-
Notifications
You must be signed in to change notification settings - Fork 0
/
Bayes_LM_Rcpp_Eigen.R
103 lines (96 loc) · 4.79 KB
/
Bayes_LM_Rcpp_Eigen.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#' Bayesian linear model Gibbs sampler; see Hoff pages 154-155 for mathematical
#' details.
#'
#' The main purpose of the program is as an exercise to approximate the
#' posterior distribution of the Bayesian linear model using a Gibbs sampler
#' with an R implementation, and then compare the speed of the implementation
#' with that of a comparable implementation written in C++.
#'
#' In more detail, we are estimating p(\beta, \gamma | X, y) using a Gibbs
#' sampler for the model y = X\beta + \epsilon. The values X, \beta, and y are
#' sampled, and then the posterior distributions of \beta and \gamma are
#' approximated through the Gibbs sampler. Summary statistics may be written to
#' stdout, and the MCMC samples may be written to file.
#'
#' The model hyperparameters are specified with fixed values as follows:
#'
#' beta_0: zero vector
#' sigma_0: identity matrix
#' nu_0: 1
#' sigma_0^2: 1
#'
#'
#' @param n A numeric value no less than 1 specifying the number of observations
#' in the model. Non-integer values are truncated to integer values.
#'
#' @param p A numeric value no less than 1 specifying the number of predictor
#' variables in the model. Non-integer values are truncated to integer
#' values.
#'
#' @param nsamp A numeric value no less than 1 specifying the number of scans to
#' perform in the Gibbs sampler. Non-integer values are truncated to
#' integer values.
#'
#' @param prop_nonzero A numeric value in the range (0, 1] specifying the
#' proportion of nonzero predictor coefficients in the model.
#'
#' @param true_beta_sd A positive numeric value; each nonzero predictor
#' coefficient in the true model is independently sampled from from a N(0,
#' true_beta_sd^2) distribution.
#'
#' @param true_sigma A positive numeric value; the model outcome vector y is
#' sampled from a conditional distribution y | X\beta ~ N(0, true_sigma^2),
#' where X is the matrix of predictor variables, and \beta is a vector of
#' variable coefficients.
#'
#' @param sd_x A positive numeric value; the model predictor variables are
#' independently sampled from a N(0, sd_x^2) distribution.
#'
#' @param print_stats One of either TRUE or FALSE, specifying whether a printout
#' of the true (sampled) predictor coefficient values and approximations of
#' the 2.5%, 50%, and 97.5% quantile levels is written to the console.
#'
#' @param write_samples One of either TRUE or FALSE, specifying whether the
#' samples generated from the Gibbs sampler should be written to file. The
#' first row provides the values for the true beta vector and inverse of the
#' true sigma^2, and the following rows provide the samples. The location
#' of the file is specified by samples_file_loc.
#'
#' @param samples_file_loc A character string specifying the location of the
#' file to which the samples generated from the Gibbs sampler should be
#' written (ignored if write_samples is FALSE).
#'
#' @param method One of either "chol" or "eigen", specifying whether the
#' multivariate normal sampling function should use the Cholesky
#' decomposition or the eigen decomposition.
bayes_lm_rcpp_eigen <- function(n = 100L,
p = 15L,
nsamp = 1e4,
prop_nonzero = 0.2,
true_beta_sd = 2,
true_sigma = 2,
sd_x = 2,
print_stats = FALSE,
write_samples = FALSE,
samples_file_loc = "Samples_Rcpp_Eigen.dat",
decomp_method = "chol") {
# Ensure that user-supplied arguments are of the right type and have legal
# values. source check_valid_input() if necessary.
if (! exists("check_valid_input")) {
source("Check_Valid_Input.R")
}
# We don't have an option for time_sections in this function - as opposed to
# 'bayes_lm_r' - so just pass TRUE to 'check_valid_input'
check_valid_input(n, p, nsamp, prop_nonzero, true_beta_sd, true_sigma, sd_x,
print_stats, TRUE, write_samples, samples_file_loc,
decomp_method)
# To enable casting to a char in callee function
decomp_method <- switch(decomp_method, "chol" = "c", "eigen" = "e")
# Compile source code and load into memory
if (! exists("bayes_lm_rcpp_eigen_")) {
Rcpp::sourceCpp("Bayes_LM_Rcpp_Eigen.cpp")
}
# Call the underlying workhorse function
bayes_lm_rcpp_eigen_(n, p, nsamp, prop_nonzero, true_beta_sd, true_sigma, sd_x,
print_stats, write_samples, samples_file_loc, decomp_method)
}