forked from OriginTrail/edge-node-knowledge-mining
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
193 lines (155 loc) · 5.89 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from flask import Flask, request, jsonify, g
from flask_cors import CORS
from airflow.models import DagBag, DagRun, TaskInstance
from airflow.api.common.experimental.trigger_dag import trigger_dag
from airflow.settings import Session
from datetime import datetime
from datetime import datetime
import logging
import io
import time
from plugins.utils.airflow_utils import (
get_status_of_dag,
handle_vectorize_ka_pipeline,
handle_file_to_jsonld_pipeline,
)
import os
from dotenv import load_dotenv
from plugins.utils.auth import COOKIE_NAME, authenticate_token
load_dotenv()
dag_folder = os.getenv("DAG_FOLDER_NAME")
app_port = os.getenv("PORT")
app = Flask(__name__)
CORS(app, supports_credentials=True, origins="http://localhost:5173")
dag_bag = DagBag(dag_folder=dag_folder)
def get_user_data():
if hasattr(g, "user_data"):
return g.user_data
else:
logging.error("User data not found in request context")
return None
def request_middleware():
session_id = request.cookies.get(COOKIE_NAME)
if session_id:
# Store the session ID in the global object for later use
logging.info(f"Captured session ID: {session_id}")
# Authenticate the session ID and store user data in g
user_data = authenticate_token(session_id)
if user_data:
g.user_data = user_data
logging.info("User data stored in g for the current request.")
else:
logging.error("Authentication failed. No user data available.")
else:
logging.info("No session ID cookie found")
@app.before_request
def before_request():
request_middleware()
# @app.route("/trigger_mining_chatdkg", methods=["POST"])
# def trigger_mining_chatdkg():
# if "file" not in request.files:
# return jsonify({"error": "No file part"}), 400
# file = request.files["file"]
# if file.filename == "":
# return jsonify({"error": "No selected file"}), 400
# file_content = file.read().decode("utf-8")
# selectedLLM = request.form.get("selectedLLM")
# fileFormat = request.form.get("fileFormat")
# keepOntology = request.form.get("keepOntology")
# category = request.form.get("category")
# conf = {
# "file_content": file_content,
# "selectedLLM": selectedLLM,
# "fileFormat": fileFormat,
# "keepOntology": keepOntology,
# "category": category,
# }
# dag_id = "json_to_jsonld"
# logging.info("Received trigger mining request")
# if dag_id not in dag_bag.dags:
# logging.error("DAG not found")
# return jsonify({"error": "DAG not found"}), 404
# dag = dag_bag.get_dag(dag_id)
# run_id = f"manual__{datetime.now().isoformat()}"
# logging.info("Triggering DAG")
# trigger_dag(dag_id=dag_id, run_id=run_id, conf=conf)
# return jsonify({"message": "DAG triggered"}), 200
@app.route("/check-pipeline-status", methods=["GET"])
def check_pipeline_status():
# pipeline_id = id of pipeline
# run_id = id of a specific run of a pipeline
# task_id = id of a subtask of a pipeline
pipeline_id = request.args.get("pipeline_id")
run_id = request.args.get("run_id")
task_id = "vectorize" if "vectorize" in pipeline_id else "convert_to_ka"
xcom_key = "vectors" if task_id == "vectorize" else "ka"
if not pipeline_id or not run_id:
return jsonify({"error": "Missing pipeline_id or run_id"}), 400
session = Session()
try:
result = get_status_of_dag(
session,
dag_id=pipeline_id,
run_id=run_id,
task_id=task_id,
xcom_key=xcom_key,
)
if result["status"] == "success" and "xcom_value" in result:
response = {
"status": result["status"],
"message": "DAG completed successfully",
"xcom_value": result["xcom_value"],
}
return jsonify(response), 200
elif result["status"] == "failed":
return jsonify({"status": result["status"], "message": "DAG failed"}), 500
elif result["status"] == "not_found":
return (
jsonify({"status": result["status"], "message": "DAG run not found"}),
404,
)
else:
return (
jsonify(
{
"status": result["status"],
"message": "DAG is still running or in an unknown state",
}
),
202,
)
finally:
session.close()
@app.route("/trigger_pipeline", methods=["POST"])
def trigger_pipeline():
if "file" not in request.files:
return jsonify({"error": "No file part"}), 400
file = request.files["file"]
if file.filename == "":
return jsonify({"error": "No selected file"}), 400
pipeline_id = request.form.get("pipelineId")
if not pipeline_id:
return jsonify({"error": "Missing pipelineId"}), 400
logging.info(f"Received trigger request for pipeline {pipeline_id}")
if pipeline_id not in dag_bag.dags:
logging.error("DAG not found")
return jsonify({"error": "DAG not found"}), 404
conf = {"fileName": file.filename}
run_id = f"manual__{datetime.now().isoformat()}"
userData = get_user_data()
if pipeline_id == "vectorize_ka":
handle_vectorize_ka_pipeline(pipeline_id, file, conf, userData)
else:
handle_file_to_jsonld_pipeline(pipeline_id, file, conf, userData)
logging.info(f"Triggering DAG {pipeline_id} with run_id {run_id}")
dag = dag_bag.get_dag(pipeline_id)
trigger_dag(dag_id=pipeline_id, run_id=run_id, conf=conf)
return (
jsonify(
{"message": "DAG triggered", "pipeline_id": pipeline_id, "run_id": run_id}
),
200,
)
if __name__ == "__main__":
logging.info("Starting Flask app")
app.run(debug=True, host="0.0.0.0", port=app_port)