forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathversionbits.cpp
302 lines (255 loc) · 12.6 KB
/
versionbits.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Copyright (c) 2016-2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <versionbits.h>
#include <consensus/params.h>
#include <limits>
static int calculateStartHeight(const CBlockIndex* pindexPrev, ThresholdState state, const int nPeriod, const ThresholdConditionCache& cache) {
int nStartHeight{std::numeric_limits<int>::max()};
// we are interested only in state STARTED
// For state DEFINED: it is not started yet, nothing to do
// For states LOCKED_IN, FAILED, ACTIVE: it is too late, nothing to do
while (state == ThresholdState::STARTED) {
nStartHeight = std::min(pindexPrev->nHeight + 1, nStartHeight);
// we can walk back here because the only way for STARTED state to exist
// in cache already is to be calculated in previous runs via "walk forward"
// loop below starting from DEFINED state.
pindexPrev = pindexPrev->GetAncestor(pindexPrev->nHeight - nPeriod);
auto cache_it = cache.find(pindexPrev);
assert(cache_it != cache.end());
state = cache_it->second;
}
return nStartHeight;
}
ThresholdState AbstractThresholdConditionChecker::GetStateFor(const CBlockIndex* pindexPrev, const Consensus::Params& params, ThresholdConditionCache& cache) const
{
int nPeriod = Period(params);
int min_activation_height = MinActivationHeight(params);
int64_t nTimeStart = BeginTime(params);
int masternodeStartHeight = SignalHeight(pindexPrev, params);
int64_t nTimeTimeout = EndTime(params);
// Check if this deployment is always active.
if (nTimeStart == Consensus::BIP9Deployment::ALWAYS_ACTIVE) {
return ThresholdState::ACTIVE;
}
// Check if this deployment is never active.
if (nTimeStart == Consensus::BIP9Deployment::NEVER_ACTIVE) {
return ThresholdState::FAILED;
}
// A block's state is always the same as that of the first of its period, so it is computed based on a pindexPrev whose height equals a multiple of nPeriod - 1.
if (pindexPrev != nullptr) {
pindexPrev = pindexPrev->GetAncestor(pindexPrev->nHeight - ((pindexPrev->nHeight + 1) % nPeriod));
}
// Walk backwards in steps of nPeriod to find a pindexPrev whose information is known
std::vector<const CBlockIndex*> vToCompute;
while (cache.count(pindexPrev) == 0) {
if (pindexPrev == nullptr) {
// The genesis block is by definition defined.
cache[pindexPrev] = ThresholdState::DEFINED;
break;
}
if (pindexPrev->GetMedianTimePast() < nTimeStart || pindexPrev->nHeight < masternodeStartHeight) {
// Optimization: don't recompute down further, as we know every earlier block will be before the start time
cache[pindexPrev] = ThresholdState::DEFINED;
break;
}
vToCompute.push_back(pindexPrev);
pindexPrev = pindexPrev->GetAncestor(pindexPrev->nHeight - nPeriod);
}
// At this point, cache[pindexPrev] is known
assert(cache.count(pindexPrev));
ThresholdState state = cache[pindexPrev];
int nStartHeight = calculateStartHeight(pindexPrev, state, nPeriod, cache);
// Now walk forward and compute the state of descendants of pindexPrev
while (!vToCompute.empty()) {
ThresholdState stateNext = state;
pindexPrev = vToCompute.back();
vToCompute.pop_back();
switch (state) {
case ThresholdState::DEFINED: {
if (pindexPrev->GetMedianTimePast() >= nTimeStart && pindexPrev->nHeight >= masternodeStartHeight) {
stateNext = ThresholdState::STARTED;
nStartHeight = pindexPrev->nHeight + 1;
}
break;
}
case ThresholdState::STARTED: {
// We need to count
const CBlockIndex* pindexCount = pindexPrev;
int count = 0;
for (int i = 0; i < nPeriod; i++) {
if (Condition(pindexCount, params)) {
count++;
}
pindexCount = pindexCount->pprev;
}
assert(nStartHeight > 0 && nStartHeight < std::numeric_limits<int>::max());
int nAttempt = (pindexCount->nHeight + 1 - nStartHeight) / nPeriod;
if (count >= Threshold(params, nAttempt)) {
stateNext = ThresholdState::LOCKED_IN;
} else if (pindexPrev->GetMedianTimePast() >= nTimeTimeout) {
stateNext = ThresholdState::FAILED;
}
break;
}
case ThresholdState::LOCKED_IN: {
// Progresses into ACTIVE provided activation height will have been reached.
if (pindexPrev->nHeight + 1 >= min_activation_height) {
stateNext = ThresholdState::ACTIVE;
}
break;
}
case ThresholdState::FAILED:
case ThresholdState::ACTIVE: {
// Nothing happens, these are terminal states.
break;
}
}
cache[pindexPrev] = state = stateNext;
}
return state;
}
BIP9Stats AbstractThresholdConditionChecker::GetStateStatisticsFor(const CBlockIndex* pindex, const Consensus::Params& params, ThresholdConditionCache& cache) const
{
BIP9Stats stats = {};
stats.period = Period(params);
stats.threshold = Threshold(params, 0);
if (pindex == nullptr)
return stats;
// Find beginning of period
const CBlockIndex* pindexEndOfPrevPeriod = pindex->GetAncestor(pindex->nHeight - ((pindex->nHeight + 1) % stats.period));
stats.elapsed = pindex->nHeight - pindexEndOfPrevPeriod->nHeight;
// Re-calculate current threshold
int nAttempt{0};
const ThresholdState state = GetStateFor(pindexEndOfPrevPeriod, params, cache);
if (state == ThresholdState::STARTED) {
int nStartHeight = GetStateSinceHeightFor(pindexEndOfPrevPeriod, params, cache);
nAttempt = (pindexEndOfPrevPeriod->nHeight + 1 - nStartHeight)/stats.period;
}
stats.threshold = Threshold(params, nAttempt);
// Count from current block to beginning of period
int count = 0;
const CBlockIndex* currentIndex = pindex;
while (pindexEndOfPrevPeriod->nHeight != currentIndex->nHeight){
if (Condition(currentIndex, params))
count++;
currentIndex = currentIndex->pprev;
}
stats.count = count;
stats.possible = (stats.period - stats.threshold ) >= (stats.elapsed - count);
return stats;
}
int AbstractThresholdConditionChecker::GetStateSinceHeightFor(const CBlockIndex* pindexPrev, const Consensus::Params& params, ThresholdConditionCache& cache) const
{
int64_t start_time = BeginTime(params);
if (start_time == Consensus::BIP9Deployment::ALWAYS_ACTIVE || start_time == Consensus::BIP9Deployment::NEVER_ACTIVE) {
return 0;
}
const ThresholdState initialState = GetStateFor(pindexPrev, params, cache);
// BIP 9 about state DEFINED: "The genesis block is by definition in this state for each deployment."
if (initialState == ThresholdState::DEFINED) {
return 0;
}
const int nPeriod = Period(params);
// A block's state is always the same as that of the first of its period, so it is computed based on a pindexPrev whose height equals a multiple of nPeriod - 1.
// To ease understanding of the following height calculation, it helps to remember that
// right now pindexPrev points to the block prior to the block that we are computing for, thus:
// if we are computing for the last block of a period, then pindexPrev points to the second to last block of the period, and
// if we are computing for the first block of a period, then pindexPrev points to the last block of the previous period.
// The parent of the genesis block is represented by nullptr.
pindexPrev = pindexPrev->GetAncestor(pindexPrev->nHeight - ((pindexPrev->nHeight + 1) % nPeriod));
const CBlockIndex* previousPeriodParent = pindexPrev->GetAncestor(pindexPrev->nHeight - nPeriod);
while (previousPeriodParent != nullptr && GetStateFor(previousPeriodParent, params, cache) == initialState) {
pindexPrev = previousPeriodParent;
previousPeriodParent = pindexPrev->GetAncestor(pindexPrev->nHeight - nPeriod);
}
// Adjust the result because right now we point to the parent block.
return pindexPrev->nHeight + 1;
}
namespace
{
/**
* Class to implement versionbits logic.
*/
class VersionBitsConditionChecker : public AbstractThresholdConditionChecker {
private:
const Consensus::DeploymentPos id;
protected:
int64_t BeginTime(const Consensus::Params& params) const override { return params.vDeployments[id].nStartTime; }
int SignalHeight(const CBlockIndex* const pindexPrev, const Consensus::Params& params) const override {
const auto& deployment = params.vDeployments[id];
if (!deployment.useEHF) {
return 0;
}
// ehfManager should be initialized before first usage of VersionBitsConditionChecker
const auto ehfManagerPtr = AbstractEHFManager::getInstance();
const auto signals = ehfManagerPtr->GetSignalsStage(pindexPrev);
const auto it = signals.find(deployment.bit);
if (it == signals.end()) {
return std::numeric_limits<int>::max();
}
return it->second;
}
int64_t EndTime(const Consensus::Params& params) const override { return params.vDeployments[id].nTimeout; }
int MinActivationHeight(const Consensus::Params& params) const override { return params.vDeployments[id].min_activation_height; }
int Period(const Consensus::Params& params) const override { return params.vDeployments[id].nWindowSize ? params.vDeployments[id].nWindowSize : params.nMinerConfirmationWindow; }
int Threshold(const Consensus::Params& params, int nAttempt) const override
{
if (params.vDeployments[id].nThresholdStart == 0) {
return params.nRuleChangeActivationThreshold;
}
if (params.vDeployments[id].nThresholdMin == 0 || params.vDeployments[id].nFalloffCoeff == 0) {
return params.vDeployments[id].nThresholdStart;
}
int64_t nThresholdCalc = params.vDeployments[id].nThresholdStart - nAttempt * nAttempt * Period(params) / 100 / params.vDeployments[id].nFalloffCoeff;
return std::max(params.vDeployments[id].nThresholdMin, nThresholdCalc);
}
bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const override
{
return (((pindex->nVersion & VERSIONBITS_TOP_MASK) == VERSIONBITS_TOP_BITS) && (pindex->nVersion & Mask(params)) != 0);
}
public:
explicit VersionBitsConditionChecker(Consensus::DeploymentPos id_) : id(id_) {}
uint32_t Mask(const Consensus::Params& params) const { return ((uint32_t)1) << params.vDeployments[id].bit; }
};
} // namespace
ThresholdState VersionBitsCache::State(const CBlockIndex* pindexPrev, const Consensus::Params& params, Consensus::DeploymentPos pos)
{
LOCK(m_mutex);
return VersionBitsConditionChecker(pos).GetStateFor(pindexPrev, params, m_caches[pos]);
}
BIP9Stats VersionBitsCache::Statistics(const CBlockIndex* pindexPrev, const Consensus::Params& params, Consensus::DeploymentPos pos)
{
LOCK(m_mutex);
return VersionBitsConditionChecker(pos).GetStateStatisticsFor(pindexPrev, params, m_caches[pos]);
}
int VersionBitsCache::StateSinceHeight(const CBlockIndex* pindexPrev, const Consensus::Params& params, Consensus::DeploymentPos pos)
{
LOCK(m_mutex);
return VersionBitsConditionChecker(pos).GetStateSinceHeightFor(pindexPrev, params, m_caches[pos]);
}
uint32_t VersionBitsCache::Mask(const Consensus::Params& params, Consensus::DeploymentPos pos)
{
return VersionBitsConditionChecker(pos).Mask(params);
}
int32_t VersionBitsCache::ComputeBlockVersion(const CBlockIndex* pindexPrev, const Consensus::Params& params)
{
LOCK(m_mutex);
int32_t nVersion = VERSIONBITS_TOP_BITS;
for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; i++) {
Consensus::DeploymentPos pos = static_cast<Consensus::DeploymentPos>(i);
ThresholdState state = VersionBitsConditionChecker(pos).GetStateFor(pindexPrev, params, m_caches[pos]);
if (state == ThresholdState::LOCKED_IN || state == ThresholdState::STARTED) {
nVersion |= Mask(params, pos);
}
}
return nVersion;
}
void VersionBitsCache::Clear()
{
LOCK(m_mutex);
for (unsigned int d = 0; d < Consensus::MAX_VERSION_BITS_DEPLOYMENTS; d++) {
m_caches[d].clear();
}
}
AbstractEHFManager* AbstractEHFManager::globalInstance{nullptr};