-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbootstrap_contextual.py
executable file
·142 lines (103 loc) · 5.23 KB
/
bootstrap_contextual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import json
import logging
import numpy as np
from pytt_hf import toks2vecs
from pytt_hf import PYTT_CONFIG
# from umls_utils import sci_nlp
# from umls_utils import cui2ent
# from umls_utils import cui2st
from umls import umls_kb_st21pv as umls_kb
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%d-%b-%y %H:%M:%S')
def iterate_docs_converted(split_path):
# load json dataset
with open(split_path, 'r') as json_f:
dataset = json.load(json_f)
for doc in dataset['docs']:
yield doc
def get_ctx_vec(sent_ctx_out, sent_tokens, span_idx_start, span_idx_end, normalize=False):
span_toks = sent_tokens[span_idx_start:span_idx_end]
span_ctx_out = sent_ctx_out[span_idx_start:span_idx_end]
span_ctx_toks = [t for t, v in span_ctx_out]
# sanity check - prob. unnecessary ...
assert span_ctx_toks == span_toks
span_ctx_vecs = [v for t, v in span_ctx_out]
span_ctx_vec = np.array(span_ctx_vecs).mean(axis=0)
if normalize:
span_ctx_vec = span_ctx_vec / np.linalg.norm(span_ctx_vec)
return span_ctx_vec
if __name__ == '__main__':
# train_docs = list(iterate_docs_converted('data/MedMentions/full/custom/mm_converted.train.json'))
train_docs = list(iterate_docs_converted('data/MedMentions/st21pv/custom/mm_converted.train.json'))
skipped_anns = 0
concept_vecs = {}
st_ann_vecs = {} # pooled over all annotations belonging to the same ST
for doc_idx, doc in enumerate(train_docs):
logging.info('#Docs:%d #Concepts:%d #Types:%d #Skipped Ann.:%d' % (doc_idx, len(concept_vecs), len(st_ann_vecs), skipped_anns))
if doc_idx == 10:
break
for sent in doc['sentences']:
sent_ctx_out = toks2vecs(sent['tokens'])
for ent in sent['spans']:
ent['cui'] = ent['cui'].lstrip('UMLS:')
span_ctx_vec = get_ctx_vec(sent_ctx_out, sent['tokens'], ent['start'], ent['end'], normalize=False)
if np.isnan(span_ctx_vec.sum()) or span_ctx_vec.sum() == 0:
continue
if np.sum(span_ctx_vec) == 0: # beyond max_seq_len
skipped_anns += 1
continue
if ent['cui'] in concept_vecs:
concept_vecs[ent['cui']]['vecs_sum'] += span_ctx_vec
concept_vecs[ent['cui']]['vecs_num'] += 1
else:
concept_vecs[ent['cui']] = {'vecs_sum': span_ctx_vec, 'vecs_num': 1}
if ent['st'] in st_ann_vecs:
st_ann_vecs[ent['st']]['vecs_sum'] += span_ctx_vec
st_ann_vecs[ent['st']]['vecs_num'] += 1
else:
st_ann_vecs[ent['st']] = {'vecs_sum': span_ctx_vec, 'vecs_num': 1}
logging.info('Skipped %d annotations' % skipped_anns)
logging.info('Writing Concept Vectors ...')
# vecs_path = 'mm_full.cuis.%s.vecs' % PYTT_CONFIG['name']
vecs_path = 'mm_st21pv.cuis.%s.vecs' % PYTT_CONFIG['name']
with open(vecs_path, 'w') as vecs_f:
for cui, vecs_info in concept_vecs.items():
vecs_info['vecs_avg'] = vecs_info['vecs_sum'] / vecs_info['vecs_num']
vec_str = ' '.join([str(round(v, 6)) for v in vecs_info['vecs_avg'].tolist()])
vecs_f.write('%s %s\n' % (cui, vec_str))
logging.info('Written %s' % vecs_path)
logging.info('Writing ST Vectors (pooled all annotations) ...')
# vecs_path = 'mm_full.sts_anns.%s.vecs' % PYTT_CONFIG['name']
vecs_path = 'mm_st21pv.sts_anns.%s.vecs' % PYTT_CONFIG['name']
with open(vecs_path, 'w') as vecs_f:
for st, vecs_info in st_ann_vecs.items():
vecs_info['vecs_avg'] = vecs_info['vecs_sum'] / vecs_info['vecs_num']
vec_str = ' '.join([str(round(v, 6)) for v in vecs_info['vecs_avg'].tolist()])
vecs_f.write('%s %s\n' % (st, vec_str))
logging.info('Written %s' % vecs_path)
logging.info('Writing ST Vectors (pooled all concepts) ...')
# computing ST embeddings from precomputed concept embeddings
st_cpt_vecs = {} # pooled over all concept vecs belonging to the same ST
missing_cuis = set()
for cui, vecs_info in concept_vecs.items():
cui_vec = vecs_info['vecs_avg']
try:
for st in umls_kb.get_sts(cui):
if st in st_cpt_vecs:
st_cpt_vecs[st]['vecs_sum'] += cui_vec
st_cpt_vecs[st]['vecs_num'] += 1
else:
st_cpt_vecs[st] = {'vecs_sum': cui_vec, 'vecs_num': 1}
except KeyError:
missing_cuis.add(cui)
if len(missing_cuis) > 0:
print('WARNING: %d CUIs not covered in umls_kb' % len(missing_cuis))
# vecs_path = 'mm_full.sts_cpts.%s.vecs' % PYTT_CONFIG['name']
vecs_path = 'mm_st21pv.sts_cpts.%s.vecs' % PYTT_CONFIG['name']
with open(vecs_path, 'w') as vecs_f:
for st, vecs_info in st_cpt_vecs.items():
vecs_info['vecs_avg'] = vecs_info['vecs_sum'] / vecs_info['vecs_num']
vec_str = ' '.join([str(round(v, 6)) for v in vecs_info['vecs_avg'].tolist()])
vecs_f.write('%s %s\n' % (st, vec_str))
logging.info('Written %s' % vecs_path)