-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDESCRIPTION
73 lines (73 loc) · 2.76 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
Package: metaBMA
Type: Package
Date: 2023-09-12
Title: Bayesian Model Averaging for Random and Fixed Effects Meta-Analysis
Version: 0.6.9
Authors@R: c(person(given = "Daniel W.",
family = "Heck",
email="daniel.heck@uni-marburg.de",
role=c("aut","cre"),
comment = c(ORCID = "0000-0002-6302-9252")),
person(given = "Quentin F.",
family = "Gronau",
email="quentingronau@web.de",
role = "ctb"),
person(given = "Eric-Jan",
family = "Wagenmakers",
email="ej.wagenmakers@gmail.com",
role = "ctb"),
person(given = "Indrajeet",
family = "Patil",
email = "patilindrajeet.science@gmail.com",
role = "ctb",
comment = c(ORCID = "0000-0003-1995-6531")))
Description: Computes the posterior model probabilities for standard meta-analysis models
(null model vs. alternative model assuming either fixed- or random-effects, respectively).
These posterior probabilities are used to estimate the overall mean effect size
as the weighted average of the mean effect size estimates of the random- and
fixed-effect model as proposed by Gronau, Van Erp, Heck, Cesario, Jonas, &
Wagenmakers (2017, <doi:10.1080/23743603.2017.1326760>). The user can define
a wide range of non-informative or informative priors for the mean effect size
and the heterogeneity coefficient. Moreover, using pre-compiled Stan models,
meta-analysis with continuous and discrete moderators with Jeffreys-Zellner-Siow (JZS)
priors can be fitted and tested. This allows to compute Bayes factors and
perform Bayesian model averaging across random- and fixed-effects meta-analysis
with and without moderators. For a primer on Bayesian model-averaged meta-analysis,
see Gronau, Heck, Berkhout, Haaf, & Wagenmakers (2021, <doi:10.1177/25152459211031256>).
Depends:
R (>= 4.0.0),
Rcpp (>= 1.0.0),
methods
Imports:
bridgesampling,
coda,
LaplacesDemon,
logspline,
mvtnorm,
RcppParallel (>= 5.0.1),
rstan (>= 2.26.0),
rstantools (>= 2.3.0)
Suggests:
testthat,
knitr,
rmarkdown,
spelling
LinkingTo:
BH (>= 1.78.0),
Rcpp (>= 1.0.0),
RcppEigen (>= 0.3.3.9.1),
RcppParallel (>= 5.0.1),
rstan (>= 2.26.0),
StanHeaders (>= 2.26.0)
VignetteBuilder: knitr
URL: https://github.com/danheck/metaBMA, https://danheck.github.io/metaBMA/
License: GPL-3
Encoding: UTF-8
LazyData: true
NeedsCompilation: yes
SystemRequirements:
GNU make
Biarch: true
Language: en-US
RoxygenNote: 7.2.3
Roxygen: list(markdown = TRUE)