From c5b7e65da0e5611e5c58c47e02673fa6c1205738 Mon Sep 17 00:00:00 2001 From: github-actions Date: Wed, 29 Nov 2023 06:32:56 +0000 Subject: [PATCH] Generated by commit 2e0c20dff165a60bcd220a30953dae1cb3d118b5, pushed by GitHub run 7028851547. --- .../datascience.tables.Table.__init__.html | 2 +- .../datascience.tables.Table.append.html | 2 +- ...atascience.tables.Table.append_column.html | 2 +- .../datascience.tables.Table.apply.html | 2 +- .../datascience.tables.Table.as_html.html | 2 +- .../datascience.tables.Table.as_text.html | 2 +- .../datascience.tables.Table.bar.html | 2 +- .../datascience.tables.Table.barh.html | 2 +- .../datascience.tables.Table.bin.html | 2 +- .../datascience.tables.Table.boxplot.html | 2 +- .../datascience.tables.Table.column.html | 2 +- ...datascience.tables.Table.column_index.html | 2 +- .../datascience.tables.Table.columns.html | 2 +- .../datascience.tables.Table.copy.html | 2 +- .../datascience.tables.Table.drop.html | 2 +- .../datascience.tables.Table.exclude.html | 2 +- .../datascience.tables.Table.first.html | 2 +- .../datascience.tables.Table.from_array.html | 2 +- ...cience.tables.Table.from_columns_dict.html | 2 +- .../datascience.tables.Table.from_df.html | 2 +- ...datascience.tables.Table.from_records.html | 2 +- .../datascience.tables.Table.group.html | 2 +- .../datascience.tables.Table.group_bar.html | 2 +- .../datascience.tables.Table.group_barh.html | 2 +- .../datascience.tables.Table.groups.html | 2 +- .../datascience.tables.Table.hist.html | 2 +- ...tascience.tables.Table.hist_of_counts.html | 2 +- .../datascience.tables.Table.index_by.html | 2 +- ...cience.tables.Table.interactive_plots.html | 2 +- .../datascience.tables.Table.join.html | 2 +- .../datascience.tables.Table.labels.html | 2 +- .../datascience.tables.Table.last.html | 2 +- .../datascience.tables.Table.move_column.html | 2 +- .../datascience.tables.Table.move_to_end.html | 2 +- ...atascience.tables.Table.move_to_start.html | 2 +- .../datascience.tables.Table.num_columns.html | 2 +- .../datascience.tables.Table.num_rows.html | 2 +- .../datascience.tables.Table.percentile.html | 2 +- .../datascience.tables.Table.pivot.html | 2 +- .../datascience.tables.Table.pivot_bin.html | 2 +- .../datascience.tables.Table.pivot_hist.html | 2 +- .../datascience.tables.Table.plot.html | 2 +- .../datascience.tables.Table.read_table.html | 2 +- .../datascience.tables.Table.relabel.html | 2 +- .../datascience.tables.Table.relabeled.html | 2 +- .../datascience.tables.Table.remove.html | 2 +- .../datascience.tables.Table.row.html | 2 +- .../datascience.tables.Table.rows.html | 2 +- .../datascience.tables.Table.sample.html | 2 +- ...tables.Table.sample_from_distribution.html | 2 +- .../datascience.tables.Table.scatter.html | 2 +- .../datascience.tables.Table.scatter3d.html | 2 +- .../datascience.tables.Table.select.html | 2 +- .../datascience.tables.Table.set_format.html | 2 +- .../datascience.tables.Table.show.html | 2 +- .../datascience.tables.Table.shuffle.html | 2 +- .../datascience.tables.Table.sort.html | 2 +- .../datascience.tables.Table.split.html | 2 +- .../datascience.tables.Table.stack.html | 2 +- ...datascience.tables.Table.static_plots.html | 2 +- .../datascience.tables.Table.stats.html | 2 +- .../datascience.tables.Table.take.html | 2 +- .../datascience.tables.Table.to_array.html | 2 +- .../datascience.tables.Table.to_csv.html | 2 +- .../datascience.tables.Table.to_df.html | 2 +- .../datascience.tables.Table.values.html | 2 +- .../datascience.tables.Table.where.html | 2 +- .../datascience.tables.Table.with_column.html | 2 +- ...datascience.tables.Table.with_columns.html | 2 +- .../datascience.tables.Table.with_row.html | 2 +- .../datascience.tables.Table.with_rows.html | 2 +- _images/barh.png | Bin 8838 -> 8838 bytes _images/hist.png | Bin 11258 -> 12818 bytes _images/hist_binned.png | Bin 11598 -> 12169 bytes _images/hist_overlay.png | Bin 11598 -> 12169 bytes _images/m_smoker_weights.png | Bin 9753 -> 9753 bytes _images/not_m_smoker_weights.png | Bin 11045 -> 11045 bytes _images/plot.png | Bin 48036 -> 47159 bytes _images/scatter.png | Bin 14074 -> 17366 bytes _images/scatter_line.png | Bin 15051 -> 19233 bytes formats.html | 2 +- index.html | 4 +- maps.html | 2 +- predicates.html | 2 +- reference-nb/datascience-reference.html | 2 +- searchindex.js | 2 +- tables.html | 2 +- tutorial.html | 50 +++++++++--------- util.html | 2 +- 89 files changed, 105 insertions(+), 105 deletions(-) diff --git a/_autosummary/datascience.tables.Table.__init__.html b/_autosummary/datascience.tables.Table.__init__.html index 5244519b0..8e88d0810 100644 --- a/_autosummary/datascience.tables.Table.__init__.html +++ b/_autosummary/datascience.tables.Table.__init__.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.__init__ — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.append.html b/_autosummary/datascience.tables.Table.append.html index c024630be..34ac96d34 100644 --- a/_autosummary/datascience.tables.Table.append.html +++ b/_autosummary/datascience.tables.Table.append.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.append — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.append_column.html b/_autosummary/datascience.tables.Table.append_column.html index d07fefb58..5d109c26d 100644 --- a/_autosummary/datascience.tables.Table.append_column.html +++ b/_autosummary/datascience.tables.Table.append_column.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.append_column — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.apply.html b/_autosummary/datascience.tables.Table.apply.html index 55e666005..aba405f86 100644 --- a/_autosummary/datascience.tables.Table.apply.html +++ b/_autosummary/datascience.tables.Table.apply.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.apply — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.as_html.html b/_autosummary/datascience.tables.Table.as_html.html index b0dd73601..8b65c4130 100644 --- a/_autosummary/datascience.tables.Table.as_html.html +++ b/_autosummary/datascience.tables.Table.as_html.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.as_html — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.as_text.html b/_autosummary/datascience.tables.Table.as_text.html index 5fdf52182..ee1b00a2f 100644 --- a/_autosummary/datascience.tables.Table.as_text.html +++ b/_autosummary/datascience.tables.Table.as_text.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.as_text — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.bar.html b/_autosummary/datascience.tables.Table.bar.html index 78fd3a256..d9e5eef27 100644 --- a/_autosummary/datascience.tables.Table.bar.html +++ b/_autosummary/datascience.tables.Table.bar.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.bar — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.barh.html b/_autosummary/datascience.tables.Table.barh.html index 07ff5db9b..9fda33b5d 100644 --- a/_autosummary/datascience.tables.Table.barh.html +++ b/_autosummary/datascience.tables.Table.barh.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.barh — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.bin.html b/_autosummary/datascience.tables.Table.bin.html index cc2d76867..6fae2afce 100644 --- a/_autosummary/datascience.tables.Table.bin.html +++ b/_autosummary/datascience.tables.Table.bin.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.bin — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.boxplot.html b/_autosummary/datascience.tables.Table.boxplot.html index c984779be..78bdd63b9 100644 --- a/_autosummary/datascience.tables.Table.boxplot.html +++ b/_autosummary/datascience.tables.Table.boxplot.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.boxplot — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.column.html b/_autosummary/datascience.tables.Table.column.html index 4521823ff..be7e3f5d0 100644 --- a/_autosummary/datascience.tables.Table.column.html +++ b/_autosummary/datascience.tables.Table.column.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.column — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.column_index.html b/_autosummary/datascience.tables.Table.column_index.html index c9fb06ebb..d13723403 100644 --- a/_autosummary/datascience.tables.Table.column_index.html +++ b/_autosummary/datascience.tables.Table.column_index.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.column_index — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.columns.html b/_autosummary/datascience.tables.Table.columns.html index 62fad76d7..56c68ffcc 100644 --- a/_autosummary/datascience.tables.Table.columns.html +++ b/_autosummary/datascience.tables.Table.columns.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.columns — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.copy.html b/_autosummary/datascience.tables.Table.copy.html index bb7849f4e..cd4a62306 100644 --- a/_autosummary/datascience.tables.Table.copy.html +++ b/_autosummary/datascience.tables.Table.copy.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.copy — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.drop.html b/_autosummary/datascience.tables.Table.drop.html index b26c40ba3..8a0996314 100644 --- a/_autosummary/datascience.tables.Table.drop.html +++ b/_autosummary/datascience.tables.Table.drop.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.drop — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.exclude.html b/_autosummary/datascience.tables.Table.exclude.html index 3f6dbdf29..49e4baeef 100644 --- a/_autosummary/datascience.tables.Table.exclude.html +++ b/_autosummary/datascience.tables.Table.exclude.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.exclude — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.first.html b/_autosummary/datascience.tables.Table.first.html index 43c8bf653..f9b27a442 100644 --- a/_autosummary/datascience.tables.Table.first.html +++ b/_autosummary/datascience.tables.Table.first.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.first — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.from_array.html b/_autosummary/datascience.tables.Table.from_array.html index 9ae526b60..914bd4bd3 100644 --- a/_autosummary/datascience.tables.Table.from_array.html +++ b/_autosummary/datascience.tables.Table.from_array.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.from_array — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.from_columns_dict.html b/_autosummary/datascience.tables.Table.from_columns_dict.html index 5f2167fd2..deae850af 100644 --- a/_autosummary/datascience.tables.Table.from_columns_dict.html +++ b/_autosummary/datascience.tables.Table.from_columns_dict.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.from_columns_dict — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.from_df.html b/_autosummary/datascience.tables.Table.from_df.html index b7d1b21ad..7d8117f60 100644 --- a/_autosummary/datascience.tables.Table.from_df.html +++ b/_autosummary/datascience.tables.Table.from_df.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.from_df — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.from_records.html b/_autosummary/datascience.tables.Table.from_records.html index 87742d08e..4b807983e 100644 --- a/_autosummary/datascience.tables.Table.from_records.html +++ b/_autosummary/datascience.tables.Table.from_records.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.from_records — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.group.html b/_autosummary/datascience.tables.Table.group.html index fbcac4b43..ce8e6f601 100644 --- a/_autosummary/datascience.tables.Table.group.html +++ b/_autosummary/datascience.tables.Table.group.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.group — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.group_bar.html b/_autosummary/datascience.tables.Table.group_bar.html index ebf85f21f..9d2fcfb6f 100644 --- a/_autosummary/datascience.tables.Table.group_bar.html +++ b/_autosummary/datascience.tables.Table.group_bar.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.group_bar — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.group_barh.html b/_autosummary/datascience.tables.Table.group_barh.html index 311f51e69..7a44a457b 100644 --- a/_autosummary/datascience.tables.Table.group_barh.html +++ b/_autosummary/datascience.tables.Table.group_barh.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.group_barh — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.groups.html b/_autosummary/datascience.tables.Table.groups.html index 4a1a4261e..c093852bd 100644 --- a/_autosummary/datascience.tables.Table.groups.html +++ b/_autosummary/datascience.tables.Table.groups.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.groups — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.hist.html b/_autosummary/datascience.tables.Table.hist.html index 64468f7a5..1279ed2c1 100644 --- a/_autosummary/datascience.tables.Table.hist.html +++ b/_autosummary/datascience.tables.Table.hist.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.hist — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.hist_of_counts.html b/_autosummary/datascience.tables.Table.hist_of_counts.html index dee0932ff..9358387d8 100644 --- a/_autosummary/datascience.tables.Table.hist_of_counts.html +++ b/_autosummary/datascience.tables.Table.hist_of_counts.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.hist_of_counts — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.index_by.html b/_autosummary/datascience.tables.Table.index_by.html index 6501df327..88c642410 100644 --- a/_autosummary/datascience.tables.Table.index_by.html +++ b/_autosummary/datascience.tables.Table.index_by.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.index_by — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.interactive_plots.html b/_autosummary/datascience.tables.Table.interactive_plots.html index 3fd324bc6..8206186a7 100644 --- a/_autosummary/datascience.tables.Table.interactive_plots.html +++ b/_autosummary/datascience.tables.Table.interactive_plots.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.interactive_plots — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.join.html b/_autosummary/datascience.tables.Table.join.html index 8dbf1910b..411232e05 100644 --- a/_autosummary/datascience.tables.Table.join.html +++ b/_autosummary/datascience.tables.Table.join.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.join — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.labels.html b/_autosummary/datascience.tables.Table.labels.html index c8823db9d..1d597f7fc 100644 --- a/_autosummary/datascience.tables.Table.labels.html +++ b/_autosummary/datascience.tables.Table.labels.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.labels — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.last.html b/_autosummary/datascience.tables.Table.last.html index ea6a38c2a..310d95655 100644 --- a/_autosummary/datascience.tables.Table.last.html +++ b/_autosummary/datascience.tables.Table.last.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.last — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.move_column.html b/_autosummary/datascience.tables.Table.move_column.html index c674accd6..1df77bed7 100644 --- a/_autosummary/datascience.tables.Table.move_column.html +++ b/_autosummary/datascience.tables.Table.move_column.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.move_column — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.move_to_end.html b/_autosummary/datascience.tables.Table.move_to_end.html index 3324d8af4..9d37f9eb7 100644 --- a/_autosummary/datascience.tables.Table.move_to_end.html +++ b/_autosummary/datascience.tables.Table.move_to_end.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.move_to_end — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.move_to_start.html b/_autosummary/datascience.tables.Table.move_to_start.html index dd78725de..d1f16c651 100644 --- a/_autosummary/datascience.tables.Table.move_to_start.html +++ b/_autosummary/datascience.tables.Table.move_to_start.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.move_to_start — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.num_columns.html b/_autosummary/datascience.tables.Table.num_columns.html index 7c18916ef..b3e4c420d 100644 --- a/_autosummary/datascience.tables.Table.num_columns.html +++ b/_autosummary/datascience.tables.Table.num_columns.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.num_columns — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.num_rows.html b/_autosummary/datascience.tables.Table.num_rows.html index db6d678e9..7649b5bbf 100644 --- a/_autosummary/datascience.tables.Table.num_rows.html +++ b/_autosummary/datascience.tables.Table.num_rows.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.num_rows — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.percentile.html b/_autosummary/datascience.tables.Table.percentile.html index df0c801de..881c87fb1 100644 --- a/_autosummary/datascience.tables.Table.percentile.html +++ b/_autosummary/datascience.tables.Table.percentile.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.percentile — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.pivot.html b/_autosummary/datascience.tables.Table.pivot.html index cddb6f458..9e51ab387 100644 --- a/_autosummary/datascience.tables.Table.pivot.html +++ b/_autosummary/datascience.tables.Table.pivot.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.pivot — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.pivot_bin.html b/_autosummary/datascience.tables.Table.pivot_bin.html index 9dcb1e36c..db7fcc54f 100644 --- a/_autosummary/datascience.tables.Table.pivot_bin.html +++ b/_autosummary/datascience.tables.Table.pivot_bin.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.pivot_bin — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.pivot_hist.html b/_autosummary/datascience.tables.Table.pivot_hist.html index d8ae48ca8..bef75a596 100644 --- a/_autosummary/datascience.tables.Table.pivot_hist.html +++ b/_autosummary/datascience.tables.Table.pivot_hist.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.pivot_hist — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.plot.html b/_autosummary/datascience.tables.Table.plot.html index be61f3688..0e062bf2d 100644 --- a/_autosummary/datascience.tables.Table.plot.html +++ b/_autosummary/datascience.tables.Table.plot.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.plot — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.read_table.html b/_autosummary/datascience.tables.Table.read_table.html index a81d17ac3..7967f3ad0 100644 --- a/_autosummary/datascience.tables.Table.read_table.html +++ b/_autosummary/datascience.tables.Table.read_table.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.read_table — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.relabel.html b/_autosummary/datascience.tables.Table.relabel.html index 9efac96e7..da85fea1a 100644 --- a/_autosummary/datascience.tables.Table.relabel.html +++ b/_autosummary/datascience.tables.Table.relabel.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.relabel — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.relabeled.html b/_autosummary/datascience.tables.Table.relabeled.html index 3df5c95a2..f8f26c9cd 100644 --- a/_autosummary/datascience.tables.Table.relabeled.html +++ b/_autosummary/datascience.tables.Table.relabeled.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.relabeled — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.remove.html b/_autosummary/datascience.tables.Table.remove.html index 7b8ed731c..ae9a36d99 100644 --- a/_autosummary/datascience.tables.Table.remove.html +++ b/_autosummary/datascience.tables.Table.remove.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.remove — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.row.html b/_autosummary/datascience.tables.Table.row.html index 4497872bb..e657fd28a 100644 --- a/_autosummary/datascience.tables.Table.row.html +++ b/_autosummary/datascience.tables.Table.row.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.row — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.rows.html b/_autosummary/datascience.tables.Table.rows.html index 7ae622904..5d6488705 100644 --- a/_autosummary/datascience.tables.Table.rows.html +++ b/_autosummary/datascience.tables.Table.rows.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.rows — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.sample.html b/_autosummary/datascience.tables.Table.sample.html index 8e808723d..711eb57d7 100644 --- a/_autosummary/datascience.tables.Table.sample.html +++ b/_autosummary/datascience.tables.Table.sample.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.sample — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.sample_from_distribution.html b/_autosummary/datascience.tables.Table.sample_from_distribution.html index d1e2788ac..c5bfd8ab7 100644 --- a/_autosummary/datascience.tables.Table.sample_from_distribution.html +++ b/_autosummary/datascience.tables.Table.sample_from_distribution.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.sample_from_distribution — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.scatter.html b/_autosummary/datascience.tables.Table.scatter.html index 84a4941fd..81ad22692 100644 --- a/_autosummary/datascience.tables.Table.scatter.html +++ b/_autosummary/datascience.tables.Table.scatter.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.scatter — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.scatter3d.html b/_autosummary/datascience.tables.Table.scatter3d.html index 7fb97f0b4..73643c34d 100644 --- a/_autosummary/datascience.tables.Table.scatter3d.html +++ b/_autosummary/datascience.tables.Table.scatter3d.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.scatter3d — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.select.html b/_autosummary/datascience.tables.Table.select.html index d62d5bbb9..988b200e1 100644 --- a/_autosummary/datascience.tables.Table.select.html +++ b/_autosummary/datascience.tables.Table.select.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.select — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.set_format.html b/_autosummary/datascience.tables.Table.set_format.html index 13e27dd23..33beba171 100644 --- a/_autosummary/datascience.tables.Table.set_format.html +++ b/_autosummary/datascience.tables.Table.set_format.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.set_format — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.show.html b/_autosummary/datascience.tables.Table.show.html index 261981f8f..c49003ad1 100644 --- a/_autosummary/datascience.tables.Table.show.html +++ b/_autosummary/datascience.tables.Table.show.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.show — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.shuffle.html b/_autosummary/datascience.tables.Table.shuffle.html index 91b93e272..3a38193c3 100644 --- a/_autosummary/datascience.tables.Table.shuffle.html +++ b/_autosummary/datascience.tables.Table.shuffle.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.shuffle — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.sort.html b/_autosummary/datascience.tables.Table.sort.html index a982feffe..4dc15b753 100644 --- a/_autosummary/datascience.tables.Table.sort.html +++ b/_autosummary/datascience.tables.Table.sort.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.sort — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.split.html b/_autosummary/datascience.tables.Table.split.html index 00173ab61..04c8ddcac 100644 --- a/_autosummary/datascience.tables.Table.split.html +++ b/_autosummary/datascience.tables.Table.split.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.split — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.stack.html b/_autosummary/datascience.tables.Table.stack.html index 112b0efa8..0995e8c47 100644 --- a/_autosummary/datascience.tables.Table.stack.html +++ b/_autosummary/datascience.tables.Table.stack.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.stack — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.static_plots.html b/_autosummary/datascience.tables.Table.static_plots.html index 7f8eff108..4c274f6e9 100644 --- a/_autosummary/datascience.tables.Table.static_plots.html +++ b/_autosummary/datascience.tables.Table.static_plots.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.static_plots — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.stats.html b/_autosummary/datascience.tables.Table.stats.html index 2b8baf48e..553306b88 100644 --- a/_autosummary/datascience.tables.Table.stats.html +++ b/_autosummary/datascience.tables.Table.stats.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.stats — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.take.html b/_autosummary/datascience.tables.Table.take.html index eab8cfce8..be40fde46 100644 --- a/_autosummary/datascience.tables.Table.take.html +++ b/_autosummary/datascience.tables.Table.take.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.take — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.to_array.html b/_autosummary/datascience.tables.Table.to_array.html index 2a5e3b71f..040b5b122 100644 --- a/_autosummary/datascience.tables.Table.to_array.html +++ b/_autosummary/datascience.tables.Table.to_array.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.to_array — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.to_csv.html b/_autosummary/datascience.tables.Table.to_csv.html index 6ef195492..68d1487c9 100644 --- a/_autosummary/datascience.tables.Table.to_csv.html +++ b/_autosummary/datascience.tables.Table.to_csv.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.to_csv — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.to_df.html b/_autosummary/datascience.tables.Table.to_df.html index 3379fd998..188a589b3 100644 --- a/_autosummary/datascience.tables.Table.to_df.html +++ b/_autosummary/datascience.tables.Table.to_df.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.to_df — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.values.html b/_autosummary/datascience.tables.Table.values.html index c1ee37cf7..b696bde42 100644 --- a/_autosummary/datascience.tables.Table.values.html +++ b/_autosummary/datascience.tables.Table.values.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.values — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.where.html b/_autosummary/datascience.tables.Table.where.html index 17c1b0444..2b952030c 100644 --- a/_autosummary/datascience.tables.Table.where.html +++ b/_autosummary/datascience.tables.Table.where.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.where — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.with_column.html b/_autosummary/datascience.tables.Table.with_column.html index 16ea0b8ef..163a4dcaa 100644 --- a/_autosummary/datascience.tables.Table.with_column.html +++ b/_autosummary/datascience.tables.Table.with_column.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.with_column — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.with_columns.html b/_autosummary/datascience.tables.Table.with_columns.html index 1ae08a644..f6547756c 100644 --- a/_autosummary/datascience.tables.Table.with_columns.html +++ b/_autosummary/datascience.tables.Table.with_columns.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.with_columns — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.with_row.html b/_autosummary/datascience.tables.Table.with_row.html index 7f3fb9108..ee41b13c2 100644 --- a/_autosummary/datascience.tables.Table.with_row.html +++ b/_autosummary/datascience.tables.Table.with_row.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.with_row — datascience 0.17.6 documentation diff --git a/_autosummary/datascience.tables.Table.with_rows.html b/_autosummary/datascience.tables.Table.with_rows.html index 3c32850ee..81c6d4c4e 100644 --- a/_autosummary/datascience.tables.Table.with_rows.html +++ b/_autosummary/datascience.tables.Table.with_rows.html @@ -3,7 +3,7 @@ - + datascience.tables.Table.with_rows — datascience 0.17.6 documentation diff --git a/_images/barh.png b/_images/barh.png index 806ac32c1dd7ac88548faddfce5cadb62c1fc22a..cd654eec30a89b982d19ddfa9df63776402d1dc1 100644 GIT binary patch delta 43 ycmZp3ZF8OAreL9GprepcQc_TCrLUixSW=LaUy_rVq?ccmu5Y?=>*|eZ3Q7P*#SgXs delta 43 ycmZp3ZF8OAreLmTq@$2gQc_TCrLUixSW=LaUy_rVq?ccmuCE#Uw0>inf)W5keGgjz diff --git a/_images/hist.png b/_images/hist.png index 78fbd9395412f8d8df2a62e24d5261d9550cd871..836194c1664fd3156825c1c9b393de3f25093c34 100644 GIT binary patch literal 12818 zcmd^m2UJw)wk9S-XfObxAYcHI+^B$n1W~~vOQy&wsfwI47*P>WghD|;$*BMdMUo&Y z2qlt1vSg}CKr$3*_UZ21H_W~7zBg-T&Ac^hX}c(@>YVfc`~UVAc0bb6P-diOr>CKz zVMJZKqD@1y(~yQ{$5T35c*Rwm>jnHH<$l%BUB}7V-OJL|ibmbi-PzvB-QMoTaZf8( zH#;ZCb0QZ+eib@y>+bICCM_!J@aG#uoLp^0#orcZ!SO=O12lL^-znrqzK|^yysRrKs>yu!3uf>ra3^X(~zyAOE0euERVd2iVH|urL zXtF#1iTig9y6 z8OiC_T%Up!O)&02RPa)V zjwZjTsHTgHi^{cYT4rWucZq5V7mXSk8pK0GzteEg(AWmtiL@{aT(e3|NjW1WWkie- z?M}KH%5Gxa7{$*nVQ=_rBODFe>zDQ!l1QZYws3%6>(RY*bLNUr4q79c-!j7auFT*U z7u~O3y((o2zg9@TuU6wrC8c9G`irp!R@T;-vCq$#^mfzGw44v$o72&ui@Y|~^5$_w zgh60n)nMSdgRn6{?Kz)jS2(9kRBUXog-mK{s<4*Bf=}fjdqnB+e(EQJLyu?bGf$Dg zkNe4Fjy{5M)AI2nwbO;S=r>2qFRZA#yB8(r&3f0cpR-mAOVrWUUi|rCzo49)ncL*o zPPb;+boq_p{fva?iHUiQjT5siX!?@GpQ0wzPf%67yc3@DR#w9$bLYnE14e~cXcwEt zo!LYZdE2Mhwrla`{f;Ht+Sfc_Ahp zKrL!(YjbZB@6Ir<4kWjwhR!c66uV7o#LESsPbr6YyuDqa4Y`}a2UoXKS?(yTt9RvsCrP(3#=cm=%OuYtp zOX4UR@HLb}QNhtKUuJ&!@`ZMi^6hPMLcns5MHJla_ZLqqKXXF;6`%ZX4cB^mb37zY_%1KU+tdyHIp44sPrp`Qg z2>N7U)~+t1Xmw6h6bmmOA9ihi99?AlY-mq!iBsNWVvre}SN%SMLw346TpNzv6M{ou zn%AI@@@QQcL+L|}cxk)g+WYE3Y_NAHQm8DJ@U)T7pL3WT7ZbaF&iYHn!Can9(+bb> z?X7iQ6nDVlv*ELVHRy*tzemX?+V_nr|JcId!Lf1)gP zd4Jq9+$9RVgutT6sTfc}p5lf(bLmM zJ$?H6^XF^n#C=EMd6BLuCf2k~X&^X6NBgj{vhov02p(+N*-j_>u8`+fYr_3QlAYIu zUMeC$vRkuoS68lSg?qQD7e63qoTQU}cdluiX_S>w>{+YF7r7!3?9-}o{ht7eSitTj zd}DLkNU4v3?>CG>&r0k1=!;aO7^z=TUSk;$Mn7{<87n|9>t;4Te%8;4UKHmLG$Dwk zwTe!N3tCL~m+3$arH_n^6!|Pzo4R~rebA`ARBSNWoG96Kn&#fw7}KN|c?np34$o9! zbGt`L$v1D6882tppt{%Q?|awmM5{cP4?t?WBU1-CSxs@09P-_3r1V4;ZH1C>C`LM7 zb$Ua2CWA`fr7W+l`FU4PDc39Y5!`uVn?Hv?2nY$~h*#H-whHFGOM+HA;7h@)^B)8@ zDAxJ!(9(76VVXvKRzbm8=wBp!$zWEet*dJRyoTO%gH}hop9|Se&I``3eW`FJ7u!@t z?N)ydt7vHG>*_`^aZ0BQRCo~!goMqjOi(D)d!I?T-%Hw@`LO1&CB~x-e?eA}dud`f z>oQ)yR@&zRcQHQWvLMKg^!Bv$IoCRmJKW!`0t}b5P)) zf5wh)-j&^@aONT9cv)k$XZe%UE_#QhO?T2<2F6wU*x2loe{nzQERD&?g{yS`OO)En zb*~ojj`=_iQToC1#QVwT_KCtotA=r^Ww{lbv_3P9?!IZ^Gc?L3U1Ey7A&KtgPiR+l zjg0t9`h-a#_gF1go+kBPFgQ%}Q0E>zLEV3u>$~uI-OH&xH|buL@`ZFZb}X*_sz!`+ z!#plV##Hfn*#NHhN@={vuHYTJh3@4n@LI)|c&D~oy^dbn@UCj-J#Vx6z; z_hYXWTuj=vmucz~oB1zFkC1|7h8~@ekUKUuMmxE%=8rD44nw+vGM7(Eo!frd z#isz&OH@i8adKf#vKl=6Yv;w2D}Ynvv4-d6GvyRaJnfV4@UEvPE=K_&gXSZp3u~k> zD#ex0!_Uk6X?6iQoMPPY8ut5Ce1CQo@3%}HzUpQ#;Ei?uOZ>vZ;s%BXey4{u=GET_ z!hN~!St(B~`aHwxajwHT{HH7YJX9`FcKfS{dcyD(OFVp4LX8 zOaWSVeIj(rQ+d6C2kLbjc6uE2>nt|VTj;DOUA`U0dh}=y8RNJQp3;hySfJ>~H>52@ z#I#nGJ~dF3DblsdVi*=E!ZN-f@)8HWXf1BuRwi1BSL2mjjYO`N?3_iiuw6N=gOz@~sG~=ZA|!*yZl=GC znzv0Aty~=mrT!>vc3$4S`D4pzc8v;dhcvUtCB?O0;0P2?4-Wu-a4Kb;PE*uOJH z)R_#8jEo+Kh2d9*zP-K4VGp$}yF{34;7dGTd<9lU`TUxkVP<9~I^W{<(4>SzZwj<0 zyN-D>&4gpl ze$bH6rOuW*M0hLR(Yn0%zAFP>9@IsLI|79 z&(9y;^&QBL{Z?X6dHypF;3QkK+gqAJn-p`8Ppk&#vn%`iO;Xd-1tlc(L-upytU80r z3^TSm7jOOx+!A-1%Vsj@I^VppJSni*S1nP&nb^$NN3b%&nOM5LsC(l4BW`QERN^;2KC})IM3KAm5@{LP zc_QkQp=Xf58_DqsOqVHmd-BvNW78(#;gP_%IX8^-EtC~6H{IV1Sn#6il?^Kf(?uMx zR54r*`xD4?{wa_>382RMy7&cTiMYxKZM}Od0o8V==~@k(P!^iy4OV6bitT&OGV>xr@P+l>98LL6-LkSW_Vcz+ zsVlQXQ{y&YUc3SMjRA;*`-nPu@?=M$jV2-h3vHV9?d|Q|Q~~X5uQxFn0yWgOw6wgt zAZ$|FGHZAjp(kAaKi^N_U?C2iMK8;|gL552^WW4J72?^ckHKUCH`&|*O_R_*4v%$S z#whjuvGDGlTih6n&3KDgv=_&Cz;AEO&!KxGk9h)ZiA7XExf_wwRf+; z^%lF1s{qTB(q%>H(funm<^NWG%9fer`t~8B_YEel{&&&4^@o9` z!z&)z%!iWOHNBd}&9O>n;#ynagis^T!r1(P<^2)(g;8b}#--5a<>J`Qhp6FqnvcW7 zJr|cQpR^GE*YY#BBy3~DUr(QqfJa@rbi1ARUP|ct@6HUC?fCjTIz`9F&Bo)uV23e^%B9oK|6;bC;Ms|j$648d5jpRDv9~%X z=V-f&jp-YhHH%;5ny z%Y?2fNjgC0 zrYvWogjIumiY;bb+dWRzEAES2!@H+jivd6)esje_1d&$uYIFzXFPd{;bZ#oz!0b8* zLC4CaE}ZBu01A(e$zLtC{6Jd?QW5bWz(4`{o{Dr*IQj)bs$kd}XlqBdTkWK&H9WI_ zftl_Bb)PKwtd<`hAlTE`&~V+;lK^rKQ5kci^+2eM5Oin<$fz~>+fNh~orhK@WeU+y zuvobHUC2QWIR3YbNetmU)6j_g#KlNfA57E~AqqSB+}9n(1p0-2_cX>Z4?DJY?^a}m zj6(6_Wc>nT(TI+fRVox+3Xaim({Baxgdyxae=QU=BA!YHJmYA8Ir3V>v^>LWb}&}L zA$DtHQhsm$*92KV77h;M$!ermXCeT6A*n$*UmuT7Wi#`>BRIYdBM7~i!B&P^H)2o4-+(9|6;)1+(9Hb3G}1cDGHOCx#-fLS z-^=B#0IWauf=d$UB94o_EE!p${mqH;PAQeD>ccPHq|Mu;nL_#q!d|+@0qX-sM*44g zNZ^|=8SJ6K-_0(_M-i`9_>)_~2FyKK*4X?)SU^EeP|4NHd93(urqK?{h%;hT;Z4fg zKHD8cWo2Y&X=sFlaD-xgQsk29epWevvFsh5E7DYOw36jTLwx;;xTo6KmCt`Xn%?3A)Q#B1#B z@>{E;WT#5q%#4hd(Fplma96_E#Z`bgIbvP{>k-a{vyI3_u$C`R_my-5RA<^G1`xU~ zBFYrla|**{ijZl!F2iA=443-lqvxzYkGqn}DY-f&jsrmYQhxlf57=6pBo9_r;Dn94 z{?t7lBOmvn+REG}7yI3s*W&qpQ>dL*bx)4=mbs-b&kSS(kK{jjQV}4f1A3CU-?IIu zx;ly9RTh$R#|24V*_~5Vqzg`vii!$7RZ?P}LBoX+cNr&lUJ0zR^DU8@(DH^711IBL z#akt}q`E}`>$Kc;;|>QjDfC3M&9t(PelJ#fbB2YQnnLkk>-{J*-~0X}8k)iX(J)-7 zmb6pRY}}~q$Dx}|e^(kuu-%EJOf#64HWhSVqWz?Bf0M4v!V6 zvMhAE)%6w%I;^Rv0+yU2a`x|fIPS7=r#CR)^iN;#^a+z4HK}30aj^e-=I_F{@~d^v zeKfV@NIH@3VKZNkoH33VN%XK}|IkE(4=s7uPdY@NSZJ^+8yC)dDqvEa;8`JD{K$6T zL+FX31NpUv9}Ti~UB?*U(@&9o0F;RovEQIGP@v4O&H1ORW++cPeECFOnYmPR=lZLY zK*;}Y4k7>PK0_pJbzh$@$yScwQc+XuV3h2C4d5*E2XFj%bq4YI?(Jh{IeIh``g}GZ zeeXM;!a&e-6mSEn(@sGYcf`Ki;daqNPgmFW>nkbOG83dL<(88LP;GbiFu1p?OWHL= z^0G@hzVclnk2|Nr`)|8kvsI~iss~bXnF)DX=H*i{mOu_Te_$+5$c|lZRpu_XRTnQJB}Hzp!=UBsVTm_kzQGp?{mrhenI(%H4Oit*AOkB!emkJSG( z7mTDosJ5Ab3aqSwI35FbLU31&o}uBCTS4&S$MmLt)5S7dcENEi^bH5ud>J&XY# z0*scW_1Sd!O}pg2zG7_5*|TRsd#1o$2%b81xx#arUUB@r9(ce=wm4HU+x7a=-44j# zA-bdBj2&Bzohm!0mdWH%Fq$DB)-JxGu`z39Ua0CZ7zOwZ5PGBEXs2D4xha_S5?kdY~QRa6yNDlLeU!21B|i_Mt-F75n1n2B31 z$7QrGQ$3FRLFy{l{^FR9GeGAMg+gu63_PUe_x9~uc4_wvcx-JH$ zv3mK&JW>4C=cnxLg@uJn3yIq%NN0v>$sWR*F8}CBhN{+0x|Z)dtDcf6FF5*Q{>l6hWRUGJ*iK^zSk>~+ZPaH8h9z(q;W>RTaA#5S#i z{YwGsy0yQ|t=P6T3Ej@^Gj>pxI+e^=m6qx7Ewy$|=U&DTR2txG3cyl{vczHul zAEq-{@%H>7jg4|UA$lOmrDd0n7lmQM|q~q1y20s{jw>543%3{=t%5xT{kcs zo|$xDS`6F64oQ2>yaJ02IijEt1LVKiTClTcBUW#RGIu}KQP=z&!W z9HtGlD@OoEF3S5KfBD-Sga7Jrk4I?wsR((73Q0{^QXGWUuP=_}nTgIT)Aclv78YInmV% z0t7SNTMV5Mc)e3c!QTB`9j~O^vVuIzOpr}ms$~$(aOfjE5Ok1c9(6p-#zp~;S-U!L zbAvYA8O_IoOkB-YZ&$$_Mn`qfc5sX_Sju6cjyG@IC~_XIWv8I9+FDw#!Km(h;W-*6 zi5YKy&Ok&z=SYoS5gjC+LYm>iF3 z9Heb%d2_kgcL}rEyuA?tPaqhuF;@?ukrvJ^p9}4u0!iDBVx1wwFnE~febY>#Z`rq} zhqlzA)?=kTvZzZGwx6#1Fa8YnobFAn-rk(0t`BYJLKs4Vk%vx1SpeBT{*YBN;gO5v zF1yi@HFO~W?||1(04S4o7!unleaGVu_nNvo8W9ai9^y-MX6cdp%L)u*wz)TiZP6={)MZJDUr9Yp`S8YZjaa-x+;)!1&zVGTHkrBt%%CEtoz6J|Sq! z2NCX}Y@!lqCsmBb(8f1xUS*mU5ohsFLH=SJm@ft@nwGsy`RO`0wl>H=ns zNIRwCeUqSc)@Q5DdwP0eKpQUj|#<=xw=G$4|d34bmF2(QPFTos8Xx+r#6fa|d^h%M!5)Y zOCW@g=9HhK*q>Q-1MlD{lO2))AjrMN*;T6}43KGdNwbcONn74===1%4dv8>9bSmJZ zz`1kn-&*f#nefG)YFS~Pp*-nW4DF*Zi%?WMXP2OP1SUFtnH~Bl@k6`TrTOsk@3SA~ zdC|3AIdy;<2=gVwpv98xQ#Fjee93N|Y9hEXS*4|h0Cre?nKu)E%Fu$=p)+{ZfAIU$ z#jQE_cY7#BY9z|xA;`~yND~PspGkbM3m^fBLR@;F5ZN$)RObc-hKyl=3M9Xy+qyAa zE>C}Wr~UzOE2dWGMvK!XCnpWeHN{*;KC(B*%Lkb$hab!IkR0rDtWf8a@$3Mxx;P$V zuCKXG&d!U1(KuwXs=w4_V(7{Nyjf+rQYnn(sa7s@cS^#*N8olj{4ROWmm&<@N1V#> z=)JB7bp*-rk>Zfugb_gBg9opVhA;lD2A)<+lrwF+FC*nwIY=gP`~SR+Km$<2 zqH-N}f&&&BYGY$#8}#8KOlOww2R+k(1qd>_%cm-mk`yE4w@Sf1IuE_yW2Rr~%uJ=w~4?@W-@DdxuhfX%Is@4ssSjD}stGbgut%XevJ zz!;e{gc4bVIV_m|GDL<-AF~Q#a$5AfSeCsE<`H@f3>O)ctBc?kB^DHcyBe^$)Qv84 zO%0q2H7{B;wlBz%QC|0#8-TgdKquN4v9ah;(bjURHSlnRy(v98@&>3LOgHfJ@hL;Z z4AWxhO5b8+Ksl5iT#5v^KPjF4S^G0~i8E;|d3QIR`I zyV~nz!a198=<|5F0O}M7g)FXR9sz-@PDa0zn?KC}b@GOQ-3ETpQ&Lh|viJ$pqYz?% zBLW$xG(3$uTm_*7h`fNC!cw~MCp>fuPpIOAT2)0W5$+5<-{|`F>j-W1oE;Q~XZBy4 zXHWkmlIoGxh|FNb#brmxQ8T_8``jC)7C={l$ug8S5D6f9?yxr5po=0!{LQim$xu|~ zYZGzVA&q5JayBwzGX3rCWgs-g4;t4-LPgy>^$Y-`GrQ<^hV?u!C703)()lj`$OO7Z zYS)zSl$m{(45uX%C@%X&?|cODpj%01Rhn;%ut7ZA4l@Boz(rAQHMe)cAZSm<96|9t z;E>TK+f7sR+X)waTopp7PG#eVkvTS4f6zYKa6XYEhg{_LUM?-jy282~?_|12ntKoL zL8eUeDwkuCfk3Ee(nOq77g#)l0ufhUU2sv1bcb>U3g#9#iPF%>Wis@5DR%P#(xQN` zfH$P`_~Ao@!ixuO`8OrVR&@TtuV?iw-%=W;y1lOO4s`dL} n(SG61Z~tFH_kVu&bu%bE?TCWtTAmDuTpH9>jVrl|7I*#!!KV!S literal 11258 zcmd^lbySpV*Y_A$h{_QRBvcTjMY@k7AT2R;2`VvkH;P9o0U0GkLPBa_0O_GcMOt!b zq)R|rV&L1idY)L{yT0|TcfD(Uf4qOFPf3bJq9c5XHV>HK5C=`X=P1I>ZT*igaM?PTakCms_`*ew+TGT1M4?XJMgHtdmrS!jq1esjZr#vu zi=7|zbkdke++8wLc`A4D=r~I5NaXFC!N(5f7A8GBllAop&X22lvQt5aK6xOEj0VFl ze&+a{Q>7{E=3#!-?`QMajinQ>1|7^?)A+ov^ALO6_uv4gQ%z*ow>J(eIW_&I;AS?| zG`_79Or5{cGITPhezLw&WMX0h56d!sR_6l$JT#Z8*^fe9d*(+5@0}wfN1>{(9XkUb z+@<1x&ug#3uArW(=EC2{la2SGQ0HX+xBTEdxAxn&Z*}ubp4bp(nAc`HWb5neXM6M0 z-sR`7wTLbrB*i4lhOr3>YI$$1s>;g;ZLQ8E4-DwjiFV%op*EErmK077&s$Gxyp$a`I{}bpc zACiWKMoRN*L3Va_g$sf<8eU%I^#O1am+qGvQ&Ul;J5IIG2-z7|ug>=uW16CQRZLT#TqIezG+o$D$+Eq9s1PxcZ??+P<;TQ9iq`e?~+`TJG(VMxGr-q3jIH zNBZu_$psqvlAPbBre?Y>4q=t4Ipi9envQSri+ik^YvXsTUaJ`xSYONbE-WnE$50dP zb^2d!8nnKY>)pr8K{odx@HAn2p$x6Ao-FJ*$wyn0S*4H*8-1gSi-(8DxU_?nlQX12 zD(?RM`$dceLeJzbequZ|)^^VHkAS5kR3T%Or%!i`*Sxkn>Rz+FO(JXzc@}zayO4g= zNp}Br^z_Ylad?BWr}rv~I=j0wv$7O3GBTDoy^6*Pj{N(TKDhm*d7C_Pju0c_oEh)A zAUxXDG=2IC7G+s?z@8#BFT30*&y#v&3DxWicN9M_0werHNg62Gn)VHb+rn=41`bXi_P0EM?^)ji;C)njzx#U z>7Ba%DW?Wfpd*GK^YZ!gH@3dp{kplvHNfhvzpReGHoW#pry5XsR7+t*p; z>q|{d4Kb_K(9qCcV9}u{dk}>>!a7DaSN-S!Hl?9Ko>RZ%+Vu6AnHdT)b_of?3j$Vm z3=QLt9XnQF-7f$!!p6cPoByDBRQxX#>f-1*Ztcy@&4$)i$+VoAFNu#QTjFq~j#DwA z2Vi|JcRjJ9Ut(S|WOqiP`7aGV9bVK@v=a698IKl=A2ZwabNqt0&cgPwoHJlS6);nA zTs&BrmD%=e&+BqZ|M%@V4KzBt$a-vi>0niOO6eI%CqXEnEmGP>>&H>3FEn@ldsTA` zEo`1wxhYX~r_!^vK*~s?ClrOs4e)z%X72Uk3i(9Y1{CZ-b$Go0b%ojQOjc6T<%+d# zy^$6O%v03mHOwvX;(AY>JQ4BwVOO#OdvdFsS%s2-ztBPp|50T$uYqKI**Zn;ilAEh zmuaez?Zv8`3eSyMKXR_z@WZH<;8u0csSm3CJTV{F3L;GYu&zTHKP)z?@}Wr3(9)Xw zk|>2uxm)|Rx8WeFdD0%!S@f;A$dpe39d&qIE%#yiS8=FX)d%bB`CthXlasnZ5VEIw z%jbwWQBIlKg&3mp`Sa)H<>lYKhD^NZ=YIGky_G1$-=7*Iatp{QK1ngo)+<)-NK+v` zza;e%i%m*NVahhF5Sf0rGTE%Irl$5q63R(pz+t$s+E96UIkQgiPhfo>Nd3J)E-O}HEYb8M=o3WNXme}p z=;%NW65rf-j67X?yIRHf_vE?-=HblBvFS>$1z6eH=bp`F;PEG<`o3pmXH)#>q1hz) zY?7S!CHRs|F=rc=zHgH#H+a!|`J=9+Wuo-tM!=kFNT}#`I8?G z(WigILUL1+BJTWt!}T5K(6Q<7Bei!!S0dmPX451|87>P0?wXCR^L_ju0^j3`iZlUV zVjIsXx00Rj7Wz@H?{$pa6Q@yV)XIh7vOmdmogmXS(4|D7j7k-&mrQ9 z?5(ZqEY75bs0bL4`Z^OHiF-lStsU+_Nzo zU80SuJAL{dfn|ENn~iF0WXbLF`gY5h+jwAL)BXiF+K+`ik_*}Hl7AdWpz{dDVmPC$ zmD!QZk`iqojI$kSVe?lZQl~!5=D62|(y6PeswU6CCjJx6s-J#Ejyxx z*UxzW{-#{}PpW{^%x*8T?q`x?lzH|A&SdT5StIlBUuy`f?FwBuE$%BUEI2re*Mhd) zXN|lP6Q%s2fU{6hLL}Z~W+KBu$YF?his&NKx)bv~c~aPy@$qVoCuh^=>-pIn|j5M7miGJhmnGwoKr@Y1XK zb5l$$_Re>8V`B-C?q+-syRVqnI2dS!j@`+qpw6c)hzlnHsaY{-`{i{KO zGr1`h?CbQ`d18*ym-Bx|7Xn_JzmMGsejOV>1zWqd+M!bDJf{h$%+AH7%&wXBC7e+# z>mJc$NUw@4vUYfsCm zSH#g|kE|xawK<0WhS^UrkEs*IbaV8dhxe0$T-U$#{ys)72juLUpi-OsD(p+Ei^Gz} z?@hzRQ#}_ew17D0y*L7;^u4=2ks|tebaXnv!t6wpQ4tjorHk+Q35PJ9>8cP(!1D_L zlz_VMvuU%kvJ$@fk*|*UGxU8%4t>dQNIE(uCbPZ0-OdcQBjDH#a!mt+I7}U;9Kk%eJQ-CM(a=+g*R18`m=Iws zRMhG|Kx%-wp`6F}n!|;TQ_2;qIISE*8h*={?HwJ~WjMFBl*x5E&2K0>^ zk0iFg{lv=E>9!bg&mt%VwqnSAu9A5x)^2+IUu;8(%X8<4eaJbUn`N$x-H_@0pdb(i z|1pT#W2ITJ(0)t?BEtVNGhF2MU*na7Zxx~}L3Se2FAgHB?|u}APSRkRD+b`%W9j4B zwePhj=QgJjh@dPBJvVGPb>1=k0}U{rpI?$!QIQ;T_;&?5Iq17b0*2L|-zw2>w&{5F{PXg00wlc^WnY&G;xQX1qXM4j6mz^W|Foy^yDEU?G|o2P;~dgaw3_47afWl zhTV8NF}qjB3L5!At&XOi-i7aZ!aF`yJG&z4;aMx&q}$MVq#M5kfsg`AP}be zaq+DR#il0x8JU?A3*TaJ|6m^9%kY_*xMw+nw3e2ZRy@A;WolshxWjXMPS3#q2^ zjY4GFgy=!GD$$o8J&Pl2Oab-O7iz3wZJiCu>19j|TS6-_%h?O0OkYu9|5qgtf0-E> zXsaw0`mnD2e$Ja$>uSe@EH4ndr$wZi7q<{u+|#4&PFpFN@;xlD<5QZ=AXcg}Zt{Ab zQ3x~m0Xm%8Ypo@j>FGyA_ImP6_cg|a&PzQ?99`LrA-S%&g*J`_^2C0Y2&+3C;hQsg ztl3TIuDfuq>Ym8Md3&+&C~=MVV$7j+s`{@ZtGFc+NS1tH2QW^n=&P!R4}k)HZd<-f z$V}xj$*Gc=QzRNe1{5&eAn*Rxo6iq61bi$TMlY|R(9sen>b&z~>7hHEPhX{X8I;1T z1X-wkLT8oec~8{kr_t7_LTzDVXXp3b-FfI9e1=oa-MtiCn+YN1&j?;c|FKGw1>3Yj z_-Z}T5W&X5@ser2H(wT8VA;iH-Cv}H}h!oZ1idYYf5qS{8Ubh?(b17CpIl zn++{~(-)7;6Lccx3j?JH*Um2n@c5$Uc9K@;)U_IWS_%dU{nFCX$jeCi5Lnz=o4XRn zris9)jLcIk7W*v~sm8`b;JNf8;C>42HoyZV^S9Sm4(Ml#kPP$QclYo9RLGmb0!qg7Rv=q@(KcOQMdx?gOQyVHLct)UY4^H& z@Xrqzja+*7amrFW4wF;SEklnWCGk$K#E-8Bl;Xv7fTpX#(>QMoy7o80VV}w?$HI>j zgMyC1Pe5CVZ;ro^S5_{HqkuEN3^WD}ImI+{Sn|gs0h@u(GdJLZD_;$YZQ@49#+>V~ zM5UY7g%+(ql-&|r1W9CV1}_8HfMWvGR&QEpRk>J<H%o zvw;@2Gh0tEP89_7_>-FcS(rJ&7o|wwf|n320(Zs z`g^0%u3EB8NITRFPHCikSkV)m4=}IJb}7JxJAkg3DTE{YpqGrvMeJ+g&}1zm@2=kw zmTnB51S_}=4Bo5ZzX%ogw839-qOOxPh+=$jOg9(E>%_+PKlv+EzAaz@U<5z-N9^u? z_m@m35Og0OK3Vh+{%RKQF5@`a6ka#hHeUat_RMAQ$>rqaZtQ^<&S)hJt5Wxb01)+~Czf$DFbE8>(6EcS2aYP7dSEaJT_vSuE@kLjNN zTJsoTCBXCXSy>$Yd2o-GS45YG9^e6h<~bVeGG9oX4P=SGlcpTU@fNmM$dxn6m^3Xb z*$!Tb6Qt4Ssg)Vh#;_K6oCwoJT!jcN!|*YoGy_>6`nTWxvPmxKY`iMkUJJ`^%h-5c zX0$zE{lo34t-t1@r6Zl!=&?J_*&9=nb36DwT-eBPNTE>Lg_Fd^r{9LdBQuMN1iqRU z1O^A^6G&%Nb00LvP=DXNA7zm0JlAdUA%GI#u@je5nK_3qTPT>j3T*>}xJ~ifKmC&4 z?L=HgV2kZe{)j8-#$H0vWczur5I#GTGBfe-=#r(uw#uVRls+mz|BJr_KH*!3lK{g- zUs3Vdbza`=2j-My?B~MjlI317BLw=hR%`9N&ZHHg37kx`iz1{?{$z7wBgSD;aB+eB3DTlr z@cRA;G^{vc;6onC%gMDh3l3)i!SG)6942>1+M6%3&SpV6W59(0$pYX|;&%81t@&@| zYSWWj^9xW-NL)AJ9{(dP!kl^NFRIN4zQB(4gtl?;@X!}7eS%kP!p;*#jIn2l9hyOM z1#}0DpdWb(EwM9|hP|9`ytd$eiL4O|0;(_6&M@<*Wa>(?3p(}xw@nGe2Fc_wbuFJ3 zqtjC*glnA25@|PE0+T1D;;#I9lp@ldMB{y^QzN4%#NAtr#&T8~v+-*B`g-mr-{QVx z&MrS3xXPg&i=g3uqx;HIns6iS7VF|}I1sBjc^@Ko*jV@&pDmpct$0Q`i(m`|9CS;7 zpYtJ}OmtVJKc`hM8f*fPA58o?cb&_B+)WOIJ?tH!x&$Zu-|h9fp_QpH$)=h^$>#Ea z$r1B#E_?^b*n{W>H}v``TgWGlp-yE8NrTS%_uevRsxe|N5GEq^oJO9U%>;*!Fd2hc z1-xzhZ6{yma_|KK$!{|twCN===(W;pIb2!Monw?!|AGZ+25rr#_*#lyhNsZUH_TOz z7t6>{PiwHJtpHnKmY9>kWYL|aLnGl;GTHn(4G3l?=!eJ`P-0{0=E&wk1c$!JGI*!- z+mvM|>dUE_m?ZhE=O@fSU$+zbTx$S(?P@o}OuXhft%wn`vq-c!*IKxaQ=X~xc)2O-Pep6pT3JQp8x5+(#=s?msbN|poxUa z5pWPHM_aP&6}kET!;%zH(a}A*pzr@=$~8pVOi3YYerVtE%#36W@Mkg0)4&=2RJd1R z+-2lR{Y?b7yzD?H;T0{*2ge;?QejL%!*?57aKAB9W@R?5iyPrLM`Phj#0L*wu&B(w zYvk&H5>aT;!Mp~ZVS9%9<68fdM1KaKba0WT`-gXnnvoF+v*s;I4)CVy7<~18s*D7O z+>()&p3%kN(9~`NL$; zu~nP^tto5Sd>d%n&`A1}i@1DCXW03Acy_3w40Kz{+8hy=lynnzxZ976+^X()VCspD`&4A2!w^`gB~&9Lb{b+rO38juq{^&3=9Nu)DAF%bZfN? z-K8r$*51)|lmK^u_I^4LRIqO1fYB5Hha7b2w+@LE|4)V%o>WQS!|;%iEA>}+7DJQ! zXF4jq&M{10g1+^PzvNCLa?$&ZXS_Gch6|(H%aIrauc{IR{~E|KfpYnoxwJ6Xg@Im6 z8^5bpuik-XHNV~0>W4G^#kRy~9#dq+-rMV}(2r8P={Y+)%V*Vd4X7x+xW{zqR6M4T zY|gc6JMKYid^S=)!0sXuagQq1 z(22R-0Ylo{iRK#gD-Ik!p#d`oxSd^LqwFcIS689=ng((SYC6UF>mOWb$J|sVdSL_G z=5ng=ot+xc>gjih%@uK9PH}K>=*%}$X^!Tpb)lWx-SFLmnw6{pYM~oyR?oH8v8Agp z7Z4`49FPqQ%QKY~U;QG5Fnm7aYSf@zEd|mzgND`W)?CiqdcQ4k&~?~aG!?zJ{iUg? z>CH;jZdOCLgYZ*Us;ndHuZMSJJlDUqh54)|r(bc7Cxy{*v2t?4(xYSfc znOHc>=K5^+4-4o&+iq5$&Q>MO;GyPbKySJ4-Th#siE2>hf|MiOBCA)|uU|*>hK@3g zgnFu?Y800NpXsOL$bb+<$Km7W-a!5qcKHr>E}Dt{(@YfdjJHgeXUl?9x8OEpL|1Z{1kI-^GTmd~b0ED4Bw@mQcTAO{uhqDuIB1#--2l?*p zBJ(Ox$g$%qn*|H7|EF*d%gS&hxQx9wuW#j14i~Dig%UE`;T?#JeSR8MvakMMXuY zk)bd!ZnOml>>i7_E_i7cXUYa|U0$j=%)l4pI{M-0{BV`g($bP@)ndAqo*sL~j4V&5 z%EqSG-Nw##@c*SC7yC*b(?S^}>FrqVIy)B@*$(3i3JRFH{bW0IhjS_@Ex|lRrkId8 z29yP~hVyb*Q_1$--JF8V#Xp^a#P0y88(;I_w`gYyK3dzjxG`6`z0mP5!$h`)Fk=?U zWk9pq3hIk%rjyqT{@3^2r=$BKjLZ@B9YfX^hjSv>wGK7umAmBuNP#~apt-`4#f~qz z*`DDa>fd2D5ZH`>{`~JUn^ON2&Vpk$biJz{#G_a{|a@28ePH|Emmp zOAI#}y8u9=mntIXgl?(B+hgS9SK>T02Oyi% zkPU$860Gt(`|Muxk4c=v*2ZEE49Qsc6$ENc#QJwHVHE$`9)F=i6Q2Z#N*cZq^-9Rz zMB_{rXnI{FW6RxFR-xl1P@c97v0>%Bm?38O^&wLR40e&9wFY&1eb5ahEZKv#^g;{%+~mH{_2vkZ6ncRwE}8#BJUQ@*S3$+?kc69Ric z_GxU+1j#@jO1I3#y1D?Eq&dXL@3jYng%O`pTzDB3l?JhdxbWZ|AdTTHo&2j>%^xVi lE<)9o9Quz(RKM*V2>dbX`hZ*I4g3-%C#`%7f796S{{R)v)N2$Cv+^SM^@a`)j6ZZk3m+hSTSqz4!Xo7uHK91sSrF)F+9Eh{#a)Bvpur z4r>t+9eVS}G5Exemp&4H2slV-IjCA2J2*eIGa{0I=wM@M?OoxPd06*nh8 z=MDBtrVb7^_JUkon7{r3r?s647jIq>7QWc4FLAv%Z5z&p;|9@W4L#n2xX1X|1m6@KNOZQpOm?F?s z(vZF*Qif;BmbAcM8Kl8Y^hC1u@Pn`LS&Q4ID|}ueO|rQ6zK4|PlCA$~*i-)h!9CTA z9yrjdax0Sf@MeD{q9#2({oa_3mfSn`j!!So23M#`NYt_LRoYK05Po$`yu}+mewnd5WU?sd-f7vS~wx2EIq;hOp# zWz%tk33lpO!-k;p`QpJK9j{tqDjpXaIGg&)nz?aa+h!?gX>1%E@~*C~Q9{lOCl+~3 zT4UTIMm;x%LzBOSF~@88E5r)M+C;-8E%JJ`jg5_hNo4A!9@8xss6g}?sYf{w?_`ayO zc|JuRTXv{UdA?zXfej804s|OltL}WZ>{5v~v4hGpXU_)ygm*P%l|I>PaIme3>CcxE zaa(Kmr?{$suMWE=-&&+VBsbg9jU+g3yA%M%Uw7QWH9ZPP-NPOPk~ z)HI{3bz?T&eZ8->C09Fzb^F5cy;^OTTn*{@-~Z$fx^_P@LFsz({9p-R`h%3@@c_|-PCV05)b zA7^-YI9-VstWqeG+&R)?jxD@>F(^rZ$ZML;{x<#jMkk+3geE5@UO~xhC}4)m)kELL z#%9ID#H0)5po?VH)zy(>rRYXllAJ8*d;F9JyoJ-;cjb~@LZ3mOs-j4W9A}xNnVH$i zW4_xz!xRf$SB(XNk}4~OllB6Icbz`EW+f}~0 zK0ioPI3h3|qq_LvV{`L;BV*&Z-i@O~L`&t|qTlG?M0fm$!C#AJ5MC!QEOh9OZME-; zx~B!N%qKJEEg`KIA|56{sKN)BSk}+;?kYi}3x@($tejaSY9-htY7a-1tuNCR9Yo)? zi>cSJ-<`+%YSf4kxtt&-F`Z(?X7cWI7{Im{ClL|t2Zas6P5zx;^*Q-LmVOnQ+oTmr z{at8i=-W4M5`27o-1_u#A3QyC=FIF~SWFCUfD0_iP0BDuyLdk9xK{xI;gON)aFi*j zsNz>dCmMn^(P*?o>1~g8VW@GhN1YG;S3qJ}oIyPBsKW&uj&_MG^xqSjNxzJ{wnIz?;8Ic!0WZ^f*C4RzIgFs+K>VY z_0rs&UCj5BmYG?`{2y_(>_N-N2eJA2lcK2G$AW_mTW9Fg8XIK?Z>p(NYAjc)){JGa zEN$|qrnJ^AZm@}n44WUr6SFZhGtVy0%*>SUEL6a~k}q-_|H^Bi?`q0G)7R$~edT5=2T{>#L^hXlwOEHo>Q2Q)M&L#@%O-MH{}qF`rp zsfg@4ZxObKRM;CqjW)Mh!4L#AscJT#7h8{xBoHu*CoNAt6;Dv#jUlULPZS8c+ORwr zGw2rZ_6MG#PNrt21)OSyMBfC)2$QlBErMX1`5qWlkqt<)ft9xMNCL!jBk-;|E=c| zmr*Lp${~zqTPu?T<&IcJ79k-W0Re&SZG2An`}Y|noTcJ>I~$sP*?Q_KDv9#Zw`bs6 zdZ9JEjgF=X@JG(x*)SiUUl-#YqD;MR8e55W%ka=cylz2-IC4LNm^MsS!6+FBJ|3n+4E7^Kv6)!{^nQr9~vjmx4-%mf%%^y zr8xO{ZyePA2c>)7TTKSQ?UJElnB?A>j(>Wo?3|vN*-2wv`GJh)_OJR=V%-r2UMvl^ z4hv<|=DVBAQMZg)G4DG^c5QqSA|pagycNtSPPmJQ-;z)+@IqSMC5 zA2D6K#wsAN^(Z;DBlAXQf_2E~h3?>;cGhl6Tw1&r8j4I-PEJ){ zKW?fuR%elJd}4yIIT36Dk8M6$?K!;Sx;n+e%q#<)uibmM!P|80R|gq+M}{hM%X{v$ zWie0#PyD)LeWCZI6c!e$j$CG9l2T1m2xQd^b?DVLnOPsSj$o|X7;%4L2y%dj0i#eQ zTVI43)Cg6;)3T#Z`qiV$>{6h|q&<6fl#E_j3xMQW5|jkb#iT#At>h-oin+oCK+Vjd zp`mmmOqS!l`GT0@5X*?P1B$4^-O{59b--PyZbeuj$5gs?-yq6OcSx=_7im6DojKGT_! z<~Z74U?Q`(ml(j=IopE`hZYa?rewrT?y5|X@T8NhtgM=9SAP5*Sa*!f(oyf+Dpod~ zg)j-j8^Nafkus&M9(B%!d@1(j4H^0QolqQOWowb|1W9T}bJo@zuoqiPAMEXK)bs&+ z1SDk4(kW3GE_W1~Pzstbt$TI?7{EZar@QY-4O!X7i{1t~u*9rDG41T~4?le}&#&>k z{^2~AQ1XKtmm0?G?ezN8jf^5)cVi=_C`@UTA{Z;u_-TiQY?W#sCT5>TU8KYT+?aJHqh#;j?*_)(U0|YkH}8MXvS=GZCSpdSS4YI1r) zC+vT2vS=0gp=^5r}D-Yo8Fwgo7mx5>vm9e`sziQvh6 zuxD5{J6y4W>dS#TTNth&0MVD>7%j4h0A3!XBX;hj*|$(8U`6FqQ5Mu^DS*L5mEV2V z^o~RI`nga>N=iyp=sPZhY*;GU(ENge@UXBXU~U#ryO}tgnz3=Jz9*q);&#-#cjq0+ z>O(`%AO|rcBV!=XP-b|g&%j$xQH1c8v+U;?=r}AFNN2+oMLVEKC;5X`R#x6dMNvn` z(*jSFo;``MOZK2{8{Tp3gn4nO`uct>^wh#WDkGCtTn$h4QKP-F@5FRa0-)VSID_RtcE zgBX;Y4#KEa<1aU{T$vr(hCo^~v*Pn% zWJ$lf-NTh#BzlU=Uy?B`wb_X@K|S%op%&d~1&sRg3>Q;B=A8a@%}}-VZ&$YVy!zw( z_$0eiuc@CrYI*z+nvR?T@aG@a=1(q0Zsa*!4_4D+s`)*fCKVNxP+)RuN=i0$gqpo| zonhxuPr=2?)we)HR$GM>H-??#tM}FiwLXDD^UsK^46qrgbY U=9cy5!o0z>o^$eJdy#(nx&N|5ps|5{7vM7x>?i$(31{ejy#XQ zzL_9D^5yeqvtR8WSXo#)MylL7n4t3bJ$p&sF@jF+b9V1 zy9=jmuF7~DxNu_Va@cHbZ8d7V1Io@n{LLHD>)iMLL>qscD%LbIYVuSuB|T}vGewbw z0O8TU0ikzYlA-)(^V-?(c}a{jKWcpmBVO?M=>&yqOiZ73Zv>zC8|G#0CT0Ou+-V|* z!u@Ky88b9+WsE<_V=iBr@k|K5ym?~LeB%MJ?;QbAFM}a}EbGf@mF4ozbGY-k0ehT+ z!x{JaGR-1EXi<<<5&%o_q`dR5Q8gTo2LsYl?BW#p)e}n(dyPL@S+2 zmpnL(JgzH`od`#Wo)|M-^ZO%$Lnl?~IwJ~%eJCS`LA9<s!VTV~(=1EfeS)XVO!$K>=hpUWPYBxd`&TTx=( zUhLyg!#pe_8gP&QcMZZ^X)2tL&tWD;#+bFXbmb(4vRDqC;ur@S;KO$eufnryb)@Dw zH-G)wj(AE{nE8PsL~A>2O-As!xC7r(H8!5IZBkWHp{79^%`5oAr$>&P|M>W{f#Z~4 zz1!Gxs_s;I8Xy_fwS!H~&D}8q_S7`MQ$BLPj`t;0jP5BIc<&WS2hnCg_wI^@-z-&1 zFM<-8Y>JQzwJM)U?J6IIDkKcqw`EjT>Ovm^3HJDhj!1k%B4(TjLfj^5UN*|C6SNi$t(e82XgHq!`uQDHXxw1gsFZ0u8f`MWTeyYsYH zLi{~Mn;r^ZI`gvI(}=!d>YvqTO^1)VlG3FAwev>Lbc-zinx4M)<6F4n! z3XN&yjy)@NNkQ$MeHFZmp4mE$Pki~kg_XDT6nTJx>)WjzR zi-xvMtAbe+f`RkPLwuDOKe|6Z3MLw_)et|iZ>?LOfX$C5PKzU1M~;(Aa(Ex?ZQw^{ zRIugc=u^T=Pr#yZgqOk36|~)^I7>v7fVv=X95Dk!6}((*fYT!WqH$Xs9pU9XQ2X$< z>8>}I?{-(YJJSifC_R7vd>gLpPLesrp@hOxb}#jNk8 zDa2+X1QJ-DAUqE!;3WMjx0&pUg-#GKV5ZolBK<6?`yv(Yj_d|ae_bmcf6bbfT#X1B^j%dzpWAp35hCi=ELFu5 zCr(fcyX4-wb<45=4hKIbjsAObDtcwhgLzn5N=oW%3dU{BhJV(=LPO|CpCbqJ@{0ih z$tx7G5I=ZOo=2qT;iQ`l}huh{4N;+}&+I3J2;LNA7 zYq7Af$iKzSfF=rm_YTCi_EYhXPPEv%vE20tI+Yt2-b^gf2O@-_m1Se4_*lq2$!z?s z;F^!n|w(8{y{%SVm{pj~$%2*h}LNUkK=?zvK zj+VG|+LThv*4kpg) znI|A`C;%!?6AHGBy49_A;4eam9!#Id-_8J+(X(&im1iJ@S`NW6T=Cc=^bxvM6=y=_ zIF-@pD4*H{(XF3nF(Z}QK@-=xxD=tq6#tgzkpv%Jk4>BTkt!Vq&$W<~BqZv}${(Ol z1zzNqE-Nde<}rOUk9bUJpTQGsZbr1zJW`Thw8V~sH<^&~;qS7)=4}BjaeLmK=>yGJ zp@BUJ7m|xZe8=nV5dGjd$DR-(=xmv^qIXJLfudt9ih66$BU1#t+TZHq|6*+;6agfl z$j)3r`9e9~VZ?Ph!=f*HcCaJ|VQFIf%fVzLt;Gl7vyx*MU}a^N`3n7Sqqh` z3VP7@pc#=3=);Obd+++r533&6@$2rhBOtOJLXi-ku zco2IZC>|5atEQ%QqrbvAC(eCAAUq<1jh9y)#0dl%kJ!fnPCva}_5t;Ra~^S(`S$G_ zID+E7izUV_)LGgEsSAtHU%PXlaO>5QG(Rc$a! zny*HsO;No3nw7WXj+Y)XG_b%)=e5ce_?L!6R=#NX{Q2VO)XWWZZf0ht13s%HGe2Ji z>`_cRJ&sea{1+rJy8VL=5 zkV3eY!7`^&cE_kIur$uK+4X~s+lf^qmV(-xq?{}^ycY^iIhZb_T+NA@thjN{&(b9` z8$01~aaIn|X-!(Sc6yp6qh1wo?j2zn@n2}HE!$z=@M+*8_3Tw4Mk$|FOsmkMFa+af zwLZk<0EmtrkcSUwB*>rLN!=ChzN@(v=AJwnS0|?`;mp=Y~IvnOqU=jJ;`qj zX|$!?!YwA|2D>7`9Bq7(c+BuL7vDIt2#E8Nhv>}CE=Ux33 z!2H|??%FNvAu8b2lrps_6hjwpC>DUBk9yv=%#w|1a>ocwWRz!P&AL*}fCiNBZ{xvy zu(oWIm`5$h1kv8i7XfD`)kaz#sMD}*10C!2>+O*@4cB&8+h~LytLW)v1&eOq6OBiJ zMYcEyH*$d=)Pe^$8U4Vd~0X1#$ZDs0^QTolqsuC(Cu9B79j!T$b!YJQu9LY@>M^+;7a4?9Lc z)R_A0*|RUwpp$d!fS(#~gq^XK1+tA80p{lBSZ}I_Qc}-l_cxvxi)~xr7q95Lm;^OC zi#+D_J*O-$-!gitZ8ck9YB{))JNS@io3d_hRu8FFOGn$dIaOclw$QZYYA1VR#c;~K zK}Oj9%hw_rpSsRZ2$>)7`TgYg!^q?{I_lAFPQ3y2RZuO>Y;-!xawcT7t%*MBSa6|n zVt(epS$B-3{V;WSgl4*4MQ;`JDN`%aoyt#6M^O|6e0@b{2M>Bf6oy%zTuAsk%>I{H z&Oft;a&H$OanWzNyftKpr5N|1Al!TFMF_B%1UPu4$9ScTLNll>Pc)!dkg+0|l<0}3 za;`${^gHbEfv_>Jug-+*ST5_nL0+=PNG`HSfsh+pw)xl*C)~`;v`|x>7$5^QSxh_p z=}Z?fQNoFy?$Yg?;RB3-l;qxaGP<=r-@g1y$RqLAqX$H{O_bHEE~5w}9OjRlMV3vl{+EiNtZ&3cA4AYq6Z z={PAHD(LVl0hFDN*iL^NxKIgzckQy({vNORO|-X094}tU{(0&v!>{XuRQ$zUS6qKS zY8&~8h$~|CHza;{K4{?UWCss1668x_e_RKUOv(2O-2tV=m@#tq32;d; zesMaWSQ7+t^>e`n(?O{;1Q8ZF=b`xw3nC5YDFGSyY43zrD{{|PD2$keUoj6=z=uDi zdPy|EOd-UYsKcxTXptofV8IF6dHT8F)L%mlz+i`MNe?Gh@Aoa1K!8bE9!t;8?vYoA?s=r&9MjmQ%SR3p&VT0DM+}Jwt9pCHZQP`u0GfiU8dKEC;`=$hbN31A;B@ z-@pGYgGdcgk_~faS4PQnM!y8mz0$d*2>2TCEpwo+F>G zi$8nVwYf7zj_~QMVmdr1VunJ7mWUlI}v zRVSxn9o}r)9{6Gq_u;61kHXUquA811KRtAE$2xcSnT*jWCSB+AKcEoV7*?^dvFu$Vi z?3%I2paPHPj&(Ks3go#bMUIM$PLRjk6`Z;3s&zE-=mx89u@P*qh;ir@Xo46+A8 zh!UjxB9xjG-6g)cr@ypL|Is6EBpP9zMJIui3QWxlE9QZmg_VN{6C^EjG)9Trb zpi@w)srN%3Z{3o+spLN2ibTgF7S0-)n%IPdkB{n7dCj}iCmO>U;Z4-){Z944QYOKy z3CXuP_wkp^5Iif0tTuBugum*AVJcnFbZTvJB1I2secYzo(Qut7a8oE5Dg%#YTLy0) z@ODt0KrS$n79rQQTG}DohJYChdBd>BYD@8iiwb7O+>DDouEr_Nudus8{O&nQO0%)L z=SUuj%qGF}yY9@F5Foa^4iPplFE6^nDGTC~HN3$A+I?f8h%VjTf7Zb7B<+4CAfJS!;EmkJMpha3ap;rgfV0jbPq8ZAWP)EXL3V1%-UywG> zABUVxWS$LXv&?OoEpGoDh=n9a{^B?L|3+>d-E--^cWvi~%2cCoV+0qLTrE`HOY!eb z;yRFCfk-mIxt<0FZ`^xslUev&8L20rB2B31RyyaQ4_3qFX3(AxDS>}?>f$X)z(fl| z@Wn8GNz*%SZf?VasWdAlkbQ*)d9l}mvBKlB^kA<`Y%gpwzAolVYmz8e)mrFzE`7wd zob8Zdz|_Sb*8fqSZB?`91T#UiQ_(s?2mgwF@sQ_ek5k#oj$JZcZS!Q6JW&)D)_UR@S zS@aDAeSegDyvZleuwfS3oyF2Nu;$QYKL#(YgH^GEB(O8T+M*TstmcIGJ6=(;@mTb- z6Bb7e4)zxhvNtzfR4GJ!Eu7=D7|(R9&2$kO*>X&WN^P?i?8g{qz+_Q{MRNe;83-Cb zQB*@R9q(NYmOH(pPL0ijsLY5ZnIKlA#M^3`l}`8eUSkx6j;1`14q zVG54bai&uWawqwi=AeNqc~I07R#?br!M%of%cSVn^y@_uzj}BhWzwRiBTvP{jLg45 z1$~7*!|Uk-y{W5{K)i~q1--j)WV>Ep}i&Q*?4oX5|Jqa>0tV-6uF4v0XrrX7*`HeP1Y6jx99r{ zWI)rJV7C)G5Wg|MiL(o`TV&d1*r7|_u>_hXk|BYz)5UJFD1&SC!Y2FT*b+9E3x49L5Z0K^hm+<$ZfiFM_VwYOyYK#A}dI^W4+aa|{RGfk1r~ zB$Uv;&@h)aAIWiyn53l_8e_)2pTEN6yjG(}yDM5ZmnU@8YC}t5lM(0-O-ACUV3BpL zDtvNEigGSG4_Pc2GU?sjS|#j^9_UB&S!+NVWK}kKei)7ohgZ(V1_Z5D>jM^UFzT{4 zIJ&QqQ?(ui<{1pfInx zDAYkM6zV_-@e#OUFUS}LKdxb=w6LnSCRpeD_QojmeXO08E!N8X0ke~_y@R=}4L{FS z9zHH+Gc4B5L4=pr`mY;!Z0${XFX>Hq!63)%?r1xpP~`WKe+M!pGR#pZt}5BvH`QF? z<_6teC<)2?OKq61hwm^Slzn{nuD7@Sx(e?B0j-}R?(T`_Q7&xs^pwY*%JCRYtsh0(#S)#1|KaSs;wh%c zXk@~-^0^niVPxV|8&p)pCkL}C48&pK$78!&^#|cEIwDdO>YWKC7hH=~E`(Kf>EY39s4*4<77z{@K{r&p?hsC3RHH4UK*Y=PWh)e473I zc@B1VsW)%laBy*TO}50Ax~`biY<%~p7qn2TX*(m~S$+ESX^(~q>)@j(RQt4*?PX2< zN2Nn9V`S_XE^KqPH8tU$pJEj-{CJ#xVQ>VmdFUUtF9XNF4D+7FkdBm#jwy?*> zqT9sX(9p0jL4$WFhHLh>-PeA+*+xRq)YNQhuy`mAuhyHd z7akg_vcN@yLfyDXtX0p!!_!l>P@A){;X;`1NFCa8U76h6sd==$_NBG8=iQS-yk`5O zqKPW%>fvpPXgb4D|E0wbF25GkRM7X$^MC*WHxC(Y?da~WN3-(tdtll-TGFDPxncV3m0TqWrDgO=-RaNzce+e zD=8`2y24JJS4`lNrRO&Z7(4}WP9HwEZeVO;!g2MgCOoh5M^RIWLA|$I|LgShZ0Cic zt+jsJ?m90oJ;!eKnW37h2Zn}7^p_2L-W&GZ&O37AZ071Jwu%+dNr0oDwCBm8qinK` z!A!mHeMxt1!a_olhHBhrL*;ln{(M1EYT3(U{jEq!CYVv(pPIWXRfar};kt(N@S}Ap zeI0nq%Pni(;qmc#KYsim?R%@9qv6?R2a|kSB<)Uf4q{SO>VMJhpV4lz%z%oLa@vPn zoEVFMRpH25nO#q=_LsJ{-q8lXL-7bEjK{B>PBzvi>$@*2`=Y3*NWh}&BH_n3RY0Mc zzS5k|&d$|QKc=nSIK##u^R*w}X1*0?eED9}2Ur=0l6%&&^SmkUv z^6m)|c_btxufoIA)`z|H@4dBBZi?VOv(^p!OsiC2FxOwE=)OMRP42nqb7XFDCa0k1 zjBR!D__$HxgsZD7a*R!yqms|vdUlb8MKZJmi&vQ&s<{UzJci#?VQ_6_vISS%CY}R_ z-vVBQ>@s(E zcgF~rhjMUo3YxaYRq|_K3c^^sZrdOx~8{?y+U0cKXOMYWFM#bfh>v(3LDj7g()eL5S+-xrP)k4Co~P#>tf270?n`siW)XH`O-mWv%)zw zx41Psqn&xu)6($YOcT2yPG?t=I;8xmvvPCgCH6PlChUZ*T8JU-M-6CeYrmbp%+Ie{ zQBm>o<;zavNWF9-QtGb$^MZovHSX&XY{o`L)4X1r{t-NS*})QfT9B62Z{B?J)@Cpp zQ{#4tm9?SA1LhLgvKBi)epZ+n-|X>>l!j-u3N0xqsaJ3Dttbu2zs=3^)?W*6_Ltde zdU#ZK;&6fvlk$`20FKW!{sqVWTX8*k_bi91U1P4=CJa7=aSyiY>FRp4hR2IIk{D0| z@+^+b<1&JWsZRLa@*`(DVRsg;wNJg}YFc>dzzrz$ZnGlz?6n6XhaP*~^3T-Rn!HmH z*GeJn;IW&xPe+GJx@56hL3}_U|H}+6W;0geaEpK-3iWw&Hx?c?@<8cd>F#`UbF)K! z+%*Ri6q5R$9<3v4D&o3!_5{M(ZX7Ca3_N2hatMCadT45F9Nh}{oYW})%9`58i7NTaR;Fold@_nx5$})mpjq@eF$E z5bCK$ zO^$}b6(%m3a2-M^!WchWP}h^MSEZ(;#O&9Q?7mRbixomf8E353skl-?6#wwde8S&p$VIp9cq*iJgIw4IS3!`ZXbR^Y0Y` zQJ)*G(}(x$W{=eEOp0%fzpe?ZY|;NV@B7%8<2iPlosFftckV2bO*vhi-hdgLui$Q4 z);`I=kf(`pmD=4R;GQ0%pfABqC3<0GWo6;sc0e)&eHV7)j!~R9d-wPNnFws*jmufi z3c!?AHNIRan{k-(>F*AeL18I498emG8&mX?;zdf1m*Id2uMU4f^4X*SvO zd8|>sF@!V4mxHrm-OuROV$F9>+K*#?3@pa#aeNH7RO|v|3W)YtVv+71h4sc8(G`qhO&Jp!m zvg&S9=0d`d2^QbVJbS_qQo6WmG@I;SlzyDZ+ICCLfZ0Vf;rx;#hByOvDFbILdaH0} zpZM7l@p+GepPE69DGX=45&75)Gmc!Q25tIKuG27BEFI=QgJ?Em?aKYVZO5^|tMp_V zT3VUl8UU-qnZY@E>_73AOAgdT5tp1z**!SYZp)u99I{^ox%Fu20}bJ>+J6xP@;8bg zfWCeZd+;Z5sns_XAZxu4kXEiYrki-{a(8w-WIGeY+}UJ-7WJ&n^|Q-nWo6OBX4dYm z-6Jdv>uc&chF3Z-3ln=)pfu$T5ti z2AZH^IM(HOYmBxPR#sLBUpNakxcc81`Z@jhdhX|8X-~f8_?bP@?E9ZD`bsS$;bf$w z$^>Uaww&om_4^pakOR{69uLiWIEq;8pV0Co`4Z}2fwGBeYip~9lhfL|O>ee3C%0B% z(iIkXQQ9#DIXP9Jca@H_>Gy1F!ehU{+1NwR15U_>!j^gN&gvr+(QUqBijs-RR+t`+ zshPb3zzD^8`F3?pJ@%%e631DMwDj~DP{!%S2pFO*BQ$7I^LE40)`eLF@xA z-yx-mskuf0JX~#4RAaqzHeVGu0h@WlGcxIe$QLW!R;aPFJ!nnchf-e^P{-ilf89|y zKH*f={nonwhAG@bOiCcp0P?;zKbUjRrsBhI>{l(U-J0PX1PNsUWX^N5Nk8TbWbTul z134OboyoWSRzF`z%v_7s!lk2efc8`C6mYhgJ|V>5T%#CdyUIGP2zJ@2_}XXQM9fj8 zwqwe#$1=}$HwH}Fb-kh!^W-)~M~k+I1{^(UFb^yoM~8YRWFr&KLe3L`n^+eUMF-7} zkVr`jnTkF}<-~G8o=2^XXu^8^TZhU9ci^!SflwxcmI(pjJIXqdZU`$+L_}(qSfPo0L$e_yt@AD7m%ac?C7>@YHh|lju@m#0}DGI)p&go4hrvp^$m0n3%kVtQF&gle@aqjE#-) z%T2tRZf=$N<=;u*&r3jSFDS&B*#UT=C}yZ~V{IyBTVe!}sO=qz7e^S)##pdAz})si z-F|gHk6xu(mGgpzwDdEK*RG=&p-a_muC#Y`IyKm0eST1<5^L_`0Aob~A40SluH@b3jq0$uK?YG93({mLxHW^Z4F=q5F_u4!#})Q|6F1`J|uYM@Fw$T3=47iHno z<*Hf`4C4Jrd>jO#CybpA5#Rp7Pk@KRUE4hMz^u3Rm>3x5K-IulUun2LK~mb>`Sz+i z=t=LaU>uupSJ0uchth*CT9~Ylc2UeDrL@5d*$m{K5ki4pn!rH=8S60hG1r~*xtcoj z%7!dh6ny}PGtU~NeN0$O`EP(f|A~QNq80;sHu*4X(6~#C3N8C*-%Ia z<|2|xqo(+O=sV5EgK7B&kGAj`I)w&LFz$1Lr8a{)Vdv2nt3HSv>x`BQ-2*#s+sauS za%l;#R!CNMwu-rV7Lbrb_IRNvNTvALB73RZF5_6fQ}8P4#>P}*ONtHIOza&3 zfhAqMTE63F!T4>!>`1``+>yq@!ZMCs+*;JZsLSneQSIj+_P!SiD%la_9~gr`EOz(S z>ol#btYBN#7;_v3|HQa2sLwe~8UAZp6_IW?5cP<^q-jDLarVSDy=QVQ5{fg|85CBu zz3U|!eG=1tYD9DGh%aBhu*qH>_9%u_bGop}N3RmA3 zzyuQFgB|c_jaVV;PSeCk>40qs@uP@We!3*}h`aU^a7zhrZfJRcy#XxaD^u{C}YD)_&@{tRWELA&H3v zz&k&fehXr_USimILRRJfs`8rM$eDp;5<3w{dcd!P#LvgAU#knLovhCscwtd-F|W(^ z-?|Uu6Lb^=LFT2%2KO&!Pw)7p1ub<*^FOU}BeGnb?r@uoHZAeo-8w=8^@)+h2KT!y z`)}IKj@Uw|&GG%o`tpoo&HCJV@V|wGH1<~{_6?bT68e>GgI7QV1gsM0q0R%Dk2)6? zuW90YvM-z|GUWmTgs^P=C~oTl;d2Plo|1`*_1WMj!;xi^bsl)=_s0#mn%uezr*jta zabJZ)Mg*^ZKImlduocL~HgpG=nOaAdk%LMk}fun)`nzRrIEd#&+RuHvm z2EY76ZGsSAN3I`kr z2&Icx;M=xI><|1-kIp>ro#y(?hie}_X+4;9AR$gvW$pos(bl(j!;IJSnul$#oH>Z{ zemd+8=bgQv_sldGiarTFYm)tS{WV)LSxyU;BAu8x>TsA_BrzukM~Tc{jbqA z3k-Hg$-R`IRI|0dVEbztD;2lPExI{cqWNVMGE~825ePqqlEkPxmg0#+jXzH;yI&xF zEIk?V`ghTVgPS|tSljK#n?}S`#(hIE8_n%k|A{>;8xH!ljiW~<;5 zJ?pN10wy*{o!vWg<<# z1@Fn@8c@ZtcW`iA9JvYOO(QI|08=C1c+l=iOqOmm|1v3Ag-qIN4(Je?l}rXWrsV`+)_NQAL$CY9wWYm-go7Z-wrDNikSTBrh{rWpsgCHsSlil5jq5ulTtCI8i&x{%^vJAvn>1d;xVBkCBZfD&{^@%>l(N*d z&29GD4gPeAqdIP=tf!au-RHyGdEA6O2-VL$k1)AO7q#|9*xO2bF*#7%-~iy>+}w1V z%`3z9TbIQMa6bp8MIS>F3=da-`F!ycew_M!AIrnZ0J01# zuBOnk`Qy}M%I-%vS%_Oz4j=lN6WPa-N9ajq_=80pUkb(~UpXvQzubt&TD*UH3^Dq_ zov14_i2mh>Hg5Fde>WwGus+UqG^) z;ckORFHba4ojR2akV7O6F?Hh*UER@HfZ<+;Hn9wZ!yP+z?B(<4?NA3QweAI&!={BhfP(;i^!oQUxf0;sbUn-WkNBUazi0ApSWL*B@N!XNK$Q z5SW0{AL_Anz_1U%@kyJ1b0WvCRvbdnE2y+@Req znU<^2<%v#+eIwJ$q*B=a+U~{4zm38FPsMda9{Cf-$N#XPp*ZK)fIYp!C1+v6pdOBA zMxmG}xt_)e<;7+_00+fPD>RKlP!LME={_h_t&iMKJor_j{?DNFpNiVQzcI=3rvqDE+()3hH4E z7EJ+7p?~e#wJk`W#+TDv>sJiW8M+A?M}lo-9m(k(X`4@R{iBB7uR)`y4OR9TGkGlDyunWt3#65uojp3}oUDD> zbIsm+`g{x!pShjb$IPQA4LhO&G&kPAmy}(0KX&>2d1=7RynYCAW=dLKEvUYQv6Wg( z>=&tGvDiVdYf;JXToC`0`07Vejk)L?hxjxOUS5f*Z`^Py42-G`x`*5+7Q}PF4`LAa zh>{UNa@m7w0|XUAOJH!fS&PVS8^qlvISbk=;xh_aM+C=wj*?qI0exn$s_Zp?WPa)I&#$&HK)6kNXXiV4VZ`fK*DK_hg7;fa{< z9Aa2*G~6mcO14&c=4Wj2Fd$+wQ`xzGJnw|fiwdu`b2!UsDyQ$w*h^i^}H zMaDq;1|le-N;vzHGrt`%+};>A#stxnD8!4TLAhJdc1Rbb>ScxtBVarTns>65n&YGq zX@o9nb`3* zV!V7ZlG`zEcy{oUEP!bv^`Ls6qlEgSOqu27T9FvHEPT{~71#mG&E*M;;o2G%RaGi* zqP@KjBK;4uy#+|#%bFjoiVdQp4$x=0-GJ0}Eqii1UR_dMZRT&A2A`;F6^}zVl0<>~ zHw#Wy2Xc6FwTmk!Km~OMd+iuf(a>1-zqPL1n#mzcFX_eOG6<k03jt505{pkk z`Y9mrwmO16jYM>ACUgXhc5)gBt7Zum4r zGqqh`Ery~t_%plX7bH3$C6T2cXZpx{D&;=diOJAzGL6qj)PNvHH(p7BrV=1GRUTi$ z*}&1q*KW^;QF`LIx?2aYnKaYZIXEYXKhgm#I6`rx=ie5H8*lKfL~v=R!0K|}d&~8F zl8-DGN=TQW!U8Yfv$MIf8+1$cl4dA&&(o)4*qB#69#@vBr~>d1=8Rc<(!FIU@N3ga@$2t>FC)ay{3HaImLWTCXom z!_M4Aqt(&qKq0HINgw=aW&uroAS~n?Nz1_)`82j<25$?Xu&%w{bI(>b^vH2q0~Q@E z3z2TI08y|?fH8L`?yX+HDSNBHFc{YfDkz+#y?zZHF`Se0)t6yu+|~!3!L=!16myFT zqELeM*8sl;>M4D%ZRi%K>h`zm*yFFsA^jmxEUB}JhaMuhVX`&ek^}P&ITHxaPH_2t zOwVhVP&pQKof6CzXqlP@!?GI+XgRWB=c9w@grFVE1Wr$nrVWo zG_);s0HMPbR%x$DPR;{sJ7)AcNmWlT55AjKRHOnl+T7l>&~v+gI6EonhHc%hQ%%zp z8a+3W4>hAKDExz|6^k@zAvIFO1}!pfdKDFwd6d!Ron7aTN8uU@IGzr~Yoy6o?+v&Xw~)dN3r9CYl(Pf6@oj265XCu1P@ zLQW@C$nJpR?6LJ+iA8x*5g!4HM=rJ+vb?;Eg<>Gm@|4a>)CH%o)NWJ~9nB{N_$SEF zC=3;RS)hhrK7a0j(jqtw7opY5vO8PdUL;=UtyT2st0$!f^#_4hTW+o5w}$t3^&dfH zqp!%=Um;OE54acNC8x7KBWpFFyX>}V#vtLj<6RaU9306ew!4bkYLwVZhAuL71=9`e z*t4L5Bv5l_=1O;4S*^>iyTA8`2lSyDJkeJK&op`o<1QAxi8?OO%s$M8rsHmZOTWF zQ6E z4Fe25#3Mv7+`6yi%{lGG&G~`&eYa;RPV=o$&m6kJSNwNt)bFzXeS+L4Uyh3xL$LGu zl3?hv;hT9`Va8-yJgPi(JNB|F05-e%1$r1|NQf69EM zq6UQua{xMehuoWQ0#t3eL&~G*|IcYKe=?|R>d*d)}&Cu1Im9}lYJ@6T_!2#trX*N?Kr$@`n zcX5{uq`(T{CnEKG;5_S<*(`nkAmX-~38k5SqXb{a2C}Qu&UM@INWT$mc_P0%v@#%F znP4P9a7&??z0cVjGBVdtN8ThS~ z3Qraxd_ub?Iyzx*qfugO&;%;L_tgv8Cg*qZftTJ14PuhW_a&v-8a#jQ+!OEar*LFu zV8=V461&=4x2F!#pb9M(2#*EFS>Q*Tn^$DhL?_bn_}~M{E?&_K`5n|^8dPHeVDubq rPkW0+`Tx`<=ml$p`33&Z$o-y#cl-@IEm3hq7NBIM6mI8B8hHO7Dt2)Z diff --git a/_images/hist_overlay.png b/_images/hist_overlay.png index 3e0ff56aada5476d0593045819d61e0889427b89..d128e0e40d6c2f2a1370174bef0904113faa8a05 100644 GIT binary patch literal 12169 zcmd^l2T)Yo)+Pq@DnU^ZB^p2^tAOMn5^Rv1o1`L{Cg-T2f+8Rwf@I0iP0m?BMadb- z0s=ylp~>N2$Cv+^SM^@a`)j6ZZk3m+hSTSqz4!Xo7uHK91sSrF)F+9Eh{#a)Bvpur z4r>t+9eVS}G5Exemp&4H2slV-IjCA2J2*eIGa{0I=wM@M?OoxPd06*nh8 z=MDBtrVb7^_JUkon7{r3r?s647jIq>7QWc4FLAv%Z5z&p;|9@W4L#n2xX1X|1m6@KNOZQpOm?F?s z(vZF*Qif;BmbAcM8Kl8Y^hC1u@Pn`LS&Q4ID|}ueO|rQ6zK4|PlCA$~*i-)h!9CTA z9yrjdax0Sf@MeD{q9#2({oa_3mfSn`j!!So23M#`NYt_LRoYK05Po$`yu}+mewnd5WU?sd-f7vS~wx2EIq;hOp# zWz%tk33lpO!-k;p`QpJK9j{tqDjpXaIGg&)nz?aa+h!?gX>1%E@~*C~Q9{lOCl+~3 zT4UTIMm;x%LzBOSF~@88E5r)M+C;-8E%JJ`jg5_hNo4A!9@8xss6g}?sYf{w?_`ayO zc|JuRTXv{UdA?zXfej804s|OltL}WZ>{5v~v4hGpXU_)ygm*P%l|I>PaIme3>CcxE zaa(Kmr?{$suMWE=-&&+VBsbg9jU+g3yA%M%Uw7QWH9ZPP-NPOPk~ z)HI{3bz?T&eZ8->C09Fzb^F5cy;^OTTn*{@-~Z$fx^_P@LFsz({9p-R`h%3@@c_|-PCV05)b zA7^-YI9-VstWqeG+&R)?jxD@>F(^rZ$ZML;{x<#jMkk+3geE5@UO~xhC}4)m)kELL z#%9ID#H0)5po?VH)zy(>rRYXllAJ8*d;F9JyoJ-;cjb~@LZ3mOs-j4W9A}xNnVH$i zW4_xz!xRf$SB(XNk}4~OllB6Icbz`EW+f}~0 zK0ioPI3h3|qq_LvV{`L;BV*&Z-i@O~L`&t|qTlG?M0fm$!C#AJ5MC!QEOh9OZME-; zx~B!N%qKJEEg`KIA|56{sKN)BSk}+;?kYi}3x@($tejaSY9-htY7a-1tuNCR9Yo)? zi>cSJ-<`+%YSf4kxtt&-F`Z(?X7cWI7{Im{ClL|t2Zas6P5zx;^*Q-LmVOnQ+oTmr z{at8i=-W4M5`27o-1_u#A3QyC=FIF~SWFCUfD0_iP0BDuyLdk9xK{xI;gON)aFi*j zsNz>dCmMn^(P*?o>1~g8VW@GhN1YG;S3qJ}oIyPBsKW&uj&_MG^xqSjNxzJ{wnIz?;8Ic!0WZ^f*C4RzIgFs+K>VY z_0rs&UCj5BmYG?`{2y_(>_N-N2eJA2lcK2G$AW_mTW9Fg8XIK?Z>p(NYAjc)){JGa zEN$|qrnJ^AZm@}n44WUr6SFZhGtVy0%*>SUEL6a~k}q-_|H^Bi?`q0G)7R$~edT5=2T{>#L^hXlwOEHo>Q2Q)M&L#@%O-MH{}qF`rp zsfg@4ZxObKRM;CqjW)Mh!4L#AscJT#7h8{xBoHu*CoNAt6;Dv#jUlULPZS8c+ORwr zGw2rZ_6MG#PNrt21)OSyMBfC)2$QlBErMX1`5qWlkqt<)ft9xMNCL!jBk-;|E=c| zmr*Lp${~zqTPu?T<&IcJ79k-W0Re&SZG2An`}Y|noTcJ>I~$sP*?Q_KDv9#Zw`bs6 zdZ9JEjgF=X@JG(x*)SiUUl-#YqD;MR8e55W%ka=cylz2-IC4LNm^MsS!6+FBJ|3n+4E7^Kv6)!{^nQr9~vjmx4-%mf%%^y zr8xO{ZyePA2c>)7TTKSQ?UJElnB?A>j(>Wo?3|vN*-2wv`GJh)_OJR=V%-r2UMvl^ z4hv<|=DVBAQMZg)G4DG^c5QqSA|pagycNtSPPmJQ-;z)+@IqSMC5 zA2D6K#wsAN^(Z;DBlAXQf_2E~h3?>;cGhl6Tw1&r8j4I-PEJ){ zKW?fuR%elJd}4yIIT36Dk8M6$?K!;Sx;n+e%q#<)uibmM!P|80R|gq+M}{hM%X{v$ zWie0#PyD)LeWCZI6c!e$j$CG9l2T1m2xQd^b?DVLnOPsSj$o|X7;%4L2y%dj0i#eQ zTVI43)Cg6;)3T#Z`qiV$>{6h|q&<6fl#E_j3xMQW5|jkb#iT#At>h-oin+oCK+Vjd zp`mmmOqS!l`GT0@5X*?P1B$4^-O{59b--PyZbeuj$5gs?-yq6OcSx=_7im6DojKGT_! z<~Z74U?Q`(ml(j=IopE`hZYa?rewrT?y5|X@T8NhtgM=9SAP5*Sa*!f(oyf+Dpod~ zg)j-j8^Nafkus&M9(B%!d@1(j4H^0QolqQOWowb|1W9T}bJo@zuoqiPAMEXK)bs&+ z1SDk4(kW3GE_W1~Pzstbt$TI?7{EZar@QY-4O!X7i{1t~u*9rDG41T~4?le}&#&>k z{^2~AQ1XKtmm0?G?ezN8jf^5)cVi=_C`@UTA{Z;u_-TiQY?W#sCT5>TU8KYT+?aJHqh#;j?*_)(U0|YkH}8MXvS=GZCSpdSS4YI1r) zC+vT2vS=0gp=^5r}D-Yo8Fwgo7mx5>vm9e`sziQvh6 zuxD5{J6y4W>dS#TTNth&0MVD>7%j4h0A3!XBX;hj*|$(8U`6FqQ5Mu^DS*L5mEV2V z^o~RI`nga>N=iyp=sPZhY*;GU(ENge@UXBXU~U#ryO}tgnz3=Jz9*q);&#-#cjq0+ z>O(`%AO|rcBV!=XP-b|g&%j$xQH1c8v+U;?=r}AFNN2+oMLVEKC;5X`R#x6dMNvn` z(*jSFo;``MOZK2{8{Tp3gn4nO`uct>^wh#WDkGCtTn$h4QKP-F@5FRa0-)VSID_RtcE zgBX;Y4#KEa<1aU{T$vr(hCo^~v*Pn% zWJ$lf-NTh#BzlU=Uy?B`wb_X@K|S%op%&d~1&sRg3>Q;B=A8a@%}}-VZ&$YVy!zw( z_$0eiuc@CrYI*z+nvR?T@aG@a=1(q0Zsa*!4_4D+s`)*fCKVNxP+)RuN=i0$gqpo| zonhxuPr=2?)we)HR$GM>H-??#tM}FiwLXDD^UsK^46qrgbY U=9cy5!o0z>o^$eJdy#(nx&N|5ps|5{7vM7x>?i$(31{ejy#XQ zzL_9D^5yeqvtR8WSXo#)MylL7n4t3bJ$p&sF@jF+b9V1 zy9=jmuF7~DxNu_Va@cHbZ8d7V1Io@n{LLHD>)iMLL>qscD%LbIYVuSuB|T}vGewbw z0O8TU0ikzYlA-)(^V-?(c}a{jKWcpmBVO?M=>&yqOiZ73Zv>zC8|G#0CT0Ou+-V|* z!u@Ky88b9+WsE<_V=iBr@k|K5ym?~LeB%MJ?;QbAFM}a}EbGf@mF4ozbGY-k0ehT+ z!x{JaGR-1EXi<<<5&%o_q`dR5Q8gTo2LsYl?BW#p)e}n(dyPL@S+2 zmpnL(JgzH`od`#Wo)|M-^ZO%$Lnl?~IwJ~%eJCS`LA9<s!VTV~(=1EfeS)XVO!$K>=hpUWPYBxd`&TTx=( zUhLyg!#pe_8gP&QcMZZ^X)2tL&tWD;#+bFXbmb(4vRDqC;ur@S;KO$eufnryb)@Dw zH-G)wj(AE{nE8PsL~A>2O-As!xC7r(H8!5IZBkWHp{79^%`5oAr$>&P|M>W{f#Z~4 zz1!Gxs_s;I8Xy_fwS!H~&D}8q_S7`MQ$BLPj`t;0jP5BIc<&WS2hnCg_wI^@-z-&1 zFM<-8Y>JQzwJM)U?J6IIDkKcqw`EjT>Ovm^3HJDhj!1k%B4(TjLfj^5UN*|C6SNi$t(e82XgHq!`uQDHXxw1gsFZ0u8f`MWTeyYsYH zLi{~Mn;r^ZI`gvI(}=!d>YvqTO^1)VlG3FAwev>Lbc-zinx4M)<6F4n! z3XN&yjy)@NNkQ$MeHFZmp4mE$Pki~kg_XDT6nTJx>)WjzR zi-xvMtAbe+f`RkPLwuDOKe|6Z3MLw_)et|iZ>?LOfX$C5PKzU1M~;(Aa(Ex?ZQw^{ zRIugc=u^T=Pr#yZgqOk36|~)^I7>v7fVv=X95Dk!6}((*fYT!WqH$Xs9pU9XQ2X$< z>8>}I?{-(YJJSifC_R7vd>gLpPLesrp@hOxb}#jNk8 zDa2+X1QJ-DAUqE!;3WMjx0&pUg-#GKV5ZolBK<6?`yv(Yj_d|ae_bmcf6bbfT#X1B^j%dzpWAp35hCi=ELFu5 zCr(fcyX4-wb<45=4hKIbjsAObDtcwhgLzn5N=oW%3dU{BhJV(=LPO|CpCbqJ@{0ih z$tx7G5I=ZOo=2qT;iQ`l}huh{4N;+}&+I3J2;LNA7 zYq7Af$iKzSfF=rm_YTCi_EYhXPPEv%vE20tI+Yt2-b^gf2O@-_m1Se4_*lq2$!z?s z;F^!n|w(8{y{%SVm{pj~$%2*h}LNUkK=?zvK zj+VG|+LThv*4kpg) znI|A`C;%!?6AHGBy49_A;4eam9!#Id-_8J+(X(&im1iJ@S`NW6T=Cc=^bxvM6=y=_ zIF-@pD4*H{(XF3nF(Z}QK@-=xxD=tq6#tgzkpv%Jk4>BTkt!Vq&$W<~BqZv}${(Ol z1zzNqE-Nde<}rOUk9bUJpTQGsZbr1zJW`Thw8V~sH<^&~;qS7)=4}BjaeLmK=>yGJ zp@BUJ7m|xZe8=nV5dGjd$DR-(=xmv^qIXJLfudt9ih66$BU1#t+TZHq|6*+;6agfl z$j)3r`9e9~VZ?Ph!=f*HcCaJ|VQFIf%fVzLt;Gl7vyx*MU}a^N`3n7Sqqh` z3VP7@pc#=3=);Obd+++r533&6@$2rhBOtOJLXi-ku zco2IZC>|5atEQ%QqrbvAC(eCAAUq<1jh9y)#0dl%kJ!fnPCva}_5t;Ra~^S(`S$G_ zID+E7izUV_)LGgEsSAtHU%PXlaO>5QG(Rc$a! zny*HsO;No3nw7WXj+Y)XG_b%)=e5ce_?L!6R=#NX{Q2VO)XWWZZf0ht13s%HGe2Ji z>`_cRJ&sea{1+rJy8VL=5 zkV3eY!7`^&cE_kIur$uK+4X~s+lf^qmV(-xq?{}^ycY^iIhZb_T+NA@thjN{&(b9` z8$01~aaIn|X-!(Sc6yp6qh1wo?j2zn@n2}HE!$z=@M+*8_3Tw4Mk$|FOsmkMFa+af zwLZk<0EmtrkcSUwB*>rLN!=ChzN@(v=AJwnS0|?`;mp=Y~IvnOqU=jJ;`qj zX|$!?!YwA|2D>7`9Bq7(c+BuL7vDIt2#E8Nhv>}CE=Ux33 z!2H|??%FNvAu8b2lrps_6hjwpC>DUBk9yv=%#w|1a>ocwWRz!P&AL*}fCiNBZ{xvy zu(oWIm`5$h1kv8i7XfD`)kaz#sMD}*10C!2>+O*@4cB&8+h~LytLW)v1&eOq6OBiJ zMYcEyH*$d=)Pe^$8U4Vd~0X1#$ZDs0^QTolqsuC(Cu9B79j!T$b!YJQu9LY@>M^+;7a4?9Lc z)R_A0*|RUwpp$d!fS(#~gq^XK1+tA80p{lBSZ}I_Qc}-l_cxvxi)~xr7q95Lm;^OC zi#+D_J*O-$-!gitZ8ck9YB{))JNS@io3d_hRu8FFOGn$dIaOclw$QZYYA1VR#c;~K zK}Oj9%hw_rpSsRZ2$>)7`TgYg!^q?{I_lAFPQ3y2RZuO>Y;-!xawcT7t%*MBSa6|n zVt(epS$B-3{V;WSgl4*4MQ;`JDN`%aoyt#6M^O|6e0@b{2M>Bf6oy%zTuAsk%>I{H z&Oft;a&H$OanWzNyftKpr5N|1Al!TFMF_B%1UPu4$9ScTLNll>Pc)!dkg+0|l<0}3 za;`${^gHbEfv_>Jug-+*ST5_nL0+=PNG`HSfsh+pw)xl*C)~`;v`|x>7$5^QSxh_p z=}Z?fQNoFy?$Yg?;RB3-l;qxaGP<=r-@g1y$RqLAqX$H{O_bHEE~5w}9OjRlMV3vl{+EiNtZ&3cA4AYq6Z z={PAHD(LVl0hFDN*iL^NxKIgzckQy({vNORO|-X094}tU{(0&v!>{XuRQ$zUS6qKS zY8&~8h$~|CHza;{K4{?UWCss1668x_e_RKUOv(2O-2tV=m@#tq32;d; zesMaWSQ7+t^>e`n(?O{;1Q8ZF=b`xw3nC5YDFGSyY43zrD{{|PD2$keUoj6=z=uDi zdPy|EOd-UYsKcxTXptofV8IF6dHT8F)L%mlz+i`MNe?Gh@Aoa1K!8bE9!t;8?vYoA?s=r&9MjmQ%SR3p&VT0DM+}Jwt9pCHZQP`u0GfiU8dKEC;`=$hbN31A;B@ z-@pGYgGdcgk_~faS4PQnM!y8mz0$d*2>2TCEpwo+F>G zi$8nVwYf7zj_~QMVmdr1VunJ7mWUlI}v zRVSxn9o}r)9{6Gq_u;61kHXUquA811KRtAE$2xcSnT*jWCSB+AKcEoV7*?^dvFu$Vi z?3%I2paPHPj&(Ks3go#bMUIM$PLRjk6`Z;3s&zE-=mx89u@P*qh;ir@Xo46+A8 zh!UjxB9xjG-6g)cr@ypL|Is6EBpP9zMJIui3QWxlE9QZmg_VN{6C^EjG)9Trb zpi@w)srN%3Z{3o+spLN2ibTgF7S0-)n%IPdkB{n7dCj}iCmO>U;Z4-){Z944QYOKy z3CXuP_wkp^5Iif0tTuBugum*AVJcnFbZTvJB1I2secYzo(Qut7a8oE5Dg%#YTLy0) z@ODt0KrS$n79rQQTG}DohJYChdBd>BYD@8iiwb7O+>DDouEr_Nudus8{O&nQO0%)L z=SUuj%qGF}yY9@F5Foa^4iPplFE6^nDGTC~HN3$A+I?f8h%VjTf7Zb7B<+4CAfJS!;EmkJMpha3ap;rgfV0jbPq8ZAWP)EXL3V1%-UywG> zABUVxWS$LXv&?OoEpGoDh=n9a{^B?L|3+>d-E--^cWvi~%2cCoV+0qLTrE`HOY!eb z;yRFCfk-mIxt<0FZ`^xslUev&8L20rB2B31RyyaQ4_3qFX3(AxDS>}?>f$X)z(fl| z@Wn8GNz*%SZf?VasWdAlkbQ*)d9l}mvBKlB^kA<`Y%gpwzAolVYmz8e)mrFzE`7wd zob8Zdz|_Sb*8fqSZB?`91T#UiQ_(s?2mgwF@sQ_ek5k#oj$JZcZS!Q6JW&)D)_UR@S zS@aDAeSegDyvZleuwfS3oyF2Nu;$QYKL#(YgH^GEB(O8T+M*TstmcIGJ6=(;@mTb- z6Bb7e4)zxhvNtzfR4GJ!Eu7=D7|(R9&2$kO*>X&WN^P?i?8g{qz+_Q{MRNe;83-Cb zQB*@R9q(NYmOH(pPL0ijsLY5ZnIKlA#M^3`l}`8eUSkx6j;1`14q zVG54bai&uWawqwi=AeNqc~I07R#?br!M%of%cSVn^y@_uzj}BhWzwRiBTvP{jLg45 z1$~7*!|Uk-y{W5{K)i~q1--j)WV>Ep}i&Q*?4oX5|Jqa>0tV-6uF4v0XrrX7*`HeP1Y6jx99r{ zWI)rJV7C)G5Wg|MiL(o`TV&d1*r7|_u>_hXk|BYz)5UJFD1&SC!Y2FT*b+9E3x49L5Z0K^hm+<$ZfiFM_VwYOyYK#A}dI^W4+aa|{RGfk1r~ zB$Uv;&@h)aAIWiyn53l_8e_)2pTEN6yjG(}yDM5ZmnU@8YC}t5lM(0-O-ACUV3BpL zDtvNEigGSG4_Pc2GU?sjS|#j^9_UB&S!+NVWK}kKei)7ohgZ(V1_Z5D>jM^UFzT{4 zIJ&QqQ?(ui<{1pfInx zDAYkM6zV_-@e#OUFUS}LKdxb=w6LnSCRpeD_QojmeXO08E!N8X0ke~_y@R=}4L{FS z9zHH+Gc4B5L4=pr`mY;!Z0${XFX>Hq!63)%?r1xpP~`WKe+M!pGR#pZt}5BvH`QF? z<_6teC<)2?OKq61hwm^Slzn{nuD7@Sx(e?B0j-}R?(T`_Q7&xs^pwY*%JCRYtsh0(#S)#1|KaSs;wh%c zXk@~-^0^niVPxV|8&p)pCkL}C48&pK$78!&^#|cEIwDdO>YWKC7hH=~E`(Kf>EY39s4*4<77z{@K{r&p?hsC3RHH4UK*Y=PWh)e473I zc@B1VsW)%laBy*TO}50Ax~`biY<%~p7qn2TX*(m~S$+ESX^(~q>)@j(RQt4*?PX2< zN2Nn9V`S_XE^KqPH8tU$pJEj-{CJ#xVQ>VmdFUUtF9XNF4D+7FkdBm#jwy?*> zqT9sX(9p0jL4$WFhHLh>-PeA+*+xRq)YNQhuy`mAuhyHd z7akg_vcN@yLfyDXtX0p!!_!l>P@A){;X;`1NFCa8U76h6sd==$_NBG8=iQS-yk`5O zqKPW%>fvpPXgb4D|E0wbF25GkRM7X$^MC*WHxC(Y?da~WN3-(tdtll-TGFDPxncV3m0TqWrDgO=-RaNzce+e zD=8`2y24JJS4`lNrRO&Z7(4}WP9HwEZeVO;!g2MgCOoh5M^RIWLA|$I|LgShZ0Cic zt+jsJ?m90oJ;!eKnW37h2Zn}7^p_2L-W&GZ&O37AZ071Jwu%+dNr0oDwCBm8qinK` z!A!mHeMxt1!a_olhHBhrL*;ln{(M1EYT3(U{jEq!CYVv(pPIWXRfar};kt(N@S}Ap zeI0nq%Pni(;qmc#KYsim?R%@9qv6?R2a|kSB<)Uf4q{SO>VMJhpV4lz%z%oLa@vPn zoEVFMRpH25nO#q=_LsJ{-q8lXL-7bEjK{B>PBzvi>$@*2`=Y3*NWh}&BH_n3RY0Mc zzS5k|&d$|QKc=nSIK##u^R*w}X1*0?eED9}2Ur=0l6%&&^SmkUv z^6m)|c_btxufoIA)`z|H@4dBBZi?VOv(^p!OsiC2FxOwE=)OMRP42nqb7XFDCa0k1 zjBR!D__$HxgsZD7a*R!yqms|vdUlb8MKZJmi&vQ&s<{UzJci#?VQ_6_vISS%CY}R_ z-vVBQ>@s(E zcgF~rhjMUo3YxaYRq|_K3c^^sZrdOx~8{?y+U0cKXOMYWFM#bfh>v(3LDj7g()eL5S+-xrP)k4Co~P#>tf270?n`siW)XH`O-mWv%)zw zx41Psqn&xu)6($YOcT2yPG?t=I;8xmvvPCgCH6PlChUZ*T8JU-M-6CeYrmbp%+Ie{ zQBm>o<;zavNWF9-QtGb$^MZovHSX&XY{o`L)4X1r{t-NS*})QfT9B62Z{B?J)@Cpp zQ{#4tm9?SA1LhLgvKBi)epZ+n-|X>>l!j-u3N0xqsaJ3Dttbu2zs=3^)?W*6_Ltde zdU#ZK;&6fvlk$`20FKW!{sqVWTX8*k_bi91U1P4=CJa7=aSyiY>FRp4hR2IIk{D0| z@+^+b<1&JWsZRLa@*`(DVRsg;wNJg}YFc>dzzrz$ZnGlz?6n6XhaP*~^3T-Rn!HmH z*GeJn;IW&xPe+GJx@56hL3}_U|H}+6W;0geaEpK-3iWw&Hx?c?@<8cd>F#`UbF)K! z+%*Ri6q5R$9<3v4D&o3!_5{M(ZX7Ca3_N2hatMCadT45F9Nh}{oYW})%9`58i7NTaR;Fold@_nx5$})mpjq@eF$E z5bCK$ zO^$}b6(%m3a2-M^!WchWP}h^MSEZ(;#O&9Q?7mRbixomf8E353skl-?6#wwde8S&p$VIp9cq*iJgIw4IS3!`ZXbR^Y0Y` zQJ)*G(}(x$W{=eEOp0%fzpe?ZY|;NV@B7%8<2iPlosFftckV2bO*vhi-hdgLui$Q4 z);`I=kf(`pmD=4R;GQ0%pfABqC3<0GWo6;sc0e)&eHV7)j!~R9d-wPNnFws*jmufi z3c!?AHNIRan{k-(>F*AeL18I498emG8&mX?;zdf1m*Id2uMU4f^4X*SvO zd8|>sF@!V4mxHrm-OuROV$F9>+K*#?3@pa#aeNH7RO|v|3W)YtVv+71h4sc8(G`qhO&Jp!m zvg&S9=0d`d2^QbVJbS_qQo6WmG@I;SlzyDZ+ICCLfZ0Vf;rx;#hByOvDFbILdaH0} zpZM7l@p+GepPE69DGX=45&75)Gmc!Q25tIKuG27BEFI=QgJ?Em?aKYVZO5^|tMp_V zT3VUl8UU-qnZY@E>_73AOAgdT5tp1z**!SYZp)u99I{^ox%Fu20}bJ>+J6xP@;8bg zfWCeZd+;Z5sns_XAZxu4kXEiYrki-{a(8w-WIGeY+}UJ-7WJ&n^|Q-nWo6OBX4dYm z-6Jdv>uc&chF3Z-3ln=)pfu$T5ti z2AZH^IM(HOYmBxPR#sLBUpNakxcc81`Z@jhdhX|8X-~f8_?bP@?E9ZD`bsS$;bf$w z$^>Uaww&om_4^pakOR{69uLiWIEq;8pV0Co`4Z}2fwGBeYip~9lhfL|O>ee3C%0B% z(iIkXQQ9#DIXP9Jca@H_>Gy1F!ehU{+1NwR15U_>!j^gN&gvr+(QUqBijs-RR+t`+ zshPb3zzD^8`F3?pJ@%%e631DMwDj~DP{!%S2pFO*BQ$7I^LE40)`eLF@xA z-yx-mskuf0JX~#4RAaqzHeVGu0h@WlGcxIe$QLW!R;aPFJ!nnchf-e^P{-ilf89|y zKH*f={nonwhAG@bOiCcp0P?;zKbUjRrsBhI>{l(U-J0PX1PNsUWX^N5Nk8TbWbTul z134OboyoWSRzF`z%v_7s!lk2efc8`C6mYhgJ|V>5T%#CdyUIGP2zJ@2_}XXQM9fj8 zwqwe#$1=}$HwH}Fb-kh!^W-)~M~k+I1{^(UFb^yoM~8YRWFr&KLe3L`n^+eUMF-7} zkVr`jnTkF}<-~G8o=2^XXu^8^TZhU9ci^!SflwxcmI(pjJIXqdZU`$+L_}(qSfPo0L$e_yt@AD7m%ac?C7>@YHh|lju@m#0}DGI)p&go4hrvp^$m0n3%kVtQF&gle@aqjE#-) z%T2tRZf=$N<=;u*&r3jSFDS&B*#UT=C}yZ~V{IyBTVe!}sO=qz7e^S)##pdAz})si z-F|gHk6xu(mGgpzwDdEK*RG=&p-a_muC#Y`IyKm0eST1<5^L_`0Aob~A40SluH@b3jq0$uK?YG93({mLxHW^Z4F=q5F_u4!#})Q|6F1`J|uYM@Fw$T3=47iHno z<*Hf`4C4Jrd>jO#CybpA5#Rp7Pk@KRUE4hMz^u3Rm>3x5K-IulUun2LK~mb>`Sz+i z=t=LaU>uupSJ0uchth*CT9~Ylc2UeDrL@5d*$m{K5ki4pn!rH=8S60hG1r~*xtcoj z%7!dh6ny}PGtU~NeN0$O`EP(f|A~QNq80;sHu*4X(6~#C3N8C*-%Ia z<|2|xqo(+O=sV5EgK7B&kGAj`I)w&LFz$1Lr8a{)Vdv2nt3HSv>x`BQ-2*#s+sauS za%l;#R!CNMwu-rV7Lbrb_IRNvNTvALB73RZF5_6fQ}8P4#>P}*ONtHIOza&3 zfhAqMTE63F!T4>!>`1``+>yq@!ZMCs+*;JZsLSneQSIj+_P!SiD%la_9~gr`EOz(S z>ol#btYBN#7;_v3|HQa2sLwe~8UAZp6_IW?5cP<^q-jDLarVSDy=QVQ5{fg|85CBu zz3U|!eG=1tYD9DGh%aBhu*qH>_9%u_bGop}N3RmA3 zzyuQFgB|c_jaVV;PSeCk>40qs@uP@We!3*}h`aU^a7zhrZfJRcy#XxaD^u{C}YD)_&@{tRWELA&H3v zz&k&fehXr_USimILRRJfs`8rM$eDp;5<3w{dcd!P#LvgAU#knLovhCscwtd-F|W(^ z-?|Uu6Lb^=LFT2%2KO&!Pw)7p1ub<*^FOU}BeGnb?r@uoHZAeo-8w=8^@)+h2KT!y z`)}IKj@Uw|&GG%o`tpoo&HCJV@V|wGH1<~{_6?bT68e>GgI7QV1gsM0q0R%Dk2)6? zuW90YvM-z|GUWmTgs^P=C~oTl;d2Plo|1`*_1WMj!;xi^bsl)=_s0#mn%uezr*jta zabJZ)Mg*^ZKImlduocL~HgpG=nOaAdk%LMk}fun)`nzRrIEd#&+RuHvm z2EY76ZGsSAN3I`kr z2&Icx;M=xI><|1-kIp>ro#y(?hie}_X+4;9AR$gvW$pos(bl(j!;IJSnul$#oH>Z{ zemd+8=bgQv_sldGiarTFYm)tS{WV)LSxyU;BAu8x>TsA_BrzukM~Tc{jbqA z3k-Hg$-R`IRI|0dVEbztD;2lPExI{cqWNVMGE~825ePqqlEkPxmg0#+jXzH;yI&xF zEIk?V`ghTVgPS|tSljK#n?}S`#(hIE8_n%k|A{>;8xH!ljiW~<;5 zJ?pN10wy*{o!vWg<<# z1@Fn@8c@ZtcW`iA9JvYOO(QI|08=C1c+l=iOqOmm|1v3Ag-qIN4(Je?l}rXWrsV`+)_NQAL$CY9wWYm-go7Z-wrDNikSTBrh{rWpsgCHsSlil5jq5ulTtCI8i&x{%^vJAvn>1d;xVBkCBZfD&{^@%>l(N*d z&29GD4gPeAqdIP=tf!au-RHyGdEA6O2-VL$k1)AO7q#|9*xO2bF*#7%-~iy>+}w1V z%`3z9TbIQMa6bp8MIS>F3=da-`F!ycew_M!AIrnZ0J01# zuBOnk`Qy}M%I-%vS%_Oz4j=lN6WPa-N9ajq_=80pUkb(~UpXvQzubt&TD*UH3^Dq_ zov14_i2mh>Hg5Fde>WwGus+UqG^) z;ckORFHba4ojR2akV7O6F?Hh*UER@HfZ<+;Hn9wZ!yP+z?B(<4?NA3QweAI&!={BhfP(;i^!oQUxf0;sbUn-WkNBUazi0ApSWL*B@N!XNK$Q z5SW0{AL_Anz_1U%@kyJ1b0WvCRvbdnE2y+@Req znU<^2<%v#+eIwJ$q*B=a+U~{4zm38FPsMda9{Cf-$N#XPp*ZK)fIYp!C1+v6pdOBA zMxmG}xt_)e<;7+_00+fPD>RKlP!LME={_h_t&iMKJor_j{?DNFpNiVQzcI=3rvqDE+()3hH4E z7EJ+7p?~e#wJk`W#+TDv>sJiW8M+A?M}lo-9m(k(X`4@R{iBB7uR)`y4OR9TGkGlDyunWt3#65uojp3}oUDD> zbIsm+`g{x!pShjb$IPQA4LhO&G&kPAmy}(0KX&>2d1=7RynYCAW=dLKEvUYQv6Wg( z>=&tGvDiVdYf;JXToC`0`07Vejk)L?hxjxOUS5f*Z`^Py42-G`x`*5+7Q}PF4`LAa zh>{UNa@m7w0|XUAOJH!fS&PVS8^qlvISbk=;xh_aM+C=wj*?qI0exn$s_Zp?WPa)I&#$&HK)6kNXXiV4VZ`fK*DK_hg7;fa{< z9Aa2*G~6mcO14&c=4Wj2Fd$+wQ`xzGJnw|fiwdu`b2!UsDyQ$w*h^i^}H zMaDq;1|le-N;vzHGrt`%+};>A#stxnD8!4TLAhJdc1Rbb>ScxtBVarTns>65n&YGq zX@o9nb`3* zV!V7ZlG`zEcy{oUEP!bv^`Ls6qlEgSOqu27T9FvHEPT{~71#mG&E*M;;o2G%RaGi* zqP@KjBK;4uy#+|#%bFjoiVdQp4$x=0-GJ0}Eqii1UR_dMZRT&A2A`;F6^}zVl0<>~ zHw#Wy2Xc6FwTmk!Km~OMd+iuf(a>1-zqPL1n#mzcFX_eOG6<k03jt505{pkk z`Y9mrwmO16jYM>ACUgXhc5)gBt7Zum4r zGqqh`Ery~t_%plX7bH3$C6T2cXZpx{D&;=diOJAzGL6qj)PNvHH(p7BrV=1GRUTi$ z*}&1q*KW^;QF`LIx?2aYnKaYZIXEYXKhgm#I6`rx=ie5H8*lKfL~v=R!0K|}d&~8F zl8-DGN=TQW!U8Yfv$MIf8+1$cl4dA&&(o)4*qB#69#@vBr~>d1=8Rc<(!FIU@N3ga@$2t>FC)ay{3HaImLWTCXom z!_M4Aqt(&qKq0HINgw=aW&uroAS~n?Nz1_)`82j<25$?Xu&%w{bI(>b^vH2q0~Q@E z3z2TI08y|?fH8L`?yX+HDSNBHFc{YfDkz+#y?zZHF`Se0)t6yu+|~!3!L=!16myFT zqELeM*8sl;>M4D%ZRi%K>h`zm*yFFsA^jmxEUB}JhaMuhVX`&ek^}P&ITHxaPH_2t zOwVhVP&pQKof6CzXqlP@!?GI+XgRWB=c9w@grFVE1Wr$nrVWo zG_);s0HMPbR%x$DPR;{sJ7)AcNmWlT55AjKRHOnl+T7l>&~v+gI6EonhHc%hQ%%zp z8a+3W4>hAKDExz|6^k@zAvIFO1}!pfdKDFwd6d!Ron7aTN8uU@IGzr~Yoy6o?+v&Xw~)dN3r9CYl(Pf6@oj265XCu1P@ zLQW@C$nJpR?6LJ+iA8x*5g!4HM=rJ+vb?;Eg<>Gm@|4a>)CH%o)NWJ~9nB{N_$SEF zC=3;RS)hhrK7a0j(jqtw7opY5vO8PdUL;=UtyT2st0$!f^#_4hTW+o5w}$t3^&dfH zqp!%=Um;OE54acNC8x7KBWpFFyX>}V#vtLj<6RaU9306ew!4bkYLwVZhAuL71=9`e z*t4L5Bv5l_=1O;4S*^>iyTA8`2lSyDJkeJK&op`o<1QAxi8?OO%s$M8rsHmZOTWF zQ6E z4Fe25#3Mv7+`6yi%{lGG&G~`&eYa;RPV=o$&m6kJSNwNt)bFzXeS+L4Uyh3xL$LGu zl3?hv;hT9`Va8-yJgPi(JNB|F05-e%1$r1|NQf69EM zq6UQua{xMehuoWQ0#t3eL&~G*|IcYKe=?|R>d*d)}&Cu1Im9}lYJ@6T_!2#trX*N?Kr$@`n zcX5{uq`(T{CnEKG;5_S<*(`nkAmX-~38k5SqXb{a2C}Qu&UM@INWT$mc_P0%v@#%F znP4P9a7&??z0cVjGBVdtN8ThS~ z3Qraxd_ub?Iyzx*qfugO&;%;L_tgv8Cg*qZftTJ14PuhW_a&v-8a#jQ+!OEar*LFu zV8=V461&=4x2F!#pb9M(2#*EFS>Q*Tn^$DhL?_bn_}~M{E?&_K`5n|^8dPHeVDubq rPkW0+`Tx`<=ml$p`33&Z$o-y#cl-@IEm3hq7NBIM6mI8B8hHO7Dt2)Z diff --git a/_images/m_smoker_weights.png b/_images/m_smoker_weights.png index d474fe14be2a454a8d47363d6f48b3400fb0c07a..ca2e25a8b49adbf425962647d52906c12188e3df 100644 GIT binary patch delta 43 zcmbQ~Gt*~+n}UU&fsR5(Nl8JmmA-y%Vo5f diff --git a/_images/plot.png b/_images/plot.png index bb1790d024b65107960df6151a7009ab1cc72a4b..9f959704648047826cce2b162cd2adf8d68d1c1f 100644 GIT binary patch literal 47159 zcmeFYRa{i>7e0yzGN8oJB}hmP-5?<{bVv{B&>=0|-60?iA}P(#-QC?KDIH2lp3V37 zKj-S)pPO^R$L-9Xckg$-E1&hOu#bvTm>8rONJvPSGSU(%NJz-Ar$5jO;FDI<?b4cE}rZM@PFaf^2No|IZDq zwhm@&JQX#?z#`~&(pq1TkgyG&{+<_v;c(3M~e$?WYPOjeY__*hFnPNY4h#|9ZE$1{Ic-iRh{8T@?Oy8~ts6aeglG z9z+$0BVN5edWrPk6$T~-MEvP$oDqZ$}{u78C@ijf*$;$uuR#bdF=K;*u z0sF~@2cF-&2+l39coFe+`F}ScarqIfL&U`$u>SYG`z=~tIfp+~`uKl~iP^TvgnxZ{ zLGu4z1}zzippJxt5 z@sgkh-#tvU8Lb45Ffd~Ly5m|4NT7#|Tp~hW@JD?8dgl+kHu6SRn@9|gQrjz}T?tWd z=QUC_CC0uu)T$~W_BhUbMsZ05Xh0yDnl{(h^=e$^m$`+Y3NE zs1hz~z6M&EVLrG6*ulY4V2lAMe#SETfH2_L7~e<+7zLXspYEicBty%Q-r%lt(9zEQ zXs6B<3zeYGSH_BKOP=`zs4VX2xHO2W2-v5}8El~|HWR#kg_9__%=5x16 zX+NdFw?3_^)N{T!rL3+VbbHeF>87`}RmAh6_)|~ZTRC>G8%Ky%CCaD!ea(rvIWrHO z^41$B)|PXX;Z&ZN7Z(@&_vce*zXGrYZzTieRg94%fM+;4rbDHrk2wscPBTtC(O6hm z3d+hPt*u$KwY76?Ny*8(-F|0;M3M1rR8J{(y-m{fS4iVsHxs=j`R?=J_U^13kAa0n zowWV$m}rc8u|~(q)#gS7nG*g@j;>%nBd92!pNjbhg6MgO6<{>?b~6-1=po(+w#yFIEiTB@}! z^!gx9hn|h>;tM?v@->MSdV2I1c~FU}k}!dSf;-tzzHr=d?wN=n+4`*edVp7qrtH4eui^j9(r z9((uG*7r$&$!a5(>wx{VcwB7+;wiG{K8pwsM|l2osII9oxV=0|TykFzB0@s?nd#lQ zUNc`w^vQGL7zaJ&8=_zMaqsv@ir*?7JU>JV5&wg=RO(>J*d*{}2lOdZ$mO`(z2dQM zG10uGsEA2TQ7V; z%F~d!ygEk*+8XO6UUH{tW%P0&m-3B9G7KLt z=Kuo_VXqIn`>(r)8%ZzxeuBzh?gicQ-Ohi9^1B@C4kvRwXKTCTe1V4dl1&N-p*Aam zz-J#Axm_k@=$|3Ymg#+VWvPYKVo`OcE6c<-g_~duP-yh^4I1Mk_##d-tV=t$IVpL> zL%FP8LXw7pn9J&spFe+oUH*7e9yoX0c))soe*P<*xl9_w6B89>FqFtLUtuKGdBdz( z)_u58bvFJ1dwqm&EgiPHwiY9F(u}8HPDJ@|8ghgc`&A}vcpyV0=bwVon(wxtvne<_ zh@l&O00ob+)8nLt=wPlK4asV?nFPsh&Ff0RRXxLH)y?(sb`2Y;{;ZemY_9ErK=k1( z=4>a;cB3FCx-(xP?G$j5278lvPdDI+!vxq22EdvqKC*Nl%dmPpX0xk^s_}@7~rUn1zG0iGaY35vXht>k*75 zZe^hUqYSr0#d`O39De=t_FV?R(d<4Y1jv4jop;^xi-f?ceMqNYhe7;Ub~_+jAiCp&BH`Qgrl|W&7n;8LAVMIZ zPGCGmTmR*JKPapr65_w@P&o4`%J#z%aT*i>#M+6M|9ubf@1ee0?uFds8gg3JM7h2Q zmZye69OxyO|6A6<4;qv(WG(~VFX%8tiNGm!E!CvTMJ%k;Vju8EUajfcFXM7g<N& zjKcBO?z*}C^OC96V&EycAgwLMPz?q|f3E3L8Sh}0!O)-n zLz?2Otkyy6Y`P28`yw7#IJhKhU3u>_keNuZ$%Er$M%KPBePtK+a-|KW&-CGmpmC6- z#eL5}+d5F$FI>kFArh5B9MFpwR)k*SJw@&EByv0q2xp<&<#trC$yoEX`wm(hwJ9N{ zJa~uK^g=ZYk=j0~63~NBMWqc?R=G&*3MU^wZF5(G5{I@`2o;NXF$3tTKmm^bw*ZhT zCC89xU=7hJ@g6W9|GcdJ|L54Bwc{H+7?O6V;47}%N$l|hV(nZHwcs)r5B)EfK^mSE zn$~QHT6iV4(2WY#KxQV5N+oP~-VS=Xf6hv-6QeadZZc1)2wxI`rrE zSncSwg1N)qB`+X-Jv7?sq=;tshn6f{k78LZw4(8-GTYyQ|5gfF65;U*qvURLy{#oww8YJMyXRP$C#R zo1uw|5fa(jW?-y>T#&`oS52#>7R}xEHmBdKkjP+KpbDmAamEP!k|AD1pJvq`s7#An z!2|vvg-IAC`8Pt(qdT@}_Hq=+&O-rl#wUKHf+EbPzSixA!?i}J)e1W>9C$7DCnjq@ z)q5(Tp=z*-JuMi7f59OKCX8Ftq@s?3LuqQWOA^5l)Es3=#2;YIOZ23xOYEE`mp5HG zR0AL3u`)yRuyy=~Gy-~6_%?5)R^Yl_w_|XYfe>(Pl`oiWK_Ok{)R2A=3;blLfJQ);lbXNg*B(^jYVoEKXi%U6sM&Y5viOuXg|TruVXO-7fr)c z&Z}t~f)ace-xmj$bb$cDMiP8&AKb=YA3tSqu62F`VVsYa%(-5DynB{bd)R5t9tf0C z8?}!QUhmQ2T*Ibd3>uiX7RteRmzvl;r5Dw95n z>XQ>i*z6Kt=-k6SYqZcGggh1>bH9qmL;;Naws~X7`3}aC&#Rsd$CT=IvsM(>OW3Q_=m&z zC|l5D4yqO>v$V~MNWf3A5fhV2nz^)XyW_(af{>pC!~7YUEr`SEj(%+{KSRdjqN z?X*rOEzj!@J&D0l5Q9%~E~A=q?F9%B*+E@_6>bw4tZV3ZsJ5r>ZD58!&Bh+&Lm zld9>-s6OV_X4*OOhUJY5IvJ!P4I%RO?tH4a#`bJ%4R5%*4}p;os)h#O?|@xsj~on$ z`tc+N@W3kXlizVE@)nBiV5^(YTlZRT2ROYU@aq9-=)-ve*n1yF_0O5-zkEIa&n7DI z4MZdnl3x%Z>1yz|M=o`={t2c1I{6i!wpbOxy@88<$NK9BOh7SKi%L20u82|G*P_$v zzqhS49sB++0v^<5FvYD}8yK!htrm|ORPth|?6hCg>SYOcKIoZbg+qopH&Y~Bp|}jc ztj*|Z)e$>P`u|9tdCe2yP-9Ueg_|PFOP(-FolXmeG*y9~)BP7PfVw=Nn*yU`Ie$~E zj@_{3F1hCvW1qsMn$tglV0aqkj_4^03o9Z+4I1WF{GWOOO40EP& z@(zoV=Es#05C(0T3R4OMmONO_4(}yTad#n_fpq>wFl_fb=F{V$rc+;Subh~%ORT&o zXS4zuVsng&I8d*n9CAka?GC!)PddL zJTpomL))F{bQSG}sq8{qnI=3`sr|PA|d zk;eGiEu4M9+|i+KaKeO}G)$rz1S$T;H9$d=^ZtX8Ba(Tlz-y#&n5e=vyeeJ;Q_Bww zIHn2@Be@_#wbf7YAGYr)e66JQ>YRL-W2ang=2luajS^wMy}JheM#r zCLLw3NbmU%u;8ogOe0;bCKn#>iPp`5B+qvL3HZg zQh)bnD50*-um@w={h(AaeT!aV?zlYRwZ7b29T`JBp&xLO)OLrer>Dn%dsxNc z)p*v97suRhdYVV$5I0Nhk_XZlq%dgBx(d{tPusfJ*S7&DqNqe|V=&9F#r)uTiWoARu-g{BLD}#L(d2oM>o>;Ebct`&Rt0Hv+~=j4 zA_S~{?yDW&14*F8?TalQeBZq;wWjChHix;!sxMa2C_QnoMXrB!ul4lw)L+c%*mq&_ zF|_y?cejRVpZ<#1{;FhUL8W7rn~0#_4RLKD_QH{Jr{v<0UBS4)7%IE%e)qfiKO-Xtvt|*9weTBn_uUHZZxS8~$Iu{7vX8X&pNl9zpIS&N(_997Gw<$@qpFnMWHk@CCNL6P(o^1^} zQDuUngT^ae+SUzny>IZlDllFIfB>y6Efc@>>#h~lajDL~nBO6VLJRfKRDeA{nFlyb z;&dI`hnOO!UO|$Rhli*BsCLQja=|PoE9+THON;Bnzu#x2wq7sS?soW;_4T6xRBSVG z$>Q_pFYjoIa{`J)GK{}GQtTf0`KaU7^*?_mTL%B;OO1}kI$ZJ*yV1k)Qk3hB&}nLF3fkP?+f$ft12h1yY;JAM)}8#j z=Q@BpW0EC4ZtoEx?smJ#qXlCfGn<|VbS3t&rnGo0v2$|zuN!PeayA9_`Uj7l93D=3 zKSca;(#)8>R9tV+KXj3anVB9mJe0PKt+F;_uC-pH;wfgKeMf=4Gn^7X!(qNO6f2E# zwdNzL%St42GZDkoW;>A$g;kqRbg#XA`?mhDatL8OfSc~VUs!*Cxn#ecpeeiZ-H1QM zn)ua=iHQln#YOGw`*f|WG~M~OgH>0o2eCH>3r$T|MvLd#_(TzzHiLtM_FP70$rM{DC&rJr!Z&j@ft=0x7M9G|^fz=KlnHuVxx9?IYF>z%^x}89lwbF_ zbaXV@>ugx;la4e`gYH(>uSCLPZ^y^K_M`@ef=8O4`M!T&FPsq>C9~hcJhIn{pH0t^vXIx-jTcd=n*U390PInWow(a1NiSHe{W<{EcXU+IYM~M} zBO?QS=n?Raq~628`>b8}@{LbU`g4u)KUd9{pWu+^9GJJ@eCyUO54Y$YhH^&TqemU8*Hv3P|oQ5TD3(mi`Pf9!bJAzO)qKbTDghFk5PFZr-lvvXW;MYK&VsBmqy6L~t89S50mNB)pe$7fKFm z`~?F&1c*!T2bdTzQ{g4*D>=K*+j^RzJ+vNUR#Wcw&ci?*6*xeP11Oye(s)sSXLuv8 zei_aVyqYJN{~oZW5Q3e!w4FE#c};?e(L*%wjuY)liwU{75R1)bJ{P4{xY$_| zI?Z%>R2JNM=rFjup2N;*E+Lj99R3cYsM%8>jDR=rgi4psVYW#~ROl%lzd3q8|KkmU zGztuXzf+L*OYl}9gaP2@2PLJLZTGrW_hQ7{F9p7pz%-ji#u)<~Lou~F9GZAW@hbf9 ziJ(N4;`HI4ppovJ5;47tdtVu!KFB${ZqqT(&{&kDUy{BT^LzNh>(3?idQ#!zo0mVN zsS%P42!|IF0ohAO;$EdrKk<~qao|}V`TdHJjIZ2yK-&C0T5<2-IY~OyoX*#gn|pMD z+9d+t;FU#G6BHs#H(5zVcXfPFtB)?`vL@EKR{I&zd}E1Nrr<-4!>3x>-onZTY22R| z;xRgN$;yR)73Ll}p8ZsLxQD2q(l4HLzdwDXXH{S>j z>so7?H*61JC;+Q*f&7LsAgYul_&vTwpOkq~5(}{t#ZiVZ+)$YRuBl(})4qf>P1J^I z1!{*cZzF$x%2&i@!#efDKdS87oZ-l-gaGT1bN=3R<#fa2je;`{=YMHDa;-Gb`;kiR z7(V@j`=z1E#Vzg6z$1(j*p@7CghUkfnj&2{vhBQ{WDPwF*l0@N z-hV6JHo0?frwb|lGPP*_Mgt2kEYy_)_rAnk@n@LgfvwxY1ZF-sI;n(>SPH}?xu-sqlU+l(Sm|8QcusV#b<7a7o zWB-^Da9ZO;=*F=%9{dVw#M-q{a4k-rBp6@dq5_9^Dhgx@?TpZtZan*d4*$ow=ZxGH$3n6y=uVRAW^rKIvACwT#gtzMH5n`}VoL0;9vP3za zTc6hJ zr+bn|Potsk${g%WX5G01CoOF}KLVl-*$x-?yhPMKadYbvd5b0qtj~b_vU1vm8~9eoPeTnd%2uCsagvyF?Wj08 zXqI+NTI(T9ZYjDd>*{J~z4B#HDdN@vQlPa`(TuQAfs30Gvz2n2kimKJppA0Ct0ezZ!)^CIVtKa0B7Vh+f<0b-`-*g zWI)XcJBo@JKD66rq=)8#pp5jha1$a6KM#ypx`rG8ylVVU=r$3-07P`?W+nwsS>!e@ zAj-0l*kJtUkxJAM!&pim;h!=}Ek6}G0JKy!AMeZl+)(=^xT7$ePQ7V!)Kp^33{^}4 z%kkZKNpkdR2rNKF08#pRL>7f}$`?YoAiw21pQ?V0U^{+DiH-nka!jP%d z!7^WsX@MW$WXv!eTs2t*Ai zfsPt{Atkq+0)j1%g86ZY% zdXg0q@E|;t#Fpn=%3C%YTl&Izof;@|vW$yjP~V$xo~wOF_Ogngw( z!R<4f!@u~7o!H!4WGWk!7u9vm3$S21Af0ynos#WZ*(T-n!&C`3#l&AyO+iUt=nUMS zR3yOsg@J_(5~dSRZ7rTp7a#LS&1iUvLs)c`hy@j@Bp^X#y8 z-)NujzbIX)aP}FHhK5QY?gX9+L>CRWFXK=s|BsfbWbz)u0+B|6(k%iLb3hp?Z09WQ zC{hcD_n6X#1JFP}{rsiKk$JVgqj zq6E%Q9aUj*m~%V(7A4^QNz1F;^^vtIYamm$2^KguD2n2QM0L z#+fErqYC6Dg3UA}_f0#qyOye`19>+nfkgs49O&tM)Kho za7F$=BYpSv=Ij5hlZo zUSCLBlW;jfQsm!fAGX0+GnVLg$4p(9(?l7{CNgl6hc7TVn1!>ue1&c}Ng|4Vs{P0= zA@+J6ro8aF+H(BA-AQoSlI~mny7~vO)7BjXA~uo<8i1}5#d58uBoGHiqVTguNg;*p z;c{T@(8Y?1)9zL-9@2yb?&M)Rxrf8pi8rkmIk$)$6Wzeae_=%Sn|*BEe@r42`ano} z!uR55HbHB@6Kadm7YfwnOgqih2s=`XC^|U*b|5n#D&Gsb8NAgMr84WvCmkB%}>lKN@jc9^~8(2&aqW*%12%KC`%`~yw?33dogJ~H(;%h;w3 z1$I2>ajdi>^+qmkO4yN3)eZZC^RP%|!wV$}*BPPvf!17KK*Ipup zY3_Hw7r#SyqerOmBkJ~x!UM{gK_y}MS>5@5RUoctY4|@+is9r$?TB<^35(9G^*2C2 z>+^m303fvikIQNo4BMM3Q;O7RaywWEk0qF@QWj79pIV+Fk|n`wIo-LlK4Nw})Cz{g z!K?77m1T1^i2v|@K(-9HgheRwMOKSffNXD8xveu3Vhdanh@Uk=+6-Iy1`$`c&UrB; z=-)$HB2Oa==AE8l7{RCsXdYkju1@R+EYB^bx&8iYdt41m1@*V=_DZH5#kc+h(GuTi zR8x|npn|Y`Vk5kRRL{gMs8Fecv2p<>Vb4LDjQakPjybU+6 z*9{5JQny45yMvMC!KSGbKjxX*)Ehm131i>- zJ(wwqNek7&m-~7vrv|%ATA5~>luZo%Qu<)8l#Mxo{;?z?4!UrdvO!^^F_KnSW8Hh z(ryhaJM%D>fDAabgn4lk#$e36%_tP?At*S}+V;|EDj(z1+MP{=-M_nqi}}W?k#ny5 zC%^EM#(&$n$$sc3YnLipbFg0NQS#cdZ0!siAmeR`_^T+Sf4#Wl62+qplnF40c`G@;Z7wkEEPJBtG%6;XfC$yD zBZVGgPW4ZRU^4Z&yYQ*&az%@pMY>MRyYfq6O%G0i;+saE$C+ejQDa^xAtPD+ zvS>ib>OiYcKZ46v|C;3pAC?NoBpmoWti9E3WJYMfpo+3Q-A6wIW4X;`kg-(+Tmvn5`uQ`ue=aL1$8IDdp4d11A?u0u4(9ts*xJv$=AVk#>)d_WMmsuQ% z8qJxYeS>Z%Nv#kzVPpKX!IP{drY`hYbA+7i+plx!XdWgF2|D&E$)DgKk<9C#xwst| zLDU~H5%+(iTuygY4<_bBLnoBK5dCw^8p?m)!^Mot5iZ@N5L!yDZ%dc=oUgS?mA~n4 z^4q^i1$k+G5z7RTlCMXptHl$)%fskxJQamr;|LpPqh*EeAwhxLOp)l^Q?>8sBLYbu#8i++!k)$`Cf=5fg#=!43~@NZ#CUN)ZyTLI_v;2eI*(8ls86_R80ujAh~sZ$gy$s9V!g4TE5-8trI>YR zpr`_)_zWoVp4vqcQ5jayzOrd=WNPiCEvk9EyQ=7y_beYIqtC@{6}f>=M3SSf2yhc} zbB0ZEizE7~8OAl%T=_A#CIke9xghn3 zclffQuxwhL@KE zFitcr1YaSIJ${Lwbf>Q7_2A8b0tKk~r55s;1wm~1V^I-i#1ZIq0y>^ZW{N^r)~2;6 zw1BWf1#r1bv&dw#FH6QIO9o4n)*)5>gHfh;mE9 zCI|pQ1|j}Hi`qqKxA|@AC^dPNEw`n1z+2amXzWDGYG&_Om1o_Rqfmd41*fUvaUp&~ z@eQ1j$0J(DEDO_*03&FMLaU;yNoeVG^1#->(ec$#5=(Eko5BJ`9LuF+XxhxrrUwlE zt=$I=l{sX=#sexB@3(>caMy0v=LAs19ae;^I!fGveCH1++lMzid@kze`5=Wz$q$N= zlGdZtYV$ui09XVadB{_5n-n5b&Ddc+ZG)MpsSIBz=_pFk4r5F(No?WqJJU*O_+Q;C zDtrlfxY)_k`k~ZzP1@>s^p@Xr;0_W!Oi^iivA6r4!7y43esPJN)#QSt8gFWZ=VAP) zDK3o>3WN^sS$LtV!V^+T*zi+4-x48?G5eAOi=aErEAbxR;GH5hj8m7`C-n;Oz3waM zbm;>?mJ~wMpu9zqDe2gt%WtLlT;Ki3dgux@z(~xZVv>LI{p|zmyX*NcuJ&D~T@83) z5@+*^K068RaaV8TeNbK^nWo`4s>1XBb2)*G;s%(B?kGdi@j_qS!^fjD6I3~QBG?Ht zIKG(07?}7y%RLUrW9mJ`7^iNdd`{J%5WMy~UNS9Ru%StJUowX^NpAiV`}ZwtmXG)_ zXRm(8C#w>DJc5?!T{RZ^+Ac7EM@=mT+JT8lghsL^T9P6@ic_!F{~R@487@rTfr}bI zfbHo3_R`7V&j8&uCUxf~%_v~x?1GeL<9Db)9F$N?p~pZVtEGmSR)L~!dq*+#YxJ43 zUdT~nZ5}8iKcjp>OIPQc5Z_cq3Yj4Z#5-sjLDg`;_{-iSIhsNU1L!Z;Z9iu>2Y&N0 z+*6VoGhz zlv#r#{l{uv^yUiSRI4Gys^1j>HEKJOIfVob*vw^Qj{;1$gG}4xryh9|`Jr8)L`!$} z;J(cl@``Q79lT9hgx;BRf11a>wUd&Qb{P5iki?YU|17Px1AKSC`A74)xXK$$pR1F}{ zcfWb@Q9U+A&4dadto%tdcz;juMiG3|tY5EdStDHm3YNXcXJ_pO<`tB+4IR}rIY~#v z0N$^)|DRgl|gWiAXR&r*v_NzI`~fA{g71&F{~4`DB%t!Jt6&m~lw% zAq9q19idxx6LODLvbK~WLz zgUjC$K4x2b+%WjX{tT?uQ(%98pB-RP>pIP-&(~V(Fm=(Oj(%8fGl|uk7R}-LB8#3>R(q>_?#GH z1-;_#38rJU+S|z`%r_7n5f~{A>?|1_(l#bU)hj_wNA99H9|kY1Zj;gd#M=Lkq7Gq- zXs#x%;Zfh^AE)sumvwpm)6w|~J&8?^pDZcUhiPZDNC~E|uR*Qr^9Gw5K(2{PJ+O%r z%>;!(kz))QJYNKBkFDfjtt~+;UsR|}{M5Cy!gOp~X3lOiJ&pzLF6-KQJXZfwyaT2$ zK;%|m9R6)5ZFat7>;5hJ==Sd6db1EqH3b05qMxr2lVBPeJH7%4KCfa>IE-%ahZDC7 zWt@qtmA9~vo<%gK7#~U?jJePgJP~RriH6hdCw~oaHu}G_%BKm(0EMtivPeyQV~r|~ zEgG{Q!3PEe)^VCSx8+c#e2s$Qt2!N#ku@tFOfE|RP7tJlWeDGQZhyMoVp>0Glqc*U z9rW^>0q{iEsDa>iWZ#`$!GQMt!(%A`1_7{(D$aaQ`UB|k)v5;@(l3B&eiI0QlnKn5 z8vsG2eM(6*%4N-q=tDG+UBZ8CXYplG7iv89 z>&h*!r@bgBr{cCM1Ef(W0Y?pB0z(eQluOZGUK=CJ?H$P`Lw{lsloemYwS0bV-9Vb4 z2aT49xS@n$YM6HfNWNF-Zj_E*3>I3@x5@QKY=jZi&*=sW*_4(wm1s<^1f19)6R8vU_OYQ9lrcN zFJ-h$fBkoKWVE*T4p38UH_T*mC&Kn20zo?$^?{juf|mCrMaf=2V*@g|I1TSxq$K@` zNl4za^V8|Ma1+ZDyV!ne+jjnd7DI{j3Ja6@^li-menz&U(P+BVzPrT zB&GV=rpCuZM=GG!ue;2-4I8}{Y9(1l7yLS=%YrHo#A$Im{L1vZ1oV_OtZv+Tp0yb? zw|G4l@M&4CXj)-EzS&dd5KPs^G+~-s30}19k{>MJ{idvD{DAmsqk;>oTXvA^ zTd@8elq*2Q8`So#SyshrAJ4Z<*#w28H;z4WRR+H%H^(|&!VRJW|u;Pb+=fM}y z>lPc}XYjGrmd=af!SL~^wB$kagL$^Q<<^I1LnKZ|N3Roq&mPZeti$3yM+S$41RfkM zu~B5=H8wWp-d5DrVFROiyYqEp4xg}}&jXYwcXyAx17{~E`bdvYKRs87@9(|vPWBG> zH3WA!4R7bR#XI@ko3?M^#>TFOD_I@yyWE9^Tg)viI@*6BN-Hq2u;vAW1D^MeMJpd( zN!QIxOc)53-J=QCq{|J=1$}>b{|XC>MDrDzf+!m<25Ik7D_dRpTo=vz>S~hm2$LRt z>rH2el~RTavP+YpQ_$+_A6D77RaIXIV)_CEzMQX(9sX$PUpaE#?4o>NpDq6slk~}Z zK@HwRtyu|D_wn%oa2$ZorBfC!&rU2MC52}B`SW^Ant_HY7lH8eF!~hHj{uuWaw#)5 z0+1lJJS^|QE&U<7ezwEO$nTzA+lTI6jY05E!;TU_3CfnQSn^;YEiAyYO<;kuw zb7n2ApBi|1NxIaai@J0yn@)`tXDUa`dI^WU)cc;^s^3=CqJFIx z1A8aBZU56@Mc92$y!oMaVn7tdR`Fy^_bp2m$f!p1!w3JLvHY@fa>|;TA;1t56*(4} zrLSR)W`#C{>woiPfmcZhiR~H2IQ)d+#=^@55z^Bp*WO6uliqJw);QcA_YJKe#@7_v z+j)~?xUV(A6ftI=WUO^|_cx2A02-Eow*wIVQ=Dr)Ox92 zuXWrXoY6+-RA$RJuEb?$hdK43YEQbComu}2nHh~CcJ`6-o-m`Ng;$n}y@3ms*-0qv zzx{Xn>QxkmXq~fr&E9Wy^+d8&zIUV&Z*bUIln3ZuXS8&l2(~pSFP%&eIJvAZ)2-J7 z`0M&S&90P1QuVxu?L6Wc()jeWal`Qw6SSk_ee?OGT<{z)04G$TNCzfB;r%+I zzc{sOF=WKB^a>+=8EWld2&>_fk*sCQSJwnaC1|yH3J9MU=hpV&$3&ET6`iUAsh80E z+Q(X%5oQgFL@9U!^Q0DO>A2E){lcbG@G7)CErUi-Rf@k&T7KTyu47+})Q+DzSI@fu zs!B^x5VZwMuM&Y4c4u&7>Z=&q*j|#Uz^YxB>dNsI^k^Rw+qQdNcX#(!Lvw%?J^ssl zeE$Zg{on6Q(TZkZW>BZr>b;qnS?7(WzS~=*UqWmD6vdTStHwkk%)Yz57)oLrOGeXp zHR0$jbR^*LdZC4vJo*Q8V z+Ev_}aCa1s_e&jm=djam0g^l!LC5ssY8Wun1kmCaTkA@-0`2?Sht0WHsz4c}QQEPr zE}kh7O*4?r%1OiZKON+kowyfo(lvlK-F-ZxrwAMAexw(UOLgwg=-P4nbZXD*^^mjp z%sZ5y=?)mc@Ei^Z#HF#b&UuNoEnoUN`1jPL=Ih-K5QSa&9sfofQ zsKvWvs>J213Iaf}Vh#1U`N8JRVp<)W8wSmO3E8!ry!V z8p}Ja22&d36$mX0J^JK-a4o@xkRC3v(s7cG%7a1zrAF!xddLyMm2uQ^kBxs+Dj0xT zBk@6_N(N{XX>%J7!MRfe6rAQ4QW**suUw4m%xMph+1Kpuh`;<9px^X5@t~}=SqT@t zTgR^d{oUjAa>@2-hPpRiNhB=B>(FR$35fpQfkMai&smdRUM+vY{_golruoF{q-(L} zbJb+X$7z+fq&0JbZ<9Eh7U&)k4hdB6&oRcyI&fE{??l-0)e_O?loY{5-`P5T5!W7? zC!{7UE@((bO0v8w6VGDL=2Z#I&rG15mLyQk6K#8B(+(2*6QCX|b7t2Z-z421n4S;P zdkf3d5j3H&0xtYO}1Rqh6;uy^w>lrqMmSYU*(Kv(3FQc^3gCG}DP7&wpUdm;2>N zKjvxuP3m6A8FTMn{rjk|jhr-;?0lfGFGZ}vK8fPn_way0aeK>*H`AoF<`M?1gP--v1(-@p!HOgbP#NL6I*Af6?yJ>q9#T8o5psxt!@h=4C(eovdx zTCgU6t+YrDYw0B|NoAbPPvbP2)>Qz9PX>q`gGvOVxB`bj?8=?iq%G=)o{eGuV`dS|e3xPJDWyaR*lI~M&7h6M=!GWk< zr5Is)h_AYn!~aFsTZKjay3 zzx)tsf(BZjwP-vo!|`4EICWk9M{Oe<#n*@R%aOa?1KENwomiwbP%t!AzhEcF=TWp} zxLuK$SxB6TXAzNiY_(}KFrPaVr;8k`ulG`26?u-ZsdNX{F5F*=wV>Y+*5Iu#h)7cNI^TkDt0o znWB)TMI7$*<-gQqMjyFBYYyj;k$DQYA^SOH_?Gng?nEgLvs`H}zph#!iVUw3BFP)| zupD6p+0c6ETgu!loK-^>1g0|!k3^itOuDddMRZ9hnnmX|W|oU!dSIB>7|Toe zLI77@^_XsoPL8(*9|(d1&R3FgHMr}@b6bd0+VzQTAh6o5X|ir@`Y61m7DrJ-i*PW? zt%^tkDmHyAo_1n+fuNlz6^MiLr4!m^*d9y8x~TqmP~Em^@qW2s?%>+VIos%JG(Vr+ zli&-WRGM=8#9_WfQ0Yg7A))(31nrN5D-kK~Am z;x=2}xqL~tHI;Mxb8p`#MHs<+0cJberQI}B2th7VdV%=OrgXUX?)U-3Gb1spL3>;ZZVG_0rT+cmE*4%dsQ(_IjBChG0{zSAnO+i@L9VWe>BzP6q|{ z>;JxfP|-v__@G#W&m!fJ+_AK@T-9L1K|g2%Nq+##S#TUtQA*krj6&Xv)Pm_KZa-sVJ$72Pz6qc;?Ds^ah@ z2CTp$Ixg2Zen*>1zQ-N;VGx+)-B+b(p;E>g`OzaIL?=IRZ)?VwmstgpK8I{E=H0KQ zfRG!z`gfes>gcub2V=9&n-`LHE5|aGew{4fk|XH;JMH+2&HGbKOxRiHJAc{cDzFmD zh*KzV7%M8~kklt4Kgo07#!K>b5YIRZIix`AX^B)6nz|&IlzNjtQgVzA3gxSQ3lqLu z3T!I-2fuKV@GIz4AUJ?dW~ zAWg)QP=t192Lh$Z7QADOY+xJP)_u(FY4{n&{e7*@GS1ZmZ5rCuO`cl?^$Hf5IRu6Cbi^W$u$e{`j4}4fW_DIsOK<<%B zW7^}A-sPDo1HOjAv_MRiXSs?sx=tLgrO9FL?oS@`)~V)`FV#4ZP>1!qsOHhYnD~Q} zmE(Qu^um>eMo-R_XY}>C%$7#-t_&iJ`D5V6Eo9xKu*AayZ{}^cs4!JA(%LMAhNF;V zMG>MrsMp*tCZ_Bcb_+$aDbT~i+@<5}VJ7iaNZN?_3$W)W3^)}zZ;!AC!FEd&B z+>4H8D%4cT@L{3xPbq^Yb3w3=MeWf(>iKC&xs^|q#hb}nu{rB9(Ekj)C&KF7kP2Px z&>;vc*$&ZllGy4mIVWkE`+-@_^382D_$lI8QMyLL2%4PwFfO^F@mQ))0t3HX#S(%* z(*kp3)^65kMFLx&lbo_KQv0zh?ictm5JiI)`LMkL8aL0xS3=v9|K!I$)qL2F;Xl1- zaWxCYE6`BitPv-oW>5?0!2{2;QoS|GMlfu6%=4wAqB?o&tEDLv<9|1hLzfjW29%Y$ zjeB|8mHrN|ugW0Emk>=;>76&l+21c;>He84hoXD{#lak$9Ne|M^$7>KI+f`MvKUmR zWNNCqr$0i4z-$fDt$coR@g={{Uwg|}Zy2@OYyOAq9%%ohjq&Nq?sgmr{1oV|3vYE$t*%PHHnN(*po6(LwZsAJ1Q?$_EW~T` z=~ElmTi*Wip>d=(ei`f>_7H^l*ATw6yg1{yH@sYpt?d{8ng7un*v#Q2w|+HQoVaMSXA# zs|e7%)DBff<1xQWzvvt5Acb>mV$1%(Jiq|hl~2Ya6sNxd_+Y%BDf-SBPWYaFSe#{Q z&->RH0FsC_kyn~&({+9O@K34UsWaPuxEArY2O>7P_8!b0!!N)=a;Wh8uu(f6K2c$+ zbG9-q9#x}5%GE^HodAA!NVk9^vc0%{Mqm0Po))U6qfugqI%~h6#U97>df|JhHTZvo zTmsHVVKLnAK7ofp$M>~@z}lzm$CwCN7!crKJ^go-59VFhaf=6Uw!Ui^M_a}rkT)_~ zsL2Y@VFiv-fy7DgIF>1*Co-*x$|w>H!<7LRL>VQ~{tF0AXNcZ*pE}x>qGto|vuWJX ztyg}qheg+k7i-NZC;oLmV zy1l&a(_}4Yd~fUa+12fDd$0%1WYm{DR4NQK0n(Zn1vMzbjXfb)NX1VVnrsl-l?%+Z zVqbR!UqFEDI1*qqL}xQ;>!b34{-(jdF6Q@Fch3C318R&7 z(VzF6E(z&SsWIFlpJSO(ND8j`Z)}!L#7IIk^vYuaS-4=QYlhM!@2<0)!iau)eeK84 zyPb587JjTxEMKa66K^22T{dJV1>DOxL36EF&xVEV6Yt$^g5>6$6lAXXh*6u6CQg+mUuuU2Ha{FOMNLWt3rmrH=@@5d>&3)4bP+7V%lJ_& z85?brAg-1mceVDbw=Nh{CHU|~6UnH;k(7Ax3V}*W6&*DZO}0X%CYUq*K}N#W*rQg1 z+=2>ex_@RY3PoJcG5%-Mc5TAuoY6sU{zLSQ)(^7>V_ZFe$YFQiD$Jk5>#fK1)Rh|(d(~&`|$J6bJCMG?@VK2-y58%72D|Po##FzkGwpn;#H1j z-S5u3I)XFJd*0?lMei3D)P-RyZ5mELN(q+!`Fnrq=mNK8Z3A3BAog59_C+lK?Pbte zia5}7c`h}MnAVmJGO(o8YATg?p^kLu6IJC)-%$XKyOn+G2QbxLGYDl5hFy^7vInu9 zb(J+5fWeeCn?g__dXV1LMvU7zK9K{n96Vw$P7B{z@j_3o;op5BLwb`2+$DKW^N(+{ z_gwi?%qhEn)TKdn&ziMkkR_u~52HshKO&Gv`+Kwc+q|1=CeDrXFCiV%QcJq0 zPgfEPZ!2BXhvVm(!+I}mAsWguAZge&PA2oo^Y*=*d8G`3f2wS&D4Pd<%&aJbxN)KZ zf5JXV8%8Lx7Vk$O4w$M~oI)yzXO&KG^u%|OE=o2VKkFr|6?f)^`dotsjolJYV-C}n zCi2Axisw|p8Er7Qm~T;muMf=uK#%l5aJl3F+Gc5{qJen+T1}8Na`8t72a6bGk7>~T z`iQ{w0F>)w5k)vYxav87bQiQ(nRe5esGlmS$Kg2yRm2fZ#joGUn3#RHgQrYF)Q{iH z$`nb#pWM-q0Q%zbx%RWe9KEOQ64kJW=@~$=EvRPq5IY6Sz^qMfPm!~YkCG~~t+;p- z=@f1dbn)#J&j%|k*QNxhgB)t0QxV!vXna~9g`-2{zUOE&u@)wC+l%juqJ z5b0}$>x9IwAm~{A8C&K`100sc8Mm&Q&-OMh zw9)J=j*z5C7slU&cVC1^pSgY{zVOwm%f}jDpHW?PQ5&lI`zGy;ub#C+5#6;P{3vt7 z)Sipc@jEwcZOg1>Tm9rlTCFZoITJvjN2S;jr5LxDAvc2py1^+YyR^{qXBkshtBr%Q2{Kp0px zsz?eTHTy2T-v3%4ijSVF=fg4d3PF^D6JKp1R8BSny%Lga$#_two3$D=%keilOb$pq zmpR2^kjWp#sSuv1h9f+f)<235X4uF4>DZn`Z7Y|xlWSPuT?&KMSWShU;pu;u>$aIn zyu9zAmGLM5S8#9i!vkV~C*;e%jgP#?q42RRC^ogLPKQuhN}x#IqGCQUGnR^O2rAhYJ6E}U9+ zQ4LCP17{%?DC!J9feQXQ{D*sss_M=!s@9ALFfGIyVe+p}^gu(#5GTouViJvyR(7n( zEGp4;C8ejOVNi3;S&#+oElCMW1t-ssl=)f%TypKgh1sb2|jP1PCe8&f1FGb;Q%Txm}-dUFP=(#XB^{KlMXTn&5yH^KpdDZ&|H) z-=^rpTtGANw8m8ossiIQ=E$+yQiWdZl4Dr`U3Wqu9#59=vxnFIr#>-%B$M&xKQCFldX}6v2PjTr zlh)+%zY*`SqgQNoHTV^%?B|%?V~${HN#v45E9?j(wu(dcURXQ9qNN|=PmF#`gQ}PZKI8&OVM1Q#j?HsnNAH>Lu z`XN^f_>VA0Scytl;Hj}Ru#W_(n_X5Of7^M1&`CCors4x@q4Yc8wRYF~@q`)>u{wS+ zku$f79xkIbh6>&Y$OTyka|Y{?2qS<@@UV`%ymz@&T&-jV`bnw#K2JaPi9d0yfxv_Z zJupFXwX}@MCen4@B#c({arq4ieoOD3pMj@UGFH!EYeHx67;eX!;o05r=wazY<0!-8~13D=~)FhSiGdCif zGw!dT@zlT#DI2P)h^3MgTo+REP^Is!iAZVx!37?pm{+4`Dh=EHE|}r=I*25eJ$s=nR-Xmh~vs1l9Chfrj>+ zmHgpKK-Z+bkOPojQtXu$rS!4qkHcsz@MvXtmV^dl!r+*W00rltC0(?#%I3|KWooiN zSjP7917&M*>55{<^Z)x`@wj?QW{Wl^_nB^(kL>K5{2b6B?rP zkyCar(s`@SWRRCEh#Tw_&fwkpD?>5TDS;N&Z(cy?i=U@7eQG!9nU%iQ-Mh_$<3tK6zRT=PK`BNn|5O0&Kgxt z%3mzA=ANm}1;Plo11Ve)O*j7g3%rWFzzI(e4cxrh5{LVn-oWoZI=QudES0y&;tGxxu7}b!77-IQT8O|xs>?9%5cNyBLH3z+!A%i?U*){A;K%Cptw(?ul#!4&RdN_9ZX%3O z&wu{R2a14h!avdXvmi<*lwk=Two0OTKE=$q(o9E`Eg88i!O19R1&vMwve0nb^hb?J ztT8gC_$%CAPA5q3nKWJ^WQ-MS?>$>E*pCb(IOg^@mlVF&(Z9P_oo2{&c+_BGX@mv- za{$xqPegSkPy$QUG}qxicYSQrhZ@k?d$F*`{*7-Kun}}zV1&^ND+Wgy9`ypGSsZl{ z%3boI4ipIB?w%&;R&E(IndTkfw&2u&#QygkUfMo>9I#IakB5h>@50yWxr(+1aSPC+ zGm}Rw>$zP5xtc5pZZ0_kv!1NS^D~KhQ{v`brHO4LI|A*ceTkXSBp*8KT)o)!3~(37 z#Y5n#!(GLk)&-U2-I$OqudI&rwPiiB2VJh&f}ux`)J^vKRuWEd=VmyP*Q-l#Ms|W- zFYD;71|}SeDn^T#FEg5q-m?inohx!u+%i6R+&QQh zvjF}2*!%rM&%!=1VD%3SLQxcY@m@sY- zDxqX;Q>=*;cZw&AE2+4LaYMg=jL9L6xtIyvG-jxyA`u^#@j2S%S`t`C7;bR&tgjk@%^A+>v|F541K-zNc4=a}w2b_Sl-F&22hBcwGn*cwRPY#<6>?(C4&*3z*v;e!t#FhwJ!r!F5y zwBp~fk^-@Qy(OO!`KiJ9=1-;cKO%FIuO=Nig7qxeYuuf1(t(kuv`cxaPdc1)%t0@N z?YuJTspn6*tLJ%8ni%|<@Y2kuEfD~;<`lHC7pqU%I*@48xk&e%y~e})rxn>0@v}=; z*im-&W+FQY!a_>F=F8(N1nPo?B^7(TMk=#%QIO_ z<8Z068-Sp({)(>julP_2Wy>Fb(-}Oo@j|>1W<^n*mM&#!aNh3}DiGW|z)SgLGrjvF z0%rs@yY-m5)#rv^%<6OF&<*u>L1^z(cdph3;qZ{Mi)rL*ECXHE^{7>_$PCV^D^j&) zxxPMZ%@5>)*O2!a{3I0IhxOQD$;uAP7UGOJQKs!Ly6fupZF#l<$9yEQe%C8!IvS1m z;Hi>@t$yEFgHRq`iTg9NrVF!7^f00hhi2559l6MAWdSPV?XR zyxY0;#}Vu4keV9pPz=7}7cz;b(gU#JQ#*IE0nBp1QjU}QiI?s3gUe~Hm4cq0K2^XP zUtMeiYt?%zM(lFYGP&{m@A=9(nZQzT3t*v9;(zp=}7}S3tKz5 z_ylyQy*e+-G`M_drG0g{4^x)hSQGualaJ7v2q&Q*=Y~`*8FSxK;~C+{<2s>G#)`mo zTON4fW?s%iM%WzmYBO-X{=?dkx%9!d<>~f$H9O3Af}cQb-E#MDt;0w3n*oNuKjSo1 z<=+A!xb9xEP+^^FMj(tzz9u|81R!gs&!4c?*ppOB0@Z)@KVPGsI)Dkgd~*rhR;U`> z+=T;$e;)aL&pQO$Tk(NJ_PMgItz?5AVAmM}MM}W0e8$|C7V6?`A8vr04tHK@+^8L3 z=(UWK4!`5?H}B;|B{kgvw#|VGB76tX_toE*glz^gwkyH*#(gtzK(qgEo*)~``z~oUJS^D=5X6pHxWqs*Q5O2f6oSL{oY#0?zO%-I1M89!^rvX z@2(r5=0iy|eW7Nx7T7NB7y8A$FKF|Mzsl9y^R;B?fUN1a4OT^qH?(;>Jpc(qgjO~xq9Sd z>-E+g`v2X!dC=`?eT}W64#m*a=MLDTr4t}SDCBaYL^3W|rEX4J?8xMI@rQtd=R13T z*PZPRXiinjtA@uvx#JCB9t0EclJJ@Vn}E8^Z>u|%eTL|(exSua@^)bs z*Fr}%9p=^L3uA*8AF(;=-xh!)msPs=n7;**5TZ>F%3M+6XoUg)n#@HZc|L9~_m_S4 zlC1P43N@&|0W)v1#-UDSIkA8}^^g74?ytx=riWlWe*2$Ml&z`XTK`^uT3KlqJ;pGg zh@w+8^Jprzzvg3TiaO)pc`FN|vMTBA4))0LujCx!6IIb&w1kgD=?c4)b>iDjK8eO; zQ9@RlUJXpVyM0YaOq>t4k>V^*nzC|qP7|fcmvfn5wr0H4wItB7B_IgVsdbnX*ZMSQ zZumId0nj?XD6^*kP>{JchHHtws*pWX_za%Dp97CAcFG9I`T*xb%&e>5OC0pS#8^4^ zxf5enH|DqvR(Pt51?It=n$cO*Q>l$+$mg%%fZRY!2eFZ^0F4vcW_}Ym_#TXa@(uaY zaieMQg^haRRN1{pouZkpNpCCHt)8`YIRG&$V80X3&d+b2_7cAgSPvnVi2!gw*Ugj7 zO^Z9|;$1#O($}W~7BWOH$kVE=8wb4KD&4+5A=qWOe3Hhu06YuiwZj}c zR;a(muWu*Mc9uUW%b$6BgMWO^yx(eRDH|%cPc@OBpFccMQn`fzFu`vs-d#N2IpWA^ z!vJEaf}`{w=gpy8CqIr81NtMrNwyhp{!#w-i_809?MwaQ?KlGvYl>{_&g;Ll`W29S zzS@vi_W9Ah&V>*0i(vh69LJZAW2jS9VmdlG5iXc`(Sy*2v!hquzoY&bUOAbfNW=H=NhP_U0Sjl8%6AU)p;Z&wgop8!r${rWqRky z_b}h7qHijUKeZJPoMvIlH0^tpaT6d{#=l%Stt_FOSG*AE(x}T<10Dau`Ngcgy*UfF zre@X(g;MV0Ugj3=O%k~{!C3v)zh3(H?ELfppHz8oFk&{%?^EZ(d;m2)QC{6=tQ~k& zq(7gS*eB=p9|h%Tf{^={1M_ohF~`}aSc&N%Cd-!0UB+xv1$&A=ey#G~-)l}1mC zm8Y|2VYS9l>O-Pm`RJL)CQXHfY%Ehl?Y_jEjQKhLxx~!=getu5^~m)4!SDSm?PZPc zN$&gl>zm4Nr=J=f9bRd4y8e~)YC`H~iBT-ASxPB95832TzBcJOdirPjAe?&Fx)8p1 zurK%S)%P*cH<@kRs$5UxUV6RisT(u$L|z@Q8N?L%N->P43352*5ZjR>z!Ws+_o(e% z7K8EIo#gAu_c8^)I^a>1=2Lmkv#I}o@P>xr$62Eygg7C4dwb77M$6v>iA?G@Gg_bf zu2~%I>;{)~qbVqMC^*#}xQ$HpV}XKt-#1pm@1DpjM?qMe52l?H`H3(3-vKc>b^o`d z{TT<<0hd1HBzOklX@XOac1`KPT&i_X*GYfrIC@ zqWo-#my$%zfBx{%)d$p+m1YaL#U>>sb+M%Ri}~L)UnLJW$R?+!J1g%ljNVAhs+J~I zt<26QO^fMLNBK1T6}cb4$SZkb_1UYBA9Pm4&K6nD);s;lt6zN$pPKq6yZ%HJj7{Bo z>R9T>>N5-lp|>U}DKDzY;P5`+K9BBE&60pO-y&wCg#YtaYtGu-{9^Q@rv)wGxoWW| z<)tU)e&$zyq(P3@z|%C;DtzN*IuG)V6O@t;cX+llV|FD{SJ&HwIE%g z!mN|wZrA+$_FQ#AgN=Oe>QCXxlP5f3M&GLF!dBecRU6%WSHn-X&)=$DZTuCF>G@aV zWk#GrXLFmxwA|UPiD;JQNJ>sA@c7HaGn~|~ZD^Q&Dn4bWd)>i5Hu@;88S zHG!sna}!EV@ta==Mtm~ikQ)1+*No!XaUkH51j@j}6@P9z(Rcid41z zT@97n&C7$X`uy9u{_pk|*1S~vL%>R9>w`Cc|M^-=zi7aU{1Id4z!ty!yh4cizD%^d z`So}o{NBdRc{*+A3Kf5`y~6youEe+r#rFyOFYDQ&_~Y$=eE85+t_KskN(M+c6ykUM zI;Z#F)q0!?ZwnT%IyE)QP5ob3WXh3vcLigvj?SPHODi7&zGa1mXG*jZe+SGQ9S$$h zoX-6Dl#f%r`il)-y1_kA4+1!cPSDO%v9=c?$HoT+RJ~hnHZy#jFJ6{Ddf$)73U1g7 zD(}tW9qyk%JD+eEG60MH6A+ApiW=`KRvnzuH{MEXytnftvQv)>l&`ZE<3f^o4eLIC3I+vn3!xJ;^;8Q_|Uh*79~atM7| zvF7|IR3~!`+_PiTzYHsh2Ny1LD>C`XTa>idGb5##+R3%??s0|>Xv`+(=@2K9&o7`j(pKEZ`Xkr7p!=s|*KpGOuNBT$18HR^j2+xGVT+ zkp^)C&Rm}=pvK%5;S(?ZzD;oxX z7*pHZUG!4PX;FczhD*x!vR8xWA}NAJB=4ObMd98)t&mAEXI}((VS)y>6vSY>ezDB0 z-Nj~TV*{i2M_hb%{fP{i-m(F*+nlLUhpvvPYdItd^n+F2w=P z*>aZ4paKB#D4$2zD0Mth2`Ud2v?@@m_bJDUD}A1PFYD5V#Cg`}_!diS@wK(%`HP!u zXOCE_D9p!c3i%oUzjSIb-n|1Mb7nvZC<*}VhLH73O5bd+Ffhr(uFLR}QLK>%eq`S| zPPJxq!}AtOoDT#Q6a&2K*KN5~G#m`=O3f}(652NU_To!`rT&lXR81ALw$Z)@fK&ig zfkwOEt!?czt-$1vw8lIy)zxpzp{6bsN{IDWT-Ydr zPM4$8m?Po6fAksN3%;ZaAlS@8)&~U_%IRd06OHYJ<)wF$z(8UIm7qDzAuA zvbM6BY6K1e)TR5U&)TVvv^b87m?KV;-ez+ZX&9qiX;pqzM!Czxaew$nKmhcK- ztjLAByWv(i*8C_^i&xO%(DC6@cx{|B@7;Kk{rL@|<&Wbyv%F|Pmil%YJH9MY%BHVl zkv_id-l3D;M1u+oBKT`8xBUb9uo;j~SlXqn%GKATSEmXw6mK!2+}`~jqv?gxoC{)9 zQsqc*9DeZ}rM^QKSy=L#nTUg|vV~7XZ&jogEan?8c^pqZO5u zI4taFKuAo%gwh7aBX0rLk|qXoi;BWL*Eh;1w+(##*%T!>Y|r~gQ$=?I-hJyJ3J!)b zpP9GP3VA(>VTqf!k_BHy!nmo}!Xigg^I%;6i$~ocXJ9Q+ zd~)u6$33@q^Ku-2I=@SO5<{w*?4Z>`2JL2JyDiWKlYnu^S!PBC*g(Q(1zSZ{JCE5^ z=u3~Au1|Iwfo{9eUP-Nhj=h=73iG3i4DAfB=a{wLOr$*!Er}^w0K?86oU>I1<99OD zqiv1zu}IN_qgiBW0a`=KhndE9mK7%XUo=^={{lXdLGB-`BbC&DX0I8Tlo@wk$G0uw zs{GsJ`Ul|(4~DzUv5`s=CY$d!a~Tw_S!tllbWT+$0CkulPA@jB{(YodSn2(h8){3Jba<7$Q_8q z4X{*p@~Xg3k_A<*#o;-&UxpD0XG4XkH1)aUdCq3VENM_te;?6|ABrE&FLDp4WAPX~ zvHFaovOx#9XsP$13Wg!c8*T;42KJDer*3J3MY1+RW$EL*_}Axo{+jG|B^fx?3(k9t z5(e1%m+!{j2JU^&n1H~v@Vfv2Qp8u`LQx3TTsuN&qNh;!{LU&?>?A~U5|V5Y-v-AT zL4{M#6a>#duz~+Mv#acuXpRGTv=GZp@(&Rni>#bWLgYJ|MEbe%HCSQC_d|kdVDHtB zzeFq?Kn!(N^~=Nm-hd6lJpPZ}q`q&evD~jvhpV9$1I@j!Ym&&NRO%0fcv*@y9#R)Z z6l%o|Gsxn>wK|-U%{OR&k-|DcKn?4;AumQ47=LkXGhTKvEET#IA=|d!hnJ90L_O#? zCgGokUePI;Ez7Q+8X#wwF1qu&+(F=qW$vGjaZ~euM!AXqTL>sn9Cg`cx3&~-ZZq_b zHZ0&va`mWEv>3s|fDZzwmJ$h?K>k=nk$4=YFdb}g4*2Binj>x!&D|R0 zqe(8rJGZA~W&+L=8WE{SDvmYU*I8;dRyMQTSK)FjcT4{nAXQh%4pYffX|_>mpi{*4 za~?0hI)i^ZLlA+~+z)EcQNVub3(~}>JbCWfG)ku1L~Ag96z+W!3<%SfD8A%NC7amo zeG)Nlt+u=n!Q|JnU&xigYfTrY5Tj27a7AP+b?;Ax06N$Vy!6a%xiQh-i!*$I{PEtW z+$sfxuch@IQwAMVWp`aFr1&7*&RK{%176|@(Fdy)G4TOSiTG)`G>1*ejG zOFexxLir`zi_Xo(z8700)w^fSGZxcjW?Z|!;J5f*@C$Bk8HIoySdd} z-9lUO2^565( zQRVK>rLgY1p8U<@wmC&WmNGK_#)Q3Oh;s}IzN;EBVJS(<9CF71Rb$LvlTbkeG&&XC z?kG;R#g5LEUtcvNP6@T2dGfC>EJXonui5n-H#x!LX{@mjt|FrhBlu8JShG#U03$Q)y2c>HG75Va&xrEx?1BT%!0wi)o|CMc78LJI`W@iHrn{ z-Pln_*21sUNyh3Zas@Fhl2iVU0vamHl9(zA(*VV10)Z8hoAUx!kP?_=XLsz)2oZiW1=uTa9Zh<4?kX@rg>=bul$uI`1I~zQVNM8mlEEJ+3fp)M8R#{ z`=(RavqRTbk6(M%H>$jo2T6Qvbxdti9EqC1_u}hN?jaz&X-i+?+{7o`Svg;PttdiLbJeyRT%-A>W@?iXXK zsYxU-8*BkATdlXL&OFhfJm$#IjN#1aJ_y3G=CcVq24A*Vgs9bJ8T_Va{I5%YrKzA! zOAz;fk}XtDfxj#v_TY%hH@;8w)7*YYVe8{8F81=IswD$vvZMVQ6F^4OPNOKz0G#cT z>MT@aY*nN+$Tui{@|4>*#61v9N5$0u)T8#6Ti8Ze_5I3`z^Ws=QLd!rCwzdFU3Fix z7TYN4rF#&M;67`6>W`80cbNEp!0CyOUq!zZQeE&Frd2sT;vSfO zz`a}IkSQHG&1ko2}&Z5lTGa~c*0P+>yN!!WsdvqAva$~aw(vaO?N zJ%?!**f_As{5PZr@|wCq5ZV9;gFU`}52*ay^_X*F3-^}=2&q06^*Nv{Z#x6)sLB&u(?W}Of3LghGlhDJQn z2DW4YPdMaxC9G4TCDeSbFuK;?bpV64OlbFVE?QsS-VWNaVF-LobK)yVlX{VV;b}zq9iG&NFt~(2H@euS6b!Z9u-B{iCstoQ>f7{ zYN>rV(eatz+(1aeRIbj>R0jy&4ZJA}0|&Oc0dEc=RQ-Ul{ge4Kyz`2kN{q*75vyf8kq){h>H6A z0C?9?`De2P)oc~7rlFQe}=C`FLqBBL0QZGV>CfExK1FSmlZsSNFbU0yqgO5 zp5TuniIm^ejx+*t*r&%{LTa;$lhIh{i`G>gGP%yn5N z|6jBsFGxjNCP-U5d>o_D;KMUCBUCD1lQ5IRtuX*ziv!2fkmT zYmgw;7x1^J$|}?)a$>h3^Ua))PIXsZ`o(@I@NFboW=n;f0#jfRCK z$}_(9m2(x4=6HMF&-V5VInvD=v?5m;({S*7UMY)gI9z*@c`F5|k;p=U{4tj(M#0hP zS0JlZxwRSwph%<_%7ugUkK!Jg{Oi7YVdm9h3_@uZ9G3b{&JFQ9i<&Wg=?i8L#R-HF zHkdpuw`H8)2B@mru>k1m`ZL4j7nOTjSmp0rA5GbLY)X;*L7vT*gaCvlPEbQ}J{e1X zcaja}E`d~3-Ltj&Qn9Q0EjJe$?Z|VRISp@@NbShF2sn3XBj8ni{q#5BQGw zt^)z~5CDt-n@wms58V)v<{dvbSOO$%Am0R~DL|>Gqd}pJh25oo3d9N*dUd*WI-tX1 z6Ql;j9F{~WkxB_!UWpqxNiOoHh^f8i4L4Q4NGF=T%_`g_))Ejsx&dsE1~hu#KXnZY z43&PVlw7GX-_rlwYG2-c+l8_t2jE>IBd^8{V#jRw*epKGNPuwwCZ42BKE{NlO@;uk z2u2P14deIOmuxVy2QUN1o=2dhG?Xklm$UPnQD=jvO8Kgn4oZiS=W@5&RQ>*JIs-kL zP6*T%#oC!Tf2*A?%}r*uuSx*O}U7fwvh*HS`K%r#TXZ0^zzEM*^3YZMO&wI)4g}TE>g+fUwUj{*-u<_ zkaG$B(Mt)9cx{)Duu}$cM}8idx$prxe4|PEFB2cc-jf-E15dzEiSW}Z_Z;=-`jn?7of&X+jpRO+kzw4-l zU;A)Ff&eI4wUS%$rN+CSpI}oUL$Y($9 zmcQZW*8R0m>-=v1!;|CQiV%aL_^D5P!d7~tj_kMfmra6cY3v~1fjPy7wGek;J^$M_ zFGO47iBhX}D2Q;1dBK2?sm9HhZQ&}V2qI^Z0l}u8s8#B2Wk%~@gV1MrRFpsvUfA;g zNk9UbkfTpr@0;LPU?P3q%*k`Rd0Tn->2LN|dXFh^^Uv82jU`A_%wO`-`JVmn;D+R4d_|1C71aua-@AYf$8q*iycZE>y9 z?4~2^HLcFgs?Cs7ytEqw=TC)+@1j1yzA~;a{#}G<9Ex}Y4Jrg~2tbg`qN%u>L%eHm z(YrPTW@=QT{ai8*v)5?C+n#i3Jze=CvZXA2Mp)u`5+;xTU|v0c5ZgJ^ubW5R(_v02 zzc1Iq%-+L;^tzhYTwr!CUBTaRj03vu7uT0Uh;VJ$T!7~f&@#cT@nh!ey82fDOQ6FI zhT=}AXDHD$^va$AHqZjvd{3?;kDF6#`DzX#h6+5!#Z->tIW2DweL#afQuofu59DuE zotS|?r!D*risCkRub$o!vdf9DnM&~!K71;nR(gd3DW-?tE_^hNw?*YA{t#2PL;*Gl zfC^YNttc|f1_?)koSv|&N-4^_Tp8e@tL-cY#Ry*AHFF z6-0KEamnQ@@Ob?v^84@bPg3*phZF#Jw2`S3r-twx66bIfE)=3Q0#`ek)2~;^zS{Rd zPSzBi2_WBW#-?UQS<{c;1vGt8O7aF0jx_)xYOtNHFCTUsg3E%)^EAbK0jT4wU zT(VCDwq%9lLxA-->));vyQmX>#VZq#L_1z^(NQ#sqqJ*>{ND6{3TEIX+x^%-#+J#d;hq1kKx#ixz_sToL{{CK2P)w zzF^k?XcBOrOIecLh*~*x=cdV-i+h!Gx%y$WNxslc`XYlwE$N(4^}d%b`DCdlw7Ext zUGvJ-2T9um(Jk3O3h)#-2*sa~%T+|^Hw;q&gFsr*g=?Nt2Iaqrxb)*L!R~Z_Q&Q}It_paIrd^`1g3@)u0qRgm(cUy z!=6whH!}TY-`3wJpWVybzj%&c7P@^9i8eOkyocCl>Yv+Tq3=< z$^lEs&=CaTMKcTk@A&C`*yIz}Xw+}an+6%Q-90bhQh=3@&0veHqXOi&<)E~_gqL*HyXQJhv1p$O0nY$)$KEql>a-Er#k^)F$K zgjBZ;9ovjk@Dx~Tf^o{@f=HH8QMR?E8Di!|Ae!fA9S5 zhh-gB?y?G^ezL%KmoARE^($!bgsn%I##}>c2Mgnc0Ky>?^hD>{UHNMtbiRvGaNZNf zu9%75wEHB3R~^wpBN#mQ6E)xemibu=t++k4fhqaxaHK=Ym2UN7g0z$FLA=D2os068XGsyS^`ZEoveS;DGQ7?&Vc`l)kL@htm(gik9upr56L>9Ir(W7s6$` z-gU1Y3f3N5T!3Pr^heost5eMgfM1FI^!VrWENr3Gfbx0TMn=c|FqMSS){Juwg-s{w z_739R_s=?)J%ylm@p8u2s4-FQ`iepu_Otz6Y-#`XNWui>QlLobL5nKTvl`UMonvnAgq0dZ9JJMEduqubmVY?&8@wg?V230RrmhW#(pd z|M2}CYO=f5E)k}hu2!|Qg#ePtNK4}ax2casRterWr=>cY@@3rA#X*u3-%?V z8UJaKU0d$4w+!WYMu6hx4ESaU6mgm)vqtihUj;sgcY5YI1b75X$mXfl#S>`~5BhM6 zH&^XP9ZO!%*_G;&af@1Cfq$tzxyC_8(Jl473cs|n-!Rn#pT$4HHS3mV&=pR0U5UsW zG@T?Zu=Qj#0N}I3ebom+pH!!2=4Jt7_@f$0Xj}4qHq3>m#V4ScFzn{$xlplHITS*P ziNM7X6^(d`a+fZnTjDwIWuhwW+i&`h9Bvjlx4RAd$kMx<@~+%&-CS+vsRwY|0H}*x zL+V@Oi6e~3p`pR=EA4{im%|Qq0av`1J(4DKE#=xJqd69u71wU5Yzl{WJuFP=ONOy= zE%()wUqZt0bTb}EpXiJHv`Uv+L%x7N20AZ7jybcU%5rpOKnwug`f`o%xl1M^PuoKI zJJi{A#*|~=1)vsV#7^{o4;G9R+W!8wbmKf@BOjkchOvqzZOiwIRg5JepUt9PtsC9w zLfggS$>i{P=ZxhCz7hqy)97vrz(zw0bV6tw*GrZ%;j`*IrOP;|QP_z>rPNxRu*Mu# zX$1w8tO?GBcLo?r>KE{Alic_K-THjNlglMa0H@ZXACzN5t|9P7v;>NSxmjMNd`rn^ zQ+v*R=Y*Q7Y7$`V=E-^3*qm8hTvRW0&iyWOqtL3`a4RB$JauFIG@j4tqq81A?j^ox zsA9|rkmrr=UCa}6jIcRJ9_aKyn9k8*VJ#jl>?A8In_92x*FJGqcsL?pd+^)^qC4$G z{bqF)vRj8FzLMDX4Ys%=Um3x+AwY!hJMuX2IY&<)ksy(D-&4GFYWIu5{;>YwH1H~q zVwg61UQkm7nuVJZ%HpJFTZ_f$JYd*tX6NCN)zZ>x8VJy94?;>B#fO4``&f2~$*#2H zGN8|TjplkuuWvderKZ+8Xr1&qd5)fX1oQRljjJPi4U=mn-?H-`xoVrd3=L(bTdGQ8 zNXk}qbHnEdu6@ANZ}!{5y8gbGHI`3juPA-(`LaDe-Y(1HPHdySlY_Hd@sZZnf&kZ+ z>(FB>D}jty>&ewGRnxXf*80K*{jsq{$tG{by{A^3ubH*cSq<2ut7>k~&(B*`u%07M zPDwfW<;$04`>zF#wDV~xsaBV8PE-^)=elfi@oT=P;N;-AKPYh7-D-FJ$zw}PMVE{n z8HTuT!?)OjuFy;KnSV}Wp<9X^KWlJNNk=Dhy)@jz^x;E_J7hg`Gs6`ZhpMsd@ggZt zJL4<*g`Hw)x01IvGX18w!`f}MgMx8fJQP>Qe&#sezCP@1;fBr2DmUQg=ciPeXOqR@ zq<$7D9kaW)mm0w?dOWErXm8I7iTR`&v@y^K6cjA_0A-^V-$3@~yg|E>y;AYnz2KlA zmW|xzY5Ss&ALU>&A=bm{u2)n~;#5-{a_jQtA)dT;uB%she@M;#tN^laYA&K2v$dYwDA0&%YQaQJ3f_GYCLJWMepk+H zu|BTuMs+o2WV#ku^Ex-*PM%?m#XC=_K5J&KDgw2X!~mppZJ1zg zRCeoLVz4cFwDZle%X#nn!rHx74R`fT2t>zkL|mHKOkq$C^Z^5hN9E~o3{X|u4lLf{^7p0n@GC^@w?89k(rrBWcX zsGA$Gma6xr|Iwq8+r#S9CtnNfpXZ_Dnv81d%HyXQ)iBpBPd}>8E5*vbXYP&xdSicj z*9N;XfVZbYkTI79fJg#BF-f5yTZcoELFA64&KGTc_H~9+EnUxjd%gv|Nl9UIH`O62 zKkO%)0QLtNfRhiESiKf!KW9rTV-^BoeGjW=GUCB>*rm0qr8P!jmZu>UVeRzT=^LaW@2g&Kppw?*vnjQ_7`~QL|gBJj8(F`8qlj`2Hef_P;a?6{wOv#JmbJ z_D=0;jHeX*OwPr_q%K7PA&f-+dr(VTxCoxkh{C)vG*17?+SM86Sv~ z9L+60=+7GDQ$)LnJ*CSxF7MoH<)>_=U87-rz|yTI@=`y-xT$$k=gPRjso)u)-Z949 z^PKTON@RgE!u5_w`RXiLa-R0p7bfQXO&4b0zaZxtr~Jtuu2_9N&=>>wNh@F4wL^g| z;M=u$K@w&^^K?3NBzua|$;NA?nh`I@>`LfTpK6=Rq&Vm#@E2>>&Afo(R=%D4Ja*Go z5i{OStdVPP0{LR(cf%(I9R=>&MkIbwt>HCkVn@s51kl5Di-h%GeNCRx=o2r~ZaVzL z*bbfYAo9ua2O6!^!Go-1{O7NH0=W9IHH~0a>JkbapyZ76m;QYUg%f0DM?emb5Jfoj zr0W*4Hg@z7$MMg!V{xR9WD?kUYu_`=uI1V@r9Ymh9gHhyhLn zw%*<24`|d&1F1RI#hGTY{L(W7%6RV-F+80+?U z4DBt|>8n9P9U>EWJVZ6)RwF*yRe2f!md>bR+(jOO%p!-7B7Y(#Pf7C55{s|mCk-An z87@3Ga1FT_3#jKcP&az9CCGne<6c#;$Sj3*4LRP_LIaKXR#V zmim+3H|O26=mn-VtRZZe(@Xc6rw#a%@AE>~fr?6=iH`>&!hb#wysNSk75Aqt#>vLp zlMSUgkKtedXO0~`jTJ4+MX>_rc!(q@{yj9uduN(9ixyJ7Ir5CC;k$%!cEEq$n()_H z)~_WAsbpB?Z$!8l@V=1#a~#@`vuFopT^SIBVOHJ(!omU2vJ_T4_c=WW+6aDhcPD-N zbQ(~fx#?YJ7zR!P2TkPR7J%k|-`tcNgE-@keuStzYieyCB?HWf{~~4$QLRJIdJX1& zd{Qs5yTV;OinB0Mamk`5qYBiueChsbbMac6sFhVdv~nSK14;8eVCVP-#5Dn>GzNb7 zXaaVENkI~1{&PG8yP%;u1cp zbbCD5RYsOTF=)_*0?57ofNUn$yWTeimW03B6W*qhN1&xF#Q0ghiV2EFZf$OkBhcQ5 z2YU~oBMFQR{ojKnH~eK*&k?d4(j@TK1o7y&v3nlPjO3cgav~H%Q`3n}v|PzlRyYW> zuQxvZbBMowN=q=GFN+nl!jcFLUR!~BBy4JoZqTIzfM;T7?+}oROlw$w&6Ov;dXmsA zQVA;ZZCd@?8aJ=Wok&sA_t^S2Qv0hlb_L7@%3vBEHP4Z0@huT;=P_Rj@^qmQcZ#AR z#|ww+X%c|7Kk=wy_jRWukYrefiJT*5*;iOkwm8D`F$$2v`b|a1^>x_toFW_>ym;|E zIsKzs2U}boM>CJ_Ov^AVjA;Ar36|L$(Ihvf%84+E(7e37C_Djvehe}%dz*{u6`nV#uWB0aBrFaTG0{=$S;~8^^%SaQ98Prk zO+gp4&HOVOGXp6pd8~zKCtgQ?Z{HS@}6T zyXZiqO8*RW1b@uT^c`7p;!`nvk##U|ol+*Zvgkub0dYu3$O|V*abKI?q{O5|VVtO` z2@W@}gBCy%Qyz1+^v&_Ir}{mxjy;GKbzUmpds=T@4*#>62oW+I!}>a}cgXTSn^Unm znVyveEb6Vw46pD1F|yR|%9a~0|Lkb@z_WO$Zv0_(ujp);mU!Yfqp^?6#W-^nX8n7? z!9fKJG48_^C8S$cu49L-;-OkogV2A1vQ-wsNp zjB^QEyg$u=ndAsP)l;@L9D6wnT76Bw9)ACRrqHtgMRasDX3DyB#qSz=qk$=GG|8VH z{p{J7#q)v2tCbp$F=xYj%?(?~mak?1MD z#_&1LVX44V3AFJ2iQrxW$AB82XPtRD`c)Br#zq`4C+j@r{2OPswo+$lvf}?w(KYA7Qlm84l zkK`c+){lVU9lRCB*w;bk?YS!W;{qWUT*RDdy{}J>{P7sx0OMQnLSD1-c}8SAzs6yBA1*Ji@3GsJSeK!ZPghZqmWHpl z+Zl6TM<)c@WT{C=NKns__#kpv%hywR#xnBT(5kAc9M#MiO15728ISGSO9^u7KrASz zkOIe5()bJBJV?>o*48{(Wt%^dfZwxc&$dC4gbWYsBJ5`U7cMg}r-_WsNI(84N-5w} z@;tarH=&lC9Ni!ckQNB_12Hji<W8@W}SHKmc4_n>Sa~{J*RYIrFQ|Cn_uv}EW zaTU?Kh@qi;o`r!KzaxT?i|1;c*PsJ#PsP{sLuDtCQm0=+?LV&FKoiJ^M4jr1fp@@E zOt;4R>m9Df2+w^?i5jl38W2QP4wl%HWYh_h;VNSSiorU#?)h+fSd!V8c)!hyVy?1ZSGRN7sL6w!|`OoR; zxo%re_d#ye&2^{SuGG>@0CiXm$SJO(uHIgJ)W?q>ua&B4Y7&OkU(XGtva+%w@UNw@ zfX?F^bY)>5s}5qtS6xP+Vt|+|xc0t+f`Xqc6HDTjbyhXpmSyj7!&&Ujb+fx_^`oj+ zFYEoKRZ*3)61yFkUJ!xL2dpbDLaQxMnt47?JXkO*UMw7N2W*I-t9?_TC%NX8_>M_z%4W+R!eQ%EBVk?3cD}E!FYBzE;3@!u*88GNS{8GP`mZL4XPd)oihSHs_y%C!dS3>lw1 zek}Lo07((R9u(rm#Y!lLI97T2e(G~j~rD} zIEcAdbKb?q!kj+Rul6I^t~lD0fMf7SaxzZ+B`>k8;&DQ4_m$eh!Yx?KGu_?Y#Sl3s~fjW5ob}{8Li?r!4y~!S`Q77>CrI7w|KAlXHMJw2%>y`TDXzF(7?&d7)9N?ZtV}=C~F|V%`e!gOoSJ2 z$|iqK<{zkL#Dqs3%ly|V)a|tof~QU0&VhKR`al3i%wJ0BZz21Cf3W`#?}iM~@}5SW zK8$rhlI?M^R~P=V{iSqiuxQqIPe{mSV|`sJ|0cnoQ*78N`=|PJ_&@57|C+)-pEUY( zcIhf19I&9zpE>rI{Uus9ZC0a!o3l%8 zdUkn`0#6xbzG*Ak!{g>%i310*?NOh8dbQy$I3dS!0nl7>j2q7?#tM=UQFB#NJ<|5} zI+)k%r`N4onYeUx4rD%fZdlIj(#XXzN@BzpLvlyIewl)YcWk|PKhg^UgW8hJN_o6> z6J_^$Y|KF0>tKV8o4amwRKL*wRWH(0j$kq%?|^VZ0=7scxIww5t+ei|uM%s3=hAUt8~p1OicQ|Iq~SauSf&f!yidW3+(#nzx88BpWrE5KkEr?&l80MPbED(JYbQwxOBc!#^|~}c>%Ksl$R}a-&g&>>?Rd;T&TPfqs_;Vh5DnklnyZ%&JgOa2jWfT0*MXy%e=QF?4vL9f(CQ~95gf~fn6yCHB7?T|7vJ1;6MR~6;5g=)THHiR zsV+}ULNc~HpIskB#c4D3`jM%dFz!7?hZRGMHfZxjp@a|CyAW;t;Qa^ugcR4lQkUxp zftLG9uwD)DN9Ns(doi};btL-r+c(=`mubX<1;mt5w>UP*KTv3O5@kS`^Z7F&$X$y0Gaj%xMlT(0Bcy(| zK=EbfChP)iYN|w>)B2<> zHMO)>wkN`jhD%+x!9EN^5S%pVrzYQzGOFAEYPtRBQOxQta;O_w6JLTzao@~OtX-+U z6lRfKCK$rhq8ImDi~QJGhx2=U+`SH`z2;~c88jhAx7}hU?gMW**2I}z<1fCRWJ$(u z-Cu0WRDN`@G=aEdp*Q9}T9T!W!k1B~ijgp+3IDoj3+kG##P-0*AvL1PJ;4kehc@-L zU)NZ#;Iif*4!F1XiKz_>3yTvdBpmT`U|?m`hYY)Ds(%mDYr+z+^1$Q7?Xp`97LzkEF?G&jk!(5w zD{~=n_eUCwRgJX&qi)c^{uiuE$&q|aN|<=ir-y0g=QPGB(#w7pTE#LDe(&n?fe!UJ z8|-O~a~cNZfl|vQ?H;6CBVH1a8b6C@aQD$W5lXRwC&DFc%HUk%UOOD!06$v7Xo7?C zS9>BE>SIO*WjVc;I3HhRE^mY_;az=^DPZ!fixaUYZZ5JK@IzJsgiY0$|D{lfr-&1! za1uinT^vFB5MIcsW^wlqphadIxa7DIIHz>A%sb9jU_`;bo~{W_59TR9hcK|sXYnJ> zG(k+ZRuL(jfNGKHIG=a#X!!*MOq`8rf65;kHypBQ)&HgxI127CrjA>$Cmz%DUtrE*5g@4VQ+?oaa8J+0>BBqU88# zJs`Vy&3d>L5r2QfHH;h`ZXq_=O0(W!srzpbaq}MGz@~A?}!B@6ujh zJxlaauh#($BIJ>LTs3Hid|_FmqQi%15s7{UeQAu_ojn#Nv6LoAQ)rarVP)ZX)4 zr9k9A5>!C8-Ri0x_(OQ#92c>@6^GA)(kY8UY%e49z@Q@D2w5jwyXXm$MTtNQZ5McH ze-vMMJ|iEdSZEZ%NZa38TLH~5UNW5^2@o?+zbzJ8lG!SQ;nR87!h$ooW98Otw%38h z*bOk9MWCS_;rvT*9zQ+kxwq&H0)GabRLZkrFECdWLN|1v74Z$rHHMMaN;k{oMq2>VDXxZhv z9D@b_I@h}u{AX{@2jf5Ue&l67pu^?{aFFzBK`va`t$g8|XH75h^>&f|fs_qDa-LUnEvyu~09hyscb z8QaA#y~*k6L}qcec%D1WdWKC=?5H}TdL*=PIz^pE+vY@8>FOOWtwLh%7z@K4q&6q; zo;waAl#k64*o7!C$=pxGXxp7eYLOHZ#VDH3milMNb{YzzTCX^R)_=UnN1@4&>)&)#xB#GH8};U)gN zY)iLvqelyIIKcx%bP)Ld^#d%JGvttGLKi%Q=mTnIVFA=ipw##7?$%2NIxPXUw_TFplwbov1-S_6bmWCoJ5d#qj1R_;dlGg!&aFDlO zU;^Mt+nbbm;G3u$9OXT##=2nBP;+*fzznR2pk2$+t=Dbyqe#%F(E4JLLsPH_1 zhm44?7~D@*O(iGWFPof@zPfF@cYL*yui4bRTeMlSxmmF*HREf1)cIHED!p{Kv}|{+ z3Ad}OivY|TN+J8s67R|wbo-N1t4t95_Sy1dY9#PGnDxHg|Nr3s*T?_c<{&imu5aag zl{w+^!IwodzaU3?X(j0mI2b4^R**IG{Eb3 z|9c%f)=yu!tUR$Ie#*3ODij)L6M_>(A^R$B;7v~-IcbcZ7YFbx^ncGr7?xKe2)Hm{ z)>~g)j&ys-CiPQV9`M(k4rnNafdvhBCwA#^{zUZ|G<5j>?FYN@Q$N5kBq7?sT5mP@ zMOJ^640I)zNAv0~Yd*t&@6i=Qksv24)E5_G)=)i;|Hj5C1Jjl>{GW+%hQQMgbVEaj zJ^nZ3y)boL(BG%Q@P2f}e=Ey=!hjzbg2qBErvHl`e3()!1JnJQ4^9x-O_u)z4N6M2 z61GJ-d7*>LfLR#-?^!@ht7@{cZ-oB$V5&Hs3FgLW;qiaQskR3F34{0B{cj#r7L=)C z7_bNZ|Lo&S2VbyIhc~b=oBu8B17IxZ>|0&XS-|WVKq!>ga6LsPg--je8NDN}4*xO0 zoT9->7X87%>ichd)+uELHh4dnmbK=Slc?}{*3G}H?=_a>P0h{Y6B8klz9(EJ;*TE( zMe#L(N2PBhzDl0HdiD0-+V@&(s_bgXSfBSFLBTXCt2+0o_tIfpJzse`)`HqTcs1lqn7aiw=i-cQ4 zaU;T=_Si<3w{G@4+CRaSjB*p8+bj%0rsnIMl07s)`#DzmV&%fTdGOXE)$i#$LWYKSV6>Fwi;ANfq|7@^op zku^aEQhJzxf5TBn99z)NPI>p>6fxX}8{stBDOz8-@?Tsk3keS=Fp*v~2uj+bv~zT% z%W|~0f8>=x)7siE8e2Dwg27d=r=t-fBt;Wp_&XzY0KN( z+LF`MB+nhUD)^)%5!(07#L&>NXEE))mfP=BOZ-^Ns}6HzP!>MoaIlcH3dmn_u|XPa(PrSG35UZAliIT*Dq;c zP{3n0I%PFGWfE^qIgogEW|8g=3iXQCpksYrqb>V}w~ZK$PfYu(s_%YRcegy&^}vgX zT>4Ug7KZ%gd%q5$REn3ZkO4%Wdrd-FS0Q<|pII$vm&-bc@Nm8y4)Q*hl8U)Gue{;$ z+ATA=;t7w4a9&F?fKq_ZYCC_((qJPw>9Npm+v?A`+^H(&7IvN2VWDwNxiBH5^z}jP zK|fn82qf(IlLYkT-|w`8Um@f;AikzQ&{uv3J)po_Gj6}R+B=AL^uryMJY|}$G>KJD z6JF8`IH%GOS;BkeIwG`&G&B0BR?ySOSwu-=e3$iDQ>=Wk&d&;k$83L|5gHozqX>qx z6|Z<73%oTE+;`vqueQYbpFB`tf$FEPVD#_bZ!Uj7Ysb3J7)6Nhe!(S|I(y*bQaEF+$>PtS zG5mf@#Als!ZCWvF!wh;tNL`o-%2pgf5LdfoylSZLH zs9P3#!5S=7*(~R`v(IIV0jJt)p{5{r;iR-ctoDkf#zrbY!4V@xQ-5JuPh|S-LUGDs zP?2$QgRE1iFj<+<;NKIa2|kZxmHeLv>2uPD=V(B_5k^sr#>?vp&_Cy5m&Y)pVNCQ*fE&Zb(!~Hp$a+&*^ zx+)jFyw*F^YhWiWre%Qf*>#0+qTb|%dPPz{CJPS+tKvl6MkO&W%qCtln3hnAYWYzr znh9$bFU|_&1f`6W%CotwgzFH>B2u_SLE5P2lgs@W{%rxLL4ns5=fDGE|RDUtVQn)z~y|QSD)fwB)`X);xkh zVSjSbxb%-0ICbP!O&-7o>uy8YyLt5>B~D5C;J$~;^jU(j{XYVnvU9f{SP07j`ucu> zdK?UYXHX2)$4zz~fP2`+ddycSK%niK*k3X=w>UoU2om5@t?>bXHmp~h>$5SZ*G5G6F; zaejv@DHUk_5Dc{l(%%3lml8xhGX$gpECBnp&@@{z1_x_X#|S&jnmn1uOn3k|=4k$#n%5PYHZLd%Fz2V0_R4 z9+1lzXK#KZj*uG!BRImMc{<`1t$*{-YMShu;g9$x)tKy?aLVqXk|koisieAJePcG*6bLcB-|k| z?I>=jUMOaf_`%O?I;@#ZAO*kH-4rdQOgQ*Un&R1Hq5av8WGq{znpqcj-%_WmhTH?x z{f9fNHHF9!xDp)LE?knX=T8bI;QitTvMtY3p(F$ll0lq)YrL(V4Bvw_mP?o4{`@;X z$U$HJ%unphSjNY!dI!c00S{Okg`Q~@^z21VZL0|JNy%J}=B;|K9Fv!=u;wCyrvF3$FY@1OVW zOEoP2e9;m%Iqk${6v50g^6Zbt|EZxVn^3Jp$UsnL8e? zVAuVxNnSk*8I>u%J^iT2_Y%Pa0WJO{s28}FVK zck75y%Zi{6v4;vM(%6`}w%+QfxLb3?1MJ|rc(70p6)#`~F(`ZrlG60~RtQp#?F46N za5C|~1>b(Cxj&=i4q!@yg)&B~yJ{#QVfmiE2qB%&WTQ|ZUCoEyPRMPP7GC0&Y9QOc zeY-Ca61*;s)(+GxEcd30vAOEFtZjfl5?U!@yw+9TaTb4&C|6t)sj&w0*5~Pl6l}WS zAy+k&3T}n{$Xy7IdQ5^lXR_O)n^te?=Q6mr7AMvuw5p z?$0H1crhOZNd9$dX#z!p-_Feyf2NlMBPhGP0CLk#-bTZl%(w6TI^Ve8VoD)TCf1HY zuQwlv9Qnd1yfU&eAqF85|Hp_SiId^vd(QZvycOLq#|EcoU!XdU#YEFZiff4mDC;TI zi!Z&J;}v0Xk+;UgE~p#Yv8_aPeZH%x7HjWwu=WDd%9ez!jvC8@p6VGo7~f;gsx4oy zK1aKWl`YWAft|_m5zKK)n^`bRxtxn3U-HOUS9$OOQP<#r(c|q|XFOHbToQ9bix;Mx z9mqc#O8-nr5zN_XP`pAmWYr6vGT@B0vU~Thm1LPsj?Mhb7Qbe8WdL|9#wf`3E7DS2 z(`uHd$MN;+`ySZ zCiq1d?Wy%r{W;USnut)(eKAV*c9!XSGA7Cb`5>n$?p2h@<)BjHk;yeJpzcL@y%h zv;$#*!Pt(ao57+fbcnVnLYO$PwWFHK>hckV&f8n}QWQegWW$?T9~Rx&u#j&4H_m^J z^0BisBf20b6Z@G=jU{5KXw{)<6u+00Q2pM6bk2?P#}sNL{0PMQ_SUkLgpj48Z)%{y z1!r^KGg8gUJYwtV9;bJnBPawKC$n8>b8tC5#e*yuvDN?5kgK~fK#j*FB4}kDBBMk$ z4H&QvDMImOjn^kJMjL(xF3h{Z&F)CI(bl$^cRVD$=K_WmGlk>2d_QYG&RUK zw!w>9aY;Y8oX+^Nq8a;@=~VLK!ueaSe14o^KTHrG}ti>^D#e0dd@> zBAX^xy=w`aT;0DQ!}G1Jf8k;9Yl9FWV(6^#VaH0ETCC(nC)sB@DpfyC$jR|Bka{_E zd@E4B%^q{h%k6(R-Y(+H$q(Cu#ha_ev%Q;ZM;3z@3qYEK6#UTJn^LlCAxzz%(n*Pm zbgIugY<6*tPwf6^gg5kl+^R$f`QnG5*Wfg>uX=2O&ON}F<*C;hW&L7NJ3m_)XYFV$ z)14K9zTgDTv|k^C0e5 zfiJ z_ie?s$(!h81G|Mb#eYmY4DV>#h+&|!{Rrs~|BlvI@>s6899j-~Q~OK~A`N~;@>V=& zr>t5~kdP7=?*`f=7B#wL0kAE=Wd(&yu`P6HgDkPdkb4KwuuwfFC(rF15uqy>bHd#ZfX@!(`zdog;N=YLBt-n;@zf7S}$fW5c1{n14#3JMBp zbDz^wQvO{eybt9jnp%|3t_uLhz*IIEG{(BN)ULdSZ71&_dwcsH(-_2#iRl%!<5w!P z>wZ7{Hq_6x`PXCbXUJ-znEuPr^;sKEY9iB~NSd|^tY^^ir}j(yteeaAgWJl5<>Gta zoBPr$AD-^lWL=SL%~bZ)%^2JAVrcnZA$JQ996%~N_T37xK}$``{{&6!hxQE zq^sld-w`BQtfh1k%)GO+EOj@u6IpHXo}8D5e87Uz-{1ew#zx6mRpJSMVCm0x`||P> z3i-a4Oz)VPg~>_4y#|8&#KeDC)=$iTv-^x0oBrwWPxN13O>=-OAfG(r=ft_FUWULx zpJHDwrt(d5{YQ2`>lw9s{yYMuh*uJ-(w?T=KRs$tE+t&VPu6F>NEda*c<;M+Ckx^#A_eGCLW}!urWkW??@37$Sq4LvroM1F&lKK zHtdNt=iV{NZVHHqS36k&31*?s;1^#dX3u__|ZW~ys%@ql9TJl#q#5~Xxaw*FKq z6*HeXb&*iwrq5DlV>;6ol6>))p6JDHpO4firLW%}ba<^;A3@UC=S}y3ZG;uC5J=|3 z(+)z#+_lK*z_~Bh_|hGM^IS`SaYW>g$i#tx4r%2yjfU<4 z`{y)zBklN+H&ynZqC0@hsj9;>$bI(przJ({bI5(aeVKHZLGCZVf{Difx4Es!fBNph zVYFRz?Pu`zPcQ0#9P!px&yE0b z_FyFKt&pqV?HLA+koCGKSVycL>DPcW=mQN~Ii-VXlJSzM^0Y~V3Vfn>*So2xk%;YG z$s3W20`C|5GG}$FMo&9Ilbe!Z+@0U>lD~$% zJZ5PAiz3qy#{BNdm>%a1)Y$E2SY$(jD583tMucX5eYUMQ@Z}bYNb1ljAlmdNOQi~$ zk`^)SO^WjiR~X*e_IP^SBF~MHc)~EENvv`N&X5;(v%%;@{;Attlv^>ft#7e#G{;i2 zR^{^G(K^Rg_e)ZSm%iYONAD#BCzvhASG|8y5xPo6*H)%6KcWgxg4QyAfVC;6(Eb97 zqA~(iXXlw?+|@r^w)Hmhm^XQ+&~cyu>{aI4H8URvcbYbOr9jYZB(XXueWHyw4>B@6 zBq~GQ!>gmT9vco2J%jIRgr>*rtMQ6`chk*e`jqzuWu?d4Gy<$A7#OCi+FFYhPPs`$ zsBS7pqozILp|`QECl+1YD}vUE|K<_c%m7mct&KiN{0$L%kJ@l!Dup7Ow6SNf6xGe- zN3=(TM?hy90VL-l2qC0Q53@KMQjwlH?YVH8J{iu#pE>6hg%dB3^W z91sG*`YS-vHi5r8!Ff>_POqR7h6B~!!x>uIicstuAD`AquA3Bl>ABtGA1g)N1^Vj0 zCdO1_R<&hcqBB8rM5z;sVPC58o*OzlziDP>Gf%K`wC|kSYb5EbG#0+{341^sR<0YW zL3HkJTt->gq>xu@9haJ}@@viCNAB}1TnP>%u zf7|n~+`K)aoj=;I`EnX>c@WUU)uxBdAOq1Lzh>^#zsxEg!Kxm{*Tu_^^USLItF`g;X94zu;PSp_egrAoP=tRQ^E z2%AxD?l@b}Krg|OM5m7?M2y-0iEI$Z;d(?S-xp-j#EZ*+OO~+3JW6D^DHs1AYdZLE zhp}U<&*g0SL&7~TXjsurJ#(PgGUCswv0;3(#^!*)s@3Oua-eqwed+m!<_j*++OXxq z*f2GNlUIKm1KQDGbv9SVK1vkT{EcgLPgeds_c;Z7m{j zv(<7Dfd63zvdJVNC6%T1RiP#bY|U@9iw>F8m=6q=uvbvgp;GwG>K%e1Z(pQkU!=IOg^N5$?%t&djuYl>xHRryap-#4kVgLv%hJoSIZW1XmKLr#Q-0!L-c z!o_0&iSVEtZ4#1LGbbyOK9(Aib$jIA>7m+}5^Sj_r)QUGDq!(HbAFtbp7UnA2q8cI zxihT&Y|00^l-}_XUu~?n5UY%*I%6XfiP&h0(wwRypEkMgPqx^&_U!4++x^Obu65~a zhrh!cwSJ337w6sJn@yT1%<1#?jRO_9iLyPgQ~R@(i)Kx_cf;hSxG|wtdNQO4HDJrd z`0y$@(yy(%m_DuCEA_9ewgQz_5~%8bVG?D+>cDe}pvX>Yd`|doQ_nFJTsc7vPPJ;E@mZo=@&7!L8gNQ|KkS<-$aznf-q!iEe+KR`UHs{(=K9EmBmc6KifS7$*0&Naqy7oAfTNm}3@ zoapnORvt6VEsOf0R%z_)Gm?_70*zOrk-r9^JojV(pL_~D`GuZ{>3eUR?E7VKv$yx`~4^oWdTbCrQHod$t+4goHhP zq>LBIA-G-i438J>%3p}uS1>}pwH>G5eNZ45#4+|LADmDk*!!?>Z2H@3SEL0=7X|+- z(#KoWtXhi@7$;pd6Pr0z%FM#!qdmzB@}bkO3{R$E%O0diqfPwDZw>8P2yabr0mP?xNp{(pWW^=p7sM zp^-ShloI5m+*~*jx7t}SjX~Y%KqVF2)&D8`Pnh&0Iqh?Pv{~dt=&9uStDxC@Q&7N{ zn*kO6p=a~PBJ=VX9`|^i_w8obd=<#=pA{caYjlmo3V9QAW5ku4ks2HB8fe_js<2n2=_Q%9<^Q-^hVz;~bfD`K{F?ojp^BisKS znHSDTw7Y+r^?TZzBKnp&tSxg5`$esAj7|u%-2~r}>?uJd3w&CgT9l3ekD$ z-RiMc3VmiuRBJ#I&XAe!6k@gFe9jUtIcB^#4vP1;Ph>;kIKK`!{-*NMfI8_lhXl|l zFDWjR#Vz~a_%FF!2m^z7YHYON_sqoLyY60QBTI#kBXPj#+Wz&%*ReYt_AvWBtTO)Nw%q?Awg_`Ru<{8tUM zh|SXQO>zvkZfG|V5iBUVkf1yFx6^)yQ&Is~ABPu!^U#%4wo)1y^LJu~xO;!l>-lSI z&j}(6z`RuWV>?j2@^vLVRnv($I;_s;&o=K^x&&$;F#`fUb|`OPEWgfyta*-=64;tO z;gk9~{zKxZ9XLW`23cvfPx3fcXx#D2B6UOW zS#ry|)8+WbH-D9oCNS*ZQ%}f0d{n$6< z-HcoqYNZtyf^fyM&Axm-7imf?0Bz;!%iYeWYlCN7{gqG50rLU%;vL=;9L*3e$!m*o zV^a|3?!;k%!Rc~h6q6E~?mK_4!DT`FJY_-v$KCWZ0&}YB4jX%i^nZ&wkz)esaHfIn zU>sF!I-e^5g?=^DgQ%R~W-!2>S9Fy&h|lNJJocE|F#Q(7yUtf##CLc^mN2dnNSbt=$vYc zl0|mjc~Iu%{~&G={s(C93|z;-IPzDh$il{u>+3;w!exT@@XI}PojPak!34m*pdHOJ_a0Bxc-l{=$$wj` zvuWD*0<9JeLtjC}+P(V-oEa%(WM3K3p7WBp*{iZ~>W4qC1$H!QzBLB5A=(%rD^r#C zCDRW>5YY!at(*!aR7TbP26hwyfdR)J31FF15}h_Kt_DVUd2rwu>U>|9x%(>0nGrka zPN{*UzTOmb{?yrR!IX7zKJxVIHvnTYeRY&MMtA1GQc z5?)t-*&iMg(#k_gIZdCGmjH#$7RmsyX(}7?cv9VtrWMC7az2c&^YWZGkXv?{sSr#f zDAYSf@l-RF1ziYE?uE&sPG}mN>5vl{p+JJ2qy)L%W4X^mKNmm3@a2k}{L_`|k#=J$ zE)YHsS4ypTK^A@|*ugz$EiH25W{U9y&Es-9T_}?d=VHo2X~m$XCZdz|30Z%&^e@0L zdfc)Kn0J8K!OtHAihi86qM1S|L(nJzlvtx`9o>dn?;+H1D3JkMZDZv54QDUB>OJ@T z)i2$`K9ip_2GgUDdVw8>lOlxVF>dMecwxK=}aRM` zu(7~^L{w$|p)U8qE1O8vU5#CkE#@5q5sWxr44o5SRcbx;X}3P=5d)~qJM`GqWu(tO zLyr$${8<$-Snr+^$>{`uA6il-1C5r++>*rc4|cND9-6=KdsW3JOUmh4R_w6rs4LcJ zOWnBj&VmyH+dwMOT{j>yXjoc8 zncuQap?X4_(X%4^v!rYhx}k{9nsjrw>$48sWLiiP7iM&+Ks`ji39=tRYkK{*F0z)H z+vU?tnYm!8>thd{gooZs%8>f(PD0{ha(-Bsz$+jw^6iemjY3PQSphMD6M~rinP;}o zutGtUj2;D2hmKV%!2F2|lBUM+F%`C&$Aw?_GheF8Qp2f~!@tie3K;aa`x?;-`r%)m z&XtWV7BD5PV4}1*+}y(@KP|8FUDX%Ns6aK=LI5yN?43pI2lekn-f{GNA`I7%%MI77i2VQIc~lcvhQqaS0BRNT$VX8_lw-u-h%{cYnz!9L7@dgG^JX2$#M zlH&Y<5`FeQ6_m2INSXZ|eXZ5Z@kcIM3LN00JVXI?V_8hiU-9H-@W>W1e#j7Vu@!^X>jTZ)qgaK39c)EV#d(}fr3L4{j$Cv#!YF?E)p7CB9Mgx+}8l0qI z>D0Fn`=hPmBYYPj+a(6KdOKX2NnHFY5`Ns;FJ0(iMxjO5xOID=+~{2xoHIv3fS_+0 z@+$;?vhO<@Na5^F^3Hd7*pMS(5LjJ;xNfL?IL^>*oGQ)*C&&53e*>2?pnXKDR1&|1 z3P^|m2Bbt0U6#$^*!U@fSUMvxl_$l4oD|CwQgv%uyt z<5VOPE_+~WFXK57Sd%<}iaEq0^Jfk%!F z4nC(udi3-ucsD<_lv1p^A@ak(zNJ2`0nnBc^vHxu4v z2tlJ+-x9j@u7ZGgN{zhTP6A~VDOs$3?Js1f0LcNA>mLdq=gz^ZA^G()7!@(*p>0vpsF4x~1=-@6_m;d_oL8j3c(*tx-(4|lbsQHXxlLbo}UE`5Ul;a5d!Zxk)+2qSKXz#iF$^W(H%Nd<Ymlep=zCjQjIt!LFhg-FvlH^nOY z$fedFK!@x1aB_*hXS5{seLXoYG z>rBRm6n69E5xXnY)He7YaA0oP=ey6%;+yX^uWafwPZIO*^!|sgc)HgvryEpIE$Z&d zOo(pdAr$hono+(C+N{mkl~}1({D!M*8MU4SrJ@?I+cJ3c?FF6U7UtYIkqJv=J&m#+ zf$GU)sByS&aHMH8BNxYi7ZTuw$Ov{1uSXc3V#Tt7)v+d#D{1WZ+(&lQdfSbs7=UW6 z9{>bHyFZjrWZ;cEvNS50CzzuEyp?kzo12~oZB?1LI@gSS7i)6)*&tiSnS@t=%arpS z)107H0l568zAtOm%x8O+&f~koGnTSFIG@;S4!#WP#!osS9G=_+Q}AhT+f2;k5o$uI znKSR~Q5n24WD7$$D}W^%&ATc&>;haL8o*_WTQHZq>}p(mcsiuC*61?|K7a}3eC+*(Ia-j?%cui48vj|Kz-1N9ODyv z=H{i5zhL>o^!WVMs=DL%8lXf^6hD**rXhO&u=Dv6zOnvx#?jbEhgzFff}t0Yn0;{p zVJYr5jZG-ts)j7@9OaYd9Kdf`X=(P}5cq3A#450qEf|}tull+386L*((oK7YvG_+# zcZ#<>d8Xi2obS-RtxD=3XCPG`Do%O)^j$MGdKFnAKKTUh_2sSN;RI3mFnm|1HAaK3 zw3fefDeeh8g}?uy9?sUjDEhu*t%@?_2mCTJo@n777Rtkg5&T0*w6K-aFPSuGRUmKk z{)r`65+a%x+5G!tdZURviP%e05rZ~d=zCaL%QUuwQG)<2RhMGF!pQj0>N)7ClSsZA z6tlU-q|y?Cql!CFYUmZsFQ8;pN`}vHQz3Ta)rTH1LWv(pQ-upRa;>2AE_3Xu2u6kkU(gm25JngXbvPOOy>+9x+0i#P>`8BeYh ztlaLuQbzTL%a)H*dPN)vgmyc{{C3|feja`7g`X4aawDAyT(#FL2%t0QYvYzZM#zx%t0sEe8 zW0!lP{9l@U>a6lddFjo*Mmhjok9?V`z$3(|%M%GPAi`gaeVcrj_vw*a9chtvv=zG@ zFW2EgE}4xy#qaWw=%)~(I%2Qa8mk`e-iT3E-$jS-Pf^S?xzs-AR)($PupQxHu6}AN5LVu5+}}5`znlUp4c=KuZkh|52M% zWRyW%KO^}4H&hE5sM|AKnw#|yq~;xmMEt)6HW^@+ z+?`%YlPLS2Cr{eWyKXX^^`(vy>(2I@`7;^?{w)8^o%=ccK@RuabFYBp<5yNV#sz;j z@CLr?0V#5!k2WlrBc#c6jR{F&5JDyklRD92KkBsl2$KQ;K0BI;II+IUy5Ex{tBeBq zaTNLJ0jYQ9+*C!&xZtcH_@bzr3z5k{L?BJxf_eh7;{ZM*uv*ld2thN@ zAPGakh|zfs`#b~g;DXY29DvZ3zT}Iy1z=Y_V`CIQuTL7-5(a*GwqGyavN1_Ky*`Of3!X6hW*_xf>BGOoB5R@gG4*S;{jGWB zJ>y%gCD4`Z6s!33{$fWy27S%sW%r?ZcZ6~q~R{6vm%ihj; z2$TMUppk;XC({onJjWd8?mc7IzZfHWz`<*u&a~E%0$NV z@=`yTBL5OvaeCy9@F8b^fBK;HKOKSr@>81 z$ImpBik>bz&7KHffDt_(6zp{l5oX0AVK(&P$xc-+U5FRCUK^{K18?lZvYowdR3R{K zvt{96j=LN0!p5xzd#!4{oDR|}JQ6xed#IPNL6C#fpHCZfFP^cxLsUXCT|=!Wo-_Sw z?%3ShBLw+f%q{jdxo*CbDnk zy@m3Ht(C>A%a&fG+neSRJr%!^Nxha|H3gUg$e^UJHT=I3SyH}hK&MazPOc;`M3AFO1>IDS2 z^gWIj+BWMV(0}W|*cnC;Dflarlw1&qepu_`=WN z{N-nY-d-ka^!J2Vj(U;ut^6O*8^_K|Dal(6%IV`{*|bAR0EC;=Jf@hZJ@2zsj>Mqu zfKXlGr2k{*c>hj4J85XQ=f(K=`VMWX(#X^5!pAcKU0^InGpqdzX$Z-W)269N2@|&- zldSA3dz~-7@9NoUy=c8+ysoz=uiyJ&u>alh<`Qh|-T7pV`RrH!mkq}O=bJpurN30M z)7O^=@41~{R#|h>6+T1hCB*7jZ(he`%X< zOG{Tl>AdUjE_z5L^%Rw_K9~AAa;0ELJh5kKs(;b=`@`K>H#5qs5VmF4*4B%03NeYp zegWW?O+PihYHv|upOqgl!Gb(A$FFs!T|HNmi~6v&yWcZtYFgOndE48o^Lx%oE8opy zd#Ya#Va)r;NXW_a^77;wGs1|6=FD1_i+jE|R<{4D(jx#iB}YdjF`>8cji4}X>Cx91 z57>)p`G1)eUp+o(sRo#f1G)_l_s7o}V0YWYA)45ly>=u7)h^N?j<;G&G+ zu9ZIk3oO_3wg0kH_k%1UxcNy&E#Yt$IV&o2#=`fx#JRrJ;2>Gc^;Ej6$Vz=bBH z1FxcO^W}oS_oB?&McQWuX6C5gUIjcnM;_3h?d{HV(Trr<9f_73^D2S|T3<4DEBGc1 zf6UE|OTXeGOZ)sX(e^9zs1ti|Z!Sab?ydvO#3S)b+jPA!ATb`{MMTf~Cq853erlP) z{qB{~J%QGWoJLXrm4nP6qAl((@?5uWX^7CK)$dYfrOiw{t>FilgJz-T8y~|4%>_Mo zJp_e!pGdYjE#(H+S~R{*%dg)zLX{f|8FkP9$C&R_EYo7H)F<}l%OGHZzo zGWI)wPq>!o5dqh6p1Zm}{XKke`c-90S>%^4XO3PRqplZfEe_4l;^AW8E%JgU*zjLE zGXwoWewc(o=&M%(d%*EG33T~V(%GbtrF@+#vx13Fc#6J1l(QT=`YXJ)7h$7D_N&Ew z@@r?F$fF{kc8Tp5hgg^0b9?&mwUYw--=D#HuHdMsdVQhjI>aBo#xJ8;;`RciKxh7t znLbNv*xt=*0yI_{)PKf@N#-|+IRZoimf8^;aJdq^-gZ(~X=-7CM`z@wJ>_GnY~Pvm z9H_UBsXopY&va$VnXWTCd7R*;nfxff`lsQK`N4dSO8NmWrbc?pYEB8g*tFa-oAGd% zYB6|)Dlhf^cBNJcV`wpJa$0D?&1Z}X9D8BqNuqz>yzwZ@Vk(ZRMF-&R&>|Nyc=*vj zs%-iJ2Hk^U(J#CKa^CB#Q%thFX#`X0TJ0kkW%p&@ND2@@L8<)ZUg^tR(ROZg3B=o; zQvI_1dDqdU>x;d?~tbU(l2tFhfP_!`o%rHg~ zmD26_C^hCh!FM11&Pq~{qI(S=y#|W@RDr}4StbG zlxX`qF=eXc%~gl>wTXX7=9~OMVF!wgG-s-M zhg!p{;tAH5FyN;EzhiT~{Cn&gY18k@7hJ%j&-D&ff|o3prww$@p}N4O3J|iz>+$WK zyR%jjj`4Tff!hX=TBUT_q;6lwxxO^|?yTO|p}zaF5NxlZK}bewic)gK)Ng)ftQFwh zv9iVf#Kob<#_s@RJ=#lU2M(q75feqR}W(H5S#ZA~Axd zJeO?;kY0OOdJrZtckum$b68KPMf&W*Y`EkFadWP134toZA;~HLYWAsXqvBnFHKGk= zBF+BALxONlQ5>jb_XRF7QFk#`NMp^2C z|IJuiClaI7{YRk-z+Kaq_2Os}Mi>V7s@z)GgVuzDlc*5iI@Z~^WotSj`nOZfEhY>hn$L1kcsaeQ-}4k=#Xn;zuj=aO`vgpl&VI74@I@Ook~O*}h5cV36o z@1%OnXra}7DX!ev<(oQHDSq;~ zJRKJUGVL@lLRB~K$vHl73npDAXbn`7;AG*JyX@(Ix92P@MIF$4V2>os&0s;)5dPMU z>FgLk`SOc9o~j8d=?S@$otcW7t}@Qh4wE?l*dw)10yK@bbAl=Gg+FKcme%7sc?OO4 ziJzgv-#?J**h_nwdK!ilMD`9t@MyKftviA4u6pd+W+liy5`*bqXlXb6TrOFrhuh%p zKsm6TXJdo033AZSx#<6{X4OPleCeZyo8c;0LLfDFb|WI=9)zJJ6!Q!Ku3ykI+>^6x z_9JoOVngmfgdgQxgZTgOu&q%0nXX9%Zzr!X%-o(U4t z!bOk*h3>Dw7vQg1GeSr0`Zz=VwmNYDCd(Wes2>>zftiIvV1#bG8Y)Q+j);3QKj4^r z23QAUS@_SkJC}2x9J-HQdcGh1WEg_4HYfBwhex*I8;u4OSs))DuDIp{t?D;w5)nV! zR?PIdv)Fp<`Ms`z+?Sl>SA=vkajbOn)QSIwTOs?B+2^goR0p-9;l(>;f3tNZ-lJsv zNxJ!D>9m#H@pxbDFZ#K(XWh-|H{x+3Tm>i%j1V-yhd+3j&AIo`AQjk^eDEWp`8##D zOd@&UW)mTByE%!^&ERe>0V50gVNZIU4*u=kuj`BU=Z;yTc3E8jsqLxR;osjo->+Tx z@1JcwtQCB=Z2u`eYGQ^t@7TDkiHP$}UI7>l2}6ykL&UgU0`}jl7xulqDpK5!Jhp`` z8mRmwinC+*3q^igd;_rbom^P%rFB%^oC%z;Fm&GSgWYn2lx>-lvn=Uv^QvXnZ(#y;QO#tlsr|z?DOG3u@AslN??w>bmxeMZ^cC$Vv0PG` zoSijS9Tu~NwCT%!?cuFiX1mLJ! zaA2N9F3MK;YNbHEi)DB}FjnRPTaUksZpS3*e@B0HN=XjUx^JWKs-@yBWNLm%Q9*2w>|MLl^cY z0Ftj##p1QPK}U4GQ`p~H*Qo6+%U75P^?Xf=xEDEJpaAXy8P7M)9Qqe1Vj^d9QlZq5 zq59nV;==X|LTnW-^B4U!74=D@M=w3Nv#5Yr_S?nKZ&4qDjtf(l<4MwHAON%*nEntQ z21XoIjXZYL=o`L4oTHef$V(nR`(6l6ssRJ-!8cqOCJM5M?kLlOmuV|^^&`hJ)a6Rx zyJFhRWxFLhn{>MY+y8!b@o;`vcYd?M3`5XL?Cc7O-H&<60M~;!81(%HVnw3q zXb4}_{3)-F(wck>YSy!w2H^dH*X$TpfqQC#6Dp{I`loD}lVwR%1GzaRj}0mA-Y(~Q zZt`K?v{5L~qt?joaCzsZQ|g8^0=gnnQ55^x1Vg#B4;7uu6_;Fh`8VIlWRsY_a8PVW zz$Eg?CJ`o68zt;^WV{pC-ykiAH&ioG85>!W}MO!^cG&SqNvqqu;0o#ygo2DJ8Pj02}BHv~QI zESaGFd>mfPy-U)i^;XeiTNL%e%h&~vxCa7Tpf;UmPub@CJ4J0BpQ|sHVb}AW)E5EQ z(j&do;|e~~cBfQ1_MHkgr8mQ~eQO*f4#K0BTPK|ZCmTh^0ml>Y?+7B4An5q2fsauk z8NU$!p)x`RWPZ~SW<)&8#wzvuP|V4nf|!|HK9>dr@&|Y4N5IcgnEtsIKs}k|5GX_T zl3K-w2|ZEbr`(HWHrZo6)L0h*jt2pY4B<;YYB4Mu4Bp>sjvCWT&6(;k)}YB`S{@cy zw(y98Vjm}*rNb{lyMss47r2&5fh@28KM-p=z_ZviPSHV$=Bqln67n$qUnHG(Jk{_2 z#t}LQDV#bPb&znZ53*G_HrY;uL$b*xBiV66G9r6#4zf2Po9w;!%HI5L-`}4-9zE*) zKJRtkuj{&=SIc(}Z?Dhe?*$UesP~DCl78Pef1B#xS&Y>>3G-_Nq5$S!w|Wc zpecm720oH%%U*ktOuf88^$jm2kbUcq2$4KB=}R-E?VP7yXf*w{ne?9p5k&bwG(RnxxeQ+Jw1;BiR~HM` zjY@!dW(1vWoub|^mP?t;dq$E~V_SSb?cgyw1fBi21XvR^DPAOMctBk$CNJM`1d7P#e+knK61dk zGs+Xw(XjdOo|hO0WYP>y-9ro$nRV07*k00w-+ERB;bTBK-HIyT+1ALwlLrz}@il3) zO@v+7i^eKNa=a@DqVmtw>07006~T4NWZ)9vf)ZwsET;=ezaSjlu$%q1S9q9h{r zA#Bm`2nN(Jt*@Z#UX9^in6cYh3KJGc}`ZP5Jai3 z>d9&4=%fwC@4MflGS%H)5S#q!R$ z#TpWhnUDa*(C)+uvonv0kKck{M_a+P+5cvr%BcKyy-&CV{{f4rIJnRS zxxr3Gfaadg8QVk6A3!Wi-l7q;fA2NK&$a0)s*T*H7DL&Q4j;&FE-r+WO%@nX*40yb z5#T5Wb0c&_=z%XqM7BDA7p5VJjo?Eub-@Q^J8S>_rQ5aD)ghodJ=b5#rW*KCHs1Xt zLhQq`y~kY?SR;Y;Q2C93w_EwE=^H+E0CU+wF>Xaov9w92S$(%$vL>3+ zL0JLrhfqHi+e-~HmhOb=SFl*FnSZOq2-(GA!cIC3bFK$>W^?N6N1w;*VwBO9FV_Vg z<)NX;>c8_I0b)VZswt1OqTCwepsXwi)ukE5`qOA#UOw9G2`<#Adr_~Z_&zlWIHxix z!_>YqV)1Z+UoZ{sOnQ8v&g%2S>5w?|$4|IOv6Kd*ET?xm8@4O-RCRH?Ape0WQRh~ zL}Ap!=_(bHXm~D;uJ=pa43a76k;9L}l4E)rL^kGb^tSJ$vrWZp5%3IyaeM~{ z6PrWOB!+<@ROAq^?s7q&&7vfYtA=$?A%%SgNQD6 zKOipno}8qd+W#u&F7J$+?=mLU+8Wce-`Q(_O_8B$=6*apgQBjJhu+hOk5O9e>uyo1 zy5+RtlMXw`YwBrhBi6O=g*tEZ1cpTffN1T4p%$lrkoC^|r^Wr8)IYj(kqZ~X%-!%i zRFc>OPAMT>U-0Pi^0z32YP}0m4nq4ize;xuq4er8Dlw#mCNaz40^AV;3SPp;7o9r$ z2&LGpmK(Eu<4TGNNK;a1wFMZQpLFB_J}xb1eB%=;@!!;+xUd0i%3n9uM0bOKCnY*o z-CQk@DE|h#*rxDj&ZJR8pUwC=W(6I7l6^LNQtWYj<=v(}OkA~?C=r3z*-EL!@0#8e z>JSVT)lb$jy_Kr@hF9JG=F|z2@+ArAZ$d=5{Uq{1=s)}y8#_A#SO^L5}TcoRimyS9vP3`~hYZ3M3SR}s;|7TYH7ca%04zP%id5hN* zf}`d}qPi@V{`XwHGI7JWIP)q?@gG}0$5i_kFyK`Dn;f9AvIv3WF;_B9B&*GmQTq3V z!Hs;d6E*R%k-!H%aqM&>d-cXE5`t*C5ze ziKR>q$8$Dw9+V3cMu(sRk=yU{8u1n%6@>K%erFf1VN8$-n!yn48(|1vQllPXAet5> zXa3Ce8IY}*E$}!|qBtOgKJ#}9?W!tY07cO@u6tZVzQ}UdU3$X&3$kT3@KG+|7DTfO zOV}BLeN3oMtA1LBZ|?Q}JnZQrhj_CstL~ClIxL*$a%|5#9lmM^R>{LrQXr@B=isC) z{+u{OF*_bhz#<+=t~q$tGZfRnDndPGIb2*;_*S6Q?2ifp`x`jjV2EH2@t30drS(B6 zsP8_)I9>ORbC;D*(UICdOc@XstTEdBAEZ&#%}CnBFgW5V!X!v}uM0P$t-9is-3upR zk34R`Blh!BlIyh!QWnMZ`6>F$YRV7&+;HIijgLepjz>PBeWCiz&cO&b% zs0L3duQ}Edfpk!mV!Dta$Fswi&n!wo-H}6XpW?|cEpj9;0P~(bCGc?#%C7$Mx%(|t zcKAU7aDkAV zyT{dA@%V#$D!&p)cbni{Y-rPJNIPy<+eD#ya70x&$L|)(-ql~ZH?C{~I$OG4L*$VRZ0=BSnq0*hN+XIC%pMRwrhxLH z(nooLe<--6rrU&W?>YRe;Fh!-MQ96|A%ch$F_NTC@%mZd&R2gz!Ak`#n~7=0I{;()R)j!rKrsUu0ue#O&R4x)*xJ3G=J3O`yB zsti~eJYQ!5x{b^KMiP$(AsPw{7sdo6CiqK?De0jUGP$UIL3Tw9}K47m?wi6>e7iGz7&a){<9Xy(0ArE3n z8BLb?kSHmr!LE}-9t>tkvE_XNL}%_Clp>xytA6yrkadjpy=n;0n<9+z$X~o~7Fe7N zq8J$O{fn#P`cN?4^(fKv5JtXtoONWL6D5D)6ERz~moxCXFCm_(NV(sGp*yoge1vb3 zE5t>8?Jd3rl!68C9w*2F$wjO=>@6{*Lv((^5FkK|DbeN52irUKqFtNIaqvtk_O{$- z*&Ls^-2nIjU}Rzww#Pe7K}vvfAcwQ_-%uAJIJlb?pBiY*cx{$cYPb*67d{di580j+p8eAz!RgJUFPSEOEFMev z(al=bH-{umjYln$WBYSe!}NBE+S;#G?`bXuETtogb4%)JxUE&%&(wyDS3&5pFFs*K zM7s}i)hJ7Y zOZlNUz4Gj5_6CfMrZReU@H8t$*btvBnWE87Wf4ShK0d)Bgdn)bYqA;v#yt|2hkM8r zo5>oha%Nf=0${g@%CTDv|0cd-5`Rf8 z*}#Y3s3r}b;OciZ<6GZ=9d!|TpJ&^ptHBdOnO)prsH5p(f zE;`thz>z2HS!J#%u0(IAI6(^T5mkWSj#Dmv6>A*Ap`&}0nk7juR6l+fap=jGYq zr^3vPZ|m3^);py^dX<5#GI^>*dGY7J%I6qwA~EUV@QBxje+h&<-Et!Q^(pdz5udx( zfEgQ+YUg{F;|?UX{o`2mRWcl~ylu9d&<2RD>{eRbf#xoH4_C}d9Iqg579Bl;D4x=w z?lJG3TMy?>s$?mILecF^!eM&x;PNM;AJHNtFlsB;4=5+yoQE7vfXBx=yi1#-|_ zAErg>M^x>*)-0QcQ`%~5?CELfnp1nDIeEJkxog%B?#oSo3OO1!?gD$ay=dEejdl@m z1z{NqRt_a6J`}5iNT9-w%9sC`!3gCieBx&G7u5;TYz~7AbF)!1Jh&76dz>e>T*q1` zz`c=y$SilYvvg#JQH+k5ATo;DIM#nX5DvVb_;~BBBuRZ4ub9X%3@9NMab|DaEbEf~ z%iG;7O+81{OGW`Ss;OVrQL8;q@bloP5@|FyUzW7ZLTj*0x~j{>#I!#kD)xZ41EsEa z>^a!1g_Hd?zUS#aE6Xisx6L*(k)R$|?Al^D@b3JKFv8ijW%Ue=E3NcWsAOK9nLAsi z3XJKVHZ9k#%p+_=NPoHm4jlZ zth&`8Uwr^9J^r^g?y&YyQ22}9dg+5&Owjj9XSH*l?gbbt3$Cxk5X2AUb`C_-)_i+3 zb%{6GH+<8aBgN=}|FblPFl?%W)ngn>_vSYpbba$*Bwl+}ZWqLMbgRXdM9jo!2J( z6kl4_>yTXoo}8yrp*NnJWo?BJXZdVL6wuLdO!lh)Oz*qOd!hJvL9nNRl)iBFFP6e~ z7!4%lG_r=c(`9Bge>XM%YF7XJhtokyYzg2lC7v|s*o;@bL+EL|_0f2b*ZJJragqNC zsVgDt021=YOuU|87{Df<4MLxN{l4Fy?bSK=`_~&L8xx-fL-W3e2IwkH^xEHampMP^ z1^9XU^H(kHCS*+?5Pr&hX6*^=6pp2e!ciP?7=P4n^|myffF(xc>LPwxP9qpIHaJkS z(U84)5bO$GRB0eDfz1P!@^vt%l!;uvi)ZZR*cHT7cKAvVz&)d*2Zej|6nzEeqTipa zIM=DHd8VJ$m;>AF=WlT0pA6Uh$!8wXU#0lq`1xePQeMsRz7r&##{+cg{wBeEN@2!# z@ft*eV-<&Xw3=kQf3jBT?Esz}sSq;+2MGDqPFr>nO;4tK87?NueiXUQJQ-N%q&^mq zTN8Nl;7-sd6ld+E#kmL99f{lqk$`nF-6mO5Y8ysH6cGr@DAl=3`Mv5TE&5``9?!c8 z!xnO@32s0=_3YJdMX_%eO=^Z@5MDx}pm@2p`41D%`X-25BA0h_GvLk*VnN@pW0gVh zY=Uc*xAp%+73V zM46+yi~Ao8BXoU{E74fE_xDgWFyj>xCQ5(k`}q=V^6URht)Y^~P(Ce#Ny6UpQHaLS zPX`R(ed9iVKk=WNC?E3i-Mh8e$%;ylL78h`DUYH105AY-uLXyP&K%y2+|8iLeNXb7FSfR#DN*E6K2?=8L#EGJ zky!26N2TT&X$HObl-Svgb)evp+a}6TWyyO}LRdcS%60>xtshadmtjtS0;R}%aj`^H zM7LaO5}&p-`Ih*vf_Q@-S`a`NGCZ@YboFwC0;2!(ejlIXz>JkkL_R}e$1TCVyiKyn z#_>lt<*#N*BhY(9-&J#_Z zua;!AHP1cPb1pj`zS9Cs4~DxJ)|;Zr0zNje`3-i<$B{iozX(Ndt%pbFII%Dz)S)g~ zsdjRdfLib+RZxg`dA*W0l7Se3#Lvl3m(A^~?ML$dws7#2j|_o3IG4?9WYQP9PjAB$ zhrghyq!l(fOclv)^jSU>@Tbnc#_#01Q}oB9&L4Rz>FSbtV4W*oC|1>1fiz0$+k6gh zl^@FiAUuVQtpZR)Ks(F6-)89bNZ%^~BiE7Zyju z8jb`i3%~P04kpz)!r1*k4ym}!n=^nP=aIw`YOK6}e78@oRDip@yBm&3AJ$#JQXN4@ zW`aez#M&N7PZ_1>_gEJ(Kjb!W0=z!R%nRcSG7AbMH;1ACn$c;{1BPz&l~#M?(2WN8p;v~Iu> z?@fT~m$^}%xq^DCrk&yILsF;r1ImWbxvampa(&^>08Wz3(W8nUlf2m_=F9wPllAy{ z-yt-?gaXmMgVFWv0M}c8CJjuS{+sKb3>_ zwVKZ~*ZxLgT%2TDSIgj`Ot$ql>$`rE9>MOzpOe_E%tzgd%i6I}=NwY$g%AsDu{Mi1 z+iMumF#iI?LjXq;MdK|JAUaoV!XuWi-;9!to-zT^?0uDL6UL2qO&O%Ok=I9n7{e$t%9%S*XcHmK)X6@_Y-#>BRp;>rFh344 zJuq61Z@6cHMX32cr^qw?9Y&ODPMvmNPM$(j6Fr8Mbx84iakVrRV8Xwi4zaSp%H2gx zX$;DO*9O>XPOv}(@!sDnK*0yi6{QJ zWjR$vr4L}beUp=41Bo2H97_QP!B>XSS3T!nTl#%Xt%sPpt4%c;Bx#M|;a-c2@qUPR z+xKizupxT+z1y>^^FJ<~O{)&9Cw~3ST~cd=<~ipn(?p z#Yx(#5e&uK6z+kCVV!aa{$+%eL?jdFr9tA|wKi2hR~=g1zU|Mh>g$)N(nFanho;TJ zYWUo!wDSC-kci&fB;R^fPTO{R!DOIbtem#tKyjuvR0Q)vsq1T-i88Cv zS~vc>!~74)*|MAm+8lLPhlTG3G8Auo$XoLGZR~&hOsYAW+~{1jYaZ0BQ!!T%zj15q zmu9Erw9aYl4Z%$EJY@V;1sQT)1sWX9`~P@Y+vYu#`bA$|&s{M~8YIKQQ>&@h=B<`W zQ(*^|RE@=o6jJcA)~HhyQG=@TR`Go3eh#6$b5~IOWx%#bjlxrlIUkM9Me84M2hXc4 zYW`!ei|Vh+kRG^2@+?vD)?>`%1!S1vbuHTUDj^`j=|V8lH~ZBNQBRE87`8B|JC=W; zYNMd}1}Zl{`mR$L)@o7Z+tlaPY@B*8MnUQ$|Gq!5HV@^%;DhGxe)fu?^%b4qxh^1& zn$q=Duz6ZuVrJvB-NFq-JwsM&SNGpb(Qz@oP>yL3L(ExFQ4MqBwVYu2@!I(<8 zHczw_HbuEU zTy0_=Joqp3?rT)Z9eL_#0wpFvDXhgRJq?vwLQZ27>))6>&9G`+V##82?4zU2^!_Yg zb$(t%aC<+ZkHE;wEPGyYXK+Y!Pl5u0Y=xX%$r)4%>b9PLYSSN-9J?M z3RV#>{0TU-J7mlY-u?OsPRd;!*|o!_e@gt^YTUPar*5KDLsEnT6C>9*KKa>l*xhbZ z)CMBW{?o+uqNkdkLjU?F=|;zuGb4Fs*!LiZzs1P?-=$XLRktz=g)?T0b^~R1OIb5A z<{yv;@J_!&Z3oyqGaYYTRHp%)^mZfF$xr`9Jk#Mj5&tVcV0Cb*wz-wpiX1Lupjk*4u6xi*a=W)4R#R;QP=+Tnl)1VzsTZA zy{GZq`TXfFui+m&?~sKGTGxC7=Knv>hV>PMB8x>5#w?{Qgu~U;zR+7MKRdc7pQ-le z`pehuUC8ZQO!3k}<3Ee4%egcLM_y!2F7tmlD z_?;l?);GghXa>7NnCV2} zs0rs9M1ixrCAcbpXB*|Yu(&92c79%ZEWt?G0RF*mN+!RL?~swlmA_;i#6!KR;@yN zjr-bUM|2Mwdbew!50lT2FG!i;U)5U*WcBV7`(X|J&UccazVxoEPjGB_<3{BRs@7R= zqHu{9i_G%lJxzX*_M)6mAAL)7!m3l?7)j^z}1B>#hheFA3B z7%qEoc$l1-d0Qnp%52y0*8cJ&rYNwJcO8@w{f2)7=mRnVIl|o`< zZ``&L&4XtOZzNN=Z*2bYx}2B^{Td_gpRl+gZIEytVI1X^*Z`wYH9f!*r>mO zLV#ljM@Iu|=jx@Sz3WyQ`(v`8oi|wY6Y4{URKP4wy-y@PBTWT1bFaV<0`|zwO268) zA6{h5E$!_5WB6xP)e73u{EU#B8q<@OkLQIG#V(vPTY6v3cIo*oFC0zU+LSc=)Beum zxizTXbJ6L)W z6w^XnmMHW7_i@kK_TW{4lwUp5-8(;T9MuIIqR!JU$XW=g{s0#UM5Ud8M@(8B(1KV|OuTR?H9XbUQQ< z`ZUHIOEN5bP~7p0n6NZ6fBEj6neHEwm0qgy7eW+m-;sVRYo_W~=TdD8O!48j1KJcO zba_2PQmtBfk33AIV{;v!^YTI_$dZziac|$2HkQ=5D(Wh7G~paB(Az%Ysa=Kw?+&oD zMh`>p5dNEU*7YBzc9SqNR6H3oNoLQA|GH`VJCC$;W^#tsVn&o|)Wo1E4ya*^3%S99w2ZqaMs1JDK4QeCX3 zgj&ivthjeW*>^cEXYcLz=t#az&9!xyIw1AIV&L%!4&X%tqwItVyOIrMBWtmM2D$4n z6!qN{8-xxfrpOznJ}3DygnT;hGHU-ZZc@YI&sONXb-rERt0wE2Rc#N@oYkN4ijP{F zs%1|c?O0a+WyS;8m2Wkh)4vo}mq=J~bQTy730bu^b1JV-Tlg-Q8EMhW9N#nV_rt0B z>@8E^QqOv`vd zvz$8;`RrC+Q$0knmpwx@?PSY4%`(Hq{)N;1Fc1g z$9mU#3XMI`h2xP~MX#A&b4MoqNq=AS{J~K0m$5(_s}gNMLaou~`&UT`_N{llS+yKB0)Vdp(@lC47 zn_#HK{zJtaA;`>WdAM=~FoHzH4G<6e{+w=e+@cJLsxsvW(Q%Ae+cig*etSwo7ayJ7 ztb9spRWpmIS?)TVw_kG@9xOvV8H!&_g`LF7JQa1kaqxzupiX7*a`V&MRaoUgn2Cf4 z#4*^s-`lD<{e&ObU9Y4DnJ?qJjWc7Ys~6V(n5ySBexE6Ht%=|kJe6@ofrRnUZrOj# zrQ$(&zz6u=Dw>$K1a-_JE*Mn6h6U|M0lB^GKzd|*{qGk22~I)9JeY~#UQEqg#?NeI zzey7o!+AhM*Rn&^pG(p!m~Vce9Q3BN%k`iA+b0nKvGMP!T=z?9ZkHkvSe_FB30>C$ z%jz8|lM%tEXKjwfxuguu{-ets&`0zasZIrGC(Vuk5y2sL&q-)=?1~Tk6?HSr+rc*0 z;uXTFGhyM~?DJZAHgMC4%f-MC8Zz*{ncO=fS*Xt=J5K5pcLs5g^4zIickTF{{E5oK z@8QBYn`0l8YGuKdng5nDoc9)tjXrw6xIXO-Q+R3%pxCoOO0D?cnE;@K$f_PYR6jzvBFF)K{UZVHmy=kRa^!AV+TR3 z!3+Pl-Zwnc$gJ*J=a@DN;`))o&h(9m7|{Y#<)J`)Ac*2PViB+P_|a|DQvZr6P5r#t zN-`r_PkTuNi=4(I`>OH&G3%pOF@fl@JJeCzn}8f?$$;{H z#cET*(e=)2>3tBkb|@zDvx999B>o)^$e%)oHqs#Z=GdI{Ke~tUe>@WNq*4}jFsp^H z?5UHjpvl0VyZ=EV(oh}ws3xlsZ%~sofH01-N_dA+AwzY3QY{mV=cc>E&S8j;*T;0c znGh}Za78Q|6BZ0aLT5F!bT$5df&HiGoEZoI%G^Z}tNiTCNW6z!ImV9TZPq`a*~{F;aqRDAK8ITtnJm4PG*F4I(72)0eD` zgGrwF$D3n57uU?&rq-6q83jRt?=E2uEaqi7MD65kv3%Hf$DhEQta>XI z5^R2d7OQu<%FCUIBq#ihKQnweU!H;iIyiP7uk>)dqAEL#gmh)(&Woup~r7`1}ggG{Hg5%tV~T(Yy7CD<%VpaSaW^{{)4yDW$}{^ zh|RU8K#MM(-KS6Qk6smj{8Ow2LfIE*q2xS#s|<6F8^hff40j=D^vgmLZ_0cBAAazF z=`s$Pc0W#*%eS1UeEpExT;#1AQ~c*N(*)lQSe}s_rA>OYauti6*3YkHAMZA*4#KkW zHM3coOnK*54GkYe7d=%ma8?XY&>Xur3exYTpM_QdEX%U9gC2NY+(^ z_pJ+%6F2v4je5$I5!(Se*ZEX6yUp#*)Xh^w^hhvh*0@;i4UI`~v+h(%FDlUiL)`G* z56#`>*KgK3TL#hZA&>mMWEj1{m+ibZ>Stzd$&e;U!It&y)2mma>RjqpAJjUo=+TtQ zB+$lGCkYDTQoVx~YdTRp1#Zpns=gdm3b#`@@ z5gE;9*URdgIRO)*b%487?NjiKAyiYyqjE6H6peepg9ZysO3i=RjATfRb1^t1S8}Em z3cN?kvR=0A*h#_1X36{@0&O;D1lem!u>PH50Mw5(Rll|qz}P`A5KI%r*WNy}9kB8Q zi6kc${pLaR66DkDE&7*Wr@5hj?J9CSX@8>;g-uRkvLjcixI9$CGwMEoi}GeMA=k|2 z-XWJq0SU7+j!fELVy`7VgEeVv$i)Ycf)wI>E%!P{H4l_R%?6WGqvH=!mG zdd$Bu^iks5RCid<2MNFJo#gav3cv&TA_Zh-yTG+mtLh_zra7_i4-(^=6w5Cu=&zf| z5iL|WZ;z@-6-YI|%>Jl5U~&h23@yR@(_bEasObkXG;a>pHH2VaXcvT&SbxDjd`q!P zT~He>?X`@9Vf;YwA6Dmc=H4>ZY;3sgn3E|s$0X#UzI!(O5n$Tze@Que%?s2B5KcRG}Db7 z7?I~^rX^F`5ZwG*V=WB9J%8pFa=IUq_I!laqM*6MnACFmsCdH>EO{>0yfXiV^?E>W z3Wp|OBjAfhs`d7ObtF+b4lJwqYu6NSqL-h*cr(Kg%WnS_n@yiN5nHEv$f^>*y?YiCY9eU*<-8!Rx8%HGx?ti zZdwn@?cPxv!ly1lZ-?OysU{20P8S&Lm;KoNFf#Rp{%VusJ*ja>q%?bjr~78S%gEA- zR(_?U=zsg{F+3(@WtL;}E86CCxjhXd36A$dbadn2+2$!f43UGLwbuOk9!_G%?X(l@ z+ia+){2vpv@`s&x{}%igs3Ecr5-j*=Gl+avRq-Q%qk{@MNwxj6&Nv0?&6#hz`f?32H=^jx&IAJ3UqG+p?n`^Kh&1a+-e>3_XYS$4LpRP4q% zVg>`^&nRBQbvboMmMYrtTLQa{9Z=M=>GxQS?=Nzmm^_q#2&*J^{HkhlPqj9@wN^sF(vc=#aJ%m%Yfy69cA-3AWq zeyFb3IlWumEFZ}2&H)QhS1-m%mhn5w#o24}1u*9;;j<(Q@VT+1?q-a{2WGTJFImW* zLdeO<7r?gW#r&?o&6XKRq63KawbsdPr|^m0p`E%e9#7Z{0pnA{19Iy!58Y3f0gFEA zn4T#E1T`N~jwGB#Do_qMC!SDBx7JpYkU!(-0j^JnId(04wg9z~epSi*bsHe^C{Xc% zugbs-E=#Q@*o&pB`R=Ao@)|~R=yMg4Xw|LpX-_!&to!!|LZiYVQCe5Ff}2MkEG*(v zk3tBL*^~E25d1`dgdCK9gJ7Qp-CzsD`ZGRWPuv<^_jaWh;y-+{dUf#iMB?P8q4f7} z{3=lU0@`@SZ{8pv39ePUVCcRSP;OxOANbS%njs?YYo6Br`i?4fr=WBFtB0lnRtiv^ zibL8D33|Q1YeZ}yi;e_t`z8r_00?FECQ!(1-n$7~+L1>2{N!9~O|oHEYFmncV;7I* znkI5E*oYl8D76ch6@;sF%qX+kQ|@cTL-JnT#*+u2oyie2fn`cB6A>a9(2US!KLl*M z?RHChYq4r^+eH>TxEHHX&)-p7%Rfg9!GLBV{*gZB&_ZjxE=t}1A2=Z;kzGmm9k-cg z(DMVFF5UK%>!~))o_fJQjt>n$+fkce_t2LdvfOB?P*q={x#MW%)dYnMG$gD^4)D7I zzgs?Mn+~j|K;`uI7!|*qPJ9t56NH=wX^jt+vzG2FQ8SbxPFHW3Y2RRc3i|R49-GEI z{Ut`1vy$F4|29Vw7);6={$kK;`LFmyrg}4?0cq~WW&SRaaIXftxxN+G#ct_=J5{stVfFf>L zGizA`WGwT7z?^BK>vgUACQzkmUO%Fu^*ey~7cjI6si|EZr zo>bc2r(_v+Y%Aa*%4^SNEZdn5jg*JZl9P)B>R(;q+9sHZdEwYh`yZZEWAwL#g5^5o zqvwN0DaZnB4vPIofxmERV~+uqK8Q9;hY)b)Ny3??Reu1~vgz=>B}u<^c>nae$oK4f zkd~G{)^HVO=T*?|xZ}1#-~wJr@C2EZ>Sv;hBFI&`p}Ftt8^F1xq$ou)oD?>Xc#p5f zo%3Y%QwGFqP5gN3oR~oKQ&8VFDpU0#XoWB*!YO?EcoEBP$B9InIpF6`uDlj;61>U# zDuiC2cwYNvXQvHUl=87b7eqgNq>W-<#*Z@h*E^NOXmnDK5$9b%G-Y*tVNfa-UF89e6@1SrNw1VkP+*j z_7zyQHgCUh2F8RPPB&7$k9$SGbhB_lB^b4kBPy8gVQ`fq#nW(>{>8t+Z&th9XhS+w zetxaG3vO|aGDc-G*WqZ1EX)8zlLgkr9PHepT)aU`@|z6ost4s@OYF$_cfDK(WTE@myp+=+3}IY1_m9c*oxZCYAUN{Z z9Z`Xt6)6*ugzB6B9n!6wM=2jE5I>;)HUe3Ww)YuOK|)cgHXu%K&F9SFlvf4Wf2c*2 zch5MVYJm}E#8<#zb8?;c4}o+!xk<@%dmPskn>{O~QOwlIj{|f>GSU#!37k8oRh3{7 zVofrMyFqCnZ*Nv6C=}LGIki6a3*`Hf*|Feffz>Sh-3PUw63!pfDpOxAtYVdEky z(ekJ+70k-q)T3Uo`zhte^;H0s*T3GBx`(AVm>)C%N#8>ipXA%rq&zG#^>ms6xxI{$ zM8K#qdt1tZ)$<(UvNuVU*SD`V0Z;sHV@EeU0$-DFlozb<{SpLeS2yULO37w0lT?1= zmEz9v61sBuo%y$^m8U76aIv4tBBGXd|!*?p)3yuIQDXCGqXAFI5cq`Ro58o3{S^Olrz#pl}d-@sa8R@`YC`shjV=pf{D1*vGuQ-Ft@h!Vc3_Cqyc0)e5*7j z@wS42MqtLXJYy|Ofxzt4^W(|WCPpXn!=-_@VD{^wg+l1f4P6C_)#E&m+9|ahaTrjN zkE(_8ydhDy-gUS;RA&IPBCEks2n*6!U<)2$jum>V$Ed!RY^bKf;=T0##zr{xw0p2q zC1}+?4(<@97n?ouHxO;M9bTFn(&YTYldo)Ry`|}+?#Wbb=tBANmBvQxCz3p{Mi7j* z8ui3-*@?~?y$xx#(CB_*EsDk2SkMn@Hzmt`SJGfy@EE6NjnrhWU6Hffh+x^Nd_jN4 zSZd&;p^nFgr|}Xb4&mq-~0owaf;T8PSX?Bg+Qh zC>=)a%@Wf$;gqVrYX=AaEX+pjE3II04w=uN|2A$-6QIaVe{kg5@;@G$9WRH8QP;4g zx<)lhn^Y69zp3?5LZmog`*5S#h1QE5!#}Ta3zdqLL`CmjkI0+*qq)9-7u4Koe)aE_ zN2324iAmNVM4-;$Kg+y7Sv1X`!G}7i?;U-jAvZU-nUmeIkhjL0RFzA(Ggw710p!g$ z!+twE=Lwb#wEmecsFAnF&-M43;|6Pa_D4YuLYS~3*-q1l5qk*kV^eMnwiHks8b00S zzjI!&Y$M>SmEdmKZt-L&@VZ`4RSlI+RQup4Pj|6EjslE1zgIzMPtb}AEiEyht#_In z;iv(hge742x3v=~d2eT@^-$-jn%T!u`_=@ql03+Tizk)zHLTA`tml%TPt2y zNrm6{S&Ek1F_bcm+BE5qDRNh_3;3?VkTYwf-1z`<^}njcMUPLymAA}u{Q+Qc%KwZi^F@}zyry-_c`~qJulf&d zbV1{H8`S_lE+ea<$CpmtV7GN}7H0M5e7ya!169t<@05h?@8yc1r5Q2*B`QM-k?=vx zi*lx@vUY#CHc66=mqYy8(DWIJqws`|u1A^NgXK&}8*{gA_-B6TH}{;T+nomB3n!Io zO%NA;e7faBkX4IysJdl8`q3b;`$>K`lTL8fk)!-W22>T2Ge}ojw^i5&JwdbBvEO z`!#$R4Z^?#g`lVcD5-{8@l*yRA7TLg>X1Ma@T!UV4-GRcuwBk`z~Q>#t@R#ia3=FB z!;k_&?t$GT3t)@&|24a)w++%;aOc}i3U(^TK7#RE8ATkIfcT(^+-7yV56s?wcSdpv z?`lX!()u#qCZM)Onz*q|e_E@IDkKUJ4*`52e71XJ79;|Zw&`SN6o^|A49gf9LF4TA zr00;R5k8a#_vV`?b@$sNo~=)&`P)zQpY~KJiVA0w=K6#2YS)%|^DwPnsG>84c?N|1 z+*tM;0TORKmvX0Di{C!g>kaDT+R>T{(EP61CSwdgqC=%!83cWcAmxYN*7dppc1&hD zry$amhTDK5BzL8=EdWA?N3ryazMxEkT`}rN48)%`a-p$Q$)%*dE z<&kw&Mcm-oV(4;F3W)RGHhY}?zx9v@G&urpX=Qfc(8mMnf|Ct8G#f}dtzMB10qUH-a-f7-^bJ{s; zwunbbTW!zDYc1lCx$sQb((~hsrwc@RZ>v6+;LGAtqS7oY9;$CFiYor3$demHgVKvH zW<|hx+yOuS3c#-5HR`n<9heDw%t3lWD5q1R7u1*E@b|uw234bKbTAza&G58TeUqhn zB>W(S&|=|HPt&409{JVb2T-;o8M5#} zt5k>!btiFiRRpDlmRmFDpB*KevPt0Qeuuh6g3@lJK;$=)%lNOyEK02MT|2m*b_v=IZAOJ0Hj6?h0SjvokqjazTm8PJezQ zYs-B({`gdwyH1C0#kzRhBV>5DaSLVg%|{|r*LQtIuJTXz?{e^^@mBPa8XT}1S9jL0 z3dH#V?D6Wqt^^hzd#A%r5J+s(T$0Jur!6P?qr{GGT{#L@6;I@snVa8!&KM9s z)z!m|iIcmR5HDZqlB<7p2!r6uZLF$MSDIMiNA(7MMKQg8h$ev*jPmd`(A7lf)+r5QFq54kn7;Ox`*M9-FVT)9B_t(p znj_>A>A0CPAw=1Z|NEE2Q*7;21{Eoy40V!pIC)s7{M=?27>J0gDGhWUTEgPKyuXzW zb`UR^kwu^(shmaRcAI9P>al`V{$Tb_p2jv`5OV8{^0+k}G|I{`v z*h;6*Ga^UxZ9Z`xHGR*Z#{muAhqwgP;N`(#qoitHRRWQxphAiOmUgYN!cXq_4=-h2snTU zLkbcCBGRI?3OZ7PfP%mvT}r4Z-AI>!sDMa`gwjJvrveH}mq-rME#2q+vH$;b&t2=D zbLoy2XH|@s2dNJnjt-w14umBrl0&e&pNB%z*%?44waJ zc=Nq(q$)E%kQnI?^57H~js_r({3Td$h?}{#XQsoOBVS5oFnd+wWD4lf*|u=Xo+jrT zf2j{+bSsie6PNv_D7|%LuAD@9)uU(97i@D;mtVex?EC|k3z>E5t?Xt*q22#j6lJv3 z3`da~I{KZUoh}eFvasr%OAUS2YH^PiYmT!ZPzoiHY?$R(OqI_|1tA!>A$jq2PHYbs zj^LqXeXi;%MPuzt1B53hl@-z=7zxVg*PDJ{*wePn!Z)b-nVxrYh#T0Wl^9kaH-zM? z=`C}uZpvLg=p7KyC|6aFN(1t5qG;WfoX1`7e{t#FitjOw?ec@h4tBZIVSXK0^Yw>* zrJy|9^ZR!wBDw6`6*ufR9wEbOH`UrO+mrQdB1#({%$>OG=8{S@*kdH=7NPHFSjYzC=DR=B0yO~`f-mB)cF9UOKQ zIhVzIc+C9z=In70PTs6J^w4u#DDE$|W@we1Vs@Xt$yU$!Fy4D)f6>W# zXwD$;w@uB^5*KyMn~G2>90NA3wDfq-oj-yKxJ$7ofig6Gsu?tzAN3c4C)V`7a;JoglSaI8cr{=CD#O8`BO=KmH$-LX2D@?{lXzEqmzge&PdSbGLqlL!j?~7GTv2#u}|*8(Gm3YN4PT z%58aS29wlk#yjgB^(A*$Akg@9bF1`~Ne5lST0U)G^TT2F4{=h2xlEkc@E`L2O#GvY z$rX@B5QP#irm6yWst#Jx{e<@SQ|Iw4#wTXtV>czP_ByVjl*6W{Pq_&;^0BcA%f0;` zlH&6GuN;oR!&{TgkzqN+0d2(?7Trhkfyo+a?Jqi9e3BeWC1D~aB__-zFB{8oZrx{z z2SbN&uX}6`1tuo4GCK`E`)yp6r_9e$4}Qjk9j0aThlY34-L5cHMH`s-g#$LS-)n z%W?=-i^VFj$KK{G=^7p|EA(7FxD%=Rkt(7oQt8T-0DyJI+7E18o4H4}Qo4J=d}Sjv z;vs>&W@6uf?z?sw5tHqA_bvse2Yf1}q-18kew9^W1W<|FjRA_92Sci#{G25{HW!EH zrq_crNL$)Yv#~TLURxCM@#P#3KO`ae_TW{2;lqfzwx7bn#s_zrBtVjQ3_i$qD# zWQ5~1{&_=XZfqNHlACkItzqF@`uVHd3-^vkNwiVN0v?HuPiw0@Ad?0Q8tI37ZHF%c z**s4#x%O2o17JvV&V!smkbkv#*4OM(FkEzPZSCy+$-B%I8xik2jFUG3v&UTJ+3}&u z;?ZEPyXSgl6jvEWyd+%m;0%G$c4tHQA$>5AA&amw3p#^FBWak5Kv2U6#dELVzn9mq zXGItUw{HCH#@RdC8$Ieg2zNi&+s0nZQy#P#8nV0iu~4NHw1h}Y7zhTrjjERi=PJ%Q0PCYMu;qbFoj$SyIGQCUrq>{$>RsIYEkU?M!@XpGs zW2oN39Ka-)*?aZx9-_6d*K;JNqPNY-q>mD93*=DpWmr}}Xu(WEH zK;Ha`(?{-Iai*|$(lVz{awOhv(;M`y8~tHD>F87*p4s2gPt`TR5cy?9V5S)K=l9}l z`xgoyoEXWNOg}HnVJusZR%pTj%1!tS&Ry*+frw~Xo>QoNk2M*IuZ0zYo7-lhS4z%G z`RV8-Z`w8D?P4bd0OFd_va$SIA|fJ2mlA19x-OSwJ!zeSX?``EW)(76_={h9EtzsG zTK7raM2unhnJ1;mse&wcnThiDDbpUg{((WPt*_s%AjXEwA%F=wlj1dupm?y^FNrYAISI_qKOwPP*u0OGG53xHU4x^5>S~4 zbC#GHEi}R0t+}lBh46aGWzo|o-^3df7Fb0X&(`}h+pBBSU>>6%u;g{P3&ko-hSRnbmNCrLSZCCUNZGvWqL?u~ z7UH)yw4KozqlrmRi#v$pwVF*r@(?KEMz%xd-8P>P)NXA_R72}%x@5epN%OGWv@ubO zzz$D6=kCuO`hwf&Xy7Su^Acq!JKkD7ZdY!W6`)?CtXO;$-;Q`bNF?PCOtG!3BzH2Q z8B48bp%7L9!My-;pm>~4pR9aKcvmZ>gDJwO_{!E}2U6&ZgQR?&2npwnLz$wLMuBx{ zbdbD-kCOlW00;I!LDRmfv~p`vM=n;04(sTpAPQ7Q8JT6vHa9yGHZ08}D-Y@JWyyZiV7u*+8`4 zYx_HA2>|eF<~ms@x|z&i$FT4zfWt|D?B0`<4)qe7&4kPi4kzg9mxSP_n2DnDb`Fg? z#gXMe;^8^eaEbHsa5?< z+^h?^iF+?6<&@>v_8A`AVc4JH*!+91%(~CW1@Eg_&BR~9ly4(qIj`cze3U(YzWoBT4m&@+P&g`45vm-GRF-s~sd<_wQ{rCWy*ay}D+4xYLVGRV}R&#IRC zbt-p%ssx{=U-cFt1L|YZD7Hj%&z#Ns{lkG%I4a0!CLPs6SM^RuLBdb=(&KF=p>k9U z2=uo4l?)I^>w`=d!0wC2xaLdTDOKceRYCQ&Iix4y0N5W)hw}M&OPQRAj!Pe<0;1G) ze|;>@neZW*TvYM5s>U$+GbVQdJM??}Ws2?>@=&OM4I4#X;o;M2d>J)+iJuO65FzUF zj>6Amvban+qnWp1t{rzRxqO;I<99*d@A>7dfLzsGRZMy5Ygb>`)={>uq?%;hc2j#H zMw<2SJ3>1Y(t3@KxnkNvZ;VfQ>d=GujgB zg`cccI3iziGyGN><@cG;h;$XOkeXq$JPLhAyp{WXbS%J)VxeEOV$5Rq5biMoe& z#HK?IyFk1snN1W4lVs>S(KCMslSxd*uda2^X}0(rE`IC&HbWh+7aTT1FL4{hBV%{V zxN7bh6Hce0t^v{8R=j#mjTT-&>o`CWi_h{(|6qCiGa6r+lh*ONNRYh;*~WaCPDP`$sY`6u_w!;wJvJa5g2Glu zhj%Y$Zm35fD@C1>P+2^L7E;Il(S?S)+}9XUM9tFEk_sZ3+S3O=9vpF#16bVAX)jWcuOHjOkB)a zDzS+yVQmluScMh`tzF%JHghG)KC~}qBsUoU`xeVkcG<_A#o^M@s-*s`6n~yI1Au<5 zrg#;ssEcbelTp#>&iP8-rE(u1WKctG+5Uq<+v8vCj?{_vgB^+4H?l}tLIp7`I(}&$ zUOBzml%iN_eJw;HRgnd$V}&Rw_V~1^odU(rypCWa&CCO`b{cUYT+whJZH@W2OC zMn~217L&B#_ls%jIydVGpDzj)GXTAHDl1a0kel(v(BPJ3A|D!pjKF(6(%G zZ!cXFE2&_C^Sx_2zFKfXmcaAI%>Or}xX*(gK+iz7vbxjsUO;fAr-eN-GDtI^{`oCegO1*fSK6 z1$dV<<38i-Qh{=qwcVmi63*J7I(W2$7_7#tY%qpX=zzglC?eLfwJb(#hg=afY0 z{EI#+I@pand9`y4~134`@Si}K$X&^y6D$^rr0iuQ}mXAT;{zk z82;d|MfY4NdZj44e4jhXr#OllYh9+yc|baQ2d4k|040B16t}0c1NL#wPrB7-oT;yt zbyb>`G6G)oJbyxz#r(ypIAk#E$BC@ddGm}9df$ukDnJ#M6UV>d;bM)mQZOnm{&x3w z@GU!T9s;N**RJ)4aIId`r(y5GEEw)9YNllVB1NgT^@Owzmi10H7TC+rcJCC4Xxb2E zWu?$5GqkSTQ@Dy^nb7=kQ!T&bEY=V1uK>&#U#7E?aP@HhHM!LfO!8U5tD9>D*R zq08Mg+A&M30_r*wK~y?p5HE+rfV6QWpT(Gc>yWvU-T8bXTOix4IfhDI`e+mC4_M7G znK0xyAO04sty~N*@Tdj=0-gu+b6QD3_j36CZqq{y!?bM2U%9tRhQyD;v!dF0M1AB? z8D7rOXTOqE_)KaiR({S-vY`{Ow9IZrX-UpA#%JHi3vJ(LnoYhEO{H$|&ksY3^~LXJ zU`Z<{(`Wf@4VPA&n1y_*YfKk2jP&9YxAM;rEbKT}u^qC?ICiwoQ-4(HfNjQ?kBa4>ztk7QEp{ zl;#`TLHmGPzX1%}^p@4_C!g8{mkPg^v(FKSo!)qQc=p}c}`t-_W+Wd%y2+bS;m0N0L|@i7OtYmUw?sa|2`e<$-X+Zshg807aw zF}<_7?~j5Cg};uXB~N`PCpIfasBuc>fc5IZ5Bjerce7<28P7M#D-8>>r%E9~88<-7 zAbV~Gm260oHV#LzkIe^#pUnCMz+!e0u_V(tjKZ=|A78qQ2})7VdwLT(Wxkm~T_ z@x%ns8BB}y>qg&3Q=9nqG!#*LOK67R(#rDjk=L`@;<|om>NKD4#1lodqgHvbcIuXJ8S1(A_7AJV9MG(O6$3&D095sQ+yI}l=RT=z-3OsA@C6M8pD*$dA= zk$Qh~BqHI86aH_DP*b^sf~sClPR`a=lT5h1RG6+!RZkP$t6$+!hU#1ex7q!tGy;x34(aqoaoTlp!0Dg4RiM4`jGiHlDF2UP1R5XTIZ)q zRKmU@DnlP~=CZYs=BPBYrfC3NHXv$j61h;y&M`y5icb!N~O{CcsaCl)8L z>m(HSGbo8IG$8U;IK+3{mc{2c{(L|-B$OtT~UpGA}`uzDrNlBmMm8z<$Z)W$n_0(@08YYb>e`4GT zlouA|GQ_5g5kS>ZqqmKXg%K^|W$R9xZ;^^`QZE+Tm><#*4qRQy7oLzh-`GSR{(btB z`yO;~w|LGE){Z>buQi=v10*4zR`#+3MKw8p9=7ypGF+SV)%SBdJ3H-NUA`6~vzxY7 zJ^_Sj_ zzD!tUHe9*TY})y&N9XD7`}gm6^h;Q|4h@#s!2`tq^8mM=^HO2UzG(`+()`ii|MpUO zRK!Sf?R`$BFxw={&hEFe7cY7mY9dS!B@@l& zKE<`QaX5H)xgWnhWMOHU+s_2vDyk`!U8_{ar|$jMKtKRi^MGXQcQ%_d|3mR=C-kIM zUaC|UpuA6>JQ=jE<9Cm2?yls-$A_xi()-CJ<3BWdO%^iKoTnQ5@PEnMa%;I;;$7>Z z6TI{C>JngtSI@L&PBUeD;MP7^M9sUN^ZOy~9$}P#s00E)H3SiL0`XLS=fy;~#aI^# zc28sTE~EAMm~3o0fp*PQL5O=aOBjW)`{b9UTHvX?aoCPhz3(QXC17~30}4zWp%th? zkS$k>kwvi+gOZoQ{;am?uLASZh0nj2y(!%Z5WU#vGu@->eTETFC0@XOT#(Lt_2U6> zVM|)x_KgBF%E~jmoU!@W-a1RK6tA86Yyym}b(vQ(%he>P$G_ z$zXvcEu#4@UD@g=e1jsUXBUHZL363^yybGu3jLWRSrQ(fSmmdOd{FGEC<7K$$91{} zyyyTM$Ein5Z_xa#S1^ix`)ca_5hOqQLUN2TfQsUDU8W%PfHVNL zpCCqv0R~>~juHBUck?44w?8n71@2m-{Lq(F_~VsQR3E&hd>TTF*dz)pq3vg-A07&D zE$mF6W*xHihHq^LVM+NxSQwK@0M0_>4k?fPjlJa3m)F?#1u@98Y=d)?J#J1E%3x`@ z{2}xuL=Nhz5DRr&*Zk8OS|o!7((ZTi6W^A{Jx@^!;w5cLI4;z6oM5ilT^1A<0yv6Y4xjzI3KXjA-*^bicj>&Y8+ydg$Bm4iItNMv*L7NS^t+fB-172jdYuz|P#8jR=Y?Ae>EUNSoz2=l9aKKI=FPas`U7@|3NggSGZMjv#K<3cZU= zniOu69WaKJM>CoB8rw9^27s_pU+ro%lmbvB$0dw^UfS!rA}CfBUYJPA?s=9$7<~5~ zIh_5q7)2N7o*C}Z`L1w;#um6B8R2WQS!X$2FNdGP~Vs^2+dZ-?IJCFesA$ ztn-kIEwsizA@N4>a3eEX8~SX&4jD;X_zc#F^)s=!oOuk~u$u_^p6cW`8M+53YliS< z_J6J?0?=k;=BPNJ+=PmadV22^dusgh$(unWN+}&=dA`mkX#D>3dbI2bgVqd=0o4Cm zu%84QNFaryN9O71kxrNsW!2A}O++sCuScRa-oN4T@Be#We)z;Qd;nhI_a+jT#CGtFGXhQ|w+N6H5wPS; zF?zP7r&y%?t}Ip39BxG%1~sv|o$NF8s!CEmNAx^O<)%La3}Nbdxa0cT+UNV}3Nt z(Iu5>*Y%FoR=TV%CvH}rAXsj{Nx7Xbf+4f8d_v2%wD>4%St&@nJ>47jN9N~m*SO0u z$uHaZ*oh>zw^GnyZ;w|qB)FARX0aQsd7~{-ecnz-cEeTo~C-IClCLXM(r!o3%KxDP_OjPZgFAk|2i^d3frlQ ze`osr6_-TUk{okDlX^s>{I;MYe4xpNbG|xvf>oK&`5aE{$zagR%Cm*O&9$|lh!NWs zfvsr;nUG@ZKD>6#4jn`)MI|#%7jV50JP$r}AdE;8t$WY^f$7Yd%!0<(N8=Gct5kbprgDNICyFW4c zBX)fA6)a;ajNW)f?aoSsm)_aj$<~B9ZQY2D^#U?o;;Hz_aWGdN!e2ef6Q1l9qz|C;j0yr8m9ZtsT$Uh zaOdhQZWf@}9ZrE`OI?iZ8}jB8bS)lfIqUa>1CB=i`$zb{Kji=aFS2zML7>=;^ed+` z{~Y4mpiOrlkPmTA6lwAISDPoj z;o(jnB0U}tQSjR&a=IfvKM#kZ?&<9%{;OYoX`u5|Td7tfzRzx+{V zpA_iZ-;K0z&;<}$)35HWwwbm>3zW_mv`_`hK46t`UOsEE`mWCin8{0lfBNa)@7%kk zO0PH*RL6_DRBzhY2pvGOXfjmpK=3?2U$}D7A@9rQ$G?{$B{iOCj*`xMGySxQ#R*}a z`QPD4MMXtMaHpUK6X~3nrR*SW5BEk$x|*Z-R#uY^;|Z;!>uJaMC;eztYjubJMiV|G zCIAT07q{V6R)X4_l-K?=bq3Y`m-ICW4H8s9$AqZuDt_!jPUJoG*q_yN#psz(YZKs% zzmOp2>@*Wo{p8O$4=f{(f1cO=Tz`=zP4)hQjUDS4e;{FK&>vX_HL9L3zLe4^0tv8z zx7#LIQ_kj6ZtZ5Nh}jIkn9Hp=b-0sv7-AZ6t#@gHDhW33dBAIV?sO#~tt9bwtt)Pl ze=hzmu{l8?OxzFjmWzw9(OwRiBZIh9y^ExFV69r=FROIUh)8eMQJR2`JYoi6r6|%- zZMYpv-Pzikl8Hcw`<4z5mhv4J?$^ZJJOvD1NN#FPlVtPwv7C*K4OfipRp7H3L;NOn zFp>0TS(~tr=1unrKEt|nmAI#{;NqGEzs>s*W}U+3n-G(nI8kiq1$7Mkd|?}XQpHSq z+;UHzCmoX0RIjB8xfIJ{f++q^IGLU$F0@Lb*MW;WSjNUcnLXod!8bbaAiQ$S>@YmzEky(1@vfjc zK(*ZnoJDqefI-#^0KT$F5AW_cX;mObpKRT+c#w z0Bp%dpQ**NsYGN-*$wroU~@KZR&QSG)$cj0ZQzo&we^Kk<^?>@IH(TQ#!K4a>}NX3 z@?LC_g8ZhW%)v^;k91tDu(X8XHZduOLlN`&0w*;pJR|MK>f(ZPT5dRZaPJy{0+6^rHMhI@F1XS)j}oKZ@~;F`C( zKT7-a<(AejO`uQA4_BQbxF{_hE(DK=w+7p*a>Q8!zw9#D+ubT!aJ9@xbloiilz0f(qkVWdoYHgIH}OdY2+9Lj10`bj zuWtW&jaURI!sJ%|RdS!x9r?Rfh+jx1K`^oP)=gU_0b zhbvvMWwu<%{2@yrz0c60M-yA}goOaH*VEI}7q$+WH8eDiDi_0>)eIjKU3uvR?)%Aw z(vM{qw$>vRjNstlg1vosesUzSEx6`|MRYX%k0cp3Fz(D7OCu2ojBE?+_KP;pjl!*O3euNWcVOu-aVOYQCwlH! zLcJ*7zVjB|G0A0;ac^AafD?R>tE(#xxIJHlhns*eK*rq@>La7M6^j^CQ&UMtVsOo^*dVZehqQ1m|+Tog-2`z#+t*aPb7eu@|l)NuT$m}hD zafZh1P$YM#O^Y!InP`bQP9VLJA2Ie%wQ~;9h8TqT#JeJ+68EH>G|ywfx}&r6(yFte zA)E9{u-a%}&4DQ5&qrS;?WM+4cvD>pg$5QXyyWJHmrSC^hK`7s7=Cx;@Zd!$;q$OF z;&_mt5$c>Nn(>%Q@{(4)w%(0+t}|kfYK!{}LT{hrm@T2+wqQaPXMoowi@{P z@}Jjg`1a(Risz^ao_BQIC8!0vub0CU_Y)5QCP63k+9`C#N&D|d&M644seH*eky@4I~U z>I>M%gb^|ar3-V&1~sUKef!nUR^LT^jf?=weKTcH*Q*2>o(5Qb!#lktc-R1qx%w3s zB_x92t362U2nkZvd79?75wp<5=Ea<)l~WH++q4pdkt87CfPhaJ?gWun`LGzfpCS_T zt;A1GJ|L*At$n`b4n}=+)TqwXX~aVue*0`^=Hqz4nI{)}j2DI~`g-nn&aAzV*hP$_ pW|mfL;?mrlUGZZK>h8+nF@*xv*sj@=7YN{=TXL$hxfmm#{{SA30q+0+ diff --git a/_images/scatter.png b/_images/scatter.png index 2edc94de7ccce269009ccd9a8713a0895537505a..b3c04015720956cedd65c12ba3c0b458c29ba2fe 100644 GIT binary patch literal 17366 zcmeIZcRbbq`#*k=Q9{EgLW4>;$jTNWWbeJQS2#wtB1KWMWo7S8wv;4$XDjO0#Je#Mes3@ApoBI==f{EgF!Kp7YYA@B3 z40gqme+E!i;#2Hi5gxU9e=b#$W{kn+oOto>p`WyLaom_3kAOhQ%HaA&QJcJ3M}o~3 z=Uf|~xeaMxiVOgJVT{@)@0e4V<~ieJT`rmjw{=l@!Y_VK^G@Sic_(V~1Gi6`Nq3~^5IqfnHh{~tb{ zvBcn@l8TDAX?wD{b*67R-r}f>NY`^sBiLLq#T22$yTk|$Wrp@i=Zj{v_L5gqZFu4? zNyrP83(CTm7xlOr&cHcUw9CwbjZNO0RwN!#my9e0y?QYKhdYhFXm}cz)|ZJd=pDC_ ze!E>oPT_Y;#TO`(vslyvCZ;Ru=%}0lo~YKe&pVn=WlmfO7KM|ka7wmnX{(=Kh(JfZ zOEZm)8O^=r{iIn{L8nhY15zYv?p@LC@mA|JkY^2)PB0ReYL?a z5v~~3fJ=lyp;&xH|EG@urYMos16x#b5GDWQwS;<-%i(9SzM*bMJidyONqE9PcSlfS z7yU?gp3m9i5t*L&`$msXZ@hnhRcN&VkN@~!y}#U6C*J31*L~8DP*qiRdRtm}clx}Z z$5I*p+&ibfWO2e*m-v*e2lH)}Kl&L?A;*jvv9y-YP%&u^>G#7U#LTBfS^fO{V((W; z=f=T$r}h5UlKcKr1qIEb4)4^~(nv%?LVjlEO}S|HyC+Yc9RA>tlCF@L4|~tM*6-_y zPMqm__ve~t$^(wtI6JWoet5A0uKDBci>yMwzh2X>u!~==-PWhQ^GLK)aQ&qMVL@hQ z*E>F^hb2R$mc7?m4eE45MUFnW{Q91(U+Zr9qcPxHOUp?t4KC{PrGDa#?Ce{4`nB2) z4h~h@;~v(vE`xfmOiWDD1+`nT+1c4ObO%q#guAE=JdxmylK4M6IXc!5xNjDXE=7fhr-p}< zCsvQPe*5M*Tu@U}GvK2{?>tTGJgw(6&>grRYVl*;K3na9?9h^n*UHVFlvZ`?@!UnO z!ih>8z9VKIFNJ_6Mw#dKX%nfTr@lHY{&bp-?_a#h&(Ci$mraH3Px*fS{Q0pXQBP0L zyhCc`S_Lt&C(S1DcN`iso+R9H5Q~V25ME-I-re05UZKg)ytV?b*p!e2gW9`1YV*zX z$NP--DiO$^OK*L~QcYGw4$=}@-E}xvQyx}~s3|MI4~(kI9=UFiK8X_xgH7Y;1OBW~LcBf=@|m9A4b!v}&p{MMZg| zb_%kx);&du?ha4G-k!6{+oL*vKCj;XSXDz$I9IwkKe+RaYoF3&AMwV*0LI8Dd4&EZ z8l7KeAfCOw))&i$MsLmE2|FI6R8ms9yR^W5ZQ-lH!q@8A%#`U=w?jp@Vs&hlE}HR1 z6ZfueQ^#!y$@0vycDvB7mat;8eZ6%)2wPTF?kS@=E3R|1vsH(F&z6Hd_#>5ihMr6vEP$p#-Xx{Fyetx?QE zLV6}&UMjh}SN)utDsz~U^xEv#a9{mM*k9|hJz1-RIwQN&7<+ZXZHh!%IYU0)3Rj4S zN8M+CWTMof`>O5t!n?3I6s@eX&Dvwr_Lr+W=bT3wEq7LbAkm`i(GRiO%>f;L=Y??h ztzTJincLsKezl0?#Yc&Lc!9Zd$#>EeIO5Q4b0 z&wjLCJaQ!GvljA`<3FrqVsUZbIeFRh43_=0LB}eUf()MEwJxIza7wm>Z~`~Uq)+Ug ze4h*inMhV&DlM}=fOA2*QPupV>S+9KIU%7Vij(^D+aA<55#~Y=n>mW;bk*oTZYHUf z7Ij9|Jpar^Dw;fwPkXmmS=+J3F?6gLlxSC<-j(7)Y$~!e>6b-}G2IVBA%~oJRZVf# zL|bw`qQ1`jQA^uj-_226l|6myjWZ;E-=wt~v4_l0WggN(I=pN#ns-KP&!o~$hTas} zTxl8A_$4MK=lqn8<*>6xaiP-demIe{*t>js0ZqL9c zwbPi@4ewp0*h4L?nBTvDpGLpo?wTQu)*Z7H?Y|pQyYjkQf|zMpQlt6HJ?s8hR)VP0 zM5nc}qR-a{_UvwEHrCEOHXHMDzoRktZcJVJltweP+P%w3M3~F|yFGHh9#bp25vq+qE$iFlZy~GmWffXf^m3iI| zGr}7GZR?Ek;^z;sK7;WD;qNYFRA*!adMQ@sR09fdUXIRg3vj)l!JZUz26l>z<)|7^ z&5?-jC-aA@zlKX2`3c$PO|xj{w{Obu z@98lOuid-B^EMN8wI5A9H@c;8yu?v|cBhl7+@9~1+8%RF92w-X`JN;mNIGBKieBHn zC;seocUQ9bqU}mo^3%>{l;_949d%`-qF`@pNypv;g1EltnuLU;q*YIPHg~4upBA3U4W~Rd__Go_+lVm zFQ?3UaNt1T`gO_m+4f$Da0mRPZ7#mtUEUjbgSFb$X$Kzn{-`CKl}MxQ%(Px9f+hsH@NR z?tW`+wLYZU#IFt!9`(6Loam#HXRQ6ru42(c>J6PaIF)s8bu&VbToNOW4YA@5UCp1PppKK;o2Z7K!evCeCM zVX>fo0N(p5o#w8`?@WGtS~VRe8xFAGQy|%(4pD0U=%_B>XP)_Y>|ew?4H_Ux|IS&Vqz+!uO>|1-g8oberP7Kc5&dkhw>+IBk82$eJ`&eCh=2I^J zmYcWMd7r6?NG%PgepSL0k2k3)i@lquC;r?0DM|TFIVJJBuNce!kr_E+i$XWQfY0bc1j_p9OXIY>wZY^_YN#kErw=W(4NV6F%VS&(qmzVSsm zTiMb065dZ#@M>1TQB?hb1l&;7?rdCtv8imuJ~=sgW>S(UfWNZz6tA5hfmPV|!4FFg zx9jxakaX_YE3mm`U#5~3V7c=X1Y#HA(3ICG$Fc-kjTDddhu4ouITvw=E+^t1mJRB^ z?R(_vVP=+2$*P?S>8xNN=uvOF+}n1u-Xd&t?OvA!19L_4pTfs9Opy@pX~R_F4cMz z6vy$;zO66#rB6M^qGHv?=6WlhzkCfL@8Pr$RmRW9o1(o?{lE`eq~;k3X(|*E3*VPF zCbi6jP=0rl@GR8fuAGKoO?~c}dVha3uXHg>Pmh{ko+O zR|Fnnx~W+`Ca$zcS3I~_A(TA7&Bndyfz#&yw_`l4rD)1^={9a6CU0ON!uaP_F~5`^ z&{1l$qGDCA7X53(Q-O1tI!o`Htf+4KLbxWU(zEH z+>cg7aRSnK{wT(TE+iM@hZ}uzyUU13QXEgz5Vkv!l8ke?5HkFe?k?0B%~A2dD;G#; zhc6ToMU$~&E?m7d8yy#MG0NWb(9M^U|MX`Iiz%)?TziWKILEao z&1ee0zC1a}g^T=&+hv1C+3tda%SH9~zZYBMmT*s4pil6hF{{B(8X{ofX~rjd`pZ!A zbdY!hdwmSAB|X+$!@1>GgW?#u>61k57vei9+okJC zB5GfY-Y4_P%FrK8GB%IN@-Xf2OiZNf=;t%9fKcGszIeL$>BUE6v^Yi)Z@%sX8a_YgGw78V&tDqB;I+9~5hmsnE~5Af zc8j*nek-tyn+ugvFTQG$+oCfQ3%clD!Gp2wA$|^hp(@NlRvF!1%7LHNs5o+#qzE-T zniDe0V!7To1+{YIbhuqSRi{mV7qF3vM8>|9$B>eY?pn%5y06Fmv1zF#7his%j?N`+zqLJ<>W z#qREINvazRN>T}G70>Ei$(e79#d4dzduA}&i8T&j5Qg%pEX1r$XLhYTP|c2TmG9K0 zs!=~q)d`+E>#_vwr>6KP$pAoJzNclxfAdKoB|j>$kMYve57_ikjOhi?grO zl8r)d&NDzJ^4aT6-1yzfhSb4DMMcy+Hql5pg_@=PSeX}BMa1{ZdMUP}igl=J;kOY% z6q^0Xt{|>Yhw0XQ5)oa2-ZBsav3yQuwM&Ql+uOSg5co3mAJ0&1{u)x@G;8asnDEZ2 z7F_nzR-q-ftOm?#^h770sl&dR~It~iA9+2@%(C6)YP(m zH9LCgOcL#QVVDK?QOV8LNl{Tzi<^T6gGi|dh)9}{^wR3$38ZkcvB@PM$vzGgah$#{ z-O~{-aLAutAH9de^{V=#76L|~`lit<^}PtSV26ynDyH>jiw3OirxsyA1 z?iYSNo1H9c6%r9KC^2i#F0+MX=l&yrDm*N#XR?z&UfyfHop)iZy5j29s|&UILYL7u zZZuop1!kgV`C5D(if_F>4D)G6wrq8mxBphUX?tI2PY*r!etM3VaQ+(vClwrQ3Q{MmWwLVGOe%HGNXziobJnmyO8=Ho=w|CdV%`P9p<$K?k7M$$n z_;qqNYEwQaO;C_{g)9tYOz&^Mi_ko@XN}I8;J$$69ewol+3Ab#f#YGibxTGnJrvus#oYvp&AS<-&V7@WAir0Q1+~JirLG)kT$WE>D zyD_^#m_h|()vnf^2|^?U?#`{FD#SG(K71JPCRwW(xq9o?w{ygYR06H!7l+;t@Kg(l z-H`njdvKJiEY<#k|2O)AbKg53LUU?w2N4Mg2}>x?Zn3yzI~&)ekKe9p*)HF`1T-$U zUP`2QUY)DHvU1O)H>`TA!Tk8Ty#;2#ssq)b`d%x7n!&BnXM1(JF13|+DYGAwYJSBx z>(8{b288899pp^kXO0GR>@9bH&rl0{egGaKHIh{aDi87D zD(9SEF4d7}J#FjP_x}~}eRD)0`YYb?Oe7j0pD8qSl}a|OJw0n8S+sg;R=RMpxHkMb z=;M*-e5Vq0>E{WYF7{AAVVm#lv_kHx``asn0Mb>})ziyuN30tCPsVavM-rUAFu5)b zXHQ@65Kv&NKPc9B`+?u|<;%i1=7K(PGNF5mm+l%h&G^uGylMRKa@Dwe?VN=mQdHco zI^%~NtfodVEiH}1xaaAk+?1Ci39E%>ViDt>TicuEvB`hZ1xGX|)%cIKxdnY9RS}bs ziSbjMeQ&y7=BHHETMsIjkcnlPf5Y+@pGyb~DKtb*HR9ZHh+Q@M0;j5xl+(d$Gqd_) zQIXdJ=*NCwoyXkOT&1d`lAe~Xjb9)4l{hi&6{fChJ+CYxc(ym#(;Yw3FmFBh$camP zC8P4mBLLIibln1xD}r~ak_yGR>gu=oPHvwh4BV1iX|FWjy4Lfwd+g$Z-rUPV9`#KL zgH7e~mKP3H9`5}0c)?e@epJjJg>6y#o1Hw#{D90_Mo-6ixqirhPl6sd5be6dc%k(f z4`!nCL2G1eZFNbOb32js#wgn&92ssiUi_@|S}|&Q}Pbrn+ZB+y&)mR3aAe z4*>}F!}TB-S@)7`puP`QNTe;t>0(`~PDxnC$xzw5^5rfi=TJ0p)o48#_G zHT~qy5bvzoM6Y~2sk*+b-=`|BjPzORCf_Cj=q}9kV`HVpSOcmdtmtUv}~7w=Td9Uq{OkjTYVne{qsi`2^~xFZEiC5YuZ?%Do!dB>BTNdQ;|pn zi2(9en|A~xqO#DJY@3&Oayp8iIK>~W5KPVZrI}jwYJ(sV=EPXcSoUAsn3P1t%N~G5 zOne;jhngdcq;=CK&bmIF1`)vJT@GY4DBMt}dhQZmLg5AjV*T%B zLD0{-ZUW)?eon()Q6jC6p97uLnM*h+qK!ozL;}%>)DS^IvJXp`CjWd7s@?=r(W!H= zjtQ60`Ep<#2`4M66x!b6?zioUwvM~r2eS7~%GWHY1V-t686VpuCxTAWDRNwsUpY&S zsAX2Y>95>3u*pm+>DZ}Ik*(bmAO>hCD~B~7dm&ug<7=oVH<+%J&&JI3G&3iC|vo|sMDO>CZz}g#iJ&zTq0N^tOz%wy#7!mYir3*w4!Hm>%@afv((`m6{oO# zCs5njG1~oq>6G)c9(jHu*lORU+ z)MyR%zjRcPKQ(4PK)ARi>Z~BT+4K~~B%rfC%Mu`ywzjrtC;o>ij;`icG;=Qdz*})c zRK1EY>0=cuMJSB^Ps_9+X_6DZmfvl@%E(R1D{^i3dsl%bR|s#9ulMLOvD^VMDRzj1}EdR3}G_N&~zd)Gvsgi9d( zp;l|(%WlWW$o|pw0!-yJ3u`a@jUyCVo#6ZaZQAg@R)`%Gq3IL#;hkqbAPv^CvbhuSf-@iMTSO9{@zK46#5C>zcHt5M|yH3}S z`>qxMzw~alGv?ANT~rkwKCML4-a+tGcJ?`{XGEv!)AQo_ondhgvYMPpvpb;&;k)rE9*j=Zfr!Rm?YG~2n8>oM`OddaeoOk?Q zIOmVt;8?4vu`o!3l2MB`cmE)a{F;B4Uc|k@em??{{yazlJzvs@Q+WhP)cou3} zT0^N$ja6IpN6MY1wRzEzN}!B5R_fk5EYbzctbFM1vbCs5CbUjPK@rtgJr{dsLWX$u zh`)g`Fya@KmIJme1JdSMA)XFmOC2(foDl^wvh=It&;52K?%m4-ne?teqJp2knp)aW ziTNV1Z7PzI&(!mE=ed2o)>;jYl&f7=2Ab)8{@}Y01tP2)2M3;M>FKv_-O6q;ExpP- z&~3Y(_%Fs_Uc69`NJWYl`vK=yR%<#D6e3c~ zT;+3f<-48pK=I1QXDhaHqPb|+V@hx5_=G$e65Af0S$3@C^4PL5H8r&a$y>X~SVFW> zHwsI{c`&@0R*NSm9Y^$@VuZXb3fc1 zq@be80O)PK_Ooeo>!N^5E~p30^Bc-V!IZ2$UfW|D))F5qd(&IYO6GqCv#En;09hG& z)h_evogx~rP|6;*gqgYN5S?&kHUP^;j#l~sm)d4us+x6qX5sg&>Ccm;&)OV6PKCs@ z(y@Hh4ksWw5$fmt>pO>ZPs`gIo6RCe-Alr-9A5(n0%IK+0&i(W}?4^+VVl zgUhHo+!_I*x^Jf^MGN1F29Rc*RkhVSPH&3>+za+lm>W>(SHr_<9V zSuG2>ZRhcRATR7VyC<&msBZVv1zgXpl#A<;k8NsA(KXlZGuplr4Hwcq8p!szeJVI! z=4EJq-{}d$`_E))x$&LJ?|?{2_ju9n^fp?jMCkm%12eQoA%687p+#;(o5)i}?otAt z&S;)N&X0??orZ8eNF{wrc{b2shdpxtKr|pO68ki!HDvY;q&6Ua(gEI2-o1StkP-EC zR`naS&XnW;;S<=R!Q^!+_Zh4OdHVW0v)TO|GqeD1s|~02B%R)}1$mVX&SFw?JGDh} ziW0V%yZ%vPn(y&@_<{(-MXgsp+a#p&?gc(3*AMM_`80=p zZr&RB8#khT?>oqOXAGu|p40KJrv#AtCocq;UXp0y-)kC#@fXX^R*oQdAwGel4ji#j zrh8;3fq%(@M>_AsVd=w?EQyEyRps_6125LX z$On2OcIx~Tzpf&J_cIc~#CaL>$!Z)k%1FKCm#Y#ti2?{m3q=)eJ$W12 z8jAxuvhNe&*RfO#jk3B?5@o+yA&Az}B;e1vn#_btQ9RywO>?Z?EIOY&SLgg+d$h*e zNph)Qu5PIndi!p9qW8&T>nH!*sR;KX?DX`{_eP&w@!D8esz(`}Fq~I6PTYQ2J64~* zzg=o*@O^a*RdQ-XG|>5k(}G5lczN>bq~FC12P3?l>#&0n?Z<>YiZ+j2%yGgOFWUy* z(k>&bx(A1+QVkW>-|t6dIr|n6VWMNt;x!WuO{R3%&fb@wa@ zXKO=|=rP@{E-Eva(w&GnpsY?j{vtsL{@(W2Ib2_X(k^k$LPF0NHIc|EL_>V6My zV~#f*aQN!$>!s|so8fGa0^w{XcVDHiyVMUkSywO^ny$`mV_Od$gsD)YSGvTbFA{hL z@Y|DZtqLyXsWp6?>|E)NB7C!2iJBzUTfP#4&mH?^aDU1Z zjp~yirj4An{c%wtZwzEL?xa$daJ-~7i{wu|o?32S^sFm#b90AUXYE$wv?#yfoN-5f z5!>`G$@pj=CRSX75~F9u_>&t%ac!EE*UO~H$a zKKK)g2sraApQ4y_j((Yw8+>b?OCS7~DGi*h&IgrOTW8!cDy+o~Z*lJcM#_1b%{)67gyb7f5y(i!OFC68Ba zrgRbo%R9KLO^x|)TqVi2Zy~THt*!k#lalY*2u6_P-`s@cGmuU z380a1g9Q9ROl)ilU$G5C=(}ACgVk7te zJ$F-85wZ68O}PvY6ViJovDNK}y}hB34+e^$(9l7l?a>r4xqx3#c73kXes!{-ZZDf* z9&=K@Dt$@q@Fv*Zh zS}SD>wgRrp8}6&{)lD#+JS8Bp>Ty7!L_dv|cjXY~RxTP{JDF92K~t3M~6Cela{`|{$hP*=s(SizdIJ3$=gPV?C@%VR}2e({d#gM5Zo`$ zko*bAezkIRjCRJIzagJlT-=l4#mFQgGBM}%iQ*mc&=XY^-RnlP_J5!;9)E__Cj_}kTAMH~My0JTT`JEXU^`lv6-MLy5 zUEBQCHc1NH2teEc{-owKdpX+?p98Z_5f*EIvUnio_;7ph)X%oI2Z*aFCMKpVgcFeL znA_B=;aZQ1XJqvGyX$j{0DaW}VU4v)|`&1Ivo2J=CR z(1GdIqhnv2h7j~EEiK=mlmj_-Y5gR^*+~RbBB%z6u0QLKxu8ZFWD7N5V)1@oM{$MD zlIqeaKUFl|qPtdMT^VCx5OoJGLae)Eb5dR@PWWxitT6derk?D#cJR|j{?-A1xRk4^)FBvF*M7nF?+1E)_t3-g=v|9d{Dm7?GC(TEikRO{ z8TDgtDCKT2hGI{`7tiSV|HwQ1kACG%x{jY1{>_T|Lph)0{R!vE1{^Oy#z8?rJxGNK z0T8jxddFX8VrrSPCKEX*T&`J{uO}u!Jz@i?$Q-)*)f?%PX3UmAZX-@cQ)G`|Rs14V6d*Q?YF=GC;IOmeisxJ(q>zlq@MKlM#-I zc%O?nx{*?ioNp8CZ*<8t*B9{J!SI2YdS20s=(B2__C)JJ zxC?GZ;B!jMI|slqW34?6p(=}#MKg)pdH~|QGD6KLG&3Si@nItqkH^BsLctc)V`VFS4Y?;`n zniUG(C&T?llK&V5?Phnqxjsun8C1(_>i^~r0uwTO< zk75=`FU!@-P($;(Z)C!-TG>uOB|Ad7v$wfeW;e#4mYTXFWK4%b^=a6L?}J#v<+`j3 zWUM8ST6R*&h@nkG&snX#9*&-qQ&6XkSlOWNvnnsptyGTVvF$;UPmzffvJa3`NaP1I zR+({AkniYQLe%9^u!@5uoRgg`6SgrYay+y|1}brudXmR&v$hKql$2Jmmph~qH2_#( z?y>$B&J-);Q4aUk{rM*z3e_T)q>vz}1u$o8@$#oJakj0Nmjiwh;$~nphP? zto;oIWutypf=(AvV#KVNoxHu6RuS@qaHzK*&pK|^iAz$Epc*NGgy!C8Ge!AwfNb%~ z9E~T6y#lgFs=sEXZoc*ifX{PNCJ+ZvzM_E>>1Hn@OGFLS(N^-e8b3y zk}OQLVt?XTq!QqH&9=oL%@fpKj{-j>dn{KDPyKLalZ}`m+Ku31TC(qm)^-Lmp!7m2s9w_3PdsDGcmFPg=0>(T+($Gguins{>KK9*9TDS*O^!M=Sfo_X~2Dgzf_! z$y252n|ALXzjQB|Z}OiqBNlQ5>p@s*U!Q7$fCAX}6+{k8kr3Pa@%*`S4ALN;%gD>;Z^rh{ zs{&=%E*JjcXyJ(mZ%WMfb^)+l z2($)QYfjl=taZK;bb&zi>I}7B>=IHBspo1YgXaJ+fbf|WJd|&tx_#;}_;bN zbKMtm-%teV-5Dr0+o56!!1-^l%k^*%>Z&Z7Z~bS`y}`(63DjTJOr#Dn*OA^I01EcC zn~`;gTROF?jl{X<2vMRaXyribRarnR9fmtQS~)&axS^1s3fD$JdMOjs6${YBz2hfg z(WpT62BP|VB-@7}c`{G42r=Dg8II$lP)7OsNieyUTBF#u{~mrB7e}k}10AWA>1z}(R@mb3L=Z*erSH!R;+F!*o#)h_?SJxmD|R(5nO4hst_#mpb*G4;Fc_Q;Ay z*b`uCd!ji^N+H#!1XE!WJ%7Id6saBW)WP@1{T*^C3pS(H%Y6;A`J@muu2s#(T4RoO z=W^uYcow=-0@EMFyoWxp@7SLKspbifB|)%|k&)?LVz|USl#)%~2E*~x7zk_`1qBUN)$r>NqLcjnPav_SH$!0%($Yrt z#9;^aDm9vuQ>8VMRV50ohiPGq%7hDtPBjFjAhKWWMvp9VPcPACU+*|hKTq)dEe%!q z?|2o!ED=a)fPh3K+V%AIBJ?^^Q~}S-3OLHIqQMkZlvP~XsWN+_W}M9%o+=jt_L^fdpG-36#8|J z%0NST^Tw!u)~2{{-m$ZzW8hl^GZL7c0l8v-`oDx`B`hFa0FGgO(7=fJ_QO)+1zf3> zN|W}$l(zvEYzwHakc7FmwpKNl;Gqh*EjO11Pxb;e%mod$Hbw+HB34E3ogaj>f^J>D zVF3xifz2ZwQSiT2d&W6DGSUhZjfK(55=yi#w%nV@={P_l37YmS26D9!)zq$P{yNNQ z>i#SAqz01z*8bP{qcNSSaen=0I~cmlpa%+392WX>qPm+-@*VFqi)?%%6S08qtnA#} zzGoyf$nwb3E|Y;)T1l$TQc(V|AQLKid)FOp`y3Bq-$zTrK#oIy6$~UI8cR}T3<2GE zKWqfO32+E9XWy@`Cke5)4xPZFY&1WkKJVBvmt4g4@rNFiwg9an+%` zc!icPVZL=MjDeAX;e(fuuyCCjeV@xhAJdp)E9>4`GyNtuCG?pW@gXGE{CTSa4`$+w zLqOJV7=-qJl^{GIzzE1c4oJZR1&XVcSPm0O&d4seS9#Z5^}TmZS+$DqdF^lYt0)LjWL|B20_fPTdWi?=$m1Qu zy!8f8CXF70IMPGvb1+5E4H}-_qmTHo$RAefqNSB#-4+)Y_tklMNM|$~*Zls*Onv*| z^8~LgEm)-OUyWl!m~e%l0S=PW#^Yni_tHI2@QF8|xV3`-j!JOthhE}z+(mj-glElp+8ki$2&gl60=vgZ{OA&yxRkC?vEhlb9^XC z#h9vg%!*tbv>oSZ6zC&!530VIM|S`zJ`_FK-a_s-{{3+mI71Zyd^KBM4He$YM8xYc z_r<()`xgYp`8zPnxS>Eo{IfJXHj3aZK*^Yq_HTDUsWUIe`jR~2=46zO zv;b5Av9n-v80LfZ*4-ucM0TSmV0jBDthd*<1#Dnffw&eB;5WnOlU35eFAM47lw*sS z?B-G(2v2GHx|ZRu&ajpqDGgTxf_}52m36>mRLj>Q9j(Ljp4p z6Wmqz?`l9uNIX86`_t6xI^m@OQz$~!!zkw0FB|8T@v+G;>ehc3Oc5k}em%g8-D&ng z?b;U_78a*xC(mC;Zb7@wv(m0+?Mv(u($%>!{Z;{L263Pp2_m~ZcVtgHK_gQyTmuxK zX%G*pX|;wk6zE%B$t3?GFJTA0i)Z&f4&!KZu zQ&Se$C++MvU(yPc&pshqoknmg_zsg{Xf2=tWpAj{I~{iOxMqCWg*V?z@bL?UI@Zkl$ zn%9s1tFQ_lJT=H<8=*c2;tImMspCG!UWoex!cMHPR~6E-U1r()1$#ACUel!#C`Inm zviSc!TKM;#_Xnv8iNZ(<2Xmz^weD0F%mOJ#_hdM+=X3cL zZPpf@3>8ui%pBmR3xP#ziftYp*qn(n0B4OUH7MV}#t4?#j;Mn`qyo*eTHiOnIcJ5cD$9^up}qn^5Q&`Z zQ*{W!+sFM~z6ADkkD|iBe?l;69hioL1||E{?k;02ie7Nw_n_Z<+&!DN#)J+X zMR@ui@AbSCLs>=>2T79PLr^NEV?7vJ`rc(21YMO#CxBi+__Pp2a19MXxBMgsp%&O)ed#*NfYe~&tLSpg#2a}+srEMmw8`Gvspg3iayqE}*7#0EBJ5Parcas2cre=tN_O;y_^ih5QXc`Q<# zZMruPb#pcs={q!Pg8f4b(T@i+0+KRccPr1FS-m@Wug${2p_~zBgWC$LS%=kIfzYy| znjU?NOR}!6PR7eXN-9vRNGD@>`1uTctypOjvGOS??%lhLzM;U}wlUkNZ|w6kC-~~^!6JQ878bdmKYu=CXCFxw z^(%i3_R(wy`}_Np zTV$64mFULe2M5(h#>P5I966jiKR?k^uT-9?X9Aaga3eHtNus!fE~T`*oLkQ3l&UZN zuf?}jdvtW9MN_HunHOo6Z`q%!O!ei4kdRPUSJz-gp+G@{bMs(eXQF|le_x-7ZdFy) zLsnJ|H@E5=H*cnJ6l|&fW4%V__@~ClGs!*V5lPeULR5jnzZmpKSU2m(R*$C7ZfJ-O_GMR zPBwT{!1vK6Yqtm>h^d?xx$ylvuk|3Krl#gfwC|}|>~>%TJ=>y$}uHJy|&T7wx& z&0`V4Xnn9galDs?Es~-0c$((58+wV1u4rSb#gj&!s-J(C0HvAB;WibW|GqR9V~ouSBBrwG zP2__g&bYr%Nhw|#%3T|4KCjw3bRs;>EH=DO1WVr&CP#P2vk#STx{y_TnB0kvri9AZ(RjHP1c#Yw@ z=GYs)9LKoU`vg58Z+&h9i)*b<_ok~Nyde9M`KMg&yQFXL_P;v2(sB}d(!JF<1qTp+M z=3G3xtRPas2rbK#N>^uU%tfRm;T`G1iZekW5-Sje1>f$~PesQL`Bh&>`vqFLR@387 zVL;*$4y?WsS5_vNY|j>Kd7^PeW@S?*oEk9$9@a)F(b`h}MP;hq_qbkY*(E#a6j<@C9u5?K3Tpe zHNHdG^DV3mn8o$y$7`-%iI~w7mT4oOOI!Hyr@X}KfurD}*HG0fFK6vWtevD_= z|1>>q(0Hr9@QX>Brq80I$HN&0?R(F<$Fz{1j5 zJyw1nxz&vIIopZ$9d7X0gN5q@b*nkEu&@-G3k&G#KepmJrAolFl=P|HM4Mq z4~A|ZKdGdZfOTHe>5cN*i^RnokcjP2O^v-%?cb z5a@{32>X7-a1-2 zidE!d_h>LF?ZXu$6ZhicqSB`4d=OQoWj`GW-D90EFOaL5EhevoCWMAjci9m5dLW8N z(+DUpr+SvSZBFO&^a)DwSoRI$UN6Yk21B_j+G8b#RWH8agI7xRqPw#%A<96f2Qd*!mDg-ZQlcQLUfbKYIC}d`q2x&kv2c#&xG}q=|`z-OjZ?w_*^_uVL7$q?8wqCCK7T?fTYw{)+b;D8{xPOeA;T0^$M3famcPL zrbK?Afc~( zArFziAkO{gDa7OFRCYVkA5P-Fs@0ziWVVaHIhK8TV*9n;!^VF|II#h(#qLN_)HDn$)!7Scr7*{{L?t92A?Iox!eo}Fzy$~z23(7 z^yoV7t=)+;NvmeMyL-Fk`32z@g5qwXJVe)ho~F0H_PJV_XEo+hSw+18=Wj%yHkAS) zffrY4pY5IK6c~>+Pt{ppo1?rS9I-Se5x#3X#uIyOUItdzYUM*x`9R!Vw1%H(pkM0I zBN}$tt==t~dL(8#4i)m^1wTIM!ZUr~ADjA!X)vn`0c4ifud&xuQi{YO=TTkDl@i3} zVDo8r^SCbg(NkU|4pHuQ*?=6p8lQi$=?d>?Gqz<5Tp@|we-?>M2Qh8+qh+dEsZrx| zRn>F=PQ8CFet>T^9zIuBmjv170(Iu;<6LN|;yyC%^>-rCy&j%KVb_99#FkiFM~6UN zb4f{GlDBnnXm3MGmE)CX0!=vH0W1 z0}%K|$Hcs(V*WTZ>rc7ui2X0@pBXs@j`em<)=yFDFp_f|sJt^^8T zn+z&>S!CUEYGJ?FNzqP|#Bb?1Fhu5i6gbk>ayU69ABFjGm$Vy#Y<20-xR}Ujz4N`T ztGj#XlTy-fjf1iGZYOghk7X1kr%{nnBYdTPt;BZE?~W~M z5SWTc*RuumFLZ0x+Bbitn?SVwT!4#9O`^4v?bg4?b1R>{(a0VNLS#@=?cCH^1kEb)EHcTpJANq=k!#v=y8WaQ(vkQQ^_iHLf}nyAmo23bBkJ z?$&bkWE~%FmEKf&tmb*JuJ(Xj{n@i;h5bVnmMW~_)=6YFoBu@c0iE^La{(5`3we{1 zdLWXrh=}NihK8p2Y}CV9?%%I#n{sh>PMnU9jm;`5DrztPL>S9g7g@m{!cqmOi223vf266bwyLv;V z1asX6^W06()B8Cv1$8g4hKGeVFw_Dkt&^#asi~>rtgpqh&ux6QA8+Tgi($9#dQgio zmJXHDc$a+p_N{%Qts|R|Z}E~t4@Z>dnWwHyGono57hyo!P2fHL*(4^r`E0|XcT?o` zb~?cAS#fdXAOX&-W(xMLgqkRqeld3|a~C?Bx#;*Zers{IP@6OIj*vQdRs$~mqGLar zK$g@2*^F8gUdcI{E7G{ZcmmJLN546=R!g~vN@aO2C@ z$h86Ux2vzOI_p-{-bttNHb)b}??kr=!ysBu)atcy|P8yBB^3fog4a2Whxuij<;2^!_0o_Cc2do zV0Q)`2Ij|g+S^JHm?z%42a)RPF%*}-DIA+1dYP$uoT?qeW}Y#G^ixNB(c>$JWG4xX zzQri+>ey4?EL?VWIXm&EUqcl)OK(W0BgT)co3#b+Xw}%uMf&^525NCM&6GK}O=4=; zZCukFnK=!nj{_|*(NX&GDRounXJ4Z+TcfDVgUs%kHc;)B+=-5G{Xl**KPu`yPp7Wi zCGovuhwJ{Erm@5vs=fYt+TdPx0{fp9WSK2SlXmybSsG#4?;#D>*BfH_%s`lub?N`X z%IdTIQPve!bUNUa8T5ToPWDmwm~Z%H*oW>l_ssZdQ7Kj`R0;0Ryi9{B#E(ApQr9HD z7Z-M`QAK|bNqT)&^R{u??niv*vy^x5;s;l=-}TKgmL7zkqn}#FSpJzhxbmA>g0d17 zYYU^FRyH#gCFN3nOaIYZHL|dWcJQ_Cw8gjE*##rFzgc<*?UWr(itybY;4bum6*cHs zg^n@b#j}@8pUN(df2)t*C`v`^hMjBmNvYEjoHTk+2={`-?;-8J2gS>Jatb$0-@mv9 z%ccsWqyNn?Uqh_3O0CnEIoy^BFBW{mogVnh`n(U$K3jje}D3&V2XQ!CF&?@$Nd2 zgwbM0D~m8|d~WrhOhE``J>g>nJZtSk1Ky2=dB50OQipy3y!VI^LY1Kshfob&))mN+ z41b1ziOQg5-35|J!ZoSbQ?@t|nrwSR;0M93`fpxWr2nmO^P2s4$}1ub7kw4s zs<{WEY7AJF)Kr5<%u7$;*>nW;Kk$~Xp(P^P>hb+0Wb(ex_q+p>sC@(tEfn;Wm*$^JOG79oldptV`Utov+1J`%*V zZ@CbNFEiO$TaAA%*n1RxwK5vZqCE*BNW2Te*Ua490}*mEv!1p$SH!04yPE(iCC+wb~hq>!Q4C2j^AKhs*c9@{%eEMq) zzD1cR(tTqx2h>2?EG#SqB^H@iC!;aF7U0ko0~r_&MV3tC!Wa`pDOX?uG3KPjBx=024lGsEBH2$wXK0<;*+T>!Nye9M;XV zbI{>~rPQsD3v5lP8XKC%zr_5U!T|-j0pXyB;~FijuSoW#!zry#4mR`}UYC7eSlIBg zew|D+Du7tb{K^Xe5R2E`iv_H`m6fVDW9D?KZb3nb)907x2kWbmtD}7HL@z%6RxN=l zGYg^QFv!!luaiDI88Q#dS_sDU+Slei8o&`T`x?g&?#?5neZV|gomzXHljEjgBQFr5 zuxz~e{)85r)H+aRezmcrL>X5sp_;t;+&2wGjBW%wwH{jt7(D-$sK0c7`ndb6h3BZY z_STr|LVryo+s1r6yh0uRNcZG$%fXq(^GYp1l;?ASWH#V#CTpFt>R~H`8OxVLTDdsh zpNx!-^8Xy`_YvFlV%Mox@0_XUKc5>LzJu)P#M(@_FKi!^{X$5mnfDmjM`BU^08!Ye z=l&f>z0~jKuJz^YJz2aU3RY+r>miP9w;nSnnqG&Ed1GguJ80Egta}`{ey19#vdz44 z<7GE0IW#6F=9MQqNaLWOhR^vE^13W3;xJ8Xzs8?1YMi1+3J?a#903dPmw+AKSzcSj zw1G#h1|E|k&$$=o4@E7&J?E6t7Go8HNd{vwT_YF5K!L?aXyb}Odv$le2+Cm{eV|Mt z>^K+F5}^?oU!s#m_fdPoD3$JGXQF`XtBR?agEM#iM&0`YB8EInM(cl|l3BnDA3?Y~ zOd0j>N~H1ICBiYQIUajUuB#sKgZ0~4H#}rOjSNN>2M9cXQW737gW1DZ9RLs;z*zYG zl@Fbroq3nOnp8K=&STR4L{v=0e{|C2HIItz{fW0G7S>i5!*Wcu0N?Os14GFQh>EUQ z*no$WfhN`}WzoOM`@~I7-ObG{{LuLId{9g_j*vEMkFdsgtglx)CgHB!fW>JT08X*w z=*NIzYwBudozVGq3Lp|(hojegkA8nlLLam27&=*6-2a$|Vf=f;o1Td0+GmYzt0(lV zM)@^5PWoqAuJMG&*>bUZ4c>c8y_1ceH5_$6Zs3Rnz>sTEwH;0-<|w5nO0mJ%54Xymeostmqo7@{ z%&AvVt}*QjkL96A%blo;$DnQ?zY>JDuX&dijoB|`@LpQ?AxsG5a8Ju9MEXu1_k7gG zO9+%8^osDH=-X*MD3b{nUb)kbobqSjF?qP8DHvEs+^fc%B9l&!XUv_@6X!u;gg{$t zO1ccoEe|aETzJ)vKjh(UB)y+0a_mmsh<4ixB66Wh%u*JPri8O*YMl>;jqHpkJ5Ejyf9~2gy%c@ZL^2v!rfAgnTK0$6=ul%k^B z1l6{#WO`^nY4nN^w-(-O8WHPyVo+yG?(bJdX+pDy9Ua=%{Zz&UC1RNzL_1v@9?661 z8sl<9;1YO(0icBzfc|2~z6eci?NUKGLbA~n2VZRN!-9g3M=RF=3(TN%an24mHPpvA zBC#SssoC-O6T>cRE1tqG11;@(5&m|ys&tjJr$s);4K*n#sfCUC$-wn&+}Wue-yS-c zZrM9@%POdWy3||cv5{dtW8M>WNy!Ff8f3_hO9)^bcr7O2RE1CjJN!vJo#H^cPb1%J z33^Q5MusuA9J!MDld@uZ-a1)(%MM(u1buO0S949%NVivribEouri(L4G=aCQi!<$Z z&zFlI5y(aR-_0AE*@HWbK7JiYgB%kpMN>X6CHuY##FX}23VwOly# zrUKk&IhpfhEXpt5579(BgA2?cKSh{{bjD>6j5EZy8WdwbgHUT$6iyO;9et_X)7!z; zg!iSRIKP)Q^XSV3t8dPI(rcoxPR!J`#zQ#Vr6wjwW(EZh?k}h0kF3ouG8SjO_=0Z&G54G}D(h*Q$cdWPCe!Kso z{9wyLm@7Q|EB&Ko{166k9SwdjClP^lti9%K0Qu5UVyDUVt_teEUF(;=>v+K_Lp5*y z53<0UfDizcbsUJo+1ZS_;R_=6rPx-13!z@(Q8vr+_^jR6NJB8jG_wO~sGmbhuNklsP!^=I&H!t>FYQetsAu&S0U27NW5t0 z)_8>d0|Gy(%dnQL>CadMO&2r=Ch7JAFu=`VZb!V>6c zLtGtqvH)*w1&Tvqz~K~g;LpjI>1-|rSN#F{gJ|^7Dq=sgm-^F60b^|Q?d|n?K)CS1 z(5j7q<*!F)hVOT=mg*Q@XmK_5IK2e1ODGkFN?dtD$a6Vb;O>&(u{{Tcy`@x(K zMg=8?2t7mc%C96zu}6_K@yU3P!WY^1%gj3XiCyHtDPuUrzyT$;F<#cXYMM?_NuKh> znRAO}wp?QjRW18hy|*WTKjs8eH~7F|$SAk7v!hJeIyPy;@>Q7aaF>$9YyM)?ML0;! zvtD~jKo(w$(@=IQxYZ=1FmU^y4PKqWx96VBIJV-lv)?9QZ``VoXRqUo?d_ zdFoD1>Wu2BbvF%hPJxl;4-<8EWgGr(Oj$z(e_T&857)t6MUdxA0|+EH&aS+0-) zh4RJNNNmrvD%OaCp1yRp(R1nmUY%M!3aGq~JeI3Jm(#ROOfu+vPj@V48jHCw4{O=~ zCQPtjz3U!~7rih7^}CJf{!M`?Ta|pX8HM z=F4hd;LFKV9)!C+0H1(vZ+&{SqgVY(7tv}^UZXzE#Kko*cqr~An;J~kS+V}Jv2XQw z>#{gIA57|uj6Np!+qb8{(SYNUg_%V2SOkt19%u^;i%)g{VaX}M*r|;I{ymgAVS*Hf zoVWa4#?qi-v7l=FI+?xYPqsr@#!MQA1{@zoEnuIV>a{EP^$z-ig#m$8D40?}>0Aw> zGExO9j>)enEje+2d`A@aWFo z-up;@w=P+Qfu`Lh1roB9*OyvKfsSNc{pzD+hH4U4!0G!_pc>o?RI-LD-|T_qH-FU` zVt0C(E11x&(w(3DEy5NG$qI@}n1_fVM^bhe@4!b&eoHR`KNqWvEHz90akgB12$W4$ z!xJP5f(tZIvQ+wi*iXsdoe#ALDTYa9;R@_K$7=tKNLGg~pOddZ$xn!BBdtsb{M-j5 zWo}k}o(buNLzOuFpl!T}P{I>PkKs-SLVgFpD?(*fK?ea|f`FslLKK<|mviz9Z!={v zVSB_y<|q!5YIb50+En3+4d#Cs84?T_PB)x$f|axrgU>8usQ;( zSbe4?kL$5SCd|0wKY~L&>@`59EoruUcg1o#D}Rs9-YMWWa9jW!kNRT;9KS)bY85Tb zn@86ChY9!H^=Clljgs`NSun?Kq!YBLSvjcke7xqyfSkX*al7V1(dcY?s=A>32;Y2r z$LK#DD^p!peD5OXi4-3N=vNBleN?=R;9?<7ZMncu3p)SsH&UD3hYTDSxsKkxz;x@2 z(q)_4>xP@S-*^&JRv9PB+HU2hHQW%8Yd6g{W`1iWiL#g;ENpOgGOw}{^`a_xE}8yh z2)n_J1F*odGsb}Q?yuUlz0+BZ zi0F?cIdIv{(GhnH1iJt(p~&k(#!*6=LFX3*dWuLXnhp#vl*%JaU$_jTH)Cc!ocq4| zd+XZW8zArW;-PT8;Zn$#70Gn-c}Jc5_wRRgcB%nJYN&087O^HSj6i^@6i7KrEO!>W z!wZ=zrWbNnV%xd9XYfwXUz1f#<9&GKL5UrBJK7peaIxjxbu=U#$+z#f_liaei_VJX zHTilW#qlfA>O@8Ev#2}yAB^CgB_9Z1Tvz@|F#RQ7!go2v9k$a(wT814n13+*#G>&D zJ>}3mGMul00R`Qp+69QxghX_X6ewn6BO}&8GX~Z1kZoz>r-lZpSbd+fHRH9+aE`%% zi^RP4(}I|lp$@R_K0~%0cjIYum=Y_YA1^RFAUI{a+s{$T7=H~V^l#Cv~0 zW_1SPUU5PQlvH4f@dkOWW1rK_ei%n&HKH1 zDFQRp_;0ou3&jQN{hD^AApJNv%%vGUA&!c)sC%3tRN} z0iuO$48Psv@Ol&4ZlD8FwqE&BH}%Qb`lld&ZV}#Fif-n%k&%&=9-jVT@KE!CTyKR; ze-cCLT4f9ykUn0o=zk6b{a9t;&Mwo}H*#r(x=W6i z9F6-XNl5=-7r$R z$9XNJwPp1)$IBr3lTi~yWN~q7-tAN3bX3~fgD=pY%xfnO@kvce1fl_ujo73}gWoLy4kmXus(H+)MapN5IHq?B17{XEvyDpYH*1 zZGeqG*xXwnHhluGzr2JJ{};W4ErSxJB_*R>?^#_ps>W6$c>0hkKD##;mzGus6*xzL z*#Bx#fdHCgjZY0ZKR?-83#PGGwXpaEoPdubX+^Y*eb1^!foAH9J@g$Tr1wfc*=k00 z-D`pV&Ageg*MK+o=vPoKU`7FRq1f5JMkFv97}mqA8_o(#n+E%R4tUDyPMNCXI_P&5n1130+2z1{0Bq3+pUI4nZRTQzGEQ;%b2+-z zk=+qgy~(6#bz><8=ZZ8w{Z18=4NO@5U~CIOzWo(3FJHiQ11ebe+LzEAN0d@nc(4}` zxiqBx2;ck%*Pow=u5j>d;_)%O@#uRvE>Z)-jDP1vVkV_YFx-*UN#*CgsVxwEc%@9rP;Rl;cXl{0Q-(62x?B9)A>b3 zJuCMFmtsr;E3>Uq>Rpvy-H|ESEL#03x2E6U)cklkkdl5@LAG4kWURnXVuC|Sh4I*`@lzksK2tlZ31=w=s zyWmo5F=8JOpASo?OF@~2E5!imUVZAC|Ch_ptkso$KOg`fxb><|ALk>brlyWdODo0MTqn#fk>1GzzAGKws}K}nX`PN;pvS68 zwPwiesHCpusOf941vD74w;ROKfC3P1zMJ+yRJ$ zr~$(GPprdpvH%oD{#VPLK&SdrI?hektf4aE)IpmIxKW$IY`Nn#W9%wy$7=;B z4r?(*z?)3?&haeo~rKd{(MZErd7;9X7{HH40vDLkP@iClbDaoN}V&xw7ntSs}3MIQ< zHcsA6cIg|yjRl~LHJ}Y^0M}kBe3iw}=jWm_)sTQ2&@$#*Ls;+LeFE-(^0P@`pYR%6 zZg>#?H8fqB-4ws~@k%bPZo(1ruTQj%y>rse)-4~hunYj<0tOC>=*T-178VZaTBhUx z1cS59sTmoiGUk_;t5X@m-ie*8^LTH6AzTIiy4L%AxCJrX=;^+=yev?MBXaB4%e&(e z6AQr1eGV42Yu=l4HDlvaV$KFt;E~0hrB$pao$d)4Zqji%&PjmhpCOl^psuAA@3Rwb zEE_ZHxh2XRW)V??^3nIjo}l=APLJ9jeaL?CD9`w8RlA_DP(w}aUEqD*sqr$iq@X%R zaA{j0%H#YXz_>Rr(Rpe)kSRUc~gJ->7#_=Uw{{TTQHT)I!cLD^47f1Lyg8 zdq;~H0O;_&UICn`Rzq2+ZRPu|;=fBLx#59XadR*{q!0)O(Kusa8uoMl9HKmzf6PoN@qTSpz?ES5HsGlg?|jA^^R+S5V47ARh#8y$~={f~wrUp-=B63b}j= z3k&1*IepEpU#;j54S5$;;}nWwfqNVc+mdo2)Hi`RQC4hVC5}I1hI7>8OcTJrYHv^z zJ}$VN?6QxPBC`gW`Qd{HR?a9e$*JiH)=mX`N^8Gg5#9NAGa_l~C0Nw#vrQg*7C2A+ z2LtEOdiSjo5G#@tf)7m1Zj*Uz)-CgT9=yVAOljMWm1u&wIwZ|4Z)lhTKHE{md8BYF z?Ggz!WBy7zHwe7KE7`GkIPyON1ZCf_^Q>|ED=}`-oiB)=OA!%O3MB&!%!^CNuhg$RY}gJ^*U)eslw++QtskkWND9k7v}N|BI+2y3MJ9IsH) zyMT)1COU=J>&UTKzebsuk`2jP+K>svf&$}apZc?dDNP+6G;Am008D<_7~pW-Zy_M7 zJW2qM1E1FFqTwd)^P~K%|AUW^{6ek*RCD|GZ5#qm;kW{QFj>=X36aeB9cKmxPIIL+ zG0{)`hFV(S?eMQ;MT-q$Py4Y}Ksp3pAdCQsXdir%(Y9X&or3S4yz&|v42Y>Xo+~RW z_Yimk!zQo~`zWT}{8j6kKD>2x63Bqd{u}n(f zb;nX;4@ZmjY1v5T=oP~V43>a<9tqG!DJU)EMB)3YK0Zz7`?=zLbZMToI1Us<6r5d0 zS!j_Q6kYk?%Ly={kjI#{BvBtAKmmhTEF%u_F)(CxVx>ohhtZ24j7Q^GG;k*B)uV;z uv7HY3Qh=hg4^h6&Ac(PhU?JfpEP;D)=S#w7W+9NxAvtN~rzMgv0{#a;m2mC= diff --git a/_images/scatter_line.png b/_images/scatter_line.png index c5e09d33361641834b151f3ead7f08d433dfefb3..11b8136dc8fda91894d2de2227b79b91e5226132 100644 GIT binary patch literal 19233 zcmeIaWmuKr)-E~)L_j126p)aRl2)WcoDvEsAl)ER(%m2p0uq9BOM{3s(h?#mh|&$x z-Lc2i^{u_u_nq%t`|N#wo$LJYax&lfK5sqG827lxeZN6Z+e%8!7J;G_c|u9+`w#sI->6&+ zNk@CDx9R77;Y$|YM-mceHIIVtw4b7{F=aj;wv*mE&Y-_5+fQ#ESvq^B8GAi4F?oBI zrYmV7ap924PdT5*J1{ViUY6Mo9sbWbBwa)zk=zYpjI^|o7cd0~2_tYhdxHW4pL==B zA(8axxOTL(v}C%eM1+JL2=t`DKq<`sf0zH)?wFW^chS&tL_)&l&)OVzipUW6S&HL! z{=Ep>6}p9=lF4*6VwVs;jW_Lxkm3Jn6HO=TnQig@A3h+l)ZQyMX-)H1=(0b&_-%89()`3Y7e8eQ)Rxc^{gRZ!9=l6> zA0~`ciNU8w# zwjo@vmqqHgiv6#Bn&<3&{P^)^|6`7+Fu^sk&KNf9HcH3ItXOSv6O-JLONYBdI-48K z_!+VZ_oN;@YI;NS;Dht_{0pAM_93TpbK0wSYC3<|2~bLeQ3TDjh0lz;u79btp0S#4 z!FD^C3iw&$$WeE8WR~-+DCxy0{L$avPe4rUTVl`#%M(q|VWnXpSJ8TN`r*lLvFGmM zW!f!T0LxQx0fUXE3h6o1|$FMs*#)pc#B3vJ=lZLaH|7y7%+ z%*?o4_g*p)?G)qRv^@e6*{a93Hz)-Rram0mF&P_}JL@>pf0Cm<_Sd&d;aA(L>kVChFV~ zUNjH7%TxLuFY`?uP>3QVy|>?CQJd zj?Ygz*PkjVdt=#?o+aMLn9&>1J`a;A}Jv;e0rfw-Mmc8;M)jX z3g4*8{rldJudp#Oc{S=C`iD$nnQYy6k$AvJdXS9Y!+T{20kcS5T@Z~*LH53p=L)TChe*X+JwN`w+ z%+stcJkfxfC#8$kaeH@dbX2oOwD+gIwdCdLcwQ+fUnrKt}jm1iz05`zTG*`zilvY9vJwoR_$&0EjQ_+ zmuOmPPj#nTf|xis+9uA=9P<}q*tKv9l|zDv7{$|`s!|o_<~IH+H9}3q{MAeNRIkg; zNAzK7@;R)$o7?>Ok(*WRBZjxPx6@9ar0{7xq_(5ImDjHy_UO(Wdp>AQHxep;9*Q~? zn$fp+7Z9ZUHuO|(8}|_niTt)3gDN^xsFejvus1^zKatNGZNlT2t=eHVnBR6@bu}|J z72$rgbN|sJoG@xp53>btZ`Bh0i?DDx^;@tqv$F0NDjT$gQC3<_p=o;@8rm)PHaZr^ z1Y)sHJ>DX&)N95>h%NspWb-ak$lX}?JiifgouhScb)>{{LIj?=!Th(lcf6L#o%W*_ zbbC|p9~>u!8PaEOm7fbCD+J$Wt_eO zqH)Xf@N2hH!jiyU@sExsPD{Au3^|W5qUUY_ftrGP7(RD>>l4Wytg*Wt27rSidVb~; zkdagP_SB!qO~y!5qfn7stF>P{j<-5JH7Xx(k+qS~He;AZxS_CAyU~hLU_n7%Yvw0C zvUo)QjwSl zi@k8@_>^Zw5WyFffNyRRXP8j^Ymg-^UTRhz&WF%;?rzD9q1YMavn$6%_6m;?4StVR z5CdIBKa`fZ_}wdY&FQ!3F$E$5tGJKKD{uqv8;&^2N0{2l$ky?z^U?@#ClXCdDLY+B zl4`k2$TG^rT!F)o(HEH0Zq+$)gB?9M47bfz@%xEL&dRPfK!(q}0 z7MRN+&)W4;jb6ME&*-~*G_ly1kwm4tKK?m$ZDt|Ga}RRupP?l2jH(=0he@{QyGoBo zVWCZ-SxIga7p|7t$DlA0ELlm+`&=IBK z?Eyex*ccR;b zJHI^=o(xa2SJj0pTmJOxoxFyS;UvF;@PbdOpY^W0*vZ+O>Da8&J<+G;XWSRT!N%VF zRYI&@_+$2~zeEP%Sham~*5g>K*>=KD<|E~5mqeVm=+~+isEqHDCyKZazbBA-P*qjM zNs8Mgz<@pTcK|07Pmrvc1FNcz{h52L);wncktPnn6I{&a5jHRRww*Ox^WUB<#f zp$#_&p;*a9(UT4It?g|tr;W)M0sIKN-~AUqyX-bK`dk7uAA(0IaJTw%e&Dk#)?oV6Y4UA~rFj)jA>^*a}jc}t1wFhAf8ydRqU2;NF zr+hw=b(JRrZV*wo^8E8D)W5W)zyIMi>s#GXs<|sROZIoexYE}wu-fgv`qm}tfCI4HU1KA*md_6-BIZKWy5Tx9UV_;Lr)XKqzoW+J@ zoId!WN%b^X-$w7O-zFoI0>`guE9=&AJ9ApXkLQrY^@dO8q&%0{WZbReGIcITM055^ ze;-lmU)WR@hVT%gyh&smLX()Cg$&u5GZ-yC_iDpSFU738~N|#(4jrlib#mKKsv~W{dP#-Tn-; zTdV*JUX`W=1qy}0K9etvX=!_=dF-xY7(EEN!N_`58ebBA>ZxkLuB5;^@%3mE331GXlTQYgbz%uo*YH*Zss);3Phw>-$RQX_I>#0Z!yNLJKbncO^L2$?OpV3*8u9n zqg4&@sIabfpw5fH`7(M^dk^1bv0Pczo!09Fav$lKr!)DsNZIWpF;!x4ADJ|zXD_$e zMp8}rY3p*}z>7noIIi9fx&s;}wj#{b(o%NGC+Gf-%9fIGavZ-) zxp#FI{xw%8K9^KzFk74@w23o$S?6%{bM%&z;UVUU-OlS?*{iQh=gd(76`+cL`7?ow z#w#WV0v9G_EJQwK8OE6Nb%bRCpF>3x5ZC&HdPU5{`PMb}N_m?LbIjc_74Bzqj!=F? zo*b?F7nlAstp|F>h(?gXX^WdaPFg9suB(^U7-qXS z#y!DvYksDx;Ox;L3sa|G4aNWkK0Z>2y&}}1<{c+8X4$MrMCHXGPJYptg3y+Rl6m|v z%r~Rgw2UF`#+0oKOm0?OL+-xgxG`}4hUO~Hg8dso6n2!#oc%x%?G`|1M{6V9 z+@VH9P5!E7kuxn}PQEVDYyN9Vi-=x$iyvz9*YVi`$agJ$-|K-i3E!N^lkZk@UrA8)f|{Dz!F+;cZ>}QazWOS|IQHutXA0SFmLVma z0otBzI8!+XI!i0^#fXTAccPviQTQ7(;iA*qJ)&(;n7F431YvM?;TZ>`yBj3Y*Kpp_W&4 zIwe0EE;GA;;HW?OcVpwl}e*Wf{>pGKL zbDh1$cNf2B<3p{sv~>aQ=B2lf{Oa7zJvRez$zHA39pfGEuS*8tQI48b-8e9Rm*c!L zxRfGn5?%13YJc??SxH|+rORiGGE6#k49rxmWh8J{RH6xt0j|_i5gpH)U_x!N>pb+B z;+ZAUg#VOgb?TJ&f6kdzDik~nX%Hhm-FlMXo%)mi$_|w9-xB%1FO}#u`%h(ri-^m} z$YhA-fB*edRW*=ZtNP~6n+@~M+rE{Fi4@sa2A6l`DlRP5c@3NsA*gQHa=3% zMg8`z(mNiL=+0x3eyCL@w>jz`NUL3>9nd?l9p(f`r4hAnR2<$;e%!7c-kqzuxfB&s z51=z6C#T)WefIYRx+_}rBfHOq=01|k;;GCjB%zsW-4!|yBgg*Y8=321d|HPER)apq3D)Tcu^uA^ojeRiBca2MDOC!&6glcFr&}Ge>G_ zZ~udeac}VT_n*xF+!lZ0La|FY)+A!n9qT?D3eVt$97QM!6mN8K;LVph-(d{1P$1I< zI_1v3yo?NM@Z+z`5(5v1-gs77*dou}(BvbZ^7X0(zrRrU8+s01sryhX7Y)*F-e zDFp0t`ows{zfp!ZbbkF>P;U0RCY$Zmt5?tE7wcuRC3ST#=eI?FMMSGCCY&D4_DhZf z8s*5%^#PX(K`1d$B16wK1rQgVS0ZS+|cu1<4) z2w#q>|B^24?QyW7hoVNhhm7{1u+s53y!ElPw6EUNGk@XZ$B(QdZ`=#!WRe-ah(A6N zCQx>MXgHQrJ-)J0+f-e@pj8*#sZx|t{$rP4u8x=>6{+Bc8%Z?%CXzTHIw8&c%r)Ov zHOEllNuyqBiikToHa0fI3gvKWAtwTAw~Y(0e0;b}2bel%zI^$@1o&4*=JnvpzH}7B zR3}G$3yLxIJYCj_S(bu$+qggB8SZg<7>Q^;63P`Z@%62nL_| zKh}};$3!@cO;|=pUmlYQfCXzml}H*g>-#f-Znd&H!a<+n>U8=_(Z@)-0Pi~cW#t0Z z5;PyoE8@Tn5mHdRR?L>8xqbUGFquGXmBw?v`4 zD{9=fyR)jm@>c3~$VZ&t{%Ktr9plrSy_fJP0!xj0rlBO}vzkQgxCpD4zYGFGOdrUp z#lig8&P!@_Zu}PYrw(qA6Al(L!c&3FYCy-Ie5;~8wV3E89-N_I6n}KfZ<~9z`8oI0 z@NT5bP+l=j@#NR82zxDKoth~(wGU69rO_C_CGa5)#i=(-cy+I1Q%df2sjq{+=3Vtq zlUj9Jb04xXaY>gZy*e#2vzrv7G|yoq9c=7!5BzPqds;&ntnS#}fDD-@7a$Km<;WAI@8)<{c=Bn@ea z;ljc*opO_$<-)bwx-1_0=rccIF~5$2lko6yo|&oDR6hv?e}s=uTX#lIWu|u5Ms=UP z-(^E7zkY5BgZ+5>NBR^BS7!(c<$2Yaqul@zr_cVrNv!{DX*I}6$ex`ds>3&uJ890J zYF>1?xSqY%rP;txN?11c*-f5XjW5#GzIN4DJPLd$#d&)~`U-jyvQ6Xu;<9{h1>^MQ zK-K=h4|1!+CHor38SdgQ?BA7eUUWoJ1Sc>!2EA<9=I-ylW zeZ@no;=EBpui;GSV#$8jy$fXAQ(Vy3I@VFw)>ERtRj(ZpebPDf)M~DJPJ2%OJ1r+c z;Z^;D7e3jeiN-JL!YHqizx*|RV)<0z{R5zQI(~O?7(Si`^jG10{9ss(Aee`qJhB;C zJHJ!*)a-mYmZq?Nd|30<-Sv+Lop0icl@dDN{79i3=Vs_H6lc~y?+0WC`yNa`s4lq~ zt>8_Xt21L^q2szN6H+8@SvoGzV```MjXQHTmUMCUnoc5~B`a2zoq+bzP-Vi%kZjeg zE;~HFVyQ>XUtgrNKOm=ip=OYjND$&%$>dx9G<9T^vad+?HvN%2nZlMZra;w~@c=vN zI6TJgGyk3J@vWoRJ6Y7{#hExQQipa%2HuJ8v&1OUqACANV0cL5r%k$-+S#A)u<`Je zVd3Gl;9oi~UL$roHPrMQvdY~c&ogV$^8d7E=kz%C>zk!rmus>#DSD|Z{X@3_I95XPQ8XN;r$A7m8gp;e!qXol(9d4i zZvOHrzZdCiu-?O{%SoD6oF`$Z#A9mVzpLWvLAYedpNVs&q|Wb!K1Ju7$jpr~>3ifg z4la)2a;l$f=ybVhI5`Oh2L};e_X^d~HqMx>a&=;3BK_U96g5Hs&2z@R&dKFU{g8(v zpmodC0&~wN>UzV?{QF*xY^5I!3i!JDX1tqKUZLW5bsvH!_@ias+vJ+)D_7gIlWi1y%i>d zSB-jfUiBI8bSh4+`M$I@3Kcv$d~(ktRBly6V=OdZ&sgW0HCcb^HE(4abG+3byywZp z)IPm$bQc6^w`_6kK29wP*e~EQ$4uS}!BR;xirs@2W$Y~T#=Lr|39o6MnKkV?@4x^# z0V#o3w6AIn&Dg+K>v`_Xh3#Mft>q^wxy2u4?v2!%6}RamWWPhrbK@BOWXfdHfS);7 z2_7`G`+x50@&IB5^D}8k^}*M}TJgjhRWGrut2lmWWo2c2jwJ{j!Nb|bZ<0=`SaQiV zx~LU7E-Tui>3^4#6Hz#A@FsGg|LSmIS84NVG|esA^}o|i@v*abJTI}U)>QwA6L!opoPCZ%hn2CzNcBx_29NInx1Aj!`)& z2pCG;_=fjHuAnAtOqERGvv#=9XQ%vfLezuCeiS&oQbYv}z3Hz!Y(<(Jg|{CJ>!zy# zveq1m`6Vo2FIzZSG4xW^f53EF4Kk&E1_3Ek9e1We)gfNQParU!hP|*jcOPVEk&twm zdoboE6P3FrL4A~G`s~@#=1Kx}nq=%=`|X^|Ymfbgp3?RAm1V$0dr+fCrojBBzsoVO z#UBWTkG$J8pELtX7dWPhiYOCK(kx)EuDWz|MU?Gw7YPT1-PchvuXu6LVS8P8t2#cv zggdh%$Xd#jxd+aq8g(Y^>qOr4jc)3@2fw#D8+~DIspoZRRoY!_yw65{`m{K&=>C0q zF7|6sEu@)40BthsRZ+UUca$g%*{G@{z)(7tI+n(Ksb7RvKQ#)ml%gyv9o+nD`w)2g z@R8wL4=9Vov+BrK)fv-2)uOq$ld!NY7v*!kY!aFU#FK8Oo~GmfAnfZK2FBKOdj(ke z_g?W%(3lEf3LK8MouA-*O>lhiT}6pbh?V%uu)@hihbG3QGOr@>aJuvLdI!()#o;T| z6+e_U?VkJGa2>e3?yK5@e0VUoI85ZUO_}~4){$hK3`2CZlB%2!FKc9^XX(>mI;BA# zk(Y&Rwq*U8F@1r-SP$DA3j6NeiZGONM=rtPuUT9irR3?mLED!QP9`QH%UX$JADj9PNKygsdvt(3EYz^>jjTcC?zs%hp(&G%Q z!Zj%vT-i7>l+yUpCQj07#X#$ZDHI(I-6Q zqRMJFUcJj_Hii@r zTzYzx)7%f2uJnZ!bs0)oCgFvbjfUR7#T8~KCH?ddFEwN?S$F~B;r^oVa!|Xw2gzbR zg=omW$QXm&9oBRn)BGCiL5>IUfP5<#r4lrxuLj-Ui%?YEnUY}Aef5asN2co!q6niy zrPOTt*25K52%Ec>X>kx8ySX#ztcC$;Bq@F)c6pXLCb>7Yj$$>dfuUzdYzb9cck3>U~k0I8klBc z5)u?o?l|Gj3y9XIX05t23w>p*=6Z%isLjDi#e_%5_-EIei7f^xX&ZB2DyS#)JB>5x z%Rg!Oe^L@>rEO}i9aX2@>__H2b!)D6fb4>N_PkPz&4v|t*L>H4?JY#d+h(zz_Vxy# zB_iVEgI(9EE?HY!w|8_jb|(pz*e=MqZFMj@Ev5x%iadpKnoG9lZ93WSu}8Tz;5L=}@=uO+ zqF?F3ka07{x|(q~m*Uo}mpb9Rko2?6?E2B}veE7V@a!9HqGyCXBFC%}uSvZpb%$Q4 z;gfPAwikLVwapTwbDz;JwDmYg;itb?0xEyL$E}6CQ&^oSY~lU;Ae)xu{7&?}ZVc8V zE4ufuYpz4}OC@|QLKqL-eP^-HfqH$Ym>LsGhk^puL?P#^!mfKe>NB<8dU8dRk*o`# z!nhLD=P3?-b8+z&!A3=*v?i3^;OTzr+yz%7v?g(%5<|y(RJE3=lHm`ZKZ*K*EHjo@ zdEJsEtpjZx)iP6(7&Z-mXpf~8LRybq_&ZEq~Ut}ZRsZy$w?);d%g*DHbl^o z{>)7yN0j!_4fKEJCS=`7JpmmU9$fS(R%XA{Wo56tf07cGm&bw{kv+86z`&ryYDyf{ z>g(v}K(#+$s%;LN73(#=y7)AI&}lk|F>y_@*s<`$)ZV^qFy;BV`$kQ6{1H=RAR}QqrfwC3b zmopz59=g4LN|a?ta&JhJZa`0!Z{Z1*1%F2e@H~1zaYiq*SkJp%xT?<+_$;6NrD4;@ z*hGANsUtKrwB8~u!4%4#EHU0VnRh&9*M1c1gzxOw6{weerMo44z7Zfgi6Us`Vs&~! zXe3c#Z{(}}FI~A%8~Qd87t_W|y)nabZv9B#86Vzc8#5hLJpGd9MOL9pD; z=k%PXlO^Bmd`mGQxp#N>TaV&pkp_EnW>ZsBLe2G%7mDLiHVpgw5gd|>a!;ymgi3si z=eZ1uCsJMu3gsfr-z7)WTwGiTui#*u?2+mbX5d)Tlbvs4+AL*oCsBEO|8NXbWI=zb zo#uGVgI8T6h){h|)n+{KPRO0ls7ml=_P+cBl-?pqDIpE#%6&00#MiI4H@ow?*tL98 z1U!5V3+oheeX((#DGyE_Zqhv;(dnXD*pDc_OTM_#ObAC^!#gem;1&9e-(A0cJ)^Rc z6fPkqf){b}x9L|gC|m{dv43y*MF(i(ImbUU)qMg@d!>N~-`;jg3B+qe`|IF##8O}$ zO@9eNv9ULWgeWKl>>46(J$_kE1_GOE`(@13qGv0xoy&4uC_mUr@x6?LUJq}qE(0=sQE--AT%UFs<$7vgYMlrXPqnqfJWpn*9V$%5s>^QmQpRx`;?y0l39gJ(-~+1z9eAXvDNC~J z8ov-UHG%z+wG?)K%VDPLDh{jJeVCoueab}YtNH$|G?9nW2|<)=gE6vf_V2$*iOE)@G!mG_yS2Z)Jwr z(e!Ha$6Jy3$<|Sq!g_P1oxUm`ow&b68*92_vDF}!%`n5P@q3y_F)#e0-K;lsXHE!I zn4h|b78=w1p2SLO#~-YJk;le{Dot~8c~T#GU4>b^=`)JI`8r|8+E;Ei;G3Tzw5s@A z&#uB!x)6oU(6Ek!0kRHgu;It4Flz!qr~4HKMqdIQ97Kn_JgT z(8BmdVjNV%wx)#-`7rN7Lvifw%~J2ouN>$}cif~|eR0E4x>4N}!Ai|sDvx__q7Ubo z9lJMfaS=3Mu~5C)PA+;w>g$P(Z+D&)J!Vn#$j%;C^2JvLs4>357)lX2{6ZujyPKL- zvOTjtXm+T?G93I8Q<#s<9(9h7i2oXu-H|jFm6+|he6ZDz@n+*g~_+D&%xj z5ynyfbK}o&PpZ)S`MRX0XFA^4JDkR&_Bjf<0{i5h-0PJVajV+t{7y5X>a^icW`FR- zzn#a!`D@Z_^U&jZH|Nl|@biu8dl6>P`jxgd{2j}9=n{AR$+?XQWkf!7XHCRqC=A+< zsE!lc`9bF*ZCkz*646L55n@kVM?S}YQWZjR+4OFB>2gYL?7q`%}K45Ee>F-uX*UHj~vT!Nv5q_X0Y4ok9-WIZpU zh!Gg4&#Ejl_vho3>VA=H0W`Evpyn~I{P?^xY1Mc7(J|j)XrNFikYZCyIZ7)T8Y;tW z)11gzlTgf~;`+1T0BR3X(AwQsP`K(3EvBvn-Wq!ZWY5>Had(!7K=z7lJW(fn1`-Q8 zM#gNlD~yNM_5&Jk=4;?gh$EtxP4@m2%W1wyyewjW$FsM#_>O7#4_(V8?VkIQvZsG4dBAt zzkO?Yb@4L!*x~6 z-GWk;LbK1YdK<3lewIR-48rZoI$ zgnwquBm~-1-S6!F-f?HGqxl_qD2tqo24CceKOi6=@cOv*sJ7I!bmhnFHtI+@hbwZy zW-CYK%J~nitxLY&GK01>%w7<&z8X`U3)RYIq_y5~7;`I$-Mn=k^*?h?)4=uEpm{37 zq7OF~PmlL6A)Xr={sKYww^~_)qy2UKB)NcP{98nV#0qKb48Ui;dWTR-Ag5 z?r5nIe%<+*D=e{av)&-&w-N8#d)#%iI+-4=?G~w*FfsMN1d{*?CFRn`KoxkgIv!*o z)N9C9%-)y|;ZVP5Eg^wWZuBL1> z>$Saik^$<$R)3M#a``L#ZW)lAH(Q+lzJ{4WNb=UD!>uFwn}8kdRm|o7sCv#6E^bfn z(7*ah`t38L)Trp_cU=J)`Wmi zo)WV&ks3JwC3TXj>B%61ml2Xh#40@6Moe_&+iWJ+8mnA@gr_ zIpd<;`U!b2SNBq<4oZ2W*C z1xsvupFXU=CF12#ZrZJTphbPX1M&0nizi~wp7SA4wH=gs7$8C3Lf0&ppugkp>hQvg z=#VDtzY|jbZ&<0ky1LXL0G*w#d(NQ3I;btIfA`-)_13|1(lFZ*#bq(dSAmz>XG|fo zzm#9BzcyNB!5beKxY8+NgM+#=<`C7XZ6Pdw%rL%0JB6y~ort?YdPW8a8FgP% z36rZ7Ykvu&6x@idKe-6evk4a3r~o)taH!mORi`^(#vGfV~51#{%uo zsWVcSK_VRre|;K3MR*wMuX>qm(W7CW+y#;d$~L3n$B+2*^4HZTLYo)}U7$hgOehHn zt7J6tN`0&1z&9ZsCzpCHg5%fg-WvvZhhAQY3Ooe`g;!-}L(_27z|hby&>ifpb9b%S zyN^VMen;k@nhh)ip%QfIw9OY^k{kwidRuUkegNG)cwk0hX@M-jdP|%Wf3e`hwd45q*`BBu%5|m66l|;IS+y^pj zS+w1@^xQz6#l)O1mMMT+$`~pRbvwJK|55zt#6KJ?H0(@-@*<1WH!`o)OMLd z)I-Rt`q%1SflfUYSbrYEC42xGElT9->*q(q#&+d#3~M8l(V93rnVIylds_eMM9Ha= zeG9UxzxK86KbPYyH~IDLZAy_Ui!lKZfm}j~k6;!NQc|v#ptrTOAaZUL)-;WMzXr9i zi0~lI!#~!yzx%?iFck^N(itk$2mncP2E_lLb?$=t1_r_|lg$D6=s6l7cSIt)40wCt zYRyRIfjbLb%S=y4GwMlxsI8qmI0JQVnIPIkx%mxL27yFgVe}0w01<2nYHO%AJ(xLk zx#N0^bwq1Q|LCwTQM>hS?ZfB>13B_2|B1uesEM=NV4l*?DqBWO@R7{UJ_nluC2MLlYjQU$re^?@p00W%$(9k0uS z>K4jbnM6Lq(idIgU<66{<%aTdtzaDaViR%dHDOdZa9d4^8JDRiv`L1N`^jfW@KjmD zA!fs%uryiHz=*rK8=_z_qi{Fxb~* zprzI0?CmhGUEn5+I6!@h$0B(xkuhihOizUATQN2`I&?VAfj(Sh*^PP1OB&kySJvOa z2IJ_U#`()rpJP`TvpW4^#9|=xJt;Q zsA~YLd^QS@{wEh!28Px`^q0e*u)n{TeIO%)d$yA;dLK+ofS;uvKYjpUqyPK&F-smo z9yJsUGkC}V$_F6IdSjMQv6l6n@CC>$*Q%Y714yVWUX$JFeJ`89unwlG>BEH-Nf>f( z<(CgkPecO*f)G%n&%pO>r~4E5Aa0&DAc%1NFZLVAfY{qhJUg(+(=szL;M7We`4RN= z^t!FD$xyr_xTb1&>X~J#$3W{$9Eja>KlQ+2E%ohF&yf#Zg4ha3% z`S!$kC;AvO0=3J!Pd>k>7YA9*=3dgNk=}p(13wJIWvK-x-sT7)#T^2Kjz3~_JfsGv$FSh zw=mh_+Uwqs;NXAA#9}>KC;rIvQSl#T8XP@tkEPpbfIN?mn4XzQvJkSKM%Es$)qqp( z&11pvz(52dIwpozKwx-@KS}PAPowUyRx(GyTVM#xreyxlakQ@C?QNCn+7kZg+bk@a z!ytj*ot(rDu;{i^gck{Y`DANl3)wJe(jq6+}F3T3|fFp6xtMk zjVJM4GG(A2(ub}93LOhLtOVxdFlho!2kJn7x$I`J!ff_Fz*jr{Hq{(}5?<|q;7ibP z?UPUum`$H|Tm^X#rOze&R>-Sq&sa)89;I1jbCKG8hcLedYB*;v+0^X!@AbhX$me#z zc?RCtwAxw<*n*OOGRP$cf>^2A-b<3o83Q;?)oMHDdoOb66MKmX42qOqk+XgF)j8HL0K4J z(LTZ#7=*YBa!Axk!@C16{%^lKpq;xH9SzOb;??3m(GSdiD53A5JU#SwbTCzNoS*Zf z4)ecicR$cdJqNpSU|1M9f*L;>cKTX`O#*mE$u&ixkptqi>sPN{Ma}Zpq+Dnk`D z0&-tPAouQgw=5( zCBO!OiIj$k2@60G;86?|286tJEDuRAO@W4jHTn@A=w|b#h;#@MuoN{ zK}Y?C?xcg+s3#k+y0FJ&`uJ?;amPK5&2yfyc+B4gIK=6=ris$*Ny*ASR97c&YHqeZ z+%jC5sHa9L=;h?DRmVk6tGu1ocKLk^g%kn9G@*d6ijF%8phl8vwO0ZjCwy`#BB5Lc zt*H+~uEn$!YgWC26-5iZG$?K>x4Q)|zRcPm{P82*aeW+!kp@)hyEayX4o!`(D5>Ji zXq7F>6+B#F$zk=_ugv|}p{2DoU8mjy6q(=F#dL zQ_BAUZ8wncVvkYuEe@C6rt&z@%jdl01z8SSZpjD)+y$M$_lE<(1q4Dz)L^vII)?KS z0yqHh15$wu2goVn4}Q~}@bnU3N6>)kLC*s0{FrjdLd;^FEk=i1b9~m*7~`Jj?mt*8 zQ(+oFI+6ewfU@w`oHlbhrs!a}fEoNncVZC88g=_KrNwzAxxdk@<5NrgTY5d)`0}3r zr5~odlA$Zh_qgACaosy_M4leLoj5f4K(CI;O12>RWqa4@lN5Or_WW8Nc ztn~*tJJ3^1gOGlHTz`JsPLaM@ms1yPTThvYD;JVoVc`tT&CVjc#uS&xLordEAM^ zbQ<49LxAM^O*TNog5S6zqMr(TM-@}ehC2p zfxyqt?yzR z0I7cc^g&{lO9G4V`iTd{LxP$NTVN@lf%jIlMLiK=K8(m={1IFXFMY6`|8_rHE(tZ6 zkdl(FsfPW!bq>i^pDIfLYYYJQ7_R!$t85bihG+U+OHx z$ao1P#|^M_gP;jd3GRBrRQu_VsJb#)_(sK;LxN#piRf;7~!E%3#Fh#D%j`6c{>)s`)EC+%Ye}3@xGh8AQbYO+K z`$7K;j?me`OiUZf{W1fleF+yA0d8(?jF)LU8@zoztKi^;hvD7vTpV7SvC_>7XOzG4 z1RwJ+uL%`Jb08tzo0u3(2u*N`lTCh?oet+>Pes67vpN0c04PqFMqvQGe|{dg1LaKT zby`}sS7|>oLAn4bkT!dRFs-QaZEb? ziRkIT+C7*!vF@qp4Inh%fN5jUm;Uf)wf$}A=b@ZMC##m84_sWTd%KAIAlRWHzIJwQ zhI^hguiY!usCbbYr3e!hUUfpf0TFxVc)eayS@{~kUM~BkXSEwmmjgpWh^m7kXQ1H* zuP2)I|E}=A^Ohp|OaS)K)I|~2y|Og45qiH>XhkyzO-o>U!n+Yr%5|zSM|pWdcmf+J zJg_mlJ zsyqbp?ajM)fvDsG#_*Vt(R({E>GdFUpx#4)($u2}vDJ|ZNyyI*>*MC7r>J`Hv#TRQ z48rqW^3Xxg7jNIb{rS=GGQ*SP*C1ZHT&P|q4oQ#`f->sW7XnG$w~JE(Y_r VpZ~(0gx6Ieq#w#5i^O$b{SO2T+=T!D literal 15051 zcmeHucT`i|_H6(Kq}nJ_RaB&lGyx$f(nLT+dI#y!B(xw+1VjX+E4?Ywd#{Q}hfqWB zLMWjo^pLmXckl1s@Avu}@BQ~2gJDj~J~?OYwdR_0?vSUd3e*%#6c7l6T1oNIGYEtT zL-->n1$(+iX5NGU#9?weFbzjbn7ipK3y6v-%;}{g?4^y_RX2-QE;f!1Li}R5&{DD|8WAp<0~rxF2mox;7iUqDeAgFAhf20Kca8YY#Rtf;-1o@2hTl{&{LkU zq2KBF?Y{1}=S!IdxjX`h>4^eoDWI1Pax;EtzPxJ7H9RjzdHLf=Wwo}xT%J}ruWixu zRupYa9$9YSj|Tv?Kpw6x?<}(n;Yrb_iA_znVc>x81F#5@mL7E|FBp?vds|X^<9f&^-#E*y^27yq? zq>(^OAjGT?2+8^Xf9ikx32d15TR)d{-*_&}?l{(`&87Kla(ClsB)#KF)%Rhok4qMIuWM z1ktG3<9^2BA$ew5DNEhloG@Fk8Lv$GDMSX`$AxUF0oJlxE8p^AO4OYlkC9-bq?5Jy z+{6fE)bb}+0J&51HO&8$XhS_u6VR`GA~x-j*(ATT)WLwYAk=y0NtMS=HpL zP*v%}7hwPDVzk-_U)5wrXJ@A>0}GfJJUK#8%*4#8)|W3|B#uy-vGMWQ0|Nu1?D`rS znI-0Jw!2F`5}WnA!lpmY*pHRUh0^m4Bsw_`M6?Td0e zx0IA&)5&jv#L4}#RNRxXu`&4GnAI=>f%t63XbSG~@mget(?PSs1)AX45e_-!xFYA8 z7Z3=v#8rJVoK+HYxSVQturaBDK-MCVrK}~IKPNgvX58Z#x zkC4cysQFR5F(%Zu=DMz~ZozbFWMu!MGkUDStIDiIXP#pDLi`7&+`!hn;Y_d6A9KaL zUC+>s5{6Q4S>PSs$k{fo4)`f9ZxLQO(XPF@q<`wHFK zbM*>s-77h@U$=;pb)7O+S682FX??A)zkidHv(9j+IsJ4>jxdw=+4V`JgoHGro~x_( zui`W{HC5P)q4E#TS_~O-Ob8Mh4-kdp>w*UkSUz zDTu7{zCD@E;k@{1?|sAJAz{M`)-d@B(-uTp-TIH)*JUf87tKfI=ra$k3Nc=%{) z(+9cOIDoSyXJ6t#V-YTP_pX%8o$<6xAbP}gWZk7qWUAC_hEp$6O zO=4&i&k(cvaeTcTrmkXNE;wW!_a$Nc8`uPa>URZXv~Wh}&Z|>`c2VJ-kK>2ZlJa5n zKZ(vQCT1EF9n8GbAiXf_r-DlVPi0IT29f6hPZ9*Yx~D~0>D_0pQ?U#}5ww4@X#Rn7 znHP61c;rkGiNC2lKfMDfEq^aO@$3`XG?F{?Z9Uf&!N|Ynt98$u1Nl*hMJ)8{H3Si3 z=z`^i8!z=qOoYP|<(?vB|0i{|vVdrdx-f~fJd8~OVm#YvBXbPyls^+WCWtl^4?7|T zTZI|OF=qpDYHN0Xn(B9JuI?<_swCqIX(arAJ78qh=KNbY&71ckk_~<<-uk zATf{YGY|J=)7KgbtIdM}CI|y$AkSS@|7)akS1*vmM&C<~KxV0eCQX_5bV&SMz@8w& z9u{KOO4A4t$h}~3*yt@uAr8LS!Uw~F+r*z1{R(HzTPtcZYGZXzO7S_e31bp@tY78e zn!yN>c!#B3GLvXEsHCllkBzn2o^J&yFoF>L7M7Nx(^b~}*QZ`}@#$4NrPK2pSi7r3 zU{7D;TB3g2Jy+Mv1mQ9zT=CIVm*fr@cY*|0)+Zfpq01y__9*&Je3qd3FI1eqL%+7M zw}rbPgyq@@^iv2rYpK+`y}=iM`dC#}OGzmtH#aw7av#}rsu?A0J9N7)ln8Qukn2`i zLvTuTbmoL(lVR12PhAi#d!aIa&7+l-mGN5FJR@J6tDzUVqINEbd7YmWBJ(8s6Yp~) zqv_e7lnq-yC=-ON!gKTTm>rp=UsrF`@2ZBei0>3b*~8?~yeXU@N95$^KLK+M+=E-) zJ%3qTU0%bHuj8PbRD)SEckUjy5Qip`-Y89oQWchyWjTMG%E-mV72XiX;eXmpLW^>5 zI!<2dP0q_JtbGg$!+5=CnL`6s3%9_IN2H!&I1Sy#EYQ+zy~&bvp{?uu+>nR~%p5-- zuTcTpR5Tq;u!U}%?f$UMudGnbJ6j%Ap=84EA6;KX7NwdOS$U;3ZU17fJ=y6J@jil0 zfl02ialD#WB>Zypj)j$#T~{0*TAEf0rq`~Tc{(+$h3l&}Pw(W>=U?sYeS-W^XH~8K zoMRiOM#brcs_aXzs@f{B>Pum|?@>JMwJGI|!y*aAdEzx2Cr_(gRCF{6?sQ5XJOEFe z_VA^iJIL{Ju9wMjOiFO3)P6q3DSb z`45cOR+_KfrK6)$*#ISUx!h%0m5?5vHR_vM>$csq=KJCWF5gFyCGwM zSeCA z+Di(daS$JdcWe?;=REvvCVHQEL4CekbBtg7`>tlN>(V=!zTPKxCz+S5KtaDdV8DIh zO?$b$)z=1g=Nd&)*hzqkDjJlBvWuqOmx%dF9Ei~89;GQ`Zk*hZR%2vW59zyfHz_pD zy!-^8x=x8jYd_z%z`N|3fJuz!a%l&JJ%J6W}y90Fh{dIoR_?l`HBV6;}(XtT^ zo?51@F|JVj?eh|1PHFuyq&A3d`@1YHD}?H&qV^Ucd&>$A(DD9-Ql(&Ln8+LW*)-E8jck5Xgm*Ig@CsyIo|e@K!qDl&7JB}IFc^=_DV@ryg#5yT zN8kWCIH2kkdj62ggqxW4j=}lh6y3M)u3kr&)?X#nGkA>>pVkkfl}ePJ+{C0m@ME|W zOp|%mn_uMH@l5i4Ve%~sVpe%d+qBlRuBgv)@5rx%G+&+uF8mmrGNJdDagmGh6R1BQ z=rJUQjBp2Tl*Szb=+8VWh4|-YVy5gyo>sv?w3>8|N}^~^Wu;b4O^w9D2O${J(0yg* z6g`u~OF?{{&6-e8A~kApKe@g%ER? z^q38dih==@y|xemb*L9$p|Lx{tQ?^oeeK)@ot`Rqb%Yq*|JiyM(ri>ob_D9mO(nfz z6MqT{igF(uoSN~D4EyUXe~0>Qc|M(D8Smr0VOOLfa%1;Vrg~lIs<^AGtI8=lcVE;V zSufWWGoD!oKyV{h(U9S8{OZz*_GJ6L4_DJ~AO1A5Wu9eOAH)n&X zF;jK!JoKRz$BY`Wv9UK7J?Z%jb3QVaJI+)!rCk%T?jMLaW)eXkg+>7_4x{;tq7N$hLY$Io$@E`OThWQLGOEXi7xQV1a- zp_@uALDY6syVVZ@NLLOPB9Nf|Xc`$6uCK3)re?cuPP@?$3U1nu7iMecYsd{7Sy*PR zj{l(4!-OyV4Z^!0R;-yn)6=uft6E-O7OUZdLXAPphFSDeUTarc2URzCULW+YP64&E_A8Y~ zT)f8Fbz5EcO2VrEs1^ff?kO(6Y-Z|F+Fz{$+Fu$#2&Dl9cJHD2M$kanE%zorR#w*N zOOZnJzh9d)VqDr|GtgouwOD1axXe$&&7?pRH1CUd^=7Li69hrwC(} z6g_`DI3?{C<)`87#FE0nb%czK2v6&4%L@R!(h*rd8YV`RFSH{c1?vHFruKB{(9pK}UTZlA?9!ob!pP`@t%DUu zbr%-i1ydw$=bE?CUhKfYGddcD8{S@%OP6*XU{y|!Cm(S1Xou;O$u^@uVs^eWg%~NN zw9A@b#2OeC;;)jM;k>Yp>IxT7Y@(*)j+evahcgu(o2RiO(kv()Tnh|B+;Ba+6ZbhM zdxAo>@o8f?g*Kjv-g-U!g9|^8_E%>z!p+*JT0om4CC>gCb&ZSu8S52E?Wi&|)q|z| zCb=`U!G;A~%311!i_?-dlsSFNemUDuBdyyAB9UCe&CdTRY7a{)#hc+JNn z1f1&}R~JxUI{J+V@Brfm!UJ>$9eE4$zOZ?o4wt{G$J?Qqm<&M``pH&aWiPwTqr;&e zXJYEV?8(1oYuM$itiOd|gW~zFBUtC-Dd8-I{c{-h*X6y1Pzg6tdcB2xIYqzt^C%jd zBF_0(nN7vamKErMlaV$PrGf;71@ay3`A27JWls>7R;)8y`edIKt69mXGj0=I43=}I z*=}(ohYCx~8YYhs&Hec%gsl5JcKCHF-wYm!iK{Puk||QbQ8e4KYCku1B#LR~W3eiw{~aNaHPw2+3l`h^W2jjfeC5!pDo66Mu1n zvb0lVDMlr|yZY0RkVB_tmG1Oo8IanvQb{1=a%snY+5(vrkS!YGDY8PYdcWaih@YEa z@CJz$eNy|X3+&xF1_&`i{7kJ{@#yVp38n#`8pwHw7ihpdMk5Ub>V*`Fi0_a|!J1nn zUVTsUp!LB8`F_){0u8+Phf*OSCiYa+)Oo5klIhFeWbm^sYOup0NxE~vbRlnJFNfS_ zIVX1Ne&hA5Z}4;+*t~d-hs9y9I-u(2O}T_gHix}WiudvrPXvRd3&+g$ctS07bHClz z?n{vz;<))`DmCKK56~18#BERD!*6q4bXdSWqG?QZ3f;d%5jc5@B3^S^&SaP9o-WXj zT3y{+%Tzo4LgXEx>1HYaqi^0yhkdJ1<}BQB$_JhE&8?2Haq#-dLi$XG{{`_Z{{eU= z$LlRYC3{f`n)_O?1B2d2{8*6Q7*ha9a zFhP5|Qef@g1){6hlkFH;H{OT`@6GOdv1UfN;glnvDyE`OpIuq8IR}MTWX6x4ovjBq zkw0eS0Q&%vKCkle+7y3CQ-w(9AS~vKO^dbhl#h2s_QS{nMI}YsVkX#Ri6@i$6zllW zb~Z)eLkcCb4abkR8S0wou+_}uFA{SH=2*;oSNPsi|#{n(BBunk6c4t@mW1LePHX1yfN2SM9;EO}4)W3TC1oVNYvSbF7vI zM`24oO~^qIa@5q+xkV8Bwv`BffO|3rx-J*j(beKLutov&{8(waW|LxK(q(R)m8!Tm0o^%Yp(xJQhWW*bB3q;JxhZutmP;5y7@a?x>g{+e{9h ziFE3i5hlhG9R;S_C8EBk6QqyxZ8%Wm(`xGWl4vanf`Vt>sB zu@8Mj4r_Ls3!sdzbuHUpn~0Tru-&4~oofqd|F2wf=J%@#@(M1bE^+YMi<;>jAAb76 z$BrIY6+10lZK!yxvQoHvs^)*hj;!k;?F?6QUmHf^^*g4bZnQGX9J}tVaONnyA}|pY zfi1!IY30-85(g4!;WvaApubt8yU=HQ>LRF2P3^C%&2k%qkVHi)u=OXqPje~h)wvb) z-dms&drvg_i`HsWO!ULWlltWkjJa2!wfQX(O`rfCZEUyY0$lwi)i(!+6}&0;<4Ai9 z3Ezr`Vou04Wo2c%Y>M`n80?=UR!Gbb=5HfbW3+e%wSyhgem*yLtQeOGfi5@JN@!{$ zzk$}*_TDJMb{|(RQhV91$)B-EtVrYoD&4(#4?W?!*{~1rrHY71h*Z=?%Y}Azp;+ya zZ(wM4^ig~i%|=yGQH0H4W%4-SE`BdB*BSnF3w(GDWUrW*%g%MT&(Vd+W0xx&R|On> z(sC2NfnxL$mmDhgLC-LLaO3)tEE841>Fae9*_?`0$J#vQtRF%an<@8R4&z_G55YxhP{8Z+j;qifbX-R7msfeWS_CTwOdKc9=Z}g zc(9h)`5&I6r|POY>{ao-bM5yoqG+WsA1hyuWw@@5OGH7Z5tkDbVFI<0~+nnC#;;CVqr|vpn43RT>qw z*uI$*k~Eoa>XqgQq!n7}gEY(Dq#V3L7`_^Y}^WFy`vPpl5p(KYZviJ@*s((1k9jSL^$k@y}Qw1wq1 zgF{u0#y!cBRmy#Xb?%#IV%wpA>u;8>6M;CI9;NK;RvfMfWH|V$9hsWCiF&^bo?L2b z(d6Xht%i2H*H3-zy_c|pTzq^LtqW`BJ3qAqB^&V}vsk!t44}m56l+mQb1AvLbD*$4FE1Q&w1fj#o>J;X`LSq9UUF#Jn=x^T4`)Eda4(3S?>A; zO-g<173zxcBD zH78JbgC+nTpzZ7&2ig8HB5-fbDb@4-+j;%s6obmz4zzVLd+(~k*1;ym6E+S|Cy+Bc zOKA)wg#KOGtYg^_TE<8=vlN~^nr{sSZE3GlUBJ9-AQ{|>pmAC~NSdSB|Lk(aYC;n< zNfMO)W7cL<$jb1n2@NqT`JEBXYEJUDHa4!+EW1y#n|=g251@8U;RQC8X|kdlu12;*}dF=ej7H(;`~qfwkASiMS{42E|{jw zeJw5vG?{CehIm^l*Txrq?gu4SZU4LneP`>?CbdoT7b3#9FH+=Sb_EWj=H4CHJ0K%Y zM$3dO&=0Sxa~ig>z!!tz~A+v11zo6;0B=YI;z2puOm$NMnJx`TYt?w=~t- zAT~HpLe)W;kPvLgZ^88x&xHW}&mv_o&Gy1%A$xxr2~Aq?G(}V8!5p7Y(gcm3ntV<1|-YD|%hOcNtxn9*-`?qqtA21>F_Qk+2)UJO}`QngC z^ZBq-G9~R*1T|eu3)>St9lDr4s-?6COMFx{%TU-D!MwYLqvXs*Adi0B$>6JRfJl zYM_$j;Sd~oZr4NA*K(`rQ9+IM8u@e$^z%0(@f^_@7B|!ODH&B-*~GgM=vx|JX=Xn> zQgx{i`LPE8ZV12VOZhY~7_PxSuz$;xM11Q@z-V+BM`XJQgMCCXT18QJjwNW4`uE}; znBDGZe3DD8R=!Utj}0r)rLQy>?FWPFU^DF6xw*GGwHjq_yh_L`SV_sJ3Yx$Lu}NGs z15+IHv!1!)<@W-(*>o6upPjwbmf3LUKicw_zwP)V2Mz4Qia~Gt;9)1lG7zW&Cn$f< z`l=P_WCIn$=5porNIU-Vgbnes*`H_PncU3VSu0J3MQd|2Yz4x8h~9wLS=tRs^;-*H zkP8d|vKX*De7dD?`tMA3fZ7X-EZfcLuasrhmwiG-7_7r(g880^Z?&$~JDt`UT2upx zdFpUWXtke1ZqDhg{52=W^qrlZpcW{V!#nv*0ADl#H9dA4W^kD3E8+#s5mlRlCV+g9%SeextW>BrFj@*y)rdeG)!`^kTbSel7 zDjmB0^HS~aIQ?=vBtL-|Jz7!o&Aq@Oj~doC9+qP;%!)UHcWhjTq(rxO858?0%FyBf z{X3jj)R-H|p&(l04cI<{OoS!a6TrDSKs|AAS4WTvu&7=XHX40J+RR(Ij}WL^FQqr- zSK?3zANr=AS#H(GW%8jb`7d-y@F5mPyN~qIs6q1k^gP0u< zjo!xup4;_XFxyY%!#~IcNpr=9i@WHh=jXxoZj8*xVfuPL{=Wf5Tzi`AM$;Poi}vqv zHsV>aDxR?quXU7~@i~ZLcXyuQjz34Y(Mz(S;w)@_eYi4SY#LBlv&3ZRI;_chRPz_> z%6jTg%FV-5hOQB~BJ!LvR69>$fALqS-Oxtf;IO#@V7P}Wk=RRht4#oyEU7l+ci0bk zD!cjMCAqn-Yl_xM*8w5DTT$dxX!jxRSQAi{O+GjlFDZqh$`Rla`7C6$I%bussjeQ$ z=Cxiz-_l?&SV1?L0>A;_dI1_x17*Lmq1P+1Qf!6G2(U!Gy!ZMmk-L=HtLz24&u~pu zHg!vUdS8dwrhqC)SH?R$vM~toned)_t1@=eN`4Q)*EP`nSxD2sAphK@Th>6KWuBp*Q8j2udu0GX=_C#a{^z^(~)DrRExA{44B3 zT&6k8IgD(}$?*)nk-$G{RgxqRoiHtK(;-=EYz0(*1|Y{8JEux{ahPnVrn7U&uL$-c z&J>R~cgSk}=#UUSb1z!l>G3AgrB5mwgMlSG{Wu4o^(WK2Z@E5N!XyFvHYG>&p;=27 zQUJJL=<&Lc(lb}r3bxl<-?i8W0YV{WMg5f~t!sw2n(6u=XJXN^8=(vWT0oDj!zT*c zL`}6qK73CXhUm3m!6cnyT7>8=bSgRD(f(MeQ4<1gA|W$4{OueuJ!F;*jG5wq(iO!mec#=Y&a(U6l=|m% zKam}ffD*efIsLd@69e&03#LgkF9pXlgK1`qCyhQW-`q|MkI?xUQ0vJN-1^pu36$u2 z#H>=`@q`UvM^s45e9&X|@Lrfqup{in^u=O*g#h?J>}TxEAm)bTMS$zU+(NGSJZkGK zJ>z#C38o?5TW<$-E|VFX_+O~M&NlRSaZ0Nx7#xo#haC`8ewe*^Mx_4THFv^iNSZeW zLDDP0sq3tF1yUX%Lt7lq_Hpj4!d=G|Z66zhF+L;OnHX&@uF13&XsrQ&yw!%h&AWhK z-ko?T6ur!c8>%iHOvj$5P>LO{NT{;@Oi-vbX=SYL1hbj&3h#!8r$}4Yj;vm*P}pxC zCP7>|1NSRIbW2(ru*yh5k`>a(7&&!4$-?qTzLBL7zIWjU&t{sltIRIEm_UW@pDkqb z>m>(VyI8d$c{%^zWG-L@Sb*W$wB5Cz58vkDPyzDmnNsKB7qMQC5~L6BYSq;FH9=2X zxZRsMo*1?I-k8TaS*Jnn-6v+1i7yFeb4oRLL2WkS8*iy5eOm~ZRBiCuA0cQ93`QQ` zbK=QNE)~8d^9TSQf~7>q)%j3?5rQ?SOQ6X>65lE05zNO7J&&L_#R<&zU8KJ_C)Az&Jp++FvR@L2xylkF!2G?w+ z&1LO?hpqd*NFJ7P+nhpY2*VaHLc?sMYqi-7){KQ75WqsEQs%|I&f09q= z@q86QO>|=*xtG60S$E6Wxe@+5tJaXWZ{e{AIGGJ4>9+ncODlM&tgOrx)2|>V{gqJP z=PY(>!M|JhAJT;W+%q(et3ts&u*K9HbevxFr^YJD9*v-Czw|}_U3r38eh;Z^w7gEu zJf!X7d$(j;iU0>jMDT^69JsCQ$87@dC;q3?E7~SBS(gDY3Bb`6NDN3ndB#mXd>ibd zFFz6bPJzaQjH%_Z8kcOdl23-MkD8}W+wqzf!_&81z60D2%p6Uhy<_c*>Q-6|39^G! zEhi5PO;;)JFsK8dhs-mX-L7olhaAgYkJNJM<8K@bp8jKco2~v^DtBOLvnKR|1uI*? z$dg-`Q&DlcdA#uW_X{gg8$}E%GNY;f(Epd=z0No!hO&_$6XM$TWcs?hV{T|_X;s2~ zfdy{CeEia4CRy|!=SA|z=;U-Mx?w&z3be>C3-EwPiHfQfso`S@{|0xA={vdl*VnY{ zX>M%S?2asTbai!MLG3NGpf0pS&))_iZS&*Pg~~>Lo}WZF-lP3}fb^&oHBw|eGv9b% zzug9Lut9gah^aLV?0LQ{EG50F{?hoewy|;1pc>RL)%Ub!q|h)gT{if!#GN6ZemRB} zpuG}|IjZ;O&PayNDI1{M4ONGs+PZeEGk<)z=Ep4XXV0S8yfNx@^z^F($^x3Ers;R@ z-YvHs=Jp2SXDzyNg52c{leR9&NAmFeSL{;oa;+kx0^sae`4Vq5aEdz?ahjExg0B^D zb8{1d9m3dCVsDq7?3Q5kdRs2r2zaPvoY!}9AdqJ1|A*dc#aDF@NRlQHBY}-K6BvFi zEV5Q>c?3p)^{vK`7h(u31mqw8N7m6=;BF&+@h>xIk}LYqPrjy+uCM^rL+A< zV(z+0g3vr8asDbWD`!bsstl;>u0%1#M8_6_4YOED6A19a5ed!5JUDaD1Xxl2ues7q z?9z}!L)K%Z7PWihcCO<#*(;JWhv7hy&r}v@cutsg$pX|6nY2;36vlnpQ$cLfDd5$s zSFm33WmIVw|6shaPmX4u)(Z4=0gBnE+g$Z0V=FErza#Ts8L>aDd6LKo5uiP3UCL`< z6h7K&p%w8t@c`Uc!S)^)>fy}s^!{@_y;cBqFIidDhAi4K zpewCo=OerUkbVG74D5~@pF}$Lo@W2ck{Uc2Om!tArVzXwM0L?X_Cv&tS9$T|CxbBUqI^ZCC$^Tgl0LmJ}Gf0E~j!VEb zi|Rq4ufQK6+}-G(K(&E}@BJF^TQnXnCDK4way9dS$L^cfrq^mtHjH2%L?P1Q*kSG1 zl$7c8Whz_RhJW|P6?*=gBaR0+;x7Mj#FgV*a|nsxj|sv>3iIQ~LtsXBKTz7;+0kpj z0YE(b4?9)^=uZ9xR~KcP@ck{6!T_Aw6|rNE+?oG~*-(kgsE|>fM%cFgaqe}q*V@XZ>Zk?@l@D5T#K0QeviPy@Pg!;7Ne z<;O-YJqv*lpkrG9UwoNp5WKtexd!tv*yN9=YMuiNMwkfJcM!Zv3Kn0KZJ(-Y)q;%> z%?&@=VtZD1{h6^bF z0A}DO?doyhNg(zc_oZUv;%sq8SPATqh9U2lreP#;FpA+Zb#fya%{p?GRq15nmOGQ z^WN#;1kduJ`6uOP^727G+o8ta8XJv(sfj-h@iN}fO*a(yc>(DFl85?unNXaySl%Z+c#xX3q`jhiS}L*>+CmU3>H$8*VB|;7@k-CmEW;RhCa=Yx z9=i^zh}j_09ylvjcU5yZ1R*;U}IC0JFN*-4gT z{uAL4YF>VH1XoFwHY9`#NH>%GG~rL9CeF$rLF$zvc!YhxViDV|+3x_fApr+)QwhBH zKWie=0XHD2o7Ftg1eBiYIa2gQm74pMD}xj)Q3`{QCH$a~0)3)STF!ixd1W)FMn5;9d^$u)mzJDsk?vndjNK)OMpj8 zN=jXhD&M2;{7yG!%=^Q>TYpHVP?BaqQnC#s5o9eK@7 z9ieolw&h}p_G?1M1R0Q&hUFW`nB1J4oJ2QeUvInyD`)uNw}J8R=xD7-5ZJ=IUosKLr+=ejDx?}1s&BHQo_qkwv*cC!0tj(kutdVL zC*jK_wfiN`GyE49^2>S$HhuA41;$NAfq{W48~RN?-V5d?ssBbbEcLM7_1sz1a-0EF z4Z#pdFmy|K?LAMG_GaO~BJm!~>P29|>IbVWL`<3?1$q^af$hwJq2o3dizWEov4kZx z=zc+ng!#Cm~xM(RU;eM-#0=D@qIuZDKt!g`Zf}lEkvtI zD1iuAooQ;Kprot-5l0`9Dr%nq44*fYz$&xO-d=~Drt0x=y@rGNP_QEGy($z3V+B;4 u#NMd6E5S$#5a&}Bl`y_dcA4c9-&os;d(OfM-@w9Bh?1P@qr!(KZ~hArLu%^) diff --git a/formats.html b/formats.html index f14d9269e..145b7b425 100644 --- a/formats.html +++ b/formats.html @@ -3,7 +3,7 @@ - + Formats (datascience.formats) — datascience 0.17.6 documentation diff --git a/index.html b/index.html index 0801987c1..778db151f 100644 --- a/index.html +++ b/index.html @@ -3,7 +3,7 @@ - + Welcome to datascience’s documentation! — datascience 0.17.6 documentation @@ -47,7 +47,7 @@

Welcome to datascience’s documentation!

0.17.6

Date:
-

Sep 24, 2023

+

Nov 29, 2023

The datascience package was written for use in Berkeley’s DS 8 course and diff --git a/maps.html b/maps.html index e3fd2f6d3..fd3815a0c 100644 --- a/maps.html +++ b/maps.html @@ -3,7 +3,7 @@ - + Maps (datascience.maps) — datascience 0.17.6 documentation diff --git a/predicates.html b/predicates.html index 70aaafc45..c72cbf167 100644 --- a/predicates.html +++ b/predicates.html @@ -3,7 +3,7 @@ - + Predicates (datascience.predicates) — datascience 0.17.6 documentation diff --git a/reference-nb/datascience-reference.html b/reference-nb/datascience-reference.html index 32749a82a..40ebf45d2 100644 --- a/reference-nb/datascience-reference.html +++ b/reference-nb/datascience-reference.html @@ -3,7 +3,7 @@ - + Data 8 datascience Reference — datascience 0.17.6 documentation diff --git a/searchindex.js b/searchindex.js index d56700f16..48370568b 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["_autosummary/datascience.tables.Table.__init__", "_autosummary/datascience.tables.Table.append", "_autosummary/datascience.tables.Table.append_column", "_autosummary/datascience.tables.Table.apply", "_autosummary/datascience.tables.Table.as_html", "_autosummary/datascience.tables.Table.as_text", "_autosummary/datascience.tables.Table.bar", "_autosummary/datascience.tables.Table.barh", "_autosummary/datascience.tables.Table.bin", "_autosummary/datascience.tables.Table.boxplot", "_autosummary/datascience.tables.Table.column", "_autosummary/datascience.tables.Table.column_index", "_autosummary/datascience.tables.Table.columns", "_autosummary/datascience.tables.Table.copy", "_autosummary/datascience.tables.Table.drop", "_autosummary/datascience.tables.Table.exclude", "_autosummary/datascience.tables.Table.first", "_autosummary/datascience.tables.Table.from_array", "_autosummary/datascience.tables.Table.from_columns_dict", "_autosummary/datascience.tables.Table.from_df", "_autosummary/datascience.tables.Table.from_records", "_autosummary/datascience.tables.Table.group", "_autosummary/datascience.tables.Table.group_bar", "_autosummary/datascience.tables.Table.group_barh", "_autosummary/datascience.tables.Table.groups", "_autosummary/datascience.tables.Table.hist", "_autosummary/datascience.tables.Table.hist_of_counts", "_autosummary/datascience.tables.Table.index_by", "_autosummary/datascience.tables.Table.interactive_plots", "_autosummary/datascience.tables.Table.join", "_autosummary/datascience.tables.Table.labels", "_autosummary/datascience.tables.Table.last", "_autosummary/datascience.tables.Table.move_column", "_autosummary/datascience.tables.Table.move_to_end", "_autosummary/datascience.tables.Table.move_to_start", "_autosummary/datascience.tables.Table.num_columns", "_autosummary/datascience.tables.Table.num_rows", "_autosummary/datascience.tables.Table.percentile", "_autosummary/datascience.tables.Table.pivot", "_autosummary/datascience.tables.Table.pivot_bin", "_autosummary/datascience.tables.Table.pivot_hist", "_autosummary/datascience.tables.Table.plot", "_autosummary/datascience.tables.Table.read_table", "_autosummary/datascience.tables.Table.relabel", "_autosummary/datascience.tables.Table.relabeled", "_autosummary/datascience.tables.Table.remove", "_autosummary/datascience.tables.Table.row", "_autosummary/datascience.tables.Table.rows", "_autosummary/datascience.tables.Table.sample", "_autosummary/datascience.tables.Table.sample_from_distribution", "_autosummary/datascience.tables.Table.scatter", "_autosummary/datascience.tables.Table.scatter3d", "_autosummary/datascience.tables.Table.select", "_autosummary/datascience.tables.Table.set_format", "_autosummary/datascience.tables.Table.show", "_autosummary/datascience.tables.Table.shuffle", "_autosummary/datascience.tables.Table.sort", "_autosummary/datascience.tables.Table.split", "_autosummary/datascience.tables.Table.stack", "_autosummary/datascience.tables.Table.static_plots", "_autosummary/datascience.tables.Table.stats", "_autosummary/datascience.tables.Table.take", "_autosummary/datascience.tables.Table.to_array", "_autosummary/datascience.tables.Table.to_csv", "_autosummary/datascience.tables.Table.to_df", "_autosummary/datascience.tables.Table.values", "_autosummary/datascience.tables.Table.where", "_autosummary/datascience.tables.Table.with_column", "_autosummary/datascience.tables.Table.with_columns", "_autosummary/datascience.tables.Table.with_row", "_autosummary/datascience.tables.Table.with_rows", "formats", "index", "maps", "predicates", "reference-nb/datascience-reference", "tables", "tutorial", "util"], "filenames": ["_autosummary/datascience.tables.Table.__init__.rst", "_autosummary/datascience.tables.Table.append.rst", "_autosummary/datascience.tables.Table.append_column.rst", "_autosummary/datascience.tables.Table.apply.rst", "_autosummary/datascience.tables.Table.as_html.rst", "_autosummary/datascience.tables.Table.as_text.rst", "_autosummary/datascience.tables.Table.bar.rst", "_autosummary/datascience.tables.Table.barh.rst", "_autosummary/datascience.tables.Table.bin.rst", "_autosummary/datascience.tables.Table.boxplot.rst", "_autosummary/datascience.tables.Table.column.rst", "_autosummary/datascience.tables.Table.column_index.rst", "_autosummary/datascience.tables.Table.columns.rst", "_autosummary/datascience.tables.Table.copy.rst", "_autosummary/datascience.tables.Table.drop.rst", "_autosummary/datascience.tables.Table.exclude.rst", "_autosummary/datascience.tables.Table.first.rst", "_autosummary/datascience.tables.Table.from_array.rst", "_autosummary/datascience.tables.Table.from_columns_dict.rst", "_autosummary/datascience.tables.Table.from_df.rst", "_autosummary/datascience.tables.Table.from_records.rst", "_autosummary/datascience.tables.Table.group.rst", "_autosummary/datascience.tables.Table.group_bar.rst", "_autosummary/datascience.tables.Table.group_barh.rst", "_autosummary/datascience.tables.Table.groups.rst", "_autosummary/datascience.tables.Table.hist.rst", "_autosummary/datascience.tables.Table.hist_of_counts.rst", "_autosummary/datascience.tables.Table.index_by.rst", "_autosummary/datascience.tables.Table.interactive_plots.rst", "_autosummary/datascience.tables.Table.join.rst", "_autosummary/datascience.tables.Table.labels.rst", "_autosummary/datascience.tables.Table.last.rst", "_autosummary/datascience.tables.Table.move_column.rst", "_autosummary/datascience.tables.Table.move_to_end.rst", "_autosummary/datascience.tables.Table.move_to_start.rst", "_autosummary/datascience.tables.Table.num_columns.rst", "_autosummary/datascience.tables.Table.num_rows.rst", "_autosummary/datascience.tables.Table.percentile.rst", "_autosummary/datascience.tables.Table.pivot.rst", "_autosummary/datascience.tables.Table.pivot_bin.rst", "_autosummary/datascience.tables.Table.pivot_hist.rst", "_autosummary/datascience.tables.Table.plot.rst", "_autosummary/datascience.tables.Table.read_table.rst", "_autosummary/datascience.tables.Table.relabel.rst", "_autosummary/datascience.tables.Table.relabeled.rst", "_autosummary/datascience.tables.Table.remove.rst", "_autosummary/datascience.tables.Table.row.rst", "_autosummary/datascience.tables.Table.rows.rst", "_autosummary/datascience.tables.Table.sample.rst", "_autosummary/datascience.tables.Table.sample_from_distribution.rst", "_autosummary/datascience.tables.Table.scatter.rst", "_autosummary/datascience.tables.Table.scatter3d.rst", "_autosummary/datascience.tables.Table.select.rst", "_autosummary/datascience.tables.Table.set_format.rst", "_autosummary/datascience.tables.Table.show.rst", "_autosummary/datascience.tables.Table.shuffle.rst", "_autosummary/datascience.tables.Table.sort.rst", "_autosummary/datascience.tables.Table.split.rst", "_autosummary/datascience.tables.Table.stack.rst", "_autosummary/datascience.tables.Table.static_plots.rst", "_autosummary/datascience.tables.Table.stats.rst", "_autosummary/datascience.tables.Table.take.rst", "_autosummary/datascience.tables.Table.to_array.rst", "_autosummary/datascience.tables.Table.to_csv.rst", "_autosummary/datascience.tables.Table.to_df.rst", "_autosummary/datascience.tables.Table.values.rst", "_autosummary/datascience.tables.Table.where.rst", "_autosummary/datascience.tables.Table.with_column.rst", "_autosummary/datascience.tables.Table.with_columns.rst", "_autosummary/datascience.tables.Table.with_row.rst", "_autosummary/datascience.tables.Table.with_rows.rst", "formats.rst", "index.rst", "maps.rst", "predicates.rst", "reference-nb/datascience-reference.ipynb", "tables.rst", "tutorial.rst", "util.rst"], "titles": ["datascience.tables.Table.__init__", "datascience.tables.Table.append", "datascience.tables.Table.append_column", "datascience.tables.Table.apply", "datascience.tables.Table.as_html", "datascience.tables.Table.as_text", "datascience.tables.Table.bar", "datascience.tables.Table.barh", "datascience.tables.Table.bin", "datascience.tables.Table.boxplot", "datascience.tables.Table.column", "datascience.tables.Table.column_index", "datascience.tables.Table.columns", "datascience.tables.Table.copy", "datascience.tables.Table.drop", "datascience.tables.Table.exclude", "datascience.tables.Table.first", "datascience.tables.Table.from_array", "datascience.tables.Table.from_columns_dict", "datascience.tables.Table.from_df", "datascience.tables.Table.from_records", "datascience.tables.Table.group", "datascience.tables.Table.group_bar", "datascience.tables.Table.group_barh", "datascience.tables.Table.groups", "datascience.tables.Table.hist", "datascience.tables.Table.hist_of_counts", "datascience.tables.Table.index_by", "datascience.tables.Table.interactive_plots", "datascience.tables.Table.join", "datascience.tables.Table.labels", "datascience.tables.Table.last", "datascience.tables.Table.move_column", "datascience.tables.Table.move_to_end", "datascience.tables.Table.move_to_start", "datascience.tables.Table.num_columns", "datascience.tables.Table.num_rows", "datascience.tables.Table.percentile", "datascience.tables.Table.pivot", "datascience.tables.Table.pivot_bin", "datascience.tables.Table.pivot_hist", "datascience.tables.Table.plot", "datascience.tables.Table.read_table", "datascience.tables.Table.relabel", "datascience.tables.Table.relabeled", "datascience.tables.Table.remove", "datascience.tables.Table.row", "datascience.tables.Table.rows", "datascience.tables.Table.sample", "datascience.tables.Table.sample_from_distribution", "datascience.tables.Table.scatter", "datascience.tables.Table.scatter3d", "datascience.tables.Table.select", "datascience.tables.Table.set_format", "datascience.tables.Table.show", "datascience.tables.Table.shuffle", "datascience.tables.Table.sort", "datascience.tables.Table.split", "datascience.tables.Table.stack", "datascience.tables.Table.static_plots", "datascience.tables.Table.stats", "datascience.tables.Table.take", "datascience.tables.Table.to_array", "datascience.tables.Table.to_csv", "datascience.tables.Table.to_df", "datascience.tables.Table.values", "datascience.tables.Table.where", "datascience.tables.Table.with_column", "datascience.tables.Table.with_columns", "datascience.tables.Table.with_row", "datascience.tables.Table.with_rows", "Formats (datascience.formats)", "Welcome to datascience\u2019s documentation!", "Maps (datascience.maps)", "Predicates (datascience.predicates)", "Data 8 datascience Reference", "Tables (datascience.tables)", "Start Here: datascience Tutorial", "Utility Functions (datascience.util)"], "terms": {"label": [0, 2, 3, 6, 7, 8, 10, 11, 14, 16, 18, 21, 24, 27, 29, 31, 32, 37, 38, 41, 43, 44, 50, 51, 52, 53, 58, 66, 67, 68, 71, 73, 77, 78], "none": [0, 2, 6, 7, 9, 21, 24, 25, 26, 29, 38, 39, 41, 48, 50, 51, 58, 62, 63, 64, 66, 67, 71, 73, 78], "formatt": [0, 2, 53, 67, 68, 71], "format": [0, 4, 5, 53, 68, 72, 73], "object": [0, 13, 29, 47, 54, 65, 73, 75, 77], "sourc": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 78], "creat": [0, 6, 7, 18, 20, 22, 23, 25, 29, 38, 41, 50, 51, 63, 72, 75, 76, 78], "an": [0, 1, 3, 8, 10, 14, 20, 33, 34, 39, 48, 53, 56, 62, 64, 66, 67, 68, 69, 71, 72, 73, 75, 78], "empti": [0, 8, 20, 21, 24, 29, 66, 75, 77], "column": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 49, 50, 51, 52, 53, 56, 58, 60, 61, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78], "tile": [0, 10, 44, 65, 69, 70], "make_arrai": [0, 1, 2, 3, 7, 9, 10, 13, 14, 15, 21, 24, 25, 26, 27, 28, 29, 32, 33, 34, 37, 38, 41, 43, 44, 45, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 78], "letter": [0, 2, 3, 10, 11, 12, 15, 16, 30, 31, 36, 44, 47, 61, 62, 65, 67, 69, 70, 77], "count": [0, 2, 3, 5, 7, 8, 10, 11, 12, 16, 21, 22, 23, 24, 25, 26, 30, 31, 36, 37, 38, 39, 44, 47, 49, 62, 65, 67, 69, 70, 75, 77, 78], "point": [0, 2, 3, 11, 12, 16, 22, 23, 25, 26, 30, 31, 36, 37, 43, 47, 50, 62, 69, 70, 73, 77], "arg": [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 27, 29, 31, 32, 38, 39, 41, 42, 43, 44, 48, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "list": [0, 2, 10, 14, 15, 20, 24, 25, 27, 38, 45, 47, 58, 61, 67, 68, 73, 75, 76, 77, 78], "string": [0, 2, 4, 5, 14, 21, 25, 42, 67, 68, 71, 72, 73, 74], "The": [0, 1, 2, 3, 4, 5, 8, 9, 10, 14, 15, 21, 22, 23, 24, 25, 26, 27, 33, 34, 37, 39, 42, 43, 44, 45, 49, 51, 52, 53, 57, 58, 61, 62, 63, 64, 67, 68, 72, 73, 74, 75, 77, 78], "instanc": [0, 10, 14, 15, 48, 52, 53, 55, 56, 57, 61, 78], "valu": [0, 2, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 21, 22, 23, 24, 25, 26, 27, 29, 31, 36, 37, 38, 39, 41, 49, 50, 51, 53, 54, 56, 58, 60, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78], "row_or_t": 1, "row": [1, 2, 3, 4, 5, 15, 21, 24, 25, 26, 27, 29, 36, 37, 38, 39, 42, 45, 48, 49, 54, 55, 56, 57, 61, 62, 66, 67, 68, 69, 70, 73, 74, 75, 77], "all": [1, 8, 21, 24, 25, 26, 29, 39, 41, 47, 50, 51, 53, 55, 58, 65, 68, 73, 75, 77, 78], "place": [1, 25, 43, 44, 45, 60, 64, 75, 76], "must": [1, 2, 3, 6, 7, 9, 14, 26, 41, 43, 44, 48, 50, 51, 53, 57, 58, 66, 67, 68, 70, 73, 75, 76, 78], "have": [1, 2, 20, 48, 53, 65, 67, 68, 71, 73, 75, 76, 78], "self": [1, 29, 41, 50, 51, 53, 65], "follow": [1, 4, 5, 8, 13, 24, 33, 34, 39, 45, 53, 62, 73, 74, 75, 76, 77], "exampl": [1, 4, 5, 11, 12, 13, 16, 17, 19, 20, 27, 30, 31, 33, 34, 36, 39, 42, 45, 47, 53, 54, 58, 62, 64, 65, 66, 72, 73, 74, 75], "record": [1, 20], "with_column": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 73, 74, 77], "A": [1, 6, 7, 9, 13, 15, 17, 20, 21, 24, 25, 26, 27, 32, 33, 34, 41, 45, 48, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 66, 68, 69, 73, 74, 75, 77, 78], "1": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 48, 50, 51, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 73, 75, 76, 77, 78], "b": [1, 2, 3, 9, 11, 12, 13, 15, 16, 17, 19, 25, 26, 27, 29, 30, 31, 33, 34, 36, 39, 45, 47, 48, 54, 57, 58, 60, 61, 62, 63, 77], "foo": [1, 13, 33, 34, 45, 60, 76, 78], "c": [1, 2, 3, 9, 10, 11, 12, 16, 19, 27, 29, 30, 31, 33, 34, 36, 39, 44, 45, 47, 48, 54, 57, 58, 60, 62, 63, 65, 67, 69, 70, 77], "2": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 54, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "bar": [1, 7, 13, 22, 23, 25, 26, 33, 34, 40, 45, 60, 75, 78], "3": [1, 2, 3, 9, 11, 12, 13, 15, 16, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 50, 51, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 69, 70, 75, 77, 78], "4": [1, 2, 9, 10, 15, 21, 24, 28, 29, 33, 34, 36, 39, 40, 41, 42, 44, 45, 50, 51, 56, 59, 60, 61, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78], "baz": [1, 33, 34, 45, 60], "bat": [1, 33, 34, 45], "d": [1, 9, 10, 29, 33, 34, 44, 45, 48, 57, 63, 65, 67, 69, 70, 71, 72, 75], "append": [2, 13], "replac": [2, 43, 44, 48, 49, 67, 68, 73], "__setitem__": 2, "i": [2, 3, 4, 5, 6, 7, 8, 10, 13, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 34, 37, 38, 39, 41, 43, 45, 48, 50, 51, 53, 54, 57, 58, 60, 61, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78], "alias": 2, "thi": [2, 9, 13, 22, 23, 25, 26, 28, 33, 34, 50, 51, 53, 58, 59, 60, 65, 68, 71, 73, 75, 76, 77, 78], "method": [2, 4, 5, 22, 23, 53, 64, 71, 72, 73, 76, 77, 78], "new_col": 2, "equival": [2, 10, 28, 29, 59, 66, 68, 75], "str": [2, 3, 5, 6, 7, 8, 10, 11, 16, 22, 23, 31, 32, 38, 41, 43, 44, 50, 51, 52, 53, 63, 66, 67, 68, 73], "new": [2, 13, 15, 19, 25, 29, 32, 37, 38, 39, 44, 48, 49, 52, 53, 55, 58, 61, 66, 67, 68, 73, 75, 76, 77, 78], "singl": [2, 32, 38, 43, 53, 66, 67, 68, 75], "arrai": [2, 3, 10, 12, 17, 21, 26, 29, 41, 43, 44, 48, 53, 61, 62, 65, 66, 67, 68, 70, 72, 77, 78], "If": [2, 3, 8, 20, 21, 24, 25, 26, 29, 39, 45, 51, 53, 54, 58, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "everi": [2, 6, 7, 9, 41, 50, 51, 66, 67, 68, 75], "contain": [2, 3, 6, 7, 8, 9, 13, 21, 24, 27, 29, 37, 39, 41, 47, 52, 56, 57, 62, 66, 72, 74, 77, 78], "which": [2, 4, 5, 22, 23, 27, 48, 58, 60, 75, 77], "same": [2, 9, 20, 25, 26, 37, 44, 48, 49, 51, 53, 63, 65, 67, 68, 71, 73, 75, 77, 78], "length": [2, 43, 44, 48, 53, 61, 67, 68, 69, 70, 75, 78], "add": [2, 25, 26, 73, 75, 77, 78], "being": [2, 4, 53, 68, 73, 75], "No": 2, "ad": [2, 50, 68, 75, 77], "default": [2, 5, 8, 13, 25, 26, 29, 38, 39, 48, 53, 60, 67, 73, 75, 78], "return": [2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 77, 78], "origin": [2, 8, 13, 21, 24, 25, 33, 34, 37, 43, 44, 48, 52, 53, 55, 58, 67, 68, 75, 76, 77], "rais": [2, 3, 7, 9, 10, 38, 41, 43, 44, 48, 50, 51, 52, 57, 61, 67, 68, 69, 70], "valueerror": [2, 3, 7, 9, 10, 41, 43, 44, 48, 50, 51, 57, 67, 68, 69, 70, 78], "doe": [2, 13, 21, 24, 44, 48, 53, 67, 68, 74, 76, 78], "number": [2, 3, 4, 5, 8, 15, 17, 22, 23, 25, 26, 35, 36, 37, 39, 44, 45, 48, 49, 52, 54, 57, 67, 68, 71, 75, 77, 78], "z": [2, 3, 11, 12, 16, 30, 31, 36, 47, 50, 62, 74, 77], "9": [2, 3, 4, 5, 11, 12, 16, 21, 24, 25, 26, 27, 29, 30, 31, 36, 37, 39, 42, 47, 50, 51, 56, 60, 62, 64, 66, 73, 75, 77, 78], "10": [2, 3, 7, 8, 11, 12, 16, 25, 26, 29, 30, 31, 36, 37, 39, 47, 48, 50, 51, 52, 57, 60, 61, 62, 63, 75, 77], "new_col1": 2, "20": [2, 4, 5, 7, 39, 48, 50, 57, 60, 63, 64, 66, 68, 75, 77], "30": [2, 7, 21, 24, 39, 56, 66, 74, 75, 77], "40": [2, 21, 24, 32, 38, 56, 75, 77], "new_col2": 2, "hello": [2, 76], "123": [2, 43, 75], "traceback": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "most": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68, 77], "recent": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "call": [2, 3, 9, 19, 28, 38, 43, 44, 48, 51, 53, 59, 61, 62, 63, 67, 68, 74, 75, 76, 78], "last": [2, 3, 9, 33, 38, 43, 44, 48, 61, 67, 68, 73, 75, 77], "int": [2, 3, 4, 5, 8, 10, 22, 23, 25, 26, 32, 38, 39, 45, 48, 51, 52, 53, 57, 66, 67, 68, 71, 73, 78], "wa": [2, 53, 67, 68, 72, 73, 75, 77], "given": [2, 3, 8, 14, 22, 23, 39, 52, 67, 68, 74, 78], "bad_col": [2, 67], "mismatch": [2, 67, 68], "fn": 3, "column_or_column": [3, 14, 52, 53, 75], "each": [3, 6, 7, 8, 12, 21, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 48, 50, 51, 53, 60, 69, 70, 71, 73, 75, 76, 78], "element": [3, 44, 75, 78], "provid": [3, 8, 21, 24, 38, 39, 50, 51, 63, 73, 75, 78], "function": [3, 8, 21, 24, 38, 53, 54, 58, 60, 66, 68, 71, 72, 73, 74, 77], "argument": [3, 4, 5, 6, 7, 8, 9, 19, 21, 22, 23, 24, 25, 26, 27, 39, 41, 42, 43, 50, 51, 53, 58, 66, 73, 75, 76, 78], "either": [3, 25, 26, 52, 66, 73, 78], "indic": [3, 8, 14, 15, 24, 38, 52, 53, 61, 73, 75], "match": [3, 25, 26, 29, 38, 66, 73], "expect": [3, 78], "column_label": [3, 22, 23, 29, 33, 34, 43], "exist": [3, 14, 38, 44, 67, 68, 75], "typeerror": [3, 38, 43], "insuffici": 3, "pass": [3, 4, 6, 7, 9, 22, 23, 25, 26, 38, 41, 50, 51, 53, 54, 58, 68, 73, 75, 77, 78], "consist": [3, 58], "result": [3, 8, 21, 24, 29, 39, 62, 65, 73, 75, 77, 78], "specifi": [3, 7, 11, 22, 23, 24, 25, 26, 27, 32, 38, 39, 43, 44, 48, 54, 67, 73, 75, 76, 78], "t": [3, 7, 11, 12, 14, 15, 16, 17, 19, 20, 21, 25, 26, 27, 30, 31, 36, 39, 47, 54, 58, 62, 65, 73, 74, 75, 77], "lambda": 3, "x": [3, 6, 28, 41, 50, 51, 59, 60, 75, 77], "0": [3, 4, 5, 8, 11, 14, 15, 19, 25, 28, 32, 38, 39, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 61, 64, 66, 68, 71, 72, 73, 75, 77, 78], "y": [3, 7, 26, 50, 51, 71, 74, 75, 77], "6": [3, 4, 5, 7, 14, 21, 24, 27, 29, 39, 40, 42, 50, 51, 52, 54, 56, 58, 60, 61, 64, 66, 68, 72, 73, 75, 77], "take": [3, 21, 53, 58, 67, 68, 73, 77, 78], "posit": [3, 50, 73], "were": [3, 75], "whole": [3, 25], "ar": [3, 4, 5, 7, 8, 13, 22, 23, 24, 25, 26, 27, 38, 39, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 65, 66, 73, 74, 76, 77], "18": [3, 53, 60, 75, 77], "max_row": [4, 5, 54], "html": [4, 6, 7, 9, 22, 23, 25, 26, 41, 50, 54, 73], "maximum": [4, 5, 54, 60, 75], "present": [4, 5, 75], "convert": [4, 5, 17, 19, 53, 62, 64, 71, 77], "option": [4, 5, 25, 26, 50, 66, 73, 76, 77], "repres": [4, 26, 71, 73, 77, 78], "form": [4, 5, 39, 75, 78], "can": [4, 6, 7, 8, 9, 22, 23, 25, 26, 28, 39, 41, 50, 53, 59, 60, 63, 64, 66, 73, 74, 75, 76, 77], "us": [4, 6, 7, 20, 25, 26, 29, 38, 40, 41, 50, 51, 53, 56, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 77, 78], "websit": 4, "few": [4, 5, 25, 26, 78], "These": [4, 9, 25, 26, 75], "seem": 4, "difficult": 4, "u": [4, 77], "observ": 4, "understand": 4, "sinc": [4, 75], "thei": [4, 25, 26, 49, 73], "when": [4, 10, 13, 25, 26, 66, 68, 73], "you": [4, 40, 53, 73, 75, 76, 77], "want": [4, 40, 73, 75, 77], "displai": [4, 6, 7, 22, 23, 41, 50, 51, 54, 72, 73, 75, 76, 77], "webpag": 4, "simpl": [4, 38, 77, 78], "name": [4, 5, 8, 14, 17, 20, 22, 23, 24, 25, 26, 27, 39, 43, 50, 52, 53, 58, 60, 63, 64, 67, 68, 73, 74, 75, 76, 77, 78], "abc": [4, 5, 64], "xyz": [4, 5, 64], "uvw": [4, 5, 64], "ag": [4, 5, 32, 38, 64, 77], "12": [4, 5, 21, 24, 56, 64, 66, 75, 77], "14": [4, 5, 64, 75, 77], "height": [4, 5, 6, 22, 23, 25, 26, 40, 41, 50, 51, 64, 73, 77], "5": [4, 5, 9, 14, 25, 26, 27, 28, 29, 39, 41, 42, 48, 50, 51, 52, 54, 58, 59, 60, 64, 66, 73, 75, 77, 78], "table_as_html": 4, "border": 4, "class": [4, 5, 53, 64, 71, 73, 74, 77], "datafram": [4, 19, 64, 77], "n": [4, 5, 8, 68, 70, 75], "thead": 4, "tr": 4, "th": 4, "tbodi": 4, "td": 4, "table_as_html_2": 4, "p": [4, 37, 48, 78], "omit": [4, 5, 39, 42, 56, 75, 77], "sep": [5, 72], "text": [5, 50, 51, 73, 77], "seper": 5, "appear": [5, 21, 24, 29, 75, 77], "between": [5, 25, 57, 73, 74, 77, 78], "just": [5, 21, 64, 75, 77], "table_astext": 5, "nabc": 5, "nxyz": 5, "nuvw": 5, "type": [5, 21, 24, 37, 64, 67, 68, 73, 75, 77, 78], "size": [5, 23, 26, 48, 49, 50, 51, 61, 73, 74, 75, 77, 78], "with_row": [5, 49], "small": [5, 49], "50": [5, 28, 41, 49, 59, 75, 77], "medium": [5, 49], "100": [5, 9, 39, 49, 75, 77], "big": [5, 49], "sizes_astext": 5, "nsmall": 5, "nmedium": 5, "nbig": 5, "column_for_categori": [6, 7], "select": [6, 7, 14, 41, 50, 51, 60, 61, 66, 77], "overlai": [6, 7, 22, 23, 25, 26, 40, 41, 50, 51, 73, 77], "true": [6, 7, 8, 13, 25, 26, 39, 40, 41, 48, 49, 50, 51, 53, 56, 66, 73, 75, 77], "width": [6, 7, 8, 22, 23, 25, 26, 39, 40, 41, 50, 51, 73, 75], "varg": [6, 7, 8, 9, 22, 23, 25, 26, 39, 40, 41, 42, 50, 51, 71, 78], "plot": [6, 7, 9, 22, 23, 25, 26, 28, 50, 51, 59, 77, 78], "chart": [6, 7, 22, 23, 25, 26, 41, 50, 51, 75], "one": [6, 7, 21, 22, 23, 24, 25, 26, 29, 37, 41, 50, 51, 53, 68, 73, 75, 77, 78], "produc": [6, 7, 22, 23, 41, 50, 75], "other": [6, 7, 14, 21, 24, 25, 26, 29, 41, 50, 51, 66, 73, 75, 77, 78], "design": [6, 7, 41, 50], "except": [6, 7, 75], "numer": [6, 7, 9, 41, 50, 51, 60, 78], "axi": [6, 7, 26, 28, 41, 50, 51, 59, 61, 75], "categori": [6, 7, 22, 23, 25, 26, 40, 50, 51, 75, 77], "kwarg": [6, 7, 9, 22, 23, 25, 26, 29, 41, 50, 51, 73], "bool": [6, 7, 8, 22, 23, 25, 26, 39, 41, 48, 50, 51, 75, 77], "color": [6, 7, 21, 22, 23, 24, 25, 26, 41, 50, 51, 56, 66, 73, 75], "per": [6, 7, 8, 22, 23, 39, 41, 50, 51, 60, 70, 75], "data": [6, 7, 17, 19, 20, 22, 23, 25, 26, 27, 41, 42, 46, 50, 51, 58, 65, 72, 73], "fals": [6, 7, 8, 13, 19, 22, 23, 25, 26, 39, 41, 49, 50, 51, 53, 56, 71, 73, 75, 77, 78], "separ": [6, 7, 22, 23, 25, 26, 41, 50, 51, 71, 75], "addit": [6, 7, 9, 22, 23, 25, 26, 41, 50, 51, 66, 67, 68, 69, 70, 73, 77], "get": [6, 7, 9, 22, 23, 25, 26, 41, 50, 72, 75, 76], "plt": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "see": [6, 7, 9, 22, 23, 25, 26, 41, 46, 50, 66, 75, 76, 77], "http": [6, 7, 9, 22, 23, 25, 26, 41, 42, 46, 50, 73, 75, 77], "matplotlib": [6, 7, 9, 22, 23, 25, 26, 28, 41, 50, 59, 77], "org": [6, 7, 9, 22, 23, 25, 26, 41, 50], "api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "pyplot_api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "pyplot": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "horizont": [7, 23, 50, 75], "redirect": [7, 25, 28, 41, 50, 59], "ibarh": [7, 28, 59], "interact": [7, 25, 28, 41, 46, 50, 51, 59, 75], "enabl": [7, 25, 41, 50, 51], "interactive_plot": [7, 25, 41, 50, 51, 59], "bucket": 7, "show": [7, 25, 41, 50, 51], "whether": [7, 25, 26, 41, 50, 51, 53, 71, 73, 77, 78], "figur": [7, 9, 25, 41, 50, 51], "instead": [7, 25, 26, 41, 50, 51, 64, 73, 75, 78], "graph": [7, 28, 41, 59, 75], "furnitur": 7, "chair": 7, "desk": 7, "price": [7, 14, 21, 24, 28, 41, 56, 59, 66, 75], "group": [8, 22, 23, 25, 26, 38, 40, 50, 51, 53, 77], "comput": [8, 36, 60, 75, 77], "By": [8, 13, 39, 48, 60, 75], "chosen": [8, 25, 26, 39], "from": [8, 18, 19, 20, 21, 22, 23, 27, 39, 42, 48, 52, 53, 55, 58, 60, 62, 66, 69, 70, 73, 74, 75, 77, 78], "numpi": [8, 10, 15, 17, 39, 62, 65, 77, 78], "histogram": [8, 25, 26, 39, 40, 75, 77], "appli": [8, 21, 24, 39, 53, 66, 68, 73, 78], "special": [8, 39], "ha": [8, 29, 68, 70, 75], "where": [8, 21, 24, 37, 48, 55, 57, 72, 73, 74, 77], "lower": [8, 25, 26, 39], "bound": [8, 25, 26, 61, 75], "sequenc": [8, 15, 20, 39, 62, 67, 68, 69, 70, 73, 77], "scalar": [8, 39], "defin": [8, 39, 49, 53], "equal": [8, 25, 26, 39, 43, 44, 48, 66, 74, 75], "rang": [8, 15, 25, 26, 39, 50, 51, 73, 77], "edg": [8, 25, 39], "includ": [8, 9, 25, 26, 39, 42, 50, 58, 73, 75], "rightmost": [8, 39], "allow": [8, 39, 77], "non": [8, 9, 38, 39, 60, 77], "uniform": [8, 39], "float": [8, 22, 23, 25, 39, 71, 73], "upper": [8, 39, 75], "outsid": [8, 39], "ignor": [8, 39], "densiti": [8, 25], "sampl": [8, 39, 49, 57, 77, 78], "probabl": [8, 48, 75, 78], "normal": [8, 39, 71, 77, 78], "integr": [8, 39], "over": [8, 38, 39], "note": [8, 13, 15, 21, 22, 23, 24, 25, 26, 33, 34, 53, 60, 73, 75, 76, 77], "sum": [8, 21, 24, 48, 60, 77, 78], "unless": [8, 53], "uniti": 8, "mass": 8, "vert": 9, "showmean": 9, "test1": 9, "92": [9, 75], "88": [9, 75], "72": [9, 75, 77], "71": [9, 75, 77], "99": [9, 49, 75], "95": [9, 28, 32, 38, 41, 59, 75], "83": [9, 28, 41, 59, 75], "94": [9, 75], "93": [9, 71, 77], "test2": 9, "89": [9, 32, 38, 75], "84": [9, 75], "74": [9, 75, 77, 78], "66": [9, 75, 77], "81": [9, 75], "side": [9, 25, 26, 40], "table2": [9, 29], "numeric_col": 9, "alpha_col": 9, "cannot": [9, 51], "drawn": [9, 73, 77], "index_or_label": 10, "index": [10, 11, 14, 15, 19, 21, 22, 23, 25, 26, 32, 38, 45, 46, 53, 61, 66, 73, 75, 77], "look": [11, 75], "up": [11, 73, 75], "its": [11, 25, 26, 38, 53, 70, 76], "integ": [11, 15, 36, 61, 73, 75], "properti": [12, 25, 30, 35, 36, 47, 65, 71, 73], "tupl": [12, 30, 39, 47, 57, 60, 77], "dtype": [12, 17, 62, 65, 75, 77, 78], "u1": [12, 62, 77], "shallow": 13, "perform": [13, 75], "deep": [13, 73], "mean": [13, 38, 53, 60, 76, 77, 78], "construct": [13, 75, 77], "recurs": 13, "insert": 13, "found": [13, 73, 75], "table_copi": 13, "original_t": 13, "so": [13, 53, 64, 75, 77], "updat": 13, "chang": [13, 43, 44, 45, 53, 75], "refer": [13, 73, 77], "": [13, 20, 22, 23, 33, 34, 38, 43, 44, 50, 51, 53, 60, 64, 66, 71, 73, 74, 75, 76, 77], "orignal_t": 13, "due": 13, "contrast": 13, "how": [13, 25, 46, 75, 77], "occur": [13, 25, 75], "both": [13, 25, 29, 38, 75], "table_shallow_copi": 13, "becaus": [13, 75, 77], "onli": [14, 25, 26, 29, 33, 34, 37, 52, 66, 68, 73, 75], "than": [14, 56, 68, 74, 75], "header": 14, "valid": [14, 42, 48, 67, 68, 76, 77], "remov": [14, 50, 51, 53, 73, 75], "burger": 14, "cheeseburg": 14, "hamburg": 14, "veggi": 14, "calori": 14, "743": 14, "651": 14, "582": 14, "without": [15, 48, 75, 77], "row_indices_or_slic": [15, 61], "slice": [15, 61], "grade": [15, 61], "gpa": [15, 61], "7": [15, 21, 24, 39, 56, 61, 66, 75, 77], "also": [15, 25, 26, 33, 34, 44, 50, 51, 53, 60, 66, 71, 75, 77], "support": [15, 25], "like": [15, 22, 23, 47, 75, 76, 77], "zeroth": 16, "item": [16, 31], "classmethod": [17, 18, 19, 20, 28, 42, 59, 73], "arr": [17, 62, 78], "structur": [17, 62, 75, 77], "field": 17, "correspond": [17, 20, 21, 24, 25, 26, 27, 44, 58, 61, 68, 73, 75, 77], "np": [17, 38, 49, 60, 61, 73, 77, 78], "u10": 17, "i4": 17, "map": [18, 72], "deprec": [18, 25, 40, 50, 51], "df": 19, "keep_index": 19, "panda": [19, 64, 77], "util": [19, 72], "creation": [19, 76], "keep": 19, "turn": [19, 28, 59, 75], "sample_df": 19, "zip": [19, 73, 75], "data1": [19, 20, 27, 39, 54, 58, 77], "data2": [19, 20, 27, 39, 54, 58, 77], "data3": [19, 20, 27, 39, 54, 58], "column1": [19, 20, 27, 39, 44, 54, 58], "column2": [19, 20, 27, 39, 44, 54, 58], "column3": [19, 27, 39, 54, 58], "dict": [20, 27, 51, 73], "fix": [20, 73], "kei": [20, 27, 43, 58, 73, 77], "dictionari": [20, 27, 73, 77], "otherwis": [20, 25, 29], "do": [20, 48, 53, 77], "ident": [20, 71], "first": [20, 21, 24, 25, 34, 51, 54, 57, 58, 71, 73, 75, 77, 78], "column_or_label": [21, 27, 56, 66], "collect": [21, 24, 38, 75, 77], "uniqu": [21, 24, 38, 39, 75], "aggreg": [21, 24, 38], "second": [21, 23, 57, 58, 75, 77], "calcul": [21, 24, 60, 75], "accord": [21, 24, 56, 77], "set": [21, 24, 28, 50, 51, 53, 68, 73, 75, 77], "accept": [21, 24, 53], "marbl": [21, 24, 56, 66], "red": [21, 24, 43, 56, 66, 73, 75], "green": [21, 24, 43, 56, 66, 73, 75], "blue": [21, 24, 43, 56, 66, 73], "shape": [21, 24, 56, 66, 70, 78], "round": [21, 24, 56, 66, 73], "rectangular": [21, 24, 56, 66], "amount": [21, 24, 56, 66, 75], "00": [21, 24, 28, 41, 56, 59, 66, 71, 75], "75": [21, 24, 28, 39, 41, 56, 59, 60, 66, 73, 75, 77, 78], "give": [21, 75], "max": [21, 53, 60], "doesn": [21, 75], "make": [21, 25, 26, 66, 77, 78], "sens": [21, 25, 26], "27": [21, 75, 77], "13": [21, 60, 75, 77], "05": [21, 24, 75], "differ": [22, 23, 69, 70, 75, 77], "need": [22, 23, 73], "copi": [22, 23, 67, 68, 73, 75, 78], "behav": [22, 23], "more": [22, 23, 60, 68, 73, 75, 76, 77, 78], "hist": [22, 23, 26, 28, 40, 59, 77], "regard": [22, 23], "while": [22, 23, 53], "scatter": [22, 23, 28, 41, 51, 59, 77], "requir": [22, 23, 38, 64, 68], "inch": [22, 23], "barh": [23, 28, 59, 77], "coordin": [23, 73], "anoth": [23, 75], "multipl": [24, 25, 26, 29, 45, 53, 73, 75], "combin": [24, 38, 42, 75, 77], "those": [24, 75], "15": [24, 48, 57, 60, 63, 68, 75, 77], "11": [24, 60, 75, 77], "bin": [25, 26, 39, 73, 75, 77], "bin_column": [25, 26], "unit": [25, 73], "rug": 25, "side_by_sid": [25, 26, 40], "left_end": 25, "right_end": 25, "via": 25, "plotli": [25, 28, 41, 51, 59, 75], "ihist": 25, "overlaid": [25, 26], "top": [25, 26], "behavior": [25, 26, 60], "legend": [25, 26, 73], "forc": [25, 26, 75], "scale": [25, 26, 73, 77], "automat": [25, 26], "treat": [25, 26, 77], "assign": [25, 26, 73, 77], "e": [25, 29, 48, 68, 75, 78], "g": [25, 67, 75, 78], "kg": 25, "gener": [25, 26, 38, 66, 78], "depend": [25, 26], "done": [25, 26, 77], "should": [25, 26, 53, 73, 75, 78], "directli": [25, 26, 53], "sever": [25, 26, 60], "Not": [25, 77], "left": [25, 78], "right": [25, 78], "shade": [25, 78], "extrem": 25, "boolean": [25, 53, 66, 73, 75, 77, 78], "distribut": [25, 39, 48, 49, 75, 77, 78], "shade_split": 25, "split": [25, 77], "determin": 25, "end": [25, 75], "fall": 25, "two": [25, 26, 57, 58, 73, 75, 77], "endpoint": 25, "entir": [25, 54], "appropri": 25, "func": [25, 26, 75, 78], "norm": [25, 39, 50], "cumul": [25, 26], "orient": [25, 26], "101": [25, 26, 75, 77], "102": [25, 26, 75, 77], "103": [25, 26], "proport": [25, 49, 75, 78], "25": [25, 60, 75, 77], "weight": [25, 26, 48, 52, 60, 73, 77], "base": [26, 38, 56, 73], "columns_or_label": 27, "rest": [27, 57, 73, 77], "data4": 27, "86": [27, 39, 54, 58, 75], "51": [27, 39, 54, 58, 75, 77], "32": [27, 39, 54, 58, 75, 77], "91": [27, 75], "column4": [27, 39, 54, 58], "global": [28, 59], "variabl": [28, 59], "iplot": [28, 41, 59], "etc": [28, 59, 71, 75], "off": [28, 59, 75], "static_plot": 28, "dai": [28, 41, 59, 77], "90": [28, 41, 59, 75, 77], "82": [28, 41, 59, 75], "project": [28, 41, 59], "line": [28, 41, 50, 59, 73, 75, 77], "other_label": 29, "assum": [29, 37, 75, 78], "previou": [29, 66], "repeat": [29, 56, 73], "relabel": [29, 77], "a_2": 29, "three": [29, 73], "move": [32, 33, 34], "titan": [32, 38], "21": [32, 38, 75, 77], "44": [32, 38, 75, 77], "56": [32, 38, 75, 77], "80": [32, 37, 38, 39, 75], "45": [32, 38, 39, 75, 77], "surviv": [32, 38], "gender": [32, 38], "m": [32, 38, 71, 74], "f": [32, 38, 53, 71, 75, 78], "predict": [32, 38], "what": [33, 34, 53, 73, 77], "known": [33, 34, 53], "inplac": [33, 34, 53], "oper": [33, 34, 53, 77], "state": [36, 42, 73, 77], "pth": [37, 78], "smallest": [37, 73], "least": [37, 78], "larg": 37, "zero": [38, 75], "vice": 38, "versa": 38, "across": 38, "intersect": 38, "60": [38, 39, 71, 75, 77], "3333": 38, "pivot_column": 39, "value_column": 39, "associ": [39, 58], "pivot": [39, 77], "popul": 39, "respect": [39, 58, 61], "from_record": [39, 58], "37": [39, 73, 75, 77], "42": [39, 60, 74, 75, 77], "8": [39, 42, 46, 48, 52, 57, 60, 63, 72, 73, 77], "48": [39, 75, 77], "53": [39, 75, 77], "59": [39, 75, 77], "64": [39, 60, 75, 77], "69": [39, 75, 77], "36": [39, 75, 77], "54": [39, 75, 77], "pivot_column_label": 40, "value_column_label": 40, "draw": [40, 50, 72, 73, 78], "recommend": 40, "realli": 40, "column_for_xtick": 41, "connect": [41, 75], "filepath_or_buff": 42, "read": [42, 73, 75, 76, 77], "file": [42, 63, 73, 75, 77], "web": 42, "address": 42, "handl": 42, "stringio": 42, "could": 42, "url": [42, 73, 77], "scheme": 42, "ftp": 42, "s3": 42, "www": [42, 77], "inferentialthink": [42, 77], "com": [42, 46, 73, 75, 77], "sat2014": [42, 77], "csv": [42, 63, 73, 75, 77], "particip": [42, 77], "rate": [42, 75, 77], "critic": [42, 77], "math": [42, 77], "write": [42, 53, 77], "north": [42, 77], "dakota": [42, 77], "612": [42, 77], "620": [42, 75, 77], "584": [42, 77], "1816": [42, 77], "illinoi": [42, 77], "599": [42, 75, 77], "616": [42, 75, 77], "587": [42, 77], "1802": [42, 77], "iowa": [42, 77], "605": [42, 77], "611": [42, 77], "578": [42, 77], "1794": [42, 77], "south": [42, 75, 77], "604": [42, 75, 77], "609": [42, 75, 77], "579": [42, 77], "1792": [42, 77], "minnesota": [42, 77], "598": [42, 77], "610": [42, 77], "1786": [42, 77], "michigan": [42, 77], "593": [42, 77], "581": [42, 77], "1784": [42, 77], "wisconsin": [42, 77], "596": [42, 77], "608": [42, 77], "1782": [42, 77], "missouri": [42, 77], "595": [42, 77], "597": [42, 77], "1771": [42, 77], "wyom": [42, 77], "590": [42, 77], "573": [42, 77], "1762": [42, 77], "kansa": [42, 77], "591": [42, 77], "566": [42, 77], "1753": [42, 77], "41": [42, 75, 77], "new_label": [43, 44, 75], "id": [43, 73, 75], "12345": 43, "5123": 43, "yolo": 43, "cyan": 43, "magenta": 43, "yellow": 43, "invalid": [43, 44, 73], "unmodifi": 44, "alreadi": 44, "order": [44, 52, 56, 61, 66, 68, 73, 75, 77, 78], "row_or_row_indic": 45, "made": [45, 73, 75], "2nd": [45, 75], "3rd": [45, 75], "pleas": [46, 77], "extend": [46, 75, 77], "docstr": 46, "github": [46, 73, 75], "blob": 46, "614db00e7d22e52683860d2beaa4037bec26cf87": 46, "py": 46, "l5673": 46, "l5765": 46, "view": [47, 75], "k": [48, 49, 55, 57, 58], "with_replac": [48, 75, 77], "randomli": [48, 55, 57, 75], "els": 48, "ith": 48, "resampl": [48, 77], "job": [48, 57, 63], "wage": [48, 57, 63], "w": 48, "multinomi": [49, 78], "output": [49, 54, 63, 75], "random": [49, 77, 78], "seed": 49, "1000": [49, 53, 75, 77], "228": 49, "508": 49, "264": 49, "261": 49, "491": 49, "248": 49, "column_for_x": [50, 51], "fit_lin": [50, 51, 75, 77], "scatterplot": [50, 51], "best": [50, 60, 75], "fit": [50, 75], "iscatt": 50, "marker": [50, 73], "coupl": 50, "dot": [50, 51], "annot": [50, 51], "rel": [50, 51], "area": [50, 51, 73, 78], "synonym": [50, 51], "retain": [50, 51], "temporarili": [50, 51], "backward": [50, 51], "compat": [50, 51], "futur": [50, 51], "releas": [50, 51, 72], "against": [50, 51], "One": [50, 76], "column_for_i": 51, "conveni": 51, "wrapper": 51, "iscatter3d": 51, "3d": 51, "pixel": [51, 73], "graph_object": 51, "update_layout": 51, "assertionerror": [51, 68], "z1": 51, "z2": 51, "keyerror": 52, "ani": [52, 61, 68, 73, 78], "flower": 52, "petal": 52, "34": [52, 74, 75, 77], "lotu": 52, "sunflow": 52, "rose": 52, "unchang": 52, "pretti": [53, 71], "print": [53, 71, 77, 78], "within": [53, 74, 77], "time": [53, 71, 75], "balanc": 53, "run": [53, 60, 63], "__repr__": 53, "upon": 53, "consol": 53, "underli": [53, 73], "remain": [53, 57, 75], "untouch": 53, "It": [53, 64, 75, 77, 78], "worth": 53, "account_info": 53, "user": 53, "gfoo": 53, "bbar": 53, "tbaz": 53, "hbat": 53, "200": [53, 73, 75], "555": 53, "125": [53, 75, 77], "430": [53, 75], "import": [53, 66, 74, 77], "currencyformatt": [53, 68, 71], "bz": 53, "beliz": 53, "dollar": 53, "def": [53, 60, 75, 77], "iceland_krona_formatt": 53, "kr": 53, "converts_valu": [53, 71], "attribut": [53, 73], "format_column": [53, 71], "In": [53, 66, 75, 77], "would": [53, 75], "convert_valu": [53, 71], "icelandkronaformatt": 53, "__init__": 53, "format_krona": 53, "convert_column": [53, 71], "perman": 53, "01": [53, 75], "55": [53, 75, 77], "65": [53, 75, 77], "drop": 53, "fraction": 53, "astyp": 53, "configur": 53, "account": 53, "them": [53, 60, 73], "charact": [53, 71], "someth": [53, 75], "custom": [53, 60, 73, 75], "yourself": 53, "check": [53, 77], "save": 53, "500": [53, 68, 73], "1175": 53, "6700": 53, "val_width": 53, "len": [53, 77], "v": 53, "ljust": 53, "subset": [54, 78], "ipython": [54, 77], "core": [54, 64], "descend": [56, 75, 77], "distinct": 56, "whose": [56, 58, 75], "rather": 56, "ascend": [56, 75], "num_row": [57, 77], "col": 58, "basi": 58, "represent": [58, 73], "suppli": [58, 66], "consid": [58, 75], "wherea": [58, 73], "final": 58, "unset": 59, "op": 60, "built": 60, "min": 60, "median": 60, "statist": 60, "prepend": 60, "fucntion": 60, "minimum": [60, 75], "17": [60, 72, 75, 77], "even": [60, 68], "mai": [60, 71, 77], "lead": 60, "unexpect": 60, "case": 60, "error": 60, "why": 60, "elimin": 60, "befor": 60, "overridden": 60, "weighted_averag": 60, "averag": [60, 75], "std": 60, "13333": 60, "1333": 60, "16": [60, 75, 77], "27761": 60, "67423": 60, "85235": 60, "taken": 61, "indexerror": 61, "out": [61, 75, 77], "arang": 61, "i8": 62, "filenam": [63, 75], "wai": [63, 76, 77, 78], "we": [63, 64, 75, 77], "my_tabl": 63, "recreat": [63, 77], "read_tabl": [63, 77], "current": [63, 73], "directori": 63, "some": [64, 75, 77], "here": [64, 72], "table_df": 64, "frame": 64, "col1": [65, 75], "col2": [65, 75], "value_or_pred": 66, "kept": 66, "pairwis": [66, 75], "comparison": 66, "below": [66, 74, 78], "usag": 66, "callabl": 66, "val": 66, "higher": 66, "predic": [66, 72], "equal_to": [66, 74], "abov": [66, 74], "compar": [66, 77], "alphabet": [67, 75], "permut": 67, "labels_and_valu": 68, "altern": [68, 77], "pair": [68, 73], "incorrect": 68, "iter": [68, 78], "miss": [68, 76], "player": 68, "player_id": 68, "110234": 68, "110235": 68, "woba": 68, "354": [68, 75], "236": 68, "salari": 68, "season": 68, "2016": 68, "500000": 68, "15500000": 68, "bonu": 68, "_format": 68, "000": [68, 71], "600": 68, "_": [70, 77], "tabl": [71, 72, 73, 74, 78], "entri": [71, 75], "symbol": 71, "currenc": 71, "ensur": 71, "ie": 71, "format_valu": 71, "dateformatt": 71, "h": 71, "date": [71, 72, 75], "unix": 71, "timestamp": 71, "2015": [71, 75], "08": [71, 75], "03": 71, "distributionformatt": 71, "decim": [71, 75], "percentag": [71, 75], "min_width": 71, "max_width": 71, "truncat": 71, "long": 71, "static": [71, 74, 75], "convers": 71, "overrid": 71, "pad": 71, "arbitrari": 71, "numberformatt": 71, "decimal_point": 71, "int_to_float": 71, "delimit": 71, "93000": 71, "percentformatt": 71, "24": [72, 75, 77], "2023": 72, "packag": [72, 77], "written": 72, "berkelei": 72, "cours": 72, "investig": 72, "graphic": 72, "start": [72, 73, 75, 78], "tutori": 72, "access": [72, 76], "manipul": 72, "visual": [72, 73, 76], "export": [72, 76], "advanc": 72, "miscellan": 72, "folium": 73, "circl": 73, "lat": 73, "lon": 73, "popup": 73, "314": 73, "1592653589793": 73, "circle_mark": 73, "stai": 73, "regardless": 73, "zoom": 73, "radiu": 73, "meter": 73, "To": [73, 77], "toggl": 73, "radius_in_met": 73, "flag": 73, "draw_on": 73, "pop": 73, "click": [73, 76], "fill": 73, "squar": [73, 75], "fill_opac": 73, "opac": 73, "leafletj": 73, "circlemark": 73, "For": [73, 74, 75, 77], "38": [73, 74, 75, 77], "122": 73, "121": 73, "3000": 73, "4000": 73, "5000": 73, "map_tabl": 73, "folium_map": 73, "featur": 73, "960": 73, "keyword": 73, "forward": 73, "key_on": 73, "palett": 73, "ylorbr": 73, "brewer": 73, "bugn": 73, "bupu": 73, "gnbu": 73, "orrd": 73, "pubu": 73, "pubugn": 73, "purd": 73, "rdpu": 73, "ylgn": 73, "ylgnbu": 73, "ylorrd": 73, "threshold_scal": 73, "d3": 73, "threshold": 73, "quantil": 73, "85": [73, 75], "nearest": [73, 75], "magnitud": 73, "ex": 73, "270": 73, "5600": 73, "6000": 73, "line_color": 73, "black": 73, "geojson": 73, "geopath": 73, "line_weight": 73, "line_opac": 73, "legend_nam": 73, "titl": 73, "render": 73, "NOT": 73, "ref": 73, "python": [73, 75], "issu": 73, "1207": 73, "featurecollect": 73, "region": [73, 78], "overlain": 73, "read_geojson": 73, "path_or_json_or_string_or_url": 73, "simple_mark": 73, "purpl": 73, "orang": 73, "darkr": 73, "lightr": 73, "beig": 73, "darkblu": 73, "darkgreen": 73, "cadetblu": 73, "darkpurpl": 73, "white": 73, "pink": [73, 75], "lightblu": 73, "lightgreen": 73, "grai": 73, "lightgrai": 73, "standard": [73, 75, 78], "icon": 73, "hex": 73, "code": [73, 75, 77], "plugin": 73, "beautifyicon": 73, "marker_icon": 73, "info": [73, 78], "sign": 73, "getbootstrap": 73, "compon": 73, "clustered_mark": 73, "cluster": 73, "icon_angl": 73, "angl": 73, "popup_width": 73, "300": 73, "further": 73, "io": 73, "modul": 73, "feature_id": 73, "lat_lon": 73, "describ": [73, 75], "latitud": 73, "longitud": 73, "other_attr": 73, "applic": 73, "todo": 73, "document": [73, 76], "index_map": 73, "cluster_label": 73, "colorbar_scal": 73, "cutoff": 73, "colorscal": 73, "gradient": 73, "include_color_scale_outli": 73, "outlier": 73, "radii": 73, "color_scal": 73, "radius_scal": 73, "cluster_bi": 73, "area_scal": 73, "explicitli": 73, "cl": 73, "specif": [73, 75], "well": 73, "markerclust": 73, "geo_json": 73, "substitut": 73, "flat": 73, "polygon": 73, "linear": 73, "ring": 73, "exterior": 73, "interior": 73, "hole": 73, "multipolygon": 73, "get_coordin": 73, "replace_column": 73, "remove_nan": 73, "locat": 73, "identifi": 73, "citi": [73, 75], "counti": 73, "insid": 73, "dataset": 73, "nan": [73, 75], "afterward": 73, "robust": 73, "capit": 73, "acquir": 73, "juli": 73, "2020": 73, "doc": 73, "gaslamp": 73, "media": 73, "download": 73, "geocode_dataset": 73, "geocode_st": 73, "modifi": [73, 75, 76, 77], "lowercas": 73, "pick": [74, 75], "l": [74, 75], "xl": 74, "waist": 74, "above_or_equal_to": 74, "below_or_equal_to": 74, "strictly_between": 74, "between_or_equal_to": 74, "not_abov": 74, "not_above_or_equal_to": 74, "not_below": 74, "not_below_or_equal_to": 74, "not_strictly_between": 74, "not_between": 74, "not_between_or_equal_to": 74, "not_contain": 74, "contained_in": 74, "mxl": 74, "not_contained_in": 74, "greater": [74, 75], "less": [74, 75], "superstr": 74, "part": 74, "substr": [74, 75], "neither": 74, "nor": 74, "not_equal_to": [74, 75], "notebook": [75, 77], "serv": 75, "friendli": 75, "librari": 75, "usual": 75, "29": [75, 77], "new_tabl": 75, "31": [75, 77], "trip": 75, "raw": 75, "githubusercont": 75, "textbook": [75, 77], "gh": 75, "page": [75, 76], "durat": 75, "station": 75, "termin": 75, "bike": 75, "subscrib": 75, "876419": 75, "413": 75, "civic": 75, "center": 75, "bart": 75, "7th": 75, "market": 75, "townsend": 75, "269": 75, "94518": 75, "459672": 75, "408": 75, "2014": 75, "harri": 75, "bridg": 75, "plaza": 75, "ferri": 75, "build": 75, "embarcadero": 75, "sansom": 75, "429": 75, "94111": 75, "903647": 75, "723": 75, "26": [75, 77], "san": 75, "francisco": 75, "caltrain": 75, "330": 75, "10th": 75, "67": [75, 77], "631": 75, "94025": 75, "452829": 75, "409": 75, "steuart": 75, "4th": 75, "76": [75, 77], "428": 75, "94925": 75, "491023": 75, "224": 75, "santa": 75, "clara": 75, "almaden": 75, "jose": 75, "diridon": 75, "144": 75, "94117": 75, "723352": 75, "519": 75, "04": 75, "howard": 75, "63": [75, 77], "70": [75, 77], "629": 75, "94061": 75, "524499": 75, "431": 75, "43": [75, 77], "630": 75, "94706": 75, "518524": 75, "389": 75, "28": [75, 77], "77": 75, "park": 75, "458": 75, "94610": 75, "710070": 75, "11460": 75, "powel": 75, "street": 75, "39": [75, 77], "375": 75, "94107": 75, "793149": 75, "bryant": 75, "289": [75, 77], "94105": 75, "99990": 75, "n1": 75, "v1": 75, "n2": 75, "v2": 75, "mani": 75, "33": [75, 77], "cooki": 75, "sugar": 75, "chocol": 75, "chip": 75, "velvet": 75, "oatmeal": 75, "raisin": 75, "peanut": 75, "butter": 75, "quantiti": 75, "delici": 75, "ye": [75, 77], "35": [75, 77], "column_name_or_index": 75, "lt": 75, "u14": 75, "100000": 75, "suppos": 75, "similarli": 75, "rememb": 75, "99995": 75, "46": [75, 77], "47": [75, 77], "old_label": 75, "49": [75, 77], "52": [75, 77], "57": [75, 77], "filter": 75, "avail": [75, 77], "58": [75, 77], "62": [75, 77], "eual_to": 75, "row_index": 75, "68": [75, 77], "actor": 75, "total": 75, "gross": 75, "movi": 75, "harrison": 75, "ford": 75, "4871": 75, "118": 75, "star": 75, "war": 75, "awaken": 75, "936": 75, "samuel": 75, "jackson": 75, "4772": 75, "aveng": 75, "623": 75, "morgan": 75, "freeman": 75, "4468": 75, "61": [75, 77], "73": [75, 77], "dark": 75, "knight": 75, "534": 75, "tom": 75, "hank": 75, "4340": 75, "98": 75, "toi": 75, "stori": 75, "415": 75, "robert": 75, "downei": 75, "jr": 75, "3947": 75, "eddi": 75, "murphi": 75, "3810": 75, "shrek": 75, "441": 75, "cruis": 75, "3587": 75, "world": [75, 76], "234": 75, "johnni": 75, "depp": 75, "3368": 75, "dead": 75, "man": 75, "chest": 75, "423": 75, "michael": 75, "cain": 75, "3351": 75, "scarlett": 75, "johansson": 75, "3341": 75, "x_column": 75, "y_column": 75, "vertic": 75, "find": 75, "movies_by_year": 75, "year": 75, "11128": 75, "702": 75, "10360": 75, "american": 75, "sniper": 75, "2013": 75, "10923": 75, "688": 75, "catch": 75, "fire": 75, "broken": 75, "down": 75, "unspecifi": 75, "78": 75, "79": 75, "ones": [75, 77], "version": 75, "193": 75, "194": 75, "23": [75, 77], "quotient": 75, "average_gross": 75, "total_gross": 75, "num_movi": 75, "82195122": 75, "17101449": 75, "25081967": 75, "65454545": 75, "47735849": 75, "27368421": 75, "64444444": 75, "85777778": 75, "78448276": 75, "3027027": 75, "68421053": 75, "9244898": 75, "15666667": 75, "8372093": 75, "451": 75, "84285714": 75, "62580645": 75, "131": 75, "2125": 75, "478": 75, "67435897": 75, "00379747": 75, "16764706": 75, "70952381": 75, "67826087": 75, "86470588": 75, "40540541": 75, "38888889": 75, "165": 75, "63529412": 75, "316": 75, "86153846": 75, "12619048": 75, "89428571": 75, "425": 75, "157": 75, "75882353": 75, "28913043": 75, "0225": 75, "15625": 75, "154": 75, "96470588": 75, "83103448": 75, "72564103": 75, "25384615": 75, "308": 75, "82777778": 75, "26666667": 75, "65348837": 75, "732": 75, "119": 75, "06190476": 75, "5925": 75, "106": 75, "86086957": 75, "96": 75, "folsom": 75, "2302": 75, "2610": 75, "3904": 75, "5th": 75, "2190": 75, "adob": 75, "arena": 75, "sap": 75, "176": 75, "beal": 75, "2377": 75, "broadwai": 75, "st": 75, "batteri": 75, "2157": 75, "california": 75, "av": 75, "127": 75, "castro": 75, "el": 75, "camino": 75, "real": 75, "339": 75, "512": 75, "887": 75, "654": 75, "565": 75, "755": 75, "819": 75, "509": 75, "2522": 75, "1999": 75, "679": 75, "602": 75, "827": 75, "753": 75, "4403": 75, "1221": 75, "7426": 75, "6114": 75, "4795": 75, "temporari": 75, "transbai": 75, "4212": 75, "3925": 75, "3900": 75, "3872": 75, "3370": 75, "3218": 75, "87": 75, "22": [75, 77], "clai": 75, "commerci": 75, "montgomeri": 75, "davi": 75, "1616": 75, "cell": 75, "more_con": 75, "flavor": 75, "strawberri": 75, "bubblegum": 75, "light": 75, "brown": 75, "tbl1": 75, "tbl2": 75, "cone": 75, "vanilla": 75, "kind": 75, "mint": 75, "97": 75, "rerun": 75, "notic": 75, "certain": 75, "theoret": 75, "sampled_with_replac": 75, "8hiishifun": 75, "hi": [75, 76], "example_str": 75, "fun": 75, "104": 75, "another_str": 75, "secret": 75, "messag": 75, "105": 75, "fun_arrai": 75, "high": 75, "great": [75, 78], "est": 75, "highest": 75, "greatest": 75, "merg": 75, "some_str": 75, "somelistofstr": 75, "old_str": 75, "new_str": 75, "occurr": 75, "107": 75, "berkeley_str": 75, "saw": 75, "friend": 75, "squirrel": 75, "peopl": 75, "flyer": 75, "sproul": 75, "108": [75, 77], "frisbe": 75, "110": 75, "chain": 75, "picnic": 75, "glade": 75, "111": 75, "example_arrai": 75, "112": 75, "113": [75, 77], "114": 75, "115": [75, 77], "absolut": 75, "new_arr": 75, "after": 75, "124": 75, "14159": 75, "142": 75, "130": 75, "val1": 75, "val2": 75, "132": [75, 77], "new_arrai": 75, "134": 75, "133": 75, "deviat": [75, 78], "150": 75, "648699324175862": 75, "input": [75, 77, 78], "x_1": 75, "x_0": 75, "x_2": 75, "x_3": 75, "135": [75, 77], "136": [75, 77], "root": 75, "137": 75, "138": [75, 77], "stop": 75, "step": [75, 77], "increment": 75, "exclus": 75, "139": 75, "140": [75, 77], "143": [75, 77], "146": 75, "147": 75, "149": 75, "152": 75, "nonzero": 75, "valuea": 75, "153": 75, "another_arrai": 75, "159": 75, "160": 75, "161": 75, "percent": 75, "162": 75, "long_arrai": 75, "163": 75, "164": 75, "negat": 75, "preced": 75, "not_": 75, "leav": 75, "166": 75, "824979": 75, "02": 75, "japantown": 75, "hall": 75, "660": 75, "nil": 75, "439946": 75, "yerba": 75, "buena": 75, "art": 75, "452": 75, "788261": 75, "post": 75, "union": 75, "575": 75, "94108": 75, "560479": 75, "van": 75, "ness": 75, "653797": 75, "546": 75, "94102": 75, "887134": 75, "mechan": 75, "313": 75, "94103": 75, "482225": 75, "spear": 75, "209": 75, "94133": 75, "681697": 75, "19": [75, 77], "368": 75, "95120": 75, "912821": 75, "09": 75, "94085": 75, "strictli": 75, "167": 75, "589964": 75, "15097": 75, "golden": 75, "gate": 75, "polk": 75, "29225": 75, "831509": 75, "1057": 75, "94114": 75, "442750": 75, "6084": 75, "474454": 75, "608714": 75, "19799": 75, "07": 75, "univers": 75, "emerson": 75, "686": 75, "711961": 75, "1026": 75, "189": 75, "833071": 75, "2314": 75, "washington": 75, "kearni": 75, "94806": 75, "570731": 75, "1218": 75, "mlk": 75, "jame": 75, "299": [75, 77], "95033": 75, "853698": 75, "1048": 75, "636": 75, "91436": 75, "787510": 75, "3670": 75, "mountain": 75, "713": 75, "94041": 75, "11576": 75, "168": 75, "11597": 75, "170": 75, "482797": 75, "95112": 75, "483052": 75, "306": 75, "569620": 75, "326": 75, "502332": 75, "613": 75, "94602": 75, "604012": 75, "601": 75, "704918": 75, "394": 75, "513458": 75, "569": 75, "696725": 75, "516": 75, "94109": 75, "829817": 75, "292": 75, "94538": 75, "745895": 75, "06": 75, "380": 75, "94947": 75, "403": 75, "171": 75, "808199": 75, "537": 75, "greather": 75, "interv": 75, "172": 75, "437830": 75, "151": 75, "grant": 75, "avenu": 75, "columbu": 75, "94104": 75, "436255": 75, "195": 75, "585884": 75, "576": 75, "548322": 75, "191": 75, "94705": 75, "594999": 75, "185": 75, "antonio": 75, "shop": 75, "94040": 75, "468534": 75, "443": 75, "873710": 75, "169": 75, "532": 75, "853087": 75, "418": 75, "863019": 75, "504": 75, "883134": 75, "173": 75, "363": 75, "5083": 75, "903735": 75, "453": 75, "94501": 75, "5180": 75, "string_or_arrai": 75, "877160": 75, "527": 75, "768619": 75, "840": 75, "94903": 75, "701211": 75, "252": 75, "405": 75, "487432": 75, "561": 75, "342": 75, "610970": 75, "808": 75, "310": 75, "753668": 75, "196": 75, "533": 75, "94973": 75, "466551": 75, "222": 75, "2578": 75, "178": [75, 77], "180": 75, "681771": 75, "895": 75, "416": 75, "78805": 75, "181": 75, "5056": 75, "sample_s": [75, 78], "model_proport": 75, "182": 75, "190": 75, "log": [75, 78], "17585792": 75, "58835469": 75, "summari": 76, "about": 76, "signatur": 76, "howev": 76, "bracket": [76, 77], "That": 76, "first_arg": 76, "second_arg": 76, "some_other_arg": 76, "fourth_arg": 76, "some_t": 76, "But": 76, "syntaxerror": 76, "syntax": 76, "confus": 76, "itself": [76, 78], "detail": 76, "straightforward": 76, "extens": 76, "mutat": 76, "transform": 76, "brief": 77, "introduct": 77, "complet": 77, "guid": 77, "load": 77, "tab": 77, "member": 77, "scienc": 77, "lab": 77, "mirror": 77, "close": 77, "exact": 77, "hidden": 77, "agg": 77, "inlin": 77, "style": 77, "fivethirtyeight": 77, "particular": 77, "involv": 77, "scratch": 77, "often": 77, "excel": 77, "spreadsheet": 77, "cat": 77, "And": 77, "possibl": 77, "discourag": 77, "preserv": 77, "notat": 77, "shorthand": 77, "common": 77, "vowel": 77, "renam": 77, "condition": 77, "third": 77, "actual": 77, "sort": 77, "reduc": 77, "other_t": 77, "mar_statu": 77, "marri": 77, "partner": 77, "empl_statu": 77, "work": 77, "paid": 77, "ll": 77, "normal_data": 77, "loc": 77, "61605": 77, "53073": 77, "11516": 77, "0666": 77, "31596": 77, "2647": 77, "5473": 77, "3775": 77, "19539": 77, "08725": 77, "83492": 77, "9613": 77, "7963": 77, "71422": 77, "14513": 77, "06214": 77, "02723": 77, "55636": 77, "30982": 77, "34434": 77, "nicer": 77, "categor": 77, "to_df": 77, "prevent": 77, "to_csv": 77, "chapter": 77, "signific": 77, "birth": 77, "smoker": 77, "bootstrap": 77, "test": 77, "tabledemo": 77, "repo": 77, "babi": 77, "174": 77, "mother": 77, "newborn": 77, "ounc": 77, "gestat": 77, "womb": 77, "There": 77, "matern": 77, "pregnanc": 77, "let": 77, "peek": 77, "120": 77, "284": 77, "282": 77, "128": 77, "279": 77, "286": 77, "244": 77, "245": 77, "351": 77, "1164": 77, "smoker_and_wt": 77, "715": 77, "459": 77, "birthweight": 77, "grab": 77, "don": 77, "smoke": 77, "nonsmoking_mean": 77, "smoking_mean": 77, "observed_diff": 77, "2661425720249184": 77, "num_nonsmok": 77, "bootstrap_onc": 77, "nonsmok": 77, "bootstrap_diff": 77, "repetit": 77, "bootstrapped_diff_mean": 77, "10974907": 77, "60651157": 77, "14368116": 77, "71845453": 77, "56725627": 77, "51940217": 77, "33765711": 77, "52959459": 77, "85401527": 77, "37100111": 77, "num_diffs_great": 77, "ab": 77, "p_valu": 77, "come": 77, "is_non_string_iter": 78, "As": 78, "variad": 78, "varad": 78, "u3": 78, "float64": 78, "minim": 78, "smooth": 78, "optim": 78, "scipi": 78, "multi": 78, "percentil": 78, "curri": 78, "plot_cdf_area": 78, "rbound": 78, "lbound": 78, "sd": 78, "curv": 78, "paramet": 78, "boundari": 78, "neg": 78, "infin": 78, "plot_normal_cdf": 78, "proportions_from_distribut": 78, "column_nam": 78, "divid": 78, "throw": 78, "sample_proport": 78, "outcom": 78, "similar": 78, "table_appli": 78, "your": 78}, "objects": {"datascience": [[71, 0, 0, "-", "formats"], [73, 0, 0, "-", "maps"], [74, 0, 0, "-", "predicates"], [78, 0, 0, "-", "util"]], "datascience.formats": [[71, 1, 1, "", "CurrencyFormatter"], [71, 1, 1, "", "DateFormatter"], [71, 1, 1, "", "DistributionFormatter"], [71, 1, 1, "", "Formatter"], [71, 1, 1, "", "NumberFormatter"], [71, 1, 1, "", "PercentFormatter"]], "datascience.formats.CurrencyFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DateFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DistributionFormatter": [[71, 2, 1, "", "convert_column"]], "datascience.formats.Formatter": [[71, 2, 1, "", "convert_column"], [71, 2, 1, "", "convert_value"], [71, 3, 1, "", "converts_values"], [71, 4, 1, "", "etc"], [71, 2, 1, "", "format_column"], [71, 2, 1, "", "format_value"], [71, 4, 1, "", "max_width"], [71, 4, 1, "", "min_width"]], "datascience.formats.NumberFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.PercentFormatter": [[71, 2, 1, "", "format_value"]], "datascience.maps": [[73, 1, 1, "", "Circle"], [73, 1, 1, "", "Map"], [73, 1, 1, "", "Marker"], [73, 1, 1, "", "Region"], [73, 5, 1, "", "get_coordinates"]], "datascience.maps.Circle": [[73, 2, 1, "", "draw_on"]], "datascience.maps.Map": [[73, 2, 1, "", "color"], [73, 2, 1, "", "copy"], [73, 3, 1, "", "features"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 2, 1, "", "overlay"], [73, 2, 1, "", "read_geojson"]], "datascience.maps.Marker": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 2, 1, "", "map"], [73, 2, 1, "", "map_table"]], "datascience.maps.Region": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 3, 1, "", "polygons"], [73, 3, 1, "", "properties"], [73, 3, 1, "", "type"]], "datascience.predicates": [[74, 1, 1, "", "are"]], "datascience.predicates.are": [[74, 2, 1, "", "above"], [74, 2, 1, "", "above_or_equal_to"], [74, 2, 1, "", "below"], [74, 2, 1, "", "below_or_equal_to"], [74, 2, 1, "", "between"], [74, 2, 1, "", "between_or_equal_to"], [74, 2, 1, "", "contained_in"], [74, 2, 1, "", "containing"], [74, 2, 1, "", "equal_to"], [74, 2, 1, "", "not_above"], [74, 2, 1, "", "not_above_or_equal_to"], [74, 2, 1, "", "not_below"], [74, 2, 1, "", "not_below_or_equal_to"], [74, 2, 1, "", "not_between"], [74, 2, 1, "", "not_between_or_equal_to"], [74, 2, 1, "", "not_contained_in"], [74, 2, 1, "", "not_containing"], [74, 2, 1, "", "not_equal_to"], [74, 2, 1, "", "not_strictly_between"], [74, 2, 1, "", "strictly_between"]], "datascience.tables.Table": [[0, 2, 1, "", "__init__"], [1, 2, 1, "", "append"], [2, 2, 1, "", "append_column"], [3, 2, 1, "", "apply"], [4, 2, 1, "", "as_html"], [5, 2, 1, "", "as_text"], [6, 2, 1, "", "bar"], [7, 2, 1, "", "barh"], [8, 2, 1, "", "bin"], [9, 2, 1, "", "boxplot"], [10, 2, 1, "", "column"], [11, 2, 1, "", "column_index"], [12, 3, 1, "", "columns"], [13, 2, 1, "", "copy"], [14, 2, 1, "", "drop"], [15, 2, 1, "", "exclude"], [16, 2, 1, "", "first"], [17, 2, 1, "", "from_array"], [18, 2, 1, "", "from_columns_dict"], [19, 2, 1, "", "from_df"], [20, 2, 1, "", "from_records"], [21, 2, 1, "", "group"], [22, 2, 1, "", "group_bar"], [23, 2, 1, "", "group_barh"], [24, 2, 1, "", "groups"], [25, 2, 1, "", "hist"], [26, 2, 1, "", "hist_of_counts"], [27, 2, 1, "", "index_by"], [28, 2, 1, "", "interactive_plots"], [29, 2, 1, "", "join"], [30, 3, 1, "", "labels"], [31, 2, 1, "", "last"], [32, 2, 1, "", "move_column"], [33, 2, 1, "", "move_to_end"], [34, 2, 1, "", "move_to_start"], [35, 3, 1, "", "num_columns"], [36, 3, 1, "", "num_rows"], [37, 2, 1, "", "percentile"], [38, 2, 1, "", "pivot"], [39, 2, 1, "", "pivot_bin"], [40, 2, 1, "", "pivot_hist"], [41, 2, 1, "", "plot"], [42, 2, 1, "", "read_table"], [43, 2, 1, "", "relabel"], [44, 2, 1, "", "relabeled"], [45, 2, 1, "", "remove"], [46, 2, 1, "", "row"], [47, 3, 1, "", "rows"], [48, 2, 1, "", "sample"], [49, 2, 1, "", "sample_from_distribution"], [50, 2, 1, "", "scatter"], [51, 2, 1, "", "scatter3d"], [52, 2, 1, "", "select"], [53, 2, 1, "", "set_format"], [54, 2, 1, "", "show"], [55, 2, 1, "", "shuffle"], [56, 2, 1, "", "sort"], [57, 2, 1, "", "split"], [58, 2, 1, "", "stack"], [59, 2, 1, "", "static_plots"], [60, 2, 1, "", "stats"], [61, 2, 1, "", "take"], [62, 2, 1, "", "to_array"], [63, 2, 1, "", "to_csv"], [64, 2, 1, "", "to_df"], [65, 3, 1, "", "values"], [66, 2, 1, "", "where"], [67, 2, 1, "", "with_column"], [68, 2, 1, "", "with_columns"], [69, 2, 1, "", "with_row"], [70, 2, 1, "", "with_rows"]], "datascience.util": [[78, 5, 1, "", "is_non_string_iterable"], [78, 5, 1, "", "make_array"], [78, 5, 1, "", "minimize"], [78, 5, 1, "", "percentile"], [78, 5, 1, "", "plot_cdf_area"], [78, 5, 1, "", "plot_normal_cdf"], [78, 5, 1, "", "proportions_from_distribution"], [78, 5, 1, "", "sample_proportions"], [78, 5, 1, "", "table_apply"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:attribute", "5": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "titleterms": {"datasci": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "tabl": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 75, 76, 77], "__init__": 0, "append": [1, 75], "append_column": 2, "appli": [3, 75], "as_html": 4, "as_text": 5, "bar": 6, "barh": [7, 75], "bin": 8, "boxplot": 9, "column": [10, 12, 75], "column_index": 11, "copi": 13, "drop": [14, 75], "exclud": 15, "first": 16, "from_arrai": 17, "from_columns_dict": 18, "from_df": 19, "from_record": 20, "group": [21, 24, 75], "group_bar": 22, "group_barh": 23, "hist": [25, 75], "hist_of_count": 26, "index_bi": 27, "interactive_plot": [28, 75], "join": [29, 75], "label": [30, 75], "last": 31, "move_column": 32, "move_to_end": 33, "move_to_start": 34, "num_column": [35, 75], "num_row": [36, 75], "percentil": [37, 75], "pivot": [38, 75], "pivot_bin": 39, "pivot_hist": 40, "plot": [41, 75], "read_tabl": [42, 75], "relabel": [43, 44, 75], "remov": 45, "row": [46, 47], "sampl": [48, 75], "sample_from_distribut": 49, "scatter": [50, 75], "scatter3d": 51, "select": [52, 75], "set_format": 53, "show": [54, 75], "shuffl": 55, "sort": [56, 75], "split": [57, 75], "stack": 58, "static_plot": [59, 75], "stat": 60, "take": [61, 75], "to_arrai": 62, "to_csv": 63, "to_df": 64, "valu": [65, 77], "where": [66, 75], "with_column": [67, 68, 75], "with_row": [69, 70], "format": 71, "welcom": 72, "": 72, "document": 72, "refer": [72, 75], "map": [73, 77], "predic": [74, 75], "data": [75, 77], "8": 75, "function": [75, 78], "method": 75, "tbl": 75, "visual": [75, 77], "advanc": 75, "string": 75, "str": 75, "replac": 75, "arrai": 75, "max": 75, "min": 75, "sum": 75, "ab": 75, "round": 75, "num": 75, "len": 75, "make_arrai": 75, "np": 75, "mean": 75, "std": 75, "diff": 75, "sqrt": 75, "arang": 75, "item": 75, "random": 75, "choic": 75, "count_nonzero": 75, "ar": 75, "equal_to": 75, "abov": 75, "above_or_equal_to": 75, "below": 75, "below_or_equal_to": 75, "between": 75, "between_or_equal_to": 75, "contained_in": 75, "contain": 75, "strictly_between": 75, "miscellan": 75, "sample_proport": 75, "minim": 75, "start": 77, "here": 77, "tutori": 77, "content": 77, "get": 77, "creat": 77, "access": 77, "manipul": 77, "export": 77, "an": 77, "exampl": 77, "draw": 77, "util": 78}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"datascience.tables.Table.__init__": [[0, "datascience-tables-table-init"]], "datascience.tables.Table.append": [[1, "datascience-tables-table-append"]], "datascience.tables.Table.append_column": [[2, "datascience-tables-table-append-column"]], "datascience.tables.Table.apply": [[3, "datascience-tables-table-apply"]], "datascience.tables.Table.as_html": [[4, "datascience-tables-table-as-html"]], "datascience.tables.Table.as_text": [[5, "datascience-tables-table-as-text"]], "datascience.tables.Table.bar": [[6, "datascience-tables-table-bar"]], "datascience.tables.Table.barh": [[7, "datascience-tables-table-barh"]], "datascience.tables.Table.bin": [[8, "datascience-tables-table-bin"]], "datascience.tables.Table.boxplot": [[9, "datascience-tables-table-boxplot"]], "datascience.tables.Table.column": [[10, "datascience-tables-table-column"]], "datascience.tables.Table.column_index": [[11, "datascience-tables-table-column-index"]], "datascience.tables.Table.columns": [[12, "datascience-tables-table-columns"]], "datascience.tables.Table.copy": [[13, "datascience-tables-table-copy"]], "datascience.tables.Table.drop": [[14, "datascience-tables-table-drop"]], "datascience.tables.Table.exclude": [[15, "datascience-tables-table-exclude"]], "datascience.tables.Table.first": [[16, "datascience-tables-table-first"]], "datascience.tables.Table.from_array": [[17, "datascience-tables-table-from-array"]], "datascience.tables.Table.from_columns_dict": [[18, "datascience-tables-table-from-columns-dict"]], "datascience.tables.Table.from_df": [[19, "datascience-tables-table-from-df"]], "datascience.tables.Table.from_records": [[20, "datascience-tables-table-from-records"]], "datascience.tables.Table.group": [[21, "datascience-tables-table-group"]], "datascience.tables.Table.group_bar": [[22, "datascience-tables-table-group-bar"]], "datascience.tables.Table.group_barh": [[23, "datascience-tables-table-group-barh"]], "datascience.tables.Table.groups": [[24, "datascience-tables-table-groups"]], "datascience.tables.Table.hist": [[25, "datascience-tables-table-hist"]], "datascience.tables.Table.hist_of_counts": [[26, "datascience-tables-table-hist-of-counts"]], "datascience.tables.Table.index_by": [[27, "datascience-tables-table-index-by"]], "datascience.tables.Table.interactive_plots": [[28, "datascience-tables-table-interactive-plots"]], "datascience.tables.Table.join": [[29, "datascience-tables-table-join"]], "datascience.tables.Table.labels": [[30, "datascience-tables-table-labels"]], "datascience.tables.Table.last": [[31, "datascience-tables-table-last"]], "datascience.tables.Table.move_column": [[32, "datascience-tables-table-move-column"]], "datascience.tables.Table.move_to_end": [[33, "datascience-tables-table-move-to-end"]], "datascience.tables.Table.move_to_start": [[34, "datascience-tables-table-move-to-start"]], "datascience.tables.Table.num_columns": [[35, "datascience-tables-table-num-columns"]], "datascience.tables.Table.num_rows": [[36, "datascience-tables-table-num-rows"]], "datascience.tables.Table.percentile": [[37, "datascience-tables-table-percentile"]], "datascience.tables.Table.pivot": [[38, "datascience-tables-table-pivot"]], "datascience.tables.Table.pivot_bin": [[39, "datascience-tables-table-pivot-bin"]], "datascience.tables.Table.pivot_hist": [[40, "datascience-tables-table-pivot-hist"]], "datascience.tables.Table.plot": [[41, "datascience-tables-table-plot"]], "datascience.tables.Table.read_table": [[42, "datascience-tables-table-read-table"]], "datascience.tables.Table.relabel": [[43, "datascience-tables-table-relabel"]], "datascience.tables.Table.relabeled": [[44, "datascience-tables-table-relabeled"]], "datascience.tables.Table.remove": [[45, "datascience-tables-table-remove"]], "datascience.tables.Table.row": [[46, "datascience-tables-table-row"]], "datascience.tables.Table.rows": [[47, "datascience-tables-table-rows"]], "datascience.tables.Table.sample": [[48, "datascience-tables-table-sample"]], "datascience.tables.Table.sample_from_distribution": [[49, "datascience-tables-table-sample-from-distribution"]], "datascience.tables.Table.scatter": [[50, "datascience-tables-table-scatter"]], "datascience.tables.Table.scatter3d": [[51, "datascience-tables-table-scatter3d"]], "datascience.tables.Table.select": [[52, "datascience-tables-table-select"]], "datascience.tables.Table.set_format": [[53, "datascience-tables-table-set-format"]], "datascience.tables.Table.show": [[54, "datascience-tables-table-show"]], "datascience.tables.Table.shuffle": [[55, "datascience-tables-table-shuffle"]], "datascience.tables.Table.sort": [[56, "datascience-tables-table-sort"]], "datascience.tables.Table.split": [[57, "datascience-tables-table-split"]], "datascience.tables.Table.stack": [[58, "datascience-tables-table-stack"]], "datascience.tables.Table.static_plots": [[59, "datascience-tables-table-static-plots"]], "datascience.tables.Table.stats": [[60, "datascience-tables-table-stats"]], "datascience.tables.Table.take": [[61, "datascience-tables-table-take"]], "datascience.tables.Table.to_array": [[62, "datascience-tables-table-to-array"]], "datascience.tables.Table.to_csv": [[63, "datascience-tables-table-to-csv"]], "datascience.tables.Table.to_df": [[64, "datascience-tables-table-to-df"]], "datascience.tables.Table.values": [[65, "datascience-tables-table-values"]], "datascience.tables.Table.where": [[66, "datascience-tables-table-where"]], "datascience.tables.Table.with_column": [[67, "datascience-tables-table-with-column"]], "datascience.tables.Table.with_columns": [[68, "datascience-tables-table-with-columns"]], "datascience.tables.Table.with_row": [[69, "datascience-tables-table-with-row"]], "datascience.tables.Table.with_rows": [[70, "datascience-tables-table-with-rows"]], "Formats (datascience.formats)": [[71, "module-datascience.formats"]], "Welcome to datascience\u2019s documentation!": [[72, "welcome-to-datascience-s-documentation"]], "Reference": [[72, "reference"]], "Maps (datascience.maps)": [[73, "module-datascience.maps"]], "Predicates (datascience.predicates)": [[74, "module-datascience.predicates"]], "Data 8 datascience Reference": [[75, "Data-8-datascience-Reference"]], "Table Functions and Methods": [[75, "Table-Functions-and-Methods"]], "Table()": [[75, "Table()"]], "Table.read_table()": [[75, "Table.read_table()"]], "tbl.with_column": [[75, "tbl.with_column"]], "tbl.column()": [[75, "tbl.column()"]], "tbl.num_rows": [[75, "tbl.num_rows"]], "tbl.num_columns": [[75, "tbl.num_columns"]], "tbl.labels": [[75, "tbl.labels"]], "tbl.select()": [[75, "tbl.select()"]], "tbl.drop()": [[75, "tbl.drop()"]], "tbl.relabel()": [[75, "tbl.relabel()"]], "tbl.show()": [[75, "tbl.show()"]], "tbl.sort()": [[75, "tbl.sort()"]], "tbl.where()": [[75, "tbl.where()"]], "tbl.take()": [[75, "tbl.take()"]], "Table Visualizations": [[75, "Table-Visualizations"]], "tbl.scatter()": [[75, "tbl.scatter()"]], "tbl.plot()": [[75, "tbl.plot()"]], "tbl.barh()": [[75, "tbl.barh()"]], "tbl.hist()": [[75, "tbl.hist()"]], "Table.interactive_plots()": [[75, "Table.interactive_plots()"]], "Table.static_plots()": [[75, "Table.static_plots()"]], "Advanced Table Functions": [[75, "Advanced-Table-Functions"]], "tbl.apply()": [[75, "tbl.apply()"]], "tbl.group()": [[75, "tbl.group()"]], "tbl.pivot()": [[75, "tbl.pivot()"]], "tbl.join()": [[75, "tbl.join()"]], "tbl.sample()": [[75, "tbl.sample()"]], "String Methods": [[75, "String-Methods"]], "str.split()": [[75, "str.split()"]], "str.join()": [[75, "str.join()"]], "str.replace()": [[75, "str.replace()"]], "Array Functions and Methods": [[75, "Array-Functions-and-Methods"]], "max()": [[75, "max()"]], "min()": [[75, "min()"]], "sum()": [[75, "sum()"]], "abs()": [[75, "abs()"]], "round(num)": [[75, "round(num)"]], "len()": [[75, "len()"]], "make_array()": [[75, "make_array()"]], "np.mean": [[75, "np.mean"]], "np.std()": [[75, "np.std()"]], "np.diff()": [[75, "np.diff()"]], "np.sqrt()": [[75, "np.sqrt()"]], "np.arange()": [[75, "np.arange()"]], "array.item()": [[75, "array.item()"]], "np.random.choice": [[75, "np.random.choice"]], "np.count_nonzero()": [[75, "np.count_nonzero()"]], "np.append()": [[75, "np.append()"]], "percentile()": [[75, "percentile()"]], "Table.where Predicates": [[75, "Table.where-Predicates"]], "are.equal_to()": [[75, "are.equal_to()"]], "are.above()": [[75, "are.above()"]], "are.above_or_equal_to()": [[75, "are.above_or_equal_to()"]], "are.below()": [[75, "are.below()"]], "are.below_or_equal_to()": [[75, "are.below_or_equal_to()"]], "are.between()": [[75, "are.between()"]], "are.between_or_equal_to()": [[75, "are.between_or_equal_to()"]], "are.contained_in()": [[75, "are.contained_in()"]], "are.containing()": [[75, "are.containing()"]], "are.strictly_between()": [[75, "are.strictly_between()"]], "Miscellaneous Functions": [[75, "Miscellaneous-Functions"]], "sample_proportions()": [[75, "sample_proportions()"]], "minimize()": [[75, "minimize()"]], "Tables (datascience.tables)": [[76, "tables-datascience-tables"]], "Start Here: datascience Tutorial": [[77, "start-here-datascience-tutorial"]], "Table of Contents": [[77, "table-of-contents"]], "Getting Started": [[77, "getting-started"]], "Creating a Table": [[77, "creating-a-table"]], "Accessing Values": [[77, "accessing-values"]], "Manipulating Data": [[77, "manipulating-data"]], "Visualizing Data": [[77, "visualizing-data"]], "Exporting": [[77, "exporting"]], "An Example": [[77, "an-example"]], "Drawing Maps": [[77, "drawing-maps"]], "Utility Functions (datascience.util)": [[78, "module-datascience.util"]]}, "indexentries": {"__init__() (datascience.tables.table method)": [[0, "datascience.tables.Table.__init__"]], "append() (datascience.tables.table method)": [[1, "datascience.tables.Table.append"]], "append_column() (datascience.tables.table method)": [[2, "datascience.tables.Table.append_column"]], "apply() (datascience.tables.table method)": [[3, "datascience.tables.Table.apply"]], "as_html() (datascience.tables.table method)": [[4, "datascience.tables.Table.as_html"]], "as_text() (datascience.tables.table method)": [[5, "datascience.tables.Table.as_text"]], "bar() (datascience.tables.table method)": [[6, "datascience.tables.Table.bar"]], "barh() (datascience.tables.table method)": [[7, "datascience.tables.Table.barh"]], "bin() (datascience.tables.table method)": [[8, "datascience.tables.Table.bin"]], "boxplot() (datascience.tables.table method)": [[9, "datascience.tables.Table.boxplot"]], "column() (datascience.tables.table method)": [[10, "datascience.tables.Table.column"]], "column_index() (datascience.tables.table method)": [[11, "datascience.tables.Table.column_index"]], "columns (datascience.tables.table property)": [[12, "datascience.tables.Table.columns"]], "copy() (datascience.tables.table method)": [[13, "datascience.tables.Table.copy"]], "drop() (datascience.tables.table method)": [[14, "datascience.tables.Table.drop"]], "exclude() (datascience.tables.table method)": [[15, "datascience.tables.Table.exclude"]], "first() (datascience.tables.table method)": [[16, "datascience.tables.Table.first"]], "from_array() (datascience.tables.table class method)": [[17, "datascience.tables.Table.from_array"]], "from_columns_dict() (datascience.tables.table class method)": [[18, "datascience.tables.Table.from_columns_dict"]], "from_df() (datascience.tables.table class method)": [[19, "datascience.tables.Table.from_df"]], "from_records() (datascience.tables.table class method)": [[20, "datascience.tables.Table.from_records"]], "group() (datascience.tables.table method)": [[21, "datascience.tables.Table.group"]], "group_bar() (datascience.tables.table method)": [[22, "datascience.tables.Table.group_bar"]], "group_barh() (datascience.tables.table method)": [[23, "datascience.tables.Table.group_barh"]], "groups() (datascience.tables.table method)": [[24, "datascience.tables.Table.groups"]], "hist() (datascience.tables.table method)": [[25, "datascience.tables.Table.hist"]], "hist_of_counts() (datascience.tables.table method)": [[26, "datascience.tables.Table.hist_of_counts"]], "index_by() (datascience.tables.table method)": [[27, "datascience.tables.Table.index_by"]], "interactive_plots() (datascience.tables.table class method)": [[28, "datascience.tables.Table.interactive_plots"]], "join() (datascience.tables.table method)": [[29, "datascience.tables.Table.join"]], "labels (datascience.tables.table property)": [[30, "datascience.tables.Table.labels"]], "last() (datascience.tables.table method)": [[31, "datascience.tables.Table.last"]], "move_column() (datascience.tables.table method)": [[32, "datascience.tables.Table.move_column"]], "move_to_end() (datascience.tables.table method)": [[33, "datascience.tables.Table.move_to_end"]], "move_to_start() (datascience.tables.table method)": [[34, "datascience.tables.Table.move_to_start"]], "num_columns (datascience.tables.table property)": [[35, "datascience.tables.Table.num_columns"]], "num_rows (datascience.tables.table property)": [[36, "datascience.tables.Table.num_rows"]], "percentile() (datascience.tables.table method)": [[37, "datascience.tables.Table.percentile"]], "pivot() (datascience.tables.table method)": [[38, "datascience.tables.Table.pivot"]], "pivot_bin() (datascience.tables.table method)": [[39, "datascience.tables.Table.pivot_bin"]], "pivot_hist() (datascience.tables.table method)": [[40, "datascience.tables.Table.pivot_hist"]], "plot() (datascience.tables.table method)": [[41, "datascience.tables.Table.plot"]], "read_table() (datascience.tables.table class method)": [[42, "datascience.tables.Table.read_table"]], "relabel() (datascience.tables.table method)": [[43, "datascience.tables.Table.relabel"]], "relabeled() (datascience.tables.table method)": [[44, "datascience.tables.Table.relabeled"]], "remove() (datascience.tables.table method)": [[45, "datascience.tables.Table.remove"]], "row() (datascience.tables.table method)": [[46, "datascience.tables.Table.row"]], "rows (datascience.tables.table property)": [[47, "datascience.tables.Table.rows"]], "sample() (datascience.tables.table method)": [[48, "datascience.tables.Table.sample"]], "sample_from_distribution() (datascience.tables.table method)": [[49, "datascience.tables.Table.sample_from_distribution"]], "scatter() (datascience.tables.table method)": [[50, "datascience.tables.Table.scatter"]], "scatter3d() (datascience.tables.table method)": [[51, "datascience.tables.Table.scatter3d"]], "select() (datascience.tables.table method)": [[52, "datascience.tables.Table.select"]], "set_format() (datascience.tables.table method)": [[53, "datascience.tables.Table.set_format"]], "show() (datascience.tables.table method)": [[54, "datascience.tables.Table.show"]], "shuffle() (datascience.tables.table method)": [[55, "datascience.tables.Table.shuffle"]], "sort() (datascience.tables.table method)": [[56, "datascience.tables.Table.sort"]], "split() (datascience.tables.table method)": [[57, "datascience.tables.Table.split"]], "stack() (datascience.tables.table method)": [[58, "datascience.tables.Table.stack"]], "static_plots() (datascience.tables.table class method)": [[59, "datascience.tables.Table.static_plots"]], "stats() (datascience.tables.table method)": [[60, "datascience.tables.Table.stats"]], "take() (datascience.tables.table method)": [[61, "datascience.tables.Table.take"]], "to_array() (datascience.tables.table method)": [[62, "datascience.tables.Table.to_array"]], "to_csv() (datascience.tables.table method)": [[63, "datascience.tables.Table.to_csv"]], "to_df() (datascience.tables.table method)": [[64, "datascience.tables.Table.to_df"]], "values (datascience.tables.table property)": [[65, "datascience.tables.Table.values"]], "where() (datascience.tables.table method)": [[66, "datascience.tables.Table.where"]], "with_column() (datascience.tables.table method)": [[67, "datascience.tables.Table.with_column"]], "with_columns() (datascience.tables.table method)": [[68, "datascience.tables.Table.with_columns"]], "with_row() (datascience.tables.table method)": [[69, "datascience.tables.Table.with_row"]], "with_rows() (datascience.tables.table method)": [[70, "datascience.tables.Table.with_rows"]], "currencyformatter (class in datascience.formats)": [[71, "datascience.formats.CurrencyFormatter"]], "dateformatter (class in datascience.formats)": [[71, "datascience.formats.DateFormatter"]], "distributionformatter (class in datascience.formats)": [[71, "datascience.formats.DistributionFormatter"]], "formatter (class in datascience.formats)": [[71, "datascience.formats.Formatter"]], "numberformatter (class in datascience.formats)": [[71, "datascience.formats.NumberFormatter"]], "percentformatter (class in datascience.formats)": [[71, "datascience.formats.PercentFormatter"]], "convert_column() (datascience.formats.distributionformatter method)": [[71, "datascience.formats.DistributionFormatter.convert_column"]], "convert_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.convert_column"]], "convert_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.convert_value"]], "convert_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.convert_value"]], "convert_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.convert_value"]], "convert_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.convert_value"]], "converts_values (datascience.formats.formatter property)": [[71, "datascience.formats.Formatter.converts_values"]], "datascience.formats": [[71, "module-datascience.formats"]], "etc (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.etc"]], "format_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.format_column"]], "format_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.format_value"]], "format_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.format_value"]], "format_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.format_value"]], "format_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.format_value"]], "format_value() (datascience.formats.percentformatter method)": [[71, "datascience.formats.PercentFormatter.format_value"]], "max_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.max_width"]], "min_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.min_width"]], "module": [[71, "module-datascience.formats"], [73, "module-datascience.maps"], [74, "module-datascience.predicates"], [78, "module-datascience.util"]], "circle (class in datascience.maps)": [[73, "datascience.maps.Circle"]], "map (class in datascience.maps)": [[73, "datascience.maps.Map"]], "marker (class in datascience.maps)": [[73, "datascience.maps.Marker"]], "region (class in datascience.maps)": [[73, "datascience.maps.Region"]], "color() (datascience.maps.map method)": [[73, "datascience.maps.Map.color"]], "copy() (datascience.maps.map method)": [[73, "datascience.maps.Map.copy"]], "copy() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.copy"]], "copy() (datascience.maps.region method)": [[73, "datascience.maps.Region.copy"]], "datascience.maps": [[73, "module-datascience.maps"]], "draw_on() (datascience.maps.circle method)": [[73, "datascience.maps.Circle.draw_on"]], "draw_on() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.draw_on"]], "draw_on() (datascience.maps.region method)": [[73, "datascience.maps.Region.draw_on"]], "features (datascience.maps.map property)": [[73, "datascience.maps.Map.features"]], "format() (datascience.maps.map method)": [[73, "datascience.maps.Map.format"]], "format() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.format"]], "format() (datascience.maps.region method)": [[73, "datascience.maps.Region.format"]], "geojson() (datascience.maps.map method)": [[73, "datascience.maps.Map.geojson"]], "geojson() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.geojson"]], "geojson() (datascience.maps.region method)": [[73, "datascience.maps.Region.geojson"]], "get_coordinates() (in module datascience.maps)": [[73, "datascience.maps.get_coordinates"]], "lat_lons (datascience.maps.marker property)": [[73, "datascience.maps.Marker.lat_lons"]], "lat_lons (datascience.maps.region property)": [[73, "datascience.maps.Region.lat_lons"]], "map() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map"]], "map_table() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map_table"]], "overlay() (datascience.maps.map method)": [[73, "datascience.maps.Map.overlay"]], "polygons (datascience.maps.region property)": [[73, "datascience.maps.Region.polygons"]], "properties (datascience.maps.region property)": [[73, "datascience.maps.Region.properties"]], "read_geojson() (datascience.maps.map class method)": [[73, "datascience.maps.Map.read_geojson"]], "type (datascience.maps.region property)": [[73, "datascience.maps.Region.type"]], "above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above"]], "above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above_or_equal_to"]], "are (class in datascience.predicates)": [[74, "datascience.predicates.are"]], "below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below"]], "below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below_or_equal_to"]], "between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between"]], "between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between_or_equal_to"]], "contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.contained_in"]], "containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.containing"]], "datascience.predicates": [[74, "module-datascience.predicates"]], "equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.equal_to"]], "not_above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above"]], "not_above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above_or_equal_to"]], "not_below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below"]], "not_below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below_or_equal_to"]], "not_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between"]], "not_between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between_or_equal_to"]], "not_contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_contained_in"]], "not_containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_containing"]], "not_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_equal_to"]], "not_strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_strictly_between"]], "strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.strictly_between"]], "datascience.util": [[78, "module-datascience.util"]], "is_non_string_iterable() (in module datascience.util)": [[78, "datascience.util.is_non_string_iterable"]], "make_array() (in module datascience.util)": [[78, "datascience.util.make_array"]], "minimize() (in module datascience.util)": [[78, "datascience.util.minimize"]], "percentile() (in module datascience.util)": [[78, "datascience.util.percentile"]], "plot_cdf_area() (in module datascience.util)": [[78, "datascience.util.plot_cdf_area"]], "plot_normal_cdf() (in module datascience.util)": [[78, "datascience.util.plot_normal_cdf"]], "proportions_from_distribution() (in module datascience.util)": [[78, "datascience.util.proportions_from_distribution"]], "sample_proportions() (in module datascience.util)": [[78, "datascience.util.sample_proportions"]], "table_apply() (in module datascience.util)": [[78, "datascience.util.table_apply"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["_autosummary/datascience.tables.Table.__init__", "_autosummary/datascience.tables.Table.append", "_autosummary/datascience.tables.Table.append_column", "_autosummary/datascience.tables.Table.apply", "_autosummary/datascience.tables.Table.as_html", "_autosummary/datascience.tables.Table.as_text", "_autosummary/datascience.tables.Table.bar", "_autosummary/datascience.tables.Table.barh", "_autosummary/datascience.tables.Table.bin", "_autosummary/datascience.tables.Table.boxplot", "_autosummary/datascience.tables.Table.column", "_autosummary/datascience.tables.Table.column_index", "_autosummary/datascience.tables.Table.columns", "_autosummary/datascience.tables.Table.copy", "_autosummary/datascience.tables.Table.drop", "_autosummary/datascience.tables.Table.exclude", "_autosummary/datascience.tables.Table.first", "_autosummary/datascience.tables.Table.from_array", "_autosummary/datascience.tables.Table.from_columns_dict", "_autosummary/datascience.tables.Table.from_df", "_autosummary/datascience.tables.Table.from_records", "_autosummary/datascience.tables.Table.group", "_autosummary/datascience.tables.Table.group_bar", "_autosummary/datascience.tables.Table.group_barh", "_autosummary/datascience.tables.Table.groups", "_autosummary/datascience.tables.Table.hist", "_autosummary/datascience.tables.Table.hist_of_counts", "_autosummary/datascience.tables.Table.index_by", "_autosummary/datascience.tables.Table.interactive_plots", "_autosummary/datascience.tables.Table.join", "_autosummary/datascience.tables.Table.labels", "_autosummary/datascience.tables.Table.last", "_autosummary/datascience.tables.Table.move_column", "_autosummary/datascience.tables.Table.move_to_end", "_autosummary/datascience.tables.Table.move_to_start", "_autosummary/datascience.tables.Table.num_columns", "_autosummary/datascience.tables.Table.num_rows", "_autosummary/datascience.tables.Table.percentile", "_autosummary/datascience.tables.Table.pivot", "_autosummary/datascience.tables.Table.pivot_bin", "_autosummary/datascience.tables.Table.pivot_hist", "_autosummary/datascience.tables.Table.plot", "_autosummary/datascience.tables.Table.read_table", "_autosummary/datascience.tables.Table.relabel", "_autosummary/datascience.tables.Table.relabeled", "_autosummary/datascience.tables.Table.remove", "_autosummary/datascience.tables.Table.row", "_autosummary/datascience.tables.Table.rows", "_autosummary/datascience.tables.Table.sample", "_autosummary/datascience.tables.Table.sample_from_distribution", "_autosummary/datascience.tables.Table.scatter", "_autosummary/datascience.tables.Table.scatter3d", "_autosummary/datascience.tables.Table.select", "_autosummary/datascience.tables.Table.set_format", "_autosummary/datascience.tables.Table.show", "_autosummary/datascience.tables.Table.shuffle", "_autosummary/datascience.tables.Table.sort", "_autosummary/datascience.tables.Table.split", "_autosummary/datascience.tables.Table.stack", "_autosummary/datascience.tables.Table.static_plots", "_autosummary/datascience.tables.Table.stats", "_autosummary/datascience.tables.Table.take", "_autosummary/datascience.tables.Table.to_array", "_autosummary/datascience.tables.Table.to_csv", "_autosummary/datascience.tables.Table.to_df", "_autosummary/datascience.tables.Table.values", "_autosummary/datascience.tables.Table.where", "_autosummary/datascience.tables.Table.with_column", "_autosummary/datascience.tables.Table.with_columns", "_autosummary/datascience.tables.Table.with_row", "_autosummary/datascience.tables.Table.with_rows", "formats", "index", "maps", "predicates", "reference-nb/datascience-reference", "tables", "tutorial", "util"], "filenames": ["_autosummary/datascience.tables.Table.__init__.rst", "_autosummary/datascience.tables.Table.append.rst", "_autosummary/datascience.tables.Table.append_column.rst", "_autosummary/datascience.tables.Table.apply.rst", "_autosummary/datascience.tables.Table.as_html.rst", "_autosummary/datascience.tables.Table.as_text.rst", "_autosummary/datascience.tables.Table.bar.rst", "_autosummary/datascience.tables.Table.barh.rst", "_autosummary/datascience.tables.Table.bin.rst", "_autosummary/datascience.tables.Table.boxplot.rst", "_autosummary/datascience.tables.Table.column.rst", "_autosummary/datascience.tables.Table.column_index.rst", "_autosummary/datascience.tables.Table.columns.rst", "_autosummary/datascience.tables.Table.copy.rst", "_autosummary/datascience.tables.Table.drop.rst", "_autosummary/datascience.tables.Table.exclude.rst", "_autosummary/datascience.tables.Table.first.rst", "_autosummary/datascience.tables.Table.from_array.rst", "_autosummary/datascience.tables.Table.from_columns_dict.rst", "_autosummary/datascience.tables.Table.from_df.rst", "_autosummary/datascience.tables.Table.from_records.rst", "_autosummary/datascience.tables.Table.group.rst", "_autosummary/datascience.tables.Table.group_bar.rst", "_autosummary/datascience.tables.Table.group_barh.rst", "_autosummary/datascience.tables.Table.groups.rst", "_autosummary/datascience.tables.Table.hist.rst", "_autosummary/datascience.tables.Table.hist_of_counts.rst", "_autosummary/datascience.tables.Table.index_by.rst", "_autosummary/datascience.tables.Table.interactive_plots.rst", "_autosummary/datascience.tables.Table.join.rst", "_autosummary/datascience.tables.Table.labels.rst", "_autosummary/datascience.tables.Table.last.rst", "_autosummary/datascience.tables.Table.move_column.rst", "_autosummary/datascience.tables.Table.move_to_end.rst", "_autosummary/datascience.tables.Table.move_to_start.rst", "_autosummary/datascience.tables.Table.num_columns.rst", "_autosummary/datascience.tables.Table.num_rows.rst", "_autosummary/datascience.tables.Table.percentile.rst", "_autosummary/datascience.tables.Table.pivot.rst", "_autosummary/datascience.tables.Table.pivot_bin.rst", "_autosummary/datascience.tables.Table.pivot_hist.rst", "_autosummary/datascience.tables.Table.plot.rst", "_autosummary/datascience.tables.Table.read_table.rst", "_autosummary/datascience.tables.Table.relabel.rst", "_autosummary/datascience.tables.Table.relabeled.rst", "_autosummary/datascience.tables.Table.remove.rst", "_autosummary/datascience.tables.Table.row.rst", "_autosummary/datascience.tables.Table.rows.rst", "_autosummary/datascience.tables.Table.sample.rst", "_autosummary/datascience.tables.Table.sample_from_distribution.rst", "_autosummary/datascience.tables.Table.scatter.rst", "_autosummary/datascience.tables.Table.scatter3d.rst", "_autosummary/datascience.tables.Table.select.rst", "_autosummary/datascience.tables.Table.set_format.rst", "_autosummary/datascience.tables.Table.show.rst", "_autosummary/datascience.tables.Table.shuffle.rst", "_autosummary/datascience.tables.Table.sort.rst", "_autosummary/datascience.tables.Table.split.rst", "_autosummary/datascience.tables.Table.stack.rst", "_autosummary/datascience.tables.Table.static_plots.rst", "_autosummary/datascience.tables.Table.stats.rst", "_autosummary/datascience.tables.Table.take.rst", "_autosummary/datascience.tables.Table.to_array.rst", "_autosummary/datascience.tables.Table.to_csv.rst", "_autosummary/datascience.tables.Table.to_df.rst", "_autosummary/datascience.tables.Table.values.rst", "_autosummary/datascience.tables.Table.where.rst", "_autosummary/datascience.tables.Table.with_column.rst", "_autosummary/datascience.tables.Table.with_columns.rst", "_autosummary/datascience.tables.Table.with_row.rst", "_autosummary/datascience.tables.Table.with_rows.rst", "formats.rst", "index.rst", "maps.rst", "predicates.rst", "reference-nb/datascience-reference.ipynb", "tables.rst", "tutorial.rst", "util.rst"], "titles": ["datascience.tables.Table.__init__", "datascience.tables.Table.append", "datascience.tables.Table.append_column", "datascience.tables.Table.apply", "datascience.tables.Table.as_html", "datascience.tables.Table.as_text", "datascience.tables.Table.bar", "datascience.tables.Table.barh", "datascience.tables.Table.bin", "datascience.tables.Table.boxplot", "datascience.tables.Table.column", "datascience.tables.Table.column_index", "datascience.tables.Table.columns", "datascience.tables.Table.copy", "datascience.tables.Table.drop", "datascience.tables.Table.exclude", "datascience.tables.Table.first", "datascience.tables.Table.from_array", "datascience.tables.Table.from_columns_dict", "datascience.tables.Table.from_df", "datascience.tables.Table.from_records", "datascience.tables.Table.group", "datascience.tables.Table.group_bar", "datascience.tables.Table.group_barh", "datascience.tables.Table.groups", "datascience.tables.Table.hist", "datascience.tables.Table.hist_of_counts", "datascience.tables.Table.index_by", "datascience.tables.Table.interactive_plots", "datascience.tables.Table.join", "datascience.tables.Table.labels", "datascience.tables.Table.last", "datascience.tables.Table.move_column", "datascience.tables.Table.move_to_end", "datascience.tables.Table.move_to_start", "datascience.tables.Table.num_columns", "datascience.tables.Table.num_rows", "datascience.tables.Table.percentile", "datascience.tables.Table.pivot", "datascience.tables.Table.pivot_bin", "datascience.tables.Table.pivot_hist", "datascience.tables.Table.plot", "datascience.tables.Table.read_table", "datascience.tables.Table.relabel", "datascience.tables.Table.relabeled", "datascience.tables.Table.remove", "datascience.tables.Table.row", "datascience.tables.Table.rows", "datascience.tables.Table.sample", "datascience.tables.Table.sample_from_distribution", "datascience.tables.Table.scatter", "datascience.tables.Table.scatter3d", "datascience.tables.Table.select", "datascience.tables.Table.set_format", "datascience.tables.Table.show", "datascience.tables.Table.shuffle", "datascience.tables.Table.sort", "datascience.tables.Table.split", "datascience.tables.Table.stack", "datascience.tables.Table.static_plots", "datascience.tables.Table.stats", "datascience.tables.Table.take", "datascience.tables.Table.to_array", "datascience.tables.Table.to_csv", "datascience.tables.Table.to_df", "datascience.tables.Table.values", "datascience.tables.Table.where", "datascience.tables.Table.with_column", "datascience.tables.Table.with_columns", "datascience.tables.Table.with_row", "datascience.tables.Table.with_rows", "Formats (datascience.formats)", "Welcome to datascience\u2019s documentation!", "Maps (datascience.maps)", "Predicates (datascience.predicates)", "Data 8 datascience Reference", "Tables (datascience.tables)", "Start Here: datascience Tutorial", "Utility Functions (datascience.util)"], "terms": {"label": [0, 2, 3, 6, 7, 8, 10, 11, 14, 16, 18, 21, 24, 27, 29, 31, 32, 37, 38, 41, 43, 44, 50, 51, 52, 53, 58, 66, 67, 68, 71, 73, 77, 78], "none": [0, 2, 6, 7, 9, 21, 24, 25, 26, 29, 38, 39, 41, 48, 50, 51, 58, 62, 63, 64, 66, 67, 71, 73, 78], "formatt": [0, 2, 53, 67, 68, 71], "format": [0, 4, 5, 53, 68, 72, 73], "object": [0, 13, 29, 47, 54, 65, 73, 75, 77], "sourc": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 78], "creat": [0, 6, 7, 18, 20, 22, 23, 25, 29, 38, 41, 50, 51, 63, 72, 75, 76, 78], "an": [0, 1, 3, 8, 10, 14, 20, 33, 34, 39, 48, 53, 56, 62, 64, 66, 67, 68, 69, 71, 72, 73, 75, 78], "empti": [0, 8, 20, 21, 24, 29, 66, 75, 77], "column": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 49, 50, 51, 52, 53, 56, 58, 60, 61, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78], "tile": [0, 10, 44, 65, 69, 70], "make_arrai": [0, 1, 2, 3, 7, 9, 10, 13, 14, 15, 21, 24, 25, 26, 27, 28, 29, 32, 33, 34, 37, 38, 41, 43, 44, 45, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 78], "letter": [0, 2, 3, 10, 11, 12, 15, 16, 30, 31, 36, 44, 47, 61, 62, 65, 67, 69, 70, 77], "count": [0, 2, 3, 5, 7, 8, 10, 11, 12, 16, 21, 22, 23, 24, 25, 26, 30, 31, 36, 37, 38, 39, 44, 47, 49, 62, 65, 67, 69, 70, 75, 77, 78], "point": [0, 2, 3, 11, 12, 16, 22, 23, 25, 26, 30, 31, 36, 37, 43, 47, 50, 62, 69, 70, 73, 77], "arg": [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 27, 29, 31, 32, 38, 39, 41, 42, 43, 44, 48, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "list": [0, 2, 10, 14, 15, 20, 24, 25, 27, 38, 45, 47, 58, 61, 67, 68, 73, 75, 76, 77, 78], "string": [0, 2, 4, 5, 14, 21, 25, 42, 67, 68, 71, 72, 73, 74], "The": [0, 1, 2, 3, 4, 5, 8, 9, 10, 14, 15, 21, 22, 23, 24, 25, 26, 27, 33, 34, 37, 39, 42, 43, 44, 45, 49, 51, 52, 53, 57, 58, 61, 62, 63, 64, 67, 68, 72, 73, 74, 75, 77, 78], "instanc": [0, 10, 14, 15, 48, 52, 53, 55, 56, 57, 61, 78], "valu": [0, 2, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 21, 22, 23, 24, 25, 26, 27, 29, 31, 36, 37, 38, 39, 41, 49, 50, 51, 53, 54, 56, 58, 60, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78], "row_or_t": 1, "row": [1, 2, 3, 4, 5, 15, 21, 24, 25, 26, 27, 29, 36, 37, 38, 39, 42, 45, 48, 49, 54, 55, 56, 57, 61, 62, 66, 67, 68, 69, 70, 73, 74, 75, 77], "all": [1, 8, 21, 24, 25, 26, 29, 39, 41, 47, 50, 51, 53, 55, 58, 65, 68, 73, 75, 77, 78], "place": [1, 25, 43, 44, 45, 60, 64, 75, 76], "must": [1, 2, 3, 6, 7, 9, 14, 26, 41, 43, 44, 48, 50, 51, 53, 57, 58, 66, 67, 68, 70, 73, 75, 76, 78], "have": [1, 2, 20, 48, 53, 65, 67, 68, 71, 73, 75, 76, 78], "self": [1, 29, 41, 50, 51, 53, 65], "follow": [1, 4, 5, 8, 13, 24, 33, 34, 39, 45, 53, 62, 73, 74, 75, 76, 77], "exampl": [1, 4, 5, 11, 12, 13, 16, 17, 19, 20, 27, 30, 31, 33, 34, 36, 39, 42, 45, 47, 53, 54, 58, 62, 64, 65, 66, 72, 73, 74, 75], "record": [1, 20], "with_column": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 73, 74, 77], "A": [1, 6, 7, 9, 13, 15, 17, 20, 21, 24, 25, 26, 27, 32, 33, 34, 41, 45, 48, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 66, 68, 69, 73, 74, 75, 77, 78], "1": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 48, 50, 51, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 73, 75, 76, 77, 78], "b": [1, 2, 3, 9, 11, 12, 13, 15, 16, 17, 19, 25, 26, 27, 29, 30, 31, 33, 34, 36, 39, 45, 47, 48, 54, 57, 58, 60, 61, 62, 63, 77], "foo": [1, 13, 33, 34, 45, 60, 76, 78], "c": [1, 2, 3, 9, 10, 11, 12, 16, 19, 27, 29, 30, 31, 33, 34, 36, 39, 44, 45, 47, 48, 54, 57, 58, 60, 62, 63, 65, 67, 69, 70, 77], "2": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 54, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "bar": [1, 7, 13, 22, 23, 25, 26, 33, 34, 40, 45, 60, 75, 78], "3": [1, 2, 3, 9, 11, 12, 13, 15, 16, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 50, 51, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 69, 70, 75, 77, 78], "4": [1, 2, 9, 10, 15, 21, 24, 28, 29, 33, 34, 36, 39, 40, 41, 42, 44, 45, 50, 51, 56, 59, 60, 61, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78], "baz": [1, 33, 34, 45, 60], "bat": [1, 33, 34, 45], "d": [1, 9, 10, 29, 33, 34, 44, 45, 48, 57, 63, 65, 67, 69, 70, 71, 72, 75], "append": [2, 13], "replac": [2, 43, 44, 48, 49, 67, 68, 73], "__setitem__": 2, "i": [2, 3, 4, 5, 6, 7, 8, 10, 13, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 34, 37, 38, 39, 41, 43, 45, 48, 50, 51, 53, 54, 57, 58, 60, 61, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78], "alias": 2, "thi": [2, 9, 13, 22, 23, 25, 26, 28, 33, 34, 50, 51, 53, 58, 59, 60, 65, 68, 71, 73, 75, 76, 77, 78], "method": [2, 4, 5, 22, 23, 53, 64, 71, 72, 73, 76, 77, 78], "new_col": 2, "equival": [2, 10, 28, 29, 59, 66, 68, 75], "str": [2, 3, 5, 6, 7, 8, 10, 11, 16, 22, 23, 31, 32, 38, 41, 43, 44, 50, 51, 52, 53, 63, 66, 67, 68, 73], "new": [2, 13, 15, 19, 25, 29, 32, 37, 38, 39, 44, 48, 49, 52, 53, 55, 58, 61, 66, 67, 68, 73, 75, 76, 77, 78], "singl": [2, 32, 38, 43, 53, 66, 67, 68, 75], "arrai": [2, 3, 10, 12, 17, 21, 26, 29, 41, 43, 44, 48, 53, 61, 62, 65, 66, 67, 68, 70, 72, 77, 78], "If": [2, 3, 8, 20, 21, 24, 25, 26, 29, 39, 45, 51, 53, 54, 58, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "everi": [2, 6, 7, 9, 41, 50, 51, 66, 67, 68, 75], "contain": [2, 3, 6, 7, 8, 9, 13, 21, 24, 27, 29, 37, 39, 41, 47, 52, 56, 57, 62, 66, 72, 74, 77, 78], "which": [2, 4, 5, 22, 23, 27, 48, 58, 60, 75, 77], "same": [2, 9, 20, 25, 26, 37, 44, 48, 49, 51, 53, 63, 65, 67, 68, 71, 73, 75, 77, 78], "length": [2, 43, 44, 48, 53, 61, 67, 68, 69, 70, 75, 78], "add": [2, 25, 26, 73, 75, 77, 78], "being": [2, 4, 53, 68, 73, 75], "No": 2, "ad": [2, 50, 68, 75, 77], "default": [2, 5, 8, 13, 25, 26, 29, 38, 39, 48, 53, 60, 67, 73, 75, 78], "return": [2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 77, 78], "origin": [2, 8, 13, 21, 24, 25, 33, 34, 37, 43, 44, 48, 52, 53, 55, 58, 67, 68, 75, 76, 77], "rais": [2, 3, 7, 9, 10, 38, 41, 43, 44, 48, 50, 51, 52, 57, 61, 67, 68, 69, 70], "valueerror": [2, 3, 7, 9, 10, 41, 43, 44, 48, 50, 51, 57, 67, 68, 69, 70, 78], "doe": [2, 13, 21, 24, 44, 48, 53, 67, 68, 74, 76, 78], "number": [2, 3, 4, 5, 8, 15, 17, 22, 23, 25, 26, 35, 36, 37, 39, 44, 45, 48, 49, 52, 54, 57, 67, 68, 71, 75, 77, 78], "z": [2, 3, 11, 12, 16, 30, 31, 36, 47, 50, 62, 74, 77], "9": [2, 3, 4, 5, 11, 12, 16, 21, 24, 25, 26, 27, 29, 30, 31, 36, 37, 39, 42, 47, 50, 51, 56, 60, 62, 64, 66, 73, 75, 77, 78], "10": [2, 3, 7, 8, 11, 12, 16, 25, 26, 29, 30, 31, 36, 37, 39, 47, 48, 50, 51, 52, 57, 60, 61, 62, 63, 75, 77], "new_col1": 2, "20": [2, 4, 5, 7, 39, 48, 50, 57, 60, 63, 64, 66, 68, 75, 77], "30": [2, 7, 21, 24, 39, 56, 66, 74, 75, 77], "40": [2, 21, 24, 32, 38, 56, 75, 77], "new_col2": 2, "hello": [2, 76], "123": [2, 43, 75], "traceback": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "most": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68, 77], "recent": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "call": [2, 3, 9, 19, 28, 38, 43, 44, 48, 51, 53, 59, 61, 62, 63, 67, 68, 74, 75, 76, 78], "last": [2, 3, 9, 33, 38, 43, 44, 48, 61, 67, 68, 73, 75, 77], "int": [2, 3, 4, 5, 8, 10, 22, 23, 25, 26, 32, 38, 39, 45, 48, 51, 52, 53, 57, 66, 67, 68, 71, 73, 78], "wa": [2, 53, 67, 68, 72, 73, 75, 77], "given": [2, 3, 8, 14, 22, 23, 39, 52, 67, 68, 74, 78], "bad_col": [2, 67], "mismatch": [2, 67, 68], "fn": 3, "column_or_column": [3, 14, 52, 53, 75], "each": [3, 6, 7, 8, 12, 21, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 48, 50, 51, 53, 60, 69, 70, 71, 73, 75, 76, 78], "element": [3, 44, 75, 78], "provid": [3, 8, 21, 24, 38, 39, 50, 51, 63, 73, 75, 78], "function": [3, 8, 21, 24, 38, 53, 54, 58, 60, 66, 68, 71, 72, 73, 74, 77], "argument": [3, 4, 5, 6, 7, 8, 9, 19, 21, 22, 23, 24, 25, 26, 27, 39, 41, 42, 43, 50, 51, 53, 58, 66, 73, 75, 76, 78], "either": [3, 25, 26, 52, 66, 73, 78], "indic": [3, 8, 14, 15, 24, 38, 52, 53, 61, 73, 75], "match": [3, 25, 26, 29, 38, 66, 73], "expect": [3, 78], "column_label": [3, 22, 23, 29, 33, 34, 43], "exist": [3, 14, 38, 44, 67, 68, 75], "typeerror": [3, 38, 43], "insuffici": 3, "pass": [3, 4, 6, 7, 9, 22, 23, 25, 26, 38, 41, 50, 51, 53, 54, 58, 68, 73, 75, 77, 78], "consist": [3, 58], "result": [3, 8, 21, 24, 29, 39, 62, 65, 73, 75, 77, 78], "specifi": [3, 7, 11, 22, 23, 24, 25, 26, 27, 32, 38, 39, 43, 44, 48, 54, 67, 73, 75, 76, 78], "t": [3, 7, 11, 12, 14, 15, 16, 17, 19, 20, 21, 25, 26, 27, 30, 31, 36, 39, 47, 54, 58, 62, 65, 73, 74, 75, 77], "lambda": 3, "x": [3, 6, 28, 41, 50, 51, 59, 60, 75, 77], "0": [3, 4, 5, 8, 11, 14, 15, 19, 25, 28, 32, 38, 39, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 61, 64, 66, 68, 71, 72, 73, 75, 77, 78], "y": [3, 7, 26, 50, 51, 71, 74, 75, 77], "6": [3, 4, 5, 7, 14, 21, 24, 27, 29, 39, 40, 42, 50, 51, 52, 54, 56, 58, 60, 61, 64, 66, 68, 72, 73, 75, 77], "take": [3, 21, 53, 58, 67, 68, 73, 77, 78], "posit": [3, 50, 73], "were": [3, 75], "whole": [3, 25], "ar": [3, 4, 5, 7, 8, 13, 22, 23, 24, 25, 26, 27, 38, 39, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 65, 66, 73, 74, 76, 77], "18": [3, 53, 60, 75, 77], "max_row": [4, 5, 54], "html": [4, 6, 7, 9, 22, 23, 25, 26, 41, 50, 54, 73], "maximum": [4, 5, 54, 60, 75], "present": [4, 5, 75], "convert": [4, 5, 17, 19, 53, 62, 64, 71, 77], "option": [4, 5, 25, 26, 50, 66, 73, 76, 77], "repres": [4, 26, 71, 73, 77, 78], "form": [4, 5, 39, 75, 78], "can": [4, 6, 7, 8, 9, 22, 23, 25, 26, 28, 39, 41, 50, 53, 59, 60, 63, 64, 66, 73, 74, 75, 76, 77], "us": [4, 6, 7, 20, 25, 26, 29, 38, 40, 41, 50, 51, 53, 56, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 77, 78], "websit": 4, "few": [4, 5, 25, 26, 78], "These": [4, 9, 25, 26, 75], "seem": 4, "difficult": 4, "u": [4, 77], "observ": 4, "understand": 4, "sinc": [4, 75], "thei": [4, 25, 26, 49, 73], "when": [4, 10, 13, 25, 26, 66, 68, 73], "you": [4, 40, 53, 73, 75, 76, 77], "want": [4, 40, 73, 75, 77], "displai": [4, 6, 7, 22, 23, 41, 50, 51, 54, 72, 73, 75, 76, 77], "webpag": 4, "simpl": [4, 38, 77, 78], "name": [4, 5, 8, 14, 17, 20, 22, 23, 24, 25, 26, 27, 39, 43, 50, 52, 53, 58, 60, 63, 64, 67, 68, 73, 74, 75, 76, 77, 78], "abc": [4, 5, 64], "xyz": [4, 5, 64], "uvw": [4, 5, 64], "ag": [4, 5, 32, 38, 64, 77], "12": [4, 5, 21, 24, 56, 64, 66, 75, 77], "14": [4, 5, 64, 75, 77], "height": [4, 5, 6, 22, 23, 25, 26, 40, 41, 50, 51, 64, 73, 77], "5": [4, 5, 9, 14, 25, 26, 27, 28, 29, 39, 41, 42, 48, 50, 51, 52, 54, 58, 59, 60, 64, 66, 73, 75, 77, 78], "table_as_html": 4, "border": 4, "class": [4, 5, 53, 64, 71, 73, 74, 77], "datafram": [4, 19, 64, 77], "n": [4, 5, 8, 68, 70, 75], "thead": 4, "tr": 4, "th": 4, "tbodi": 4, "td": 4, "table_as_html_2": 4, "p": [4, 37, 48, 78], "omit": [4, 5, 39, 42, 56, 75, 77], "sep": 5, "text": [5, 50, 51, 73, 77], "seper": 5, "appear": [5, 21, 24, 29, 75, 77], "between": [5, 25, 57, 73, 74, 77, 78], "just": [5, 21, 64, 75, 77], "table_astext": 5, "nabc": 5, "nxyz": 5, "nuvw": 5, "type": [5, 21, 24, 37, 64, 67, 68, 73, 75, 77, 78], "size": [5, 23, 26, 48, 49, 50, 51, 61, 73, 74, 75, 77, 78], "with_row": [5, 49], "small": [5, 49], "50": [5, 28, 41, 49, 59, 75, 77], "medium": [5, 49], "100": [5, 9, 39, 49, 75, 77], "big": [5, 49], "sizes_astext": 5, "nsmall": 5, "nmedium": 5, "nbig": 5, "column_for_categori": [6, 7], "select": [6, 7, 14, 41, 50, 51, 60, 61, 66, 77], "overlai": [6, 7, 22, 23, 25, 26, 40, 41, 50, 51, 73, 77], "true": [6, 7, 8, 13, 25, 26, 39, 40, 41, 48, 49, 50, 51, 53, 56, 66, 73, 75, 77], "width": [6, 7, 8, 22, 23, 25, 26, 39, 40, 41, 50, 51, 73, 75], "varg": [6, 7, 8, 9, 22, 23, 25, 26, 39, 40, 41, 42, 50, 51, 71, 78], "plot": [6, 7, 9, 22, 23, 25, 26, 28, 50, 51, 59, 77, 78], "chart": [6, 7, 22, 23, 25, 26, 41, 50, 51, 75], "one": [6, 7, 21, 22, 23, 24, 25, 26, 29, 37, 41, 50, 51, 53, 68, 73, 75, 77, 78], "produc": [6, 7, 22, 23, 41, 50, 75], "other": [6, 7, 14, 21, 24, 25, 26, 29, 41, 50, 51, 66, 73, 75, 77, 78], "design": [6, 7, 41, 50], "except": [6, 7, 75], "numer": [6, 7, 9, 41, 50, 51, 60, 78], "axi": [6, 7, 26, 28, 41, 50, 51, 59, 61, 75], "categori": [6, 7, 22, 23, 25, 26, 40, 50, 51, 75, 77], "kwarg": [6, 7, 9, 22, 23, 25, 26, 29, 41, 50, 51, 73], "bool": [6, 7, 8, 22, 23, 25, 26, 39, 41, 48, 50, 51, 75, 77], "color": [6, 7, 21, 22, 23, 24, 25, 26, 41, 50, 51, 56, 66, 73, 75], "per": [6, 7, 8, 22, 23, 39, 41, 50, 51, 60, 70, 75], "data": [6, 7, 17, 19, 20, 22, 23, 25, 26, 27, 41, 42, 46, 50, 51, 58, 65, 72, 73], "fals": [6, 7, 8, 13, 19, 22, 23, 25, 26, 39, 41, 49, 50, 51, 53, 56, 71, 73, 75, 77, 78], "separ": [6, 7, 22, 23, 25, 26, 41, 50, 51, 71, 75], "addit": [6, 7, 9, 22, 23, 25, 26, 41, 50, 51, 66, 67, 68, 69, 70, 73, 77], "get": [6, 7, 9, 22, 23, 25, 26, 41, 50, 72, 75, 76], "plt": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "see": [6, 7, 9, 22, 23, 25, 26, 41, 46, 50, 66, 75, 76, 77], "http": [6, 7, 9, 22, 23, 25, 26, 41, 42, 46, 50, 73, 75, 77], "matplotlib": [6, 7, 9, 22, 23, 25, 26, 28, 41, 50, 59, 77], "org": [6, 7, 9, 22, 23, 25, 26, 41, 50], "api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "pyplot_api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "pyplot": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "horizont": [7, 23, 50, 75], "redirect": [7, 25, 28, 41, 50, 59], "ibarh": [7, 28, 59], "interact": [7, 25, 28, 41, 46, 50, 51, 59, 75], "enabl": [7, 25, 41, 50, 51], "interactive_plot": [7, 25, 41, 50, 51, 59], "bucket": 7, "show": [7, 25, 41, 50, 51], "whether": [7, 25, 26, 41, 50, 51, 53, 71, 73, 77, 78], "figur": [7, 9, 25, 41, 50, 51], "instead": [7, 25, 26, 41, 50, 51, 64, 73, 75, 78], "graph": [7, 28, 41, 59, 75], "furnitur": 7, "chair": 7, "desk": 7, "price": [7, 14, 21, 24, 28, 41, 56, 59, 66, 75], "group": [8, 22, 23, 25, 26, 38, 40, 50, 51, 53, 77], "comput": [8, 36, 60, 75, 77], "By": [8, 13, 39, 48, 60, 75], "chosen": [8, 25, 26, 39], "from": [8, 18, 19, 20, 21, 22, 23, 27, 39, 42, 48, 52, 53, 55, 58, 60, 62, 66, 69, 70, 73, 74, 75, 77, 78], "numpi": [8, 10, 15, 17, 39, 62, 65, 77, 78], "histogram": [8, 25, 26, 39, 40, 75, 77], "appli": [8, 21, 24, 39, 53, 66, 68, 73, 78], "special": [8, 39], "ha": [8, 29, 68, 70, 75], "where": [8, 21, 24, 37, 48, 55, 57, 72, 73, 74, 77], "lower": [8, 25, 26, 39], "bound": [8, 25, 26, 61, 75], "sequenc": [8, 15, 20, 39, 62, 67, 68, 69, 70, 73, 77], "scalar": [8, 39], "defin": [8, 39, 49, 53], "equal": [8, 25, 26, 39, 43, 44, 48, 66, 74, 75], "rang": [8, 15, 25, 26, 39, 50, 51, 73, 77], "edg": [8, 25, 39], "includ": [8, 9, 25, 26, 39, 42, 50, 58, 73, 75], "rightmost": [8, 39], "allow": [8, 39, 77], "non": [8, 9, 38, 39, 60, 77], "uniform": [8, 39], "float": [8, 22, 23, 25, 39, 71, 73], "upper": [8, 39, 75], "outsid": [8, 39], "ignor": [8, 39], "densiti": [8, 25], "sampl": [8, 39, 49, 57, 77, 78], "probabl": [8, 48, 75, 78], "normal": [8, 39, 71, 77, 78], "integr": [8, 39], "over": [8, 38, 39], "note": [8, 13, 15, 21, 22, 23, 24, 25, 26, 33, 34, 53, 60, 73, 75, 76, 77], "sum": [8, 21, 24, 48, 60, 77, 78], "unless": [8, 53], "uniti": 8, "mass": 8, "vert": 9, "showmean": 9, "test1": 9, "92": [9, 75], "88": [9, 75], "72": [9, 75, 77], "71": [9, 75, 77], "99": [9, 49, 75], "95": [9, 28, 32, 38, 41, 59, 75], "83": [9, 28, 41, 59, 75], "94": [9, 75], "93": [9, 71, 77], "test2": 9, "89": [9, 32, 38, 75], "84": [9, 75], "74": [9, 75, 77, 78], "66": [9, 75, 77], "81": [9, 75], "side": [9, 25, 26, 40], "table2": [9, 29], "numeric_col": 9, "alpha_col": 9, "cannot": [9, 51], "drawn": [9, 73, 77], "index_or_label": 10, "index": [10, 11, 14, 15, 19, 21, 22, 23, 25, 26, 32, 38, 45, 46, 53, 61, 66, 73, 75, 77], "look": [11, 75], "up": [11, 73, 75], "its": [11, 25, 26, 38, 53, 70, 76], "integ": [11, 15, 36, 61, 73, 75], "properti": [12, 25, 30, 35, 36, 47, 65, 71, 73], "tupl": [12, 30, 39, 47, 57, 60, 77], "dtype": [12, 17, 62, 65, 75, 77, 78], "u1": [12, 62, 77], "shallow": 13, "perform": [13, 75], "deep": [13, 73], "mean": [13, 38, 53, 60, 76, 77, 78], "construct": [13, 75, 77], "recurs": 13, "insert": 13, "found": [13, 73, 75], "table_copi": 13, "original_t": 13, "so": [13, 53, 64, 75, 77], "updat": 13, "chang": [13, 43, 44, 45, 53, 75], "refer": [13, 73, 77], "": [13, 20, 22, 23, 33, 34, 38, 43, 44, 50, 51, 53, 60, 64, 66, 71, 73, 74, 75, 76, 77], "orignal_t": 13, "due": 13, "contrast": 13, "how": [13, 25, 46, 75, 77], "occur": [13, 25, 75], "both": [13, 25, 29, 38, 75], "table_shallow_copi": 13, "becaus": [13, 75, 77], "onli": [14, 25, 26, 29, 33, 34, 37, 52, 66, 68, 73, 75], "than": [14, 56, 68, 74, 75], "header": 14, "valid": [14, 42, 48, 67, 68, 76, 77], "remov": [14, 50, 51, 53, 73, 75], "burger": 14, "cheeseburg": 14, "hamburg": 14, "veggi": 14, "calori": 14, "743": 14, "651": 14, "582": 14, "without": [15, 48, 75, 77], "row_indices_or_slic": [15, 61], "slice": [15, 61], "grade": [15, 61], "gpa": [15, 61], "7": [15, 21, 24, 39, 56, 61, 66, 75, 77], "also": [15, 25, 26, 33, 34, 44, 50, 51, 53, 60, 66, 71, 75, 77], "support": [15, 25], "like": [15, 22, 23, 47, 75, 76, 77], "zeroth": 16, "item": [16, 31], "classmethod": [17, 18, 19, 20, 28, 42, 59, 73], "arr": [17, 62, 78], "structur": [17, 62, 75, 77], "field": 17, "correspond": [17, 20, 21, 24, 25, 26, 27, 44, 58, 61, 68, 73, 75, 77], "np": [17, 38, 49, 60, 61, 73, 77, 78], "u10": 17, "i4": 17, "map": [18, 72], "deprec": [18, 25, 40, 50, 51], "df": 19, "keep_index": 19, "panda": [19, 64, 77], "util": [19, 72], "creation": [19, 76], "keep": 19, "turn": [19, 28, 59, 75], "sample_df": 19, "zip": [19, 73, 75], "data1": [19, 20, 27, 39, 54, 58, 77], "data2": [19, 20, 27, 39, 54, 58, 77], "data3": [19, 20, 27, 39, 54, 58], "column1": [19, 20, 27, 39, 44, 54, 58], "column2": [19, 20, 27, 39, 44, 54, 58], "column3": [19, 27, 39, 54, 58], "dict": [20, 27, 51, 73], "fix": [20, 73], "kei": [20, 27, 43, 58, 73, 77], "dictionari": [20, 27, 73, 77], "otherwis": [20, 25, 29], "do": [20, 48, 53, 77], "ident": [20, 71], "first": [20, 21, 24, 25, 34, 51, 54, 57, 58, 71, 73, 75, 77, 78], "column_or_label": [21, 27, 56, 66], "collect": [21, 24, 38, 75, 77], "uniqu": [21, 24, 38, 39, 75], "aggreg": [21, 24, 38], "second": [21, 23, 57, 58, 75, 77], "calcul": [21, 24, 60, 75], "accord": [21, 24, 56, 77], "set": [21, 24, 28, 50, 51, 53, 68, 73, 75, 77], "accept": [21, 24, 53], "marbl": [21, 24, 56, 66], "red": [21, 24, 43, 56, 66, 73, 75], "green": [21, 24, 43, 56, 66, 73, 75], "blue": [21, 24, 43, 56, 66, 73], "shape": [21, 24, 56, 66, 70, 78], "round": [21, 24, 56, 66, 73], "rectangular": [21, 24, 56, 66], "amount": [21, 24, 56, 66, 75], "00": [21, 24, 28, 41, 56, 59, 66, 71, 75], "75": [21, 24, 28, 39, 41, 56, 59, 60, 66, 73, 75, 77, 78], "give": [21, 75], "max": [21, 53, 60], "doesn": [21, 75], "make": [21, 25, 26, 66, 77, 78], "sens": [21, 25, 26], "27": [21, 75, 77], "13": [21, 60, 75, 77], "05": [21, 24, 75], "differ": [22, 23, 69, 70, 75, 77], "need": [22, 23, 73], "copi": [22, 23, 67, 68, 73, 75, 78], "behav": [22, 23], "more": [22, 23, 60, 68, 73, 75, 76, 77, 78], "hist": [22, 23, 26, 28, 40, 59, 77], "regard": [22, 23], "while": [22, 23, 53], "scatter": [22, 23, 28, 41, 51, 59, 77], "requir": [22, 23, 38, 64, 68], "inch": [22, 23], "barh": [23, 28, 59, 77], "coordin": [23, 73], "anoth": [23, 75], "multipl": [24, 25, 26, 29, 45, 53, 73, 75], "combin": [24, 38, 42, 75, 77], "those": [24, 75], "15": [24, 48, 57, 60, 63, 68, 75, 77], "11": [24, 60, 75, 77], "bin": [25, 26, 39, 73, 75, 77], "bin_column": [25, 26], "unit": [25, 73], "rug": 25, "side_by_sid": [25, 26, 40], "left_end": 25, "right_end": 25, "via": 25, "plotli": [25, 28, 41, 51, 59, 75], "ihist": 25, "overlaid": [25, 26], "top": [25, 26], "behavior": [25, 26, 60], "legend": [25, 26, 73], "forc": [25, 26, 75], "scale": [25, 26, 73, 77], "automat": [25, 26], "treat": [25, 26, 77], "assign": [25, 26, 73, 77], "e": [25, 29, 48, 68, 75, 78], "g": [25, 67, 75, 78], "kg": 25, "gener": [25, 26, 38, 66, 78], "depend": [25, 26], "done": [25, 26, 77], "should": [25, 26, 53, 73, 75, 78], "directli": [25, 26, 53], "sever": [25, 26, 60], "Not": [25, 77], "left": [25, 78], "right": [25, 78], "shade": [25, 78], "extrem": 25, "boolean": [25, 53, 66, 73, 75, 77, 78], "distribut": [25, 39, 48, 49, 75, 77, 78], "shade_split": 25, "split": [25, 77], "determin": 25, "end": [25, 75], "fall": 25, "two": [25, 26, 57, 58, 73, 75, 77], "endpoint": 25, "entir": [25, 54], "appropri": 25, "func": [25, 26, 75, 78], "norm": [25, 39, 50], "cumul": [25, 26], "orient": [25, 26], "101": [25, 26, 75, 77], "102": [25, 26, 75, 77], "103": [25, 26], "proport": [25, 49, 75, 78], "25": [25, 60, 75, 77], "weight": [25, 26, 48, 52, 60, 73, 77], "base": [26, 38, 56, 73], "columns_or_label": 27, "rest": [27, 57, 73, 77], "data4": 27, "86": [27, 39, 54, 58, 75], "51": [27, 39, 54, 58, 75, 77], "32": [27, 39, 54, 58, 75, 77], "91": [27, 75], "column4": [27, 39, 54, 58], "global": [28, 59], "variabl": [28, 59], "iplot": [28, 41, 59], "etc": [28, 59, 71, 75], "off": [28, 59, 75], "static_plot": 28, "dai": [28, 41, 59, 77], "90": [28, 41, 59, 75, 77], "82": [28, 41, 59, 75], "project": [28, 41, 59], "line": [28, 41, 50, 59, 73, 75, 77], "other_label": 29, "assum": [29, 37, 75, 78], "previou": [29, 66], "repeat": [29, 56, 73], "relabel": [29, 77], "a_2": 29, "three": [29, 73], "move": [32, 33, 34], "titan": [32, 38], "21": [32, 38, 75, 77], "44": [32, 38, 75, 77], "56": [32, 38, 75, 77], "80": [32, 37, 38, 39, 75], "45": [32, 38, 39, 75, 77], "surviv": [32, 38], "gender": [32, 38], "m": [32, 38, 71, 74], "f": [32, 38, 53, 71, 75, 78], "predict": [32, 38], "what": [33, 34, 53, 73, 77], "known": [33, 34, 53], "inplac": [33, 34, 53], "oper": [33, 34, 53, 77], "state": [36, 42, 73, 77], "pth": [37, 78], "smallest": [37, 73], "least": [37, 78], "larg": 37, "zero": [38, 75], "vice": 38, "versa": 38, "across": 38, "intersect": 38, "60": [38, 39, 71, 75, 77], "3333": 38, "pivot_column": 39, "value_column": 39, "associ": [39, 58], "pivot": [39, 77], "popul": 39, "respect": [39, 58, 61], "from_record": [39, 58], "37": [39, 73, 75, 77], "42": [39, 60, 74, 75, 77], "8": [39, 42, 46, 48, 52, 57, 60, 63, 72, 73, 77], "48": [39, 75, 77], "53": [39, 75, 77], "59": [39, 75, 77], "64": [39, 60, 75, 77], "69": [39, 75, 77], "36": [39, 75, 77], "54": [39, 75, 77], "pivot_column_label": 40, "value_column_label": 40, "draw": [40, 50, 72, 73, 78], "recommend": 40, "realli": 40, "column_for_xtick": 41, "connect": [41, 75], "filepath_or_buff": 42, "read": [42, 73, 75, 76, 77], "file": [42, 63, 73, 75, 77], "web": 42, "address": 42, "handl": 42, "stringio": 42, "could": 42, "url": [42, 73, 77], "scheme": 42, "ftp": 42, "s3": 42, "www": [42, 77], "inferentialthink": [42, 77], "com": [42, 46, 73, 75, 77], "sat2014": [42, 77], "csv": [42, 63, 73, 75, 77], "particip": [42, 77], "rate": [42, 75, 77], "critic": [42, 77], "math": [42, 77], "write": [42, 53, 77], "north": [42, 77], "dakota": [42, 77], "612": [42, 77], "620": [42, 75, 77], "584": [42, 77], "1816": [42, 77], "illinoi": [42, 77], "599": [42, 75, 77], "616": [42, 75, 77], "587": [42, 77], "1802": [42, 77], "iowa": [42, 77], "605": [42, 77], "611": [42, 77], "578": [42, 77], "1794": [42, 77], "south": [42, 75, 77], "604": [42, 75, 77], "609": [42, 75, 77], "579": [42, 77], "1792": [42, 77], "minnesota": [42, 77], "598": [42, 77], "610": [42, 77], "1786": [42, 77], "michigan": [42, 77], "593": [42, 77], "581": [42, 77], "1784": [42, 77], "wisconsin": [42, 77], "596": [42, 77], "608": [42, 77], "1782": [42, 77], "missouri": [42, 77], "595": [42, 77], "597": [42, 77], "1771": [42, 77], "wyom": [42, 77], "590": [42, 77], "573": [42, 77], "1762": [42, 77], "kansa": [42, 77], "591": [42, 77], "566": [42, 77], "1753": [42, 77], "41": [42, 75, 77], "new_label": [43, 44, 75], "id": [43, 73, 75], "12345": 43, "5123": 43, "yolo": 43, "cyan": 43, "magenta": 43, "yellow": 43, "invalid": [43, 44, 73], "unmodifi": 44, "alreadi": 44, "order": [44, 52, 56, 61, 66, 68, 73, 75, 77, 78], "row_or_row_indic": 45, "made": [45, 73, 75], "2nd": [45, 75], "3rd": [45, 75], "pleas": [46, 77], "extend": [46, 75, 77], "docstr": 46, "github": [46, 73, 75], "blob": 46, "614db00e7d22e52683860d2beaa4037bec26cf87": 46, "py": 46, "l5673": 46, "l5765": 46, "view": [47, 75], "k": [48, 49, 55, 57, 58], "with_replac": [48, 75, 77], "randomli": [48, 55, 57, 75], "els": 48, "ith": 48, "resampl": [48, 77], "job": [48, 57, 63], "wage": [48, 57, 63], "w": 48, "multinomi": [49, 78], "output": [49, 54, 63, 75], "random": [49, 77, 78], "seed": 49, "1000": [49, 53, 75, 77], "228": 49, "508": 49, "264": 49, "261": 49, "491": 49, "248": 49, "column_for_x": [50, 51], "fit_lin": [50, 51, 75, 77], "scatterplot": [50, 51], "best": [50, 60, 75], "fit": [50, 75], "iscatt": 50, "marker": [50, 73], "coupl": 50, "dot": [50, 51], "annot": [50, 51], "rel": [50, 51], "area": [50, 51, 73, 78], "synonym": [50, 51], "retain": [50, 51], "temporarili": [50, 51], "backward": [50, 51], "compat": [50, 51], "futur": [50, 51], "releas": [50, 51, 72], "against": [50, 51], "One": [50, 76], "column_for_i": 51, "conveni": 51, "wrapper": 51, "iscatter3d": 51, "3d": 51, "pixel": [51, 73], "graph_object": 51, "update_layout": 51, "assertionerror": [51, 68], "z1": 51, "z2": 51, "keyerror": 52, "ani": [52, 61, 68, 73, 78], "flower": 52, "petal": 52, "34": [52, 74, 75, 77], "lotu": 52, "sunflow": 52, "rose": 52, "unchang": 52, "pretti": [53, 71], "print": [53, 71, 77, 78], "within": [53, 74, 77], "time": [53, 71, 75], "balanc": 53, "run": [53, 60, 63], "__repr__": 53, "upon": 53, "consol": 53, "underli": [53, 73], "remain": [53, 57, 75], "untouch": 53, "It": [53, 64, 75, 77, 78], "worth": 53, "account_info": 53, "user": 53, "gfoo": 53, "bbar": 53, "tbaz": 53, "hbat": 53, "200": [53, 73, 75], "555": 53, "125": [53, 75, 77], "430": [53, 75], "import": [53, 66, 74, 77], "currencyformatt": [53, 68, 71], "bz": 53, "beliz": 53, "dollar": 53, "def": [53, 60, 75, 77], "iceland_krona_formatt": 53, "kr": 53, "converts_valu": [53, 71], "attribut": [53, 73], "format_column": [53, 71], "In": [53, 66, 75, 77], "would": [53, 75], "convert_valu": [53, 71], "icelandkronaformatt": 53, "__init__": 53, "format_krona": 53, "convert_column": [53, 71], "perman": 53, "01": [53, 75], "55": [53, 75, 77], "65": [53, 75, 77], "drop": 53, "fraction": 53, "astyp": 53, "configur": 53, "account": 53, "them": [53, 60, 73], "charact": [53, 71], "someth": [53, 75], "custom": [53, 60, 73, 75], "yourself": 53, "check": [53, 77], "save": 53, "500": [53, 68, 73], "1175": 53, "6700": 53, "val_width": 53, "len": [53, 77], "v": 53, "ljust": 53, "subset": [54, 78], "ipython": [54, 77], "core": [54, 64], "descend": [56, 75, 77], "distinct": 56, "whose": [56, 58, 75], "rather": 56, "ascend": [56, 75], "num_row": [57, 77], "col": 58, "basi": 58, "represent": [58, 73], "suppli": [58, 66], "consid": [58, 75], "wherea": [58, 73], "final": 58, "unset": 59, "op": 60, "built": 60, "min": 60, "median": 60, "statist": 60, "prepend": 60, "fucntion": 60, "minimum": [60, 75], "17": [60, 72, 75, 77], "even": [60, 68], "mai": [60, 71, 77], "lead": 60, "unexpect": 60, "case": 60, "error": 60, "why": 60, "elimin": 60, "befor": 60, "overridden": 60, "weighted_averag": 60, "averag": [60, 75], "std": 60, "13333": 60, "1333": 60, "16": [60, 75, 77], "27761": 60, "67423": 60, "85235": 60, "taken": 61, "indexerror": 61, "out": [61, 75, 77], "arang": 61, "i8": 62, "filenam": [63, 75], "wai": [63, 76, 77, 78], "we": [63, 64, 75, 77], "my_tabl": 63, "recreat": [63, 77], "read_tabl": [63, 77], "current": [63, 73], "directori": 63, "some": [64, 75, 77], "here": [64, 72], "table_df": 64, "frame": 64, "col1": [65, 75], "col2": [65, 75], "value_or_pred": 66, "kept": 66, "pairwis": [66, 75], "comparison": 66, "below": [66, 74, 78], "usag": 66, "callabl": 66, "val": 66, "higher": 66, "predic": [66, 72], "equal_to": [66, 74], "abov": [66, 74], "compar": [66, 77], "alphabet": [67, 75], "permut": 67, "labels_and_valu": 68, "altern": [68, 77], "pair": [68, 73], "incorrect": 68, "iter": [68, 78], "miss": [68, 76], "player": 68, "player_id": 68, "110234": 68, "110235": 68, "woba": 68, "354": [68, 75], "236": 68, "salari": 68, "season": 68, "2016": 68, "500000": 68, "15500000": 68, "bonu": 68, "_format": 68, "000": [68, 71], "600": 68, "_": [70, 77], "tabl": [71, 72, 73, 74, 78], "entri": [71, 75], "symbol": 71, "currenc": 71, "ensur": 71, "ie": 71, "format_valu": 71, "dateformatt": 71, "h": 71, "date": [71, 72, 75], "unix": 71, "timestamp": 71, "2015": [71, 75], "08": [71, 75], "03": 71, "distributionformatt": 71, "decim": [71, 75], "percentag": [71, 75], "min_width": 71, "max_width": 71, "truncat": 71, "long": 71, "static": [71, 74, 75], "convers": 71, "overrid": 71, "pad": 71, "arbitrari": 71, "numberformatt": 71, "decimal_point": 71, "int_to_float": 71, "delimit": 71, "93000": 71, "percentformatt": 71, "nov": 72, "29": [72, 75, 77], "2023": 72, "packag": [72, 77], "written": 72, "berkelei": 72, "cours": 72, "investig": 72, "graphic": 72, "start": [72, 73, 75, 78], "tutori": 72, "access": [72, 76], "manipul": 72, "visual": [72, 73, 76], "export": [72, 76], "advanc": 72, "miscellan": 72, "folium": 73, "circl": 73, "lat": 73, "lon": 73, "popup": 73, "314": 73, "1592653589793": 73, "circle_mark": 73, "stai": 73, "regardless": 73, "zoom": 73, "radiu": 73, "meter": 73, "To": [73, 77], "toggl": 73, "radius_in_met": 73, "flag": 73, "draw_on": 73, "pop": 73, "click": [73, 76], "fill": 73, "squar": [73, 75], "fill_opac": 73, "opac": 73, "leafletj": 73, "circlemark": 73, "For": [73, 74, 75, 77], "38": [73, 74, 75, 77], "122": 73, "121": 73, "3000": 73, "4000": 73, "5000": 73, "map_tabl": 73, "folium_map": 73, "featur": 73, "960": 73, "keyword": 73, "forward": 73, "key_on": 73, "palett": 73, "ylorbr": 73, "brewer": 73, "bugn": 73, "bupu": 73, "gnbu": 73, "orrd": 73, "pubu": 73, "pubugn": 73, "purd": 73, "rdpu": 73, "ylgn": 73, "ylgnbu": 73, "ylorrd": 73, "threshold_scal": 73, "d3": 73, "threshold": 73, "quantil": 73, "85": [73, 75], "nearest": [73, 75], "magnitud": 73, "ex": 73, "270": 73, "5600": 73, "6000": 73, "line_color": 73, "black": 73, "geojson": 73, "geopath": 73, "line_weight": 73, "line_opac": 73, "legend_nam": 73, "titl": 73, "render": 73, "NOT": 73, "ref": 73, "python": [73, 75], "issu": 73, "1207": 73, "featurecollect": 73, "region": [73, 78], "overlain": 73, "read_geojson": 73, "path_or_json_or_string_or_url": 73, "simple_mark": 73, "purpl": 73, "orang": 73, "darkr": 73, "lightr": 73, "beig": 73, "darkblu": 73, "darkgreen": 73, "cadetblu": 73, "darkpurpl": 73, "white": 73, "pink": [73, 75], "lightblu": 73, "lightgreen": 73, "grai": 73, "lightgrai": 73, "standard": [73, 75, 78], "icon": 73, "hex": 73, "code": [73, 75, 77], "plugin": 73, "beautifyicon": 73, "marker_icon": 73, "info": [73, 78], "sign": 73, "getbootstrap": 73, "compon": 73, "clustered_mark": 73, "cluster": 73, "icon_angl": 73, "angl": 73, "popup_width": 73, "300": 73, "further": 73, "io": 73, "modul": 73, "feature_id": 73, "lat_lon": 73, "describ": [73, 75], "latitud": 73, "longitud": 73, "other_attr": 73, "applic": 73, "todo": 73, "document": [73, 76], "index_map": 73, "cluster_label": 73, "colorbar_scal": 73, "cutoff": 73, "colorscal": 73, "gradient": 73, "include_color_scale_outli": 73, "outlier": 73, "radii": 73, "color_scal": 73, "radius_scal": 73, "cluster_bi": 73, "area_scal": 73, "explicitli": 73, "cl": 73, "specif": [73, 75], "well": 73, "markerclust": 73, "geo_json": 73, "substitut": 73, "flat": 73, "polygon": 73, "linear": 73, "ring": 73, "exterior": 73, "interior": 73, "hole": 73, "multipolygon": 73, "get_coordin": 73, "replace_column": 73, "remove_nan": 73, "locat": 73, "identifi": 73, "citi": [73, 75], "counti": 73, "insid": 73, "dataset": 73, "nan": [73, 75], "afterward": 73, "robust": 73, "capit": 73, "acquir": 73, "juli": 73, "2020": 73, "doc": 73, "gaslamp": 73, "media": 73, "download": 73, "geocode_dataset": 73, "geocode_st": 73, "modifi": [73, 75, 76, 77], "lowercas": 73, "pick": [74, 75], "l": [74, 75], "xl": 74, "waist": 74, "above_or_equal_to": 74, "below_or_equal_to": 74, "strictly_between": 74, "between_or_equal_to": 74, "not_abov": 74, "not_above_or_equal_to": 74, "not_below": 74, "not_below_or_equal_to": 74, "not_strictly_between": 74, "not_between": 74, "not_between_or_equal_to": 74, "not_contain": 74, "contained_in": 74, "mxl": 74, "not_contained_in": 74, "greater": [74, 75], "less": [74, 75], "superstr": 74, "part": 74, "substr": [74, 75], "neither": 74, "nor": 74, "not_equal_to": [74, 75], "notebook": [75, 77], "serv": 75, "friendli": 75, "librari": 75, "usual": 75, "new_tabl": 75, "31": [75, 77], "trip": 75, "raw": 75, "githubusercont": 75, "textbook": [75, 77], "gh": 75, "page": [75, 76], "durat": 75, "station": 75, "termin": 75, "bike": 75, "subscrib": 75, "876419": 75, "413": 75, "civic": 75, "center": 75, "bart": 75, "7th": 75, "market": 75, "townsend": 75, "269": 75, "94518": 75, "459672": 75, "408": 75, "2014": 75, "harri": 75, "bridg": 75, "plaza": 75, "ferri": 75, "build": 75, "embarcadero": 75, "sansom": 75, "429": 75, "94111": 75, "903647": 75, "723": 75, "26": [75, 77], "san": 75, "francisco": 75, "caltrain": 75, "330": 75, "10th": 75, "67": [75, 77], "631": 75, "94025": 75, "452829": 75, "409": 75, "steuart": 75, "4th": 75, "76": [75, 77], "428": 75, "94925": 75, "491023": 75, "224": 75, "santa": 75, "clara": 75, "almaden": 75, "jose": 75, "diridon": 75, "144": 75, "94117": 75, "723352": 75, "519": 75, "04": 75, "howard": 75, "63": [75, 77], "70": [75, 77], "629": 75, "94061": 75, "524499": 75, "431": 75, "43": [75, 77], "630": 75, "94706": 75, "518524": 75, "389": 75, "28": [75, 77], "77": 75, "park": 75, "458": 75, "94610": 75, "710070": 75, "11460": 75, "powel": 75, "street": 75, "39": [75, 77], "24": [75, 77], "375": 75, "94107": 75, "793149": 75, "bryant": 75, "289": [75, 77], "94105": 75, "99990": 75, "n1": 75, "v1": 75, "n2": 75, "v2": 75, "mani": 75, "33": [75, 77], "cooki": 75, "sugar": 75, "chocol": 75, "chip": 75, "velvet": 75, "oatmeal": 75, "raisin": 75, "peanut": 75, "butter": 75, "quantiti": 75, "delici": 75, "ye": [75, 77], "35": [75, 77], "column_name_or_index": 75, "lt": 75, "u14": 75, "100000": 75, "suppos": 75, "similarli": 75, "rememb": 75, "99995": 75, "46": [75, 77], "47": [75, 77], "old_label": 75, "49": [75, 77], "52": [75, 77], "57": [75, 77], "filter": 75, "avail": [75, 77], "58": [75, 77], "62": [75, 77], "eual_to": 75, "row_index": 75, "68": [75, 77], "actor": 75, "total": 75, "gross": 75, "movi": 75, "harrison": 75, "ford": 75, "4871": 75, "118": 75, "star": 75, "war": 75, "awaken": 75, "936": 75, "samuel": 75, "jackson": 75, "4772": 75, "aveng": 75, "623": 75, "morgan": 75, "freeman": 75, "4468": 75, "61": [75, 77], "73": [75, 77], "dark": 75, "knight": 75, "534": 75, "tom": 75, "hank": 75, "4340": 75, "98": 75, "toi": 75, "stori": 75, "415": 75, "robert": 75, "downei": 75, "jr": 75, "3947": 75, "eddi": 75, "murphi": 75, "3810": 75, "shrek": 75, "441": 75, "cruis": 75, "3587": 75, "world": [75, 76], "234": 75, "johnni": 75, "depp": 75, "3368": 75, "dead": 75, "man": 75, "chest": 75, "423": 75, "michael": 75, "cain": 75, "3351": 75, "scarlett": 75, "johansson": 75, "3341": 75, "x_column": 75, "y_column": 75, "vertic": 75, "find": 75, "movies_by_year": 75, "year": 75, "11128": 75, "702": 75, "10360": 75, "american": 75, "sniper": 75, "2013": 75, "10923": 75, "688": 75, "catch": 75, "fire": 75, "broken": 75, "down": 75, "unspecifi": 75, "78": 75, "79": 75, "ones": [75, 77], "version": 75, "193": 75, "194": 75, "23": [75, 77], "quotient": 75, "average_gross": 75, "total_gross": 75, "num_movi": 75, "82195122": 75, "17101449": 75, "25081967": 75, "65454545": 75, "47735849": 75, "27368421": 75, "64444444": 75, "85777778": 75, "78448276": 75, "3027027": 75, "68421053": 75, "9244898": 75, "15666667": 75, "8372093": 75, "451": 75, "84285714": 75, "62580645": 75, "131": 75, "2125": 75, "478": 75, "67435897": 75, "00379747": 75, "16764706": 75, "70952381": 75, "67826087": 75, "86470588": 75, "40540541": 75, "38888889": 75, "165": 75, "63529412": 75, "316": 75, "86153846": 75, "12619048": 75, "89428571": 75, "425": 75, "157": 75, "75882353": 75, "28913043": 75, "0225": 75, "15625": 75, "154": 75, "96470588": 75, "83103448": 75, "72564103": 75, "25384615": 75, "308": 75, "82777778": 75, "26666667": 75, "65348837": 75, "732": 75, "119": 75, "06190476": 75, "5925": 75, "106": 75, "86086957": 75, "96": 75, "folsom": 75, "2302": 75, "2610": 75, "3904": 75, "5th": 75, "2190": 75, "adob": 75, "arena": 75, "sap": 75, "176": 75, "beal": 75, "2377": 75, "broadwai": 75, "st": 75, "batteri": 75, "2157": 75, "california": 75, "av": 75, "127": 75, "castro": 75, "el": 75, "camino": 75, "real": 75, "339": 75, "512": 75, "887": 75, "654": 75, "565": 75, "755": 75, "819": 75, "509": 75, "2522": 75, "1999": 75, "679": 75, "602": 75, "827": 75, "753": 75, "4403": 75, "1221": 75, "7426": 75, "6114": 75, "4795": 75, "temporari": 75, "transbai": 75, "4212": 75, "3925": 75, "3900": 75, "3872": 75, "3370": 75, "3218": 75, "87": 75, "22": [75, 77], "clai": 75, "commerci": 75, "montgomeri": 75, "davi": 75, "1616": 75, "cell": 75, "more_con": 75, "flavor": 75, "strawberri": 75, "bubblegum": 75, "light": 75, "brown": 75, "tbl1": 75, "tbl2": 75, "cone": 75, "vanilla": 75, "kind": 75, "mint": 75, "97": 75, "rerun": 75, "notic": 75, "certain": 75, "theoret": 75, "sampled_with_replac": 75, "8hiishifun": 75, "hi": [75, 76], "example_str": 75, "fun": 75, "104": 75, "another_str": 75, "secret": 75, "messag": 75, "105": 75, "fun_arrai": 75, "high": 75, "great": [75, 78], "est": 75, "highest": 75, "greatest": 75, "merg": 75, "some_str": 75, "somelistofstr": 75, "old_str": 75, "new_str": 75, "occurr": 75, "107": 75, "berkeley_str": 75, "saw": 75, "friend": 75, "squirrel": 75, "peopl": 75, "flyer": 75, "sproul": 75, "108": [75, 77], "frisbe": 75, "110": 75, "chain": 75, "picnic": 75, "glade": 75, "111": 75, "example_arrai": 75, "112": 75, "113": [75, 77], "114": 75, "115": [75, 77], "absolut": 75, "new_arr": 75, "after": 75, "124": 75, "14159": 75, "142": 75, "130": 75, "val1": 75, "val2": 75, "132": [75, 77], "new_arrai": 75, "134": 75, "133": 75, "deviat": [75, 78], "150": 75, "648699324175862": 75, "input": [75, 77, 78], "x_1": 75, "x_0": 75, "x_2": 75, "x_3": 75, "135": [75, 77], "136": [75, 77], "root": 75, "137": 75, "138": [75, 77], "stop": 75, "step": [75, 77], "increment": 75, "exclus": 75, "139": 75, "140": [75, 77], "143": [75, 77], "146": 75, "147": 75, "149": 75, "152": 75, "nonzero": 75, "valuea": 75, "153": 75, "another_arrai": 75, "159": 75, "160": 75, "161": 75, "percent": 75, "162": 75, "long_arrai": 75, "163": 75, "164": 75, "negat": 75, "preced": 75, "not_": 75, "leav": 75, "166": 75, "824979": 75, "02": 75, "japantown": 75, "hall": 75, "660": 75, "nil": 75, "439946": 75, "yerba": 75, "buena": 75, "art": 75, "452": 75, "788261": 75, "post": 75, "union": 75, "575": 75, "94108": 75, "560479": 75, "van": 75, "ness": 75, "653797": 75, "546": 75, "94102": 75, "887134": 75, "mechan": 75, "313": 75, "94103": 75, "482225": 75, "spear": 75, "209": 75, "94133": 75, "681697": 75, "19": [75, 77], "368": 75, "95120": 75, "912821": 75, "09": 75, "94085": 75, "strictli": 75, "167": 75, "589964": 75, "15097": 75, "golden": 75, "gate": 75, "polk": 75, "29225": 75, "831509": 75, "1057": 75, "94114": 75, "442750": 75, "6084": 75, "474454": 75, "608714": 75, "19799": 75, "07": 75, "univers": 75, "emerson": 75, "686": 75, "711961": 75, "1026": 75, "189": 75, "833071": 75, "2314": 75, "washington": 75, "kearni": 75, "94806": 75, "570731": 75, "1218": 75, "mlk": 75, "jame": 75, "299": [75, 77], "95033": 75, "853698": 75, "1048": 75, "636": 75, "91436": 75, "787510": 75, "3670": 75, "mountain": 75, "713": 75, "94041": 75, "11576": 75, "168": 75, "11597": 75, "170": 75, "482797": 75, "95112": 75, "483052": 75, "306": 75, "569620": 75, "326": 75, "502332": 75, "613": 75, "94602": 75, "604012": 75, "601": 75, "704918": 75, "394": 75, "513458": 75, "569": 75, "696725": 75, "516": 75, "94109": 75, "829817": 75, "292": 75, "94538": 75, "745895": 75, "06": 75, "380": 75, "94947": 75, "403": 75, "171": 75, "808199": 75, "537": 75, "greather": 75, "interv": 75, "172": 75, "437830": 75, "151": 75, "grant": 75, "avenu": 75, "columbu": 75, "94104": 75, "436255": 75, "195": 75, "585884": 75, "576": 75, "548322": 75, "191": 75, "94705": 75, "594999": 75, "185": 75, "antonio": 75, "shop": 75, "94040": 75, "468534": 75, "443": 75, "873710": 75, "169": 75, "532": 75, "853087": 75, "418": 75, "863019": 75, "504": 75, "883134": 75, "173": 75, "363": 75, "5083": 75, "903735": 75, "453": 75, "94501": 75, "5180": 75, "string_or_arrai": 75, "877160": 75, "527": 75, "768619": 75, "840": 75, "94903": 75, "701211": 75, "252": 75, "405": 75, "487432": 75, "561": 75, "342": 75, "610970": 75, "808": 75, "310": 75, "753668": 75, "196": 75, "533": 75, "94973": 75, "466551": 75, "222": 75, "2578": 75, "178": [75, 77], "180": 75, "681771": 75, "895": 75, "416": 75, "78805": 75, "181": 75, "5056": 75, "sample_s": [75, 78], "model_proport": 75, "182": 75, "190": 75, "log": [75, 78], "17585792": 75, "58835469": 75, "summari": 76, "about": 76, "signatur": 76, "howev": 76, "bracket": [76, 77], "That": 76, "first_arg": 76, "second_arg": 76, "some_other_arg": 76, "fourth_arg": 76, "some_t": 76, "But": 76, "syntaxerror": 76, "syntax": 76, "confus": 76, "itself": [76, 78], "detail": 76, "straightforward": 76, "extens": 76, "mutat": 76, "transform": 76, "brief": 77, "introduct": 77, "complet": 77, "guid": 77, "load": 77, "tab": 77, "member": 77, "scienc": 77, "lab": 77, "mirror": 77, "close": 77, "exact": 77, "hidden": 77, "agg": 77, "inlin": 77, "style": 77, "fivethirtyeight": 77, "particular": 77, "involv": 77, "scratch": 77, "often": 77, "excel": 77, "spreadsheet": 77, "cat": 77, "And": 77, "possibl": 77, "discourag": 77, "preserv": 77, "notat": 77, "shorthand": 77, "common": 77, "vowel": 77, "renam": 77, "condition": 77, "third": 77, "actual": 77, "sort": 77, "reduc": 77, "other_t": 77, "mar_statu": 77, "marri": 77, "partner": 77, "empl_statu": 77, "work": 77, "paid": 77, "ll": 77, "normal_data": 77, "loc": 77, "500456": 77, "40152": 77, "82675": 77, "14587": 77, "94581": 77, "75926": 77, "62396": 77, "62318": 77, "808562": 77, "68086": 77, "49924": 77, "07407": 77, "03236": 77, "68779": 77, "18842": 77, "43892": 77, "609402": 77, "94632": 77, "20838": 77, "89229": 77, "nicer": 77, "categor": 77, "to_df": 77, "prevent": 77, "to_csv": 77, "chapter": 77, "signific": 77, "birth": 77, "smoker": 77, "bootstrap": 77, "test": 77, "tabledemo": 77, "repo": 77, "babi": 77, "174": 77, "mother": 77, "newborn": 77, "ounc": 77, "gestat": 77, "womb": 77, "There": 77, "matern": 77, "pregnanc": 77, "let": 77, "peek": 77, "120": 77, "284": 77, "282": 77, "128": 77, "279": 77, "286": 77, "244": 77, "245": 77, "351": 77, "1164": 77, "smoker_and_wt": 77, "715": 77, "459": 77, "birthweight": 77, "grab": 77, "don": 77, "smoke": 77, "nonsmoking_mean": 77, "smoking_mean": 77, "observed_diff": 77, "2661425720249184": 77, "num_nonsmok": 77, "bootstrap_onc": 77, "nonsmok": 77, "bootstrap_diff": 77, "repetit": 77, "bootstrapped_diff_mean": 77, "38369517": 77, "60001524": 77, "33484468": 77, "51976477": 77, "99375657": 77, "38784222": 77, "6071088": 77, "61544556": 77, "82818837": 77, "78754666": 77, "num_diffs_great": 77, "ab": 77, "p_valu": 77, "come": 77, "is_non_string_iter": 78, "As": 78, "variad": 78, "varad": 78, "u3": 78, "float64": 78, "minim": 78, "smooth": 78, "optim": 78, "scipi": 78, "multi": 78, "percentil": 78, "curri": 78, "plot_cdf_area": 78, "rbound": 78, "lbound": 78, "sd": 78, "curv": 78, "paramet": 78, "boundari": 78, "neg": 78, "infin": 78, "plot_normal_cdf": 78, "proportions_from_distribut": 78, "column_nam": 78, "divid": 78, "throw": 78, "sample_proport": 78, "outcom": 78, "similar": 78, "table_appli": 78, "your": 78}, "objects": {"datascience": [[71, 0, 0, "-", "formats"], [73, 0, 0, "-", "maps"], [74, 0, 0, "-", "predicates"], [78, 0, 0, "-", "util"]], "datascience.formats": [[71, 1, 1, "", "CurrencyFormatter"], [71, 1, 1, "", "DateFormatter"], [71, 1, 1, "", "DistributionFormatter"], [71, 1, 1, "", "Formatter"], [71, 1, 1, "", "NumberFormatter"], [71, 1, 1, "", "PercentFormatter"]], "datascience.formats.CurrencyFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DateFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DistributionFormatter": [[71, 2, 1, "", "convert_column"]], "datascience.formats.Formatter": [[71, 2, 1, "", "convert_column"], [71, 2, 1, "", "convert_value"], [71, 3, 1, "", "converts_values"], [71, 4, 1, "", "etc"], [71, 2, 1, "", "format_column"], [71, 2, 1, "", "format_value"], [71, 4, 1, "", "max_width"], [71, 4, 1, "", "min_width"]], "datascience.formats.NumberFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.PercentFormatter": [[71, 2, 1, "", "format_value"]], "datascience.maps": [[73, 1, 1, "", "Circle"], [73, 1, 1, "", "Map"], [73, 1, 1, "", "Marker"], [73, 1, 1, "", "Region"], [73, 5, 1, "", "get_coordinates"]], "datascience.maps.Circle": [[73, 2, 1, "", "draw_on"]], "datascience.maps.Map": [[73, 2, 1, "", "color"], [73, 2, 1, "", "copy"], [73, 3, 1, "", "features"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 2, 1, "", "overlay"], [73, 2, 1, "", "read_geojson"]], "datascience.maps.Marker": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 2, 1, "", "map"], [73, 2, 1, "", "map_table"]], "datascience.maps.Region": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 3, 1, "", "polygons"], [73, 3, 1, "", "properties"], [73, 3, 1, "", "type"]], "datascience.predicates": [[74, 1, 1, "", "are"]], "datascience.predicates.are": [[74, 2, 1, "", "above"], [74, 2, 1, "", "above_or_equal_to"], [74, 2, 1, "", "below"], [74, 2, 1, "", "below_or_equal_to"], [74, 2, 1, "", "between"], [74, 2, 1, "", "between_or_equal_to"], [74, 2, 1, "", "contained_in"], [74, 2, 1, "", "containing"], [74, 2, 1, "", "equal_to"], [74, 2, 1, "", "not_above"], [74, 2, 1, "", "not_above_or_equal_to"], [74, 2, 1, "", "not_below"], [74, 2, 1, "", "not_below_or_equal_to"], [74, 2, 1, "", "not_between"], [74, 2, 1, "", "not_between_or_equal_to"], [74, 2, 1, "", "not_contained_in"], [74, 2, 1, "", "not_containing"], [74, 2, 1, "", "not_equal_to"], [74, 2, 1, "", "not_strictly_between"], [74, 2, 1, "", "strictly_between"]], "datascience.tables.Table": [[0, 2, 1, "", "__init__"], [1, 2, 1, "", "append"], [2, 2, 1, "", "append_column"], [3, 2, 1, "", "apply"], [4, 2, 1, "", "as_html"], [5, 2, 1, "", "as_text"], [6, 2, 1, "", "bar"], [7, 2, 1, "", "barh"], [8, 2, 1, "", "bin"], [9, 2, 1, "", "boxplot"], [10, 2, 1, "", "column"], [11, 2, 1, "", "column_index"], [12, 3, 1, "", "columns"], [13, 2, 1, "", "copy"], [14, 2, 1, "", "drop"], [15, 2, 1, "", "exclude"], [16, 2, 1, "", "first"], [17, 2, 1, "", "from_array"], [18, 2, 1, "", "from_columns_dict"], [19, 2, 1, "", "from_df"], [20, 2, 1, "", "from_records"], [21, 2, 1, "", "group"], [22, 2, 1, "", "group_bar"], [23, 2, 1, "", "group_barh"], [24, 2, 1, "", "groups"], [25, 2, 1, "", "hist"], [26, 2, 1, "", "hist_of_counts"], [27, 2, 1, "", "index_by"], [28, 2, 1, "", "interactive_plots"], [29, 2, 1, "", "join"], [30, 3, 1, "", "labels"], [31, 2, 1, "", "last"], [32, 2, 1, "", "move_column"], [33, 2, 1, "", "move_to_end"], [34, 2, 1, "", "move_to_start"], [35, 3, 1, "", "num_columns"], [36, 3, 1, "", "num_rows"], [37, 2, 1, "", "percentile"], [38, 2, 1, "", "pivot"], [39, 2, 1, "", "pivot_bin"], [40, 2, 1, "", "pivot_hist"], [41, 2, 1, "", "plot"], [42, 2, 1, "", "read_table"], [43, 2, 1, "", "relabel"], [44, 2, 1, "", "relabeled"], [45, 2, 1, "", "remove"], [46, 2, 1, "", "row"], [47, 3, 1, "", "rows"], [48, 2, 1, "", "sample"], [49, 2, 1, "", "sample_from_distribution"], [50, 2, 1, "", "scatter"], [51, 2, 1, "", "scatter3d"], [52, 2, 1, "", "select"], [53, 2, 1, "", "set_format"], [54, 2, 1, "", "show"], [55, 2, 1, "", "shuffle"], [56, 2, 1, "", "sort"], [57, 2, 1, "", "split"], [58, 2, 1, "", "stack"], [59, 2, 1, "", "static_plots"], [60, 2, 1, "", "stats"], [61, 2, 1, "", "take"], [62, 2, 1, "", "to_array"], [63, 2, 1, "", "to_csv"], [64, 2, 1, "", "to_df"], [65, 3, 1, "", "values"], [66, 2, 1, "", "where"], [67, 2, 1, "", "with_column"], [68, 2, 1, "", "with_columns"], [69, 2, 1, "", "with_row"], [70, 2, 1, "", "with_rows"]], "datascience.util": [[78, 5, 1, "", "is_non_string_iterable"], [78, 5, 1, "", "make_array"], [78, 5, 1, "", "minimize"], [78, 5, 1, "", "percentile"], [78, 5, 1, "", "plot_cdf_area"], [78, 5, 1, "", "plot_normal_cdf"], [78, 5, 1, "", "proportions_from_distribution"], [78, 5, 1, "", "sample_proportions"], [78, 5, 1, "", "table_apply"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:attribute", "5": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "titleterms": {"datasci": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "tabl": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 75, 76, 77], "__init__": 0, "append": [1, 75], "append_column": 2, "appli": [3, 75], "as_html": 4, "as_text": 5, "bar": 6, "barh": [7, 75], "bin": 8, "boxplot": 9, "column": [10, 12, 75], "column_index": 11, "copi": 13, "drop": [14, 75], "exclud": 15, "first": 16, "from_arrai": 17, "from_columns_dict": 18, "from_df": 19, "from_record": 20, "group": [21, 24, 75], "group_bar": 22, "group_barh": 23, "hist": [25, 75], "hist_of_count": 26, "index_bi": 27, "interactive_plot": [28, 75], "join": [29, 75], "label": [30, 75], "last": 31, "move_column": 32, "move_to_end": 33, "move_to_start": 34, "num_column": [35, 75], "num_row": [36, 75], "percentil": [37, 75], "pivot": [38, 75], "pivot_bin": 39, "pivot_hist": 40, "plot": [41, 75], "read_tabl": [42, 75], "relabel": [43, 44, 75], "remov": 45, "row": [46, 47], "sampl": [48, 75], "sample_from_distribut": 49, "scatter": [50, 75], "scatter3d": 51, "select": [52, 75], "set_format": 53, "show": [54, 75], "shuffl": 55, "sort": [56, 75], "split": [57, 75], "stack": 58, "static_plot": [59, 75], "stat": 60, "take": [61, 75], "to_arrai": 62, "to_csv": 63, "to_df": 64, "valu": [65, 77], "where": [66, 75], "with_column": [67, 68, 75], "with_row": [69, 70], "format": 71, "welcom": 72, "": 72, "document": 72, "refer": [72, 75], "map": [73, 77], "predic": [74, 75], "data": [75, 77], "8": 75, "function": [75, 78], "method": 75, "tbl": 75, "visual": [75, 77], "advanc": 75, "string": 75, "str": 75, "replac": 75, "arrai": 75, "max": 75, "min": 75, "sum": 75, "ab": 75, "round": 75, "num": 75, "len": 75, "make_arrai": 75, "np": 75, "mean": 75, "std": 75, "diff": 75, "sqrt": 75, "arang": 75, "item": 75, "random": 75, "choic": 75, "count_nonzero": 75, "ar": 75, "equal_to": 75, "abov": 75, "above_or_equal_to": 75, "below": 75, "below_or_equal_to": 75, "between": 75, "between_or_equal_to": 75, "contained_in": 75, "contain": 75, "strictly_between": 75, "miscellan": 75, "sample_proport": 75, "minim": 75, "start": 77, "here": 77, "tutori": 77, "content": 77, "get": 77, "creat": 77, "access": 77, "manipul": 77, "export": 77, "an": 77, "exampl": 77, "draw": 77, "util": 78}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"datascience.tables.Table.__init__": [[0, "datascience-tables-table-init"]], "datascience.tables.Table.append": [[1, "datascience-tables-table-append"]], "datascience.tables.Table.append_column": [[2, "datascience-tables-table-append-column"]], "datascience.tables.Table.apply": [[3, "datascience-tables-table-apply"]], "datascience.tables.Table.as_html": [[4, "datascience-tables-table-as-html"]], "datascience.tables.Table.as_text": [[5, "datascience-tables-table-as-text"]], "datascience.tables.Table.bar": [[6, "datascience-tables-table-bar"]], "datascience.tables.Table.barh": [[7, "datascience-tables-table-barh"]], "datascience.tables.Table.bin": [[8, "datascience-tables-table-bin"]], "datascience.tables.Table.boxplot": [[9, "datascience-tables-table-boxplot"]], "datascience.tables.Table.column": [[10, "datascience-tables-table-column"]], "datascience.tables.Table.column_index": [[11, "datascience-tables-table-column-index"]], "datascience.tables.Table.columns": [[12, "datascience-tables-table-columns"]], "datascience.tables.Table.copy": [[13, "datascience-tables-table-copy"]], "datascience.tables.Table.drop": [[14, "datascience-tables-table-drop"]], "datascience.tables.Table.exclude": [[15, "datascience-tables-table-exclude"]], "datascience.tables.Table.first": [[16, "datascience-tables-table-first"]], "datascience.tables.Table.from_array": [[17, "datascience-tables-table-from-array"]], "datascience.tables.Table.from_columns_dict": [[18, "datascience-tables-table-from-columns-dict"]], "datascience.tables.Table.from_df": [[19, "datascience-tables-table-from-df"]], "datascience.tables.Table.from_records": [[20, "datascience-tables-table-from-records"]], "datascience.tables.Table.group": [[21, "datascience-tables-table-group"]], "datascience.tables.Table.group_bar": [[22, "datascience-tables-table-group-bar"]], "datascience.tables.Table.group_barh": [[23, "datascience-tables-table-group-barh"]], "datascience.tables.Table.groups": [[24, "datascience-tables-table-groups"]], "datascience.tables.Table.hist": [[25, "datascience-tables-table-hist"]], "datascience.tables.Table.hist_of_counts": [[26, "datascience-tables-table-hist-of-counts"]], "datascience.tables.Table.index_by": [[27, "datascience-tables-table-index-by"]], "datascience.tables.Table.interactive_plots": [[28, "datascience-tables-table-interactive-plots"]], "datascience.tables.Table.join": [[29, "datascience-tables-table-join"]], "datascience.tables.Table.labels": [[30, "datascience-tables-table-labels"]], "datascience.tables.Table.last": [[31, "datascience-tables-table-last"]], "datascience.tables.Table.move_column": [[32, "datascience-tables-table-move-column"]], "datascience.tables.Table.move_to_end": [[33, "datascience-tables-table-move-to-end"]], "datascience.tables.Table.move_to_start": [[34, "datascience-tables-table-move-to-start"]], "datascience.tables.Table.num_columns": [[35, "datascience-tables-table-num-columns"]], "datascience.tables.Table.num_rows": [[36, "datascience-tables-table-num-rows"]], "datascience.tables.Table.percentile": [[37, "datascience-tables-table-percentile"]], "datascience.tables.Table.pivot": [[38, "datascience-tables-table-pivot"]], "datascience.tables.Table.pivot_bin": [[39, "datascience-tables-table-pivot-bin"]], "datascience.tables.Table.pivot_hist": [[40, "datascience-tables-table-pivot-hist"]], "datascience.tables.Table.plot": [[41, "datascience-tables-table-plot"]], "datascience.tables.Table.read_table": [[42, "datascience-tables-table-read-table"]], "datascience.tables.Table.relabel": [[43, "datascience-tables-table-relabel"]], "datascience.tables.Table.relabeled": [[44, "datascience-tables-table-relabeled"]], "datascience.tables.Table.remove": [[45, "datascience-tables-table-remove"]], "datascience.tables.Table.row": [[46, "datascience-tables-table-row"]], "datascience.tables.Table.rows": [[47, "datascience-tables-table-rows"]], "datascience.tables.Table.sample": [[48, "datascience-tables-table-sample"]], "datascience.tables.Table.sample_from_distribution": [[49, "datascience-tables-table-sample-from-distribution"]], "datascience.tables.Table.scatter": [[50, "datascience-tables-table-scatter"]], "datascience.tables.Table.scatter3d": [[51, "datascience-tables-table-scatter3d"]], "datascience.tables.Table.select": [[52, "datascience-tables-table-select"]], "datascience.tables.Table.set_format": [[53, "datascience-tables-table-set-format"]], "datascience.tables.Table.show": [[54, "datascience-tables-table-show"]], "datascience.tables.Table.shuffle": [[55, "datascience-tables-table-shuffle"]], "datascience.tables.Table.sort": [[56, "datascience-tables-table-sort"]], "datascience.tables.Table.split": [[57, "datascience-tables-table-split"]], "datascience.tables.Table.stack": [[58, "datascience-tables-table-stack"]], "datascience.tables.Table.static_plots": [[59, "datascience-tables-table-static-plots"]], "datascience.tables.Table.stats": [[60, "datascience-tables-table-stats"]], "datascience.tables.Table.take": [[61, "datascience-tables-table-take"]], "datascience.tables.Table.to_array": [[62, "datascience-tables-table-to-array"]], "datascience.tables.Table.to_csv": [[63, "datascience-tables-table-to-csv"]], "datascience.tables.Table.to_df": [[64, "datascience-tables-table-to-df"]], "datascience.tables.Table.values": [[65, "datascience-tables-table-values"]], "datascience.tables.Table.where": [[66, "datascience-tables-table-where"]], "datascience.tables.Table.with_column": [[67, "datascience-tables-table-with-column"]], "datascience.tables.Table.with_columns": [[68, "datascience-tables-table-with-columns"]], "datascience.tables.Table.with_row": [[69, "datascience-tables-table-with-row"]], "datascience.tables.Table.with_rows": [[70, "datascience-tables-table-with-rows"]], "Formats (datascience.formats)": [[71, "module-datascience.formats"]], "Welcome to datascience\u2019s documentation!": [[72, "welcome-to-datascience-s-documentation"]], "Reference": [[72, "reference"]], "Maps (datascience.maps)": [[73, "module-datascience.maps"]], "Predicates (datascience.predicates)": [[74, "module-datascience.predicates"]], "Data 8 datascience Reference": [[75, "Data-8-datascience-Reference"]], "Table Functions and Methods": [[75, "Table-Functions-and-Methods"]], "Table()": [[75, "Table()"]], "Table.read_table()": [[75, "Table.read_table()"]], "tbl.with_column": [[75, "tbl.with_column"]], "tbl.column()": [[75, "tbl.column()"]], "tbl.num_rows": [[75, "tbl.num_rows"]], "tbl.num_columns": [[75, "tbl.num_columns"]], "tbl.labels": [[75, "tbl.labels"]], "tbl.select()": [[75, "tbl.select()"]], "tbl.drop()": [[75, "tbl.drop()"]], "tbl.relabel()": [[75, "tbl.relabel()"]], "tbl.show()": [[75, "tbl.show()"]], "tbl.sort()": [[75, "tbl.sort()"]], "tbl.where()": [[75, "tbl.where()"]], "tbl.take()": [[75, "tbl.take()"]], "Table Visualizations": [[75, "Table-Visualizations"]], "tbl.scatter()": [[75, "tbl.scatter()"]], "tbl.plot()": [[75, "tbl.plot()"]], "tbl.barh()": [[75, "tbl.barh()"]], "tbl.hist()": [[75, "tbl.hist()"]], "Table.interactive_plots()": [[75, "Table.interactive_plots()"]], "Table.static_plots()": [[75, "Table.static_plots()"]], "Advanced Table Functions": [[75, "Advanced-Table-Functions"]], "tbl.apply()": [[75, "tbl.apply()"]], "tbl.group()": [[75, "tbl.group()"]], "tbl.pivot()": [[75, "tbl.pivot()"]], "tbl.join()": [[75, "tbl.join()"]], "tbl.sample()": [[75, "tbl.sample()"]], "String Methods": [[75, "String-Methods"]], "str.split()": [[75, "str.split()"]], "str.join()": [[75, "str.join()"]], "str.replace()": [[75, "str.replace()"]], "Array Functions and Methods": [[75, "Array-Functions-and-Methods"]], "max()": [[75, "max()"]], "min()": [[75, "min()"]], "sum()": [[75, "sum()"]], "abs()": [[75, "abs()"]], "round(num)": [[75, "round(num)"]], "len()": [[75, "len()"]], "make_array()": [[75, "make_array()"]], "np.mean": [[75, "np.mean"]], "np.std()": [[75, "np.std()"]], "np.diff()": [[75, "np.diff()"]], "np.sqrt()": [[75, "np.sqrt()"]], "np.arange()": [[75, "np.arange()"]], "array.item()": [[75, "array.item()"]], "np.random.choice": [[75, "np.random.choice"]], "np.count_nonzero()": [[75, "np.count_nonzero()"]], "np.append()": [[75, "np.append()"]], "percentile()": [[75, "percentile()"]], "Table.where Predicates": [[75, "Table.where-Predicates"]], "are.equal_to()": [[75, "are.equal_to()"]], "are.above()": [[75, "are.above()"]], "are.above_or_equal_to()": [[75, "are.above_or_equal_to()"]], "are.below()": [[75, "are.below()"]], "are.below_or_equal_to()": [[75, "are.below_or_equal_to()"]], "are.between()": [[75, "are.between()"]], "are.between_or_equal_to()": [[75, "are.between_or_equal_to()"]], "are.contained_in()": [[75, "are.contained_in()"]], "are.containing()": [[75, "are.containing()"]], "are.strictly_between()": [[75, "are.strictly_between()"]], "Miscellaneous Functions": [[75, "Miscellaneous-Functions"]], "sample_proportions()": [[75, "sample_proportions()"]], "minimize()": [[75, "minimize()"]], "Tables (datascience.tables)": [[76, "tables-datascience-tables"]], "Start Here: datascience Tutorial": [[77, "start-here-datascience-tutorial"]], "Table of Contents": [[77, "table-of-contents"]], "Getting Started": [[77, "getting-started"]], "Creating a Table": [[77, "creating-a-table"]], "Accessing Values": [[77, "accessing-values"]], "Manipulating Data": [[77, "manipulating-data"]], "Visualizing Data": [[77, "visualizing-data"]], "Exporting": [[77, "exporting"]], "An Example": [[77, "an-example"]], "Drawing Maps": [[77, "drawing-maps"]], "Utility Functions (datascience.util)": [[78, "module-datascience.util"]]}, "indexentries": {"__init__() (datascience.tables.table method)": [[0, "datascience.tables.Table.__init__"]], "append() (datascience.tables.table method)": [[1, "datascience.tables.Table.append"]], "append_column() (datascience.tables.table method)": [[2, "datascience.tables.Table.append_column"]], "apply() (datascience.tables.table method)": [[3, "datascience.tables.Table.apply"]], "as_html() (datascience.tables.table method)": [[4, "datascience.tables.Table.as_html"]], "as_text() (datascience.tables.table method)": [[5, "datascience.tables.Table.as_text"]], "bar() (datascience.tables.table method)": [[6, "datascience.tables.Table.bar"]], "barh() (datascience.tables.table method)": [[7, "datascience.tables.Table.barh"]], "bin() (datascience.tables.table method)": [[8, "datascience.tables.Table.bin"]], "boxplot() (datascience.tables.table method)": [[9, "datascience.tables.Table.boxplot"]], "column() (datascience.tables.table method)": [[10, "datascience.tables.Table.column"]], "column_index() (datascience.tables.table method)": [[11, "datascience.tables.Table.column_index"]], "columns (datascience.tables.table property)": [[12, "datascience.tables.Table.columns"]], "copy() (datascience.tables.table method)": [[13, "datascience.tables.Table.copy"]], "drop() (datascience.tables.table method)": [[14, "datascience.tables.Table.drop"]], "exclude() (datascience.tables.table method)": [[15, "datascience.tables.Table.exclude"]], "first() (datascience.tables.table method)": [[16, "datascience.tables.Table.first"]], "from_array() (datascience.tables.table class method)": [[17, "datascience.tables.Table.from_array"]], "from_columns_dict() (datascience.tables.table class method)": [[18, "datascience.tables.Table.from_columns_dict"]], "from_df() (datascience.tables.table class method)": [[19, "datascience.tables.Table.from_df"]], "from_records() (datascience.tables.table class method)": [[20, "datascience.tables.Table.from_records"]], "group() (datascience.tables.table method)": [[21, "datascience.tables.Table.group"]], "group_bar() (datascience.tables.table method)": [[22, "datascience.tables.Table.group_bar"]], "group_barh() (datascience.tables.table method)": [[23, "datascience.tables.Table.group_barh"]], "groups() (datascience.tables.table method)": [[24, "datascience.tables.Table.groups"]], "hist() (datascience.tables.table method)": [[25, "datascience.tables.Table.hist"]], "hist_of_counts() (datascience.tables.table method)": [[26, "datascience.tables.Table.hist_of_counts"]], "index_by() (datascience.tables.table method)": [[27, "datascience.tables.Table.index_by"]], "interactive_plots() (datascience.tables.table class method)": [[28, "datascience.tables.Table.interactive_plots"]], "join() (datascience.tables.table method)": [[29, "datascience.tables.Table.join"]], "labels (datascience.tables.table property)": [[30, "datascience.tables.Table.labels"]], "last() (datascience.tables.table method)": [[31, "datascience.tables.Table.last"]], "move_column() (datascience.tables.table method)": [[32, "datascience.tables.Table.move_column"]], "move_to_end() (datascience.tables.table method)": [[33, "datascience.tables.Table.move_to_end"]], "move_to_start() (datascience.tables.table method)": [[34, "datascience.tables.Table.move_to_start"]], "num_columns (datascience.tables.table property)": [[35, "datascience.tables.Table.num_columns"]], "num_rows (datascience.tables.table property)": [[36, "datascience.tables.Table.num_rows"]], "percentile() (datascience.tables.table method)": [[37, "datascience.tables.Table.percentile"]], "pivot() (datascience.tables.table method)": [[38, "datascience.tables.Table.pivot"]], "pivot_bin() (datascience.tables.table method)": [[39, "datascience.tables.Table.pivot_bin"]], "pivot_hist() (datascience.tables.table method)": [[40, "datascience.tables.Table.pivot_hist"]], "plot() (datascience.tables.table method)": [[41, "datascience.tables.Table.plot"]], "read_table() (datascience.tables.table class method)": [[42, "datascience.tables.Table.read_table"]], "relabel() (datascience.tables.table method)": [[43, "datascience.tables.Table.relabel"]], "relabeled() (datascience.tables.table method)": [[44, "datascience.tables.Table.relabeled"]], "remove() (datascience.tables.table method)": [[45, "datascience.tables.Table.remove"]], "row() (datascience.tables.table method)": [[46, "datascience.tables.Table.row"]], "rows (datascience.tables.table property)": [[47, "datascience.tables.Table.rows"]], "sample() (datascience.tables.table method)": [[48, "datascience.tables.Table.sample"]], "sample_from_distribution() (datascience.tables.table method)": [[49, "datascience.tables.Table.sample_from_distribution"]], "scatter() (datascience.tables.table method)": [[50, "datascience.tables.Table.scatter"]], "scatter3d() (datascience.tables.table method)": [[51, "datascience.tables.Table.scatter3d"]], "select() (datascience.tables.table method)": [[52, "datascience.tables.Table.select"]], "set_format() (datascience.tables.table method)": [[53, "datascience.tables.Table.set_format"]], "show() (datascience.tables.table method)": [[54, "datascience.tables.Table.show"]], "shuffle() (datascience.tables.table method)": [[55, "datascience.tables.Table.shuffle"]], "sort() (datascience.tables.table method)": [[56, "datascience.tables.Table.sort"]], "split() (datascience.tables.table method)": [[57, "datascience.tables.Table.split"]], "stack() (datascience.tables.table method)": [[58, "datascience.tables.Table.stack"]], "static_plots() (datascience.tables.table class method)": [[59, "datascience.tables.Table.static_plots"]], "stats() (datascience.tables.table method)": [[60, "datascience.tables.Table.stats"]], "take() (datascience.tables.table method)": [[61, "datascience.tables.Table.take"]], "to_array() (datascience.tables.table method)": [[62, "datascience.tables.Table.to_array"]], "to_csv() (datascience.tables.table method)": [[63, "datascience.tables.Table.to_csv"]], "to_df() (datascience.tables.table method)": [[64, "datascience.tables.Table.to_df"]], "values (datascience.tables.table property)": [[65, "datascience.tables.Table.values"]], "where() (datascience.tables.table method)": [[66, "datascience.tables.Table.where"]], "with_column() (datascience.tables.table method)": [[67, "datascience.tables.Table.with_column"]], "with_columns() (datascience.tables.table method)": [[68, "datascience.tables.Table.with_columns"]], "with_row() (datascience.tables.table method)": [[69, "datascience.tables.Table.with_row"]], "with_rows() (datascience.tables.table method)": [[70, "datascience.tables.Table.with_rows"]], "currencyformatter (class in datascience.formats)": [[71, "datascience.formats.CurrencyFormatter"]], "dateformatter (class in datascience.formats)": [[71, "datascience.formats.DateFormatter"]], "distributionformatter (class in datascience.formats)": [[71, "datascience.formats.DistributionFormatter"]], "formatter (class in datascience.formats)": [[71, "datascience.formats.Formatter"]], "numberformatter (class in datascience.formats)": [[71, "datascience.formats.NumberFormatter"]], "percentformatter (class in datascience.formats)": [[71, "datascience.formats.PercentFormatter"]], "convert_column() (datascience.formats.distributionformatter method)": [[71, "datascience.formats.DistributionFormatter.convert_column"]], "convert_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.convert_column"]], "convert_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.convert_value"]], "convert_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.convert_value"]], "convert_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.convert_value"]], "convert_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.convert_value"]], "converts_values (datascience.formats.formatter property)": [[71, "datascience.formats.Formatter.converts_values"]], "datascience.formats": [[71, "module-datascience.formats"]], "etc (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.etc"]], "format_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.format_column"]], "format_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.format_value"]], "format_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.format_value"]], "format_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.format_value"]], "format_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.format_value"]], "format_value() (datascience.formats.percentformatter method)": [[71, "datascience.formats.PercentFormatter.format_value"]], "max_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.max_width"]], "min_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.min_width"]], "module": [[71, "module-datascience.formats"], [73, "module-datascience.maps"], [74, "module-datascience.predicates"], [78, "module-datascience.util"]], "circle (class in datascience.maps)": [[73, "datascience.maps.Circle"]], "map (class in datascience.maps)": [[73, "datascience.maps.Map"]], "marker (class in datascience.maps)": [[73, "datascience.maps.Marker"]], "region (class in datascience.maps)": [[73, "datascience.maps.Region"]], "color() (datascience.maps.map method)": [[73, "datascience.maps.Map.color"]], "copy() (datascience.maps.map method)": [[73, "datascience.maps.Map.copy"]], "copy() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.copy"]], "copy() (datascience.maps.region method)": [[73, "datascience.maps.Region.copy"]], "datascience.maps": [[73, "module-datascience.maps"]], "draw_on() (datascience.maps.circle method)": [[73, "datascience.maps.Circle.draw_on"]], "draw_on() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.draw_on"]], "draw_on() (datascience.maps.region method)": [[73, "datascience.maps.Region.draw_on"]], "features (datascience.maps.map property)": [[73, "datascience.maps.Map.features"]], "format() (datascience.maps.map method)": [[73, "datascience.maps.Map.format"]], "format() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.format"]], "format() (datascience.maps.region method)": [[73, "datascience.maps.Region.format"]], "geojson() (datascience.maps.map method)": [[73, "datascience.maps.Map.geojson"]], "geojson() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.geojson"]], "geojson() (datascience.maps.region method)": [[73, "datascience.maps.Region.geojson"]], "get_coordinates() (in module datascience.maps)": [[73, "datascience.maps.get_coordinates"]], "lat_lons (datascience.maps.marker property)": [[73, "datascience.maps.Marker.lat_lons"]], "lat_lons (datascience.maps.region property)": [[73, "datascience.maps.Region.lat_lons"]], "map() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map"]], "map_table() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map_table"]], "overlay() (datascience.maps.map method)": [[73, "datascience.maps.Map.overlay"]], "polygons (datascience.maps.region property)": [[73, "datascience.maps.Region.polygons"]], "properties (datascience.maps.region property)": [[73, "datascience.maps.Region.properties"]], "read_geojson() (datascience.maps.map class method)": [[73, "datascience.maps.Map.read_geojson"]], "type (datascience.maps.region property)": [[73, "datascience.maps.Region.type"]], "above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above"]], "above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above_or_equal_to"]], "are (class in datascience.predicates)": [[74, "datascience.predicates.are"]], "below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below"]], "below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below_or_equal_to"]], "between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between"]], "between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between_or_equal_to"]], "contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.contained_in"]], "containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.containing"]], "datascience.predicates": [[74, "module-datascience.predicates"]], "equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.equal_to"]], "not_above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above"]], "not_above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above_or_equal_to"]], "not_below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below"]], "not_below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below_or_equal_to"]], "not_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between"]], "not_between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between_or_equal_to"]], "not_contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_contained_in"]], "not_containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_containing"]], "not_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_equal_to"]], "not_strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_strictly_between"]], "strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.strictly_between"]], "datascience.util": [[78, "module-datascience.util"]], "is_non_string_iterable() (in module datascience.util)": [[78, "datascience.util.is_non_string_iterable"]], "make_array() (in module datascience.util)": [[78, "datascience.util.make_array"]], "minimize() (in module datascience.util)": [[78, "datascience.util.minimize"]], "percentile() (in module datascience.util)": [[78, "datascience.util.percentile"]], "plot_cdf_area() (in module datascience.util)": [[78, "datascience.util.plot_cdf_area"]], "plot_normal_cdf() (in module datascience.util)": [[78, "datascience.util.plot_normal_cdf"]], "proportions_from_distribution() (in module datascience.util)": [[78, "datascience.util.proportions_from_distribution"]], "sample_proportions() (in module datascience.util)": [[78, "datascience.util.sample_proportions"]], "table_apply() (in module datascience.util)": [[78, "datascience.util.table_apply"]]}}) \ No newline at end of file diff --git a/tables.html b/tables.html index 2bba16216..b80240698 100644 --- a/tables.html +++ b/tables.html @@ -3,7 +3,7 @@ - + Tables (datascience.tables) — datascience 0.17.6 documentation diff --git a/tutorial.html b/tutorial.html index 927ea1c9b..107b583f4 100644 --- a/tutorial.html +++ b/tutorial.html @@ -3,7 +3,7 @@ - + Start Here: datascience Tutorial — datascience 0.17.6 documentation @@ -448,17 +448,17 @@

Visualizing Data< In [47]: normal_data Out[47]: -data1 | data2 --2.61605 | 3.53073 --2.11516 | 10.0666 -1.31596 | 5.2647 -1.5473 | 2.3775 -4.19539 | 3.08725 -2.83492 | 3.9613 -1.7963 | 9.71422 -1.14513 | -1.06214 -2.02723 | 2.55636 -5.30982 | 5.34434 +data1 | data2 +0.500456 | 4.40152 +-3.82675 | 5.14587 +5.94581 | 8.75926 +2.62396 | 3.62318 +-0.808562 | 6.68086 +3.49924 | 5.07407 +2.03236 | 5.68779 +-1.18842 | 7.43892 +0.609402 | 3.94632 +5.20838 | 1.89229 ... (90 rows omitted) @@ -510,17 +510,17 @@

Exportingto_df():

In [56]: normal_data
 Out[56]: 
-data1    | data2
--2.61605 | 3.53073
--2.11516 | 10.0666
-1.31596  | 5.2647
-1.5473   | 2.3775
-4.19539  | 3.08725
-2.83492  | 3.9613
-1.7963   | 9.71422
-1.14513  | -1.06214
-2.02723  | 2.55636
-5.30982  | 5.34434
+data1     | data2
+0.500456  | 4.40152
+-3.82675  | 5.14587
+5.94581   | 8.75926
+2.62396   | 3.62318
+-0.808562 | 6.68086
+3.49924   | 5.07407
+2.03236   | 5.68779
+-1.18842  | 7.43892
+0.609402  | 3.94632
+5.20838   | 1.89229
 ... (90 rows omitted)
 
 # index = False prevents row numbers from appearing in the resulting CSV
@@ -634,8 +634,8 @@ 

An ExampleIn [73]: bootstrapped_diff_means[:10] Out[73]: -array([-0.10974907, 0.60651157, 0.14368116, 1.71845453, 1.56725627, - 0.51940217, -1.33765711, -1.52959459, -0.85401527, 1.37100111]) +array([-0.38369517, 0.60001524, 0.33484468, 0.51976477, 0.99375657, + 0.38784222, 0.6071088 , 0.61544556, 1.82818837, 0.78754666]) In [74]: num_diffs_greater = (abs(bootstrapped_diff_means) > abs(observed_diff)).sum() diff --git a/util.html b/util.html index f7b052b09..43b239c9e 100644 --- a/util.html +++ b/util.html @@ -3,7 +3,7 @@ - + Utility Functions (datascience.util) — datascience 0.17.6 documentation