forked from coinbase/kryptology
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ipp_prover.go
396 lines (355 loc) · 14.2 KB
/
ipp_prover.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
//
// Copyright Coinbase, Inc. All Rights Reserved.
//
// SPDX-License-Identifier: Apache-2.0
//
// Package bulletproof implements the zero knowledge protocol bulletproofs as defined in https://eprint.iacr.org/2017/1066.pdf
package bulletproof
import (
"github.com/gtank/merlin"
"github.com/pkg/errors"
"github.com/coinbase/kryptology/pkg/core/curves"
)
// InnerProductProver is the struct used to create InnerProductProofs
// It specifies which curve to use and holds precomputed generators
// See NewInnerProductProver() for prover initialization.
type InnerProductProver struct {
curve curves.Curve
generators ippGenerators
}
// InnerProductProof contains necessary output for the inner product proof
// a and b are the final input vectors of scalars, they should be of length 1
// Ls and Rs are calculated per recursion of the IPP and are necessary for verification
// See section 3.1 on pg 15 of https://eprint.iacr.org/2017/1066.pdf
type InnerProductProof struct {
a, b curves.Scalar
capLs, capRs []curves.Point
curve *curves.Curve
}
// ippRecursion is the same as IPP but tracks recursive a', b', g', h' and Ls and Rs
// It should only be used internally by InnerProductProver.Prove()
// See L35 on pg 16 of https://eprint.iacr.org/2017/1066.pdf
type ippRecursion struct {
a, b []curves.Scalar
c curves.Scalar
capLs, capRs []curves.Point
g, h []curves.Point
u, capP curves.Point
transcript *merlin.Transcript
}
// NewInnerProductProver initializes a new prover
// It uses the specified domain to generate generators for vectors of at most maxVectorLength
// A prover can be used to construct inner product proofs for vectors of length less than or equal to maxVectorLength
// A prover is defined by an explicit curve.
func NewInnerProductProver(maxVectorLength int, domain []byte, curve curves.Curve) (*InnerProductProver, error) {
generators, err := getGeneratorPoints(maxVectorLength, domain, curve)
if err != nil {
return nil, errors.Wrap(err, "ipp getGenerators")
}
return &InnerProductProver{curve: curve, generators: *generators}, nil
}
// NewInnerProductProof initializes a new InnerProductProof for a specified curve
// This should be used in tandem with UnmarshalBinary() to convert a marshaled proof into the struct.
func NewInnerProductProof(curve *curves.Curve) *InnerProductProof {
var capLs, capRs []curves.Point
newProof := InnerProductProof{
a: curve.NewScalar(),
b: curve.NewScalar(),
capLs: capLs,
capRs: capRs,
curve: curve,
}
return &newProof
}
// rangeToIPP takes the output of a range proof and converts it into an inner product proof
// See section 4.2 on pg 20
// The conversion specifies generators to use (g and hPrime), as well as the two vectors l, r of which the inner product is tHat
// Additionally, note that the P used for the IPP is in fact P*h^-mu from the range proof.
func (prover *InnerProductProver) rangeToIPP(proofG, proofH []curves.Point, l, r []curves.Scalar, tHat curves.Scalar, capPhmuinv, u curves.Point, transcript *merlin.Transcript) (*InnerProductProof, error) {
// Note that P as a witness is only g^l * h^r
// P needs to be in the form of g^l * h^r * u^<l,r>
// Calculate the final P including the u^<l,r> term
utHat := u.Mul(tHat)
capP := capPhmuinv.Add(utHat)
// Use params to prove inner product
recursionParams := &ippRecursion{
a: l,
b: r,
capLs: []curves.Point{},
capRs: []curves.Point{},
c: tHat,
g: proofG,
h: proofH,
capP: capP,
u: u,
transcript: transcript,
}
return prover.proveRecursive(recursionParams)
}
// getP returns the initial P value given two scalars a,b and point u
// This method should only be used for testing
// See (3) on page 13 of https://eprint.iacr.org/2017/1066.pdf
func (prover *InnerProductProver) getP(a, b []curves.Scalar, u curves.Point) (curves.Point, error) {
// Vectors must have length power of two
if !isPowerOfTwo(len(a)) {
return nil, errors.New("ipp vector length must be power of two")
}
// Generator vectors must be same length
if len(prover.generators.G) != len(prover.generators.H) {
return nil, errors.New("ipp generator lengths of g and h must be equal")
}
// Inner product requires len(a) == len(b) else error is returned
c, err := innerProduct(a, b)
if err != nil {
return nil, errors.Wrap(err, "ipp getInnerProduct")
}
// In case where len(a) is less than number of generators precomputed by prover, trim to length
proofG := prover.generators.G[0:len(a)]
proofH := prover.generators.H[0:len(b)]
// initial P = g^a * h^b * u^(a dot b) (See (3) on page 13 of https://eprint.iacr.org/2017/1066.pdf)
ga := prover.curve.NewGeneratorPoint().SumOfProducts(proofG, a)
hb := prover.curve.NewGeneratorPoint().SumOfProducts(proofH, b)
uadotb := u.Mul(c)
capP := ga.Add(hb).Add(uadotb)
return capP, nil
}
// Prove executes the prover protocol on pg 16 of https://eprint.iacr.org/2017/1066.pdf
// It generates an inner product proof for vectors a and b, using u to blind the inner product in P
// A transcript is used for the Fiat Shamir heuristic.
func (prover *InnerProductProver) Prove(a, b []curves.Scalar, u curves.Point, transcript *merlin.Transcript) (*InnerProductProof, error) {
// Vectors must have length power of two
if !isPowerOfTwo(len(a)) {
return nil, errors.New("ipp vector length must be power of two")
}
// Generator vectors must be same length
if len(prover.generators.G) != len(prover.generators.H) {
return nil, errors.New("ipp generator lengths of g and h must be equal")
}
// Inner product requires len(a) == len(b) else error is returned
c, err := innerProduct(a, b)
if err != nil {
return nil, errors.Wrap(err, "ipp getInnerProduct")
}
// Length of vectors must be less than the number of generators generated
if len(a) > len(prover.generators.G) {
return nil, errors.New("ipp vector length must be less than maxVectorLength")
}
// In case where len(a) is less than number of generators precomputed by prover, trim to length
proofG := prover.generators.G[0:len(a)]
proofH := prover.generators.H[0:len(b)]
// initial P = g^a * h^b * u^(a dot b) (See (3) on page 13 of https://eprint.iacr.org/2017/1066.pdf)
ga := prover.curve.NewGeneratorPoint().SumOfProducts(proofG, a)
hb := prover.curve.NewGeneratorPoint().SumOfProducts(proofH, b)
uadotb := u.Mul(c)
capP := ga.Add(hb).Add(uadotb)
recursionParams := &ippRecursion{
a: a,
b: b,
capLs: []curves.Point{},
capRs: []curves.Point{},
c: c,
g: proofG,
h: proofH,
capP: capP,
u: u,
transcript: transcript,
}
return prover.proveRecursive(recursionParams)
}
// proveRecursive executes the recursion on pg 16 of https://eprint.iacr.org/2017/1066.pdf
func (prover *InnerProductProver) proveRecursive(recursionParams *ippRecursion) (*InnerProductProof, error) {
// length checks
if len(recursionParams.a) != len(recursionParams.b) {
return nil, errors.New("ipp proveRecursive a and b different lengths")
}
if len(recursionParams.g) != len(recursionParams.h) {
return nil, errors.New("ipp proveRecursive g and h different lengths")
}
if len(recursionParams.a) != len(recursionParams.g) {
return nil, errors.New("ipp proveRecursive scalar and point vectors different lengths")
}
// Base case (L14, pg16 of https://eprint.iacr.org/2017/1066.pdf)
if len(recursionParams.a) == 1 {
proof := &InnerProductProof{
a: recursionParams.a[0],
b: recursionParams.b[0],
capLs: recursionParams.capLs,
capRs: recursionParams.capRs,
curve: &prover.curve,
}
return proof, nil
}
// Split current state into low (first half) vs high (second half) vectors
aLo, aHi, err := splitScalarVector(recursionParams.a)
if err != nil {
return nil, errors.Wrap(err, "recursionParams splitScalarVector")
}
bLo, bHi, err := splitScalarVector(recursionParams.b)
if err != nil {
return nil, errors.Wrap(err, "recursionParams splitScalarVector")
}
gLo, gHi, err := splitPointVector(recursionParams.g)
if err != nil {
return nil, errors.Wrap(err, "recursionParams splitPointVector")
}
hLo, hHi, err := splitPointVector(recursionParams.h)
if err != nil {
return nil, errors.Wrap(err, "recursionParams splitPointVector")
}
// c_l, c_r (L21,22, pg16 of https://eprint.iacr.org/2017/1066.pdf)
cL, err := innerProduct(aLo, bHi)
if err != nil {
return nil, errors.Wrap(err, "recursionParams innerProduct")
}
cR, err := innerProduct(aHi, bLo)
if err != nil {
return nil, errors.Wrap(err, "recursionParams innerProduct")
}
// L, R (L23,24, pg16 of https://eprint.iacr.org/2017/1066.pdf)
lga := prover.curve.Point.SumOfProducts(gHi, aLo)
lhb := prover.curve.Point.SumOfProducts(hLo, bHi)
ucL := recursionParams.u.Mul(cL)
capL := lga.Add(lhb).Add(ucL)
rga := prover.curve.Point.SumOfProducts(gLo, aHi)
rhb := prover.curve.Point.SumOfProducts(hHi, bLo)
ucR := recursionParams.u.Mul(cR)
capR := rga.Add(rhb).Add(ucR)
// Add L,R for verifier to use to calculate final g, h
newL := recursionParams.capLs
newL = append(newL, capL)
newR := recursionParams.capRs
newR = append(newR, capR)
// Get x from L, R for non-interactive (See section 4.4 pg22 of https://eprint.iacr.org/2017/1066.pdf)
// Note this replaces the interactive model, i.e. L36-28 of pg16 of https://eprint.iacr.org/2017/1066.pdf
x, err := prover.calcx(capL, capR, recursionParams.transcript)
if err != nil {
return nil, errors.Wrap(err, "recursionParams calcx")
}
// Calculate recursive inputs
xInv, err := x.Invert()
if err != nil {
return nil, errors.Wrap(err, "recursionParams x.Invert")
}
// g', h' (L29,30, pg16 of https://eprint.iacr.org/2017/1066.pdf)
gLoxInverse := multiplyScalarToPointVector(xInv, gLo)
gHix := multiplyScalarToPointVector(x, gHi)
gPrime, err := multiplyPairwisePointVectors(gLoxInverse, gHix)
if err != nil {
return nil, errors.Wrap(err, "recursionParams multiplyPairwisePointVectors")
}
hLox := multiplyScalarToPointVector(x, hLo)
hHixInv := multiplyScalarToPointVector(xInv, hHi)
hPrime, err := multiplyPairwisePointVectors(hLox, hHixInv)
if err != nil {
return nil, errors.Wrap(err, "recursionParams multiplyPairwisePointVectors")
}
// P' (L31, pg16 of https://eprint.iacr.org/2017/1066.pdf)
xSquare := x.Square()
xInvSquare := xInv.Square()
LxSquare := capL.Mul(xSquare)
RxInvSquare := capR.Mul(xInvSquare)
PPrime := LxSquare.Add(recursionParams.capP).Add(RxInvSquare)
// a', b' (L33, 34, pg16 of https://eprint.iacr.org/2017/1066.pdf)
aLox := multiplyScalarToScalarVector(x, aLo)
aHixIn := multiplyScalarToScalarVector(xInv, aHi)
aPrime, err := addPairwiseScalarVectors(aLox, aHixIn)
if err != nil {
return nil, errors.Wrap(err, "recursionParams addPairwiseScalarVectors")
}
bLoxInv := multiplyScalarToScalarVector(xInv, bLo)
bHix := multiplyScalarToScalarVector(x, bHi)
bPrime, err := addPairwiseScalarVectors(bLoxInv, bHix)
if err != nil {
return nil, errors.Wrap(err, "recursionParams addPairwiseScalarVectors")
}
// c'
cPrime, err := innerProduct(aPrime, bPrime)
if err != nil {
return nil, errors.Wrap(err, "recursionParams innerProduct")
}
// Make recursive call (L35, pg16 of https://eprint.iacr.org/2017/1066.pdf)
recursiveIPP := &ippRecursion{
a: aPrime,
b: bPrime,
capLs: newL,
capRs: newR,
c: cPrime,
g: gPrime,
h: hPrime,
capP: PPrime,
u: recursionParams.u,
transcript: recursionParams.transcript,
}
out, err := prover.proveRecursive(recursiveIPP)
if err != nil {
return nil, errors.Wrap(err, "recursionParams proveRecursive")
}
return out, nil
}
// calcx uses a merlin transcript for Fiat Shamir
// For each recursion, it takes the current state of the transcript and appends the newly calculated L and R values
// A new scalar is then read from the transcript
// See section 4.4 pg22 of https://eprint.iacr.org/2017/1066.pdf
func (prover *InnerProductProver) calcx(capL, capR curves.Point, transcript *merlin.Transcript) (curves.Scalar, error) {
// Add the newest capL and capR values to transcript
transcript.AppendMessage([]byte("addRecursiveL"), capL.ToAffineUncompressed())
transcript.AppendMessage([]byte("addRecursiveR"), capR.ToAffineUncompressed())
// Read 64 bytes from, set to scalar
outBytes := transcript.ExtractBytes([]byte("getx"), 64)
x, err := prover.curve.NewScalar().SetBytesWide(outBytes)
if err != nil {
return nil, errors.Wrap(err, "calcx NewScalar SetBytesWide")
}
return x, nil
}
// MarshalBinary takes an inner product proof and marshals into bytes.
func (proof *InnerProductProof) MarshalBinary() []byte {
var out []byte
out = append(out, proof.a.Bytes()...)
out = append(out, proof.b.Bytes()...)
for i, capLElem := range proof.capLs {
capRElem := proof.capRs[i]
out = append(out, capLElem.ToAffineCompressed()...)
out = append(out, capRElem.ToAffineCompressed()...)
}
return out
}
// UnmarshalBinary takes bytes of a marshaled proof and writes them into an inner product proof
// The inner product proof used should be from the output of NewInnerProductProof().
func (proof *InnerProductProof) UnmarshalBinary(data []byte) error {
scalarLen := len(proof.curve.NewScalar().Bytes())
pointLen := len(proof.curve.NewGeneratorPoint().ToAffineCompressed())
ptr := 0
// Get scalars
a, err := proof.curve.NewScalar().SetBytes(data[ptr : ptr+scalarLen])
if err != nil {
return errors.New("innerProductProof UnmarshalBinary SetBytes")
}
proof.a = a
ptr += scalarLen
b, err := proof.curve.NewScalar().SetBytes(data[ptr : ptr+scalarLen])
if err != nil {
return errors.New("innerProductProof UnmarshalBinary SetBytes")
}
proof.b = b
ptr += scalarLen
// Get points
var capLs, capRs []curves.Point //nolint:prealloc // pointer arithmetic makes it too unreadable.
for ptr < len(data) {
capLElem, err := proof.curve.Point.FromAffineCompressed(data[ptr : ptr+pointLen])
if err != nil {
return errors.New("innerProductProof UnmarshalBinary FromAffineCompressed")
}
capLs = append(capLs, capLElem)
ptr += pointLen
capRElem, err := proof.curve.Point.FromAffineCompressed(data[ptr : ptr+pointLen])
if err != nil {
return errors.New("innerProductProof UnmarshalBinary FromAffineCompressed")
}
capRs = append(capRs, capRElem)
ptr += pointLen
}
proof.capLs = capLs
proof.capRs = capRs
return nil
}