diff --git a/bbconf/bbconf.py b/bbconf/bbconf.py index b60eaf9..134a9bf 100644 --- a/bbconf/bbconf.py +++ b/bbconf/bbconf.py @@ -92,7 +92,7 @@ def __init__(self, config_path: str = None, database_only: bool = False): try: _LOGGER.debug("Setting up qdrant database connection...") - self._qdrant_client = self._init_qdrant_client() + self._qdrant_backend = self._init_qdrant_backend() if self.config[CFG_PATH_KEY].get(CFG_PATH_REGION2VEC_KEY) and self.config[ CFG_PATH_KEY ].get(CFG_PATH_VEC2VEC_KEY): @@ -416,10 +416,10 @@ def t2bsi(self) -> text2bednn.Text2BEDSearchInterface: return self._t2bsi @property - def qdrant_client(self) -> QdrantBackend: - return self._qdrant_client + def qdrant_backend(self) -> QdrantBackend: + return self._qdrant_backend - def _init_qdrant_client(self) -> QdrantBackend: + def _init_qdrant_backend(self) -> QdrantBackend: """ Create qdrant client object using credentials provided in config file :return: QdrantClient @@ -439,7 +439,7 @@ def _create_t2bsi_object(self): return text2bednn.Text2BEDSearchInterface( nl2vec_model=SentenceTransformer(os.getenv("HF_MODEL", DEFAULT_HF_MODEL)), vec2vec_model=self._config[CFG_PATH_KEY][CFG_PATH_VEC2VEC_KEY], - search_backend=self.qdrant_client, + search_backend=self.qdrant_backend, ) def add_bed_to_qdrant( @@ -469,7 +469,8 @@ def add_bed_to_qdrant( # Upload bed file vector to the database vec_dim = bed_embedding.shape[0] - self.qdrant_client.load( + self.qdrant_backend.load( + id=sample_id, embeddings=bed_embedding.reshape(1, vec_dim), labels=[{"id": sample_id, **labels}], )