-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
465 lines (389 loc) · 18 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import copy
import json
import logging
import os
import torch
from torch.utils.data import TensorDataset
from utils import get_slot_labels
logger = logging.getLogger(__name__)
# class InputExample(object):
# """
# A single training/test example for simple sequence classification.
# Args:
# guid: Unique id for the example.
# words: list. The words of the sequence.
# intent_label: (Optional) string. The intent label of the example.
# slot_labels: (Optional) list. The slot labels of the example.
# """
# def __init__(self, guid, words, intent_label=None, slot_labels=None):
# self.guid = guid
# self.words = words
# self.intent_label = intent_label
# self.slot_labels = slot_labels
# def __repr__(self):
# return str(self.to_json_string())
# def to_dict(self):
# """Serializes this instance to a Python dictionary."""
# output = copy.deepcopy(self.__dict__)
# return output
# def to_json_string(self):
# """Serializes this instance to a JSON string."""
# return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class InputExample(object):
"""
A single training/test example for simple sequence classification.
Args:
guid: Unique id for the example.
words: list. The words of the sequence.
slot_labels: (Optional) list. The slot labels of the example.
"""
def __init__(self, guid, words, slot_labels=None):
self.guid = guid
self.words = words
self.slot_labels = slot_labels
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
# class InputFeatures(object):
# """A single set of features of data."""
# def __init__(self, input_ids, attention_mask, token_type_ids, intent_label_id, slot_labels_ids):
# self.input_ids = input_ids
# self.attention_mask = attention_mask
# self.token_type_ids = token_type_ids
# self.intent_label_id = intent_label_id
# self.slot_labels_ids = slot_labels_ids
# def __repr__(self):
# return str(self.to_json_string())
# def to_dict(self):
# """Serializes this instance to a Python dictionary."""
# output = copy.deepcopy(self.__dict__)
# return output
# def to_json_string(self):
# """Serializes this instance to a JSON string."""
# return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, attention_mask, token_type_ids, slot_labels_ids):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.slot_labels_ids = slot_labels_ids
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
# class JointProcessor(object):
# """Processor for the JointBERT data set """
# def __init__(self, args):
# self.args = args
# self.intent_labels = get_intent_labels(args)
# self.slot_labels = get_slot_labels(args)
# self.input_text_file = "seq.in"
# self.intent_label_file = "label"
# self.slot_labels_file = "seq.out"
# @classmethod
# def _read_file(cls, input_file, quotechar=None):
# """Reads a tab separated value file."""
# with open(input_file, "r", encoding="utf-8") as f:
# lines = []
# for line in f:
# lines.append(line.strip())
# return lines
# def _create_examples(self, texts, intents, slots, set_type):
# """Creates examples for the training and dev sets."""
# examples = []
# for i, (text, intent, slot) in enumerate(zip(texts, intents, slots)):
# guid = "%s-%s" % (set_type, i)
# # 1. input_text
# words = text.split() # Some are spaced twice
# # 2. intent
# intent_label = (
# self.intent_labels.index(intent) if intent in self.intent_labels else self.intent_labels.index("UNK")
# )
# # 3. slot
# slot_labels = []
# for s in slot.split():
# slot_labels.append(
# self.slot_labels.index(s) if s in self.slot_labels else self.slot_labels.index("UNK")
# )
# assert len(words) == len(slot_labels)
# examples.append(InputExample(guid=guid, words=words, intent_label=intent_label, slot_labels=slot_labels))
# return examples
# def get_examples(self, mode):
# """
# Args:
# mode: train, dev, test
# """
# data_path = os.path.join(self.args.data_dir, self.args.token_level, mode)
# logger.info("LOOKING AT {}".format(data_path))
# return self._create_examples(
# texts=self._read_file(os.path.join(data_path, self.input_text_file)),
# intents=self._read_file(os.path.join(data_path, self.intent_label_file)),
# slots=self._read_file(os.path.join(data_path, self.slot_labels_file)),
# set_type=mode,
# )
class Processor(object):
"""Processor for the model data set """
def __init__(self, args):
self.args = args
self.slot_labels = get_slot_labels(args)
self.input_text_slot_labels_file = "_word.json"
@classmethod
def _read_file(cls, input_file, quotechar=None):
"""Reads a file where each line contain a json dict corresponding to an example."""
with open(input_file, "r", encoding="utf-8") as f:
all_words = []
all_tags = []
for line in f:
line = json.loads(line)
words = line["words"]
words = [word.strip() for word in words]
words = ' '.join(words)
tags = line["tags"]
tags = [tag.strip() for tag in tags]
tags = ' '.join(tags)
all_words.append(words)
all_tags.append(tags)
return all_words, all_tags
def _create_examples(self, texts, slots, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for i, (text, slot) in enumerate(zip(texts, slots)):
guid = "%s-%s" % (set_type, i)
# 1. input_text
words = text.split() # Some are spaced twice
# 2. slot
slot_labels = []
for s in slot.split():
slot_labels.append(
self.slot_labels.index(s) if s in self.slot_labels else self.slot_labels.index("UNK")
)
assert len(words) == len(slot_labels)
examples.append(InputExample(guid=guid, words=words, slot_labels=slot_labels))
return examples
def get_examples(self, mode):
"""
Args:
mode: train, dev, test
"""
data_path = os.path.join(self.args.data_dir, self.args.token_level, mode+self.input_text_slot_labels_file)
logger.info("LOOKING AT {}".format(data_path))
texts, slots = self._read_file(data_path)
return self._create_examples(
texts,
slots,
set_type=mode,
)
# processors = {"syllable-level": JointProcessor, "word-level": JointProcessor}
processors = {"syllable": Processor, "word": Processor}
# def convert_examples_to_features(
# examples,
# max_seq_len,
# tokenizer,
# pad_token_label_id=-100,
# cls_token_segment_id=0,
# pad_token_segment_id=0,
# sequence_a_segment_id=0,
# mask_padding_with_zero=True,
# ):
# # Setting based on the current model type
# cls_token = tokenizer.cls_token
# sep_token = tokenizer.sep_token
# unk_token = tokenizer.unk_token
# pad_token_id = tokenizer.pad_token_id
# features = []
# for (ex_index, example) in enumerate(examples):
# if ex_index % 5000 == 0:
# logger.info("Writing example %d of %d" % (ex_index, len(examples)))
# # Tokenize word by word (for NER)
# tokens = []
# slot_labels_ids = []
# for word, slot_label in zip(example.words, example.slot_labels):
# word_tokens = tokenizer.tokenize(word)
# if not word_tokens:
# word_tokens = [unk_token] # For handling the bad-encoded word
# tokens.extend(word_tokens)
# # Use the real label id for the first token of the word, and padding ids for the remaining tokens
# slot_labels_ids.extend([int(slot_label)] + [pad_token_label_id] * (len(word_tokens) - 1))
# # Account for [CLS] and [SEP]
# special_tokens_count = 2
# if len(tokens) > max_seq_len - special_tokens_count:
# tokens = tokens[: (max_seq_len - special_tokens_count)]
# slot_labels_ids = slot_labels_ids[: (max_seq_len - special_tokens_count)]
# # Add [SEP] token
# tokens += [sep_token]
# slot_labels_ids += [pad_token_label_id]
# token_type_ids = [sequence_a_segment_id] * len(tokens)
# # Add [CLS] token
# tokens = [cls_token] + tokens
# slot_labels_ids = [pad_token_label_id] + slot_labels_ids
# token_type_ids = [cls_token_segment_id] + token_type_ids
# input_ids = tokenizer.convert_tokens_to_ids(tokens)
# # The mask has 1 for real tokens and 0 for padding tokens. Only real
# # tokens are attended to.
# attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# # Zero-pad up to the sequence length.
# padding_length = max_seq_len - len(input_ids)
# input_ids = input_ids + ([pad_token_id] * padding_length)
# attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
# token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
# slot_labels_ids = slot_labels_ids + ([pad_token_label_id] * padding_length)
# assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len)
# assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format(
# len(attention_mask), max_seq_len
# )
# assert len(token_type_ids) == max_seq_len, "Error with token type length {} vs {}".format(
# len(token_type_ids), max_seq_len
# )
# assert len(slot_labels_ids) == max_seq_len, "Error with slot labels length {} vs {}".format(
# len(slot_labels_ids), max_seq_len
# )
# intent_label_id = int(example.intent_label)
# if ex_index < 5:
# logger.info("*** Example ***")
# logger.info("guid: %s" % example.guid)
# logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
# logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
# logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
# logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
# logger.info("intent_label: %s (id = %d)" % (example.intent_label, intent_label_id))
# logger.info("slot_labels: %s" % " ".join([str(x) for x in slot_labels_ids]))
# features.append(
# InputFeatures(
# input_ids=input_ids,
# attention_mask=attention_mask,
# token_type_ids=token_type_ids,
# intent_label_id=intent_label_id,
# slot_labels_ids=slot_labels_ids,
# )
# )
# return features
def convert_examples_to_features(
examples,
max_seq_len,
tokenizer,
pad_token_label_id=-100,
cls_token_segment_id=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
mask_padding_with_zero=True,
):
# Setting based on the current model type
cls_token = tokenizer.cls_token
sep_token = tokenizer.sep_token
unk_token = tokenizer.unk_token
pad_token_id = tokenizer.pad_token_id
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 5000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
# Tokenize word by word (for NER)
tokens = []
slot_labels_ids = []
for word, slot_label in zip(example.words, example.slot_labels):
word_tokens = tokenizer.tokenize(word)
if not word_tokens:
word_tokens = [unk_token] # For handling the bad-encoded word
tokens.extend(word_tokens)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
slot_labels_ids.extend([int(slot_label)] + [pad_token_label_id] * (len(word_tokens) - 1))
# Account for [CLS] and [SEP]
special_tokens_count = 2
if len(tokens) > max_seq_len - special_tokens_count:
tokens = tokens[: (max_seq_len - special_tokens_count)]
slot_labels_ids = slot_labels_ids[: (max_seq_len - special_tokens_count)]
# Add [SEP] token
tokens += [sep_token]
slot_labels_ids += [pad_token_label_id]
token_type_ids = [sequence_a_segment_id] * len(tokens)
# Add [CLS] token
tokens = [cls_token] + tokens
slot_labels_ids = [pad_token_label_id] + slot_labels_ids
token_type_ids = [cls_token_segment_id] + token_type_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token_id] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
slot_labels_ids = slot_labels_ids + ([pad_token_label_id] * padding_length)
assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len)
assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format(
len(attention_mask), max_seq_len
)
assert len(token_type_ids) == max_seq_len, "Error with token type length {} vs {}".format(
len(token_type_ids), max_seq_len
)
assert len(slot_labels_ids) == max_seq_len, "Error with slot labels length {} vs {}".format(
len(slot_labels_ids), max_seq_len
)
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % example.guid)
logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
logger.info("slot_labels: %s" % " ".join([str(x) for x in slot_labels_ids]))
features.append(
InputFeatures(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
slot_labels_ids=slot_labels_ids,
)
)
return features
def load_and_cache_examples(args, tokenizer, mode):
processor = processors[args.token_level](args)
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
"cached_{}_{}_{}_{}".format(
mode, args.token_level, list(filter(None, args.model_name_or_path.split("/"))).pop(), args.max_seq_len
),
)
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
# Load data features from dataset file
logger.info("Creating features from dataset file at %s", args.data_dir)
if mode == "train":
examples = processor.get_examples("train")
elif mode == "dev":
examples = processor.get_examples("dev")
elif mode == "test":
examples = processor.get_examples("test")
else:
raise Exception("For mode, Only train, dev, test is available")
# Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
pad_token_label_id = args.ignore_index
features = convert_examples_to_features(
examples, args.max_seq_len, tokenizer, pad_token_label_id=pad_token_label_id
)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_slot_labels_ids = torch.tensor([f.slot_labels_ids for f in features], dtype=torch.long)
dataset = TensorDataset(
all_input_ids, all_attention_mask, all_token_type_ids, all_slot_labels_ids
)
return dataset