-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBayes_LM_Rcpp_Eigen.cpp
276 lines (210 loc) · 8.55 KB
/
Bayes_LM_Rcpp_Eigen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
// [[Rcpp::depends(RcppEigen)]]
#include <fstream>
#include <RcppEigen.h>
#include <ctime> // clock_gettime
#include "Stats_Fcns_Eigen.h" // sample_beta, mvrnorm_chol, mvrnorm_eigen
#define NANO_MULT 0.000000001 // nano multiplier, i.e. 1e-9
#define OVERALL 0 // index for overall time elapsed
#define INVERSE 1 // index for time elapsed calculating matrix inverse
#define SAMP_NORM 2 // index for time elapsed sampling from normal distribution
#define CLOCK_START(idx) clock_gettime(CLOCK_MONOTONIC, &start[idx]);
#define CLOCK_STOP(idx) do { \
clock_gettime(CLOCK_MONOTONIC, &finish[idx]); \
elapsed[idx] += (finish[idx].tv_sec - start[idx].tv_sec); \
elapsed[idx] += (finish[idx].tv_nsec - start[idx].tv_nsec) * NANO_MULT; \
} while (0)
// Comparator function for use in qsort
int compare_dbl(const void* a, const void* b) {
return (* (double*) a) - (* (double*) b) < 0 ? -1 : 1;
}
// [[Rcpp::export]]
Rcpp::NumericVector bayes_lm_rcpp_eigen_(int n,
int p,
int nsamp,
double prop_nonzero,
double true_beta_sd,
double true_sigma,
double sd_x,
bool print_stats,
bool write_samples,
Rcpp::CharacterVector samples_file_loc,
char decomp_method) {
// Declare model data structures -----------------------
Eigen::VectorXd true_beta; // true coefficient vector
Eigen::VectorXd y; // response values
Eigen::MatrixXd X; // predictor coefficient matrix
Eigen::VectorXd beta; // current value of beta sample
double gamma; // current value of gamma sample
Eigen::MatrixXd Sigma_inv_0; // inverse of beta variance hyperparam
double nu_0; // hyperparam 1 for inverse-gamma prior
double sigma_sq_0; // hyperparam 2 for inverse-gamma prior
Eigen::MatrixXd out_beta; // memory for beta samples
Eigen::VectorXd out_gamma; // memory for gamma samples
// Declare storage and timer data structures -----------
std::ofstream ctime_file; // sampler loop computational time file
std::ofstream samples_file; // samples file
struct timespec start[3]; // store event starting time information
struct timespec finish[3]; // store event ending time information
double elapsed[3] = { 0, 0, 0 }; // tracks event cumulative elapsed time
double* curr; // pointer steps through current val
double* end; // pointer to mark one past the last val
// Set values of model objects -------------------------
// Set values of beta
true_beta = sample_beta(p, prop_nonzero, true_beta_sd);
// Sample data
X = matr_randn(n, p, sd_x);
y = (X * true_beta) + matr_randn(n, 1, true_sigma);
/* Set the priors; see Hoff pgs. 154-155 for the meanings of the priors.
* Note: we are implicitely specifying the mean hyperparameter for beta to
* be 0 by ommitting the term in the Gibbs sampler conditional mean
* calculation.
*/
Sigma_inv_0.setIdentity(p, p);
nu_0 = 1;
sigma_sq_0 = 1;
// Write param vals to file ----------------------------
// Write true values of beta, sigma^{-2} to the first row of output file
if (write_samples) {
samples_file.open(samples_file_loc[0].begin());
curr = true_beta.data();
end = curr + p;
for ( ; (curr != end); curr++) {
samples_file << *curr << " ";
}
samples_file << 1 / (true_sigma * true_sigma) << "\n";
samples_file.close();
}
// Preliminary calculations ----------------------------
Eigen::MatrixXd tXX; // value of X^{T} X
Eigen::VectorXd tXy; // value of X^{T} y
double shapeval; // shape parameter for gamma distribution samples
double nu_sigma_sq_0; // product of nu_0 and sigma^2_0
tXX = X.transpose() * X;
tXy = X.transpose() * y;
nu_sigma_sq_0 = nu_0 * sigma_sq_0;
shapeval = (nu_0 + n) / 2;
// Sampler object initialization -----------------------
Eigen::MatrixXd V; // variance of current beta sample
Eigen::VectorXd m; // mean of current beta sample
Eigen::VectorXd err; // model error, i.e. y - X \beta
Eigen::MatrixXd iden; // storing matrix identity
double SSR; // SSR (sum of squared errors)
double scaleval; // scale parameter for gamma distribution samples
double* bcurr; // beta current data location
double* bend; // 1 past beta data end location
// Set pointer to desired multivariate normal sampling function
Eigen::VectorXd (*samp_mvnorm)(Eigen::VectorXd&, Eigen::MatrixXd&);
switch (decomp_method) {
case 'c':
samp_mvnorm = &mvrnorm_chol;
break;
case 'e':
samp_mvnorm = &mvrnorm_eigen;
break;
default:
throw std::runtime_error("Illegal value of decomp_method");
}
// Conditionally allocate memory for samples
if (print_stats) {
out_beta.resize(p, nsamp);
out_gamma.resize(nsamp, 1);
}
// Conditionally open samples file stream
if (write_samples) {
samples_file.open(samples_file_loc[0].begin(), std::fstream::app);
}
// Initial value for gamma
gamma = 1;
// Initialize identity matrix
iden.setIdentity(p, p);
// Sampler loop ----------------------------------------
// Clock timer objects and initialization; requires POSIX system
CLOCK_START(OVERALL);
for (int s = 0; s < nsamp; s++) {
// Sample beta
CLOCK_START(INVERSE)
// Leverage the fact that we have a p.d. matrix to obtain inverse
V = (Sigma_inv_0 + (gamma * tXX)).llt().solve(iden);
CLOCK_STOP(INVERSE);
m = gamma * V * tXy;
CLOCK_START(SAMP_NORM)
beta = samp_mvnorm(m, V);
CLOCK_STOP(SAMP_NORM);
// Sample gamma
err = y - (X * beta);
SSR = err.squaredNorm();
scaleval = 2 / (nu_sigma_sq_0 + SSR);
gamma = R::rgamma(shapeval, scaleval);
// Conditionally store data in memory / write to file
if (write_samples) {
bcurr = beta.data();
bend = bcurr + p;
for (; bcurr < bend; bcurr++) {
samples_file << *bcurr << " ";
}
samples_file << gamma << "\n";
}
if (print_stats) {
out_beta.col(s) = beta;
out_gamma(s) = gamma;
}
// Allow user to interrupt and return to the R REPL
if (s % 1000 == 0) {
Rcpp::checkUserInterrupt();
}
}
// Calculate elapsed time
CLOCK_STOP(OVERALL);
// Print summary statistics ----------------------------
if (print_stats) {
// Allocate memory for tables with cols true values and quantiles
Eigen::MatrixXd table_beta_quant;
Eigen::MatrixXd table_gamma_quant;
Eigen::VectorXd probs(3);
// Transpose to column-major format
out_beta.transposeInPlace();
// Calculate empirical quantiles
probs << 0.025, 0.500, 0.975;
table_beta_quant = quantile_table(true_beta, out_beta, probs);
table_gamma_quant = quantile_table(1 / (true_sigma * true_sigma), out_gamma, probs);
Rcpp::Rcout << "\n"
<< "Parameter specifications:\n"
<< "-------------------------\n"
<< "n: " << n << "\n"
<< "p: " << p << "\n"
<< "prop_nonzero: " << prop_nonzero << "\n"
<< "true_beta_sd: " << true_beta_sd << "\n"
<< "true_sigma: " << true_sigma << "\n"
<< "sd_x: " << sd_x << "\n"
<< "nsamp: " << nsamp << "\n"
<< "print_stats: " << print_stats << "\n"
<< "write_samples: " << write_samples << "\n"
<< "samples_file_loc: " << samples_file_loc << "\n"
<< "decomp_method: " << decomp_method << "\n";
// Set printing of fields to be a fixed format with precision 4
Rcpp::Rcout.setf(std::ios::fixed, std::ios::floatfield);
Rcpp::Rcout.precision(4);
Rcpp::Rcout << "\n"
<< "Elapsed time:\n"
<< "-------------\n"
<< "Inverse: " << elapsed[INVERSE] << "\n"
<< "Sampling normal: " << elapsed[SAMP_NORM] << "\n"
<< "Overall: " << elapsed[OVERALL] << "\n"
<< "\n";
// Set printing of matrices
Eigen::IOFormat matprint(4, 0, " ", "\n", " ", "", "", "");
Eigen::IOFormat gamprint(4, 0, " ", "\n", " ", "", "", "");
Rcpp::Rcout << "true beta 2.5% 50% 97.5%\n"
<< "------------------------------------\n"
<< table_beta_quant.format(matprint) << "\n"
<< "\n"
<< " true gam 2.5% 50% 97.5%\n"
<< "------------------------------------\n"
<< table_gamma_quant.format(gamprint) << "\n"
<< "\n";
}
// Return computational time
return Rcpp::NumericVector::create(Rcpp::Named("inverse") = elapsed[INVERSE],
Rcpp::Named("mvnsamp") = elapsed[SAMP_NORM],
Rcpp::Named("overall") = elapsed[OVERALL]);
}