-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathexport.py
155 lines (117 loc) · 5.82 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import warnings
import numpy as np
import tensorflow as tf
import torch
from interpolator import Interpolator
def translate_state_dict(var_dict, state_dict):
for name, (prev_name, weight) in zip(state_dict, var_dict.items()):
print('Mapping', prev_name, '->', name)
weight = torch.from_numpy(weight)
if 'kernel' in prev_name:
# Transpose the conv2d kernel weights, since TF uses (H, W, C, K) and PyTorch uses (K, C, H, W)
weight = weight.permute(3, 2, 0, 1)
assert state_dict[name].shape == weight.shape, f'Shape mismatch {state_dict[name].shape} != {weight.shape}'
state_dict[name] = weight
def import_state_dict(interpolator: Interpolator, saved_model):
variables = saved_model.keras_api.variables
extract_dict = interpolator.extract.state_dict()
flow_dict = interpolator.predict_flow.state_dict()
fuse_dict = interpolator.fuse.state_dict()
extract_vars = {}
_flow_vars = {}
_fuse_vars = {}
for var in variables:
name = var.name
if name.startswith('feat_net'):
extract_vars[name[9:]] = var.numpy()
elif name.startswith('predict_flow'):
_flow_vars[name[13:]] = var.numpy()
elif name.startswith('fusion'):
_fuse_vars[name[7:]] = var.numpy()
# reverse order of modules to allow jit export
# TODO: improve this hack
flow_vars = dict(sorted(_flow_vars.items(), key=lambda x: x[0].split('/')[0], reverse=True))
fuse_vars = dict(sorted(_fuse_vars.items(), key=lambda x: int((x[0].split('/')[0].split('_')[1:] or [0])[0]) // 3, reverse=True))
assert len(extract_vars) == len(extract_dict), f'{len(extract_vars)} != {len(extract_dict)}'
assert len(flow_vars) == len(flow_dict), f'{len(flow_vars)} != {len(flow_dict)}'
assert len(fuse_vars) == len(fuse_dict), f'{len(fuse_vars)} != {len(fuse_dict)}'
for state_dict, var_dict in ((extract_dict, extract_vars), (flow_dict, flow_vars), (fuse_dict, fuse_vars)):
translate_state_dict(var_dict, state_dict)
interpolator.extract.load_state_dict(extract_dict)
interpolator.predict_flow.load_state_dict(flow_dict)
interpolator.fuse.load_state_dict(fuse_dict)
def verify_debug_outputs(pt_outputs, tf_outputs):
max_error = 0
for name, predicted in pt_outputs.items():
if name == 'image':
continue
pred_frfp = [f.permute(0, 2, 3, 1).detach().cpu().numpy() for f in predicted]
true_frfp = [f.numpy() for f in tf_outputs[name]]
for i, (pred, true) in enumerate(zip(pred_frfp, true_frfp)):
assert pred.shape == true.shape, f'{name} {i} shape mismatch {pred.shape} != {true.shape}'
error = np.max(np.abs(pred - true))
max_error = max(max_error, error)
assert error < 1, f'{name} {i} max error: {error}'
print('Max intermediate error:', max_error)
def test_model(interpolator, model, half=False, gpu=False):
torch.manual_seed(0)
time = torch.full((1, 1), .5)
x0 = torch.rand(1, 3, 256, 256)
x1 = torch.rand(1, 3, 256, 256)
x0_ = tf.convert_to_tensor(x0.permute(0, 2, 3, 1).numpy(), dtype=tf.float32)
x1_ = tf.convert_to_tensor(x1.permute(0, 2, 3, 1).numpy(), dtype=tf.float32)
time_ = tf.convert_to_tensor(time.numpy(), dtype=tf.float32)
tf_outputs = model({'x0': x0_, 'x1': x1_, 'time': time_}, training=False)
if half:
x0 = x0.half()
x1 = x1.half()
time = time.half()
if gpu and torch.cuda.is_available():
x0 = x0.cuda()
x1 = x1.cuda()
time = time.cuda()
with torch.no_grad():
pt_outputs = interpolator.debug_forward(x0, x1, time)
verify_debug_outputs(pt_outputs, tf_outputs)
with torch.no_grad():
prediction = interpolator(x0, x1, time)
output_color = prediction.permute(0, 2, 3, 1).detach().cpu().numpy()
true_color = tf_outputs['image'].numpy()
error = np.abs(output_color - true_color).max()
print('Color max error:', error)
def main(model_path, save_path, export_to_torchscript=True, use_gpu=False, fp16=True, skiptest=False):
print(f'Exporting model to FP{["32", "16"][fp16]} {["state_dict", "torchscript"][export_to_torchscript]} '
f'using {"CG"[use_gpu]}PU')
model = tf.compat.v2.saved_model.load(model_path)
interpolator = Interpolator()
interpolator.eval()
import_state_dict(interpolator, model)
if use_gpu and torch.cuda.is_available():
interpolator = interpolator.cuda()
else:
use_gpu = False
if fp16:
interpolator = interpolator.half()
if export_to_torchscript:
interpolator = torch.jit.script(interpolator)
if export_to_torchscript:
interpolator.save(save_path)
else:
torch.save(interpolator.state_dict(), save_path)
if not skiptest:
if not use_gpu and fp16:
warnings.warn('Testing FP16 model on CPU is impossible, casting it back')
interpolator = interpolator.float()
fp16 = False
test_model(interpolator, model, fp16, use_gpu)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Export frame-interpolator model to PyTorch state dict')
parser.add_argument('model_path', type=str, help='Path to the TF SavedModel')
parser.add_argument('save_path', type=str, help='Path to save the PyTorch state dict')
parser.add_argument('--statedict', action='store_true', help='Export to state dict instead of TorchScript')
parser.add_argument('--fp32', action='store_true', help='Save at full precision')
parser.add_argument('--skiptest', action='store_true', help='Skip testing and save model immediately instead')
parser.add_argument('--gpu', action='store_true', help='Use GPU')
args = parser.parse_args()
main(args.model_path, args.save_path, not args.statedict, args.gpu, not args.fp32, args.skiptest)