-
Notifications
You must be signed in to change notification settings - Fork 0
/
raymarch_shape_operators.glsl
221 lines (180 loc) · 5.74 KB
/
raymarch_shape_operators.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#define O gl_FragColor
#define U gl_FragCoord.xy
#define iGlobalTime iTime
#define R iResolution.xy
#define MaxSteps 100
#define MinRayDistance 0.001
#define MaxRayDistance 20.
#define MinShadowRayDistance 0.01
#define MaxShadowRayDistance 20.
#define NormalPrecision 0.001
float smin( in float a, in float b, float k )
{
float h = max( k - abs(a-b), 0.0 );
return min(a,b) - h*h/(k*4.0);
}
float smax( in float a, in float b, float k )
{
float h = max( k - abs(a-b), 0.0 );
return max(a,b) + h*h/(k*4.0);
}
mat3 rotateY(float angle) {
float c = cos(angle), s = sin(angle);
return mat3(c, 0, -s, 0, 1, 0, s, 0, c);
}
float sdBox( vec3 p, vec3 b )
{
vec3 d = abs(p) - b;
return length(max(d,0.0));
}
float sdPlane(in vec3 p, in vec4 n)
{
return dot(p,n.xyz) + n.w;
}
float sdSphere(vec3 p, float r)
{
return length(p) - r;
}
float sdCapsule(vec3 p, vec3 a, vec3 b, float r) {
vec3 ab = b-a;
vec3 ap = p-a;
float t = dot(ab, ap) / dot(ab, ab);
t = clamp(t, 0., 1.);
vec3 c = a + t * ab;
float d = length(p-c) - r;
return d;
}
vec2 map( in vec3 pos )
{
float id = 1.0;
float d = sdBox( pos - vec3(0,-0.71,0), 0.5*normalize(vec3(1,1,1)) ); // Box
float d3 = sdSphere(pos - vec3(0,-0.70,0), 0.3);
d = smax(d, -d3, 0.1);
float d2 = pos.y + 1.0; // Plane
if( d2 < d ) id = 2.0;
d = min(d, d2);
return vec2(d, id);
}
vec3 calcNormal( in vec3 pos )
{
vec2 e = vec2(NormalPrecision, 0.0);
return normalize( vec3(map(pos+e.xyy).x-map(pos-e.xyy).x,
map(pos+e.yxy).x-map(pos-e.yxy).x,
map(pos+e.yyx).x-map(pos-e.yyx).x ) );
}
float castShadow( in vec3 ro, vec3 rd )
{
float res = 1.0;
float t = 0.01;
for( int i=0; i<MaxSteps; i++ )
{
vec3 pos = ro + t*rd;
float h = map( pos ).x;
res = min( res, 16.0*h/t );
if ( res<MinShadowRayDistance ) break;
t += h;
if( t > MaxShadowRayDistance ) break;
}
return clamp(res,0.0,1.0);
}
vec2 castRay( in vec3 ro, vec3 rd )
{
float m = -1.0;
float t = 0.0;
for( int i=0; i<100; i++ )
{
vec3 pos = ro + t*rd;
vec2 h = map( pos );
m = h.y;
if( h.x<MinRayDistance )
break;
t += h.x;
if( t>MaxRayDistance )
break;
}
if( t>MaxRayDistance ) m=-1.0;
return vec2(t,m);
}
#define AA 3.
void main() {
float time = iTime;
vec3 res = vec3(0);
for(float aax=0.; aax < AA; aax++)
for(float aay=0.; aay < AA; aay++)
{
vec2 p = (2.*(U + vec2(aax, aay) / AA)-R)/R.y;
mat3 rot = rotateY(3.14*4.0*(iMouse.x/iResolution.x));
vec3 ro = vec3(0,1,2);
vec3 ta = vec3(0,0,0.1);
ro *= rot;
ta *= rot;
vec3 forward = 2.*(iMouse.y/iResolution.y)*vec3(0,0,1) * rot;
vec3 translation = 0.*vec3(1,0,0);
ro += forward + translation;
ta += forward + translation;
// Set up camera
vec3 ww = normalize( ta-ro );
vec3 uu = normalize( cross(ww, vec3(0,1,0)) );
vec3 vv = normalize( cross(uu,ww) );
vec3 rd = normalize( p.x*uu + p.y*vv + 1.8*ww );
// Sky color.
vec3 col = vec3(1);
col = mix( col, vec3(0.7,0.75,0.8), exp(-10.0*rd.y) );
vec2 tm = castRay(ro, rd);
if( tm.y>0.0 )
{
// Calculate position and normal.
float t = tm.x;
vec3 pos = ro + t*rd;
vec3 nor = calcNormal(pos);
vec3 mate = vec3(0.18);
// Select material color.
if( tm.y < 1.5 ) {
mate = vec3(0.25);
}
else if( tm.y < 2.5 )
{
vec2 checker = trunc(fract(pos.xz)*4.);
float cm = (mod(checker.x + checker.y, 2.0) == 0.0) ? 1. : 0.;
mate = vec3(0.3) * cm;
float d = length(pos.xz);
if(abs(d - 1.0) < 0.175)
{
float r = 3.14/2.*smoothstep(0.0, 0.2, fract(iTime/8.))
+ 3.14/2.*smoothstep(0.6, 0.8, fract(iTime/8.));
vec2 rc = trunc(4.*fract(pos.xz * mat2(cos(r), -sin(r), sin(r), cos(r))));
float rcm = (mod(rc.x + rc.y, 2.0) == 0.0) ? 1. : 0.;
mate = vec3(0.3) * rcm;
}
if(abs(d - 1.350) < 0.175)
{
float r = 3.14/2.*smoothstep(0.2, 0.4, fract(iTime/8.))
+ 3.14/2.*smoothstep(0.8, 1.0, fract(iTime/8.));
vec2 rc = trunc(4.*fract(pos.xz * mat2(cos(r), sin(r), -sin(r), cos(r))));
float rcm = (mod(rc.x + rc.y, 2.0) == 0.0) ? 1. : 0.;
mate = vec3(0.3) * rcm;
}
}
else if( tm.y < 3.5 )
{
mate = vec3(1,0,0);
}
// Calculating lightning.
float sunAngle = iTime;
mat3 rotSun = rotateY(sunAngle/32.);
vec3 sun_dir = normalize( vec3(0.1,0.1,0.2)*rotSun );
float sun_dif = clamp( dot(nor,sun_dir),0.0,1.0);
float sun_sha = castShadow( pos+nor*0.02, sun_dir );
float sky_dif = clamp( 0.5 + 0.5*dot(nor,vec3(0.0,1.0,0.0)), 0.0, 1.0);
float bou_dif = clamp( 0.5 + 0.5*dot(nor,vec3(0.0,-1.0,0.0)), 0.0, 1.0);
// Applying lightning.
col = mate*vec3(7.0,4.5,3.0)*sun_dif*sun_sha;
col += mate*vec3(0.5,0.8,0.9)*sky_dif;
col += mate*vec3(0.7,0.3,0.2)*bou_dif;
}
res += clamp(col, 0.0, 1.0);
}
// Gamma correction
res = pow( res / (AA * AA), vec3(0.4545) );
O = vec4(res, 1.0);
}