Skip to content

Latest commit

 

History

History
105 lines (82 loc) · 2.08 KB

File metadata and controls

105 lines (82 loc) · 2.08 KB

中文文档

Description

Given an integer n, return the number of structurally unique BST's (binary search trees) which has exactly n nodes of unique values from 1 to n.

 

Example 1:

Input: n = 3
Output: 5

Example 2:

Input: n = 1
Output: 1

 

Constraints:

  • 1 <= n <= 19

Solutions

Python3

class Solution:
    def numTrees(self, n: int) -> int:
        dp = [0] * (n + 1)
        dp[0] = 1
        for i in range(1, n + 1):
            for j in range(i):
                dp[i] += dp[j] * dp[i - j - 1]
        return dp[-1]

Java

class Solution {
    public int numTrees(int n) {
        int[] dp = new int[n + 1];
        dp[0] = 1;
        for (int i = 1; i <= n; ++i) {
            for (int j = 0; j < i; ++j) {
                dp[i] += dp[j] * dp[i - j - 1];
            }
        }
        return dp[n];
    }
}

C++

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n + 1);
        dp[0] = 1;
        for (int i = 1; i <= n; ++i) {
            for (int j = 0; j < i; ++j) {
                dp[i] += dp[j] * dp[i - j - 1];
            }
        }
        return dp[n];
    }
};

Go

func numTrees(n int) int {
	dp := make([]int, n+1)
	dp[0] = 1
	for i := 1; i <= n; i++ {
		for j := 0; j < i; j++ {
			dp[i] += dp[j] * dp[i-j-1]
		}
	}
	return dp[n]
}

...