Skip to content
This repository has been archived by the owner on Jun 28, 2022. It is now read-only.

Latest commit

 

History

History
268 lines (172 loc) · 9.27 KB

README.md

File metadata and controls

268 lines (172 loc) · 9.27 KB

= = = = = = = = = = = = = = = = = = = = = = = = = = = = =

DEPRECATED

  • SSH access in most workspaces is not allowed any more
  • Jupyter features like ipywidgets are now supported in Databricks Notebooks

= = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Local JupyterLab connecting to Databricks via SSH

This package allows to connect to a remote Databricks cluster from a locally running JupyterLab.

>>> 1 New minor release V2.2.1 (June 2021) <<<

  • Support of Databricks Runtimes 6.4(ESR) and 7.3, 7.6, 8.0, 8.1, 8.2, 8.3 (both standard and ML)
  • Upgrade to ssh_ipykernel 1.2.3 (security fixes for the Javascript Jupyterlab extension of ssh_ipykernel)
  • Security fixes for the Javascript Jupyterlab extension of databrickslabs-jupyterlab

2 Overview

introduction

3 Prerequisites

  1. Operating System

    Jupyterlab Integration will run on the following operation systems:

    • macOS
    • Linux
    • Windows 10 (with OpenSSH)
  2. Anaconda

    JupyterLab Integration is based on Anaconda and supports:

    • A recent version of Anaconda with Python >= 3.8
    • The tool conda must be newer than 4.7.5, test were executed with 4.9.2.

    Since Jupyterlab Integration will create a separate conda environment, Miniconda is sufficient to start

  3. Python

    JupyterLab Integration only works with Python 3 and supports Python 3.7 and Python 3.8 both on the remote cluster and locally.

  4. Databricks CLI

    For JupyterLab Integration a recent version of Databricks CLI is needed. To install Databricks CLI and to configure profiles for your clusters, please refer to AWS / Azure.

    Note:

    • JupyterLab Integration does not support Databricks CLI profiles with username password. Only Personal Access Tokens are supported.
    • Whenever $PROFILE is used in this documentation, it refers to a valid Databricks CLI profile name, stored in a shell environment variable.
  5. SSH access to Databricks clusters

    Configure your Databricks clusters to allow ssh access, see Configure SSH access

    Note:

    • Only clusters with valid ssh configuration are visible to databrickslabs_jupyterlab.
  6. Databricks Runtime

    JupyterLab Integration has been tested with the following Databricks runtimes on AWS and Azure:

    • '6.4 (ESR)'
    • '7.3' and '7.3 ML'
    • '7.6' and '7.6 ML'
    • '8.0' and '8.0 ML'
    • '8.1' and '8.1 ML'
    • '8.2' and '8.2 ML'
    • '8.3' and '8.3 ML'

    Newer runtimes might work, however are subject to own tests.

4 Running with docker

A docker image ready for working with Jupyterlab Integration is available from Dockerhub. It is recommended to prepare your environment by pulling the repository: docker pull bwalter42/databrickslabs_jupyterlab:2.2.1

There are two scripts in the folder docker:

  • for Windows: dk.dj.bat and dk-jupyter.bat
  • for macOS/Linux: dk-dj and dk-jupyter

Alternatively, under macOS and Linux one can use the following bash functions:

  • databrickslabs-jupyterlab for docker:

    This is the Jupyterlab Integration configuration utility using the docker image:

    function dk-dj {
        docker run -it --rm -p 8888:8888 \
            -v $(pwd)/kernels:/home/dbuser/.local/share/jupyter/kernels/ \
            -v $HOME/.ssh/:/home/dbuser/.ssh  \
            -v $HOME/.databrickscfg:/home/dbuser/.databrickscfg \
            -v $(pwd):/home/dbuser/notebooks \
            bwalter42/databrickslabs_jupyterlab:2.2.1 /opt/conda/bin/databrickslabs-jupyterlab $@
    }
  • jupyter for docker:

    Allows to run jupyter commands using the docker image:

    function dk-jupyter {
        docker run -it --rm -p 8888:8888 \
            -v $(pwd)/kernels:/home/dbuser/.local/share/jupyter/kernels/ \
            -v $HOME/.ssh/:/home/dbuser/.ssh  \
            -v $HOME/.databrickscfg:/home/dbuser/.databrickscfg \
            -v $(pwd):/home/dbuser/notebooks \
            bwalter42/databrickslabs_jupyterlab:2.2.1 /opt/conda/bin/jupyter $@
    }

The two scripts assume that notebooks will be in the current folder and kernels will be in the kernels subfolder of the current folder:

$PWD  <= Start jupyterLab from here
 |_ kernels
 |  |_ <Jupyterlab Integration kernel spec>
 |  |_ ... 
 |_ project
 |  |_ notebook.ipynb
 |_ notebook.ipynb
 |_ ...

Note, the scripts dk-dj / dk-dj.bat will modify your ~/.ssh/config and ~/.ssh/know_hosts! If you you do not want this to happen, you can for example extend the folder structure to

$PWD  <= Start jupyterLab from here
|_ .ssh                      <= new
|  |_ config                 <= new
|  |_ id_$PROFILE            <= new
|  |_ id_$PROFILE.pub        <= new
|_ kernels
|  |_ <Jupyterlab Integration kernel spec>
|  |_ ... 
|_ project
|  |_ notebook.ipynb
|_ notebook.ipynb
|_ ...

and create the necessary public/private key pair in $(pwd)/.ssh and change the parameter -v $HOME/.ssh/:/home/dbuser/.ssh to -v $(pwd)/.ssh/:/home/dbuser/.ssh in both commands.

5 Local installation

  1. Install Jupyterlab Integration

    Create a new conda environment and install databrickslabs_jupyterlab with the following commands:

    (base)$ conda create -n dj python=3.8  # you might need to add "pywin32" if you are on Windows
    (base)$ conda activate dj
    (dj)$   pip install --upgrade databrickslabs-jupyterlab[cli]==2.2.1

    The prefix (db-jlab)$ for all command examples in this document assumes that the conda enviromnent db-jlab is activated.

  2. The tool databrickslabs-jupyterlab / dj

    It comes with a batch file dj.bat for Windows. On MacOS or Linux both dj and databrickslabs-jupyterlab exist

6 Getting started with local installation or docker

Ensure, ssh access is correctly configured, see Configure SSH access

6.1 Starting JupyterLab

  1. Create a kernel specification

    In the terminal, create a jupyter kernel specification for a Databricks CLI profile $PROFILE with the following command:

    • Local installation

      (db-jlab)$ dj $PROFILE -k
    • With docker

      (db-jlab)$ dk-dj $PROFILE -k

    A new kernel is available in the kernel change menu (see here for an explanation of the kernel name structure)

  2. Start JupyterLab

    • Local installation

      (db-jlab)$ dj $PROFILE -l      # or 'jupyter lab'
    • With docker

      (db-jlab)$ dk-dj $PROFILE -l   # or 'dk-jupyter lab'

    The command with -l is a safe version for the standard command to start JupyterLab (jupyter lab) that ensures that the kernel specificiation is updated.

6.2 Using Spark in the Notebook

  1. Check whether the notebook is properly connected

    When the notebook connected successfully to the cluster, the status bar at the bottom of JupyterLab should show

    if you use a kernel with Spark, else just

    If this is not the case, see Troubleshooting

  2. Test the Spark access

    To check the remote Spark connection, enter the following lines into a notebook cell:

    import socket
    
    from databrickslabs_jupyterlab import is_remote
    
    result = sc.range(10000).repartition(100).map(lambda x: x).sum()
    print(socket.gethostname(), is_remote())
    print(result)

    It will show that the kernel is actually running remotely and the hostname of the driver. The second part quickly smoke tests a Spark job.

Success: Your local JupyterLab is successfully contected to the remote Databricks cluster

7 Advanced topics

7.1 Switching kernels and restart after cluster auto-termination

7.2 Creating a mirror of a remote Databricks cluster

7.3 Detailed databrickslabs_jupyterlab command overview

7.4 How it works

7.5 Troubleshooting

8 Project Support

Please note that all projects in the /databrickslabs github account are provided for your exploration only, and are not formally supported by Databricks with Service Level Agreements (SLAs). They are provided AS-IS and we do not make any guarantees of any kind. Please do not submit a support ticket relating to any issues arising from the use of these projects.

Any issues discovered through the use of this project should be filed as GitHub Issues on the Repo. They will be reviewed as time permits, but there are no formal SLAs for support.

9 Test notebooks

To work with the test notebooks in ./examples the remote cluster needs to have the following libraries installed:

  • mlflow==1.x
  • spark-sklearn