-
Notifications
You must be signed in to change notification settings - Fork 90
/
trainer_torch_fsdp_wandb.py
431 lines (355 loc) · 18.1 KB
/
trainer_torch_fsdp_wandb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# coding=utf-8
#
# Copyright 2020 Heinrich Heine University Duesseldorf
#
# Part of this code is based on the source code of BERT-DST
# (arXiv:1907.03040)
# Part of this code is based on the source code of Transformers
# (arXiv:1910.03771)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import logging
import os
import sys
from typing import Dict, Union
import hydra
import torch
import wandb
from omegaconf import DictConfig, OmegaConf
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel
from torch.utils.data import (DataLoader, RandomSampler)
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
from transformers import (AutoTokenizer, PreTrainedTokenizer)
from general_util.dist_utils import vanilla_torch_dist
from general_util.evaluator import evaluate_fn as evaluate
from general_util.logger import setting_logger
from general_util.training_utils import batch_to_device, unwrap_model, set_seed, note_best_checkpoint, \
initialize_optimizer, \
load_and_cache_examples, if_cancel_sync, initialize_lr_scheduler
"""
Requires torch >= 1.11.0 if you want to enable the torch vanilla FSDP instead of that of fairscale.
"""
logger: logging.Logger
torch.backends.cuda.matmul.allow_tf32 = True
def save_model(model: Union[torch.nn.Module, FullyShardedDataParallel], cfg: DictConfig, output_dir: str,
tokenizer: PreTrainedTokenizer = None):
# Save model checkpoint.
if cfg.local_rank != -1:
state_dict = model.state_dict()
if cfg.local_rank == 0:
unwrap_model(model).save_pretrained(output_dir, state_dict=state_dict)
else:
model.save_pretrained(output_dir)
# Save tokenizer and training args.
if cfg.local_rank in [-1, 0]:
if tokenizer is not None:
tokenizer.save_pretrained(output_dir)
OmegaConf.save(cfg, os.path.join(output_dir, "training_config.yaml"))
logger.info("Saving model checkpoint to %s", output_dir)
def forward_step(model, inputs: Dict[str, torch.Tensor], cfg, scaler, return_outputs: bool = False):
if cfg.fp16:
with torch.cuda.amp.autocast(dtype=(torch.bfloat16 if getattr(cfg, "fp16_bfloat16", False) else torch.float16)):
outputs = model(**inputs)
else:
outputs = model(**inputs)
if isinstance(outputs, tuple):
loss = outputs[0]
else:
loss = outputs["loss"]
if cfg.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if cfg.gradient_accumulation_steps > 1:
loss = loss / cfg.gradient_accumulation_steps
if cfg.fp16:
scaler.scale(loss).backward()
else:
loss.backward()
if return_outputs:
return loss.item(), outputs
return loss.item()
def train(cfg, train_dataset, model, tokenizer, continue_from_global_step=0):
""" Train the model """
if cfg.local_rank in [-1, 0]:
tb_helper = hydra.utils.instantiate(
cfg.summary_helper) if "summary_helper" in cfg and cfg.summary_helper else None
else:
tb_helper = None
# cfg.train_batch_size = cfg.per_gpu_train_batch_size * max(1, cfg.n_gpu)
cfg.train_batch_size = cfg.per_gpu_train_batch_size
train_sampler = RandomSampler(train_dataset) if cfg.local_rank == -1 else DistributedSampler(train_dataset)
train_collator = hydra.utils.instantiate(cfg.collator) if "collator" in cfg and cfg.collator else None
train_dataloader = DataLoader(dataset=train_dataset,
sampler=train_sampler,
batch_size=cfg.train_batch_size,
collate_fn=train_collator,
num_workers=cfg.num_workers,
pin_memory=True,
prefetch_factor=cfg.prefetch_factor)
if "extended_vocab" in cfg and cfg.extended_vocab:
logger.info(f"Extended extra vocab size: {cfg.extended_vocab}")
model.resize_token_embeddings(model.config.vocab_size + cfg.extended_vocab)
if cfg.max_steps > 0:
t_total = cfg.max_steps
cfg.num_train_epochs = cfg.max_steps // (len(train_dataloader) // cfg.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // cfg.gradient_accumulation_steps * cfg.num_train_epochs
num_warmup_steps = int(t_total * cfg.warmup_proportion) if cfg.warmup_proportion else cfg.warmup_steps
optimizer = scheduler = None
# Prepare optimizer and schedule (linear warmup and decay)
if cfg.local_rank == -1:
optimizer = initialize_optimizer(cfg, model=model)
scheduler = initialize_lr_scheduler(cfg, optimizer, num_warmup_steps, t_total)
if cfg.fp16:
if cfg.local_rank != -1:
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
scaler = ShardedGradScaler()
else:
from torch.cuda.amp.grad_scaler import GradScaler
scaler = GradScaler()
else:
scaler = None
# Distributed training (should be after apex fp16 initialization)
if cfg.local_rank != -1:
if getattr(cfg, "fsdp_config", None):
model = hydra.utils.instantiate(cfg.fsdp_config, model=model, device=cfg.device)
elif getattr(cfg, "fairscale_config", None):
model = hydra.utils.instantiate(cfg.fairscale_config, model=model, device=cfg.device)
else:
raise NotImplementedError
optimizer = initialize_optimizer(cfg, model=model)
scheduler = initialize_lr_scheduler(cfg, optimizer, num_warmup_steps, t_total)
logger.info(optimizer)
# logger.info(model)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", cfg.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", cfg.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
cfg.train_batch_size * cfg.gradient_accumulation_steps * (
dist.get_world_size() if cfg.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", cfg.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
logger.info(" Warmup steps = %d", num_warmup_steps)
if continue_from_global_step > 0:
logger.info("Fast forwarding to global step %d to resume training from latest checkpoint...",
continue_from_global_step)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(cfg.num_train_epochs), desc="Epoch", disable=cfg.local_rank not in [-1, 0])
set_seed(cfg) # Added here for reproducibility (even between python 2 and 3)
for epoch in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=cfg.local_rank not in [-1, 0],
dynamic_ncols=True)
if cfg.local_rank != -1:
train_dataloader.sampler.set_epoch(epoch)
for step, batch in enumerate(epoch_iterator):
# If training is continued from a checkpoint, fast forward
# to the state of that checkpoint.
if global_step < continue_from_global_step:
if (step + 1) % cfg.gradient_accumulation_steps == 0:
scheduler.step() # Update learning rate schedule
global_step += 1
continue
model.train()
batch = batch_to_device(batch, cfg.device)
last_outputs = None
if if_cancel_sync(cfg, step):
# Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
with model.no_sync():
loss = forward_step(model, batch, cfg, scaler)
else:
loss, last_outputs = forward_step(model, batch, cfg, scaler, return_outputs=True)
tr_loss += loss
if (step + 1) % cfg.gradient_accumulation_steps == 0:
if cfg.fp16:
scaler.unscale_(optimizer)
if cfg.max_grad_norm and not ("optimizer" in cfg and cfg.optimizer and "lamb" in cfg.optimizer):
if hasattr(optimizer, "clip_grad_norm"):
optimizer.clip_grad_norm(cfg.max_grad_norm)
elif hasattr(model, "clip_grad_norm_"):
model.clip_grad_norm_(cfg.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), cfg.max_grad_norm)
if cfg.fp16:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad(set_to_none=True)
global_step += 1
# Log metrics
log_metrics = {}
if cfg.local_rank in [-1, 0] and cfg.logging_steps > 0 and global_step % cfg.logging_steps == 0:
log_metrics['lr'] = scheduler.get_lr()[0]
log_metrics['loss'] = (tr_loss - logging_loss) / cfg.logging_steps
logging_loss = tr_loss
if tb_helper:
log_metrics.update(tb_helper(last_batch=batch, last_outputs=last_outputs))
# Save model checkpoint
if cfg.save_steps > 0 and global_step % cfg.save_steps == 0:
output_dir = os.path.join(cfg.output_dir, 'checkpoint-{}'.format(global_step))
if cfg.local_rank in [-1, 0] and not os.path.exists(output_dir):
os.makedirs(output_dir)
save_model(model, cfg, output_dir, tokenizer)
# Evaluation
if cfg.evaluate_during_training and cfg.eval_steps > 0 and global_step % cfg.eval_steps == 0:
state_dict = model.state_dict()
if cfg.ddp_eval or cfg.local_rank in [-1, 0]:
results = evaluate(cfg, model, tokenizer, prefix=str(global_step), _split="dev")
if cfg.local_rank in [-1, 0]:
for key, value in results.items():
log_metrics[f"eval/{key}"] = value
sub_path = os.path.join(cfg.output_dir, 'checkpoint-{}'.format(global_step))
flag = note_best_checkpoint(cfg, results, sub_path)
if cfg.save_best and flag:
if cfg.local_rank == 0:
unwrap_model(model).save_pretrained(cfg.output_dir, state_dict=state_dict)
else:
model.save_pretrained(cfg.output_dir)
tokenizer.save_pretrained(cfg.output_dir)
OmegaConf.save(cfg, os.path.join(cfg.output_dir, "training_config.yaml"))
logger.info("Saving best model checkpoint to %s", cfg.output_dir)
if len(log_metrics) > 0 and cfg.local_rank in [-1, 0]:
wandb.log(log_metrics)
del batch
del last_outputs
if 0 < cfg.max_steps < global_step:
epoch_iterator.close()
break
if 0 < cfg.max_steps < global_step:
train_iterator.close()
break
return global_step, tr_loss / global_step
@hydra.main(config_path="conf", config_name="config", version_base="1.2")
def main(cfg: DictConfig):
""" Main function """
if hasattr(cfg, "dist_init"):
hydra.utils.instantiate(cfg.dist_init, cfg)
else:
vanilla_torch_dist(cfg)
global logger
logger = setting_logger(cfg.output_dir, local_rank=cfg.local_rank)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
cfg.local_rank, cfg.device, cfg.n_gpu, bool(cfg.local_rank != -1), cfg.fp16)
logger.warning(f"CPU cores: {os.cpu_count()}")
# Set seed
set_seed(cfg)
# Load pre-trained model and tokenizer
if cfg.local_rank not in [-1, 0]:
dist.barrier() # Make sure only the first process in distributed training will download model & vocab
if cfg.pretrain:
pretrain_state_dict = torch.load(cfg.pretrain, map_location='cpu')
else:
pretrain_state_dict = None
tokenizer = AutoTokenizer.from_pretrained(cfg.model_name_or_path)
try:
model = hydra.utils.call(cfg.model, cfg.model_name_or_path, state_dict=pretrain_state_dict)
except Exception as e:
logger.warning(e)
model = hydra.utils.call(cfg.model)
if cfg.local_rank == 0:
dist.barrier() # Make sure only the first process in distributed training will download model & vocab
if cfg.local_rank == -1: # For FullyShardedDDP, place the model on cpu first.
if cfg.n_gpu in [0, 1] or cfg.no_cuda:
model.to(cfg.device)
else:
# For model parallel (of mT5)
logger.info(f"Model Parallel initialization.")
model.parallelize(hydra.utils.call(cfg.get_device_map))
# logger.info("Training/evaluation parameters %s", OmegaConf.to_yaml(cfg))
if cfg.local_rank in [-1, 0] and cfg.do_train:
if not os.path.exists(cfg.output_dir):
os.makedirs(cfg.output_dir)
OmegaConf.save(cfg, os.path.join(cfg.output_dir, "training_config.yaml"))
wandb.init(
project="code-language-reasoning",
name=cfg.exp_name,
notes=cfg.exp_notes,
config=OmegaConf.to_container(cfg, resolve=True)
)
wandb.define_metric(cfg.prediction_cfg.metric, summary=("max" if cfg.prediction_cfg.measure > 0 else "min"))
# Training
if cfg.do_train:
# TODO: Add option for continuously training from checkpoint.
# The operation should be introduced in ``train`` method since both the state dict
# of schedule and optimizer (and scaler, if any) should be loaded.
# If output files already exists, assume to continue training from latest checkpoint (unless overwrite_output_dir is set)
continue_from_global_step = 0 # If set to 0, start training from the beginning
# if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
# checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/*/' + WEIGHTS_NAME, recursive=True)))
# if len(checkpoints) > 0:
# checkpoint = checkpoints[-1]
# logger.info("Resuming training from the latest checkpoint: %s", checkpoint)
# continue_from_global_step = int(checkpoint.split('-')[-1])
# model = model_class.from_pretrained(checkpoint)
# model.to(args.device)
train_dataset = load_and_cache_examples(cfg, tokenizer, _split="train")
if getattr(cfg, "do_preprocess", False):
return
global_step, tr_loss = train(cfg, train_dataset, model, tokenizer, continue_from_global_step)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Test
results = {}
if cfg.do_eval:
if not cfg.ddp_eval and cfg.local_rank not in [-1, 0]:
return results
checkpoints = [cfg.output_dir]
if cfg.save_best:
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
elif cfg.prediction_cfg.best_checkpoint and os.path.exists(cfg.prediction_cfg.best_checkpoint):
checkpoints = [cfg.prediction_cfg.best_checkpoint]
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
elif cfg.eval_sub_path:
checkpoints = list(
os.path.dirname(c) for c in
sorted(glob.glob(cfg.output_dir + f"/{cfg.eval_sub_path}/" + "pytorch_model.bin", recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info(" the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
split = "dev"
if "model_eval" in cfg:
model = hydra.utils.call(cfg.model_eval, checkpoint)
else:
model = hydra.utils.call(cfg.model, checkpoint)
if cfg.n_gpu == 1:
model.to(cfg.device)
else:
# For model parallel (of mT5)
model.parallelize(hydra.utils.call(cfg.get_device_map))
if cfg.test_file:
prefix = f'test' + (f'-{prefix}' if prefix != "" else "")
split = "test"
result = evaluate(cfg, model, tokenizer, prefix=prefix, _split=split)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
hydra_formatted_args = []
# convert the cli params added by torch.distributed.launch into Hydra format
for arg in sys.argv:
if arg.startswith("--"):
hydra_formatted_args.append(arg[len("--"):])
else:
hydra_formatted_args.append(arg)
sys.argv = hydra_formatted_args
main()