validatedb
executes validation checks written with R package
validate
on a database. This allows for checking the validity of
records in a database.
You can install a development version with
remotes::install_github("data-cleaning/validatedb")
library(validatedb)
#> Loading required package: validate
First we setup a table in a database (for demo purpose)
# create a table in a database
income <- data.frame(id=1:2, age=c(12,35), salary = c(1000,NA))
con <- DBI::dbConnect(RSQLite::SQLite())
DBI::dbWriteTable(con, "income", income)
We retrieve a reference/handle to the table in the DB with dplyr
tbl_income <- tbl(con, "income")
print(tbl_income)
#> # Source: table<income> [?? x 3]
#> # Database: sqlite 3.37.2 []
#> id age salary
#> <int> <dbl> <dbl>
#> 1 1 12 1000
#> 2 2 35 NA
Let’s define a rule set and confront the table with it:
rules <- validator( is_adult = age >= 18
, has_income = salary > 0
, mean_age = mean(age,na.rm=TRUE) > 24
, has_values = is_complete(age, salary)
)
# and confront!
cf <- confront(tbl_income, rules, key = "id")
print(cf)
#> Object of class 'tbl_validation'
#> Call:
#> confront.tbl_sql(tbl = dat, x = x, ref = ref, key = key, sparse = sparse)
#>
#> Confrontations: 4
#> Tbl : income ()
#> Key column : id
#> Sparse : FALSE
#> Fails : [??] (see `values`, `summary`)
#> Errors : 0
summary(cf)
#> name items npass nfail nNA warning error
#> is_adult is_adult 2 1 1 0 FALSE FALSE
#> has_income has_income 2 1 0 1 FALSE FALSE
#> mean_age mean_age 1 0 1 0 FALSE FALSE
#> has_values has_values 2 1 1 0 FALSE FALSE
#> expression
#> is_adult age - 18 >= -1e-08
#> has_income salary > 0
#> mean_age mean(age, na.rm = TRUE) > 24
#> has_values is_complete(age, salary)
Values (i.e. validations on the table) can be retrieved like in
validate
with type="matrix"
or type="list"
values(cf, type = "matrix")
#> [[1]]
#> is_adult has_income has_values
#> [1,] FALSE TRUE TRUE
#> [2,] TRUE NA FALSE
#>
#> [[2]]
#> mean_age
#> [1,] FALSE
But often this seems more handy:
values(cf, type = "tbl")
#> # Source: lazy query [?? x 5]
#> # Database: sqlite 3.37.2 []
#> id is_adult has_income mean_age has_values
#> <int> <int> <int> <int> <int>
#> 1 1 0 1 0 1
#> 2 2 1 NA 0 0
or
values(cf, type = "tbl", sparse=TRUE)
#> # Source: lazy query [?? x 3]
#> # Database: sqlite 3.37.2 []
#> id rule fail
#> <int> <chr> <int>
#> 1 1 is_adult 1
#> 2 2 has_income NA
#> 3 1 mean_age 1
#> 4 2 mean_age 1
#> 5 2 has_values 1
We can see the sql code by using show_query
:
show_query(cf)
#> <SQL>
#> SELECT `id`, CAST(`is_adult` AS BOOLEAN) AS `is_adult`, CAST(`has_income` AS BOOLEAN) AS `has_income`, CAST(`mean_age` AS BOOLEAN) AS `mean_age`, CAST(`has_values` AS BOOLEAN) AS `has_values`
#> FROM (SELECT `id`, NULLIF(`is_adult`, -1) AS `is_adult`, NULLIF(`has_income`, -1) AS `has_income`, NULLIF(`mean_age`, -1) AS `mean_age`, NULLIF(`has_values`, -1) AS `has_values`
#> FROM (SELECT `id`, MIN(`is_adult`) AS `is_adult`, MIN(`has_income`) AS `has_income`, MIN(`mean_age`) AS `mean_age`, MIN(`has_values`) AS `has_values`
#> FROM (SELECT `id`, CASE `rule` WHEN ('is_adult') THEN (COALESCE(1 - CAST(`fail` AS INTEGER), -1)) ELSE (1) END AS `is_adult`, CASE `rule` WHEN ('has_income') THEN (COALESCE(1 - CAST(`fail` AS INTEGER), -1)) ELSE (1) END AS `has_income`, CASE `rule` WHEN ('mean_age') THEN (COALESCE(1 - CAST(`fail` AS INTEGER), -1)) ELSE (1) END AS `mean_age`, CASE `rule` WHEN ('has_values') THEN (COALESCE(1 - CAST(`fail` AS INTEGER), -1)) ELSE (1) END AS `has_values`
#> FROM (SELECT `LHS`.`id` AS `id`, `rule`, `fail`
#> FROM (SELECT `id`
#> FROM `income`) AS `LHS`
#> LEFT JOIN (SELECT `id`, 'is_adult' AS `rule`, 1 AS `fail`
#> FROM (SELECT `id`, `age`
#> FROM `income`)
#> WHERE (`age` - 18.0 < -1e-08)
#> UNION ALL
#> SELECT `id`, 'is_adult' AS `rule`, NULL AS `fail`
#> FROM (SELECT `id`, `age`
#> FROM `income`)
#> WHERE (((`age`) IS NULL))
#> UNION ALL
#> SELECT `id`, 'has_income' AS `rule`, 1 AS `fail`
#> FROM (SELECT `id`, `salary`
#> FROM `income`)
#> WHERE (`salary` <= 0.0)
#> UNION ALL
#> SELECT `id`, 'has_income' AS `rule`, NULL AS `fail`
#> FROM (SELECT `id`, `salary`
#> FROM `income`)
#> WHERE (((`salary`) IS NULL))
#> UNION ALL
#> SELECT `id`, 'mean_age' AS `rule`, 1 AS `fail`
#> FROM (SELECT `id`, `age`
#> FROM (SELECT `id`, `age`, AVG(`age`) OVER () AS `q01`
#> FROM (SELECT `id`, `age`
#> FROM `income`))
#> WHERE (`q01` <= 24.0))
#> UNION ALL
#> SELECT `id`, 'mean_age' AS `rule`, NULL AS `fail`
#> FROM (SELECT `id`, `age`
#> FROM `income`)
#> WHERE (((`age`) IS NULL))
#> UNION ALL
#> SELECT `id`, 'has_values' AS `rule`, 1 AS `fail`
#> FROM (SELECT `id`, `age`, `salary`
#> FROM `income`)
#> WHERE (((`age`) IS NULL) OR ((`salary`) IS NULL))) AS `RHS`
#> ON (`LHS`.`id` = `RHS`.`id`)
#> ))
#> GROUP BY `id`))
Or write the sql to a file for documentation (and inspiration)
dump_sql(cf, "validation.sql")
------------------------------------------------------------
-- Do not edit, automatically generated with R package validatedb.
-- validatedb: 0.3.1.9000
-- validate: 1.1.0
-- R version 4.1.2 (2021-11-01)
-- Database: '', Table: 'income'
-- Date: 2022-03-14
------------------------------------------------------------
--------------------------------------
-- is_adult:
-- validation rule: age >= 18
SELECT `id`, 'is_adult' AS `rule`, 1 AS `fail`
FROM (SELECT `id`, `age`
FROM `income`)
WHERE (`age` - 18.0 < -1e-08)
UNION ALL
SELECT `id`, 'is_adult' AS `rule`, NULL AS `fail`
FROM (SELECT `id`, `age`
FROM `income`)
WHERE (((`age`) IS NULL))
--------------------------------------
UNION ALL
--------------------------------------
-- has_income:
-- validation rule: salary > 0
SELECT `id`, 'has_income' AS `rule`, 1 AS `fail`
FROM (SELECT `id`, `salary`
FROM `income`)
WHERE (`salary` <= 0.0)
UNION ALL
SELECT `id`, 'has_income' AS `rule`, NULL AS `fail`
FROM (SELECT `id`, `salary`
FROM `income`)
WHERE (((`salary`) IS NULL))
--------------------------------------
UNION ALL
--------------------------------------
-- mean_age:
-- validation rule: mean(age, na.rm = TRUE) > 24
SELECT `id`, 'mean_age' AS `rule`, 1 AS `fail`
FROM (SELECT `id`, `age`
FROM (SELECT `id`, `age`, AVG(`age`) OVER () AS `q01`
FROM (SELECT `id`, `age`
FROM `income`))
WHERE (`q01` <= 24.0))
UNION ALL
SELECT `id`, 'mean_age' AS `rule`, NULL AS `fail`
FROM (SELECT `id`, `age`
FROM `income`)
WHERE (((`age`) IS NULL))
--------------------------------------
UNION ALL
--------------------------------------
-- has_values:
-- validation rule: is_complete(age, salary)
SELECT `id`, 'has_values' AS `rule`, 1 AS `fail`
FROM (SELECT `id`, `age`, `salary`
FROM `income`)
WHERE (((`age`) IS NULL) OR ((`salary`) IS NULL))
--------------------------------------
income <- data.frame(id = 1:2, age=c(12,35), salary = c(1000,NA))
con <- dbplyr::src_memdb()
tbl_income <- dplyr::copy_to(con, income, overwrite=TRUE)
print(tbl_income)
#> # Source: table<income> [?? x 3]
#> # Database: sqlite 3.37.2 [:memory:]
#> id age salary
#> <int> <dbl> <dbl>
#> 1 1 12 1000
#> 2 2 35 NA
# Let's define a rule set and confront the table with it:
rules <- validator( is_adult = age >= 18
, has_income = salary > 0
)
# and confront!
# in general with a db table it is handy to use a key
cf <- confront(tbl_income, rules, key="id")
aggregate(cf, by = "rule")
#> # Source: lazy query [?? x 7]
#> # Database: sqlite 3.37.2 [:memory:]
#> rule npass nfail nNA rel.pass rel.fail rel.NA
#> <chr> <int> <int> <int> <lgl> <dbl> <dbl>
#> 1 is_adult 1 1 0 NA 0.5 0
#> 2 has_income 1 0 1 NA 0 0.5
aggregate(cf, by = "record")
#> # Source: lazy query [?? x 3]
#> # Database: sqlite 3.37.2 [:memory:]
#> id nfails nNA
#> <int> <int> <int>
#> 1 1 1 0
#> 2 2 0 1
# to tweak performance of the db query the following options are available
# 1) store validation result in db
cf <- confront(tbl_income, rules, key="id", compute = TRUE)
# or identical
cf <- confront(tbl_income, rules, key="id")
cf <- compute(cf)
# 2) Store the validation sparsely
cf_sparse <- confront(tbl_income, rules, key="id", sparse=TRUE )
show_query(cf_sparse)
#> <SQL>
#> SELECT `id`, 'is_adult' AS `rule`, 1 AS `fail`
#> FROM (SELECT `id`, `age`
#> FROM `income`)
#> WHERE (`age` - 18.0 < -1e-08)
#> UNION ALL
#> SELECT `id`, 'is_adult' AS `rule`, NULL AS `fail`
#> FROM (SELECT `id`, `age`
#> FROM `income`)
#> WHERE (((`age`) IS NULL))
#> UNION ALL
#> SELECT `id`, 'has_income' AS `rule`, 1 AS `fail`
#> FROM (SELECT `id`, `salary`
#> FROM `income`)
#> WHERE (`salary` <= 0.0)
#> UNION ALL
#> SELECT `id`, 'has_income' AS `rule`, NULL AS `fail`
#> FROM (SELECT `id`, `salary`
#> FROM `income`)
#> WHERE (((`salary`) IS NULL))
values(cf_sparse, type="tbl")
#> # Source: lazy query [?? x 3]
#> # Database: sqlite 3.37.2 [:memory:]
#> id rule fail
#> <int> <chr> <int>
#> 1 1 is_adult 1
#> 2 2 has_income NA
-
is_complete
,all_complete
-
is_unique
,all_unique
-
exists_any
,exists_one
-
do_by
,sum_by
,mean_by
,min_by
,max_by
Some newly added validate
utility functions are (still) missing from
validatedb
.
-
contains_exactly
-
is_linear_sequence
-
hierachy