This repository has been archived by the owner on Sep 14, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathparam.go
201 lines (167 loc) · 6.48 KB
/
param.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// Copyright 2015 The golinear Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file.
package golinear
/*
#include "wrap.h"
*/
import "C"
// Parameters for training a linear model.
type Parameters struct {
// The type of solver
SolverType SolverType
// The cost of constraints violation.
Cost float64
// The relative penalty for each class.
RelCosts []ClassWeight
// The number of threads to use if liblinear is built with OpenMP support.
// Default value is 0 and will use all the cores.
NThreads int
}
// ClassWeight instances are used in the solver parameters to scale
// the constraint violation cost of certain labels.
type ClassWeight struct {
Label int
Value float64
}
// A SolverType specifies represents one of the liblinear solvers.
type SolverType struct {
solverType C.int
epsilon C.double
}
// NewL2RLogisticRegression creates an L2-regularized logistic regression
// (primal) solver.
func NewL2RLogisticRegression(epsilon float64) SolverType {
return SolverType{C.L2R_LR, C.double(epsilon)}
}
// NewL2RLogisticRegressionDefault creates an L2-regularized logistic
// regression (primal) solver, epsilon = 0.01.
func NewL2RLogisticRegressionDefault() SolverType {
return NewL2RLogisticRegression(0.01)
}
// NewL2RL2LossSvcDual creates an L2-regularized L2-loss support vector
// classification (dual) solver.
func NewL2RL2LossSvcDual(epsilon float64) SolverType {
return SolverType{C.L2R_L2LOSS_SVC_DUAL, C.double(epsilon)}
}
// NewL2RL2LossSvcDualDefault creates an L2-regularized L2-loss support
// vector classification (dual) solver, epsilon = 0.1.
func NewL2RL2LossSvcDualDefault() SolverType {
return NewL2RL2LossSvcDual(0.1)
}
// NewL2RL2LossSvcPrimal creates an L2-regularized L2-loss support vector
// classification (primal) solver.
func NewL2RL2LossSvcPrimal(epsilon float64) SolverType {
return SolverType{C.L2R_L2LOSS_SVC, C.double(epsilon)}
}
// NewL2RL2LossSvcPrimalDefault creates an L2-regularized L2-loss support
// vector classification (primal) solver, epsilon = 0.01.
func NewL2RL2LossSvcPrimalDefault() SolverType {
return NewL2RL2LossSvcPrimal(0.01)
}
// NewL2RL1LossSvcDual creates an L2-regularized L1-loss support vector
// classification (dual) solver.
func NewL2RL1LossSvcDual(epsilon float64) SolverType {
return SolverType{C.L2R_L1LOSS_SVC_DUAL, C.double(epsilon)}
}
// NewL2RL1LossSvcDualDefault creates an L2-regularized L1-loss support
// vector classification (dual) solver, epsilon = 0.1.
func NewL2RL1LossSvcDualDefault() SolverType {
return NewL2RL1LossSvcDual(0.1)
}
// NewMCSVMCS creates a Support vector classification solver
// (Crammer and Singer).
func NewMCSVMCS(epsilon float64) SolverType {
return SolverType{C.MCSVM_CS, C.double(epsilon)}
}
// NewMCSVMCSDefault creates a Support vector classification solver
// (Crammer and Singer), epsilon = 0.1.
func NewMCSVMCSDefault() SolverType {
return NewMCSVMCS(0.1)
}
// NewL1RL2LossSvc creates an L1-regularized L2-loss support vector
// classification solver.
func NewL1RL2LossSvc(epsilon float64) SolverType {
return SolverType{C.L1R_L2LOSS_SVC, C.double(epsilon)}
}
// NewL1RL2LossSvcDefault creates an L1-regularized L2-loss support
// vector classification solver, epsilon = 0.01.
func NewL1RL2LossSvcDefault() SolverType {
return NewL1RL2LossSvc(0.01)
}
// NewL1RLogisticRegression creates an L1-regularized logistic
// regression solver.
func NewL1RLogisticRegression(epsilon float64) SolverType {
return SolverType{C.L1R_LR, C.double(epsilon)}
}
// NewL1RLogisticRegressionDefault creates an L1-regularized logistic
// regression solver, epsilon = 0.01.
func NewL1RLogisticRegressionDefault() SolverType {
return NewL1RLogisticRegression(0.01)
}
// NewL2RLogisticRegressionDual creates an L2-regularized logistic
// regression (dual) for regression solver.
func NewL2RLogisticRegressionDual(epsilon float64) SolverType {
return SolverType{C.L2R_LR_DUAL, C.double(epsilon)}
}
// NewL2RLogisticRegressionDualDefault creates an L2-regularized logistic
// regression (dual) for regression solver, epsilon = 0.1.
func NewL2RLogisticRegressionDualDefault() SolverType {
return NewL2RLogisticRegressionDual(0.1)
}
// NewL2RL2LossSvRegression creates an L2-regularized L2-loss support vector
// regression (primal) solver.
func NewL2RL2LossSvRegression(epsilon float64) SolverType {
return SolverType{C.L2R_L2LOSS_SVR, C.double(epsilon)}
}
// NewL2RL2LossSvRegressionDefault creates an L2-regularized L2-loss support
// vector regression (primal) solver, epsilon = 0.001.
func NewL2RL2LossSvRegressionDefault() SolverType {
return NewL2RL2LossSvRegression(0.001)
}
// NewL2RL2LossSvRegressionDual creates an L2-regularized L2-loss support
// vector regression (dual) solver.
func NewL2RL2LossSvRegressionDual(epsilon float64) SolverType {
return SolverType{C.L2R_L2LOSS_SVR_DUAL, C.double(epsilon)}
}
// NewL2RL2LossSvRegressionDualDefault creates an L2-regularized L2-loss
// support vector regression (dual) solver, epsilon = 0.1.
func NewL2RL2LossSvRegressionDualDefault() SolverType {
return NewL2RL2LossSvRegressionDual(0.1)
}
// NewL2RL1LossSvRegressionDual creates an L2-regularized L1-loss support
// vector regression solver (dual).
func NewL2RL1LossSvRegressionDual(epsilon float64) SolverType {
return SolverType{C.L2R_L1LOSS_SVR_DUAL, C.double(epsilon)}
}
// NewL2RL1LossSvRegressionDualDefault creates an L2-regularized L1-loss
// support vector regression (dual) solver, epsilon = 0.1.
func NewL2RL1LossSvRegressionDualDefault() SolverType {
return NewL2RL1LossSvRegressionDual(0.1)
}
// DefaultParameters returns a set of reasonable default parameters:
// L2-regularized L2-loss spport vector classification (dual) and a
// constraint violation cost of 1.
func DefaultParameters() Parameters {
return Parameters{NewL2RL2LossSvcDualDefault(), 1, nil, 0}
}
func toCParameter(param Parameters) *C.parameter_t {
cParam := newParameter()
cParam.solver_type = param.SolverType.solverType
cParam.eps = param.SolverType.epsilon
cParam.C = C.double(param.Cost)
// Copy relative costs into C structure.
n := len(param.RelCosts)
if n > 0 {
cParam.nr_weight = C.int(n)
cParam.weight_label = newLabels(C.int(n))
cParam.weight = newDouble(C.size_t(n))
for i, weight := range param.RelCosts {
C.set_int_idx(cParam.weight_label, C.int(i), C.int(weight.Label))
C.set_double_idx(cParam.weight, C.int(i), C.double(weight.Value))
}
}
// Set the number of threads to use by OpenMP.
C.parameter_set_nthreads(cParam, C.int(param.NThreads))
return cParam
}