forked from sangnekim/erAIser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_with_aanet.py
150 lines (105 loc) · 5.1 KB
/
inference_with_aanet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import glob
from vos.test import *
import os, sys
import os.path
import numpy as np
import cv2
import pickle
from vos.vos_models.custom import Custom
from vi.model import generate_model
from vi.vi_inference import VIInference
from AANet.aa_inference import *
def assign_siammask(args, cfg, device):
siammask = Custom(anchors=cfg['anchors'])
if args.resume:
assert isfile(args.resume_aanet), 'Please download {} first.'.format(args.resume_aanet)
siammask = load_pretrain(siammask, args.resume)
siammask.eval().to(device)
return siammask
def track_mask(ims, bbox, AAInf, siammask, cfg, device, method='origin video'):
"""method : origin video(1), source image(2), driving video(3)"""
x,y,w,h=bbox
toc=0
if method=='driving video':
target_poses=[]
target_sizes=[]
ims=[(im*255).astype(int) for im in ims] # SIAM : 0~255, AANet: 0~1
for f, im in enumerate(ims):
tic = cv2.getTickCount()
if f == 0: # init
target_pos = np.array([x + w / 2, y + h / 2])
target_sz = np.array([w, h])
state = siamese_init(im, target_pos, target_sz, siammask, cfg['hp'], device=device) # init tracker
# 첫번째 frame부터 tracking
state = siamese_track(state, im, mask_enable=True, refine_enable=True, device=device)
mask = state['mask'] > state['p'].seg_thr
if method=='origin video':
AAInf.origin_video_pos.append(state['target_pos'].astype(int))
AAInf.origin_video_sz.append(state['target_sz'].astype(int))
AAInf.origin_video_mask.append(mask.astype(int))
elif method=='source image':
AAInf.source_image_mask=mask.astype(int)
AAInf.source_image=mask_image(AAInf.source_image, AAInf.source_image_mask)
elif method=='driving video':
target_sizes.append(state['target_sz'].astype(int))
target_poses.append(state['target_pos'].astype(int))
toc += cv2.getTickCount() - tic
toc /= cv2.getTickFrequency()
fps = f / toc
print('track_mask({}) Time: {:02.1f}s Speed: {:3.1f}fps'.format(method, toc, fps))
if method=='driving video':
return target_sizes, target_poses
def aanet_main(AAInf, vi_result, args):
#Setup device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.backends.cudnn.benchmark = True
# Setup Model
cfg = load_config(args)
AAInf.vi_result=vi_result
# save original video
img_files = sorted(glob.glob(join(args.base_path, '*.jp*')))
ims = [cv2.imread(imf) for imf in img_files]
AAInf.origin_video=[(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)/255) for img in ims]
# bounding box for original bounding box
AAInf.origin_video_bbox=resize_bbox(AAInf.origin_video_bbox_512,
(512,512), (AAInf.origin_video[0]).shape[:2][::-1])
### track origin video ###
# siam mask 할당.
siammask=assign_siammask(args, cfg, device)
# bbox of object of origin video
bbox=AAInf.origin_video_bbox # 원본 비디오에 대한 bbox1
# track origin video
track_mask(ims, bbox, AAInf, siammask, cfg, device, method='origin video')
### crop video to (384, 384) ###
AAInf.driving_video_384, AAInf.driving_video_384_mask, _=AAInf.generate_driving_video_384(
AAInf.origin_video, AAInf.origin_video_mask, AAInf.origin_video_pos,
AAInf.origin_video_sz)
### track source image ###
siammask = assign_siammask(args, cfg, device)
bbox=AAInf.source_image_bbox # or [160, 70, 280, 680] for 'AANet/sample/test.png'
AAInf.source_image_bbox=bbox ###
track_mask([AAInf.source_image], bbox, AAInf, siammask,cfg,device, method='source image')
### refine source image and driving video to (384, 384) shape
if AAInf.driving_video_384:
AAInf.source_image_384, AAInf.driving_video_384=AAInf.resize_for_generating_animation(
AAInf.source_image, AAInf.driving_video_384, AAInf.source_image_bbox)
else:
raise NameError('use driving_video_384')
### generate animation ###
tic=cv2.getTickCount()
AAInf.source_animation=AAInf.generate_animation(
AAInf.source_image_384, AAInf.driving_video_384, args.aanet_ani_mode)
toc=cv2.getTickCount()-tic
toc /= cv2.getTickFrequency()
fps = len(AAInf.source_animation) / toc
print('generating animation Time: {:02.1f}s Speed: {:3.1f}fps)'.format(toc, fps))
### track driving video(animation video) ###
siammask = assign_siammask(args, cfg, device)
bbox=AAInf.source_image_384_bbox
target_sizes, target_poses= track_mask(AAInf.source_animation, bbox, AAInf, siammask,cfg, device, method='driving video')
### decouple object from background ###
masks=AAInf.decouple_background(AAInf.source_animation)
### synthesize object to inpainting video ###
video=AAInf.synthesize_object(masks, target_sizes, target_poses)
# 비디오 합성 (0710 메서드화.)
return video