-
Notifications
You must be signed in to change notification settings - Fork 2
/
preprocessing_utils.py
354 lines (270 loc) · 11.9 KB
/
preprocessing_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# preprocessing functions
import numpy as np
import tensorflow as tf
from scipy.io import wavfile
from scipy.signal import butter, lfilter
from pywt import dwt
import os
import glob
import importlib
from python_speech_features import logfbank, mfcc, delta
commands = [
'backward',
'bed',
'bird',
'cat',
'dog',
'down',
'eight',
'five',
'follow',
'forward',
'four',
'go',
'happy',
'house',
'learn',
'left',
'marvin',
'nine',
'no',
'off',
'on',
'one',
'right',
'seven',
'sheila',
'six',
'stop',
'three',
'tree',
'two',
'up',
'visual',
'wow',
'yes',
'zero'
]
label_to_class = {commands[i]:i for i in range(len(commands))}
class_to_label = {i:commands[i] for i in range(len(commands))}
data_path = 'data/full_speech_commands'
def load_data(file_name, file_label, data_path_=data_path):
if isinstance(file_name, bytes):
file_name = file_name.decode()
if isinstance(file_label, bytes):
file_label = file_label.decode()
if isinstance(data_path_, bytes):
data_path_ = data_path_.decode()
if not isinstance(file_label, str):
file_label = class_to_label[file_label]
file_path = data_path_ + '/' + file_label + '/' + file_name
_, data = wavfile.read(file_path)
return data.squeeze()
def padding_trimming(data, output_sequence_length=16000):
data_shape = data.shape[0]
# trimming
if data_shape > output_sequence_length:
data = data[:output_sequence_length]
# padding
elif data_shape < output_sequence_length:
tot_pad = output_sequence_length - data_shape
pad_before = int(np.ceil(tot_pad/2))
pad_after = int(np.floor(tot_pad/2))
data = np.pad(data, pad_width=(pad_before, pad_after), mode='mean')
return data
def random_time_shift(data, low=-100, high=100):
y_shift = int(np.random.uniform(low, high)*16)
if y_shift >= 0:
data = np.pad(data[y_shift:], pad_width=(0, y_shift), mode='mean')
else:
data = np.pad(data[:len(data)+y_shift], pad_width=(-y_shift, 0), mode='mean')
return data.astype(np.float32)
def background_noise(data, noise_dict, select_noise=None, noise_reduction=0.5, *args):
'''
data: input audio signal, already loaded and preprocessed, it must be a numpy array
select_noise: decide what kind of noise to add to the input signal, by default a random choice
noise_reduction: set it to a value between 0 and 1 to reduce the amount of noise, by default 0.8
'''
# noise selection
if (select_noise is None) or (select_noise == -1):
select_noise = np.random.choice(np.arange(1, 7)) # random selection
noise_data = args[select_noise-1] if (noise_dict == -1) else noise_dict[str(select_noise)]
# random cropping
target_size = data.shape[0]
noise_size = noise_data.shape[0]
from_ = np.random.randint(0, int(noise_size-target_size))
to_ = from_ + target_size
noise_data = noise_data[from_:to_]
# add noise to input audio
data_with_noise = data + (1-noise_reduction)*noise_data
return data_with_noise.astype(np.float32)
def get_spectrogram(
signal, # audio signal from which to compute features (N*1 array)
samplerate = 16000, # samplerate of the signal we are working with
winlen = 25, # length of the analysis window (milliseconds)
winstep = 10, # step between successive windows (milliseconds)
nfft = 512, # FFT size
winfunc = tf.signal.hamming_window # analysis window to apply to each frame
):
# Convert the waveform to a spectrogram via a STFT
spectrogram = tf.signal.stft(
signal.astype(float),
int(samplerate*winlen/1000),
int(samplerate*winstep/1000),
nfft,
winfunc
)
# Obtain the magnitude of the STFT
spectrogram = tf.abs(spectrogram)
# Convert to NumPy array
spectrogram = np.array(spectrogram)
# Convert the frequencies to log scale and transpose, so that the time is represented on the x-axis (columns)
# Add an epsilon to avoid taking a log of zero
spectrogram = np.log(spectrogram.T + np.finfo(float).eps)
return spectrogram.astype(np.float32)
def get_logfbank(
signal, # audio signal from which to compute features (N*1 array)
samplerate = 16000, # samplerate of the signal we are working with
winlen = 25, # length of the analysis window (milliseconds)
winstep = 10, # step between successive windows (milliseconds)
nfilt = 40, # number of filters in the filterbank
nfft = 512, # FFT size
lowfreq = 300, # lowest band edge of mel filters (Hz)
highfreq = None, # highest band edge of mel filters (Hz)
):
if highfreq is None:
highfreq = samplerate / 2
# Extract log Mel-filterbank energy features
logfbank_feat = logfbank(
signal,
samplerate,
winlen/1000,
winstep/1000,
nfilt,
nfft,
lowfreq,
highfreq,
)
logfbank_feat = logfbank_feat.T
return logfbank_feat.astype(np.float32)
def get_mfcc(
signal, # audio signal from which to compute features (N*1 array)
delta_order = 2, # maximum order of the Delta features
delta_window = 1, # window size for the Delta features
samplerate = 16000, # samplerate of the signal we are working with
winlen = 25, # length of the analysis window (milliseconds)
winstep = 10, # step between successive windows (milliseconds)
numcep = 13, # number of cepstrum to return
nfilt = 40, # number of filters in the filterbank
nfft = 512, # FFT size
lowfreq = 300, # lowest band edge of mel filters (Hz)
highfreq = None, # highest band edge of mel filters (Hz)
appendEnergy = True, # if this is true, the zeroth cepstral coefficient is replaced with the log of the total frame energy
winfunc = np.hamming # analysis window to apply to each frame
):
if highfreq is None:
highfreq = samplerate / 2
features = []
# Extract MFCC features
mfcc_feat = mfcc(
signal,
samplerate,
winlen/1000,
winstep/1000,
numcep,
nfilt,
nfft,
lowfreq,
highfreq,
appendEnergy=appendEnergy,
winfunc=winfunc
)
mfcc_feat = mfcc_feat.T
features.append(mfcc_feat)
# Extract Delta features
for i in range(delta_order):
features.append(delta(features[-1], delta_window))
# Full feature vector
full_feat = np.vstack(features)
return full_feat.astype(np.float32)
def get_dwt(data, wavelet='db1', mode='sym'):
data, _ = dwt(data=data, wavelet=wavelet, mode=mode)
return data.astype(np.float32)
def load_and_preprocess_data(file_name, file_label, data_path_=data_path):
# load data
data = load_data(file_name, file_label, data_path_=data_path_)
# padding/trimming
data = padding_trimming(data)
# TensorFlow takes as input 32-bit floating point data
return data.astype(np.float32)
def create_dataset(df, is_train=True, data_path_=data_path, cache_file=None, shuffle=True, apply_random_shift=False, apply_background_noise=False, noise_dict=None, noise_reduction=0.5, features=1, batch_size=32):
'''
features:
- 1 for MFCC features [delta_order=2] (default)
- 2 for log Mel-filterbank energy features
- 3 for spectrogram
- 4 for Discrete Wavelet Transform + MFCC features
- 5 for MFCC features [delta_order=0]
- 6 for log Mel-filterbank energy features [winlen=32, winstep=15.5, nfilt=64]
- 7 for log Mel-filterbank energy features [winlen=25, winstep=8, nfilt=80]
'''
# Convert DataFrame to lists
file_names = df['file'].tolist()
file_labels = df['class'].tolist()
# Create a Dataset object
dataset = tf.data.Dataset.from_tensor_slices((file_names, file_labels))
# Map the "load_and_preprocess_data" function
dataset = dataset.map(lambda file_name, file_label: (tf.numpy_function(load_and_preprocess_data, [file_name, file_label, data_path_], tf.float32), file_label), num_parallel_calls=os.cpu_count())
if is_train:
# Cache
if cache_file:
dataset = dataset.cache(filename=cache_file)
# Shuffle
if shuffle:
dataset = dataset.shuffle(buffer_size=len(df))
# Repeat the dataset indefinitely
dataset = dataset.repeat()
# Map the "random_time_shift" function
if apply_random_shift:
dataset = dataset.map(lambda data, label: (tf.numpy_function(random_time_shift, [data], tf.float32), label))
# Map the "background_noise" function
if apply_background_noise and np.random.uniform() < 0.8:
noise_list = [tf.convert_to_tensor(noise, dtype=tf.float32) for noise in noise_dict.values()]
dataset = dataset.map(lambda data, label: (tf.numpy_function(background_noise, [data, -1, -1, noise_reduction, *noise_list], tf.float32), label))
# Extract features
if features == 1:
dataset = dataset.map(lambda data, label: (tf.numpy_function(get_mfcc, [data], tf.float32), label))
elif features == 2:
dataset = dataset.map(lambda data, label: (tf.numpy_function(get_logfbank, [data], tf.float32), label))
elif features == 3:
dataset = dataset.map(lambda data, label: (tf.numpy_function(get_spectrogram, [data], tf.float32), label))
elif features == 4:
dataset = dataset.map(lambda data, label: (tf.numpy_function(get_dwt, [data], tf.float32), label))
dataset = dataset.map(lambda data, label: (tf.numpy_function(get_mfcc, [data], tf.float32), label))
elif features == 5:
dataset = dataset.map(lambda data, label: (tf.numpy_function(get_mfcc, [data, 0], tf.float32), label))
elif features == 6:
dataset = dataset.map(lambda data, label: (tf.numpy_function(get_logfbank, [data, 16000, 32, 15.5, 64], tf.float32), label))
elif features == 7:
dataset = dataset.map(lambda data, label: (tf.numpy_function(get_logfbank, [data, 16000, 25, 8, 80], tf.float32), label))
if not is_train:
# Cache
if cache_file:
dataset = dataset.cache(filename=cache_file)
# Shuffle
if shuffle:
dataset = dataset.shuffle(buffer_size=len(df))
# Repeat the dataset indefinitely
dataset = dataset.repeat()
# Batch
dataset = dataset.batch(batch_size=batch_size)
# Prefetch
dataset = dataset.prefetch(buffer_size=1)
# Steps
steps = int(np.ceil(len(df) / batch_size))
return dataset, steps
def remove_file_starting_with(name):
for filename in glob.glob(name+'*'):
os.remove(filename)
def reimport_module(module_name):
importlib.reload(module_name)