERFx22vlOib/jeN4\nE5sNFi+G11+Hpk1h2bK7XuKox6TNZmPTpk189913/Prrr+Tn5/Pmm28yadIknJycZGlDbh62Y/K9\n994jOjqaixcvyqor5zFZYfAAKoT04I8Bj7F+5jGs1lxSUr9k+Fff4e4bIKvdGqXDbLFxKbOAy1kW\nUrKt3PiF5u+qp355E25OJd8wI9fcnLpkC2E165bYDg1luXTqMC/3eBxu+ZxvfHZ/L6xP3Uh5Ln4e\nPJHJY/3239aOWjwU7ruT3onGwY1pHNyYV3kVgAsZF9iWsI2Vp1by+e7PeW/re1TxrsJTEU/RM7In\nUSFR6HXK7CktXx6WL5cSIA0fDvPmSbtaNB5esrOziYuL48yZM8TFxZGVlYXRaKRKlSq0a9eOunXr\n4vyweblysGULvPEG7N0L3brBzJn2tqhY6HQ62rRpQ5s2bZg1axZffPEF7777LmvWrOGHH36gVq1a\n9jZRowxgs6aS7xrAyTM78KsayNWz4Oc1jK9ffJYXvv4Jdx9/e5v40CKKIqm51usOSwEZebbbnndz\n0hHqYyTMx0lL4qGhcZ2HwnkpjGDPYPrU6kOfWn2wWC1sPreZpSeW8tPRn5i2cxqBboH0iOjBmKgx\nVPOTb2n9Bk2bwnffQf/+EBgI//sfuLvL3oyGA2O1Wvn777+JiYnh0qVLAAQGBlKnTh3CwsKoVKkS\nBsNDO0VLjihKxSk//BB+/x0aNZKcmCeesLdlpcLLy4u33nqLzp07M2DAABo0aMCbb75Jly5daNCg\nAUaj0d4majgoVmsKomhj5vZkFr31JGum7iDjkid+nsOZ+9I4WjzXjTptu2k/jhXEahPJttjIzreR\ndcstI89GvvX2HTB+rnrKuxsIcjfg4awF5mto3Ikqv4yuXLmCv7+8V3bk1DTqjbQLa0e7sHa82+Rd\nTueeZtmJZSw8upC5B+YysvFI3n7ibVnaupV+/eD8eSmO+NtvpTIUI0dKKzNFwdHHVQk9tVDabpvN\nxvLlyzl+/Di1atWievXqNGzYEPcy7sEqNW5F0jWb4aefYNYsOHhQKli5cCH06SOlTVbRXrkozL56\n9eqxb98+3nrrLWbMmMHkyZNxd3fnscceo2XLlrRs2ZIGDRrc1/FVst+pqamK6MqBUv222WwPfpEd\nEUUL+XkxxJoi+GLtPka83pQ1H+8g64ov/r7PcmDRFbYtGE3jZx6jfuen0N1jvtwPteaSmnO2uG2J\noojZIt7inFhv/m+23HuLvjn9KtVCAgnyMBDoZsBZywSnoXFfVJkhQ4cOLROaAMOeG0azis2Y2n4q\nsaNieaflO3yz/xvCPw9n4ZGFsrc3fjycOQNDhsBnn0GVKvDcc3D8+IPfWxbGVanPSWmUtNtms/H7\n779z7NgxevXqxVNPPcW0adPKvOMCyo3bfXVPn4YxYyA4WNqHGRICq1ZBTAz07XtPx+WBug7Avexz\ncXHh008/5dq1a+zcuZOJEyciiiLvvfceTZs2xcfHh86dOzNlyhR2795NQUFBkXTlYNKkSYpplxal\n+p2WlqaIrpxYMtcAMO9oDsuOXqDTf5tRq3N5BEMuTs7+eHt04/gKJ776z3/5+/vfyEwxY7MW3SlT\nay6pOWdvbcsmiuQV2MjIs3Ilu4ALGRbOpOZzJCmXHQlm1sVlsSImk7VxWWxPMHM4KZczqRaSs603\nHReDDrycdQR7Gqjh50SDCi60qOLKog9epXGIK5W8nDTHRUOjCKiy8vLOO++UCc07dU1GE2Obj6WS\nVyWGrRjGJ9s/UaTNSpXg00/h7bdh9mxpW/7cudIul8GDpTp7hSWXKgvjqtTnpDSlsVsURXJyckhN\nTSUtLY20tLTb/k9LS8NqtdKzZ09q1qxZ6vYcCUXnZW6u5NUfPiwVSzpyRPo/KQn8/CTH5cUXoWpV\nu9srFw+yz2g00qRJE5o0acK4ceOwWCzs27ePzZs3s2nTJt59913GjRuHn58f3bt356mnnqJt27aK\n9nv48OFs3bpVMf3SoFS/HTX73w2MOoEc2xWElB9wDejPhxvj+Xp7AgObVubJSa25si+Bw7/HYMAd\nb4/2xO+A+B070ekF3PxMeJQz4VHOFY+A63/LmXD1cUF3S5V3teaSHO2IokiBDfKtInlWG/kFInlW\n8fp98eb9rsPHsS4ui7wCG5Yi+nE6QYpTcTfqcHe+/a+zQSh0a967Dn4e0tBwNFRxXpTIGKNUFpr6\n9etjE21si9/GoqOLWHJiCcnZyYT6hNKiXgu+4ztF2gXw9oaxY+G116RaMPPmSaswo0ZJDszgwZJD\nc+NCclkY17KQLagwHmR3fn7+TYekMCclP/+fmkJOTk74+Pjg7e1NeHg4Pj4+BAcHExISUuT2ygqy\n9MNmg3PnbnNS6h8+DLGx0nMAoaHwyCPw/PNQrx506gQmk33sVZDi2mc0GmnatClNmzZl/PjxWCwW\n9uzZw8qVK/n111+ZO3cuHh4edOnShaeeeopOnTrJvuIXGRkpq56cKPV5O3q80fBQd77NFDCLMViT\no3Hz/Q/X8GDm5nN8sfUcLcL9eGpkFEHJmWyMXoxe54+bZ1VsVpHMZDOZyWbg6m2aOoNOcmauOzSe\n5QJJiknFo5wJk5czgk6Z+JnCPkOrTXI8bjofVpG8ApF8q+2W/29/rijJrf3DHiEr/3avxagDZ4MO\nJ72Ak17AzajD3Um6uTnpcDUW7qAUt08aGhr3RosGBmyijdirsey9uJediTtZdnIZFzIvEOIZwsA6\nA+lbuy8NyjfgwIEDijovN3BygmeflW7x8bBggeTIzJ8vXVQeNgxefhm8vBQ3RQPpKt2RI0c4derU\nTefk1rz8er0eb29vfHx8qFSpEnXq1LnprPj4+ODi4qIFwt4Pmw02bZI89oMHpQqu2dnSc76+kpPS\nvr20NeyRR6BWrcKXIjXuwmg00qxZM5o1a8b777/P8ePHWbp0KUuXLqVPnz44OzvToUMHhg0bRpcu\nXUoU66Dh+LTzNtOs1xRemvcOOeJlXDO+xJzZCqNfOHj4svHUVTaeuoqfkxV/fRx+Rz9k1PRFVK7V\n8rrzkkNmyvW/yWayruRgK7CRfimb9EvZd7WnN+oweTtj8nTC5fpN+l96zOQl/e/iYUSnv/2YE0UR\niw3yCmx3rYTcej/farv5WEEJQ470AjjpBZwNkiPirL/ulBgEnPU3HvvnvlEvoHOAc/lXX31FdHQ0\n586dA6BWrVr873//o2PHjgAMGTKE+fPn3/aejh07Mnny5Jv3BUFwBqYBzwDOwBpghCiKyWr0QUOj\nNDx0zosoipxNO8ueC3vYe3Evey/tZd/FfWTmZwIQ5hNGz4ie9K3dl6iKUegE+36ZV6okBfS/9RZs\n2yZlKJs0CaZMkVZoXn0VfHzsauK/moyMDFauXElsbCwVK1akXLlyVK9e/TbnxN3dXXNOSsLZs/94\n5efPQ1gYNGsGvXpJTkqdOlL2Cm1sZUEQBGrVqkWtWrV4++23OXPmDMuWLWPx4sV069aN8PBwXnnl\nFQYPHuzw26A0ik/b0DC+rRrKq2diuVKQSZ3wWIQkHccPH8Q5oDIm/2Cu4sLVGgPQhffBLcGd56pZ\niIzwJej28lLYbCLma7lkJpvJuO7QZKZIf7Ov5mK12MhKySErJeeBdulMBnRuRgRXI7gaEU0GcDUi\nXH/sxg0X/QPPszccjsKdD91t9530AgaFVoeUpmLFinz88cdUq1YNURSZN28e3bt35+DBgzdXPjt1\n6sS8efNuFlB1dnYmLi7uVpkZQCegF5ABzAJ+BR5/UPt5i46TE1DwoJdp2Il8a4K9TVAcVZyXOXPm\n8Nxzz9lFMzEjkd0XdkuOyvVbaq6UDaeyV2UaVmjIfx//Lw0rNKRB+QYs/Wkpz3WW11Y5EAR47DHp\nNnkyTJ0KH3wwh2nTnmPUKBg9GuRIwCL3Z6XEZ68G3377LY0aNWL16tUYDAb69u1LjRo1FGuvrI7T\nnTywH2YzLF0qBXVt2iTlB3/mGRg6FKKi7umoKDU+jj7uSvd7zJgxjBkzhp07dzJz5kxGjx7NxIkT\nGTZsGKNGjaJKlSrF1l6+fLns9sqFUuOpZtX3klKQdolKF4/yqRFG6nw5fOEEtS0xRCZkcTy7OeaE\n45h8gwiqUo0Mgzfrzuez7rsD1A32ZFizSjwe7ntTS6cTcPc3YfJ1QVfJCrlWVi74ji7DB5GXbyUn\nNY/cjHwsmflYswsQzRbplm25+T9mC4hgyynAllMAPMDR0QkY3Y1siVlNl1a9cPFwxuTlhFeQK0Fh\n3ngFuMi+cqjW+aG47XTp0uW2+5MnTyY6OpqdO3fedF6cnZ0JCLhnAVI3YCjQVxTFLQCCIAwBTgiC\n0FgUxd3F74WGhnqosqywf7/8hTfvp2m2mFlwaAEt5rWg4vSK9Pq5F/MPzcdkNPF61OusenYVyW8k\nc+61cyzps4Txj42nbWhbfEw+itgqN+XLw7Rp8Oyz+3nxRSnAPzhYiotZsQJuCbcoNnL3vyyMZ2H8\n9ddfLF++nICAAEaMGKGo4wJld5zu5J79sFqlfOBhYTBwoFSLZf58uHxZerxZs/uusCg1Po4+7mr1\nu2nTpixcuJCzZ88yYsQIvvvuOyIjI9m+fXuxtU+ePCmXmbKj1HhaLBZFdOUkfddKEEVqhtfjjVqt\nEWwiR402fPRxvBBwhlpB7uRcvcjZfVv4rGd1OtUMwKATOHghg1G/HGVL7FVEUSQzz8rpa3lsi89m\n5alMtieYOZ6Sx669+0jMKCAlVyTL5ERBoDtCuC+GR8vh3CwYzw5VKde7BhWHPkL4aw2oObEptcc2\nps7IejzyXG1q9a1BxJOhhLcMoXLDQAJr+OBV3g0nt+vXWG0ilox8YmKPkHoylUt7LnNmfTwHfjjJ\nqnd3svy/29n69RFOrIsnJS4dq8Va6jFT6/xQmnZsNhuLFi3CbDbTrFmzm49v3ryZwMBAIiIiGDFi\nBNeuXbv1bZFIF6833HhAFMUYIB6IKrExGhoqocrKy6xZsxTXFEWRvRf3MufAHBYeXUhGXgatq7bm\n+57f07pqayp4VLCbrUrx3XeSrWPHSnEx338P3btLiZf69YNBg6Bhw+LtupG7/2VpPG9l7ty5/PLL\nL5w+fZqEhASqV6+uaHtldZzupNB+rF4Nb74pxbL07w/vvivVYCmtrgw4+rir3e+KFSvy4YcfMnHi\nRDp37kz37t3ZuXMnYWFhRdYeP348v/zyi1ymyopS4+nl4AGIBblWMvatBeCCS2WOT3uL0PAqxIVU\nwLXf87z14hQa7z7GkA/mEujryWPVytEiIogxbfKYseksp6/msfFMBpk2411Zt0wGAX83A5/M+Pxm\nELsUQ6K7uXXLoKNUW2utFhu5mfnkZOTzxIvfkpsh/Z+TlkdqYhapCZnkZuSTeCiFxEMpAOgMAj4V\nPQgI9cI/1Av/ql64ejsXq121zg8laefo0aNERUWRm5uLh4cHy5Ytu3mRrVOnTvTq1YuqVasSFxfH\nhAkT6Ny5863t+AH5oihm3CGbBASVoisaGqrwr4h5+T3md97a+BZHko8Q7BHMK41fYUi9IYT6hNrb\nNFXw94fXX5duR45ITswPP8AXX0CNGpIj06OHFEKghQ8UDb1eT+/evVmyZAk///wzffr0UdyB+deR\nkCBlA1uzRkqTt3u3VO1ew+Fxc3Nj2bJlREVF0alTJw4fPoyLi4u9zdIoIeYkEVysZAXUZNGMd7FZ\nrXSp1ojPci6w8fR+zPm5/LHjMABPNnsU/fUgeouoo3G1CjS8fq3BYgMB8HfTE+hmINDdgIeTTvGY\nP71Rh5uvC26+hR+DBflWUhMySTmTzpXrt9xMC1fPZnD1bAZskGIAwh+rQOP+EYVqlDUiIiI4dOgQ\n6enpLFmyhEGDBrF161YiIiLo06fPzdfVqlWLRx55hLCwMPbu3StL2z9s+xJXp9uzFEZVa02zaq1l\n0dcoOttjN7IjduNtj+WJD441K+uUaefFYrUwYcMEPt3xKe1C2/FR24/oENYBvU5vb9PsxiOPSMH8\nH34IGzdKjsz06fDOO1C5suTE9Oghxc7cpwC3BpID8/TTT7NkyRIWL15Mnz59FN8+9q/hzz+lpT9X\nV1i+HLp10zznMobFYkGn05GVlYXFYtGclzKMNacAXPQ4R7bEWvA9AEKNWnDwAnqdHoNOj6VA2mZl\nuCX7V+zVfGyiFAi/79xVDiWmEehuYObTtRwq2N3gpCcgzJuAMG9A2omRfTWXlLh0YjYlcC1eSshj\nTsuzp5myYjAYCA2VLtDWq1eP3bt3M3PmTKKjo+96bdWqVfH39ych4WYg91XASRAEzztWXwKByw9q\ne0DzEVQN0C7mOQLNCnEak60JjJ492D4GqUSZzYuZmJFIy/ktmblrJtM7TGfNgDV0rtb5oXZcbkWv\nh3btpO1kycmwdi08+SQsWQKtWkFgoFQ3ZvlyKYZao3BuODDVq1fn559/JiYmxt4mOTYFBTBhAnTp\nIgXgHzwo7WXUHJcyRUpKCm3atCE9PZ1NmzZp2cfKOIIg7fWqVK0mT/QfRY6TE1/uXQXAuM7P4WQw\n0rX5owAs33qAAquV7Hwb13Ikh6ZVVTd6P+pPwrUs/o67xpR1cRTYilIpxT4IgoDBWU9OurStDCAo\nwofmQ2rZ2TLlsNls5OUV7pwlJiZy9epV/P/J6nMCKADa3HhAEIQaQCVgh8KmamiUGlWcl27dusmm\nZbVZ+WL3F1RtWpX49Hi2Dt7Ka01fk23ZWk5blaaotjo5SY7MF19IO3n27IGXXoK9e6FnTylGpnt3\nKQ1zx47y9r8sjeet3Gr3DQemWrVqLF269GbqSaXaK7Pk5tItJERKhffxx/Dbb1KdFhlQanwcfdzt\n0e/jx4/TvHlzUlJS2LhxI+HFjE8aPXp0ac1TDKXG845gaMfj+tejWJBP9zFTyXi0PhaDnnL5Vp5t\nKNUGad0gEh8PV5JSMxj35RLi06TMLwFuekxGHRGB7rzXRVp5Xrz/Ir3n7GPbmX/6rdZcul87Oel5\nnNqSyIYZ+1k2/m8OLo9DtIlUbRJEixGPYjQVb7uBI/SpMP773//y119/cf78eY4ePcqECRPYsmUL\nAwYMIDs7m7Fjx7Jr1y7Onz/Phg0b6NGjB9WrVycq6mYsfjYwB5gmCEJLQRAaAHOBbVqmMY2ygCrO\ny8iRI2XR2ZW4i0bfNOKVVa/Qvm97Dr14iKiK8ibGkMtWNSiJrYIgBfFPnizFT586Be+9B1evwnPP\nwdq1I2nRQtpqduaMfWx0BO60W6/XExYWRkFBgSL7u8vqON3EbIZu3Rh57ZqU8m7sWJAxbalS4+Po\n4652v5cuXUqTJk1wcXFh+/btREQUPz7g1v32joZS4+nm5qaIrlwU5EoXXJwCQzE4OfNo534AuKUk\ns+h/Q7HZbDgZDXz40tPodAKLN+zmQIJUUqCSp/GmTvvIAN7rUh1vk4EzV8yMWHyUkT8f5exVs2pz\n6c52zKm5xGxKYN20fSz77zb2Lj5F0qk0RBF8KnrQ8JnqNB0Uid5Q/PORvfr0IJKTk/nPf/5DREQE\nbdu2Zd++faxdu5bWrVuj1+s5fPgw3bt3p0aNGjz//PM0atSIrVu3YjQab5UZDawElgCbgYtINV80\nNBweVaIe2rdvX6r3Z+dnM3bdWKL3RlM3qC47nttBk5AmMll3O6W1VU3ksLVaNXjjDemWlAQrV7Zn\n+XJp58/rr0sxNM8/D8OGgclkHxvtQWF2FxRIRbkuXbpE+fLlFW+vzHD2LAwYAIcO0X7NGmlfoswo\nNT6OPu5q9fvChQt8+OGHzJo1iz59+jB37twS/yC/5equw6HUeDo7Fy+LleqIoHNxw+AbDIC71/UV\nUb2eQ+t+ZdP8T2kz5E2ebPYoltesrDqciMnVDWtBAT7Ot680d6sTRMtqfszeHs/CvRf5K+4aO86m\nMjSqOq2sNox6Za+J3voZxmxKYN+SWLjFRL8qnlSqV46K9QJw9y/Bl9Y92lKS4rbz7bff3vM5FxcX\nVq9eXehzt8S8IIpiHjDq+k1DQzUEQTAALqIoZpVUw+FjXg5cOkCD2Q347uB3TO8wnd3P71bMcXnY\nCQyUVl9+/x2uXJHiYyIj4bXXIDRUWo15mONjKleujKenJ7Nnz+b7778nLi5OkS1kZQaLRcoOUasW\nxMfDunWKOC4aynH69GmGDx9OaGgoP/zwA9OmTWPRokUOv5KgUXxcKkbcXDXedeYQAA0bSiEP6775\nAHNGGlfNBXiEVKdTm5YAbNq+m95vzeJCSuptWp4mI2+0CePXYQ1oEe5LgU1k9rZ4Bsw/SGxKtir9\nuXjsKvuvOy7+oV7Uf7oa3Sc3o8PYhkS2q1Rqx0VDQ6N0CILQVRCEwXc89haQBaQJgrBWEASfkmg7\nrPMiiiKfbP+EJt82wdXoyv4X9vNq01cx6LQUWWrg7g69esHixRATA507SzuBqlaVfq/m5trbQvWp\nUKECo0aNolevXuTk5PDDDz/w9ddfc/jw4YfPidm7V9p/OGECvPACHD8uBehrlAmOHTtG//79qVGj\nBitWrGDSpEnEx8czevRoxdPeatgHU0QLAJIzrrL55B4ARg0YS2BoJLnmLFZt3c3W82Yy82w46QU8\nren8tW07R89coPMbM/j70Km7NKv4ufJZ79p83D0CLxcDJ5Oy6Pfdfn7ae0GxfuRlWTi35zLb5hxF\nFCGseXnajalPROuK90ylrKGhYRdeB25eCRMEoRkwCXgP6ANUBN4uibAqzsvy5cuL/Z7tCdt5c92b\nvNzoZXY8t4MI/9v3XpdEsygopasESthamGZ4OMyZI8XH9Ogh/V4tJBtjkfXKAveyW6fTUbt2bZ5/\n/nkGDRqEu7s7y5Yt49Spu7/Y5WjPYeneHURRqt0yfTpcz0ZV1ualo4+7UvY98cQT/PXXX3z++eec\nPXuWcePG4enpKYv2pk2bZNFRAle3R2kAACAASURBVCXGc8+ePSQnJ+Pl5YWXlxfNmjW7bdvOsmXL\n6NChA/7+/uh0Og4fPnyXRsuWLdHpdDdver2eDz/88LbXCILgIwjCj4IgpAuCkCoIwreCIBR5icwU\n3hiAWRt+wibaaFC5FuFBlen00jtUfHIUurCmAIjn9/Oo4RJtalfkz09eo3ZoMFfTs+j7f1/zv2+X\nk5OXf5d2x5rleC7oAo+H+WKxiny8Lo5d51Lvel1JsNlErpxN58gfZ1kzdS8Ten/I9u+OY8m1EhDu\nRcNnaijmcKt1fnD085CGRgmpBWy/5f7TwDpRFN8XRXEpMAboWhJhVZyXhQsXFvs9GXlS6vE3m7+J\ns+Hu/cQl0SwKSukqgRK23k+zalX4+msIDobUIn4vlaXxvJUH2S0IAlWrVqV3797AP/EwSrXncKSn\nw9Ch0KDBbQ+XtXnp6OOulH1ZWVmMHDmSESNGYCpJMNt9WLNmjax6cqLEeHp6eqLT6di/fz/79u2j\ndevWdO/enRMnTgCQnZ3N448/zpQpU+75I1sQBIYPH05SUhKXL1/m0qVLvPrqq3e+7CcgEim9bRfg\nCeDrotppzU7laGIsc7b+CsCYjkMAqN66F6H9JgJwMnokW95sxdTuNZg1rC1XDm1iyaQXGNBBWlWd\nu/IvOoyexv5T5+/S/3P5Ej7vXYun60nxgO+tiiXXYi2qebeRk5HPmZ2X2Db3GMvG/c3aqfs48sdZ\nrp7NYHvsJrwruFGzfWVavFinRIH4RUWt84Ojn4c0NEqIB1JNoRs8Bmy45f4xoEJJhFXZg7V48eJi\nvye34P77kkqiWRSU0lUCJWwtqqbNJq+eo1Fcuy9evEhkZCS6EmbYKlPjlJ4uxbsUQlmbl44+7krZ\n5+7urthWx48++oh169Ypol1alBjPGjVq4O/vT1hYGACTJ08mOjqanTt3EhkZyYABAwA4f/78fcfc\n1dWVgICAm/cTExNv/i8IQgTQAWggiuKB64+NAv4QBOENURQfWFjQknyKSfv3YBNtdK3bipaRjRFF\nkYOXc0FnwM+ko1vvfmyzpXJ86x+c2rWBU7s24FUumDb9RtLi9WeYOG8VZy6m0GP854zp24GRvdqg\nvx6gf2NsR7eqytbTV0lIy2X2tnheaVm1SONoTssj4UAy8fuTSTmTflsQvtFkICjChwo1/dj4/ipc\nfdTZHqbW+cHRz0MaGiXkAtIFl3hBENyBR5Gy3N3ADyhRJLVDBpDkFuTyzpZ3qBVQi0C3QHubo3EH\nERHw99/2tsIxcHJyon79+mzfvp2YmBhatWpFzZo1/71xA0lJ0LEjuLqCg2fq0rg3fn5+JCUl2duM\nfx02m42ff/4Zs9lc7KxrP/74I99//z1BQUF07dqVJ5988tano4DUG47LddYj/cRvAvz2IH2z1caO\nOClQf8KTwwE4kZJHcrYVvQB1y5v+n73zDo+iWv/4591NT2gBQkBCB0GKEBRBFAsgWMjVawEUQdQL\nKuhVFK7604tdQVFRuUoRsWKnKUixoUgRQoeAUkLvENLL7vn9MRtcYsqWmd0NnM/zzJPszpnveefd\nM7vzzjnnPVRtdDWtL72aY/vS+e3LSSz9agoZh/byzfjHCI+KZnjv2/m1YTvmr97Oy598x9IN23jj\noVtJqPHXkMO4yDAev6oZD361ifeX76H3ebVpkRBXuk0n8tmVeojdq/8esNRIqkK91vHUPa8mtRpX\nxWZxFjONRmM6XwCvi8gLwDXAAWCZ2/4LAJ9W/g7J4OXRRY+y5cgWVvxrBXabPdjmaEowYAAMGgTp\n6dCwYbCtCS4iQp8+fbjgggv44Ycf+PLLL6lbty49e/akcWPPnjhWGnbuNFY7zc6GxYvhvPOCbZHG\nR1q2bMmWLT79ZmhKobCwkCpVqpCXl0eVKlWYMWOGV2vk3HbbbTRs2JB69eqxbt06Ro0axYoVp60V\nmAgccn9DKeUQkWOufRWySUXicDqoVz2BRrXOYe/JQrYcNeavdKgbTdXIv35r4+s15LoHnqf3Pf8l\n9bvP+Pmj19mzeTVrZk4iDriu/c0symvEr+v+4KoHx/H2yIF0adP01PFXtKhF93Nr8f2WIzw99w8+\nHNQem+uBjnIqdq48yB+L93Jke8ZpNtZqUo0GyQkkta+tJ99rNJWfZ4BzgDcwApcBSin3saT9gTm+\nCHv1KOOaa64hJSXltK1Lly5/m2y2YMGCUleMHTZsGO++++5p76WmppKSksKRI0cAY6L++OXjuWzH\nZcybNu+0srt27SIlJYW0tLTT3n/zzTcZOXLkae/l5OSQkpLCryW6CKZPn87gwYP/Zlvfvn1PO4/p\n06fTpUsXEhMTT52rWStHB8KPxYwePZoxY8ac9p6/frzhBoiMnE5KSnD9CKHjy4yMDG677TbuuOMO\nbDYb999/PyNGjDitbKVvk8OGsSAzk5TzzjMWAMJ9V3DbJISGHyF02mR5voyOjubIkSMh7cvK4Mdi\n7HY7nTp1YuLEidx7770MHDiQtLQ0j/0YGxvLf//7X7p378706dNJSkri+++//9txvnL3l39w/4hn\nODZ7I0dmrefa6/rQvdvFLF/0DU3jI0iqZixeWNKXYRGRdEoZyI5anUm8fhTtevwTsdmIXPMFrTdO\nJnvlLA4eOsztz0xm6YZtwF++fLRnU2Ii7GzYn8n8FRtJSUlh2fcrWTBuFUunbeLI9gzmr5/BjE3T\nSL6pOdc/fzFXPdKRBp1r0v+OW3xuk6WdRzGV6XvK3/OYPn06KSkpnHvuuZx33nmmf89pNBWhlMpV\nSg1UStVQSrVSSv1SYv8VSqkxZR1fHuLJuGcRSQZWrVq1iuTkZK8rGTx4MO+9916F5RxOBxdMvoAw\nWxjL7lpWbq+Lp5reUp5uamoqHY0Jyh2VUqneavvrx5JY4QNPNR9+2MhAtmsXlJekqDQ9f/0I5vuy\nJP74du/evUyZMoV//etf1Kvn2Vw0X+sLWJs8eRJq1YKXX4a/TyQ+RTCuSzN0Q7VNWnHeJ06coFat\nWjz77LM89thjpmoDpKSkMGfOHAiR70l3rPDns88+y4svvkiO2yJYPXv2pFmzZrztlpYxPT2dxo0b\ns2bNGtq1a1euZk5Ojvu8pI4YY8VfUUrVLC4jInYgD7hJKVXqsLFiX84c2IpJbTqzeu+fjOs3ivp1\nr+BIjoMaUXa6NYo51SviCUf37mTWuEdYu/ArHBLGmmYD2OmM5+TahXw/dxYXtvqrx3nE15v4fssR\n/n1REuftzWP70v0AhEXaOe+qBjTpUo+Y6t4t8GnVd0Ew6wpUPWb9Xjx309s0rt3CdPs05nDIsZuH\nJt0Bbp9z8Wf36/Rk2reqYko9azZnckn/1NPq8QQRuQwjhfJSpZRPaQkDMojU09Vjp6ROYc2BNUy4\nZkKFw8XO1hW33bHCVk81R4yA3FwjgDFDL9Twx+74eGP16pJP8qyqLyAsWGBM0r/++nKLVbbrMtT9\nbrZ9BQUFPPHEEzidTgYNGmSqdjGdO3e2RNcMrPq8IyNPvwF3Op3k5+f/rZync+FWr15dsuxSoLqI\ndHB7rzsgwPKK9HKANXv/BKBl/WSO5BjzXC44J9qrwAWg5jmNGDzuCwaO+YQqVarQ/s8PqVuwl7Ca\nSQx6dgrHM40gbtuRbI5kFRgp1b/ddSpwadQpketGd6bN1Y29DlwgsNdsoOoK9e8hjcYXROQ/IvKs\n22sRke+AH4FvgM0i0toX7YAEL/3796+wTIGjgOd/eZ7+bfrT6ZxOpmj6glW6VmCFrZ5qnnOOMXF/\n2zZz9EINf+xeuXIlIkJiokdD0f2uLyC4AjL27Su3WGW7LkPd72ba9/vvv9OxY0cmTpzImDFjPO4V\n9JbevXtbomsGVnzeCxcuxG63k56ezoYNG3jsscf4+eefT2UZO378OGvXrmXjxo0opUhLS2Pt2rWn\nEiZs376d5557jtTUVNLT05k9ezaDBg06rddJKZUGzAcmi8iFItIVeBOY7kmmse1KUECjKjWIj6sF\nQNVIG3ERvt0CiAhx8QkopbArB9fa19K206WczMnjk5/X8eiszdw4eRVr954EESKjjem1tZtWo8ug\nVj4FLcUE8poNVF2h/j2k0fhIX2CD2+ubMFK8XwrUAlYCo30RDpn0HZ+s/4TdJ3fz+KWPB9sUjYec\nqQm1/OHYsWP8/PPPdOnShYSEhGCbYx6XXWZErO+/H2xLNF5y9OhRHnnkETp37kxkZCQrV6782/h8\nje9kZ2dz4sQJWrZsSY8ePVi1ahULFizgyiuvBGD27Nl06NCBPn36ICL079+f5ORkJk40lmiJiIhg\n0aJF9OrVi1atWjFy5EhuvvlmXnvttZJV3QqkYWQZ+wZYDAz1xMZdkREANM8+jCwwHoQez3NQ4PA+\nXXZBXi7fTx3LO/f2JjfzBI3bX8x9k3+kbfsOxDXryKR1+czbdBgFdD+3Fl/clcw195yPLczG4W0Z\n/LF4r9d1ajSaSkljwH1V3muAL5VSS5RSx4DnMDIpek3IZBtbsmsJdePq0rKW5xlaNMEjNxd274Zq\n1YJtSeiglOLbb7+lSpUqXHbZZcE2x1zsdvjXv+Cpp+DYMWPuy9meai6EKSwsZP78+UybNo3Zs2ef\nWrF9xIgRhIWFzNf+GcH111/P/v372VdGr+SgQYPKHaJXv359fvrpp7+9n5p6+hBypdQJYIAvNm6O\nrQ9k0NrmpHDVPCIb9CW/WgM2TX+ec6IdRDfvSlTj9oRVqVWmRlFBPku/msLCKS+QcWgf+VHxVOnz\nEOubXU2v97bgJJrImvUBuKJ5Te65tCEt6/yVIvm8qxqwYe5O9qw9TIvL6vtyGhqNpnIRBriPn+0C\nvO72eh9GD4zXBKTnpWS2jdIY1mkYB7IOMCV1immavmCVrhVYYaunmu+/DydOGIusm6EXavhi9/r1\n69m+fTvXXnstERERltcXcJ58Ej74wFjkp2VLGD3aSJvsRmW7LkPd797at2HDBh555BGSkpLo06cP\nf/75J2PHjiU9PZ1Ro0adClysPO/Vq1dXXChIWHXeBQUFluiaxeZDe7GJcEPXzsScU43qe4ykP0dq\nX8DJFXM4+PGjpD/Xm/Qx13Hw08c4ufxL8vZsoODwLo7v3MSST9/iqX+05b23x7Ou1uWsufZdlv7z\naxZEd2Pl3mycCCe3riC+6Cgv9KrP6ze1PhW4OB1O8jILyD5mLDxdrW6sX+cSyGs2UHWF+veQRuMj\n2zCGiSEiDYAWGD3GxdQHjvoiHJBHcGPHjuWSSy4pt0z7xPYMPH8go38azW1tb6NKZPnZEDzR9AWr\ndK3ACls90VQKXn0V/vlPaNq03KKVyp/u+GL3ggULaN26Nc2aNQtIfQHHZoPbbzcm7b/4Irz0EkyZ\nAnfdBQMHQrNmle66DHW/V2RfUVERy5YtY968eXz77besXbuWWrVqnUrb3b59e590/eGDDz6wRNcM\nfD1vh8PB/v372b17N3v27GH37t2ntpUrV5KVlWWBteZy2bmdaPyPsew7WUjh0UwogKz6nYhKjCTz\ncA4HjhSw89AR0jetZqfs51D475yIqkN+TAJFMU1R3aZgV4poJ0Q5IClPEZmTRUT2SZKcmfz46wc8\n2WAERV+v5NsvNlBYFEFBQRhFhac/I60Rn03B4XRskTHYIqKRiGjEi/XcAnnNBqquUP8e0mh8ZALw\nlohcCnTGyC62yW3/lYBPT7sCErx8+umnHpV77srn+GzjZ4xdMpZnr3y23LKeanqLVbpWYIWtnmiu\nWgV//AFuWUD90gtFvLVbKUVMTAyFhYUBqS+oVKkCL7wAd99tBDDjx8Ozz0LXrnzarx9kZJg+nvBs\nvd5Ls2/v3r3Mnz+fefPmsXDhQjIyMqhVqxa9evVi9OjRHvX8WXneL7zwQsjeiJV23k6nk4MHD54K\nRkoGJ3v27GHfvn04HH+trRYbG0tSUhJJSUlceeWVIXu+7lzS8hq+STuBEjsQjip0sGPbXibuvZ/w\n8KpEJUQT4xSinVDDqajnhBgnROUponMg2llE5N+myEQbm60OrS5/iQOHy15Y0k4OMfb9FM2fyu4F\np39Pit2OhEUgEZHYwiORiGhskbHYImKQqDhskXFIZBy2yGjevvdaMn77DAmPxhYZg0REYYuIOe1/\niYg2AiO7f7c4gfp+CPXvoZK0iXmD1nExwTZDUwZb8stZvyKAKKUmi4gD6IPR4/J0iSL1gKm+aAck\neImJ8ayR169anxGdRzBu6TiGXjCU+lXLHhfrqaa3WKVrBVbY6onml18aS354Mq2jMvnTHW/tFhEu\nvvhiZs2axe7du0lKSrK0vpCgSROYNMkIXmbOhPffJ+bf/4aRI43emUGDoGdPY76Mn5yt13uxfZs2\nbeKDDz5g3rx5rFu3DhHhoosuYsSIEVx99dUkJydj98LPVp53dHS0Zdr+cPToUT799FN27dp1WmCy\nd+/e0x46REVFUb9+fZKSkmjevDlXXnnlqUCl+P3q1at7nPY4FGhX90JqrKhKblYajpwiVF4Rdqci\nEbid4sQiyrVVhCI8oojIyELCw/IID8sl3JZDmC2LcMkinEzsnCSMTMLIIoxs7CoXlAPlAOVUxl+3\ndbaVw4Fy5EJ+Lo6yKz5Fnqcnbg8/rYfH5gqKohq2Iy75aiJqNyr38EB9P4T695BG4ytKqamUEaAo\npe7zVTfkZm7+55L/8M6qd3ht6WuM6zUu2OZoSuBwwPTpxpAxPe/3dNq2bcuSJUuYOnUqDRo0oEOH\nDpx33nlez3+pdERHQ//+xrZvH3z0kTEp6uqroW5dGDDACGRa+5TO/awmIyODp556ijfffJOaNWvS\nu3dvHnvsMXr27EnNmjUrFtCcYurUqYwaNYrGjRuTlJREw4YN6dq166nApHirWbNmpQpMPOGS/e1w\n5mYAp090daAotCsk0kZkbBhVqkVStUYMVWtEExUXQWRcOJGx4UTGhRMRG05UXDjhUWGIrWL/KKXA\nWQiFWaiiHFRhNhRlu/7m4CzIgvyTOPIycOadROVl4szPQuVn48zPxlmQhyrIQxXm43QoV9CjTg+A\n7HEQlYgqyMWZn4sqyMFZkAtOVwjkKMSZk4EzJ+M023K3/c7xH94lsv55xCVfQ9z5VxEWF2+Wu88K\nzrBLRFPJCLnbz6qRVRncfjDT1kzj+e7PExVWdje0JvAsWAC7dlU8Uf9sxG63M3ToUNLS0li9ejWz\nZs1i3rx5tG3bluTkZOrWrXvG3RT9jXr1YNQoo/dl1SojiJk61chO1rGjEcT072903WnKRCnFRx99\nxMiRI8nKyuKFF17gwQcfPPMDYQspKiqidu3abN++PdimBJyIQjsSb6dV7wbUrVud2GpRRMaGExZl\nt+w7SUTAHgH2eATfAwOlnFCUiyrKORUIFax+BZWVTnirwYS3uK1EeWUELacCmlycBTmuv7k4so6R\nveFHcrYuJX/PJvL3bOLoN68R06IzcR2uJrb1FdjCfV+HRqPRWE9Aso15u6bA4PaDOZp7lAXbFpim\n6SmVaf0DK2ytSHPSJGjbFjpVvI6oR3qhiq92h4WF0aZNG26//XYeeOABOnfuzNatW5k8eTJvvfUW\ns2bNIjU1lSNHjhg/sn7WF2qcOg8RuOACePNNozfm66+hfn0YMcIIcG6/Hdav917XKntDiC1btnD5\n5ZczcOBAqlevTlpaGqNGjTI1cLHyvF9//fWKCwUJqybWh2I7cqcowsEN/+lC+0saU6dpDeJqRRMe\nHWZq4GKVD0RsSHgstujaSEQ1Rj40DJW1CwD7OVeUUl6QsAjsMdUIr5FIRJ3GRCW1JrrpBcS2upSq\nF/6DuoNfp9H/fUetf4wkMqk1OB3kpC3h0PQn2PVSH44tnERR1rGAfa6h3n40mlAjID0vDRo08Kr8\n1qNbAWhcvbFpmp5ila4VWGFreZrbtsGsWcZEfU9/8yqTP90xw+4aNWpwxRVXcNlll7Ft2za2bt3K\nnj17WLt2LUopoqOjT42hj42NpbCwkPDwcBOsDx6l+i0iAm64wdgOH4YPP4TXXzeGl11zDTz6KFxy\nSbmN6my43gsLC3n55Zd55plnqF+/PosWLWLTpk3Ur2/+mhhWnndiYqJl2v7izbwgbwildlQaTbvX\nJ6qKtb12VvpAOQoo2v4VhVs/5pyIfUB9wprciC22ns+a9rgaVLu4L9Uu7kvB4XSyVs8jc+UcijIO\ncnzRJE78NI0ax+IpOLCNiMQK0mr6Sai3H40m1AhI8HL//fd7VX5y6mQuOuci2tZpa5qmp1ilawVW\n2Fqe5muvGaN9Bg40Ry+UMdNum81G8+bNad68OQD5+fns3buXXbt2sWfPHn799VdEhJdeeonExESS\nkpJo06aNJTetVlOh32rXNnpf7r8fPv0Uxo6Fbt2gSxcjc1m3br7p+kiotM+tW7dy8803s3HjRh55\n5BFGjx5NdHQ03bt3t6Q+K8+7X79+vPzyy5bp+4NVyQRCpR2VRcNmCRUX8hMrfKCUwrF/MYUbJ6Fy\n9gMwbEB3wtsMw16zjWn1RNRuSPxV91Cj+91kb/iBE4s/In/PJvrWOsDu1/oSc+7FxPceRmS9c02r\n051Qbz8aTagRcnNevtn6DfP+nMeHN3wYbFM0bhw9Cu+9Z0xnCNFkQpWGyMhImjRpQpMmTQAjVevh\nw4dPBTNpaWksX76c5ORkevToEbLZm/wiPNwYOjZgAMydC089Bf/4h5GD+yycDzN//nzWrVvHRRdd\nxPDhw8/Mz1wTNGLjKt8cDueJrRRsmIDzqDG8VKJqEn7ev7DX74GINSPexR5G3PlXEduuJ3npa8n4\n5WOyN/5MzpbfyNm6lLj2vYnvdR/hNepaUr9Go/GMkApe9mfuZ/CswVzX4jpua3tbxQdoAsY774DT\nCff5nNhOUxY2m406depQp04dLrzwQpxOJ6tWreL7778nLS2NXr160bZt2zNzsr8IXHutMYmqeXN4\n8knPFhA6wxg+fDiJiYk88MADtGrViueff55hw4ZZNsxJowlVVP5xCjZOwrF7AaDAHklYs76EN+uL\nhAUmqBcRohu1J7pRewqP7uHYgnfIWvMdWavnkbVuEdW69iO+x93YImMDYo9GozmdgEzYT0tLq7DM\n5sObufaTa7GLnXdT3q3wRs0TTV+wStcKrLC1NM2iInjrLWO4WO3a/utVBgJtt3t9NpuNdu3a0aNH\nD/Ly8pgxYwa//fZbQO3xFZ/9Vr26MWRs0iTYv9883QoIlfYpItx8882kpaUxcOBAHnzwQVq2bMnw\n4cPZunWr6fVZed47duywTNtfioqKLNENlXYUTMzyQcGacTh2zwcUUrUJUd0/IKLlHacCl0D6Oi0t\njfCa9anT/znOGf4+9io1wVFIxuIPOfrdBFPr0Wg0nhOQ4GXUqFFl7ityFjHm1zF0mNiBnMIcvr31\nWxJiKx6fW56mP1ilawVW2Fqa5o8/woEDMHSoOXqVgUDbPWrUKA4cOMCvv/7K+++/z9ixY/n222+p\nXr06nTp1omXLlgG1x1d88ttvv0FysjF8bMQIqFPHHF0PCLX2Wa1aNSZMmMDy5cvp2rUr77zzDuee\ney4XXnghr732Gvv27TOlHivP+4033rBM21+ys7Mt0Q21dhQMzPKBve6lYDeWSFAnt1Ow6nkcR//K\nTBhIX48aNQqlFNmbFnP4q+dxZB4FwBZdlZhzu5paj0aj8ZyADBt76623Sn1/8+HNDJ41mN/3/c6I\nziN45opniA73rFu4LE1/sUrXCqywtTTNTz+FZs2gQwdz9CoDgbL74MGDLFu2jHbt2jFx4kTCw8Np\n3LgxvXr1olmzZsTHV66F07zy2/79MHo0TJ5sDBtbuRLat/df1wtCtX1eeOGFTJs2jccff5z169fz\nySef8Oijj/Lwww9zxRVX0LdvX/r06UPdur6NvbfyvEeNGsXixYst0/eHuLg4S3RDtR0FErN8ENag\nF/aECyn8YzpFO2fjPLqO/F//jVRtii0mkVeHJVP4x3QkqjYSXeuvv3bf5/U487MpyjhMUcZBijIO\n4Th5iKKMQzx5WW12v3IjhUeM1MwSGUv1S2+j2iW3Yo82ry3p9qPReEdQUiU7nA7GLR3Hf3/8L42q\nN+LXwb/SJamLX5pmUZlSFgYqVfL8+ca6gr5MuahM/nQnEHanp6czffp0oqOj6datG82aNaNBgwaE\nhYXUVDSv8Mhve/bAmDFG0BIdDRMmGN165czvOFuv9xYtWtCiRQtuvPFGTpw4wYwZM/jkk0+47777\nGDp0KJ06dSIlJYWUlBTatGnj8bwoK8/b14AqEJytqZIDgZk+kKh4ItoOI6zZzRRt/Zii9Lmok9tw\nnNxGPaBwUynBcUTVU4GMLao2El0bImuiJAZHATjzi3Bkn6Qo45ArSDlsBCoZB3Hml94jFw8UAhIe\nRbWu/ajebQD22OqmnWcxla391GoXQ2LTKsE2Q1MGB/af+QlfAn6X5E9viybwHDwIe/d6viilxjP+\n+OMPPv/8c+rXr0+/fv2IjKx82YC8Jj3dSIc8dSrExsITTxgpk6tVC7ZllYLq1aszePBgBg8ezLFj\nx5g7dy6zZ8/mpZde4oknnqBRo0anAplu3bpV+jWDNBpbdAIR5z9EWIsBOE9sReUdQeUeNra8wzhz\nXL0lmbk48o/gyD+Eo0DhLHDiKHDiKFDg9KwuiYwhrFod11bb9TcBe9UEohq0sSRo0Wg0vhHQ4OVg\n1kEumHwBSVWTfOpt0QSeNWuMv74MGdP8nYKCAhYvXszSpUtp3rw5N910U6XuafGI7dvhxRdh2jRj\nYv7TT8OwYVBFP7nzlfj4eAYMGMCAAQPIz8/n559/ZtasWXz99de88cYb1K5dm3vuuYd77703pHtC\nNBpPkMh4VERDCo4XUXDwOAWHcik4eIjCQztQhfkVHm8Lt2GLAHuEDXuEYIs0/rq/ttkFwguwVbEh\nVeKwVamFrUoDpEpDJEo/Dr8AeAAAIABJREFUYNFoQomATNgfM2YMAKn7U8kpzGHebfP8DlyKNc3G\nKl0rsMLWkpppaRAZCa4lSfzWqyyYbbdSio0bN56ajN2tWzduvvnmU4FLZfVTSU47jz/+gMGDoUUL\nmD3bCGB27IBHH/U6cDlbr3dP7IuMjOSqq65iwoQJ7Nq1i1WrVtGvXz9effVVGjZsyMCBA0lNTfVa\n11emTZtmmba/5OTkWKIb6u0oEJjhA+V0UHBkF9kbf+L4D1M5+OmT7B5/Kzue7Mausddz4P2HefHp\nJ8hKnUvB3jQjcLGHE5HYjNg2V1Cta3/ir3mAhP7PUe+eyTQYNZPGzy2h8XMraPD4z9Qb9jkJt0+g\nZp/RVLvsXmLb/5OIxl2xV00CbFCYifPYBhzp31K44X+8MLIveQv6kjs3hbzFw8lf/QqFf36B4+AK\nnDkHUUr57zgqYfsRQfQWuluw20cACMgj3+IfjLQjaYTbwkmqlmSaptlYpWsFVthaUnPrVmP5DZuP\nYW5l8qc7Ztqdm5vLF198wY4dOzj33HPp1asXNWrUsKy+YJKTkwMnTxrDwT76CBIS4JVXYMgQiInx\nT9cCQt3v3tonIiQnJ5OcnMwzzzzD1KlTeeONN/jwww+59NJLmTRpEi1btrT0vPPy8izT9hezbjZL\nEurtKBD444P8fVs59t1b5G5biSoqKLWMhEUQntAIR81o4nvdQUSdpoQnNCY8/hzEXvGtjIRFI1Ua\nQJXS55coRwEqazfOzJ04M9NRmenkqmMgNijKxnl8ExzfhMP9IHs09nqXEt5yMLaYv2dJ9BTdfjQa\n7whI8PL0008D0DS+KUXOIq7++Go+uP4D6lbxfThDsabZWKVrBVbYWlJz+3Zo2tQ8vcqCmXanpqay\ne/dubr31Vpo3b255fcHk6SeegOuug2XLYPx4uOsuY1K+v7pn6fXuj33Vq1dnxIgRPPDAA8yePZth\nw4Yxbtw4Jk+ebOl533PPPUyePNkyfX+IjbVmUcFQb0eBwBcfFJ08zLH5b5O5ag64AksJjyQ8oTER\nCY2JqNPE2BKaEBZfD7HZGfdvsy03EHsEUq0ptmp//eC98MHTKGchKmsPzsx0nJk7UZnpRnCTtQcc\nuTh2L8Cx90fCmt5EePP+SLj3Wch0+9FovCOgg+1Tzk1h/oD5DJw5kPPfOZ/3r3+fq5tfHUgTNF6y\nezdceWWwrajcbN26laZNm5YZuJwxKGX0uPzwA3z3HXTvHmyLNEBYWBj//Oc/+frrr9m8eXOwzdFo\nUE4Hx394jxM/TUMVGj11ce16UqP73YQnNEZ87eq3ALGFI1UbY6va+LT3lbMI54k0CjdPxXlkDUV/\nTKcofS4Rre4irNF1QbJWozk7CPg3RM+mPVl7z1ouqHcB13xyDbO3zA60CRov2LULkvwf5XfWkp+f\nz+7du8/8wAVg6VKYOBHuu08HLiHKrl27gm2CRkP2pp85vvAdVGEeEYlNOee+qdS57UUiEpuGVOBS\nHmILwx7fhsiLxxFx0XNIVC0oyKBg7as4M/4MtnkazRlNQL4ljhw5ctrrhNgEvrn1G/q06MOQOUM4\nmnPUb02zsErXCqyw1V0zIwMyM8GfFPSVyZ/umGX3wYPGpM769esHpL6g0rEjR66+2li35YMPTJU+\nW693s+ybOnUqH3/8MSNHjjRVtzSOHz9umba/OJ0e5s31klBvR4HAGx9EN+lIeIKRBabo+IEy57n4\nW4+/eFKXiEBhFirfaPe2Wu2RKg1Nr0ej0fxFQIKXO++88+8Vi42J100k35HPv7/zfhBraZpmYJWu\nFVhhq7tm8UNaf3peKpM/3THL7kOHDiEi1KxZMyD1BZXISO602+GOO2DQIBg3zjTps/V699c+pRRf\nfPEF99xzD0OGDGH48OGm6JbHM888Y5m2v2RmZlqiG+rtKBB44wN7TDXOuXcKUY074MzPZt+793Pi\n5w9RjiJT6/GXiupSRbkUrJ9AQepLoBzYz7mCyM4vITbv1ljS7Uej8Y6ABC9PPfVUqe/XrVKXN3q/\nwcfrP2ZW2ixTNP3FKl0rsMJWd80dO4y/jRqZo1eZMMvuqKgolFIcOHAgIPUFm6eefhomT4bHH4dH\nHoH//OfURFy/dM/S690f+4pTct9yyy1ce+21vPnmm8ZTYj91K2LIkCGWaftLjB8Z78oj1NtRIPDW\nB/aYqtS96y1i2/YARyFH545nz1sDydu90dR6/KG8uooO/EbeD4Mp2v4VAGHN+hLR8f8Qe4Sp9Wg0\nmr8TkOAlOTm5zH0D2g2gT4s+DP1mqFfDx8rT9AerdK3AClvdNbduNRZC92eNu8rkT3fMsvu8884j\nISGBRYsWlZumtbL6qSTJyckgAs8/D6+9BmPHGhnHiip+olqhrgWEut99sW/btm307duXzp07c/Lk\nSebPn8+MGTOIiPjrpsrK827VqpVl2v4SHu7dE3FPCfV2FAh88YEtPJI6t71I7ZuexBZdlYJ9W9k7\nYTBHZr+CMy/LtHp8pbS6nLmHyV/xFAXLn0DlHkJiEons/CIRrYci4tstlW4/Go13BH1mnIjwznXv\n+Dx8TGMd27ZBs2bGvajGN2w2Gz179iQ9PZ2FCxdaNuY+JHnwQWOtlw8/hCefDLY1ZzxKKd58801a\nt27Nb7/9xrRp00hNTeWqq64KtmkaTZmICFUv/AdJj3xJXIerQTnJWPIpu16+kZOrvkGFyHemchRQ\nuPUT8r4fhGP/YhAbYc36EXXFVOx1Lgq2eRrNWUXQgxeAelXq+Tx8TGMdGRkQHx9sKyo/zZo1o1ev\nXixbtozPP/+c/Pz8YJsUOG67zQhcxo2DP/4ItjVnLIcOHeK6667jgQceYOjQoWzZsoVBgwZht9uD\nbZpG4xFhcfHU6fcsde96i/BaDXBkHeXw50+x9+27yd8T3BTfjgPLyPvxLgo3TwFHHrb4NkRdNpGI\n1kOQsKig2qbRnI0EJHh59913KywzoN0ArmtxHUO/Gcrx3Iqz1Xii6QtW6VqBFba6a2ZmQpUq5ulV\nJsy2u3PnzvTv358dO3YwdepU9u/fb2l9waLU8xg5EurVg4cfNlfXBELd757Y99tvv9GuXTt+//13\nvvnmG8aPH1/h3A4rz3vmzJmWaftLbm6uJbqh3o4CgVk+iGnRmaSHPiX+6uFIRDT5u9ax562BHPjo\nP+Slrw+Yr5VyMvnVx8lbMoL85Y+jsvcikTWJSH6MyEvGn7aYpb/o9qPReEdAgpfU1NQKy4gIE6+b\nSEZ+Bm+ueNMUTV+wStcKrLDVXXP/fqhd2zy9yoQVdjdv3py77roLpRSTJk1izpw5ZGdnW1ZfMCj1\nPKKj4emnYc6cv7JAmKFrAqHu94rsW758Ob1796ZFixasW7eOa6+91hRdf0hLS7NM21+K/Jx7VRah\n3o4CgZk+kLAIalx+Bw0e+Yq49r1BKbLXf8/e/w3mlw9eIWvDDyinw7T63FGOfAp3ziHvh8GsXPQB\nziNrQMIIa9aXqO7vE5bU81TiC7PQ7Uej8Y6ABC8TJkzwqFy9KvUYkjyE15e9TmZ++SktPdX0Fqt0\nrcAKW4s1lTIm7J97rjl6lQ2r7E5ISGDo0KH07t2bjRs38tZbb7F8+XLefLPigL0yUKbfbrrJyP7w\n0Ufm6vpJqLfP8uxLTU2lV69etGvXjrlz55KYmGiKrr88+uijlmn7SxV/u5LLINTbUSCwwgdh1RKo\n0/856j/4KVU69gF7GE92juXgh6PY9cqNHP/pffJ2b/QoxXJ5KEc+jiNrKNg0hdwF/Shc+xoqazev\nDetAWLNbiOr5kTEhP9yabHW6/Wg03hEWbANKMrLrSN5e+TZvr3ybUV1HBducs5b0dGPYmL/Bi+bv\n2O12LrroItq0acMPP/zAd999x4EDB0hJSTH9iV7IEBsLN98Mb7wB/fpB8+bBtqjSopTigw8+YPjw\n4bRu3Zq5c+cSFxcXbLM0GsuIrNuMhFtGE997GBm/fcbJZV9RdHQPx+YZD30kIoaohm2JbtyBqMYd\niExqjS287LkoqjAL57GNOI6uw3l0Pc7jaaD+CoAkug5hTW8krMHVSHis5een0Wi8I+SCl/pV63NH\n+zsYt3QcwzsNJ8aiJx2a8pkzB8LD4fLLg23JmUtsbCx9+vShYcOGzJgxg1q1atG1a9dgm2UdY8fC\n0qXQsycsWQLnnBNsiyodJ06c4N577+XTTz/ljjvu4I033rCsN0GjCTXCqtaiZu9h1LjyTjJTvyUn\nbQl5O9fgzM0k94/l5P6x3ChoDycqqTVRjTsQ3bgDkYkNUNnbcR5dh+PoOlTGduD0LGYSWRNbrXbY\n616Kve6liE0nu9BoQpWQC14AHr3kUaaunsqkVZN4sPODwTbnrGTGDOjeHapWDbYlZz7t2rXjyJEj\nLFq0iLp169KkSZNgm2QNtWvDggXQtStcdZXxvw5gPGbXrl1069aNEydOMH36dPr16xdskzSaoGCL\niKZa55uo1vkmlNNJwcFt5O1IJXfHGvJ2pOLIPErezjXk7VzDiR/fAyAsxkZEFTvhVexEVLETVrM+\n9prtsNdsh61WOySm3pnb863RnGEEJHhJSUlh9uzZHpdvUqMJg9sP5umfn+bWtreSEJvgt6anWKVr\nBVbYmpKSwoQJs/npJ2OhdDP0Kos/3Qm03S+99BJdu3YlLy8vYHVaQYV+a9AAFi6EHj3goouMLr4O\nHfzX9ZFQb5/u9o0fP56srCzWrl1Lw4YNTdM1m4ceesgSXTPIyMiwRDfU21EgCJQP/laPI4cw23Gi\n43OJpAhHtTAcWbEUnHS4tiIc+YqiHCdFOU44WAiALfYgUQ0OENUwgaii2kQmxSMR0aFxTiHOkbXZ\n7D9Y9qLLmuByvHLfRnhEQIKX4cOHe33Miz1e5Ou0rxm1cBTTrp9miqYnWKVrBVbYOnz4cD780EgQ\ndcst5uhVRgJtd+fOnalevTotW7YMaL1m45HfWraEFSsgJQUuuQSmTzf+91fXB0K9fRbbl5uby7Rp\n07jzzjv9Dlzcda3glltuYfHixZbp+0N0dHTFhXwg1NtRIAiUD4YNG4bjyFqK9izCeWwjKjMd+OtG\nWoCwuDgiklphiz8Pe3xrnGEJ5O/fQd7OdeTvWkf+3jSc2SfI2fwLOZt/MQ602Ymo25zoRu2p0vE6\nIs9pGbBz0u1Ho/GOgAQvvqzwXCumFi91f4kh3wzhgYseILlust+anlCZVqO2wtarrrqKkSPhhhv8\nX+OlWK8yEmi7Y2NjiYqKIi8vr8I1OkIZj/1Wrx4sXgy33w433ggbNpSbHeJsvd6L7fvyyy85duwY\nQ4YMMVXXCrp06WKZtr9ERERYohvq7SgQWO0DVZSHY+/3dIuYQf6S7aftk9h62Gq0dgUrbZCqjRD5\na86KHQiv2Zi4Nle6tArI37uFvF3ryEtfT176OhwnD1GwN42CvWlkLPmUqIbt6HJxX1RRIRIWbum5\n6faj0XhHSM55KWZwh8GM/W0szy1+jq/7fh1sc84KjhyBdevgkUeCbcnZRb9+/fj888+ZMmUK/fv3\np7a/C+xUBmJi4OOPjaDl8cfhq6+CbVHIMnHiRLp3705znaVNc5bhzDlA0Y7ZFKXPhcKTxpv2SOz1\nu2Ov0wV7/HlIZA2vNCUsgqiGbYlq2BYuNd4rOnGAvPT1ZG/6iax1i8hLX0de+jqOVqlJ1Yv+SdWL\nbiSsai2Tz06j0fhCQNZ58ZUwWxiPX/I4M9JmsPHQxmCbc1bw66/G38suC64dZxsNGzbk7rvvJjw8\nnClTprBy5UocDmsWYQspoqLg2Wfh669h1apgWxOSbNmyhSVLlpjW66LRVBaK9i8hb9FAiv78FApP\nIjGJhLceSvRVnxHZ/hHC6nb1OnApi7DqicSd35M6/Z+n4WPfUqPHEOxVauLIPMrxRZPZNfYf5Pz5\nuyl1aTQa/whI8DJz5kyfjx3QbgDVIqvx1ebTn8r6o1keVulagRW2fv75TGrVMuZVm0Fl8qc7gbZ7\n5syZ1KhRgzvvvJNWrVrx7bff8r///Y+NGzeiVOWZGOmT3/r3N/6uX2+urgeEevucOXMmMTEx2O12\nDh06ZKquVfz444+WaftLfn6+Jbqh3o4Cgdk+cBxdT8HKZ0EVYYtvS0SnZ4nq8SHfbohEIqxNgxlW\ntRbxPYewutW/qHPrC0TWPw9VmM+BDx4hf2+a6fXp9qPReEdAgpcxY8b4fGy4PZyrml7F3D/mmqZZ\nHlbpWoEVti5cOMbU9QMrkz/dCbTdxfVFRkZy/fXXM3ToUOLj4/nyyy+ZMmUKO3fuDKg9vuKT38LD\nwWaDcm4sz9brfcyYMSQlJXHzzTfz6quvmtYbZ+V5T5s2zTJtf8nJybFEN9TbUSAw0wfOkzvJX/5/\n4CzAnngxkV1fNXpZxB5QX499ZRxx519FvXsmE9WkIyo/m/1TH6Dw6B5T66ls7WfxDvOz9s3ZdExr\najwmIMGLv+P3ezTpwYq9K8gr+iv/m1VzAirTXAMrbHU4apsavFQmf7oTaLtL1peYmMhtt93GoEGD\nEBHef/99Zs6cadnNl1n47Le4ODh+3HzdCgj19lls3913382OHTvYsGGDqbpWEB8fb5m2v9hs1vzk\nhXo7CgRm+UA5HRSkvgSFWdjiWxPR8YnTFowMpK+L67KFR1J30Dgi6p2LI+sYh754BuV0VnC09/VU\nFn7ZcdJ0zTmbLQgKzmLNM52QnvNSTFLVJBSKw9mHg23KGU92NjRrFmwrNMU0atSIu+66i5SUFLZs\n2cKECRNYt25dpRpK5hFt28LatcG2ImTJzMwEjKBWozmTKdrxNc6MrRAeR+SFTyNhUcE2CQBbVByJ\nA19BwqPI25FK5u+zgm2SRnPWUimCl9qxxlOJwzk6eLGSjAwoKNDBS6ghInTo0IFhw4bRuHFjZsyY\nwWeffUZBQUGwTTOP5GRj7ZczLSgzie3btxMdHU1Cwt8X7NVozhScuYcp3PweABGthyJRodWLF16j\nLvG97gXg6NzxFGXpJ+YaTTAI6VTJxRzPNYaTVI20dpLe2c6ffxp/dTbW0CQuLo6bbrqJtm3b8vXX\nX/Phhx/SqlWrYJtlDjfdBG++CV98Yc7qqGcYS5cupUOHDohIsE3RaCyjcNNkcORhi2+DvcHVwTan\nVKpd3JfM1LkU7NvC8flvU/vG/wu2SQEnIsFGnf6xpmpGLrNrTZM4sC0K3jBNLiTxNHiJAti8ebNP\nlaxYsYLU1FSfjgX4fsP3hB0I49j2Y6TuTDVFsyzK03U7f1/7sf3yY0nM9sHChQAryMpKxSzZ0mw0\nwY+njjXLlyWxqn2ZVV9ycjJz587ll19+KX6rcrfJuDi45BJ4+GFo2NCYxG+GbgUU64Zqm1yxYgUr\nV65kwYIF3HLLLab5wMr27TYvJyTaZDF79+6lsLAw4L8bvhKqbbIs/PWBI+NPClbPAITI6ldgW73G\nknq8oay68ppcy+HU1TDnY+rEtSKidiNL6jEbs+5hsnIcrNmcaYpNxZzMKtKaJrF1T1Hxv3/7nLds\nN2/erJlaXqOUqnADbgWU3k5tt3riN+1Ha/yofWmeL7UfzfGj9qV5vtR+NMeP2pd6K2fT1+bZsd3q\n9tk1ALItqCMbaODrd5Svm7hOqlxEpCbQC9gJ5JVf+owmCmgEzFdKHfX2YO3HU/jlR9C+dEO3SXPQ\nbdI8dJs0B90mNWajr82zg1I/ZxFpANQyua4jSqldJmtWiEfBi0aj0Wg0Go1Go9EEm0qRbUyj0Wg0\nGo1Go9FodPCi0Wg0Go1Go9FoKgU6eNFoNBqNRqPRaDSVAh28aDQajUaj0Wg0mkqBDl40Go1Go9Fo\nNBpNpcCU4EVERouIs8S2qUSZZ0Rkn4jkiMhCEWlWis6lIjJbRPa6NFJKKVOujohEisgEETkiIpki\n8pOIfFeWpoi8V4rtcyvQ/FJEEvzzWsWIyDAR2SEiuSKyTEQurKD85SKySkTyRGSriAzyR1NELivF\nNw4RSfDks/LFvmDjrc/9rKvC6ybUMOMaLUP3MRFZISInReSgiMwQkRb+aovIPSKyVkQyXNtvItLb\nX3utwhN7TazrUddn+KqfOqa2Y7OvQV++qzzU9ajN+qAbsDag0Wg0lREze142AHWARNd2SfEOEfkP\nMBwYAnTCWNRmvohElNCIBdYA92EsfnMaHuq8DlwL3Ah0AxKAVmVpuphXwvb+JfaX1KwHfFWGlimI\nSF9gHDAa6ACsxTjXUnN0i0gj4Bvge+B8YDwwRUR6+qrpQgHN+cs3dZVSh6jgs/LFvmDjo3/8pczr\nJkQx4xotjUuBN4GLgB5AOLBARKL91N4N/AdIBjoCPwCzRKSVn/ZaRbn2moUrIBiC0cbNwJR2bNE1\n6NV3lRdU2GZ9JCBtQKPRaCotZqx0ifFDk1rO/n3AQ26vqwK5wC3lHOMEUrzRcb3OB25wK3OuS6tT\nGZrvAV+XY0e5mlatHgosA8a7vRZgDzCqjPJjgHUl3psOzPVD8zLAAVStwNa/+dUX+4K9eesfE+or\n97oJ9c2Xa9QL7Vou/Uss0D4KDDZT02I/n7LXJL04YAtwJfAj8Kqfeqa1Y6uvQU++q/zQ/lubDdU2\noDe96U1vlXkzs+eluatbfpuIfCQiSQAi0hjjSdz3xQWVUieB5UAXT8U91LkACCtRZguwq4K6Lnd1\n+6eJyP9EJN5tX0cfNX1GRMJd9brXqYBF5dTZ2bXfnfnF5X3UBOPmYY1rWM0CEbnYu7PxzL5g44d/\n/KXU66YyYta17qI6xlPyY2Zpi4hNRPoBMcBvJttrOiXsXWqi9ARgjlLqBxM1/W7HQbwGzeK0NmsG\nFrYBjUajqbSEmaSzDLgD42leXeApYLGItMG4OVDAwRLHHHTt8xRPdOoABa4bEE/rmocxBGwH0BR4\nEZgrIl1cP5yJPmj6Sy3ATunnem4ZxySWUb6qiEQC8T5o7geGAiuBSOBfwE8i0kkptcaD8/DYPqVU\nvpd6ZuOLz/2lzOtGKZVtUZ1WYsq1LiKCMVTzV6VU8dwJn7Vd30NLgSggE6MXdYuIdDHDXrMpw940\nk7T7Ae0xHvSYhVntOBjXoCmU0Wb90bOsDWg0Gk1lx5TgRSk13+3lBhFZAaQDtwAh/YWrlPrc7eVG\nEVkPbAMuxxhScdailNoKbHV7a5mINAUeAkJusn1lo4Lr5r3gWBUS/A84D+hqkl4axjyrasBNwAci\n0s0kbSso1V5/b15FpD7GDXYPpVSh/2Ya6HYMBKjNnu0BjIg8C/RSSnUKti3eICJ2oBC4Tik1t6Ly\nmuBQWdvX2YglqZKVUhkYN73NgAMYQ4/qlChWx7XPUzzROQBEiEhVX+tSSu0AjmDYboqmDxzBmGvi\njc8OlFH+pKtXwxfN0ljBX77xhorsCzZm+cdnSlw3lRG/r3UReQu4BrhcKbXfDG2lVJFSartSarVS\n6v8wJoH/2wx7raAce/2lI1AbSBWRQhEpxJjX9m8RKXD1HviNH+046NegL5TTZn3GwjZgKfJX9k6H\nnJ6hsolJVbwI9DJJ62+IyLNuNheKkfXuFRGJsapOjXdY3MYsbV8a87AkeBGROIwfrn2uYOAA0N1t\nf1WMDC2/earpoc4qoKhEmXOBBng4Xtj1dLImxpApUzS9xfVUdFWJOsX1uiyfLXUv7+KqYht91CyN\n9vzlG28o175gY6J/fMbtujHlBijQ+Hutu24C/wFcoZTaZaZ2CWxApMmaVmLDGLbpL4uAthjX8Pmu\nbSXwEXC+a5is3/jajkPhGvSW8tqsyZjVBgLBPP7KOpeIMZRwhxnCSqkcpdRxM7TKYQ2G3Y2AR4F7\ngZfKKuzqVdEEFkvaWIDal8YMzJj1D7yMkUK4IXAxsBBjnHJN1/5RGNlS+mD8eM4E/gAiSujEYvyg\ntsfI2vKg63WSpzoY3fc7MIZ9dcS4OU4tTdNV31iMm5WGGD+SK4HNQHg5mkuAX6zMpIAx5CIHGAi0\nBCa6zr22a/+LwPtu5RthjI0egzE+/D6gAGOIiK+a/wZSMOYCtcYYclLo8kNFn5XX9gV7q8g/FtRX\n7nUTipsZ12gZuv8DjmOkn63jtkW5lfFaG3jBpdkQaONql0XAlf7Ya6F/y7XXgvrMyDZmWju24hqs\nqM36oVthm60MbcDk9lRR9s5rgF9dfjsCzAYalyiTBHzm+tyzMBJodHTtexb4vUT5oRi/2bnARmCI\n274I4G2MrIK5wHbgkXLsexZYUeK9KUC66/8erjbUCyPQzgcudu0bhjHkPA/YBPR307C7jhuCkagm\nx/U9c32wP7PKtpXXxkK9fenNxHZgUmOajpHOMhcjC9cnpTSYp1wfcI7r4m1Wis5lrgvcUWKb6qkO\nxtOpN10NNxPjx7lUTYzJkN9hPH3NczW8tynxQ1mK5hdAguUfjnGDv9Pl16XABW773gN+KFG+m+sL\nNdf1xXi7P5rASJdONnAYIwtQN08+K1/tC/ZWnn8sqKvC6ybUNjOu0TJ0S9N0AANLlPNKG+PGY7vL\nxweABZS4CfTFXgv9W6G9Jtf3A/4HL6a2Y7OvQU/arI+6HrXZUG8DJrenioKXGzF6qhpjBJBzcEuz\njZHGewfGb01nV7l/Ahe69p8WXGDMvdyF8ZCtIXADxk1pf9f+R12+7IJx09qV8pdoKC14eQvY7/q/\nu+tzXwVc4bKvGnAzxj3E3Ri9jo9gBJxdXccVBy8HXTY3B57HeIDXNNifW2Xaymtjod6+9GbeJq4P\nQKPRaDQajcZnROQ9YADGjXwxc5VSfcson4jx4KClUmqriNwHPAc0VEplllL+tAnVIrID40n3V25l\nRmMM47tcRCZgBAe9PbS/pP4FGA84v1NKDRCR7hg9i9copb5zO24ZxhP7+93e+wqwKaVucJuw/4ZS\n6kG3Mr8DS9zf05SPN20s1NqXxjzMSpWs0Wg0Go1G8wNwD0YyDDB67gEQkeYYT7c7YaTGFox05Q0w\nkjycD6wq7cayJK5Luua7AAAMdklEQVT5aQ2B90VkmtsuO8YoCTCe0i8QkTSMIGSOUup7yidZRDIx\n7o/CMIYeuQcXCqPnxZ1WwPgS7y3BGCbmzrISr5e6jtV4R6ltrJK0L40J6OBFo9FoNBqNWWQrIxlG\naXyLcRN5J0ZChwiMTGoRrv25XtQT5/p7B8a8VnccAEqplSLSELgaY77KVyIyVyl1azm6G4HrXRr7\nlFJFpZSpjOtwnUmU1cYqQ/vSmIAl2cY0Go1Go9FoihGRBIz5IM8qpX5SSm3ByOzpzjqMno+SSxP8\nDaXUPow5JE2VkVbafUt3K5eplPpcKTUEuBXo68qIVxb5SqkdSqldZQQupbGZv6/x0xVj4r47nUt5\nvdnDOjTlUInal8YEdM+LRqPRaDQaqzmKkQVqqIgcxpgs/RLGsJ5iPsKYBD1DRJ7ASFiQjJHta2Up\nmk8Br4hIFkZigyjgQiBOKfWGiDwM7MZIfwzGxPq9Sqksk8/tZeAjEVmLkSToBoxJ3iUXw+0nIqsx\nUn8PwsiAd5vJtpytnMntS1MC3fOi0Wg0Go3GUpRSDqAvxtIEGzBu+B8pUaYAY/jNcYy1PNZhZL10\nlKE5EWPuw12usj9gTOYuHlKUBTyGsQTCcqAecK2Jp1Vsx1fAw8B/MM5tMDBAKeW+jpkC/uuyby3Q\nDyMz1R9m23M2cia3L83f0dnGNBqNRqPRaDQaTaVA97xoNBqNRqPRaDSaSoEOXjQajUaj0Wg0Gk2l\nQAcvGk0JRGS0a1KlRqPRaDQajSaECLngRUTqiMh4EflDRHJFZL+I/CIi94hIlKvMThFxurZsEVkn\nIncF2/ZQRUQuc/mqwvSAlRkRec91ng4RKRCRAyKyQEQGi4hUrHAapyaDuXS/9sGeQW72OERkt4hM\nFZHabmWcIpJSxrl8XdbrYFPC1/mu6/VJEbGV195EZIeIPFDO6+Jru1OJ414TkR/dXo92q79QRA6L\nyM8i8m8RieAMpxz/293873D7nix+nRBs261ERKa5znVUiff/ISJO1//F/jlasq2IyAXFvvKwPtO0\nNBqNRuMZIRW8iEhjjJRzPTDS2bUHugBjMTI49HAVVcATQCLQGvgQmCwivQJtsy+434i6fmzLvCkt\nEajluG72PhORK7ys1vTMDCLyLxH5UUQyyrlZrSEiH7vKHBeRKSISa7YtbszDaBcNgd4Y2UHGA3NE\nJBjtPcNlzznA3RiLWb0fBDusoNjXzTAyu4zmr+wuvrY3hbGQ2Jgy9rmzwVV/EnA58DlG5pffLG5j\noUJp/n/YtU8BLVz7i7e6SqlDQbAzkBS3n/+ISLVS9rmTiZHS1p27gHS8x0wtjUaj0ZRDSAUvwNtA\nAdBRKfWVUmqLUmqnUmqOUqqPUuobt7JZSqlDrv0vY+T47hkUq/2jops890CtBXA7cAJYJCKPWWxb\nRURj3EA9T9nn8QnQCuiOEYB2AyZaaFO+UuqwUmq/UmqNUuol4B/ANRgr5SIi1VxB1CFXULVIRNqV\nJiYiozHy8f/D7el1N9e+l0Rkixi9f9tE5BkRsZeQUC57Diil5mMEUj1FJNKi8w8kxb7erZSaBCzC\n8LW/TAI6i0jvCsoVufl2o1JqAnAZ0AYjZemZTkX+P+z6jjy1BcnOQLMIY/2Gxyso9z5GgAGAGD37\n/fDt4YKZWhqNRqMph5AJXkQkHiP4eEsplefFcSIiNwLxGIHPmUhxoLZHKfWrUmoo8CzwjIg090VQ\nRG4UkQ0ikufqzRlRYn+iiHzr6u35U0RuKTnERyn1hlJqLEZ+89LqaAn0Au5SSq1USv0G3I+xUFei\nL3b7glLqR4y8+v90vfUlxsq7vTAWqErFCAarl3L4KxhP9L8D6gB1MRYYAzgJDMQIzh7A6Fl5qAJz\n8jGuu3AfTyeUyQPMGLK1A3gHY4Exr3CtqjyPvz7rs4mS/vd2qOSZggMjcLlfROqVUUZh9NhfKiL1\nXe/dhNH2vJ3vZqaWRqPRaCogZIIXjKEPAmx1f9M1lj3Ttb3otmuMiGRi3Ax+gdHzMiVg1gaf8Rif\nn9dPukWkI/AZRq9IG4zhJs+KyEC3Yh9i9PZ0w/ghvheojXd0AY4rpdx/wBdh/Nhf5K3dfpIGNBKR\nrhgr5N6ilFqtlNqmlBqFMbzrppIHKaWyMYahFD/lPqSUKnLte0EptVwptUsp9S0wDrilLANcgeZQ\n4PcSK/BOd2vjma52fatJ5x0QRKQHRjD4ffFbwJ5SzivJQ8nngcYi4svq02lAIx+Oq7SU4f/dJfy/\nPngWBhal1CyMIchPl1PsEEage4fr9WBgqo9Vmqml0Wg0mnIIC7YBHnAhxk36J4D7UJuXgWkYT8Jf\nBv6nlNoecOuChFLquIgcwrebtIeARUqpF1yv/xSR1hgrzX7g6jHpjjF8bzWAiNwNeLsScCLGj7q7\n3Q4ROebaF0gEI2g6H4gDjsnpc/ijgKZeCYr0xehJaurSDMMIgtypLiInATtG+/0F+FeJMg/y101n\nMWMJrYcLpdHHFZCEY/j3Y4ybxU4Yvr4EYwVid372RFgpdUREXsHoXfzMS7uKP+szHW/9XxhwC4PL\nf4DvXe2oLKYCr4vIx0BnjAcY3Xysz0wtjUaj0ZRBKAUvf2L84J7r/qZSaieAiOSWKH/EFaxsF5Fb\ngPUislIplRYIY0MEX2/SWgEzS7y3BPi3GHf0LYBC9x4TpdQ2ETnus6XBpxXGMI44YB/G3IiSw2pO\neComIp2Bj4AngQUYQUt/YESJoieBDhif036lVH4pcgdLBt6um9KSE45DjR+AezBuivcppYqzORXv\n36mUOul+gIgUeaH/KkaP3zAv7Sr+rM90vPb/2YRS6hcRmY8x/HBaGcXmYcyxeheY43oo5GuVZmpp\nNBqNpgxCJnhRSh0TkYXAcBF5UylVMlgp79g9rqezLwHXW2ZkCOGaI1Sb0L5JOwCclprVNaE93rUv\nIIjIlUBbjGFd+zB6fRxKqV0eShRg9Jy4czHGzeGpeRki0qiUY51KqVD+jPwh28pzU0pli8hzwFPA\nbE+OcfUa9sYYdnamY6n/zxAewxg+tqW0na6e4A8wep0rShBRLmZqaTQajaZsQm1Yyn0YAdVK1wTx\nliLSQkQGAC2B8p7ajscYRpEcCENDgAcxJqaW7EHxhM1A1xLvXQJsVUopjB/6MBHpULxTRJoBNbys\nZynGsKkObu91x+jxKHWSvwlEirFWUD0R6SAij2P4aDbwoVJqkcuumSLSU0QaisjFIvJcOW1nJ9DO\n1RZrikgYxhC6BiLSV0SauBIZnBWBs4eY9ch5EkavVmlzgMJcn3VdEWkjIvcDP2EkYChvqNDZgAB1\nXP5x30LmgVUgUEptwBhO90CJXe7t8wmgtlJqoY/VmKml0Wg0mgoIqR8ypdR2143u48ALQH2MCfmb\ncM1rKS5ayrGbXUMEngGuC4zFplFdRM4v8d5RpdQe1/9VRKQOxtj2xhjpku8EHvVino/7D+w4YIWI\nPIExcf9ijKE594CRsUlEvsdYO+dejKDxFSCH0xdvrIPRi9Hcpd/ONdxpl1LquFIq7f/bu4MXm6I4\ngOPf3wJJTSlFFspCFv4CC2nYSFnIQkpKykLKXzBY2Y5QoyaUlD9A/AGzkuyUrbJBiaIsNONn8buX\n5/UezzDvzZ35flb33XPeeed17+L+7jnnd5pr0razEbgJPMzMlRp5OUKNriwCH6ksYxcz835PnaPU\nm/m71OjVW2ABeDekzXlqmtlzYAswnZmPImKW+j+bgMfUvXf1L/u7VtdmDPtf/ed/+zkzFyNihnoA\n7a+7j7rWS1SA85K6rrczc72t7+iXVOKCVjvFdD/wbCI9mpzLwEl+vX9+HDcJOD78Q/v/sy1J0h9E\nvWjXOEXEPWAqM080x2cGVLuTmecj4hWwqzn3lXrQfgrMZebCiL93kJofv7WdAx8Rx6mH7T3AG+BG\nZs72fGc7NXf7ED/3TLgOzGTmfFPnCpWprP8mOtsGC0364VvAMeAblab4UmZ+GaXvkiRJUsvgRSNp\n9i94DRxu9k2RJEmSxsrgRQNFxDSVmesFsJNK3bsD2JuZS5PsmySNQ0Q8AQ4MKErgWm/CDknSeKyq\nNS9anoiYA04PKErgQWZeWEazG6h1R7uBz1Qq5VMGLpLWkXPA5iFlrm2RpAlw5GUNiIhtwNSQ4k+Z\n+X6c/ZEkSZJWgsGLJEmSpE5Ybfu8SJIkSdJABi+SJEmSOsHgRZIkSVInGLxIkiRJ6gSDF0mSJEmd\nYPAiSZIkqRMMXiRJkiR1wnf71fiXLsO68gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# DNN model Prediction\n", + "y_test = model_dnn.predict( X_test , batch_size=n_per_batch, verbose=0)\n", + "predictions_dnn = np.zeros((len(y_test),1))\n", + "for i in range(len(y_test)):\n", + " predictions_dnn[i] = np.argmax(y_test[i]) + 1 \n", + "predictions_dnn = predictions_dnn.astype(int)\n", + "# Store results\n", + "train_data = pd.read_csv('train_test_data.csv')\n", + "test_data = pd.read_csv('../validation_data_nofacies.csv')\n", + "test_data['Facies'] = predictions_dnn\n", + "test_data.to_csv('Prediction_StoDIG_5_CNN.csv')\n", + "\n", + "for wellId in well_names_validate:\n", + " make_facies_log_plot( test_data[test_data['Well Name'] == wellId], facies_colors=facies_colors, y_test=y_test, wellId=wellId)\n", + " \n", + "#for wellId in well_names_test:\n", + "# make_facies_log_plot( train_data[train_data['Well Name'] == wellId], facies_colors=facies_colors)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/StoDIG/Prediction_StoDIG_5_CLDNN.csv b/StoDIG/Prediction_StoDIG_5_CLDNN.csv new file mode 100644 index 0000000..b781d68 --- /dev/null +++ b/StoDIG/Prediction_StoDIG_5_CLDNN.csv @@ -0,0 +1,831 @@ +,Formation,Well Name,Depth,GR,ILD_log10,DeltaPHI,PHIND,PE,NM_M,RELPOS,Facies +0,A1 SH,STUART,2808.0,66.27600000000001,0.63,3.3,10.65,3.591,1,1.0,3 +1,A1 SH,STUART,2808.5,77.252,0.585,6.5,11.95,3.341,1,0.978,2 +2,A1 SH,STUART,2809.0,82.899,0.5660000000000001,9.4,13.6,3.0639999999999996,1,0.956,2 +3,A1 SH,STUART,2809.5,80.671,0.593,9.5,13.25,2.977,1,0.9329999999999999,2 +4,A1 SH,STUART,2810.0,75.971,0.638,8.7,12.35,3.02,1,0.9109999999999999,2 +5,A1 SH,STUART,2810.5,73.955,0.667,6.9,12.25,3.0860000000000003,1,0.889,2 +6,A1 SH,STUART,2811.0,77.962,0.674,6.5,12.45,3.092,1,0.867,2 +7,A1 SH,STUART,2811.5,83.89399999999999,0.667,6.3,12.65,3.123,1,0.8440000000000001,2 +8,A1 SH,STUART,2812.0,84.42399999999999,0.653,6.7,13.05,3.1210000000000004,1,0.8220000000000001,2 +9,A1 SH,STUART,2812.5,83.16,0.642,7.3,12.95,3.127,1,0.8,2 +10,A1 SH,STUART,2813.0,79.063,0.6509999999999999,7.3,12.05,3.147,1,0.778,2 +11,A1 SH,STUART,2813.5,69.002,0.677,6.2,10.8,3.096,1,0.7559999999999999,2 +12,A1 SH,STUART,2814.0,63.983000000000004,0.69,4.4,9.7,3.103,1,0.733,2 +13,A1 SH,STUART,2814.5,61.797,0.675,3.5,9.15,3.1010000000000004,1,0.711,2 +14,A1 SH,STUART,2815.0,61.372,0.6459999999999999,2.8,9.3,3.065,1,0.6890000000000001,2 +15,A1 SH,STUART,2815.5,63.535,0.621,2.8,9.8,2.9819999999999998,1,0.667,2 +16,A1 SH,STUART,2816.0,65.126,0.6,3.3,10.55,2.9139999999999997,1,0.644,2 +17,A1 SH,STUART,2816.5,75.93,0.5760000000000001,3.4,11.9,2.845,1,0.6,2 +18,A1 SH,STUART,2817.0,85.07700000000001,0.584,4.4,12.9,2.8539999999999996,1,0.578,2 +19,A1 SH,STUART,2817.5,89.459,0.598,6.6,13.5,2.986,1,0.556,2 +20,A1 SH,STUART,2818.0,88.619,0.61,7.2,14.8,2.988,1,0.5329999999999999,2 +21,A1 SH,STUART,2818.5,81.593,0.636,6.4,13.9,2.998,1,0.511,2 +22,A1 SH,STUART,2819.0,66.595,0.7020000000000001,2.8,11.4,2.988,1,0.489,2 +23,A1 SH,STUART,2819.5,55.081,0.789,2.7,8.15,3.028,1,0.467,2 +24,A1 SH,STUART,2820.0,48.111999999999995,0.84,1.0,7.5,3.073,1,0.444,2 +25,A1 SH,STUART,2820.5,43.73,0.846,0.4,7.1,3.1460000000000004,1,0.42200000000000004,2 +26,A1 SH,STUART,2821.0,44.097,0.84,0.7,6.65,3.205,1,0.4,2 +27,A1 SH,STUART,2821.5,46.839,0.8420000000000001,0.8,6.6,3.2539999999999996,1,0.37799999999999995,2 +28,A1 SH,STUART,2822.0,50.348,0.843,1.1,6.75,3.23,1,0.35600000000000004,2 +29,A1 SH,STUART,2822.5,57.129,0.8220000000000001,2.2,7.3,3.237,1,0.33299999999999996,2 +30,A1 SH,STUART,2823.0,64.465,0.777,4.4,8.4,3.259,1,0.311,2 +31,A1 SH,STUART,2823.5,70.267,0.7290000000000001,7.1,9.85,3.2889999999999997,1,0.289,2 +32,A1 SH,STUART,2824.0,76.566,0.664,10.7,11.55,3.3810000000000002,1,0.244,2 +33,A1 SH,STUART,2824.5,76.778,0.643,10.7,12.25,3.452,1,0.222,2 +34,A1 SH,STUART,2825.0,73.971,0.632,9.7,12.55,3.3960000000000004,1,0.2,2 +35,A1 SH,STUART,2825.5,74.314,0.622,8.8,13.1,3.1439999999999997,1,0.17800000000000002,2 +36,A1 SH,STUART,2826.0,77.031,0.583,4.8,16.2,3.034,1,0.156,2 +37,A1 SH,STUART,2826.5,74.469,0.517,4.8,19.2,2.931,1,0.133,2 +38,A1 SH,STUART,2827.0,73.327,0.489,6.3,20.35,2.88,1,0.111,2 +39,A1 SH,STUART,2827.5,74.575,0.526,4.9,19.25,2.795,1,0.08900000000000001,2 +40,A1 SH,STUART,2828.0,70.536,0.5579999999999999,6.5,17.05,3.009,1,0.067,2 +41,A1 SH,STUART,2828.5,62.93899999999999,0.528,7.6,18.8,3.073,1,0.044000000000000004,2 +42,A1 SH,STUART,2829.0,57.137,0.511,10.9,19.15,3.313,1,0.022000000000000002,2 +43,A1 LM,STUART,2829.5,47.345,0.584,7.0,16.3,3.5269999999999997,2,1.0,8 +44,A1 LM,STUART,2830.0,35.733000000000004,0.73,6.4,10.2,3.928,2,0.987,8 +45,A1 LM,STUART,2830.5,29.326999999999998,0.873,2.7,7.85,4.33,2,0.9740000000000001,8 +46,A1 LM,STUART,2831.0,28.241999999999997,0.963,1.4,6.3,4.413,2,0.961,8 +47,A1 LM,STUART,2831.5,34.558,1.018,1.8,5.6,4.511,2,0.9470000000000001,8 +48,A1 LM,STUART,2832.0,43.754,1.054,1.8,5.2,4.412,2,0.934,8 +49,A1 LM,STUART,2832.5,53.611999999999995,1.067,1.5,5.05,4.226,2,0.9209999999999999,8 +50,A1 LM,STUART,2833.0,60.718999999999994,1.0390000000000001,1.9,4.85,3.931,2,0.9079999999999999,6 +51,A1 LM,STUART,2833.5,66.538,0.94,2.7,5.45,3.7030000000000003,2,0.895,6 +52,A1 LM,STUART,2834.0,75.52199999999999,0.8009999999999999,4.0,7.3,3.5010000000000003,2,0.882,4 +53,A1 LM,STUART,2834.5,95.979,0.6920000000000001,6.5,9.55,3.346,2,0.868,4 +54,A1 LM,STUART,2835.0,130.26,0.644,8.3,11.15,3.242,2,0.855,4 +55,A1 LM,STUART,2835.5,160.167,0.643,9.3,12.15,3.2939999999999996,2,0.8420000000000001,4 +56,A1 LM,STUART,2836.0,176.528,0.6729999999999999,9.1,12.05,3.298,2,0.8290000000000001,4 +57,A1 LM,STUART,2836.5,175.622,0.72,8.9,12.15,3.3489999999999998,2,0.816,4 +58,A1 LM,STUART,2837.0,153.965,0.7559999999999999,7.6,11.9,3.31,2,0.8029999999999999,4 +59,A1 LM,STUART,2837.5,120.07600000000001,0.7659999999999999,7.2,12.2,3.365,2,0.789,4 +60,A1 LM,STUART,2838.0,91.434,0.787,7.1,12.15,3.392,2,0.7759999999999999,4 +61,A1 LM,STUART,2838.5,69.312,0.8740000000000001,4.6,10.4,3.293,2,0.763,4 +62,A1 LM,STUART,2839.0,54.828,1.0290000000000001,0.8,8.2,3.395,2,0.75,6 +63,A1 LM,STUART,2839.5,50.854,1.149,0.3,6.85,3.5,2,0.737,6 +64,A1 LM,STUART,2840.0,54.632,1.09,1.0,7.4,3.576,2,0.7240000000000001,6 +65,A1 LM,STUART,2840.5,56.835,0.924,4.1,8.45,3.555,2,0.711,6 +66,A1 LM,STUART,2841.0,60.393,0.7879999999999999,7.1,10.05,3.591,2,0.6970000000000001,4 +67,A1 LM,STUART,2841.5,58.94,0.733,8.1,11.15,3.576,2,0.684,4 +68,A1 LM,STUART,2842.0,49.718999999999994,0.754,6.1,10.75,3.6689999999999996,2,0.6709999999999999,6 +69,A1 LM,STUART,2842.5,41.403999999999996,0.8190000000000001,3.5,9.55,3.872,2,0.6579999999999999,8 +70,A1 LM,STUART,2843.0,36.084,0.882,1.6,8.2,4.125,2,0.645,8 +71,A1 LM,STUART,2843.5,29.344,0.897,0.1,7.25,4.23,2,0.632,8 +72,A1 LM,STUART,2844.0,24.072,0.841,-0.6,6.8,4.302,2,0.618,8 +73,A1 LM,STUART,2844.5,22.62,0.733,-2.5,7.65,4.348,2,0.605,8 +74,A1 LM,STUART,2845.0,22.408,0.597,-3.8,9.5,4.29,2,0.5920000000000001,8 +75,A1 LM,STUART,2845.5,21.184,0.469,-2.7,11.05,4.255,2,0.579,8 +76,A1 LM,STUART,2846.0,21.796,0.375,-2.3,13.35,4.213,2,0.5660000000000001,8 +77,A1 LM,STUART,2846.5,23.925,0.314,-1.8,15.1,4.363,2,0.5529999999999999,8 +78,A1 LM,STUART,2847.0,24.464000000000002,0.278,-1.3,16.15,4.495,2,0.539,8 +79,A1 LM,STUART,2847.5,26.039,0.257,-1.9,16.55,4.602,2,0.526,8 +80,A1 LM,STUART,2848.0,27.491,0.247,-2.5,16.45,4.544,2,0.513,8 +81,A1 LM,STUART,2848.5,28.193,0.249,-2.4,16.3,4.587,2,0.5,8 +82,A1 LM,STUART,2849.0,28.634,0.265,-1.9,16.15,4.678,2,0.48700000000000004,8 +83,A1 LM,STUART,2849.5,29.809,0.299,-1.0,15.2,4.8660000000000005,2,0.474,8 +84,A1 LM,STUART,2850.0,31.171999999999997,0.349,-1.5,14.15,4.783,2,0.461,8 +85,A1 LM,STUART,2850.5,33.448,0.418,-1.1,12.65,4.688,2,0.447,8 +86,A1 LM,STUART,2851.0,33.514,0.503,-1.2,11.3,4.628,2,0.434,8 +87,A1 LM,STUART,2851.5,35.146,0.593,-0.5,10.05,4.387,2,0.42100000000000004,8 +88,A1 LM,STUART,2852.0,35.953,0.6709999999999999,-0.7,9.45,4.291,2,0.408,8 +89,A1 LM,STUART,2852.5,35.178000000000004,0.7290000000000001,-0.6,9.0,4.178,2,0.395,8 +90,A1 LM,STUART,2853.0,36.109,0.773,0.1,8.35,4.203,2,0.382,8 +91,A1 LM,STUART,2853.5,38.769,0.82,1.3,7.55,4.262,2,0.368,6 +92,A1 LM,STUART,2854.0,39.510999999999996,0.873,1.3,7.05,4.387,2,0.355,6 +93,A1 LM,STUART,2854.5,40.523,0.927,2.6,6.5,4.006,2,0.342,6 +94,A1 LM,STUART,2855.0,42.693999999999996,0.9640000000000001,2.8,6.8,3.718,2,0.32899999999999996,6 +95,A1 LM,STUART,2855.5,45.297,0.9590000000000001,3.0,7.3,3.594,2,0.316,6 +96,A1 LM,STUART,2856.0,48.145,0.915,3.8,8.2,3.46,2,0.303,6 +97,A1 LM,STUART,2856.5,51.041000000000004,0.862,5.9,8.75,3.333,2,0.289,6 +98,A1 LM,STUART,2857.0,56.125,0.825,7.4,9.3,3.3360000000000003,2,0.276,4 +99,A1 LM,STUART,2857.5,62.205,0.807,6.4,9.9,3.362,2,0.263,4 +100,A1 LM,STUART,2858.0,64.865,0.794,4.7,10.25,3.2439999999999998,2,0.25,4 +101,A1 LM,STUART,2858.5,68.186,0.7709999999999999,4.1,10.25,3.174,2,0.237,4 +102,A1 LM,STUART,2859.0,72.421,0.743,4.1,10.55,3.174,2,0.22399999999999998,4 +103,A1 LM,STUART,2859.5,74.322,0.73,4.5,10.65,3.187,2,0.21100000000000002,4 +104,A1 LM,STUART,2860.0,72.543,0.748,4.1,10.35,3.359,2,0.19699999999999998,4 +105,A1 LM,STUART,2860.5,65.672,0.8140000000000001,3.5,9.05,3.6180000000000003,2,0.184,4 +106,A1 LM,STUART,2861.0,57.153,0.951,1.7,6.75,3.9019999999999997,2,0.171,6 +107,A1 LM,STUART,2861.5,46.056000000000004,1.148,0.1,4.55,4.221,2,0.158,6 +108,A1 LM,STUART,2862.0,37.961,1.324,0.0,3.3,4.561,2,0.145,6 +109,A1 LM,STUART,2862.5,33.579,1.402,-0.2,2.8,4.7989999999999995,2,0.132,6 +110,A1 LM,STUART,2863.0,31.212,1.439,-0.4,2.7,4.874,2,0.11800000000000001,6 +111,A1 LM,STUART,2863.5,30.176,1.486,-0.5,2.55,4.787,2,0.105,6 +112,A1 LM,STUART,2864.0,29.858,1.507,-0.7,2.75,4.622,2,0.092,6 +113,A1 LM,STUART,2864.5,29.923000000000002,1.433,-0.6,3.3,4.375,2,0.079,6 +114,A1 LM,STUART,2865.0,34.428000000000004,1.2790000000000001,0.0,4.0,4.115,2,0.066,6 +115,A1 LM,STUART,2865.5,39.935,1.1340000000000001,0.8,4.6,3.9789999999999996,2,0.053,6 +116,A1 LM,STUART,2866.0,39.935,1.1340000000000001,0.8,4.6,3.9789999999999996,2,0.053,6 +117,A1 LM,STUART,2866.5,46.823,1.05,1.3,5.15,3.727,2,0.039,6 +118,A1 LM,STUART,2867.0,57.968999999999994,1.01,2.0,5.2,3.537,2,0.026000000000000002,6 +119,A1 LM,STUART,2867.5,71.24600000000001,0.9540000000000001,2.3,5.65,3.4819999999999998,2,0.013000000000000001,6 +120,B1 SH,STUART,2868.0,82.54799999999999,0.843,3.2,7.2,3.532,1,1.0,2 +121,B1 SH,STUART,2868.5,92.119,0.718,4.9,8.95,3.484,1,0.968,2 +122,B1 SH,STUART,2869.0,93.564,0.635,7.0,11.1,3.4019999999999997,1,0.935,2 +123,B1 SH,STUART,2869.5,86.26,0.615,9.0,11.9,3.486,1,0.903,2 +124,B1 SH,STUART,2870.0,77.097,0.637,9.5,11.25,3.56,1,0.871,2 +125,B1 SH,STUART,2870.5,67.68,0.6509999999999999,9.2,10.7,3.4730000000000003,1,0.8390000000000001,2 +126,B1 SH,STUART,2871.0,64.04899999999999,0.639,8.5,10.65,3.4010000000000002,1,0.8059999999999999,2 +127,B1 SH,STUART,2871.5,67.566,0.621,7.5,11.45,3.307,1,0.774,2 +128,B1 SH,STUART,2872.0,69.72800000000001,0.604,7.1,12.45,3.28,1,0.742,2 +129,B1 SH,STUART,2872.5,67.96600000000001,0.5820000000000001,8.3,13.45,3.253,1,0.71,2 +130,B1 SH,STUART,2873.0,65.803,0.565,9.6,13.5,3.284,1,0.677,2 +131,B1 SH,STUART,2873.5,62.351000000000006,0.575,10.1,11.85,3.405,1,0.645,2 +132,B1 SH,STUART,2874.0,59.512,0.621,10.1,9.65,3.5039999999999996,1,0.613,2 +133,B1 SH,STUART,2874.5,61.176,0.691,9.9,8.15,3.5869999999999997,1,0.581,2 +134,B1 SH,STUART,2875.0,65.75399999999999,0.7509999999999999,9.6,7.7,3.605,1,0.5479999999999999,2 +135,B1 SH,STUART,2875.5,66.66,0.768,9.0,8.2,3.505,1,0.516,2 +136,B1 SH,STUART,2876.0,64.604,0.742,8.0,8.9,3.411,1,0.484,2 +137,B1 SH,STUART,2876.5,61.699,0.696,7.0,9.2,3.319,1,0.452,2 +138,B1 SH,STUART,2877.0,58.353,0.657,5.6,9.3,3.265,1,0.419,2 +139,B1 SH,STUART,2877.5,55.928999999999995,0.64,4.2,9.2,3.167,1,0.387,2 +140,B1 SH,STUART,2878.0,57.413999999999994,0.64,4.0,9.1,3.181,1,0.355,2 +141,B1 SH,STUART,2878.5,60.393,0.64,3.8,9.3,3.133,1,0.32299999999999995,2 +142,B1 SH,STUART,2879.0,65.90100000000001,0.636,4.2,9.9,3.1630000000000003,1,0.29,2 +143,B1 SH,STUART,2879.5,71.385,0.635,5.8,10.8,3.1310000000000002,1,0.258,2 +144,B1 SH,STUART,2880.0,75.816,0.625,4.9,13.55,2.997,1,0.226,2 +145,B1 SH,STUART,2880.5,75.334,0.5870000000000001,5.6,15.9,2.938,1,0.19399999999999998,2 +146,B1 SH,STUART,2881.0,72.69,0.5579999999999999,4.8,18.5,2.969,1,0.129,2 +147,B1 SH,STUART,2881.5,68.635,0.5579999999999999,6.9,19.45,3.1039999999999996,1,0.09699999999999999,2 +148,B1 SH,STUART,2882.0,60.695,0.52,7.5,21.25,3.147,1,0.065,2 +149,B1 SH,STUART,2882.5,51.645,0.501,5.6,18.1,3.3539999999999996,1,0.032,2 +150,B1 LM,STUART,2883.0,41.918,0.5479999999999999,7.0,10.9,3.764,2,1.0,8 +151,B1 LM,STUART,2883.5,32.991,0.633,7.7,6.35,4.109,2,0.968,8 +152,B1 LM,STUART,2884.0,28.258000000000003,0.705,5.0,6.1,4.154,2,0.935,8 +153,B1 LM,STUART,2884.5,26.635,0.769,4.1,5.35,4.321000000000001,2,0.903,8 +154,B1 LM,STUART,2885.0,25.541,0.847,3.6,4.8,4.476,2,0.871,8 +155,B1 LM,STUART,2885.5,23.795,0.948,2.3,4.45,4.565,2,0.8390000000000001,8 +156,B1 LM,STUART,2886.0,20.719,1.061,2.2,3.5,4.615,2,0.8059999999999999,8 +157,B1 LM,STUART,2886.5,18.499000000000002,1.139,2.4,3.2,4.696000000000001,2,0.774,8 +158,B1 LM,STUART,2887.0,19.445999999999998,1.1179999999999999,1.5,4.65,4.668,2,0.742,8 +159,B1 LM,STUART,2887.5,21.388,1.0190000000000001,1.0,7.1,4.579,2,0.71,8 +160,B1 LM,STUART,2888.0,24.178,0.9079999999999999,1.2,9.2,4.292,2,0.677,8 +161,B1 LM,STUART,2888.5,27.638,0.812,0.0,11.1,4.046,2,0.645,8 +162,B1 LM,STUART,2889.0,31.669,0.7240000000000001,0.9,11.45,3.822,2,0.613,8 +163,B1 LM,STUART,2889.5,39.389,0.627,3.4,11.2,3.6289999999999996,2,0.581,6 +164,B1 LM,STUART,2890.0,49.385,0.535,6.4,11.5,3.517,2,0.5479999999999999,7 +165,B1 LM,STUART,2890.5,58.516000000000005,0.488,9.0,11.4,3.4739999999999998,2,0.516,6 +166,B1 LM,STUART,2891.0,66.619,0.511,9.2,10.8,3.613,2,0.484,4 +167,B1 LM,STUART,2891.5,67.296,0.602,6.4,9.5,3.862,2,0.452,4 +168,B1 LM,STUART,2892.0,57.798,0.745,3.7,8.25,4.052,2,0.419,6 +169,B1 LM,STUART,2892.5,48.169,0.912,1.1,7.45,4.2410000000000005,2,0.387,6 +170,B1 LM,STUART,2893.0,41.437,1.045,0.4,6.3,4.476,2,0.355,6 +171,B1 LM,STUART,2893.5,39.348,1.117,0.1,5.35,4.712,2,0.32299999999999995,6 +172,B1 LM,STUART,2894.0,49.312,1.1440000000000001,1.0,4.5,4.56,2,0.29,6 +173,B1 LM,STUART,2894.5,61.983999999999995,1.143,0.7,4.85,4.605,2,0.258,6 +174,B1 LM,STUART,2895.0,73.506,1.122,0.9,5.75,4.574,2,0.226,6 +175,B1 LM,STUART,2895.5,74.208,1.095,0.3,6.85,4.478,2,0.19399999999999998,6 +176,B1 LM,STUART,2896.0,67.819,1.072,-0.7,7.55,4.444,2,0.161,6 +177,B1 LM,STUART,2896.5,61.625,1.057,-1.2,7.4,4.439,2,0.129,6 +178,B1 LM,STUART,2897.0,61.625,1.057,-1.2,7.4,4.439,2,0.129,6 +179,B1 LM,STUART,2897.5,55.481,1.041,-0.9,6.55,4.335,2,0.09699999999999999,6 +180,B1 LM,STUART,2898.0,57.251000000000005,0.98,-0.1,5.75,3.907,2,0.065,6 +181,B1 LM,STUART,2898.5,67.28,0.84,-0.6,7.1,3.58,2,0.032,6 +182,B2 SH,STUART,2899.0,76.02,0.6859999999999999,0.7,9.45,3.23,1,1.0,2 +183,B2 SH,STUART,2899.5,84.45700000000001,0.603,2.5,12.45,2.967,1,0.9470000000000001,2 +184,B2 SH,STUART,2900.0,89.01899999999999,0.595,4.6,14.9,2.7939999999999996,1,0.895,3 +185,B2 SH,STUART,2900.5,89.93299999999999,0.591,3.9,18.55,2.7889999999999997,1,0.8420000000000001,3 +186,B2 SH,STUART,2901.0,89.38600000000001,0.539,4.5,22.55,2.861,1,0.789,3 +187,B2 SH,STUART,2901.5,89.427,0.479,6.2,25.4,2.935,1,0.737,3 +188,B2 SH,STUART,2902.0,87.51700000000001,0.461,7.6,24.4,3.128,1,0.684,3 +189,B2 SH,STUART,2902.5,83.74700000000001,0.485,8.7,23.15,3.284,1,0.632,3 +190,B2 SH,STUART,2903.0,78.304,0.541,6.1,21.25,3.332,1,0.579,3 +191,B2 SH,STUART,2903.5,71.858,0.635,8.5,15.95,3.485,1,0.526,3 +192,B2 SH,STUART,2904.0,64.70100000000001,0.737,5.0,15.7,3.471,1,0.474,3 +193,B2 SH,STUART,2904.5,64.293,0.752,1.7,17.15,3.45,1,0.42100000000000004,2 +194,B2 SH,STUART,2905.0,67.158,0.6859999999999999,-0.3,19.95,3.2760000000000002,1,0.368,2 +195,B2 SH,STUART,2905.5,72.47800000000001,0.631,0.2,20.4,3.1710000000000003,1,0.316,2 +196,B2 SH,STUART,2906.0,78.068,0.614,5.0,18.1,3.252,1,0.21100000000000002,2 +197,B2 SH,STUART,2906.5,73.008,0.5920000000000001,2.4,20.1,3.175,1,0.158,3 +198,B2 SH,STUART,2907.0,64.64399999999999,0.5429999999999999,1.7,22.35,3.302,1,0.105,3 +199,B2 SH,STUART,2907.5,49.801,0.5379999999999999,0.0,20.8,3.551,1,0.053,3 +200,B2 LM,STUART,2908.0,35.937,0.628,-2.8,16.8,3.96,2,1.0,8 +201,B2 LM,STUART,2908.5,24.203000000000003,0.743,-0.3,12.35,4.454,2,0.963,8 +202,B2 LM,STUART,2909.0,15.985999999999999,0.777,-0.2,11.5,4.657,2,0.9259999999999999,8 +203,B2 LM,STUART,2909.5,12.036,0.773,-0.5,10.55,4.593999999999999,2,0.889,8 +204,B2 LM,STUART,2910.0,12.745999999999999,0.787,-1.2,9.2,4.437,2,0.852,8 +205,B2 LM,STUART,2910.5,14.843,0.809,-1.6,7.7,4.351,2,0.815,8 +206,B2 LM,STUART,2911.0,17.087,0.8059999999999999,-1.0,6.8,4.242,2,0.778,8 +207,B2 LM,STUART,2911.5,17.977,0.765,0.3,6.45,4.105,2,0.741,8 +208,B2 LM,STUART,2912.0,18.834,0.701,-0.1,7.15,4.279,2,0.7040000000000001,8 +209,B2 LM,STUART,2912.5,19.258,0.644,0.4,7.4,4.669,2,0.667,8 +210,B2 LM,STUART,2913.0,19.062,0.61,0.6,7.8,5.19,2,0.63,8 +211,B2 LM,STUART,2913.5,18.637999999999998,0.6,1.8,7.6,5.527,2,0.593,8 +212,B2 LM,STUART,2914.0,19.462,0.598,3.4,6.8,6.321000000000001,2,0.556,8 +213,B2 LM,STUART,2914.5,19.552,0.581,3.1,6.95,6.16,2,0.519,8 +214,B2 LM,STUART,2915.0,20.653000000000002,0.529,0.9,8.65,5.865,2,0.48100000000000004,8 +215,B2 LM,STUART,2915.5,23.371,0.45,-1.0,11.3,5.315,2,0.444,9 +216,B2 LM,STUART,2916.0,25.468000000000004,0.391,-1.3,13.75,4.918,2,0.40700000000000003,9 +217,B2 LM,STUART,2916.5,26.291999999999998,0.377,-2.3,14.85,4.521,2,0.37,9 +218,B2 LM,STUART,2917.0,27.736,0.41100000000000003,-3.6,14.1,4.4430000000000005,2,0.33299999999999996,8 +219,B2 LM,STUART,2917.5,29.784000000000002,0.48200000000000004,-3.1,11.85,4.3469999999999995,2,0.29600000000000004,8 +220,B2 LM,STUART,2918.0,31.041,0.578,-2.2,9.4,4.416,2,0.259,8 +221,B2 LM,STUART,2918.5,30.837,0.6829999999999999,-0.4,7.4,4.394,2,0.222,8 +222,B2 LM,STUART,2919.0,32.64,0.807,1.0,5.6,4.343,2,0.185,8 +223,B2 LM,STUART,2919.5,33.571,0.9420000000000001,1.6,4.5,4.086,2,0.14800000000000002,6 +224,B2 LM,STUART,2920.0,39.56,1.003,1.9,4.55,3.8110000000000004,2,0.111,6 +225,B2 LM,STUART,2920.5,47.475,0.9309999999999999,1.5,6.15,3.625,2,0.07400000000000001,6 +226,B2 LM,STUART,2921.0,56.443000000000005,0.821,2.3,8.05,3.3930000000000002,2,0.037000000000000005,6 +227,B3 SH,STUART,2921.5,64.79899999999999,0.7509999999999999,3.4,9.6,3.12,1,1.0,2 +228,B3 SH,STUART,2922.0,69.72,0.711,3.0,12.4,3.03,1,0.95,2 +229,B3 SH,STUART,2922.5,72.51100000000001,0.637,3.5,16.35,2.984,1,0.9,3 +230,B3 SH,STUART,2923.0,74.69800000000001,0.525,5.4,20.8,2.915,1,0.85,3 +231,B3 SH,STUART,2923.5,74.69800000000001,0.525,5.4,20.8,2.915,1,0.85,3 +232,B3 SH,STUART,2924.0,73.425,0.45799999999999996,5.2,21.6,2.92,1,0.8,3 +233,B3 SH,STUART,2924.5,71.328,0.486,3.1,17.35,2.995,1,0.75,3 +234,B3 SH,STUART,2925.0,68.937,0.5870000000000001,4.1,13.25,3.122,1,0.7,2 +235,B3 SH,STUART,2925.5,66.562,0.6709999999999999,1.3,13.25,3.2430000000000003,1,0.65,2 +236,B3 SH,STUART,2926.0,64.63600000000001,0.6629999999999999,3.2,13.3,3.324,1,0.6,2 +237,B3 SH,STUART,2926.5,66.619,0.625,4.0,13.6,3.33,1,0.55,2 +238,B3 SH,STUART,2927.0,66.619,0.625,4.0,13.6,3.33,1,0.55,2 +239,B3 SH,STUART,2927.5,65.624,0.635,3.2,12.4,3.3089999999999997,1,0.5,2 +240,B3 SH,STUART,2928.0,65.322,0.68,3.3,9.65,3.315,1,0.45,2 +241,B3 SH,STUART,2928.5,67.035,0.7070000000000001,2.4,8.6,3.2319999999999998,1,0.4,2 +242,B3 SH,STUART,2929.0,68.194,0.693,3.0,8.8,3.157,1,0.35,2 +243,B3 SH,STUART,2929.5,69.149,0.6459999999999999,3.0,10.4,3.034,1,0.3,2 +244,B3 SH,STUART,2930.0,72.20100000000001,0.588,3.2,13.2,3.052,1,0.25,2 +245,B3 SH,STUART,2930.5,73.77600000000001,0.542,4.4,16.0,3.1319999999999997,1,0.2,2 +246,B3 SH,STUART,2931.0,72.609,0.525,5.5,17.55,3.31,1,0.15,2 +247,B3 SH,STUART,2931.5,66.86399999999999,0.55,5.3,16.55,3.625,1,0.1,3 +248,B3 SH,STUART,2932.0,53.702,0.62,5.7,13.75,4.003,1,0.05,3 +249,B3 LM,STUART,2932.5,40.474000000000004,0.713,4.7,11.15,4.2780000000000005,2,1.0,8 +250,B3 LM,STUART,2933.0,28.12,0.774,2.2,10.5,4.537,2,0.9,8 +251,B3 LM,STUART,2933.5,20.213,0.769,-1.1,10.95,4.6819999999999995,2,0.8,8 +252,B3 LM,STUART,2934.0,19.192999999999998,0.732,-1.0,11.1,4.546,2,0.7,8 +253,B3 LM,STUART,2934.5,20.449,0.6990000000000001,-0.7,10.65,4.386,2,0.6,8 +254,B3 LM,STUART,2935.0,21.355,0.679,-0.1,9.95,4.28,2,0.5,8 +255,B3 LM,STUART,2935.5,21.641,0.6679999999999999,1.3,8.95,4.221,2,0.4,8 +256,B3 LM,STUART,2936.0,24.203000000000003,0.653,2.6,8.3,4.099,2,0.3,8 +257,B3 LM,STUART,2936.5,34.574,0.613,2.4,9.0,3.66,2,0.2,8 +258,B3 LM,STUART,2937.0,45.231,0.5479999999999999,2.3,10.45,3.4960000000000004,2,0.1,8 +259,B4 SH,STUART,2937.5,56.427,0.498,2.9,11.35,3.338,1,1.0,2 +260,B4 SH,STUART,2938.0,67.06,0.504,1.7,11.65,3.135,1,0.9440000000000001,2 +261,B4 SH,STUART,2938.5,70.83800000000001,0.5579999999999999,2.0,10.8,3.012,1,0.889,2 +262,B4 SH,STUART,2939.0,69.932,0.612,3.3,10.05,3.0660000000000003,1,0.833,2 +263,B4 SH,STUART,2939.5,74.52600000000001,0.633,4.1,10.25,3.109,1,0.778,2 +264,B4 SH,STUART,2940.0,77.611,0.626,5.0,11.0,3.063,1,0.722,2 +265,B4 SH,STUART,2940.5,78.59,0.605,5.9,11.55,3.092,1,0.667,2 +266,B4 SH,STUART,2941.0,76.729,0.591,5.7,11.95,3.051,1,0.611,2 +267,B4 SH,STUART,2941.5,74.11,0.608,3.7,10.95,3.07,1,0.556,2 +268,B4 SH,STUART,2942.0,66.407,0.653,2.2,9.6,2.997,1,0.5,2 +269,B4 SH,STUART,2942.5,64.081,0.693,1.4,8.6,3.093,1,0.444,2 +270,B4 SH,STUART,2943.0,65.885,0.705,0.9,8.55,3.1060000000000003,1,0.389,2 +271,B4 SH,STUART,2943.5,70.29899999999999,0.696,1.4,9.0,3.085,1,0.33299999999999996,2 +272,B4 SH,STUART,2944.0,70.29899999999999,0.696,1.4,9.0,3.085,1,0.33299999999999996,2 +273,B4 SH,STUART,2944.5,74.551,0.677,3.1,9.65,3.0660000000000003,1,0.278,2 +274,B4 SH,STUART,2945.0,79.65899999999999,0.643,3.4,12.5,2.9019999999999997,1,0.222,2 +275,B4 SH,STUART,2945.5,80.402,0.573,-2.8,19.3,2.9819999999999998,1,0.16699999999999998,2 +276,B4 SH,STUART,2946.0,74.649,0.483,-0.5,23.95,3.14,1,0.111,3 +277,B4 SH,STUART,2946.5,63.428999999999995,0.461,0.2,24.2,3.3939999999999997,1,0.055999999999999994,3 +278,B4 LM,STUART,2947.0,47.916000000000004,0.598,-7.6,18.9,3.762,2,1.0,8 +279,B4 LM,STUART,2947.5,32.469,0.912,-1.4,9.8,4.314,2,0.929,8 +280,B4 LM,STUART,2948.0,20.718000000000004,1.222,-2.9,7.85,4.863,2,0.857,8 +281,B4 LM,STUART,2948.5,15.015,1.2329999999999999,-1.6,6.4,4.813,2,0.7859999999999999,8 +282,B4 LM,STUART,2949.0,14.084000000000001,1.084,-1.1,6.55,4.644,2,0.7140000000000001,8 +283,B4 LM,STUART,2949.5,15.937000000000001,0.9620000000000001,-0.4,7.4,4.6339999999999995,2,0.643,8 +284,B4 LM,STUART,2950.0,19.348,0.9009999999999999,-1.0,7.9,4.545,2,0.5710000000000001,8 +285,B4 LM,STUART,2950.5,21.469,0.9059999999999999,-1.1,6.75,4.5760000000000005,2,0.5,8 +286,B4 LM,STUART,2951.0,22.587,0.9690000000000001,-1.4,5.5,4.527,2,0.429,8 +287,B4 LM,STUART,2951.5,25.721,1.079,-0.9,4.45,4.512,2,0.35700000000000004,8 +288,B4 LM,STUART,2952.0,29.45,1.2,0.0,4.0,4.437,2,0.28600000000000003,8 +289,B4 LM,STUART,2952.5,36.313,1.169,-3.3,6.95,3.97,2,0.214,8 +290,B4 LM,STUART,2953.0,49.49100000000001,0.909,-8.9,13.85,3.695,2,0.14300000000000002,9 +291,B5 SH,STUART,2953.5,69.222,0.469,-6.0,27.9,3.3510000000000004,1,1.0,3 +292,B5 SH,STUART,2954.0,70.968,0.444,-2.5,28.85,3.49,1,0.75,3 +293,B5 SH,STUART,2954.5,65.37899999999999,0.501,-0.3,22.75,3.9,1,0.5,3 +294,B5 SH,STUART,2955.0,54.093,0.56,-0.5,16.75,4.126,1,0.25,3 +295,B5 LM,STUART,2955.5,41.633,0.541,3.9,11.55,4.482,2,1.0,8 +296,B5 LM,STUART,2956.0,33.644,0.439,3.8,11.7,4.707,2,0.976,8 +297,B5 LM,STUART,2956.5,28.976999999999997,0.321,1.3,14.45,4.447,2,0.951,8 +298,B5 LM,STUART,2957.0,24.611,0.23199999999999998,-1.1,17.25,4.481,2,0.927,8 +299,B5 LM,STUART,2957.5,24.154,0.184,-2.9,19.65,4.327,2,0.902,8 +300,B5 LM,STUART,2958.0,25.639,0.17300000000000001,-2.4,20.5,4.302,2,0.878,8 +301,B5 LM,STUART,2958.5,25.956999999999997,0.191,-2.4,19.9,4.294,2,0.8540000000000001,8 +302,B5 LM,STUART,2959.0,38.965,0.266,-2.1,17.05,4.228,2,0.805,8 +303,B5 LM,STUART,2959.5,45.354,0.301,0.2,14.8,4.127,2,0.78,8 +304,B5 LM,STUART,2960.0,53.645,0.327,2.6,12.6,3.908,2,0.7559999999999999,8 +305,B5 LM,STUART,2960.5,60.163999999999994,0.33799999999999997,3.8,12.2,3.74,2,0.732,7 +306,B5 LM,STUART,2961.0,64.032,0.33399999999999996,5.5,13.15,3.5380000000000003,2,0.7070000000000001,7 +307,B5 LM,STUART,2961.5,66.774,0.32299999999999995,7.9,14.75,3.5580000000000003,2,0.6829999999999999,7 +308,B5 LM,STUART,2962.0,68.423,0.313,8.1,15.75,3.4760000000000004,2,0.659,7 +309,B5 LM,STUART,2962.5,63.501999999999995,0.318,6.1,14.75,3.682,2,0.634,7 +310,B5 LM,STUART,2963.0,57.903999999999996,0.349,2.8,12.9,3.937,2,0.61,7 +311,B5 LM,STUART,2963.5,52.935,0.415,2.3,10.25,4.133,2,0.585,8 +312,B5 LM,STUART,2964.0,45.125,0.507,2.3,8.45,4.248,2,0.561,8 +313,B5 LM,STUART,2964.5,39.927,0.605,3.5,6.75,4.468,2,0.537,8 +314,B5 LM,STUART,2965.0,36.215,0.703,2.4,6.0,4.575,2,0.512,8 +315,B5 LM,STUART,2965.5,31.253,0.787,2.3,4.45,4.5569999999999995,2,0.488,8 +316,B5 LM,STUART,2966.0,28.445999999999998,0.8320000000000001,2.2,3.4,4.573,2,0.46299999999999997,8 +317,B5 LM,STUART,2966.5,27.296,0.821,1.2,4.4,4.79,2,0.439,8 +318,B5 LM,STUART,2967.0,28.944000000000003,0.755,-0.4,7.3,4.887,2,0.415,8 +319,B5 LM,STUART,2967.5,31.596,0.659,-1.6,11.0,4.824,2,0.39,9 +320,B5 LM,STUART,2968.0,33.211999999999996,0.574,-3.1,14.45,4.765,2,0.366,9 +321,B5 LM,STUART,2968.5,34.689,0.517,-3.0,16.4,4.766,2,0.341,9 +322,B5 LM,STUART,2969.0,39.266,0.493,-1.9,16.15,4.705,2,0.317,9 +323,B5 LM,STUART,2969.5,50.103,0.499,-2.0,14.6,4.453,2,0.293,9 +324,B5 LM,STUART,2970.0,65.167,0.525,-1.6,13.1,4.3660000000000005,2,0.268,9 +325,B5 LM,STUART,2970.5,76.436,0.557,-0.6,11.7,4.289,2,0.244,8 +326,B5 LM,STUART,2971.0,92.88600000000001,0.628,-0.2,9.4,4.272,2,0.195,8 +327,B5 LM,STUART,2971.5,99.64299999999999,0.6829999999999999,-0.3,7.95,4.395,2,0.171,8 +328,B5 LM,STUART,2972.0,101.585,0.757,0.0,6.5,4.51,2,0.146,8 +329,B5 LM,STUART,2972.5,95.775,0.85,1.6,4.9,4.53,2,0.122,8 +330,B5 LM,STUART,2973.0,87.036,0.951,2.1,3.95,4.456,2,0.098,6 +331,B5 LM,STUART,2973.5,72.331,1.0190000000000001,2.6,3.6,4.056,2,0.073,6 +332,B5 LM,STUART,2974.0,58.858999999999995,0.991,3.4,3.9,3.7119999999999997,2,0.049,6 +333,B5 LM,STUART,2974.5,60.931999999999995,0.857,1.3,7.35,3.3710000000000004,2,0.024,8 +334,C SH,STUART,2975.0,67.655,0.675,-0.8,14.4,3.1310000000000002,1,1.0,3 +335,C SH,STUART,2975.5,77.219,0.528,6.8,20.9,3.008,1,0.977,3 +336,C SH,STUART,2976.0,82.115,0.45899999999999996,10.6,24.2,2.988,1,0.953,3 +337,C SH,STUART,2976.5,84.865,0.446,9.4,23.7,3.134,1,0.93,3 +338,C SH,STUART,2977.0,84.384,0.449,13.3,21.45,3.409,1,0.907,3 +339,C SH,STUART,2977.5,81.77199999999999,0.44299999999999995,14.8,20.9,3.483,1,0.884,3 +340,C SH,STUART,2978.0,78.998,0.444,16.5,20.65,3.438,1,0.8370000000000001,3 +341,C SH,STUART,2978.5,79.896,0.457,14.9,20.15,3.423,1,0.8140000000000001,3 +342,C SH,STUART,2979.0,79.194,0.462,14.8,19.9,3.45,1,0.7909999999999999,3 +343,C SH,STUART,2979.5,78.99,0.451,13.5,19.65,3.3930000000000002,1,0.767,3 +344,C SH,STUART,2980.0,79.21,0.441,15.1,18.95,3.475,1,0.7440000000000001,3 +345,C SH,STUART,2980.5,78.1,0.451,15.6,17.5,3.478,1,0.721,3 +346,C SH,STUART,2981.0,78.59,0.489,14.3,16.75,3.505,1,0.698,3 +347,C SH,STUART,2981.5,79.439,0.544,12.7,15.25,3.478,1,0.674,3 +348,C SH,STUART,2982.0,81.29899999999999,0.5760000000000001,11.5,14.65,3.4530000000000003,1,0.6509999999999999,2 +349,C SH,STUART,2982.5,78.933,0.494,11.9,14.85,3.4789999999999996,1,0.605,2 +350,C SH,STUART,2983.0,79.471,0.441,13.4,16.3,3.4939999999999998,1,0.581,2 +351,C SH,STUART,2983.5,81.895,0.431,14.2,16.8,3.4410000000000003,1,0.5579999999999999,2 +352,C SH,STUART,2984.0,82.76799999999999,0.46799999999999997,14.3,16.05,3.4930000000000003,1,0.535,2 +353,C SH,STUART,2984.5,79.02199999999999,0.537,12.9,15.05,3.5,1,0.512,2 +354,C SH,STUART,2985.0,76.74600000000001,0.601,11.4,13.8,3.4410000000000003,1,0.488,2 +355,C SH,STUART,2985.5,73.066,0.638,11.1,13.25,3.426,1,0.465,2 +356,C SH,STUART,2986.0,70.35600000000001,0.6509999999999999,11.0,13.1,3.447,1,0.442,2 +357,C SH,STUART,2986.5,74.608,0.621,10.5,14.85,3.3989999999999996,1,0.395,2 +358,C SH,STUART,2987.0,73.008,0.585,11.1,15.15,3.3930000000000002,1,0.37200000000000005,2 +359,C SH,STUART,2987.5,70.438,0.546,12.1,15.15,3.4389999999999996,1,0.349,2 +360,C SH,STUART,2988.0,68.08,0.5,13.5,14.65,3.478,1,0.326,2 +361,C SH,STUART,2988.5,66.75,0.46,13.6,15.2,3.4610000000000003,1,0.302,2 +362,C SH,STUART,2989.0,69.45100000000001,0.455,13.4,14.8,3.4939999999999998,1,0.27899999999999997,2 +363,C SH,STUART,2989.5,75.946,0.494,14.2,14.0,3.5410000000000004,1,0.256,2 +364,C SH,STUART,2990.0,80.344,0.556,11.8,13.6,3.522,1,0.233,2 +365,C SH,STUART,2990.5,83.772,0.616,10.4,12.9,3.4760000000000004,1,0.18600000000000003,2 +366,C SH,STUART,2991.0,84.76700000000001,0.618,10.7,12.55,3.39,1,0.163,2 +367,C SH,STUART,2991.5,84.09,0.616,9.4,13.4,3.2889999999999997,1,0.14,2 +368,C SH,STUART,2992.0,86.62799999999999,0.601,8.8,14.4,3.19,1,0.11599999999999999,2 +369,C SH,STUART,2992.5,90.43,0.556,2.0,21.4,3.045,1,0.09300000000000001,2 +370,C SH,STUART,2993.0,87.07700000000001,0.498,2.0,26.4,3.088,1,0.07,3 +371,C SH,STUART,2993.5,76.623,0.479,5.3,28.45,3.2239999999999998,1,0.047,3 +372,C SH,STUART,2994.0,62.768,0.546,3.2,26.3,3.3339999999999996,1,0.023,3 +373,C LM,STUART,2994.5,43.738,0.703,1.8,19.3,3.8760000000000003,2,1.0,8 +374,C LM,STUART,2995.0,27.859,0.855,6.9,11.75,4.508,2,0.993,8 +375,C LM,STUART,2995.5,18.034000000000002,0.879,5.3,9.55,4.815,2,0.985,8 +376,C LM,STUART,2996.0,13.203,0.83,3.0,9.1,4.863,2,0.978,8 +377,C LM,STUART,2996.5,12.762,0.767,2.0,8.9,5.024,2,0.97,8 +378,C LM,STUART,2997.0,14.843,0.7020000000000001,1.8,9.2,4.6160000000000005,2,0.963,8 +379,C LM,STUART,2997.5,19.087,0.644,0.4,10.4,4.172,2,0.955,8 +380,C LM,STUART,2998.0,19.087,0.644,0.4,10.4,4.172,2,0.955,8 +381,C LM,STUART,2998.5,25.206999999999997,0.601,-0.2,10.7,3.97,2,0.948,8 +382,C LM,STUART,2999.0,27.997,0.5870000000000001,1.1,10.25,3.9330000000000003,2,0.94,8 +383,C LM,STUART,2999.5,28.822,0.602,2.2,10.0,3.875,2,0.9329999999999999,8 +384,C LM,STUART,3000.0,28.618000000000002,0.622,1.9,10.35,3.969,2,0.925,8 +385,C LM,STUART,3000.5,24.815,0.612,0.7,11.15,4.118,2,0.9179999999999999,8 +386,C LM,STUART,3001.0,23.371,0.575,0.2,11.8,4.243,2,0.91,8 +387,C LM,STUART,3001.5,23.052,0.542,0.1,12.35,4.196000000000001,2,0.903,8 +388,C LM,STUART,3002.0,23.109,0.522,-0.1,12.15,4.192,2,0.8959999999999999,8 +389,C LM,STUART,3002.5,24.138,0.511,-0.3,12.05,3.978,2,0.888,8 +390,C LM,STUART,3003.0,24.448,0.511,-0.1,11.75,3.975,2,0.8809999999999999,8 +391,C LM,STUART,3003.5,25.419,0.523,0.0,11.6,3.9619999999999997,2,0.873,8 +392,C LM,STUART,3004.0,26.724,0.56,-0.7,11.35,3.99,2,0.866,8 +393,C LM,STUART,3004.5,29.213,0.623,-0.8,10.7,3.885,2,0.858,8 +394,C LM,STUART,3005.0,34.036,0.6859999999999999,0.4,9.4,3.8160000000000003,2,0.851,8 +395,C LM,STUART,3005.5,38.157,0.716,1.7,7.75,3.66,2,0.843,8 +396,C LM,STUART,3006.0,40.45,0.701,1.8,6.8,3.5439999999999996,2,0.836,6 +397,C LM,STUART,3006.5,41.576,0.662,3.5,6.45,3.392,2,0.828,6 +398,C LM,STUART,3007.0,40.123000000000005,0.633,3.7,7.35,3.24,2,0.821,6 +399,C LM,STUART,3007.5,36.663000000000004,0.632,3.4,8.1,3.2119999999999997,2,0.813,6 +400,C LM,STUART,3008.0,32.705999999999996,0.65,3.8,8.3,3.253,2,0.8059999999999999,6 +401,C LM,STUART,3008.5,30.323,0.672,3.4,8.7,3.2889999999999997,2,0.799,6 +402,C LM,STUART,3009.0,28.601,0.6940000000000001,3.0,9.4,3.3139999999999996,2,0.7909999999999999,6 +403,C LM,STUART,3009.5,28.169,0.721,2.4,9.7,3.262,2,0.784,6 +404,C LM,STUART,3010.0,29.441999999999997,0.7559999999999999,1.4,9.8,3.31,2,0.7759999999999999,6 +405,C LM,STUART,3010.5,30.878,0.795,0.7,9.55,3.359,2,0.769,6 +406,C LM,STUART,3011.0,32.150999999999996,0.8320000000000001,0.1,9.35,3.409,2,0.7609999999999999,6 +407,C LM,STUART,3011.5,33.677,0.856,0.4,9.1,3.417,2,0.754,6 +408,C LM,STUART,3012.0,33.701,0.872,1.1,8.95,3.444,2,0.746,6 +409,C LM,STUART,3012.5,35.105,0.889,1.5,8.75,3.466,2,0.7390000000000001,6 +410,C LM,STUART,3013.0,37.104,0.914,1.6,8.6,3.49,2,0.731,6 +411,C LM,STUART,3013.5,37.349000000000004,0.9390000000000001,2.1,7.95,3.418,2,0.7240000000000001,6 +412,C LM,STUART,3014.0,37.936,0.9520000000000001,2.4,7.7,3.5039999999999996,2,0.716,6 +413,C LM,STUART,3014.5,39.086999999999996,0.953,2.1,7.75,3.511,2,0.7090000000000001,6 +414,C LM,STUART,3015.0,38.059,0.951,1.7,7.55,3.55,2,0.701,6 +415,C LM,STUART,3015.5,37.202,0.9520000000000001,2.2,7.3,3.603,2,0.6940000000000001,6 +416,C LM,STUART,3016.0,37.218,0.951,1.8,7.5,3.675,2,0.687,6 +417,C LM,STUART,3016.5,37.781,0.9490000000000001,1.4,7.6,3.741,2,0.679,6 +418,C LM,STUART,3017.0,40.164,0.948,1.5,7.35,3.735,2,0.672,6 +419,C LM,STUART,3017.5,40.955999999999996,0.95,1.6,7.3,3.747,2,0.664,6 +420,C LM,STUART,3018.0,41.013000000000005,0.9520000000000001,1.5,7.25,3.64,2,0.657,6 +421,C LM,STUART,3018.5,42.547,0.95,1.9,7.15,3.6830000000000003,2,0.649,6 +422,C LM,STUART,3019.0,41.192,0.945,2.0,7.0,3.6439999999999997,2,0.642,6 +423,C LM,STUART,3019.5,42.726000000000006,0.941,2.3,7.15,3.7039999999999997,2,0.634,6 +424,C LM,STUART,3020.0,44.407,0.9420000000000001,3.4,7.0,3.695,2,0.627,6 +425,C LM,STUART,3020.5,45.387,0.946,3.8,6.8,3.7880000000000003,2,0.619,6 +426,C LM,STUART,3021.0,45.052,0.945,2.6,7.5,3.917,2,0.612,6 +427,C LM,STUART,3021.5,46.129,0.935,2.4,7.4,3.948,2,0.604,6 +428,C LM,STUART,3022.0,47.826,0.925,2.5,7.05,4.016,2,0.597,6 +429,C LM,STUART,3022.5,50.053999999999995,0.925,2.3,6.75,3.935,2,0.59,6 +430,C LM,STUART,3023.0,55.562,0.9329999999999999,1.8,6.9,3.9739999999999998,2,0.5820000000000001,6 +431,C LM,STUART,3023.5,63.028999999999996,0.9470000000000001,2.0,6.8,3.859,2,0.575,6 +432,C LM,STUART,3024.0,75.399,0.966,1.9,6.45,3.681,2,0.5670000000000001,6 +433,C LM,STUART,3024.5,102.116,0.987,0.2,6.9,3.5610000000000004,2,0.56,6 +434,C LM,STUART,3025.0,140.778,0.993,-0.4,7.0,3.513,2,0.552,4 +435,C LM,STUART,3025.5,183.358,0.981,-0.3,7.35,3.437,2,0.545,4 +436,C LM,STUART,3026.0,213.99900000000002,0.977,0.2,7.8,3.412,2,0.537,4 +437,C LM,STUART,3026.5,220.41299999999998,1.004,0.0,8.0,3.528,2,0.53,4 +438,C LM,STUART,3027.0,200.30599999999998,1.0270000000000001,0.0,8.0,3.6710000000000003,2,0.522,4 +439,C LM,STUART,3027.5,162.149,0.9990000000000001,-0.2,8.5,3.7460000000000004,2,0.515,4 +440,C LM,STUART,3028.0,121.20200000000001,0.95,0.2,9.2,3.892,2,0.507,4 +441,C LM,STUART,3028.5,92.805,0.9159999999999999,1.3,9.95,3.924,2,0.5,4 +442,C LM,STUART,3029.0,77.758,0.894,1.9,10.65,3.9530000000000003,2,0.493,4 +443,C LM,STUART,3029.5,67.623,0.879,2.9,10.85,3.889,2,0.485,4 +444,C LM,STUART,3030.0,62.376000000000005,0.873,2.5,11.45,3.799,2,0.478,5 +445,C LM,STUART,3030.5,59.463,0.873,2.1,11.25,3.773,2,0.47,5 +446,C LM,STUART,3031.0,55.211000000000006,0.872,2.7,10.45,3.784,2,0.46299999999999997,5 +447,C LM,STUART,3031.5,51.727,0.866,2.3,10.35,3.787,2,0.455,5 +448,C LM,STUART,3032.0,52.38,0.858,2.1,10.75,3.7760000000000002,2,0.44799999999999995,5 +449,C LM,STUART,3032.5,53.122,0.851,2.5,11.05,3.7239999999999998,2,0.44,6 +450,C LM,STUART,3033.0,51.245,0.8440000000000001,2.7,11.25,3.697,2,0.433,6 +451,C LM,STUART,3033.5,52.208,0.836,1.5,11.75,3.653,2,0.425,6 +452,C LM,STUART,3034.0,54.95,0.826,1.3,12.05,3.647,2,0.418,6 +453,C LM,STUART,3034.5,54.43600000000001,0.8170000000000001,2.0,12.0,3.65,2,0.41,6 +454,C LM,STUART,3035.0,54.81100000000001,0.81,1.8,12.1,3.678,2,0.40299999999999997,6 +455,C LM,STUART,3035.5,55.603,0.8009999999999999,1.6,12.2,3.6439999999999997,2,0.396,6 +456,C LM,STUART,3036.0,54.288999999999994,0.785,1.3,12.75,3.656,2,0.38799999999999996,8 +457,C LM,STUART,3036.5,52.38,0.768,2.0,13.0,3.5980000000000003,2,0.381,8 +458,C LM,STUART,3037.0,53.645,0.758,2.0,13.7,3.582,2,0.373,8 +459,C LM,STUART,3037.5,53.93,0.757,2.1,13.75,3.5810000000000004,2,0.366,8 +460,C LM,STUART,3038.0,56.071999999999996,0.755,2.9,13.75,3.645,2,0.358,4 +461,C LM,STUART,3038.5,59.016999999999996,0.75,4.0,13.7,3.694,2,0.35100000000000003,4 +462,C LM,STUART,3039.0,62.144,0.742,4.4,14.1,3.65,2,0.34299999999999997,4 +463,C LM,STUART,3039.5,64.814,0.73,4.8,14.2,3.66,2,0.336,4 +464,C LM,STUART,3040.0,66.705,0.7140000000000001,5.6,14.6,3.6889999999999996,2,0.32799999999999996,4 +465,C LM,STUART,3040.5,67.568,0.695,6.5,15.45,3.674,2,0.321,4 +466,C LM,STUART,3041.0,67.683,0.6759999999999999,6.7,15.65,3.603,2,0.313,4 +467,C LM,STUART,3041.5,67.683,0.662,6.0,15.4,3.562,2,0.306,4 +468,C LM,STUART,3042.0,67.683,0.6659999999999999,5.7,15.25,3.57,2,0.299,4 +469,C LM,STUART,3042.5,67.683,0.701,6.0,15.2,3.603,2,0.29100000000000004,4 +470,C LM,STUART,3043.0,67.683,0.778,5.1,15.65,3.537,2,0.284,4 +471,C LM,STUART,3043.5,67.683,0.882,4.9,15.75,3.5469999999999997,2,0.276,4 +472,C LM,STUART,3044.0,67.683,0.973,4.4,15.8,3.533,2,0.26899999999999996,4 +473,C LM,STUART,3044.5,67.683,1.0170000000000001,3.5,16.25,3.495,2,0.261,4 +474,A1 LM,CRAWFORD,2972.5,49.675,0.845,3.905,11.175,3.265,2,1.0,8 +475,A1 LM,CRAWFORD,2973.0,34.435,0.879,3.085,8.175,3.8310000000000004,2,0.991,8 +476,A1 LM,CRAWFORD,2973.5,26.178,0.92,2.615,4.945,4.306,2,0.981,8 +477,A1 LM,CRAWFORD,2974.0,19.463,0.9670000000000001,0.82,3.82,4.578,2,0.972,8 +478,A1 LM,CRAWFORD,2974.5,19.26,0.995,0.32,3.63,4.643,2,0.9620000000000001,8 +479,A1 LM,CRAWFORD,2975.0,19.985,1.008,0.06,4.32,4.614,2,0.953,8 +480,A1 LM,CRAWFORD,2975.5,22.298000000000002,1.002,-0.01,5.5,4.4910000000000005,2,0.943,8 +481,A1 LM,CRAWFORD,2976.0,24.611,0.956,0.05,6.87,4.369,2,0.934,8 +482,A1 LM,CRAWFORD,2976.5,24.677,0.8240000000000001,0.31,6.94,4.047,2,0.915,8 +483,A1 LM,CRAWFORD,2977.0,24.945999999999998,0.667,0.965,5.915,3.8930000000000002,2,0.9059999999999999,8 +484,A1 LM,CRAWFORD,2977.5,29.31,0.5589999999999999,2.11,6.15,3.52,2,0.8959999999999999,8 +485,A1 LM,CRAWFORD,2978.0,37.321999999999996,0.522,3.375,8.445,3.125,2,0.887,7 +486,A1 LM,CRAWFORD,2978.5,42.141999999999996,0.51,3.985,10.785,2.843,2,0.877,7 +487,A1 LM,CRAWFORD,2979.0,52.434,0.49200000000000005,4.42,13.15,2.674,2,0.868,7 +488,A1 LM,CRAWFORD,2979.5,63.181000000000004,0.473,5.18,14.13,2.6439999999999997,2,0.858,7 +489,A1 LM,CRAWFORD,2980.0,69.405,0.465,5.52,14.56,2.6630000000000003,2,0.8490000000000001,4 +490,A1 LM,CRAWFORD,2980.5,77.785,0.475,5.82,14.94,2.68,2,0.84,4 +491,A1 LM,CRAWFORD,2981.0,83.57700000000001,0.469,5.965,15.395,2.6660000000000004,2,0.83,4 +492,A1 LM,CRAWFORD,2981.5,84.05799999999999,0.513,6.025,15.855,2.622,2,0.821,4 +493,A1 LM,CRAWFORD,2982.0,81.82,0.544,5.95,16.05,2.609,2,0.8109999999999999,4 +494,A1 LM,CRAWFORD,2982.5,80.257,0.563,5.74,16.1,2.6260000000000003,2,0.802,4 +495,A1 LM,CRAWFORD,2983.0,79.833,0.579,5.135,15.715,2.662,2,0.792,4 +496,A1 LM,CRAWFORD,2983.5,80.32300000000001,0.583,4.565,15.275,2.693,2,0.7829999999999999,4 +497,A1 LM,CRAWFORD,2984.0,84.704,0.59,4.365,15.165,2.7110000000000003,2,0.774,4 +498,A1 LM,CRAWFORD,2984.5,96.67399999999999,0.596,4.725,15.565,2.7439999999999998,2,0.764,4 +499,A1 LM,CRAWFORD,2985.0,112.662,0.609,4.88,15.71,2.824,2,0.755,4 +500,A1 LM,CRAWFORD,2985.5,131.484,0.634,5.11,15.6,2.935,2,0.745,4 +501,A1 LM,CRAWFORD,2986.0,138.16899999999998,0.659,5.33,15.1,3.0,2,0.736,4 +502,A1 LM,CRAWFORD,2986.5,135.045,0.682,5.1,14.46,3.048,2,0.726,4 +503,A1 LM,CRAWFORD,2987.0,117.726,0.7070000000000001,4.415,13.315,3.097,2,0.7170000000000001,4 +504,A1 LM,CRAWFORD,2987.5,98.382,0.7290000000000001,3.395,11.695,3.193,2,0.708,4 +505,A1 LM,CRAWFORD,2988.0,91.348,0.7709999999999999,3.235,10.985,3.3080000000000003,2,0.698,4 +506,A1 LM,CRAWFORD,2988.5,87.05,0.831,3.21,10.64,3.4930000000000003,2,0.6890000000000001,4 +507,A1 LM,CRAWFORD,2989.0,82.98,0.9279999999999999,2.835,10.115,3.5260000000000002,2,0.679,4 +508,A1 LM,CRAWFORD,2989.5,67.264,1.0190000000000001,0.475,8.435,3.217,2,0.67,6 +509,A1 LM,CRAWFORD,2990.0,57.068999999999996,1.047,-2.385,7.115,3.157,2,0.66,6 +510,A1 LM,CRAWFORD,2990.5,46.873999999999995,1.0659999999999998,-3.97,6.6,3.159,2,0.6509999999999999,6 +511,A1 LM,CRAWFORD,2991.0,39.325,1.06,-3.69,7.15,3.2239999999999998,2,0.642,6 +512,A1 LM,CRAWFORD,2991.5,43.946000000000005,1.042,-2.73,7.29,3.272,2,0.632,6 +513,A1 LM,CRAWFORD,2992.0,51.73,1.005,-0.9,7.98,3.29,2,0.623,6 +514,A1 LM,CRAWFORD,2992.5,58.373999999999995,0.956,1.46,9.41,3.2769999999999997,2,0.613,6 +515,A1 LM,CRAWFORD,2993.0,67.75399999999999,0.904,3.985,11.545,3.2960000000000003,2,0.604,4 +516,A1 LM,CRAWFORD,2993.5,71.206,0.8740000000000001,5.045,12.915,3.3280000000000003,2,0.594,4 +517,A1 LM,CRAWFORD,2994.0,69.188,0.852,4.86,12.85,3.33,2,0.585,4 +518,A1 LM,CRAWFORD,2994.5,58.452,0.841,3.455,11.265,3.332,2,0.575,4 +519,A1 LM,CRAWFORD,2995.0,38.715,0.816,2.185,9.855,3.365,2,0.5660000000000001,8 +520,A1 LM,CRAWFORD,2995.5,30.541,0.8009999999999999,0.96,8.76,3.4760000000000004,2,0.557,8 +521,A1 LM,CRAWFORD,2996.0,21.684,0.792,-0.04,8.28,3.7739999999999996,2,0.547,8 +522,A1 LM,CRAWFORD,2996.5,21.252,0.7929999999999999,-0.505,9.225,4.041,2,0.5379999999999999,8 +523,A1 LM,CRAWFORD,2997.0,23.116999999999997,0.7929999999999999,-0.555,9.895,4.292,2,0.528,8 +524,A1 LM,CRAWFORD,2997.5,28.85,0.7909999999999999,-0.46,9.89,4.371,2,0.519,8 +525,A1 LM,CRAWFORD,2998.0,36.226,0.7879999999999999,-0.085,9.175,4.112,2,0.509,8 +526,A1 LM,CRAWFORD,2998.5,42.83,0.8009999999999999,0.41,8.49,3.91,2,0.5,8 +527,A1 LM,CRAWFORD,2999.0,46.846000000000004,0.82,1.255,8.275,3.793,2,0.491,6 +528,A1 LM,CRAWFORD,2999.5,48.133,0.845,1.77,8.29,3.486,2,0.48100000000000004,6 +529,A1 LM,CRAWFORD,3000.0,43.162,0.8740000000000001,1.35,8.64,3.263,2,0.47200000000000003,6 +530,A1 LM,CRAWFORD,3000.5,36.586,0.92,1.01,8.74,3.187,2,0.462,6 +531,A1 LM,CRAWFORD,3001.0,32.746,0.955,0.625,8.535,3.173,2,0.45299999999999996,6 +532,A1 LM,CRAWFORD,3001.5,30.956999999999997,0.9740000000000001,0.565,8.555,3.315,2,0.44299999999999995,6 +533,A1 LM,CRAWFORD,3002.0,30.765,0.981,0.545,8.575,3.4410000000000003,2,0.434,8 +534,A1 LM,CRAWFORD,3002.5,31.265,0.987,0.625,8.425,3.6180000000000003,2,0.425,8 +535,A1 LM,CRAWFORD,3003.0,33.124,0.9940000000000001,0.755,8.045,3.943,2,0.415,8 +536,A1 LM,CRAWFORD,3003.5,35.211,0.997,0.635,7.555,4.07,2,0.406,6 +537,A1 LM,CRAWFORD,3004.0,36.385999999999996,0.988,0.125,7.135,3.885,2,0.396,6 +538,A1 LM,CRAWFORD,3004.5,38.016999999999996,0.951,-0.175,6.875,3.654,2,0.387,6 +539,A1 LM,CRAWFORD,3005.0,41.016000000000005,0.903,0.055,6.825,3.438,2,0.377,6 +540,A1 LM,CRAWFORD,3005.5,49.653999999999996,0.8540000000000001,1.52,7.51,3.33,2,0.368,6 +541,A1 LM,CRAWFORD,3006.0,62.068000000000005,0.799,3.1,9.13,3.2089999999999996,2,0.358,6 +542,A1 LM,CRAWFORD,3006.5,71.222,0.74,4.0,10.98,3.0869999999999997,2,0.349,4 +543,A1 LM,CRAWFORD,3007.0,73.309,0.691,4.015,12.425,2.98,2,0.34,4 +544,A1 LM,CRAWFORD,3007.5,69.469,0.627,3.19,13.37,2.904,2,0.33,4 +545,A1 LM,CRAWFORD,3008.0,65.857,0.5589999999999999,2.1,14.08,2.859,2,0.321,4 +546,A1 LM,CRAWFORD,3008.5,58.369,0.504,0.715,14.235,2.83,2,0.311,4 +547,A1 LM,CRAWFORD,3009.0,56.125,0.435,-0.775,13.415,2.786,2,0.302,4 +548,A1 LM,CRAWFORD,3009.5,56.769,0.37799999999999995,-1.155,12.805,2.7260000000000004,2,0.292,6 +549,A1 LM,CRAWFORD,3010.0,62.586999999999996,0.298,-0.18,12.87,2.588,2,0.28300000000000003,7 +550,A1 LM,CRAWFORD,3010.5,64.67399999999999,0.252,0.24,14.42,2.465,2,0.27399999999999997,7 +551,A1 LM,CRAWFORD,3011.0,64.253,0.212,0.24,16.36,2.374,2,0.264,7 +552,A1 LM,CRAWFORD,3011.5,61.553000000000004,0.166,-0.295,18.395,2.329,2,0.255,7 +553,A1 LM,CRAWFORD,3012.0,60.221000000000004,0.114,-0.59,19.27,2.315,2,0.245,7 +554,A1 LM,CRAWFORD,3012.5,59.11600000000001,0.09300000000000001,-0.655,19.655,2.302,2,0.23600000000000002,7 +555,A1 LM,CRAWFORD,3013.0,57.997,0.081,-0.8,19.69,2.258,2,0.226,7 +556,A1 LM,CRAWFORD,3013.5,57.363,0.091,-1.105,19.095,2.2430000000000003,2,0.217,7 +557,A1 LM,CRAWFORD,3014.0,57.863,0.14400000000000002,-1.27,18.12,2.261,2,0.20800000000000002,7 +558,A1 LM,CRAWFORD,3014.5,59.038000000000004,0.20600000000000002,-1.26,17.03,2.326,2,0.198,7 +559,A1 LM,CRAWFORD,3015.0,60.213,0.29,-1.04,16.68,2.4090000000000003,2,0.18899999999999997,7 +560,A1 LM,CRAWFORD,3015.5,61.16,0.368,-0.14,16.68,2.781,2,0.179,4 +561,A1 LM,CRAWFORD,3016.0,58.46,0.46799999999999997,-0.25,15.21,3.327,2,0.17,4 +562,A1 LM,CRAWFORD,3016.5,53.48,0.564,0.36,11.47,3.7960000000000003,2,0.16,6 +563,A1 LM,CRAWFORD,3017.0,51.692,0.657,0.825,8.125,4.062,2,0.151,6 +564,A1 LM,CRAWFORD,3017.5,67.238,0.807,1.7,7.13,4.173,2,0.142,6 +565,A1 LM,CRAWFORD,3018.0,74.796,0.89,2.905,7.335,4.19,2,0.132,6 +566,A1 LM,CRAWFORD,3018.5,75.743,0.925,3.055,7.765,4.302,2,0.12300000000000001,6 +567,A1 LM,CRAWFORD,3019.0,70.991,0.9279999999999999,2.325,7.785,4.444,2,0.113,6 +568,A1 LM,CRAWFORD,3019.5,57.348,0.929,1.355,7.395,4.492,2,0.10400000000000001,6 +569,A1 LM,CRAWFORD,3020.0,46.213,0.929,0.67,7.43,4.385,2,0.094,6 +570,A1 LM,CRAWFORD,3020.5,42.11600000000001,0.9259999999999999,0.19,7.17,4.2010000000000005,2,0.085,6 +571,A1 LM,CRAWFORD,3021.0,44.925,0.9179999999999999,-0.19,6.69,4.093,2,0.075,6 +572,A1 LM,CRAWFORD,3021.5,55.903,0.912,0.07,5.72,4.034,2,0.066,6 +573,A1 LM,CRAWFORD,3022.0,66.196,0.9059999999999999,0.495,5.375,3.958,2,0.057,6 +574,A1 LM,CRAWFORD,3022.5,73.52600000000001,0.894,1.44,5.26,3.82,2,0.047,6 +575,B1 SH,CRAWFORD,3032.0,72.392,0.7090000000000001,-0.74,18.41,2.6289999999999996,1,0.125,2 +576,B1 SH,CRAWFORD,3032.5,69.928,0.792,-0.69,19.32,2.616,1,0.063,3 +577,B1 LM,CRAWFORD,3033.0,64.72,0.8490000000000001,-0.96,16.33,2.9139999999999997,2,1.0,8 +578,B1 LM,CRAWFORD,3033.5,52.445,0.892,0.91,11.35,3.292,2,0.977,8 +579,B1 LM,CRAWFORD,3034.0,43.361999999999995,0.93,-0.02,6.92,3.571,2,0.955,8 +580,B1 LM,CRAWFORD,3034.5,42.06399999999999,0.9740000000000001,0.015,5.495,3.435,2,0.909,8 +581,B1 LM,CRAWFORD,3035.0,45.641999999999996,0.956,0.005,5.475,3.375,2,0.8859999999999999,6 +582,B1 LM,CRAWFORD,3035.5,53.266000000000005,0.932,-0.105,5.545,3.299,2,0.8640000000000001,6 +583,B1 LM,CRAWFORD,3036.0,59.043,0.894,0.17,6.99,3.114,2,0.841,6 +584,B1 LM,CRAWFORD,3036.5,62.331,0.8340000000000001,-0.245,9.835,2.813,2,0.818,4 +585,B1 LM,CRAWFORD,3037.0,60.946000000000005,0.884,-1.69,16.08,2.745,2,0.795,8 +586,B1 LM,CRAWFORD,3037.5,53.913999999999994,0.9179999999999999,-0.72,19.54,3.1519999999999997,2,0.773,8 +587,B1 LM,CRAWFORD,3038.0,45.287,0.922,-0.86,18.44,3.9619999999999997,2,0.75,8 +588,B1 LM,CRAWFORD,3038.5,30.049,0.925,0.445,13.565,4.571000000000001,2,0.727,8 +589,B1 LM,CRAWFORD,3039.0,23.017,0.9470000000000001,0.54,9.59,4.806,2,0.705,8 +590,B1 LM,CRAWFORD,3039.5,21.228,0.973,-0.03,7.57,4.824,2,0.682,8 +591,B1 LM,CRAWFORD,3040.0,20.109,0.985,0.225,6.725,4.81,2,0.659,8 +592,B1 LM,CRAWFORD,3040.5,19.256,0.995,0.415,6.505,4.859,2,0.636,8 +593,B1 LM,CRAWFORD,3041.0,18.38,0.9990000000000001,0.44,6.29,4.8919999999999995,2,0.614,8 +594,B1 LM,CRAWFORD,3041.5,17.275,0.987,0.185,6.075,4.91,2,0.591,8 +595,B1 LM,CRAWFORD,3042.0,16.39,0.975,0.015,5.815,4.88,2,0.568,8 +596,B1 LM,CRAWFORD,3042.5,16.197,0.963,-0.205,5.445,4.834,2,0.545,8 +597,B1 LM,CRAWFORD,3043.0,16.469,0.9570000000000001,-0.225,5.335,4.76,2,0.523,8 +598,B1 LM,CRAWFORD,3043.5,20.38,0.973,-0.295,5.255,4.669,2,0.5,8 +599,B1 LM,CRAWFORD,3044.0,31.86,1.005,-0.185,5.045,4.547,2,0.47700000000000004,8 +600,B1 LM,CRAWFORD,3044.5,39.608000000000004,1.0390000000000001,0.44,5.16,4.5169999999999995,2,0.455,8 +601,B1 LM,CRAWFORD,3045.0,43.291000000000004,1.064,0.96,5.09,4.488,2,0.43200000000000005,6 +602,B1 LM,CRAWFORD,3045.5,44.001000000000005,1.089,1.295,4.875,4.396,2,0.409,6 +603,B1 LM,CRAWFORD,3046.0,38.574,1.112,0.7,4.09,4.275,2,0.386,6 +604,B1 LM,CRAWFORD,3046.5,35.19,1.128,0.195,3.575,4.245,2,0.364,6 +605,B1 LM,CRAWFORD,3047.0,32.946,1.131,-0.215,3.205,4.434,2,0.341,6 +606,B1 LM,CRAWFORD,3047.5,31.613000000000003,1.128,-0.095,3.545,4.405,2,0.318,6 +607,B1 LM,CRAWFORD,3048.0,32.113,1.092,-0.005,4.715,4.329,2,0.295,6 +608,B1 LM,CRAWFORD,3048.5,32.368,1.052,0.29,5.42,4.285,2,0.273,6 +609,B1 LM,CRAWFORD,3049.0,31.506999999999998,0.978,0.405,5.865,4.224,2,0.25,6 +610,B1 LM,CRAWFORD,3049.5,30.849,0.88,0.445,6.595,4.04,2,0.22699999999999998,6 +611,B1 LM,CRAWFORD,3050.0,29.953000000000003,0.772,0.91,7.82,3.451,2,0.205,6 +612,B1 LM,CRAWFORD,3050.5,28.875999999999998,0.723,1.24,9.64,3.141,2,0.182,6 +613,B1 LM,CRAWFORD,3051.0,28.228,0.705,1.21,10.47,3.2060000000000004,2,0.159,6 +614,B1 LM,CRAWFORD,3051.5,28.263,0.693,1.005,10.355,3.38,2,0.136,6 +615,B1 LM,CRAWFORD,3052.0,28.754,0.693,0.47,9.35,3.6460000000000004,2,0.114,6 +616,B1 LM,CRAWFORD,3052.5,34.26,0.6940000000000001,0.34,7.94,3.9739999999999998,2,0.091,6 +617,B1 LM,CRAWFORD,3053.0,45.01,0.6940000000000001,0.485,6.185,4.2410000000000005,2,0.068,6 +618,B1 LM,CRAWFORD,3053.5,55.98,0.7070000000000001,0.665,5.945,4.093,2,0.045,6 +619,B1 LM,CRAWFORD,3054.0,67.146,0.7170000000000001,0.965,6.695,3.67,2,0.023,6 +620,B2 SH,CRAWFORD,3054.5,80.0,0.708,1.965,8.815,3.361,1,1.0,2 +621,B2 SH,CRAWFORD,3055.0,85.05,0.69,3.215,10.515,3.16,1,0.95,2 +622,B2 SH,CRAWFORD,3055.5,83.946,0.659,3.965,11.115,3.178,1,0.9,2 +623,B2 SH,CRAWFORD,3056.0,80.973,0.623,4.61,10.99,3.2110000000000003,1,0.85,2 +624,B2 SH,CRAWFORD,3056.5,78.782,0.5920000000000001,4.845,10.905,3.213,1,0.8,2 +625,B2 SH,CRAWFORD,3057.0,76.082,0.574,4.82,10.73,3.2310000000000003,1,0.75,2 +626,B2 SH,CRAWFORD,3057.5,72.925,0.562,4.535,10.405,3.217,1,0.7,2 +627,B2 SH,CRAWFORD,3058.0,72.04899999999999,0.55,4.24,10.55,3.187,1,0.65,2 +628,B2 SH,CRAWFORD,3058.5,71.391,0.535,4.115,11.005,3.128,1,0.6,2 +629,B2 SH,CRAWFORD,3059.0,70.751,0.527,4.055,11.765,3.036,1,0.55,2 +630,B2 SH,CRAWFORD,3059.5,71.26100000000001,0.5329999999999999,4.235,12.565,3.0069999999999997,1,0.5,2 +631,B2 SH,CRAWFORD,3060.0,73.11,0.518,4.44,12.8,2.978,1,0.45,2 +632,B2 SH,CRAWFORD,3060.5,75.425,0.491,3.815,12.085,2.903,1,0.4,2 +633,B2 SH,CRAWFORD,3061.0,76.828,0.47,3.265,11.525,2.687,1,0.35,2 +634,B2 SH,CRAWFORD,3061.5,75.04,0.45799999999999996,3.16,11.69,2.58,1,0.3,2 +635,B2 SH,CRAWFORD,3062.0,70.288,0.449,3.695,12.535,2.5340000000000003,1,0.25,2 +636,B2 LM,CRAWFORD,3062.5,66.266,0.44299999999999995,4.505,13.995,2.553,1,0.2,2 +637,B2 LM,CRAWFORD,3063.0,60.79,0.441,6.07,16.34,2.679,1,0.15,2 +638,B2 LM,CRAWFORD,3063.5,54.67,0.444,6.25,16.74,3.35,1,0.1,3 +639,B2 LM,CRAWFORD,3064.0,48.093999999999994,0.445,5.995,16.615,3.865,1,0.05,3 +640,B2 LM,CRAWFORD,3064.5,41.062,0.445,3.425,13.955,4.24,2,1.0,8 +641,B2 LM,CRAWFORD,3065.0,39.046,0.455,1.725,12.915,4.507,2,0.9640000000000001,8 +642,B2 LM,CRAWFORD,3065.5,38.169000000000004,0.45799999999999996,1.1,12.79,4.354,2,0.929,8 +643,B2 LM,CRAWFORD,3066.0,40.493,0.465,0.895,13.365,4.293,2,0.893,8 +644,B2 LM,CRAWFORD,3066.5,43.948,0.45899999999999996,0.68,13.98,4.248,2,0.857,8 +645,B2 LM,CRAWFORD,3067.0,46.49100000000001,0.423,0.57,14.45,4.266,2,0.821,8 +646,B2 LM,CRAWFORD,3067.5,47.21,0.392,0.565,14.945,4.331,2,0.7859999999999999,8 +647,B2 LM,CRAWFORD,3068.0,46.788999999999994,0.34600000000000003,0.765,15.325,4.395,2,0.75,8 +648,B2 LM,CRAWFORD,3068.5,45.912,0.325,0.985,15.625,4.397,2,0.7140000000000001,8 +649,B2 LM,CRAWFORD,3069.0,45.70399999999999,0.304,1.205,15.925,4.383,2,0.679,8 +650,B2 LM,CRAWFORD,3069.5,45.527,0.295,1.27,15.89,4.276,2,0.643,8 +651,B2 LM,CRAWFORD,3070.0,44.887,0.289,1.155,15.315,4.123,2,0.607,8 +652,B2 LM,CRAWFORD,3070.5,44.23,0.29,0.815,14.205,3.95,2,0.5710000000000001,8 +653,B2 LM,CRAWFORD,3071.0,44.273999999999994,0.281,0.55,12.84,3.785,2,0.536,8 +654,B2 LM,CRAWFORD,3071.5,45.221000000000004,0.247,0.545,11.605,3.647,2,0.5,8 +655,B2 LM,CRAWFORD,3072.0,46.396,0.16699999999999998,1.685,11.385,3.431,2,0.46399999999999997,7 +656,B2 LM,CRAWFORD,3072.5,46.888000000000005,0.11800000000000001,2.92,12.76,3.2,2,0.429,7 +657,B2 LM,CRAWFORD,3073.0,46.475,0.069,4.4,16.76,2.968,2,0.39299999999999996,7 +658,B2 LM,CRAWFORD,3073.5,46.738,0.042,5.065,20.085,2.815,2,0.35700000000000004,7 +659,B2 LM,CRAWFORD,3074.0,47.913999999999994,0.033,4.815,20.915,2.8480000000000003,2,0.321,7 +660,B2 LM,CRAWFORD,3074.5,51.596000000000004,0.04,4.485,20.755,2.99,2,0.28600000000000003,7 +661,B2 LM,CRAWFORD,3075.0,62.89,0.102,4.42,17.02,3.4739999999999998,2,0.25,7 +662,B2 LM,CRAWFORD,3075.5,80.38,0.22,3.955,12.965,4.067,2,0.214,8 +663,B2 LM,CRAWFORD,3076.0,105.725,0.34700000000000003,2.42,7.33,4.271,2,0.179,8 +664,B2 LM,CRAWFORD,3076.5,131.069,0.524,1.655,5.355,3.838,2,0.14300000000000002,8 +665,B2 LM,CRAWFORD,3077.0,145.018,0.636,-0.905,7.135,3.2030000000000003,2,0.107,8 +666,B2 LM,CRAWFORD,3077.5,131.376,0.726,-1.94,12.26,2.8160000000000003,2,0.071,8 +667,B3 SH,CRAWFORD,3078.0,110.21,0.792,0.27,14.14,2.678,2,0.036000000000000004,8 +668,B3 SH,CRAWFORD,3078.5,89.045,0.826,3.14,13.7,2.773,1,1.0,2 +669,B3 SH,CRAWFORD,3079.0,73.807,0.8079999999999999,4.795,11.855,3.3710000000000004,1,0.9440000000000001,2 +670,B3 SH,CRAWFORD,3079.5,73.158,0.7809999999999999,4.755,10.905,3.4930000000000003,1,0.889,2 +671,B3 SH,CRAWFORD,3080.0,73.195,0.763,3.975,10.205,3.432,1,0.833,2 +672,B3 SH,CRAWFORD,3080.5,72.325,0.748,3.68,10.0,3.387,1,0.778,2 +673,B3 SH,CRAWFORD,3081.0,71.221,0.742,3.33,9.69,3.3739999999999997,1,0.722,2 +674,B3 SH,CRAWFORD,3081.5,70.563,0.742,2.76,9.25,3.3289999999999997,1,0.667,2 +675,B3 SH,CRAWFORD,3082.0,71.51899999999999,0.733,1.75,10.04,3.145,1,0.611,2 +676,B3 SH,CRAWFORD,3082.5,74.062,0.722,2.32,12.64,2.945,1,0.556,2 +677,B3 SH,CRAWFORD,3083.0,77.061,0.71,2.765,15.055,2.7760000000000002,1,0.5,2 +678,B3 SH,CRAWFORD,3083.5,78.693,0.695,3.04,15.66,2.793,1,0.444,2 +679,B3 SH,CRAWFORD,3084.0,79.192,0.6829999999999999,2.505,14.075,2.951,1,0.389,2 +680,B3 SH,CRAWFORD,3084.5,79.192,0.6829999999999999,2.505,14.075,2.951,1,0.389,2 +681,B3 SH,CRAWFORD,3085.0,78.999,0.662,2.395,12.335,2.984,1,0.33299999999999996,2 +682,B3 SH,CRAWFORD,3085.5,78.11399999999999,0.64,2.395,11.095,2.909,1,0.278,2 +683,B3 SH,CRAWFORD,3086.0,77.24600000000001,0.625,2.705,12.075,2.708,1,0.222,2 +684,B3 SH,CRAWFORD,3086.5,76.369,0.62,2.305,15.615,2.6010000000000004,1,0.16699999999999998,2 +685,B3 SH,CRAWFORD,3087.0,72.301,0.633,0.98,21.27,2.759,1,0.111,3 +686,B3 SH,CRAWFORD,3087.5,61.107,0.667,-1.74,21.21,3.8489999999999998,1,0.055999999999999994,3 +687,B3 LM,CRAWFORD,3088.0,41.148999999999994,0.68,-2.295,18.875,4.854,2,1.0,8 +688,B3 LM,CRAWFORD,3088.5,28.419,0.6859999999999999,-0.92,14.54,5.0360000000000005,2,0.938,8 +689,B3 LM,CRAWFORD,3089.0,22.526999999999997,0.687,0.36,10.24,5.044,2,0.875,8 +690,B3 LM,CRAWFORD,3089.5,18.459,0.684,2.27,8.16,4.931,2,0.813,8 +691,B3 LM,CRAWFORD,3090.0,17.345,0.679,2.67,8.23,4.547,2,0.75,8 +692,B3 LM,CRAWFORD,3090.5,17.617,0.6759999999999999,2.855,8.725,4.328,2,0.688,8 +693,B3 LM,CRAWFORD,3091.0,19.292,0.664,2.695,9.465,4.2989999999999995,2,0.625,8 +694,B3 LM,CRAWFORD,3091.5,21.572,0.655,2.535,9.705,4.301,2,0.563,8 +695,B3 LM,CRAWFORD,3092.0,22.975,0.653,1.95,9.21,4.319,2,0.5,8 +696,B3 LM,CRAWFORD,3092.5,23.921999999999997,0.65,1.34,8.59,4.305,2,0.43799999999999994,8 +697,B3 LM,CRAWFORD,3093.0,24.869,0.657,0.63,7.42,4.291,2,0.375,8 +698,B3 LM,CRAWFORD,3093.5,27.64,0.669,0.42,6.02,4.216,2,0.313,6 +699,B3 LM,CRAWFORD,3094.0,34.058,0.67,0.44,4.4,4.109,2,0.25,6 +700,B3 LM,CRAWFORD,3094.5,41.489,0.652,1.11,4.03,3.815,2,0.188,6 +701,B3 LM,CRAWFORD,3095.0,51.235,0.631,1.73,5.19,3.444,2,0.125,6 +702,B4 SH,CRAWFORD,3095.5,55.601000000000006,0.61,2.42,7.82,3.1460000000000004,2,0.063,6 +703,B4 SH,CRAWFORD,3096.0,59.512,0.601,3.715,10.375,2.935,1,1.0,2 +704,B4 SH,CRAWFORD,3096.5,62.055,0.598,4.13,12.01,2.844,1,0.95,2 +705,B4 SH,CRAWFORD,3097.0,64.37,0.5920000000000001,3.83,12.15,2.7680000000000002,1,0.9,2 +706,B4 SH,CRAWFORD,3097.5,65.773,0.5870000000000001,3.32,11.31,2.708,1,0.85,2 +707,B4 SH,CRAWFORD,3098.0,66.036,0.593,2.635,9.895,2.6630000000000003,1,0.8,2 +708,B4 SH,CRAWFORD,3098.5,64.712,0.597,2.65,9.32,2.616,1,0.75,2 +709,B4 SH,CRAWFORD,3099.0,64.039,0.6,2.545,8.775,2.603,1,0.7,2 +710,B4 SH,CRAWFORD,3099.5,64.332,0.61,2.57,8.69,2.589,1,0.65,2 +711,B4 SH,CRAWFORD,3100.0,68.247,0.601,2.545,9.105,2.531,1,0.6,2 +712,B4 SH,CRAWFORD,3100.5,75.809,0.583,2.99,10.63,2.4859999999999998,1,0.55,2 +713,B4 SH,CRAWFORD,3101.0,84.73899999999999,0.5589999999999999,3.69,12.42,2.488,1,0.5,2 +714,B4 SH,CRAWFORD,3101.5,95.76799999999999,0.541,4.595,14.775,2.52,1,0.45,2 +715,B4 SH,CRAWFORD,3102.0,94.175,0.529,4.575,15.465,2.6,1,0.4,2 +716,B4 SH,CRAWFORD,3102.5,89.427,0.529,4.575,15.555,2.7880000000000003,1,0.35,2 +717,B4 SH,CRAWFORD,3103.0,84.90799999999999,0.527,4.35,14.27,3.148,1,0.3,2 +718,B4 SH,CRAWFORD,3103.5,81.3,0.53,3.17,11.82,3.103,1,0.25,2 +719,B4 SH,CRAWFORD,3104.0,82.251,0.534,1.84,10.85,2.6910000000000003,1,0.2,2 +720,B4 SH,CRAWFORD,3104.5,83.20299999999999,0.568,0.12,16.21,2.235,1,0.15,2 +721,B4 SH,CRAWFORD,3105.0,82.88799999999999,0.647,-0.305,24.225,2.113,1,0.1,3 +722,B4 LM,CRAWFORD,3105.5,70.52600000000001,0.731,-3.475,31.335,2.301,1,0.05,3 +723,B4 LM,CRAWFORD,3106.0,59.858000000000004,0.7929999999999999,-2.585,25.825,3.3289999999999997,2,1.0,8 +724,B4 LM,CRAWFORD,3106.5,43.933,0.815,-2.425,18.585,4.2330000000000005,2,0.9440000000000001,8 +725,B4 LM,CRAWFORD,3107.0,30.523000000000003,0.828,-0.505,13.435,4.53,2,0.889,8 +726,B4 LM,CRAWFORD,3107.5,21.444000000000003,0.867,-0.83,7.75,4.734,2,0.833,8 +727,B4 LM,CRAWFORD,3108.0,18.52,0.948,0.5,5.3,4.86,2,0.778,8 +728,B4 LM,CRAWFORD,3108.5,20.668000000000003,1.034,0.725,4.655,4.986000000000001,2,0.722,8 +729,B4 LM,CRAWFORD,3109.0,23.396,1.077,0.945,4.055,4.9719999999999995,2,0.667,8 +730,B4 LM,CRAWFORD,3109.5,25.715999999999998,1.112,1.0,3.38,4.974,2,0.611,5 +731,B4 LM,CRAWFORD,3110.0,28.035,1.131,1.335,2.125,4.9910000000000005,2,0.556,6 +732,B4 LM,CRAWFORD,3110.5,31.494,1.128,1.565,1.855,5.024,2,0.5,6 +733,B4 LM,CRAWFORD,3111.0,42.743,1.145,0.74,2.92,4.996,2,0.389,6 +734,B4 LM,CRAWFORD,3111.5,47.021,1.158,0.415,2.815,4.874,2,0.33299999999999996,6 +735,B4 LM,CRAWFORD,3112.0,49.443000000000005,1.158,0.265,2.475,4.72,2,0.278,6 +736,B4 LM,CRAWFORD,3112.5,48.343,1.072,0.175,2.025,4.435,2,0.222,6 +737,B4 LM,CRAWFORD,3113.0,47.243,0.993,0.305,2.325,4.07,2,0.16699999999999998,6 +738,B4 LM,CRAWFORD,3113.5,47.738,0.9359999999999999,0.625,3.575,3.745,2,0.111,6 +739,B5 SH,CRAWFORD,3114.0,55.757,0.9,2.86,7.09,3.514,2,0.055999999999999994,6 +740,B5 SH,CRAWFORD,3114.5,67.815,0.8759999999999999,4.345,9.295,3.406,1,1.0,2 +741,B5 SH,CRAWFORD,3115.0,68.904,0.852,4.72,9.57,3.455,1,0.938,2 +742,B5 SH,CRAWFORD,3115.5,64.085,0.8340000000000001,3.905,7.665,3.565,1,0.875,2 +743,B5 SH,CRAWFORD,3116.0,53.913000000000004,0.828,3.37,5.72,3.645,1,0.813,2 +744,B5 SH,CRAWFORD,3116.5,50.715,0.841,2.665,4.465,3.615,1,0.75,2 +745,B5 SH,CRAWFORD,3117.0,51.22,0.8540000000000001,2.43,3.86,3.714,1,0.688,2 +746,B5 SH,CRAWFORD,3119.0,65.99,0.794,3.075,6.985,3.5,1,0.43799999999999994,2 +747,B5 SH,CRAWFORD,3119.5,74.325,0.764,1.485,11.995,3.159,1,0.375,2 +748,B5 SH,CRAWFORD,3120.0,77.227,0.718,1.095,15.315,2.865,1,0.313,2 +749,B5 SH,CRAWFORD,3120.5,78.863,0.687,1.285,17.905,2.696,1,0.25,2 +750,B5 SH,CRAWFORD,3121.0,79.13,0.669,2.755,19.325,2.6510000000000002,1,0.188,2 +751,B5 SH,CRAWFORD,3121.5,76.89,0.657,4.55,19.53,2.6710000000000003,1,0.125,3 +752,B5 LM,CRAWFORD,3122.0,69.179,0.6920000000000001,6.11,19.22,3.114,1,0.063,3 +753,B5 LM,CRAWFORD,3122.5,59.998999999999995,0.732,4.62,16.19,4.1339999999999995,2,1.0,8 +754,B5 LM,CRAWFORD,3123.0,41.912,0.7609999999999999,1.64,10.98,4.726,2,0.983,8 +755,B5 LM,CRAWFORD,3123.5,26.221999999999998,0.805,0.755,7.955,4.899,2,0.966,8 +756,B5 LM,CRAWFORD,3124.0,22.615,0.845,1.58,6.02,4.854,2,0.948,8 +757,B5 LM,CRAWFORD,3124.5,20.83,0.8490000000000001,1.97,4.39,4.7780000000000005,2,0.9309999999999999,8 +758,B5 LM,CRAWFORD,3125.0,21.326,0.836,2.77,4.39,4.655,2,0.914,8 +759,B5 LM,CRAWFORD,3125.5,23.645,0.725,3.665,5.185,4.408,2,0.897,8 +760,B5 LM,CRAWFORD,3126.0,29.02,0.5870000000000001,4.805,7.455,3.97,2,0.879,8 +761,B5 LM,CRAWFORD,3126.5,35.588,0.461,5.255,11.615,3.6060000000000003,2,0.862,8 +762,B5 LM,CRAWFORD,3127.0,39.503,0.325,5.335,18.395,3.3089999999999997,2,0.845,8 +763,B5 LM,CRAWFORD,3127.5,41.138999999999996,0.239,4.545,21.765,3.342,2,0.828,8 +764,B5 LM,CRAWFORD,3128.0,41.861999999999995,0.184,2.77,21.54,3.4219999999999997,2,0.81,8 +765,B5 LM,CRAWFORD,3128.5,42.586000000000006,0.16899999999999998,-0.02,19.0,3.485,2,0.7929999999999999,8 +766,B5 LM,CRAWFORD,3129.0,44.221000000000004,0.139,2.425,18.905,3.378,2,0.7759999999999999,8 +767,B5 LM,CRAWFORD,3129.5,47.395,0.121,3.7,20.04,3.2089999999999996,2,0.759,7 +768,B5 LM,CRAWFORD,3130.0,54.79600000000001,0.10300000000000001,4.59,22.87,3.133,2,0.741,7 +769,B5 LM,CRAWFORD,3130.5,58.255,0.091,5.19,25.77,3.1660000000000004,2,0.7240000000000001,7 +770,B5 LM,CRAWFORD,3131.0,60.347,0.076,4.065,26.095,3.1180000000000003,2,0.7070000000000001,7 +771,B5 LM,CRAWFORD,3131.5,61.754,0.048,3.235,25.165,3.06,2,0.69,7 +772,B5 LM,CRAWFORD,3132.0,61.794,0.002,2.74,22.4,3.14,2,0.672,7 +773,B5 LM,CRAWFORD,3132.5,61.833,-0.047,3.65,21.13,3.437,2,0.655,7 +774,B5 LM,CRAWFORD,3133.0,62.358000000000004,-0.096,4.43,21.27,3.6719999999999997,2,0.638,7 +775,B5 LM,CRAWFORD,3133.5,63.062,-0.147,4.895,22.325,3.782,2,0.621,7 +776,B5 LM,CRAWFORD,3134.0,63.33,-0.20600000000000002,5.245,22.895,3.737,2,0.603,7 +777,B5 LM,CRAWFORD,3134.5,62.685,-0.218,5.035,22.725,3.5839999999999996,2,0.586,7 +778,B5 LM,CRAWFORD,3135.0,60.217,-0.23,4.57,21.84,3.444,2,0.569,7 +779,B5 LM,CRAWFORD,3135.5,55.926,-0.217,5.185,20.385,3.352,2,0.552,7 +780,B5 LM,CRAWFORD,3136.0,52.318000000000005,-0.185,5.795,18.665,3.4960000000000004,2,0.534,7 +781,B5 LM,CRAWFORD,3136.5,47.244,-0.16,5.445,15.725,3.855,2,0.517,7 +782,B5 LM,CRAWFORD,3137.0,45.786,-0.138,4.165,11.765,3.966,2,0.5,7 +783,B5 LM,CRAWFORD,3137.5,46.975,-0.11599999999999999,5.55,10.25,3.765,2,0.483,7 +784,B5 LM,CRAWFORD,3138.0,51.907,-0.10300000000000001,7.385,11.675,3.44,2,0.466,7 +785,B5 LM,CRAWFORD,3138.5,58.336000000000006,-0.09300000000000001,6.61,13.74,3.162,2,0.44799999999999995,7 +786,B5 LM,CRAWFORD,3139.0,64.995,-0.09,5.94,16.68,3.0239999999999996,2,0.431,7 +787,B5 LM,CRAWFORD,3139.5,67.543,-0.08900000000000001,5.7,17.72,3.057,2,0.414,7 +788,B5 LM,CRAWFORD,3140.0,68.041,-0.10400000000000001,5.755,18.395,3.1710000000000003,2,0.397,7 +789,B5 LM,CRAWFORD,3140.5,66.186,-0.14400000000000002,5.995,19.265,3.2310000000000003,2,0.379,7 +790,B5 LM,CRAWFORD,3141.0,62.184,-0.187,6.54,20.72,3.264,2,0.36200000000000004,7 +791,B5 LM,CRAWFORD,3141.5,57.883,-0.239,6.0,21.62,3.2969999999999997,2,0.345,7 +792,B5 LM,CRAWFORD,3142.0,54.038999999999994,-0.297,5.725,22.245,3.282,2,0.32799999999999996,7 +793,B5 LM,CRAWFORD,3142.5,53.153999999999996,-0.371,5.745,23.065,3.222,2,0.31,7 +794,B5 LM,CRAWFORD,3143.0,60.506,-0.43200000000000005,5.78,23.96,3.115,2,0.293,7 +795,B5 LM,CRAWFORD,3143.5,68.99,-0.456,6.14,25.32,2.977,2,0.276,7 +796,B5 LM,CRAWFORD,3144.0,88.891,-0.46799999999999997,7.025,27.595,2.9160000000000004,2,0.259,7 +797,B5 LM,CRAWFORD,3144.5,114.955,-0.455,6.925,28.395,2.924,2,0.24100000000000002,7 +798,B5 LM,CRAWFORD,3145.0,139.876,-0.405,6.245,28.025,3.215,2,0.22399999999999998,7 +799,B5 LM,CRAWFORD,3145.5,157.72899999999998,-0.353,4.685,26.015,3.373,2,0.207,7 +800,B5 LM,CRAWFORD,3146.0,167.803,-0.21899999999999997,4.27,23.37,3.81,2,0.19,7 +801,B5 LM,CRAWFORD,3146.5,151.183,-0.057,0.925,17.125,4.1530000000000005,2,0.172,8 +802,B5 LM,CRAWFORD,3147.0,123.264,0.067,0.285,14.215,4.404,2,0.155,8 +803,B5 LM,CRAWFORD,3147.5,108.569,0.23399999999999999,0.705,12.225,4.499,2,0.138,8 +804,B5 LM,CRAWFORD,3148.0,101.072,0.42700000000000005,1.15,10.76,4.3919999999999995,2,0.121,8 +805,B5 LM,CRAWFORD,3148.5,91.74799999999999,0.625,1.135,9.605,4.254,2,0.10300000000000001,8 +806,B5 LM,CRAWFORD,3149.0,83.794,0.7490000000000001,2.075,7.845,4.023,2,0.086,8 +807,B5 LM,CRAWFORD,3149.5,83.794,0.7490000000000001,2.075,7.845,4.023,2,0.086,6 +808,B5 LM,CRAWFORD,3150.0,79.722,0.7709999999999999,2.89,6.64,4.04,2,0.069,6 +809,B5 LM,CRAWFORD,3150.5,76.334,0.8,2.96,6.29,3.997,2,0.052000000000000005,6 +810,B5 LM,CRAWFORD,3151.0,73.631,0.8,2.68,6.69,3.8280000000000003,2,0.034,6 +811,B5 LM,CRAWFORD,3151.5,76.865,0.772,2.42,8.6,3.535,2,0.017,4 +812,C SH,CRAWFORD,3152.0,79.92399999999999,0.752,2.62,11.51,3.148,1,1.0,2 +813,C SH,CRAWFORD,3152.5,82.199,0.728,3.725,14.555,2.964,1,0.972,2 +814,C SH,CRAWFORD,3153.0,79.953,0.7,5.61,16.93,2.793,1,0.9440000000000001,3 +815,C SH,CRAWFORD,3153.5,75.881,0.6729999999999999,6.3,17.57,2.969,1,0.917,3 +816,C SH,CRAWFORD,3154.0,67.47,0.652,4.775,15.795,3.282,1,0.889,3 +817,C SH,CRAWFORD,3154.5,58.832,0.64,4.315,13.575,3.642,1,0.861,2 +818,C SH,CRAWFORD,3155.0,57.946000000000005,0.631,3.595,11.305,3.8930000000000002,1,0.833,2 +819,C SH,CRAWFORD,3155.5,65.755,0.625,3.465,10.355,3.911,1,0.8059999999999999,2 +820,C SH,CRAWFORD,3156.0,69.445,0.617,3.39,11.54,3.82,1,0.778,2 +821,C SH,CRAWFORD,3156.5,73.389,0.608,3.625,12.775,3.62,1,0.75,2 +822,C SH,CRAWFORD,3157.0,77.115,0.605,4.14,13.42,3.467,1,0.722,2 +823,C SH,CRAWFORD,3157.5,79.84,0.596,4.875,13.825,3.36,1,0.6940000000000001,2 +824,C SH,CRAWFORD,3158.0,82.616,0.5770000000000001,5.235,14.845,3.207,1,0.667,2 +825,C SH,CRAWFORD,3158.5,86.07799999999999,0.5539999999999999,5.04,16.15,3.161,1,0.639,2 +826,C SH,CRAWFORD,3159.0,88.855,0.539,5.56,16.75,3.1180000000000003,1,0.611,2 +827,C SH,CRAWFORD,3159.5,90.49,0.53,6.36,16.78,3.168,1,0.583,2 +828,C SH,CRAWFORD,3160.0,90.975,0.522,7.035,16.995,3.154,1,0.556,2 +829,C SH,CRAWFORD,3160.5,90.10799999999999,0.513,7.505,17.595,3.125,1,0.528,2 diff --git a/StoDIG/Prediction_StoDIG_5_CNN.csv b/StoDIG/Prediction_StoDIG_5_CNN.csv new file mode 100644 index 0000000..d8a5eb1 --- /dev/null +++ b/StoDIG/Prediction_StoDIG_5_CNN.csv @@ -0,0 +1,831 @@ +,Formation,Well Name,Depth,GR,ILD_log10,DeltaPHI,PHIND,PE,NM_M,RELPOS,Facies +0,A1 SH,STUART,2808.0,66.27600000000001,0.63,3.3,10.65,3.591,1,1.0,3 +1,A1 SH,STUART,2808.5,77.252,0.585,6.5,11.95,3.341,1,0.978,3 +2,A1 SH,STUART,2809.0,82.899,0.5660000000000001,9.4,13.6,3.0639999999999996,1,0.956,3 +3,A1 SH,STUART,2809.5,80.671,0.593,9.5,13.25,2.977,1,0.9329999999999999,3 +4,A1 SH,STUART,2810.0,75.971,0.638,8.7,12.35,3.02,1,0.9109999999999999,3 +5,A1 SH,STUART,2810.5,73.955,0.667,6.9,12.25,3.0860000000000003,1,0.889,2 +6,A1 SH,STUART,2811.0,77.962,0.674,6.5,12.45,3.092,1,0.867,2 +7,A1 SH,STUART,2811.5,83.89399999999999,0.667,6.3,12.65,3.123,1,0.8440000000000001,2 +8,A1 SH,STUART,2812.0,84.42399999999999,0.653,6.7,13.05,3.1210000000000004,1,0.8220000000000001,2 +9,A1 SH,STUART,2812.5,83.16,0.642,7.3,12.95,3.127,1,0.8,2 +10,A1 SH,STUART,2813.0,79.063,0.6509999999999999,7.3,12.05,3.147,1,0.778,2 +11,A1 SH,STUART,2813.5,69.002,0.677,6.2,10.8,3.096,1,0.7559999999999999,2 +12,A1 SH,STUART,2814.0,63.983000000000004,0.69,4.4,9.7,3.103,1,0.733,2 +13,A1 SH,STUART,2814.5,61.797,0.675,3.5,9.15,3.1010000000000004,1,0.711,2 +14,A1 SH,STUART,2815.0,61.372,0.6459999999999999,2.8,9.3,3.065,1,0.6890000000000001,2 +15,A1 SH,STUART,2815.5,63.535,0.621,2.8,9.8,2.9819999999999998,1,0.667,2 +16,A1 SH,STUART,2816.0,65.126,0.6,3.3,10.55,2.9139999999999997,1,0.644,2 +17,A1 SH,STUART,2816.5,75.93,0.5760000000000001,3.4,11.9,2.845,1,0.6,2 +18,A1 SH,STUART,2817.0,85.07700000000001,0.584,4.4,12.9,2.8539999999999996,1,0.578,2 +19,A1 SH,STUART,2817.5,89.459,0.598,6.6,13.5,2.986,1,0.556,2 +20,A1 SH,STUART,2818.0,88.619,0.61,7.2,14.8,2.988,1,0.5329999999999999,2 +21,A1 SH,STUART,2818.5,81.593,0.636,6.4,13.9,2.998,1,0.511,2 +22,A1 SH,STUART,2819.0,66.595,0.7020000000000001,2.8,11.4,2.988,1,0.489,2 +23,A1 SH,STUART,2819.5,55.081,0.789,2.7,8.15,3.028,1,0.467,2 +24,A1 SH,STUART,2820.0,48.111999999999995,0.84,1.0,7.5,3.073,1,0.444,1 +25,A1 SH,STUART,2820.5,43.73,0.846,0.4,7.1,3.1460000000000004,1,0.42200000000000004,1 +26,A1 SH,STUART,2821.0,44.097,0.84,0.7,6.65,3.205,1,0.4,1 +27,A1 SH,STUART,2821.5,46.839,0.8420000000000001,0.8,6.6,3.2539999999999996,1,0.37799999999999995,1 +28,A1 SH,STUART,2822.0,50.348,0.843,1.1,6.75,3.23,1,0.35600000000000004,1 +29,A1 SH,STUART,2822.5,57.129,0.8220000000000001,2.2,7.3,3.237,1,0.33299999999999996,2 +30,A1 SH,STUART,2823.0,64.465,0.777,4.4,8.4,3.259,1,0.311,2 +31,A1 SH,STUART,2823.5,70.267,0.7290000000000001,7.1,9.85,3.2889999999999997,1,0.289,2 +32,A1 SH,STUART,2824.0,76.566,0.664,10.7,11.55,3.3810000000000002,1,0.244,2 +33,A1 SH,STUART,2824.5,76.778,0.643,10.7,12.25,3.452,1,0.222,2 +34,A1 SH,STUART,2825.0,73.971,0.632,9.7,12.55,3.3960000000000004,1,0.2,2 +35,A1 SH,STUART,2825.5,74.314,0.622,8.8,13.1,3.1439999999999997,1,0.17800000000000002,2 +36,A1 SH,STUART,2826.0,77.031,0.583,4.8,16.2,3.034,1,0.156,2 +37,A1 SH,STUART,2826.5,74.469,0.517,4.8,19.2,2.931,1,0.133,2 +38,A1 SH,STUART,2827.0,73.327,0.489,6.3,20.35,2.88,1,0.111,2 +39,A1 SH,STUART,2827.5,74.575,0.526,4.9,19.25,2.795,1,0.08900000000000001,3 +40,A1 SH,STUART,2828.0,70.536,0.5579999999999999,6.5,17.05,3.009,1,0.067,3 +41,A1 SH,STUART,2828.5,62.93899999999999,0.528,7.6,18.8,3.073,1,0.044000000000000004,3 +42,A1 SH,STUART,2829.0,57.137,0.511,10.9,19.15,3.313,1,0.022000000000000002,3 +43,A1 LM,STUART,2829.5,47.345,0.584,7.0,16.3,3.5269999999999997,2,1.0,8 +44,A1 LM,STUART,2830.0,35.733000000000004,0.73,6.4,10.2,3.928,2,0.987,8 +45,A1 LM,STUART,2830.5,29.326999999999998,0.873,2.7,7.85,4.33,2,0.9740000000000001,8 +46,A1 LM,STUART,2831.0,28.241999999999997,0.963,1.4,6.3,4.413,2,0.961,8 +47,A1 LM,STUART,2831.5,34.558,1.018,1.8,5.6,4.511,2,0.9470000000000001,8 +48,A1 LM,STUART,2832.0,43.754,1.054,1.8,5.2,4.412,2,0.934,8 +49,A1 LM,STUART,2832.5,53.611999999999995,1.067,1.5,5.05,4.226,2,0.9209999999999999,8 +50,A1 LM,STUART,2833.0,60.718999999999994,1.0390000000000001,1.9,4.85,3.931,2,0.9079999999999999,6 +51,A1 LM,STUART,2833.5,66.538,0.94,2.7,5.45,3.7030000000000003,2,0.895,6 +52,A1 LM,STUART,2834.0,75.52199999999999,0.8009999999999999,4.0,7.3,3.5010000000000003,2,0.882,6 +53,A1 LM,STUART,2834.5,95.979,0.6920000000000001,6.5,9.55,3.346,2,0.868,6 +54,A1 LM,STUART,2835.0,130.26,0.644,8.3,11.15,3.242,2,0.855,4 +55,A1 LM,STUART,2835.5,160.167,0.643,9.3,12.15,3.2939999999999996,2,0.8420000000000001,4 +56,A1 LM,STUART,2836.0,176.528,0.6729999999999999,9.1,12.05,3.298,2,0.8290000000000001,4 +57,A1 LM,STUART,2836.5,175.622,0.72,8.9,12.15,3.3489999999999998,2,0.816,4 +58,A1 LM,STUART,2837.0,153.965,0.7559999999999999,7.6,11.9,3.31,2,0.8029999999999999,4 +59,A1 LM,STUART,2837.5,120.07600000000001,0.7659999999999999,7.2,12.2,3.365,2,0.789,4 +60,A1 LM,STUART,2838.0,91.434,0.787,7.1,12.15,3.392,2,0.7759999999999999,6 +61,A1 LM,STUART,2838.5,69.312,0.8740000000000001,4.6,10.4,3.293,2,0.763,6 +62,A1 LM,STUART,2839.0,54.828,1.0290000000000001,0.8,8.2,3.395,2,0.75,6 +63,A1 LM,STUART,2839.5,50.854,1.149,0.3,6.85,3.5,2,0.737,6 +64,A1 LM,STUART,2840.0,54.632,1.09,1.0,7.4,3.576,2,0.7240000000000001,6 +65,A1 LM,STUART,2840.5,56.835,0.924,4.1,8.45,3.555,2,0.711,6 +66,A1 LM,STUART,2841.0,60.393,0.7879999999999999,7.1,10.05,3.591,2,0.6970000000000001,6 +67,A1 LM,STUART,2841.5,58.94,0.733,8.1,11.15,3.576,2,0.684,6 +68,A1 LM,STUART,2842.0,49.718999999999994,0.754,6.1,10.75,3.6689999999999996,2,0.6709999999999999,6 +69,A1 LM,STUART,2842.5,41.403999999999996,0.8190000000000001,3.5,9.55,3.872,2,0.6579999999999999,6 +70,A1 LM,STUART,2843.0,36.084,0.882,1.6,8.2,4.125,2,0.645,8 +71,A1 LM,STUART,2843.5,29.344,0.897,0.1,7.25,4.23,2,0.632,8 +72,A1 LM,STUART,2844.0,24.072,0.841,-0.6,6.8,4.302,2,0.618,8 +73,A1 LM,STUART,2844.5,22.62,0.733,-2.5,7.65,4.348,2,0.605,8 +74,A1 LM,STUART,2845.0,22.408,0.597,-3.8,9.5,4.29,2,0.5920000000000001,8 +75,A1 LM,STUART,2845.5,21.184,0.469,-2.7,11.05,4.255,2,0.579,8 +76,A1 LM,STUART,2846.0,21.796,0.375,-2.3,13.35,4.213,2,0.5660000000000001,8 +77,A1 LM,STUART,2846.5,23.925,0.314,-1.8,15.1,4.363,2,0.5529999999999999,8 +78,A1 LM,STUART,2847.0,24.464000000000002,0.278,-1.3,16.15,4.495,2,0.539,8 +79,A1 LM,STUART,2847.5,26.039,0.257,-1.9,16.55,4.602,2,0.526,8 +80,A1 LM,STUART,2848.0,27.491,0.247,-2.5,16.45,4.544,2,0.513,8 +81,A1 LM,STUART,2848.5,28.193,0.249,-2.4,16.3,4.587,2,0.5,8 +82,A1 LM,STUART,2849.0,28.634,0.265,-1.9,16.15,4.678,2,0.48700000000000004,8 +83,A1 LM,STUART,2849.5,29.809,0.299,-1.0,15.2,4.8660000000000005,2,0.474,8 +84,A1 LM,STUART,2850.0,31.171999999999997,0.349,-1.5,14.15,4.783,2,0.461,8 +85,A1 LM,STUART,2850.5,33.448,0.418,-1.1,12.65,4.688,2,0.447,8 +86,A1 LM,STUART,2851.0,33.514,0.503,-1.2,11.3,4.628,2,0.434,8 +87,A1 LM,STUART,2851.5,35.146,0.593,-0.5,10.05,4.387,2,0.42100000000000004,8 +88,A1 LM,STUART,2852.0,35.953,0.6709999999999999,-0.7,9.45,4.291,2,0.408,8 +89,A1 LM,STUART,2852.5,35.178000000000004,0.7290000000000001,-0.6,9.0,4.178,2,0.395,8 +90,A1 LM,STUART,2853.0,36.109,0.773,0.1,8.35,4.203,2,0.382,8 +91,A1 LM,STUART,2853.5,38.769,0.82,1.3,7.55,4.262,2,0.368,6 +92,A1 LM,STUART,2854.0,39.510999999999996,0.873,1.3,7.05,4.387,2,0.355,6 +93,A1 LM,STUART,2854.5,40.523,0.927,2.6,6.5,4.006,2,0.342,6 +94,A1 LM,STUART,2855.0,42.693999999999996,0.9640000000000001,2.8,6.8,3.718,2,0.32899999999999996,6 +95,A1 LM,STUART,2855.5,45.297,0.9590000000000001,3.0,7.3,3.594,2,0.316,6 +96,A1 LM,STUART,2856.0,48.145,0.915,3.8,8.2,3.46,2,0.303,6 +97,A1 LM,STUART,2856.5,51.041000000000004,0.862,5.9,8.75,3.333,2,0.289,6 +98,A1 LM,STUART,2857.0,56.125,0.825,7.4,9.3,3.3360000000000003,2,0.276,4 +99,A1 LM,STUART,2857.5,62.205,0.807,6.4,9.9,3.362,2,0.263,4 +100,A1 LM,STUART,2858.0,64.865,0.794,4.7,10.25,3.2439999999999998,2,0.25,4 +101,A1 LM,STUART,2858.5,68.186,0.7709999999999999,4.1,10.25,3.174,2,0.237,4 +102,A1 LM,STUART,2859.0,72.421,0.743,4.1,10.55,3.174,2,0.22399999999999998,4 +103,A1 LM,STUART,2859.5,74.322,0.73,4.5,10.65,3.187,2,0.21100000000000002,4 +104,A1 LM,STUART,2860.0,72.543,0.748,4.1,10.35,3.359,2,0.19699999999999998,6 +105,A1 LM,STUART,2860.5,65.672,0.8140000000000001,3.5,9.05,3.6180000000000003,2,0.184,6 +106,A1 LM,STUART,2861.0,57.153,0.951,1.7,6.75,3.9019999999999997,2,0.171,6 +107,A1 LM,STUART,2861.5,46.056000000000004,1.148,0.1,4.55,4.221,2,0.158,6 +108,A1 LM,STUART,2862.0,37.961,1.324,0.0,3.3,4.561,2,0.145,6 +109,A1 LM,STUART,2862.5,33.579,1.402,-0.2,2.8,4.7989999999999995,2,0.132,6 +110,A1 LM,STUART,2863.0,31.212,1.439,-0.4,2.7,4.874,2,0.11800000000000001,6 +111,A1 LM,STUART,2863.5,30.176,1.486,-0.5,2.55,4.787,2,0.105,6 +112,A1 LM,STUART,2864.0,29.858,1.507,-0.7,2.75,4.622,2,0.092,6 +113,A1 LM,STUART,2864.5,29.923000000000002,1.433,-0.6,3.3,4.375,2,0.079,6 +114,A1 LM,STUART,2865.0,34.428000000000004,1.2790000000000001,0.0,4.0,4.115,2,0.066,6 +115,A1 LM,STUART,2865.5,39.935,1.1340000000000001,0.8,4.6,3.9789999999999996,2,0.053,6 +116,A1 LM,STUART,2866.0,39.935,1.1340000000000001,0.8,4.6,3.9789999999999996,2,0.053,6 +117,A1 LM,STUART,2866.5,46.823,1.05,1.3,5.15,3.727,2,0.039,6 +118,A1 LM,STUART,2867.0,57.968999999999994,1.01,2.0,5.2,3.537,2,0.026000000000000002,6 +119,A1 LM,STUART,2867.5,71.24600000000001,0.9540000000000001,2.3,5.65,3.4819999999999998,2,0.013000000000000001,6 +120,B1 SH,STUART,2868.0,82.54799999999999,0.843,3.2,7.2,3.532,1,1.0,3 +121,B1 SH,STUART,2868.5,92.119,0.718,4.9,8.95,3.484,1,0.968,3 +122,B1 SH,STUART,2869.0,93.564,0.635,7.0,11.1,3.4019999999999997,1,0.935,3 +123,B1 SH,STUART,2869.5,86.26,0.615,9.0,11.9,3.486,1,0.903,3 +124,B1 SH,STUART,2870.0,77.097,0.637,9.5,11.25,3.56,1,0.871,3 +125,B1 SH,STUART,2870.5,67.68,0.6509999999999999,9.2,10.7,3.4730000000000003,1,0.8390000000000001,3 +126,B1 SH,STUART,2871.0,64.04899999999999,0.639,8.5,10.65,3.4010000000000002,1,0.8059999999999999,2 +127,B1 SH,STUART,2871.5,67.566,0.621,7.5,11.45,3.307,1,0.774,2 +128,B1 SH,STUART,2872.0,69.72800000000001,0.604,7.1,12.45,3.28,1,0.742,2 +129,B1 SH,STUART,2872.5,67.96600000000001,0.5820000000000001,8.3,13.45,3.253,1,0.71,2 +130,B1 SH,STUART,2873.0,65.803,0.565,9.6,13.5,3.284,1,0.677,2 +131,B1 SH,STUART,2873.5,62.351000000000006,0.575,10.1,11.85,3.405,1,0.645,2 +132,B1 SH,STUART,2874.0,59.512,0.621,10.1,9.65,3.5039999999999996,1,0.613,2 +133,B1 SH,STUART,2874.5,61.176,0.691,9.9,8.15,3.5869999999999997,1,0.581,2 +134,B1 SH,STUART,2875.0,65.75399999999999,0.7509999999999999,9.6,7.7,3.605,1,0.5479999999999999,2 +135,B1 SH,STUART,2875.5,66.66,0.768,9.0,8.2,3.505,1,0.516,2 +136,B1 SH,STUART,2876.0,64.604,0.742,8.0,8.9,3.411,1,0.484,2 +137,B1 SH,STUART,2876.5,61.699,0.696,7.0,9.2,3.319,1,0.452,2 +138,B1 SH,STUART,2877.0,58.353,0.657,5.6,9.3,3.265,1,0.419,2 +139,B1 SH,STUART,2877.5,55.928999999999995,0.64,4.2,9.2,3.167,1,0.387,2 +140,B1 SH,STUART,2878.0,57.413999999999994,0.64,4.0,9.1,3.181,1,0.355,2 +141,B1 SH,STUART,2878.5,60.393,0.64,3.8,9.3,3.133,1,0.32299999999999995,2 +142,B1 SH,STUART,2879.0,65.90100000000001,0.636,4.2,9.9,3.1630000000000003,1,0.29,2 +143,B1 SH,STUART,2879.5,71.385,0.635,5.8,10.8,3.1310000000000002,1,0.258,2 +144,B1 SH,STUART,2880.0,75.816,0.625,4.9,13.55,2.997,1,0.226,2 +145,B1 SH,STUART,2880.5,75.334,0.5870000000000001,5.6,15.9,2.938,1,0.19399999999999998,2 +146,B1 SH,STUART,2881.0,72.69,0.5579999999999999,4.8,18.5,2.969,1,0.129,3 +147,B1 SH,STUART,2881.5,68.635,0.5579999999999999,6.9,19.45,3.1039999999999996,1,0.09699999999999999,3 +148,B1 SH,STUART,2882.0,60.695,0.52,7.5,21.25,3.147,1,0.065,3 +149,B1 SH,STUART,2882.5,51.645,0.501,5.6,18.1,3.3539999999999996,1,0.032,3 +150,B1 LM,STUART,2883.0,41.918,0.5479999999999999,7.0,10.9,3.764,2,1.0,8 +151,B1 LM,STUART,2883.5,32.991,0.633,7.7,6.35,4.109,2,0.968,8 +152,B1 LM,STUART,2884.0,28.258000000000003,0.705,5.0,6.1,4.154,2,0.935,8 +153,B1 LM,STUART,2884.5,26.635,0.769,4.1,5.35,4.321000000000001,2,0.903,8 +154,B1 LM,STUART,2885.0,25.541,0.847,3.6,4.8,4.476,2,0.871,8 +155,B1 LM,STUART,2885.5,23.795,0.948,2.3,4.45,4.565,2,0.8390000000000001,8 +156,B1 LM,STUART,2886.0,20.719,1.061,2.2,3.5,4.615,2,0.8059999999999999,8 +157,B1 LM,STUART,2886.5,18.499000000000002,1.139,2.4,3.2,4.696000000000001,2,0.774,8 +158,B1 LM,STUART,2887.0,19.445999999999998,1.1179999999999999,1.5,4.65,4.668,2,0.742,8 +159,B1 LM,STUART,2887.5,21.388,1.0190000000000001,1.0,7.1,4.579,2,0.71,8 +160,B1 LM,STUART,2888.0,24.178,0.9079999999999999,1.2,9.2,4.292,2,0.677,8 +161,B1 LM,STUART,2888.5,27.638,0.812,0.0,11.1,4.046,2,0.645,8 +162,B1 LM,STUART,2889.0,31.669,0.7240000000000001,0.9,11.45,3.822,2,0.613,8 +163,B1 LM,STUART,2889.5,39.389,0.627,3.4,11.2,3.6289999999999996,2,0.581,6 +164,B1 LM,STUART,2890.0,49.385,0.535,6.4,11.5,3.517,2,0.5479999999999999,6 +165,B1 LM,STUART,2890.5,58.516000000000005,0.488,9.0,11.4,3.4739999999999998,2,0.516,4 +166,B1 LM,STUART,2891.0,66.619,0.511,9.2,10.8,3.613,2,0.484,4 +167,B1 LM,STUART,2891.5,67.296,0.602,6.4,9.5,3.862,2,0.452,6 +168,B1 LM,STUART,2892.0,57.798,0.745,3.7,8.25,4.052,2,0.419,6 +169,B1 LM,STUART,2892.5,48.169,0.912,1.1,7.45,4.2410000000000005,2,0.387,6 +170,B1 LM,STUART,2893.0,41.437,1.045,0.4,6.3,4.476,2,0.355,6 +171,B1 LM,STUART,2893.5,39.348,1.117,0.1,5.35,4.712,2,0.32299999999999995,6 +172,B1 LM,STUART,2894.0,49.312,1.1440000000000001,1.0,4.5,4.56,2,0.29,6 +173,B1 LM,STUART,2894.5,61.983999999999995,1.143,0.7,4.85,4.605,2,0.258,6 +174,B1 LM,STUART,2895.0,73.506,1.122,0.9,5.75,4.574,2,0.226,6 +175,B1 LM,STUART,2895.5,74.208,1.095,0.3,6.85,4.478,2,0.19399999999999998,6 +176,B1 LM,STUART,2896.0,67.819,1.072,-0.7,7.55,4.444,2,0.161,6 +177,B1 LM,STUART,2896.5,61.625,1.057,-1.2,7.4,4.439,2,0.129,6 +178,B1 LM,STUART,2897.0,61.625,1.057,-1.2,7.4,4.439,2,0.129,6 +179,B1 LM,STUART,2897.5,55.481,1.041,-0.9,6.55,4.335,2,0.09699999999999999,6 +180,B1 LM,STUART,2898.0,57.251000000000005,0.98,-0.1,5.75,3.907,2,0.065,6 +181,B1 LM,STUART,2898.5,67.28,0.84,-0.6,7.1,3.58,2,0.032,6 +182,B2 SH,STUART,2899.0,76.02,0.6859999999999999,0.7,9.45,3.23,1,1.0,3 +183,B2 SH,STUART,2899.5,84.45700000000001,0.603,2.5,12.45,2.967,1,0.9470000000000001,3 +184,B2 SH,STUART,2900.0,89.01899999999999,0.595,4.6,14.9,2.7939999999999996,1,0.895,3 +185,B2 SH,STUART,2900.5,89.93299999999999,0.591,3.9,18.55,2.7889999999999997,1,0.8420000000000001,3 +186,B2 SH,STUART,2901.0,89.38600000000001,0.539,4.5,22.55,2.861,1,0.789,3 +187,B2 SH,STUART,2901.5,89.427,0.479,6.2,25.4,2.935,1,0.737,3 +188,B2 SH,STUART,2902.0,87.51700000000001,0.461,7.6,24.4,3.128,1,0.684,3 +189,B2 SH,STUART,2902.5,83.74700000000001,0.485,8.7,23.15,3.284,1,0.632,3 +190,B2 SH,STUART,2903.0,78.304,0.541,6.1,21.25,3.332,1,0.579,3 +191,B2 SH,STUART,2903.5,71.858,0.635,8.5,15.95,3.485,1,0.526,3 +192,B2 SH,STUART,2904.0,64.70100000000001,0.737,5.0,15.7,3.471,1,0.474,3 +193,B2 SH,STUART,2904.5,64.293,0.752,1.7,17.15,3.45,1,0.42100000000000004,3 +194,B2 SH,STUART,2905.0,67.158,0.6859999999999999,-0.3,19.95,3.2760000000000002,1,0.368,3 +195,B2 SH,STUART,2905.5,72.47800000000001,0.631,0.2,20.4,3.1710000000000003,1,0.316,3 +196,B2 SH,STUART,2906.0,78.068,0.614,5.0,18.1,3.252,1,0.21100000000000002,3 +197,B2 SH,STUART,2906.5,73.008,0.5920000000000001,2.4,20.1,3.175,1,0.158,3 +198,B2 SH,STUART,2907.0,64.64399999999999,0.5429999999999999,1.7,22.35,3.302,1,0.105,3 +199,B2 SH,STUART,2907.5,49.801,0.5379999999999999,0.0,20.8,3.551,1,0.053,3 +200,B2 LM,STUART,2908.0,35.937,0.628,-2.8,16.8,3.96,2,1.0,8 +201,B2 LM,STUART,2908.5,24.203000000000003,0.743,-0.3,12.35,4.454,2,0.963,8 +202,B2 LM,STUART,2909.0,15.985999999999999,0.777,-0.2,11.5,4.657,2,0.9259999999999999,8 +203,B2 LM,STUART,2909.5,12.036,0.773,-0.5,10.55,4.593999999999999,2,0.889,8 +204,B2 LM,STUART,2910.0,12.745999999999999,0.787,-1.2,9.2,4.437,2,0.852,8 +205,B2 LM,STUART,2910.5,14.843,0.809,-1.6,7.7,4.351,2,0.815,8 +206,B2 LM,STUART,2911.0,17.087,0.8059999999999999,-1.0,6.8,4.242,2,0.778,8 +207,B2 LM,STUART,2911.5,17.977,0.765,0.3,6.45,4.105,2,0.741,8 +208,B2 LM,STUART,2912.0,18.834,0.701,-0.1,7.15,4.279,2,0.7040000000000001,8 +209,B2 LM,STUART,2912.5,19.258,0.644,0.4,7.4,4.669,2,0.667,8 +210,B2 LM,STUART,2913.0,19.062,0.61,0.6,7.8,5.19,2,0.63,8 +211,B2 LM,STUART,2913.5,18.637999999999998,0.6,1.8,7.6,5.527,2,0.593,8 +212,B2 LM,STUART,2914.0,19.462,0.598,3.4,6.8,6.321000000000001,2,0.556,8 +213,B2 LM,STUART,2914.5,19.552,0.581,3.1,6.95,6.16,2,0.519,8 +214,B2 LM,STUART,2915.0,20.653000000000002,0.529,0.9,8.65,5.865,2,0.48100000000000004,8 +215,B2 LM,STUART,2915.5,23.371,0.45,-1.0,11.3,5.315,2,0.444,8 +216,B2 LM,STUART,2916.0,25.468000000000004,0.391,-1.3,13.75,4.918,2,0.40700000000000003,8 +217,B2 LM,STUART,2916.5,26.291999999999998,0.377,-2.3,14.85,4.521,2,0.37,8 +218,B2 LM,STUART,2917.0,27.736,0.41100000000000003,-3.6,14.1,4.4430000000000005,2,0.33299999999999996,8 +219,B2 LM,STUART,2917.5,29.784000000000002,0.48200000000000004,-3.1,11.85,4.3469999999999995,2,0.29600000000000004,8 +220,B2 LM,STUART,2918.0,31.041,0.578,-2.2,9.4,4.416,2,0.259,8 +221,B2 LM,STUART,2918.5,30.837,0.6829999999999999,-0.4,7.4,4.394,2,0.222,8 +222,B2 LM,STUART,2919.0,32.64,0.807,1.0,5.6,4.343,2,0.185,6 +223,B2 LM,STUART,2919.5,33.571,0.9420000000000001,1.6,4.5,4.086,2,0.14800000000000002,6 +224,B2 LM,STUART,2920.0,39.56,1.003,1.9,4.55,3.8110000000000004,2,0.111,6 +225,B2 LM,STUART,2920.5,47.475,0.9309999999999999,1.5,6.15,3.625,2,0.07400000000000001,6 +226,B2 LM,STUART,2921.0,56.443000000000005,0.821,2.3,8.05,3.3930000000000002,2,0.037000000000000005,6 +227,B3 SH,STUART,2921.5,64.79899999999999,0.7509999999999999,3.4,9.6,3.12,1,1.0,3 +228,B3 SH,STUART,2922.0,69.72,0.711,3.0,12.4,3.03,1,0.95,3 +229,B3 SH,STUART,2922.5,72.51100000000001,0.637,3.5,16.35,2.984,1,0.9,3 +230,B3 SH,STUART,2923.0,74.69800000000001,0.525,5.4,20.8,2.915,1,0.85,3 +231,B3 SH,STUART,2923.5,74.69800000000001,0.525,5.4,20.8,2.915,1,0.85,3 +232,B3 SH,STUART,2924.0,73.425,0.45799999999999996,5.2,21.6,2.92,1,0.8,3 +233,B3 SH,STUART,2924.5,71.328,0.486,3.1,17.35,2.995,1,0.75,3 +234,B3 SH,STUART,2925.0,68.937,0.5870000000000001,4.1,13.25,3.122,1,0.7,3 +235,B3 SH,STUART,2925.5,66.562,0.6709999999999999,1.3,13.25,3.2430000000000003,1,0.65,2 +236,B3 SH,STUART,2926.0,64.63600000000001,0.6629999999999999,3.2,13.3,3.324,1,0.6,2 +237,B3 SH,STUART,2926.5,66.619,0.625,4.0,13.6,3.33,1,0.55,2 +238,B3 SH,STUART,2927.0,66.619,0.625,4.0,13.6,3.33,1,0.55,2 +239,B3 SH,STUART,2927.5,65.624,0.635,3.2,12.4,3.3089999999999997,1,0.5,2 +240,B3 SH,STUART,2928.0,65.322,0.68,3.3,9.65,3.315,1,0.45,2 +241,B3 SH,STUART,2928.5,67.035,0.7070000000000001,2.4,8.6,3.2319999999999998,1,0.4,2 +242,B3 SH,STUART,2929.0,68.194,0.693,3.0,8.8,3.157,1,0.35,2 +243,B3 SH,STUART,2929.5,69.149,0.6459999999999999,3.0,10.4,3.034,1,0.3,2 +244,B3 SH,STUART,2930.0,72.20100000000001,0.588,3.2,13.2,3.052,1,0.25,2 +245,B3 SH,STUART,2930.5,73.77600000000001,0.542,4.4,16.0,3.1319999999999997,1,0.2,2 +246,B3 SH,STUART,2931.0,72.609,0.525,5.5,17.55,3.31,1,0.15,3 +247,B3 SH,STUART,2931.5,66.86399999999999,0.55,5.3,16.55,3.625,1,0.1,3 +248,B3 SH,STUART,2932.0,53.702,0.62,5.7,13.75,4.003,1,0.05,3 +249,B3 LM,STUART,2932.5,40.474000000000004,0.713,4.7,11.15,4.2780000000000005,2,1.0,8 +250,B3 LM,STUART,2933.0,28.12,0.774,2.2,10.5,4.537,2,0.9,8 +251,B3 LM,STUART,2933.5,20.213,0.769,-1.1,10.95,4.6819999999999995,2,0.8,8 +252,B3 LM,STUART,2934.0,19.192999999999998,0.732,-1.0,11.1,4.546,2,0.7,8 +253,B3 LM,STUART,2934.5,20.449,0.6990000000000001,-0.7,10.65,4.386,2,0.6,8 +254,B3 LM,STUART,2935.0,21.355,0.679,-0.1,9.95,4.28,2,0.5,8 +255,B3 LM,STUART,2935.5,21.641,0.6679999999999999,1.3,8.95,4.221,2,0.4,8 +256,B3 LM,STUART,2936.0,24.203000000000003,0.653,2.6,8.3,4.099,2,0.3,8 +257,B3 LM,STUART,2936.5,34.574,0.613,2.4,9.0,3.66,2,0.2,8 +258,B3 LM,STUART,2937.0,45.231,0.5479999999999999,2.3,10.45,3.4960000000000004,2,0.1,8 +259,B4 SH,STUART,2937.5,56.427,0.498,2.9,11.35,3.338,1,1.0,3 +260,B4 SH,STUART,2938.0,67.06,0.504,1.7,11.65,3.135,1,0.9440000000000001,2 +261,B4 SH,STUART,2938.5,70.83800000000001,0.5579999999999999,2.0,10.8,3.012,1,0.889,2 +262,B4 SH,STUART,2939.0,69.932,0.612,3.3,10.05,3.0660000000000003,1,0.833,2 +263,B4 SH,STUART,2939.5,74.52600000000001,0.633,4.1,10.25,3.109,1,0.778,2 +264,B4 SH,STUART,2940.0,77.611,0.626,5.0,11.0,3.063,1,0.722,2 +265,B4 SH,STUART,2940.5,78.59,0.605,5.9,11.55,3.092,1,0.667,2 +266,B4 SH,STUART,2941.0,76.729,0.591,5.7,11.95,3.051,1,0.611,2 +267,B4 SH,STUART,2941.5,74.11,0.608,3.7,10.95,3.07,1,0.556,2 +268,B4 SH,STUART,2942.0,66.407,0.653,2.2,9.6,2.997,1,0.5,2 +269,B4 SH,STUART,2942.5,64.081,0.693,1.4,8.6,3.093,1,0.444,2 +270,B4 SH,STUART,2943.0,65.885,0.705,0.9,8.55,3.1060000000000003,1,0.389,2 +271,B4 SH,STUART,2943.5,70.29899999999999,0.696,1.4,9.0,3.085,1,0.33299999999999996,2 +272,B4 SH,STUART,2944.0,70.29899999999999,0.696,1.4,9.0,3.085,1,0.33299999999999996,2 +273,B4 SH,STUART,2944.5,74.551,0.677,3.1,9.65,3.0660000000000003,1,0.278,2 +274,B4 SH,STUART,2945.0,79.65899999999999,0.643,3.4,12.5,2.9019999999999997,1,0.222,2 +275,B4 SH,STUART,2945.5,80.402,0.573,-2.8,19.3,2.9819999999999998,1,0.16699999999999998,3 +276,B4 SH,STUART,2946.0,74.649,0.483,-0.5,23.95,3.14,1,0.111,3 +277,B4 SH,STUART,2946.5,63.428999999999995,0.461,0.2,24.2,3.3939999999999997,1,0.055999999999999994,3 +278,B4 LM,STUART,2947.0,47.916000000000004,0.598,-7.6,18.9,3.762,2,1.0,8 +279,B4 LM,STUART,2947.5,32.469,0.912,-1.4,9.8,4.314,2,0.929,8 +280,B4 LM,STUART,2948.0,20.718000000000004,1.222,-2.9,7.85,4.863,2,0.857,8 +281,B4 LM,STUART,2948.5,15.015,1.2329999999999999,-1.6,6.4,4.813,2,0.7859999999999999,8 +282,B4 LM,STUART,2949.0,14.084000000000001,1.084,-1.1,6.55,4.644,2,0.7140000000000001,8 +283,B4 LM,STUART,2949.5,15.937000000000001,0.9620000000000001,-0.4,7.4,4.6339999999999995,2,0.643,8 +284,B4 LM,STUART,2950.0,19.348,0.9009999999999999,-1.0,7.9,4.545,2,0.5710000000000001,8 +285,B4 LM,STUART,2950.5,21.469,0.9059999999999999,-1.1,6.75,4.5760000000000005,2,0.5,8 +286,B4 LM,STUART,2951.0,22.587,0.9690000000000001,-1.4,5.5,4.527,2,0.429,8 +287,B4 LM,STUART,2951.5,25.721,1.079,-0.9,4.45,4.512,2,0.35700000000000004,8 +288,B4 LM,STUART,2952.0,29.45,1.2,0.0,4.0,4.437,2,0.28600000000000003,6 +289,B4 LM,STUART,2952.5,36.313,1.169,-3.3,6.95,3.97,2,0.214,8 +290,B4 LM,STUART,2953.0,49.49100000000001,0.909,-8.9,13.85,3.695,2,0.14300000000000002,8 +291,B5 SH,STUART,2953.5,69.222,0.469,-6.0,27.9,3.3510000000000004,1,1.0,3 +292,B5 SH,STUART,2954.0,70.968,0.444,-2.5,28.85,3.49,1,0.75,3 +293,B5 SH,STUART,2954.5,65.37899999999999,0.501,-0.3,22.75,3.9,1,0.5,3 +294,B5 SH,STUART,2955.0,54.093,0.56,-0.5,16.75,4.126,1,0.25,8 +295,B5 LM,STUART,2955.5,41.633,0.541,3.9,11.55,4.482,2,1.0,8 +296,B5 LM,STUART,2956.0,33.644,0.439,3.8,11.7,4.707,2,0.976,8 +297,B5 LM,STUART,2956.5,28.976999999999997,0.321,1.3,14.45,4.447,2,0.951,8 +298,B5 LM,STUART,2957.0,24.611,0.23199999999999998,-1.1,17.25,4.481,2,0.927,9 +299,B5 LM,STUART,2957.5,24.154,0.184,-2.9,19.65,4.327,2,0.902,9 +300,B5 LM,STUART,2958.0,25.639,0.17300000000000001,-2.4,20.5,4.302,2,0.878,9 +301,B5 LM,STUART,2958.5,25.956999999999997,0.191,-2.4,19.9,4.294,2,0.8540000000000001,9 +302,B5 LM,STUART,2959.0,38.965,0.266,-2.1,17.05,4.228,2,0.805,9 +303,B5 LM,STUART,2959.5,45.354,0.301,0.2,14.8,4.127,2,0.78,9 +304,B5 LM,STUART,2960.0,53.645,0.327,2.6,12.6,3.908,2,0.7559999999999999,8 +305,B5 LM,STUART,2960.5,60.163999999999994,0.33799999999999997,3.8,12.2,3.74,2,0.732,8 +306,B5 LM,STUART,2961.0,64.032,0.33399999999999996,5.5,13.15,3.5380000000000003,2,0.7070000000000001,8 +307,B5 LM,STUART,2961.5,66.774,0.32299999999999995,7.9,14.75,3.5580000000000003,2,0.6829999999999999,7 +308,B5 LM,STUART,2962.0,68.423,0.313,8.1,15.75,3.4760000000000004,2,0.659,7 +309,B5 LM,STUART,2962.5,63.501999999999995,0.318,6.1,14.75,3.682,2,0.634,7 +310,B5 LM,STUART,2963.0,57.903999999999996,0.349,2.8,12.9,3.937,2,0.61,8 +311,B5 LM,STUART,2963.5,52.935,0.415,2.3,10.25,4.133,2,0.585,8 +312,B5 LM,STUART,2964.0,45.125,0.507,2.3,8.45,4.248,2,0.561,8 +313,B5 LM,STUART,2964.5,39.927,0.605,3.5,6.75,4.468,2,0.537,8 +314,B5 LM,STUART,2965.0,36.215,0.703,2.4,6.0,4.575,2,0.512,8 +315,B5 LM,STUART,2965.5,31.253,0.787,2.3,4.45,4.5569999999999995,2,0.488,8 +316,B5 LM,STUART,2966.0,28.445999999999998,0.8320000000000001,2.2,3.4,4.573,2,0.46299999999999997,8 +317,B5 LM,STUART,2966.5,27.296,0.821,1.2,4.4,4.79,2,0.439,8 +318,B5 LM,STUART,2967.0,28.944000000000003,0.755,-0.4,7.3,4.887,2,0.415,8 +319,B5 LM,STUART,2967.5,31.596,0.659,-1.6,11.0,4.824,2,0.39,8 +320,B5 LM,STUART,2968.0,33.211999999999996,0.574,-3.1,14.45,4.765,2,0.366,9 +321,B5 LM,STUART,2968.5,34.689,0.517,-3.0,16.4,4.766,2,0.341,9 +322,B5 LM,STUART,2969.0,39.266,0.493,-1.9,16.15,4.705,2,0.317,9 +323,B5 LM,STUART,2969.5,50.103,0.499,-2.0,14.6,4.453,2,0.293,9 +324,B5 LM,STUART,2970.0,65.167,0.525,-1.6,13.1,4.3660000000000005,2,0.268,8 +325,B5 LM,STUART,2970.5,76.436,0.557,-0.6,11.7,4.289,2,0.244,8 +326,B5 LM,STUART,2971.0,92.88600000000001,0.628,-0.2,9.4,4.272,2,0.195,8 +327,B5 LM,STUART,2971.5,99.64299999999999,0.6829999999999999,-0.3,7.95,4.395,2,0.171,8 +328,B5 LM,STUART,2972.0,101.585,0.757,0.0,6.5,4.51,2,0.146,8 +329,B5 LM,STUART,2972.5,95.775,0.85,1.6,4.9,4.53,2,0.122,6 +330,B5 LM,STUART,2973.0,87.036,0.951,2.1,3.95,4.456,2,0.098,6 +331,B5 LM,STUART,2973.5,72.331,1.0190000000000001,2.6,3.6,4.056,2,0.073,6 +332,B5 LM,STUART,2974.0,58.858999999999995,0.991,3.4,3.9,3.7119999999999997,2,0.049,6 +333,B5 LM,STUART,2974.5,60.931999999999995,0.857,1.3,7.35,3.3710000000000004,2,0.024,8 +334,C SH,STUART,2975.0,67.655,0.675,-0.8,14.4,3.1310000000000002,1,1.0,3 +335,C SH,STUART,2975.5,77.219,0.528,6.8,20.9,3.008,1,0.977,3 +336,C SH,STUART,2976.0,82.115,0.45899999999999996,10.6,24.2,2.988,1,0.953,3 +337,C SH,STUART,2976.5,84.865,0.446,9.4,23.7,3.134,1,0.93,3 +338,C SH,STUART,2977.0,84.384,0.449,13.3,21.45,3.409,1,0.907,3 +339,C SH,STUART,2977.5,81.77199999999999,0.44299999999999995,14.8,20.9,3.483,1,0.884,3 +340,C SH,STUART,2978.0,78.998,0.444,16.5,20.65,3.438,1,0.8370000000000001,3 +341,C SH,STUART,2978.5,79.896,0.457,14.9,20.15,3.423,1,0.8140000000000001,3 +342,C SH,STUART,2979.0,79.194,0.462,14.8,19.9,3.45,1,0.7909999999999999,3 +343,C SH,STUART,2979.5,78.99,0.451,13.5,19.65,3.3930000000000002,1,0.767,3 +344,C SH,STUART,2980.0,79.21,0.441,15.1,18.95,3.475,1,0.7440000000000001,3 +345,C SH,STUART,2980.5,78.1,0.451,15.6,17.5,3.478,1,0.721,3 +346,C SH,STUART,2981.0,78.59,0.489,14.3,16.75,3.505,1,0.698,3 +347,C SH,STUART,2981.5,79.439,0.544,12.7,15.25,3.478,1,0.674,3 +348,C SH,STUART,2982.0,81.29899999999999,0.5760000000000001,11.5,14.65,3.4530000000000003,1,0.6509999999999999,3 +349,C SH,STUART,2982.5,78.933,0.494,11.9,14.85,3.4789999999999996,1,0.605,3 +350,C SH,STUART,2983.0,79.471,0.441,13.4,16.3,3.4939999999999998,1,0.581,3 +351,C SH,STUART,2983.5,81.895,0.431,14.2,16.8,3.4410000000000003,1,0.5579999999999999,3 +352,C SH,STUART,2984.0,82.76799999999999,0.46799999999999997,14.3,16.05,3.4930000000000003,1,0.535,3 +353,C SH,STUART,2984.5,79.02199999999999,0.537,12.9,15.05,3.5,1,0.512,2 +354,C SH,STUART,2985.0,76.74600000000001,0.601,11.4,13.8,3.4410000000000003,1,0.488,2 +355,C SH,STUART,2985.5,73.066,0.638,11.1,13.25,3.426,1,0.465,2 +356,C SH,STUART,2986.0,70.35600000000001,0.6509999999999999,11.0,13.1,3.447,1,0.442,2 +357,C SH,STUART,2986.5,74.608,0.621,10.5,14.85,3.3989999999999996,1,0.395,2 +358,C SH,STUART,2987.0,73.008,0.585,11.1,15.15,3.3930000000000002,1,0.37200000000000005,2 +359,C SH,STUART,2987.5,70.438,0.546,12.1,15.15,3.4389999999999996,1,0.349,2 +360,C SH,STUART,2988.0,68.08,0.5,13.5,14.65,3.478,1,0.326,2 +361,C SH,STUART,2988.5,66.75,0.46,13.6,15.2,3.4610000000000003,1,0.302,2 +362,C SH,STUART,2989.0,69.45100000000001,0.455,13.4,14.8,3.4939999999999998,1,0.27899999999999997,2 +363,C SH,STUART,2989.5,75.946,0.494,14.2,14.0,3.5410000000000004,1,0.256,2 +364,C SH,STUART,2990.0,80.344,0.556,11.8,13.6,3.522,1,0.233,2 +365,C SH,STUART,2990.5,83.772,0.616,10.4,12.9,3.4760000000000004,1,0.18600000000000003,2 +366,C SH,STUART,2991.0,84.76700000000001,0.618,10.7,12.55,3.39,1,0.163,2 +367,C SH,STUART,2991.5,84.09,0.616,9.4,13.4,3.2889999999999997,1,0.14,2 +368,C SH,STUART,2992.0,86.62799999999999,0.601,8.8,14.4,3.19,1,0.11599999999999999,3 +369,C SH,STUART,2992.5,90.43,0.556,2.0,21.4,3.045,1,0.09300000000000001,3 +370,C SH,STUART,2993.0,87.07700000000001,0.498,2.0,26.4,3.088,1,0.07,3 +371,C SH,STUART,2993.5,76.623,0.479,5.3,28.45,3.2239999999999998,1,0.047,3 +372,C SH,STUART,2994.0,62.768,0.546,3.2,26.3,3.3339999999999996,1,0.023,3 +373,C LM,STUART,2994.5,43.738,0.703,1.8,19.3,3.8760000000000003,2,1.0,8 +374,C LM,STUART,2995.0,27.859,0.855,6.9,11.75,4.508,2,0.993,8 +375,C LM,STUART,2995.5,18.034000000000002,0.879,5.3,9.55,4.815,2,0.985,8 +376,C LM,STUART,2996.0,13.203,0.83,3.0,9.1,4.863,2,0.978,8 +377,C LM,STUART,2996.5,12.762,0.767,2.0,8.9,5.024,2,0.97,8 +378,C LM,STUART,2997.0,14.843,0.7020000000000001,1.8,9.2,4.6160000000000005,2,0.963,5 +379,C LM,STUART,2997.5,19.087,0.644,0.4,10.4,4.172,2,0.955,5 +380,C LM,STUART,2998.0,19.087,0.644,0.4,10.4,4.172,2,0.955,5 +381,C LM,STUART,2998.5,25.206999999999997,0.601,-0.2,10.7,3.97,2,0.948,5 +382,C LM,STUART,2999.0,27.997,0.5870000000000001,1.1,10.25,3.9330000000000003,2,0.94,5 +383,C LM,STUART,2999.5,28.822,0.602,2.2,10.0,3.875,2,0.9329999999999999,5 +384,C LM,STUART,3000.0,28.618000000000002,0.622,1.9,10.35,3.969,2,0.925,5 +385,C LM,STUART,3000.5,24.815,0.612,0.7,11.15,4.118,2,0.9179999999999999,8 +386,C LM,STUART,3001.0,23.371,0.575,0.2,11.8,4.243,2,0.91,8 +387,C LM,STUART,3001.5,23.052,0.542,0.1,12.35,4.196000000000001,2,0.903,8 +388,C LM,STUART,3002.0,23.109,0.522,-0.1,12.15,4.192,2,0.8959999999999999,8 +389,C LM,STUART,3002.5,24.138,0.511,-0.3,12.05,3.978,2,0.888,8 +390,C LM,STUART,3003.0,24.448,0.511,-0.1,11.75,3.975,2,0.8809999999999999,8 +391,C LM,STUART,3003.5,25.419,0.523,0.0,11.6,3.9619999999999997,2,0.873,8 +392,C LM,STUART,3004.0,26.724,0.56,-0.7,11.35,3.99,2,0.866,5 +393,C LM,STUART,3004.5,29.213,0.623,-0.8,10.7,3.885,2,0.858,5 +394,C LM,STUART,3005.0,34.036,0.6859999999999999,0.4,9.4,3.8160000000000003,2,0.851,5 +395,C LM,STUART,3005.5,38.157,0.716,1.7,7.75,3.66,2,0.843,5 +396,C LM,STUART,3006.0,40.45,0.701,1.8,6.8,3.5439999999999996,2,0.836,5 +397,C LM,STUART,3006.5,41.576,0.662,3.5,6.45,3.392,2,0.828,5 +398,C LM,STUART,3007.0,40.123000000000005,0.633,3.7,7.35,3.24,2,0.821,5 +399,C LM,STUART,3007.5,36.663000000000004,0.632,3.4,8.1,3.2119999999999997,2,0.813,5 +400,C LM,STUART,3008.0,32.705999999999996,0.65,3.8,8.3,3.253,2,0.8059999999999999,5 +401,C LM,STUART,3008.5,30.323,0.672,3.4,8.7,3.2889999999999997,2,0.799,5 +402,C LM,STUART,3009.0,28.601,0.6940000000000001,3.0,9.4,3.3139999999999996,2,0.7909999999999999,5 +403,C LM,STUART,3009.5,28.169,0.721,2.4,9.7,3.262,2,0.784,5 +404,C LM,STUART,3010.0,29.441999999999997,0.7559999999999999,1.4,9.8,3.31,2,0.7759999999999999,5 +405,C LM,STUART,3010.5,30.878,0.795,0.7,9.55,3.359,2,0.769,5 +406,C LM,STUART,3011.0,32.150999999999996,0.8320000000000001,0.1,9.35,3.409,2,0.7609999999999999,5 +407,C LM,STUART,3011.5,33.677,0.856,0.4,9.1,3.417,2,0.754,5 +408,C LM,STUART,3012.0,33.701,0.872,1.1,8.95,3.444,2,0.746,5 +409,C LM,STUART,3012.5,35.105,0.889,1.5,8.75,3.466,2,0.7390000000000001,5 +410,C LM,STUART,3013.0,37.104,0.914,1.6,8.6,3.49,2,0.731,5 +411,C LM,STUART,3013.5,37.349000000000004,0.9390000000000001,2.1,7.95,3.418,2,0.7240000000000001,5 +412,C LM,STUART,3014.0,37.936,0.9520000000000001,2.4,7.7,3.5039999999999996,2,0.716,5 +413,C LM,STUART,3014.5,39.086999999999996,0.953,2.1,7.75,3.511,2,0.7090000000000001,5 +414,C LM,STUART,3015.0,38.059,0.951,1.7,7.55,3.55,2,0.701,5 +415,C LM,STUART,3015.5,37.202,0.9520000000000001,2.2,7.3,3.603,2,0.6940000000000001,5 +416,C LM,STUART,3016.0,37.218,0.951,1.8,7.5,3.675,2,0.687,5 +417,C LM,STUART,3016.5,37.781,0.9490000000000001,1.4,7.6,3.741,2,0.679,5 +418,C LM,STUART,3017.0,40.164,0.948,1.5,7.35,3.735,2,0.672,5 +419,C LM,STUART,3017.5,40.955999999999996,0.95,1.6,7.3,3.747,2,0.664,5 +420,C LM,STUART,3018.0,41.013000000000005,0.9520000000000001,1.5,7.25,3.64,2,0.657,5 +421,C LM,STUART,3018.5,42.547,0.95,1.9,7.15,3.6830000000000003,2,0.649,5 +422,C LM,STUART,3019.0,41.192,0.945,2.0,7.0,3.6439999999999997,2,0.642,5 +423,C LM,STUART,3019.5,42.726000000000006,0.941,2.3,7.15,3.7039999999999997,2,0.634,5 +424,C LM,STUART,3020.0,44.407,0.9420000000000001,3.4,7.0,3.695,2,0.627,5 +425,C LM,STUART,3020.5,45.387,0.946,3.8,6.8,3.7880000000000003,2,0.619,5 +426,C LM,STUART,3021.0,45.052,0.945,2.6,7.5,3.917,2,0.612,5 +427,C LM,STUART,3021.5,46.129,0.935,2.4,7.4,3.948,2,0.604,5 +428,C LM,STUART,3022.0,47.826,0.925,2.5,7.05,4.016,2,0.597,5 +429,C LM,STUART,3022.5,50.053999999999995,0.925,2.3,6.75,3.935,2,0.59,5 +430,C LM,STUART,3023.0,55.562,0.9329999999999999,1.8,6.9,3.9739999999999998,2,0.5820000000000001,5 +431,C LM,STUART,3023.5,63.028999999999996,0.9470000000000001,2.0,6.8,3.859,2,0.575,5 +432,C LM,STUART,3024.0,75.399,0.966,1.9,6.45,3.681,2,0.5670000000000001,5 +433,C LM,STUART,3024.5,102.116,0.987,0.2,6.9,3.5610000000000004,2,0.56,5 +434,C LM,STUART,3025.0,140.778,0.993,-0.4,7.0,3.513,2,0.552,4 +435,C LM,STUART,3025.5,183.358,0.981,-0.3,7.35,3.437,2,0.545,4 +436,C LM,STUART,3026.0,213.99900000000002,0.977,0.2,7.8,3.412,2,0.537,4 +437,C LM,STUART,3026.5,220.41299999999998,1.004,0.0,8.0,3.528,2,0.53,4 +438,C LM,STUART,3027.0,200.30599999999998,1.0270000000000001,0.0,8.0,3.6710000000000003,2,0.522,4 +439,C LM,STUART,3027.5,162.149,0.9990000000000001,-0.2,8.5,3.7460000000000004,2,0.515,4 +440,C LM,STUART,3028.0,121.20200000000001,0.95,0.2,9.2,3.892,2,0.507,4 +441,C LM,STUART,3028.5,92.805,0.9159999999999999,1.3,9.95,3.924,2,0.5,4 +442,C LM,STUART,3029.0,77.758,0.894,1.9,10.65,3.9530000000000003,2,0.493,4 +443,C LM,STUART,3029.5,67.623,0.879,2.9,10.85,3.889,2,0.485,4 +444,C LM,STUART,3030.0,62.376000000000005,0.873,2.5,11.45,3.799,2,0.478,4 +445,C LM,STUART,3030.5,59.463,0.873,2.1,11.25,3.773,2,0.47,4 +446,C LM,STUART,3031.0,55.211000000000006,0.872,2.7,10.45,3.784,2,0.46299999999999997,4 +447,C LM,STUART,3031.5,51.727,0.866,2.3,10.35,3.787,2,0.455,4 +448,C LM,STUART,3032.0,52.38,0.858,2.1,10.75,3.7760000000000002,2,0.44799999999999995,4 +449,C LM,STUART,3032.5,53.122,0.851,2.5,11.05,3.7239999999999998,2,0.44,4 +450,C LM,STUART,3033.0,51.245,0.8440000000000001,2.7,11.25,3.697,2,0.433,4 +451,C LM,STUART,3033.5,52.208,0.836,1.5,11.75,3.653,2,0.425,4 +452,C LM,STUART,3034.0,54.95,0.826,1.3,12.05,3.647,2,0.418,4 +453,C LM,STUART,3034.5,54.43600000000001,0.8170000000000001,2.0,12.0,3.65,2,0.41,4 +454,C LM,STUART,3035.0,54.81100000000001,0.81,1.8,12.1,3.678,2,0.40299999999999997,4 +455,C LM,STUART,3035.5,55.603,0.8009999999999999,1.6,12.2,3.6439999999999997,2,0.396,4 +456,C LM,STUART,3036.0,54.288999999999994,0.785,1.3,12.75,3.656,2,0.38799999999999996,4 +457,C LM,STUART,3036.5,52.38,0.768,2.0,13.0,3.5980000000000003,2,0.381,4 +458,C LM,STUART,3037.0,53.645,0.758,2.0,13.7,3.582,2,0.373,4 +459,C LM,STUART,3037.5,53.93,0.757,2.1,13.75,3.5810000000000004,2,0.366,4 +460,C LM,STUART,3038.0,56.071999999999996,0.755,2.9,13.75,3.645,2,0.358,4 +461,C LM,STUART,3038.5,59.016999999999996,0.75,4.0,13.7,3.694,2,0.35100000000000003,4 +462,C LM,STUART,3039.0,62.144,0.742,4.4,14.1,3.65,2,0.34299999999999997,4 +463,C LM,STUART,3039.5,64.814,0.73,4.8,14.2,3.66,2,0.336,4 +464,C LM,STUART,3040.0,66.705,0.7140000000000001,5.6,14.6,3.6889999999999996,2,0.32799999999999996,4 +465,C LM,STUART,3040.5,67.568,0.695,6.5,15.45,3.674,2,0.321,4 +466,C LM,STUART,3041.0,67.683,0.6759999999999999,6.7,15.65,3.603,2,0.313,4 +467,C LM,STUART,3041.5,67.683,0.662,6.0,15.4,3.562,2,0.306,4 +468,C LM,STUART,3042.0,67.683,0.6659999999999999,5.7,15.25,3.57,2,0.299,4 +469,C LM,STUART,3042.5,67.683,0.701,6.0,15.2,3.603,2,0.29100000000000004,4 +470,C LM,STUART,3043.0,67.683,0.778,5.1,15.65,3.537,2,0.284,4 +471,C LM,STUART,3043.5,67.683,0.882,4.9,15.75,3.5469999999999997,2,0.276,4 +472,C LM,STUART,3044.0,67.683,0.973,4.4,15.8,3.533,2,0.26899999999999996,4 +473,C LM,STUART,3044.5,67.683,1.0170000000000001,3.5,16.25,3.495,2,0.261,4 +474,A1 LM,CRAWFORD,2972.5,49.675,0.845,3.905,11.175,3.265,2,1.0,8 +475,A1 LM,CRAWFORD,2973.0,34.435,0.879,3.085,8.175,3.8310000000000004,2,0.991,8 +476,A1 LM,CRAWFORD,2973.5,26.178,0.92,2.615,4.945,4.306,2,0.981,8 +477,A1 LM,CRAWFORD,2974.0,19.463,0.9670000000000001,0.82,3.82,4.578,2,0.972,8 +478,A1 LM,CRAWFORD,2974.5,19.26,0.995,0.32,3.63,4.643,2,0.9620000000000001,8 +479,A1 LM,CRAWFORD,2975.0,19.985,1.008,0.06,4.32,4.614,2,0.953,8 +480,A1 LM,CRAWFORD,2975.5,22.298000000000002,1.002,-0.01,5.5,4.4910000000000005,2,0.943,8 +481,A1 LM,CRAWFORD,2976.0,24.611,0.956,0.05,6.87,4.369,2,0.934,8 +482,A1 LM,CRAWFORD,2976.5,24.677,0.8240000000000001,0.31,6.94,4.047,2,0.915,8 +483,A1 LM,CRAWFORD,2977.0,24.945999999999998,0.667,0.965,5.915,3.8930000000000002,2,0.9059999999999999,8 +484,A1 LM,CRAWFORD,2977.5,29.31,0.5589999999999999,2.11,6.15,3.52,2,0.8959999999999999,8 +485,A1 LM,CRAWFORD,2978.0,37.321999999999996,0.522,3.375,8.445,3.125,2,0.887,6 +486,A1 LM,CRAWFORD,2978.5,42.141999999999996,0.51,3.985,10.785,2.843,2,0.877,6 +487,A1 LM,CRAWFORD,2979.0,52.434,0.49200000000000005,4.42,13.15,2.674,2,0.868,6 +488,A1 LM,CRAWFORD,2979.5,63.181000000000004,0.473,5.18,14.13,2.6439999999999997,2,0.858,4 +489,A1 LM,CRAWFORD,2980.0,69.405,0.465,5.52,14.56,2.6630000000000003,2,0.8490000000000001,4 +490,A1 LM,CRAWFORD,2980.5,77.785,0.475,5.82,14.94,2.68,2,0.84,4 +491,A1 LM,CRAWFORD,2981.0,83.57700000000001,0.469,5.965,15.395,2.6660000000000004,2,0.83,4 +492,A1 LM,CRAWFORD,2981.5,84.05799999999999,0.513,6.025,15.855,2.622,2,0.821,4 +493,A1 LM,CRAWFORD,2982.0,81.82,0.544,5.95,16.05,2.609,2,0.8109999999999999,4 +494,A1 LM,CRAWFORD,2982.5,80.257,0.563,5.74,16.1,2.6260000000000003,2,0.802,4 +495,A1 LM,CRAWFORD,2983.0,79.833,0.579,5.135,15.715,2.662,2,0.792,4 +496,A1 LM,CRAWFORD,2983.5,80.32300000000001,0.583,4.565,15.275,2.693,2,0.7829999999999999,4 +497,A1 LM,CRAWFORD,2984.0,84.704,0.59,4.365,15.165,2.7110000000000003,2,0.774,4 +498,A1 LM,CRAWFORD,2984.5,96.67399999999999,0.596,4.725,15.565,2.7439999999999998,2,0.764,4 +499,A1 LM,CRAWFORD,2985.0,112.662,0.609,4.88,15.71,2.824,2,0.755,4 +500,A1 LM,CRAWFORD,2985.5,131.484,0.634,5.11,15.6,2.935,2,0.745,4 +501,A1 LM,CRAWFORD,2986.0,138.16899999999998,0.659,5.33,15.1,3.0,2,0.736,4 +502,A1 LM,CRAWFORD,2986.5,135.045,0.682,5.1,14.46,3.048,2,0.726,4 +503,A1 LM,CRAWFORD,2987.0,117.726,0.7070000000000001,4.415,13.315,3.097,2,0.7170000000000001,4 +504,A1 LM,CRAWFORD,2987.5,98.382,0.7290000000000001,3.395,11.695,3.193,2,0.708,6 +505,A1 LM,CRAWFORD,2988.0,91.348,0.7709999999999999,3.235,10.985,3.3080000000000003,2,0.698,6 +506,A1 LM,CRAWFORD,2988.5,87.05,0.831,3.21,10.64,3.4930000000000003,2,0.6890000000000001,6 +507,A1 LM,CRAWFORD,2989.0,82.98,0.9279999999999999,2.835,10.115,3.5260000000000002,2,0.679,6 +508,A1 LM,CRAWFORD,2989.5,67.264,1.0190000000000001,0.475,8.435,3.217,2,0.67,6 +509,A1 LM,CRAWFORD,2990.0,57.068999999999996,1.047,-2.385,7.115,3.157,2,0.66,8 +510,A1 LM,CRAWFORD,2990.5,46.873999999999995,1.0659999999999998,-3.97,6.6,3.159,2,0.6509999999999999,8 +511,A1 LM,CRAWFORD,2991.0,39.325,1.06,-3.69,7.15,3.2239999999999998,2,0.642,8 +512,A1 LM,CRAWFORD,2991.5,43.946000000000005,1.042,-2.73,7.29,3.272,2,0.632,6 +513,A1 LM,CRAWFORD,2992.0,51.73,1.005,-0.9,7.98,3.29,2,0.623,6 +514,A1 LM,CRAWFORD,2992.5,58.373999999999995,0.956,1.46,9.41,3.2769999999999997,2,0.613,6 +515,A1 LM,CRAWFORD,2993.0,67.75399999999999,0.904,3.985,11.545,3.2960000000000003,2,0.604,6 +516,A1 LM,CRAWFORD,2993.5,71.206,0.8740000000000001,5.045,12.915,3.3280000000000003,2,0.594,6 +517,A1 LM,CRAWFORD,2994.0,69.188,0.852,4.86,12.85,3.33,2,0.585,6 +518,A1 LM,CRAWFORD,2994.5,58.452,0.841,3.455,11.265,3.332,2,0.575,6 +519,A1 LM,CRAWFORD,2995.0,38.715,0.816,2.185,9.855,3.365,2,0.5660000000000001,6 +520,A1 LM,CRAWFORD,2995.5,30.541,0.8009999999999999,0.96,8.76,3.4760000000000004,2,0.557,6 +521,A1 LM,CRAWFORD,2996.0,21.684,0.792,-0.04,8.28,3.7739999999999996,2,0.547,8 +522,A1 LM,CRAWFORD,2996.5,21.252,0.7929999999999999,-0.505,9.225,4.041,2,0.5379999999999999,8 +523,A1 LM,CRAWFORD,2997.0,23.116999999999997,0.7929999999999999,-0.555,9.895,4.292,2,0.528,8 +524,A1 LM,CRAWFORD,2997.5,28.85,0.7909999999999999,-0.46,9.89,4.371,2,0.519,8 +525,A1 LM,CRAWFORD,2998.0,36.226,0.7879999999999999,-0.085,9.175,4.112,2,0.509,8 +526,A1 LM,CRAWFORD,2998.5,42.83,0.8009999999999999,0.41,8.49,3.91,2,0.5,6 +527,A1 LM,CRAWFORD,2999.0,46.846000000000004,0.82,1.255,8.275,3.793,2,0.491,6 +528,A1 LM,CRAWFORD,2999.5,48.133,0.845,1.77,8.29,3.486,2,0.48100000000000004,6 +529,A1 LM,CRAWFORD,3000.0,43.162,0.8740000000000001,1.35,8.64,3.263,2,0.47200000000000003,6 +530,A1 LM,CRAWFORD,3000.5,36.586,0.92,1.01,8.74,3.187,2,0.462,6 +531,A1 LM,CRAWFORD,3001.0,32.746,0.955,0.625,8.535,3.173,2,0.45299999999999996,6 +532,A1 LM,CRAWFORD,3001.5,30.956999999999997,0.9740000000000001,0.565,8.555,3.315,2,0.44299999999999995,6 +533,A1 LM,CRAWFORD,3002.0,30.765,0.981,0.545,8.575,3.4410000000000003,2,0.434,6 +534,A1 LM,CRAWFORD,3002.5,31.265,0.987,0.625,8.425,3.6180000000000003,2,0.425,6 +535,A1 LM,CRAWFORD,3003.0,33.124,0.9940000000000001,0.755,8.045,3.943,2,0.415,6 +536,A1 LM,CRAWFORD,3003.5,35.211,0.997,0.635,7.555,4.07,2,0.406,6 +537,A1 LM,CRAWFORD,3004.0,36.385999999999996,0.988,0.125,7.135,3.885,2,0.396,6 +538,A1 LM,CRAWFORD,3004.5,38.016999999999996,0.951,-0.175,6.875,3.654,2,0.387,6 +539,A1 LM,CRAWFORD,3005.0,41.016000000000005,0.903,0.055,6.825,3.438,2,0.377,6 +540,A1 LM,CRAWFORD,3005.5,49.653999999999996,0.8540000000000001,1.52,7.51,3.33,2,0.368,6 +541,A1 LM,CRAWFORD,3006.0,62.068000000000005,0.799,3.1,9.13,3.2089999999999996,2,0.358,6 +542,A1 LM,CRAWFORD,3006.5,71.222,0.74,4.0,10.98,3.0869999999999997,2,0.349,4 +543,A1 LM,CRAWFORD,3007.0,73.309,0.691,4.015,12.425,2.98,2,0.34,4 +544,A1 LM,CRAWFORD,3007.5,69.469,0.627,3.19,13.37,2.904,2,0.33,4 +545,A1 LM,CRAWFORD,3008.0,65.857,0.5589999999999999,2.1,14.08,2.859,2,0.321,4 +546,A1 LM,CRAWFORD,3008.5,58.369,0.504,0.715,14.235,2.83,2,0.311,4 +547,A1 LM,CRAWFORD,3009.0,56.125,0.435,-0.775,13.415,2.786,2,0.302,6 +548,A1 LM,CRAWFORD,3009.5,56.769,0.37799999999999995,-1.155,12.805,2.7260000000000004,2,0.292,6 +549,A1 LM,CRAWFORD,3010.0,62.586999999999996,0.298,-0.18,12.87,2.588,2,0.28300000000000003,7 +550,A1 LM,CRAWFORD,3010.5,64.67399999999999,0.252,0.24,14.42,2.465,2,0.27399999999999997,7 +551,A1 LM,CRAWFORD,3011.0,64.253,0.212,0.24,16.36,2.374,2,0.264,7 +552,A1 LM,CRAWFORD,3011.5,61.553000000000004,0.166,-0.295,18.395,2.329,2,0.255,7 +553,A1 LM,CRAWFORD,3012.0,60.221000000000004,0.114,-0.59,19.27,2.315,2,0.245,7 +554,A1 LM,CRAWFORD,3012.5,59.11600000000001,0.09300000000000001,-0.655,19.655,2.302,2,0.23600000000000002,7 +555,A1 LM,CRAWFORD,3013.0,57.997,0.081,-0.8,19.69,2.258,2,0.226,7 +556,A1 LM,CRAWFORD,3013.5,57.363,0.091,-1.105,19.095,2.2430000000000003,2,0.217,7 +557,A1 LM,CRAWFORD,3014.0,57.863,0.14400000000000002,-1.27,18.12,2.261,2,0.20800000000000002,7 +558,A1 LM,CRAWFORD,3014.5,59.038000000000004,0.20600000000000002,-1.26,17.03,2.326,2,0.198,7 +559,A1 LM,CRAWFORD,3015.0,60.213,0.29,-1.04,16.68,2.4090000000000003,2,0.18899999999999997,8 +560,A1 LM,CRAWFORD,3015.5,61.16,0.368,-0.14,16.68,2.781,2,0.179,8 +561,A1 LM,CRAWFORD,3016.0,58.46,0.46799999999999997,-0.25,15.21,3.327,2,0.17,8 +562,A1 LM,CRAWFORD,3016.5,53.48,0.564,0.36,11.47,3.7960000000000003,2,0.16,6 +563,A1 LM,CRAWFORD,3017.0,51.692,0.657,0.825,8.125,4.062,2,0.151,6 +564,A1 LM,CRAWFORD,3017.5,67.238,0.807,1.7,7.13,4.173,2,0.142,6 +565,A1 LM,CRAWFORD,3018.0,74.796,0.89,2.905,7.335,4.19,2,0.132,6 +566,A1 LM,CRAWFORD,3018.5,75.743,0.925,3.055,7.765,4.302,2,0.12300000000000001,6 +567,A1 LM,CRAWFORD,3019.0,70.991,0.9279999999999999,2.325,7.785,4.444,2,0.113,6 +568,A1 LM,CRAWFORD,3019.5,57.348,0.929,1.355,7.395,4.492,2,0.10400000000000001,6 +569,A1 LM,CRAWFORD,3020.0,46.213,0.929,0.67,7.43,4.385,2,0.094,6 +570,A1 LM,CRAWFORD,3020.5,42.11600000000001,0.9259999999999999,0.19,7.17,4.2010000000000005,2,0.085,6 +571,A1 LM,CRAWFORD,3021.0,44.925,0.9179999999999999,-0.19,6.69,4.093,2,0.075,6 +572,A1 LM,CRAWFORD,3021.5,55.903,0.912,0.07,5.72,4.034,2,0.066,6 +573,A1 LM,CRAWFORD,3022.0,66.196,0.9059999999999999,0.495,5.375,3.958,2,0.057,6 +574,A1 LM,CRAWFORD,3022.5,73.52600000000001,0.894,1.44,5.26,3.82,2,0.047,6 +575,B1 SH,CRAWFORD,3032.0,72.392,0.7090000000000001,-0.74,18.41,2.6289999999999996,1,0.125,3 +576,B1 SH,CRAWFORD,3032.5,69.928,0.792,-0.69,19.32,2.616,1,0.063,3 +577,B1 LM,CRAWFORD,3033.0,64.72,0.8490000000000001,-0.96,16.33,2.9139999999999997,2,1.0,8 +578,B1 LM,CRAWFORD,3033.5,52.445,0.892,0.91,11.35,3.292,2,0.977,8 +579,B1 LM,CRAWFORD,3034.0,43.361999999999995,0.93,-0.02,6.92,3.571,2,0.955,8 +580,B1 LM,CRAWFORD,3034.5,42.06399999999999,0.9740000000000001,0.015,5.495,3.435,2,0.909,8 +581,B1 LM,CRAWFORD,3035.0,45.641999999999996,0.956,0.005,5.475,3.375,2,0.8859999999999999,8 +582,B1 LM,CRAWFORD,3035.5,53.266000000000005,0.932,-0.105,5.545,3.299,2,0.8640000000000001,8 +583,B1 LM,CRAWFORD,3036.0,59.043,0.894,0.17,6.99,3.114,2,0.841,6 +584,B1 LM,CRAWFORD,3036.5,62.331,0.8340000000000001,-0.245,9.835,2.813,2,0.818,6 +585,B1 LM,CRAWFORD,3037.0,60.946000000000005,0.884,-1.69,16.08,2.745,2,0.795,8 +586,B1 LM,CRAWFORD,3037.5,53.913999999999994,0.9179999999999999,-0.72,19.54,3.1519999999999997,2,0.773,8 +587,B1 LM,CRAWFORD,3038.0,45.287,0.922,-0.86,18.44,3.9619999999999997,2,0.75,8 +588,B1 LM,CRAWFORD,3038.5,30.049,0.925,0.445,13.565,4.571000000000001,2,0.727,8 +589,B1 LM,CRAWFORD,3039.0,23.017,0.9470000000000001,0.54,9.59,4.806,2,0.705,8 +590,B1 LM,CRAWFORD,3039.5,21.228,0.973,-0.03,7.57,4.824,2,0.682,8 +591,B1 LM,CRAWFORD,3040.0,20.109,0.985,0.225,6.725,4.81,2,0.659,8 +592,B1 LM,CRAWFORD,3040.5,19.256,0.995,0.415,6.505,4.859,2,0.636,8 +593,B1 LM,CRAWFORD,3041.0,18.38,0.9990000000000001,0.44,6.29,4.8919999999999995,2,0.614,8 +594,B1 LM,CRAWFORD,3041.5,17.275,0.987,0.185,6.075,4.91,2,0.591,8 +595,B1 LM,CRAWFORD,3042.0,16.39,0.975,0.015,5.815,4.88,2,0.568,8 +596,B1 LM,CRAWFORD,3042.5,16.197,0.963,-0.205,5.445,4.834,2,0.545,8 +597,B1 LM,CRAWFORD,3043.0,16.469,0.9570000000000001,-0.225,5.335,4.76,2,0.523,8 +598,B1 LM,CRAWFORD,3043.5,20.38,0.973,-0.295,5.255,4.669,2,0.5,8 +599,B1 LM,CRAWFORD,3044.0,31.86,1.005,-0.185,5.045,4.547,2,0.47700000000000004,8 +600,B1 LM,CRAWFORD,3044.5,39.608000000000004,1.0390000000000001,0.44,5.16,4.5169999999999995,2,0.455,6 +601,B1 LM,CRAWFORD,3045.0,43.291000000000004,1.064,0.96,5.09,4.488,2,0.43200000000000005,6 +602,B1 LM,CRAWFORD,3045.5,44.001000000000005,1.089,1.295,4.875,4.396,2,0.409,6 +603,B1 LM,CRAWFORD,3046.0,38.574,1.112,0.7,4.09,4.275,2,0.386,6 +604,B1 LM,CRAWFORD,3046.5,35.19,1.128,0.195,3.575,4.245,2,0.364,6 +605,B1 LM,CRAWFORD,3047.0,32.946,1.131,-0.215,3.205,4.434,2,0.341,6 +606,B1 LM,CRAWFORD,3047.5,31.613000000000003,1.128,-0.095,3.545,4.405,2,0.318,6 +607,B1 LM,CRAWFORD,3048.0,32.113,1.092,-0.005,4.715,4.329,2,0.295,6 +608,B1 LM,CRAWFORD,3048.5,32.368,1.052,0.29,5.42,4.285,2,0.273,6 +609,B1 LM,CRAWFORD,3049.0,31.506999999999998,0.978,0.405,5.865,4.224,2,0.25,6 +610,B1 LM,CRAWFORD,3049.5,30.849,0.88,0.445,6.595,4.04,2,0.22699999999999998,6 +611,B1 LM,CRAWFORD,3050.0,29.953000000000003,0.772,0.91,7.82,3.451,2,0.205,8 +612,B1 LM,CRAWFORD,3050.5,28.875999999999998,0.723,1.24,9.64,3.141,2,0.182,8 +613,B1 LM,CRAWFORD,3051.0,28.228,0.705,1.21,10.47,3.2060000000000004,2,0.159,8 +614,B1 LM,CRAWFORD,3051.5,28.263,0.693,1.005,10.355,3.38,2,0.136,8 +615,B1 LM,CRAWFORD,3052.0,28.754,0.693,0.47,9.35,3.6460000000000004,2,0.114,8 +616,B1 LM,CRAWFORD,3052.5,34.26,0.6940000000000001,0.34,7.94,3.9739999999999998,2,0.091,8 +617,B1 LM,CRAWFORD,3053.0,45.01,0.6940000000000001,0.485,6.185,4.2410000000000005,2,0.068,6 +618,B1 LM,CRAWFORD,3053.5,55.98,0.7070000000000001,0.665,5.945,4.093,2,0.045,6 +619,B1 LM,CRAWFORD,3054.0,67.146,0.7170000000000001,0.965,6.695,3.67,2,0.023,6 +620,B2 SH,CRAWFORD,3054.5,80.0,0.708,1.965,8.815,3.361,1,1.0,3 +621,B2 SH,CRAWFORD,3055.0,85.05,0.69,3.215,10.515,3.16,1,0.95,3 +622,B2 SH,CRAWFORD,3055.5,83.946,0.659,3.965,11.115,3.178,1,0.9,2 +623,B2 SH,CRAWFORD,3056.0,80.973,0.623,4.61,10.99,3.2110000000000003,1,0.85,2 +624,B2 SH,CRAWFORD,3056.5,78.782,0.5920000000000001,4.845,10.905,3.213,1,0.8,2 +625,B2 SH,CRAWFORD,3057.0,76.082,0.574,4.82,10.73,3.2310000000000003,1,0.75,2 +626,B2 SH,CRAWFORD,3057.5,72.925,0.562,4.535,10.405,3.217,1,0.7,2 +627,B2 SH,CRAWFORD,3058.0,72.04899999999999,0.55,4.24,10.55,3.187,1,0.65,2 +628,B2 SH,CRAWFORD,3058.5,71.391,0.535,4.115,11.005,3.128,1,0.6,2 +629,B2 SH,CRAWFORD,3059.0,70.751,0.527,4.055,11.765,3.036,1,0.55,2 +630,B2 SH,CRAWFORD,3059.5,71.26100000000001,0.5329999999999999,4.235,12.565,3.0069999999999997,1,0.5,2 +631,B2 SH,CRAWFORD,3060.0,73.11,0.518,4.44,12.8,2.978,1,0.45,2 +632,B2 SH,CRAWFORD,3060.5,75.425,0.491,3.815,12.085,2.903,1,0.4,2 +633,B2 SH,CRAWFORD,3061.0,76.828,0.47,3.265,11.525,2.687,1,0.35,2 +634,B2 SH,CRAWFORD,3061.5,75.04,0.45799999999999996,3.16,11.69,2.58,1,0.3,2 +635,B2 SH,CRAWFORD,3062.0,70.288,0.449,3.695,12.535,2.5340000000000003,1,0.25,2 +636,B2 LM,CRAWFORD,3062.5,66.266,0.44299999999999995,4.505,13.995,2.553,1,0.2,2 +637,B2 LM,CRAWFORD,3063.0,60.79,0.441,6.07,16.34,2.679,1,0.15,3 +638,B2 LM,CRAWFORD,3063.5,54.67,0.444,6.25,16.74,3.35,1,0.1,3 +639,B2 LM,CRAWFORD,3064.0,48.093999999999994,0.445,5.995,16.615,3.865,1,0.05,3 +640,B2 LM,CRAWFORD,3064.5,41.062,0.445,3.425,13.955,4.24,2,1.0,8 +641,B2 LM,CRAWFORD,3065.0,39.046,0.455,1.725,12.915,4.507,2,0.9640000000000001,8 +642,B2 LM,CRAWFORD,3065.5,38.169000000000004,0.45799999999999996,1.1,12.79,4.354,2,0.929,8 +643,B2 LM,CRAWFORD,3066.0,40.493,0.465,0.895,13.365,4.293,2,0.893,8 +644,B2 LM,CRAWFORD,3066.5,43.948,0.45899999999999996,0.68,13.98,4.248,2,0.857,9 +645,B2 LM,CRAWFORD,3067.0,46.49100000000001,0.423,0.57,14.45,4.266,2,0.821,9 +646,B2 LM,CRAWFORD,3067.5,47.21,0.392,0.565,14.945,4.331,2,0.7859999999999999,9 +647,B2 LM,CRAWFORD,3068.0,46.788999999999994,0.34600000000000003,0.765,15.325,4.395,2,0.75,9 +648,B2 LM,CRAWFORD,3068.5,45.912,0.325,0.985,15.625,4.397,2,0.7140000000000001,9 +649,B2 LM,CRAWFORD,3069.0,45.70399999999999,0.304,1.205,15.925,4.383,2,0.679,9 +650,B2 LM,CRAWFORD,3069.5,45.527,0.295,1.27,15.89,4.276,2,0.643,8 +651,B2 LM,CRAWFORD,3070.0,44.887,0.289,1.155,15.315,4.123,2,0.607,8 +652,B2 LM,CRAWFORD,3070.5,44.23,0.29,0.815,14.205,3.95,2,0.5710000000000001,8 +653,B2 LM,CRAWFORD,3071.0,44.273999999999994,0.281,0.55,12.84,3.785,2,0.536,8 +654,B2 LM,CRAWFORD,3071.5,45.221000000000004,0.247,0.545,11.605,3.647,2,0.5,8 +655,B2 LM,CRAWFORD,3072.0,46.396,0.16699999999999998,1.685,11.385,3.431,2,0.46399999999999997,8 +656,B2 LM,CRAWFORD,3072.5,46.888000000000005,0.11800000000000001,2.92,12.76,3.2,2,0.429,8 +657,B2 LM,CRAWFORD,3073.0,46.475,0.069,4.4,16.76,2.968,2,0.39299999999999996,7 +658,B2 LM,CRAWFORD,3073.5,46.738,0.042,5.065,20.085,2.815,2,0.35700000000000004,7 +659,B2 LM,CRAWFORD,3074.0,47.913999999999994,0.033,4.815,20.915,2.8480000000000003,2,0.321,7 +660,B2 LM,CRAWFORD,3074.5,51.596000000000004,0.04,4.485,20.755,2.99,2,0.28600000000000003,7 +661,B2 LM,CRAWFORD,3075.0,62.89,0.102,4.42,17.02,3.4739999999999998,2,0.25,7 +662,B2 LM,CRAWFORD,3075.5,80.38,0.22,3.955,12.965,4.067,2,0.214,8 +663,B2 LM,CRAWFORD,3076.0,105.725,0.34700000000000003,2.42,7.33,4.271,2,0.179,8 +664,B2 LM,CRAWFORD,3076.5,131.069,0.524,1.655,5.355,3.838,2,0.14300000000000002,8 +665,B2 LM,CRAWFORD,3077.0,145.018,0.636,-0.905,7.135,3.2030000000000003,2,0.107,8 +666,B2 LM,CRAWFORD,3077.5,131.376,0.726,-1.94,12.26,2.8160000000000003,2,0.071,8 +667,B3 SH,CRAWFORD,3078.0,110.21,0.792,0.27,14.14,2.678,2,0.036000000000000004,8 +668,B3 SH,CRAWFORD,3078.5,89.045,0.826,3.14,13.7,2.773,1,1.0,3 +669,B3 SH,CRAWFORD,3079.0,73.807,0.8079999999999999,4.795,11.855,3.3710000000000004,1,0.9440000000000001,3 +670,B3 SH,CRAWFORD,3079.5,73.158,0.7809999999999999,4.755,10.905,3.4930000000000003,1,0.889,2 +671,B3 SH,CRAWFORD,3080.0,73.195,0.763,3.975,10.205,3.432,1,0.833,2 +672,B3 SH,CRAWFORD,3080.5,72.325,0.748,3.68,10.0,3.387,1,0.778,2 +673,B3 SH,CRAWFORD,3081.0,71.221,0.742,3.33,9.69,3.3739999999999997,1,0.722,2 +674,B3 SH,CRAWFORD,3081.5,70.563,0.742,2.76,9.25,3.3289999999999997,1,0.667,2 +675,B3 SH,CRAWFORD,3082.0,71.51899999999999,0.733,1.75,10.04,3.145,1,0.611,2 +676,B3 SH,CRAWFORD,3082.5,74.062,0.722,2.32,12.64,2.945,1,0.556,2 +677,B3 SH,CRAWFORD,3083.0,77.061,0.71,2.765,15.055,2.7760000000000002,1,0.5,2 +678,B3 SH,CRAWFORD,3083.5,78.693,0.695,3.04,15.66,2.793,1,0.444,2 +679,B3 SH,CRAWFORD,3084.0,79.192,0.6829999999999999,2.505,14.075,2.951,1,0.389,2 +680,B3 SH,CRAWFORD,3084.5,79.192,0.6829999999999999,2.505,14.075,2.951,1,0.389,2 +681,B3 SH,CRAWFORD,3085.0,78.999,0.662,2.395,12.335,2.984,1,0.33299999999999996,2 +682,B3 SH,CRAWFORD,3085.5,78.11399999999999,0.64,2.395,11.095,2.909,1,0.278,2 +683,B3 SH,CRAWFORD,3086.0,77.24600000000001,0.625,2.705,12.075,2.708,1,0.222,2 +684,B3 SH,CRAWFORD,3086.5,76.369,0.62,2.305,15.615,2.6010000000000004,1,0.16699999999999998,3 +685,B3 SH,CRAWFORD,3087.0,72.301,0.633,0.98,21.27,2.759,1,0.111,3 +686,B3 SH,CRAWFORD,3087.5,61.107,0.667,-1.74,21.21,3.8489999999999998,1,0.055999999999999994,3 +687,B3 LM,CRAWFORD,3088.0,41.148999999999994,0.68,-2.295,18.875,4.854,2,1.0,8 +688,B3 LM,CRAWFORD,3088.5,28.419,0.6859999999999999,-0.92,14.54,5.0360000000000005,2,0.938,8 +689,B3 LM,CRAWFORD,3089.0,22.526999999999997,0.687,0.36,10.24,5.044,2,0.875,8 +690,B3 LM,CRAWFORD,3089.5,18.459,0.684,2.27,8.16,4.931,2,0.813,8 +691,B3 LM,CRAWFORD,3090.0,17.345,0.679,2.67,8.23,4.547,2,0.75,8 +692,B3 LM,CRAWFORD,3090.5,17.617,0.6759999999999999,2.855,8.725,4.328,2,0.688,8 +693,B3 LM,CRAWFORD,3091.0,19.292,0.664,2.695,9.465,4.2989999999999995,2,0.625,8 +694,B3 LM,CRAWFORD,3091.5,21.572,0.655,2.535,9.705,4.301,2,0.563,8 +695,B3 LM,CRAWFORD,3092.0,22.975,0.653,1.95,9.21,4.319,2,0.5,8 +696,B3 LM,CRAWFORD,3092.5,23.921999999999997,0.65,1.34,8.59,4.305,2,0.43799999999999994,8 +697,B3 LM,CRAWFORD,3093.0,24.869,0.657,0.63,7.42,4.291,2,0.375,8 +698,B3 LM,CRAWFORD,3093.5,27.64,0.669,0.42,6.02,4.216,2,0.313,8 +699,B3 LM,CRAWFORD,3094.0,34.058,0.67,0.44,4.4,4.109,2,0.25,8 +700,B3 LM,CRAWFORD,3094.5,41.489,0.652,1.11,4.03,3.815,2,0.188,8 +701,B3 LM,CRAWFORD,3095.0,51.235,0.631,1.73,5.19,3.444,2,0.125,8 +702,B4 SH,CRAWFORD,3095.5,55.601000000000006,0.61,2.42,7.82,3.1460000000000004,2,0.063,8 +703,B4 SH,CRAWFORD,3096.0,59.512,0.601,3.715,10.375,2.935,1,1.0,2 +704,B4 SH,CRAWFORD,3096.5,62.055,0.598,4.13,12.01,2.844,1,0.95,2 +705,B4 SH,CRAWFORD,3097.0,64.37,0.5920000000000001,3.83,12.15,2.7680000000000002,1,0.9,2 +706,B4 SH,CRAWFORD,3097.5,65.773,0.5870000000000001,3.32,11.31,2.708,1,0.85,2 +707,B4 SH,CRAWFORD,3098.0,66.036,0.593,2.635,9.895,2.6630000000000003,1,0.8,2 +708,B4 SH,CRAWFORD,3098.5,64.712,0.597,2.65,9.32,2.616,1,0.75,2 +709,B4 SH,CRAWFORD,3099.0,64.039,0.6,2.545,8.775,2.603,1,0.7,2 +710,B4 SH,CRAWFORD,3099.5,64.332,0.61,2.57,8.69,2.589,1,0.65,2 +711,B4 SH,CRAWFORD,3100.0,68.247,0.601,2.545,9.105,2.531,1,0.6,2 +712,B4 SH,CRAWFORD,3100.5,75.809,0.583,2.99,10.63,2.4859999999999998,1,0.55,2 +713,B4 SH,CRAWFORD,3101.0,84.73899999999999,0.5589999999999999,3.69,12.42,2.488,1,0.5,2 +714,B4 SH,CRAWFORD,3101.5,95.76799999999999,0.541,4.595,14.775,2.52,1,0.45,2 +715,B4 SH,CRAWFORD,3102.0,94.175,0.529,4.575,15.465,2.6,1,0.4,2 +716,B4 SH,CRAWFORD,3102.5,89.427,0.529,4.575,15.555,2.7880000000000003,1,0.35,2 +717,B4 SH,CRAWFORD,3103.0,84.90799999999999,0.527,4.35,14.27,3.148,1,0.3,2 +718,B4 SH,CRAWFORD,3103.5,81.3,0.53,3.17,11.82,3.103,1,0.25,2 +719,B4 SH,CRAWFORD,3104.0,82.251,0.534,1.84,10.85,2.6910000000000003,1,0.2,3 +720,B4 SH,CRAWFORD,3104.5,83.20299999999999,0.568,0.12,16.21,2.235,1,0.15,3 +721,B4 SH,CRAWFORD,3105.0,82.88799999999999,0.647,-0.305,24.225,2.113,1,0.1,3 +722,B4 LM,CRAWFORD,3105.5,70.52600000000001,0.731,-3.475,31.335,2.301,1,0.05,3 +723,B4 LM,CRAWFORD,3106.0,59.858000000000004,0.7929999999999999,-2.585,25.825,3.3289999999999997,2,1.0,8 +724,B4 LM,CRAWFORD,3106.5,43.933,0.815,-2.425,18.585,4.2330000000000005,2,0.9440000000000001,8 +725,B4 LM,CRAWFORD,3107.0,30.523000000000003,0.828,-0.505,13.435,4.53,2,0.889,8 +726,B4 LM,CRAWFORD,3107.5,21.444000000000003,0.867,-0.83,7.75,4.734,2,0.833,8 +727,B4 LM,CRAWFORD,3108.0,18.52,0.948,0.5,5.3,4.86,2,0.778,8 +728,B4 LM,CRAWFORD,3108.5,20.668000000000003,1.034,0.725,4.655,4.986000000000001,2,0.722,8 +729,B4 LM,CRAWFORD,3109.0,23.396,1.077,0.945,4.055,4.9719999999999995,2,0.667,8 +730,B4 LM,CRAWFORD,3109.5,25.715999999999998,1.112,1.0,3.38,4.974,2,0.611,8 +731,B4 LM,CRAWFORD,3110.0,28.035,1.131,1.335,2.125,4.9910000000000005,2,0.556,8 +732,B4 LM,CRAWFORD,3110.5,31.494,1.128,1.565,1.855,5.024,2,0.5,8 +733,B4 LM,CRAWFORD,3111.0,42.743,1.145,0.74,2.92,4.996,2,0.389,8 +734,B4 LM,CRAWFORD,3111.5,47.021,1.158,0.415,2.815,4.874,2,0.33299999999999996,8 +735,B4 LM,CRAWFORD,3112.0,49.443000000000005,1.158,0.265,2.475,4.72,2,0.278,8 +736,B4 LM,CRAWFORD,3112.5,48.343,1.072,0.175,2.025,4.435,2,0.222,8 +737,B4 LM,CRAWFORD,3113.0,47.243,0.993,0.305,2.325,4.07,2,0.16699999999999998,8 +738,B4 LM,CRAWFORD,3113.5,47.738,0.9359999999999999,0.625,3.575,3.745,2,0.111,8 +739,B5 SH,CRAWFORD,3114.0,55.757,0.9,2.86,7.09,3.514,2,0.055999999999999994,8 +740,B5 SH,CRAWFORD,3114.5,67.815,0.8759999999999999,4.345,9.295,3.406,1,1.0,2 +741,B5 SH,CRAWFORD,3115.0,68.904,0.852,4.72,9.57,3.455,1,0.938,2 +742,B5 SH,CRAWFORD,3115.5,64.085,0.8340000000000001,3.905,7.665,3.565,1,0.875,2 +743,B5 SH,CRAWFORD,3116.0,53.913000000000004,0.828,3.37,5.72,3.645,1,0.813,2 +744,B5 SH,CRAWFORD,3116.5,50.715,0.841,2.665,4.465,3.615,1,0.75,2 +745,B5 SH,CRAWFORD,3117.0,51.22,0.8540000000000001,2.43,3.86,3.714,1,0.688,2 +746,B5 SH,CRAWFORD,3119.0,65.99,0.794,3.075,6.985,3.5,1,0.43799999999999994,2 +747,B5 SH,CRAWFORD,3119.5,74.325,0.764,1.485,11.995,3.159,1,0.375,2 +748,B5 SH,CRAWFORD,3120.0,77.227,0.718,1.095,15.315,2.865,1,0.313,2 +749,B5 SH,CRAWFORD,3120.5,78.863,0.687,1.285,17.905,2.696,1,0.25,3 +750,B5 SH,CRAWFORD,3121.0,79.13,0.669,2.755,19.325,2.6510000000000002,1,0.188,3 +751,B5 SH,CRAWFORD,3121.5,76.89,0.657,4.55,19.53,2.6710000000000003,1,0.125,3 +752,B5 LM,CRAWFORD,3122.0,69.179,0.6920000000000001,6.11,19.22,3.114,1,0.063,3 +753,B5 LM,CRAWFORD,3122.5,59.998999999999995,0.732,4.62,16.19,4.1339999999999995,2,1.0,8 +754,B5 LM,CRAWFORD,3123.0,41.912,0.7609999999999999,1.64,10.98,4.726,2,0.983,8 +755,B5 LM,CRAWFORD,3123.5,26.221999999999998,0.805,0.755,7.955,4.899,2,0.966,8 +756,B5 LM,CRAWFORD,3124.0,22.615,0.845,1.58,6.02,4.854,2,0.948,8 +757,B5 LM,CRAWFORD,3124.5,20.83,0.8490000000000001,1.97,4.39,4.7780000000000005,2,0.9309999999999999,8 +758,B5 LM,CRAWFORD,3125.0,21.326,0.836,2.77,4.39,4.655,2,0.914,8 +759,B5 LM,CRAWFORD,3125.5,23.645,0.725,3.665,5.185,4.408,2,0.897,6 +760,B5 LM,CRAWFORD,3126.0,29.02,0.5870000000000001,4.805,7.455,3.97,2,0.879,8 +761,B5 LM,CRAWFORD,3126.5,35.588,0.461,5.255,11.615,3.6060000000000003,2,0.862,7 +762,B5 LM,CRAWFORD,3127.0,39.503,0.325,5.335,18.395,3.3089999999999997,2,0.845,7 +763,B5 LM,CRAWFORD,3127.5,41.138999999999996,0.239,4.545,21.765,3.342,2,0.828,7 +764,B5 LM,CRAWFORD,3128.0,41.861999999999995,0.184,2.77,21.54,3.4219999999999997,2,0.81,8 +765,B5 LM,CRAWFORD,3128.5,42.586000000000006,0.16899999999999998,-0.02,19.0,3.485,2,0.7929999999999999,9 +766,B5 LM,CRAWFORD,3129.0,44.221000000000004,0.139,2.425,18.905,3.378,2,0.7759999999999999,8 +767,B5 LM,CRAWFORD,3129.5,47.395,0.121,3.7,20.04,3.2089999999999996,2,0.759,7 +768,B5 LM,CRAWFORD,3130.0,54.79600000000001,0.10300000000000001,4.59,22.87,3.133,2,0.741,7 +769,B5 LM,CRAWFORD,3130.5,58.255,0.091,5.19,25.77,3.1660000000000004,2,0.7240000000000001,7 +770,B5 LM,CRAWFORD,3131.0,60.347,0.076,4.065,26.095,3.1180000000000003,2,0.7070000000000001,7 +771,B5 LM,CRAWFORD,3131.5,61.754,0.048,3.235,25.165,3.06,2,0.69,7 +772,B5 LM,CRAWFORD,3132.0,61.794,0.002,2.74,22.4,3.14,2,0.672,7 +773,B5 LM,CRAWFORD,3132.5,61.833,-0.047,3.65,21.13,3.437,2,0.655,7 +774,B5 LM,CRAWFORD,3133.0,62.358000000000004,-0.096,4.43,21.27,3.6719999999999997,2,0.638,7 +775,B5 LM,CRAWFORD,3133.5,63.062,-0.147,4.895,22.325,3.782,2,0.621,7 +776,B5 LM,CRAWFORD,3134.0,63.33,-0.20600000000000002,5.245,22.895,3.737,2,0.603,7 +777,B5 LM,CRAWFORD,3134.5,62.685,-0.218,5.035,22.725,3.5839999999999996,2,0.586,7 +778,B5 LM,CRAWFORD,3135.0,60.217,-0.23,4.57,21.84,3.444,2,0.569,7 +779,B5 LM,CRAWFORD,3135.5,55.926,-0.217,5.185,20.385,3.352,2,0.552,7 +780,B5 LM,CRAWFORD,3136.0,52.318000000000005,-0.185,5.795,18.665,3.4960000000000004,2,0.534,7 +781,B5 LM,CRAWFORD,3136.5,47.244,-0.16,5.445,15.725,3.855,2,0.517,7 +782,B5 LM,CRAWFORD,3137.0,45.786,-0.138,4.165,11.765,3.966,2,0.5,7 +783,B5 LM,CRAWFORD,3137.5,46.975,-0.11599999999999999,5.55,10.25,3.765,2,0.483,7 +784,B5 LM,CRAWFORD,3138.0,51.907,-0.10300000000000001,7.385,11.675,3.44,2,0.466,7 +785,B5 LM,CRAWFORD,3138.5,58.336000000000006,-0.09300000000000001,6.61,13.74,3.162,2,0.44799999999999995,7 +786,B5 LM,CRAWFORD,3139.0,64.995,-0.09,5.94,16.68,3.0239999999999996,2,0.431,7 +787,B5 LM,CRAWFORD,3139.5,67.543,-0.08900000000000001,5.7,17.72,3.057,2,0.414,7 +788,B5 LM,CRAWFORD,3140.0,68.041,-0.10400000000000001,5.755,18.395,3.1710000000000003,2,0.397,7 +789,B5 LM,CRAWFORD,3140.5,66.186,-0.14400000000000002,5.995,19.265,3.2310000000000003,2,0.379,7 +790,B5 LM,CRAWFORD,3141.0,62.184,-0.187,6.54,20.72,3.264,2,0.36200000000000004,7 +791,B5 LM,CRAWFORD,3141.5,57.883,-0.239,6.0,21.62,3.2969999999999997,2,0.345,7 +792,B5 LM,CRAWFORD,3142.0,54.038999999999994,-0.297,5.725,22.245,3.282,2,0.32799999999999996,7 +793,B5 LM,CRAWFORD,3142.5,53.153999999999996,-0.371,5.745,23.065,3.222,2,0.31,7 +794,B5 LM,CRAWFORD,3143.0,60.506,-0.43200000000000005,5.78,23.96,3.115,2,0.293,7 +795,B5 LM,CRAWFORD,3143.5,68.99,-0.456,6.14,25.32,2.977,2,0.276,7 +796,B5 LM,CRAWFORD,3144.0,88.891,-0.46799999999999997,7.025,27.595,2.9160000000000004,2,0.259,7 +797,B5 LM,CRAWFORD,3144.5,114.955,-0.455,6.925,28.395,2.924,2,0.24100000000000002,7 +798,B5 LM,CRAWFORD,3145.0,139.876,-0.405,6.245,28.025,3.215,2,0.22399999999999998,7 +799,B5 LM,CRAWFORD,3145.5,157.72899999999998,-0.353,4.685,26.015,3.373,2,0.207,7 +800,B5 LM,CRAWFORD,3146.0,167.803,-0.21899999999999997,4.27,23.37,3.81,2,0.19,7 +801,B5 LM,CRAWFORD,3146.5,151.183,-0.057,0.925,17.125,4.1530000000000005,2,0.172,7 +802,B5 LM,CRAWFORD,3147.0,123.264,0.067,0.285,14.215,4.404,2,0.155,8 +803,B5 LM,CRAWFORD,3147.5,108.569,0.23399999999999999,0.705,12.225,4.499,2,0.138,8 +804,B5 LM,CRAWFORD,3148.0,101.072,0.42700000000000005,1.15,10.76,4.3919999999999995,2,0.121,8 +805,B5 LM,CRAWFORD,3148.5,91.74799999999999,0.625,1.135,9.605,4.254,2,0.10300000000000001,8 +806,B5 LM,CRAWFORD,3149.0,83.794,0.7490000000000001,2.075,7.845,4.023,2,0.086,8 +807,B5 LM,CRAWFORD,3149.5,83.794,0.7490000000000001,2.075,7.845,4.023,2,0.086,8 +808,B5 LM,CRAWFORD,3150.0,79.722,0.7709999999999999,2.89,6.64,4.04,2,0.069,8 +809,B5 LM,CRAWFORD,3150.5,76.334,0.8,2.96,6.29,3.997,2,0.052000000000000005,8 +810,B5 LM,CRAWFORD,3151.0,73.631,0.8,2.68,6.69,3.8280000000000003,2,0.034,8 +811,B5 LM,CRAWFORD,3151.5,76.865,0.772,2.42,8.6,3.535,2,0.017,8 +812,C SH,CRAWFORD,3152.0,79.92399999999999,0.752,2.62,11.51,3.148,1,1.0,3 +813,C SH,CRAWFORD,3152.5,82.199,0.728,3.725,14.555,2.964,1,0.972,3 +814,C SH,CRAWFORD,3153.0,79.953,0.7,5.61,16.93,2.793,1,0.9440000000000001,3 +815,C SH,CRAWFORD,3153.5,75.881,0.6729999999999999,6.3,17.57,2.969,1,0.917,3 +816,C SH,CRAWFORD,3154.0,67.47,0.652,4.775,15.795,3.282,1,0.889,3 +817,C SH,CRAWFORD,3154.5,58.832,0.64,4.315,13.575,3.642,1,0.861,2 +818,C SH,CRAWFORD,3155.0,57.946000000000005,0.631,3.595,11.305,3.8930000000000002,1,0.833,2 +819,C SH,CRAWFORD,3155.5,65.755,0.625,3.465,10.355,3.911,1,0.8059999999999999,2 +820,C SH,CRAWFORD,3156.0,69.445,0.617,3.39,11.54,3.82,1,0.778,2 +821,C SH,CRAWFORD,3156.5,73.389,0.608,3.625,12.775,3.62,1,0.75,2 +822,C SH,CRAWFORD,3157.0,77.115,0.605,4.14,13.42,3.467,1,0.722,2 +823,C SH,CRAWFORD,3157.5,79.84,0.596,4.875,13.825,3.36,1,0.6940000000000001,2 +824,C SH,CRAWFORD,3158.0,82.616,0.5770000000000001,5.235,14.845,3.207,1,0.667,2 +825,C SH,CRAWFORD,3158.5,86.07799999999999,0.5539999999999999,5.04,16.15,3.161,1,0.639,3 +826,C SH,CRAWFORD,3159.0,88.855,0.539,5.56,16.75,3.1180000000000003,1,0.611,3 +827,C SH,CRAWFORD,3159.5,90.49,0.53,6.36,16.78,3.168,1,0.583,3 +828,C SH,CRAWFORD,3160.0,90.975,0.522,7.035,16.995,3.154,1,0.556,3 +829,C SH,CRAWFORD,3160.5,90.10799999999999,0.513,7.505,17.595,3.125,1,0.528,3